The following subclauses describe components for complex number types, random number generation, numeric (n-at-a-time) arrays, generalized numeric algorithms, and mathematical functions for floating-point types, as summarized in Table 101.
Subclause | Header(s) | |
[numerics.defns] | Definitions | |
[numeric.requirements] | Requirements | |
[cfenv] | Floating-point environment | <cfenv> |
[complex.numbers] | Complex numbers | <complex> |
[rand] | Random number generation | <random> |
[numarray] | Numeric arrays | <valarray> |
[numeric.ops] | Generalized numeric operations | <numeric> |
[c.math] | Mathematical functions for | <cmath> |
floating-point types | <cstdlib> |
Define GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, ..., aN) as follows:
a1 when N is 1, otherwise
op(GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, ..., aK),
op(GENERALIZED_NONCOMMUTATIVE_SUM(op, aM, ..., aN))
for any K where 1<K+1=M≤N.
The complex and valarray components are parameterized by the type of information they contain and manipulate. A C++ program shall instantiate these components only with a type T that satisfies the following requirements:267
T is not an abstract class (it has no pure virtual member functions);
T is not a reference type;
T is not cv-qualified;
If T is a class, it has a public default constructor;
If T is a class, it has a public copy constructor with the signature T::T(const T&)
If T is a class, it has a public destructor;
If T is a class, it has a public assignment operator whose signature is either T& T::operator=(const T&) or T& T::operator=(T)
If T is a class, its assignment operator, copy and default constructors, and destructor shall correspond to each other in the following sense:
Initialization of raw storage using the copy constructor on the value of T(), however obtained, is semantically equivalent to value-initialization of the same raw storage.
Initialization of raw storage using the default constructor, followed by assignment, is semantically equivalent to initialization of raw storage using the copy constructor.
Destruction of an object, followed by initialization of its raw storage using the copy constructor, is semantically equivalent to assignment to the original object.
[ Note: This rule states, in part, that there shall not be any subtle differences in the semantics of initialization versus assignment. This gives an implementation considerable flexibility in how arrays are initialized.
[ Example: An implementation is allowed to initialize a valarray by allocating storage using the new operator (which implies a call to the default constructor for each element) and then assigning each element its value. Or the implementation can allocate raw storage and use the copy constructor to initialize each element. — end example ]
If the distinction between initialization and assignment is important for a class, or if it fails to satisfy any of the other conditions listed above, the programmer should use vector instead of valarray for that class. — end note ]
If T is a class, it does not overload unary operator&.
In addition, many member and related functions of valarray<T> can be successfully instantiated and will exhibit well-defined behavior if and only if T satisfies additional requirements specified for each such member or related function.
[ Example: It is valid to instantiate valarray<complex>, but operator>() will not be successfully instantiated for valarray<complex> operands, since complex does not have any ordering operators. — end example ]
In other words, value types. These include arithmetic types, pointers, the library class complex, and instantiations of valarray for value types.
#define FE_ALL_EXCEPT see below #define FE_DIVBYZERO see below #define FE_INEXACT see below #define FE_INVALID see below #define FE_OVERFLOW see below #define FE_UNDERFLOW see below #define FE_DOWNWARD see below #define FE_TONEAREST see below #define FE_TOWARDZERO see below #define FE_UPWARD see below #define FE_DFL_ENV see below namespace std { // types using fenv_t = object type; using fexcept_t = integer type; // functions int feclearexcept(int except); int fegetexceptflag(fexcept_t* pflag, int except); int feraiseexcept(int except); int fesetexceptflag(const fexcept_t* pflag, int except); int fetestexcept(int except); int fegetround(); int fesetround(int mode); int fegetenv(fenv_t* penv); int feholdexcept(fenv_t* penv); int fesetenv(const fenv_t* penv); int feupdateenv(const fenv_t* penv); }
The contents and meaning of the header <cfenv> are the same as the C standard library header <fenv.h>. [ Note: This International Standard does not require an implementation to support the FENV_ACCESS pragma; it is implementation-defined ([cpp.pragma]) whether the pragma is supported. As a consequence, it is implementation-defined whether these functions can be used to test floating-point status flags, set floating-point control modes, or run under non-default mode settings. If the pragma is used to enable control over the floating-point environment, this International Standard does not specify the effect on floating-point evaluation in constant expressions. — end note ]
The floating-point environment has thread storage duration. The initial state for a thread's floating-point environment is the state of the floating-point environment of the thread that constructs the corresponding thread object at the time it constructed the object. [ Note: That is, the child thread gets the floating-point state of the parent thread at the time of the child's creation. — end note ]
The header <complex> defines a class template, and numerous functions for representing and manipulating complex numbers.
The effect of instantiating the template complex for any type other than float, double, or long double is unspecified. The specializations complex<float>, complex<double>, and complex<long double> are literal types.
If the result of a function is not mathematically defined or not in the range of representable values for its type, the behavior is undefined.
If z is an lvalue expression of type cv complex<T> then:
the expression reinterpret_cast<cv T(&)[2]>(z) shall be well-formed,
reinterpret_cast<cv T(&)[2]>(z)[0] shall designate the real part of z, and
reinterpret_cast<cv T(&)[2]>(z)[1] shall designate the imaginary part of z.
Moreover, if a is an expression of type cv complex<T>* and the expression a[i] is well-defined for an integer expression i, then:
reinterpret_cast<cv T*>(a)[2*i] shall designate the real part of a[i], and
reinterpret_cast<cv T*>(a)[2*i + 1] shall designate the imaginary part of a[i].
namespace std { template<class T> class complex; template<> class complex<float>; template<> class complex<double>; template<> class complex<long double>; // [complex.ops], operators template<class T> complex<T> operator+(const complex<T>&, const complex<T>&); template<class T> complex<T> operator+(const complex<T>&, const T&); template<class T> complex<T> operator+(const T&, const complex<T>&); template<class T> complex<T> operator-( const complex<T>&, const complex<T>&); template<class T> complex<T> operator-(const complex<T>&, const T&); template<class T> complex<T> operator-(const T&, const complex<T>&); template<class T> complex<T> operator*( const complex<T>&, const complex<T>&); template<class T> complex<T> operator*(const complex<T>&, const T&); template<class T> complex<T> operator*(const T&, const complex<T>&); template<class T> complex<T> operator/( const complex<T>&, const complex<T>&); template<class T> complex<T> operator/(const complex<T>&, const T&); template<class T> complex<T> operator/(const T&, const complex<T>&); template<class T> complex<T> operator+(const complex<T>&); template<class T> complex<T> operator-(const complex<T>&); template<class T> constexpr bool operator==( const complex<T>&, const complex<T>&); template<class T> constexpr bool operator==(const complex<T>&, const T&); template<class T> constexpr bool operator==(const T&, const complex<T>&); template<class T> constexpr bool operator!=(const complex<T>&, const complex<T>&); template<class T> constexpr bool operator!=(const complex<T>&, const T&); template<class T> constexpr bool operator!=(const T&, const complex<T>&); template<class T, class charT, class traits> basic_istream<charT, traits>& operator>>(basic_istream<charT, traits>&, complex<T>&); template<class T, class charT, class traits> basic_ostream<charT, traits>& operator<<(basic_ostream<charT, traits>&, const complex<T>&); // [complex.value.ops], values template<class T> constexpr T real(const complex<T>&); template<class T> constexpr T imag(const complex<T>&); template<class T> T abs(const complex<T>&); template<class T> T arg(const complex<T>&); template<class T> T norm(const complex<T>&); template<class T> complex<T> conj(const complex<T>&); template<class T> complex<T> proj(const complex<T>&); template<class T> complex<T> polar(const T&, const T& = 0); // [complex.transcendentals], transcendentals template<class T> complex<T> acos(const complex<T>&); template<class T> complex<T> asin(const complex<T>&); template<class T> complex<T> atan(const complex<T>&); template<class T> complex<T> acosh(const complex<T>&); template<class T> complex<T> asinh(const complex<T>&); template<class T> complex<T> atanh(const complex<T>&); template<class T> complex<T> cos (const complex<T>&); template<class T> complex<T> cosh (const complex<T>&); template<class T> complex<T> exp (const complex<T>&); template<class T> complex<T> log (const complex<T>&); template<class T> complex<T> log10(const complex<T>&); template<class T> complex<T> pow (const complex<T>&, const T&); template<class T> complex<T> pow (const complex<T>&, const complex<T>&); template<class T> complex<T> pow (const T&, const complex<T>&); template<class T> complex<T> sin (const complex<T>&); template<class T> complex<T> sinh (const complex<T>&); template<class T> complex<T> sqrt (const complex<T>&); template<class T> complex<T> tan (const complex<T>&); template<class T> complex<T> tanh (const complex<T>&); // [complex.literals], complex literals inline namespace literals { inline namespace complex_literals { constexpr complex<long double> operator""il(long double); constexpr complex<long double> operator""il(unsigned long long); constexpr complex<double> operator""i(long double); constexpr complex<double> operator""i(unsigned long long); constexpr complex<float> operator""if(long double); constexpr complex<float> operator""if(unsigned long long); } } }
namespace std { template<class T> class complex { public: using value_type = T; constexpr complex(const T& re = T(), const T& im = T()); constexpr complex(const complex&); template<class X> constexpr complex(const complex<X>&); constexpr T real() const; void real(T); constexpr T imag() const; void imag(T); complex<T>& operator= (const T&); complex<T>& operator+=(const T&); complex<T>& operator-=(const T&); complex<T>& operator*=(const T&); complex<T>& operator/=(const T&); complex& operator=(const complex&); template<class X> complex<T>& operator= (const complex<X>&); template<class X> complex<T>& operator+=(const complex<X>&); template<class X> complex<T>& operator-=(const complex<X>&); template<class X> complex<T>& operator*=(const complex<X>&); template<class X> complex<T>& operator/=(const complex<X>&); }; }
namespace std { template<> class complex<float> { public: using value_type = float; constexpr complex(float re = 0.0f, float im = 0.0f); constexpr explicit complex(const complex<double>&); constexpr explicit complex(const complex<long double>&); constexpr float real() const; void real(float); constexpr float imag() const; void imag(float); complex<float>& operator= (float); complex<float>& operator+=(float); complex<float>& operator-=(float); complex<float>& operator*=(float); complex<float>& operator/=(float); complex<float>& operator=(const complex<float>&); template<class X> complex<float>& operator= (const complex<X>&); template<class X> complex<float>& operator+=(const complex<X>&); template<class X> complex<float>& operator-=(const complex<X>&); template<class X> complex<float>& operator*=(const complex<X>&); template<class X> complex<float>& operator/=(const complex<X>&); }; template<> class complex<double> { public: using value_type = double; constexpr complex(double re = 0.0, double im = 0.0); constexpr complex(const complex<float>&); constexpr explicit complex(const complex<long double>&); constexpr double real() const; void real(double); constexpr double imag() const; void imag(double); complex<double>& operator= (double); complex<double>& operator+=(double); complex<double>& operator-=(double); complex<double>& operator*=(double); complex<double>& operator/=(double); complex<double>& operator=(const complex<double>&); template<class X> complex<double>& operator= (const complex<X>&); template<class X> complex<double>& operator+=(const complex<X>&); template<class X> complex<double>& operator-=(const complex<X>&); template<class X> complex<double>& operator*=(const complex<X>&); template<class X> complex<double>& operator/=(const complex<X>&); }; template<> class complex<long double> { public: using value_type = long double; constexpr complex(long double re = 0.0L, long double im = 0.0L); constexpr complex(const complex<float>&); constexpr complex(const complex<double>&); constexpr long double real() const; void real(long double); constexpr long double imag() const; void imag(long double); complex<long double>& operator=(const complex<long double>&); complex<long double>& operator= (long double); complex<long double>& operator+=(long double); complex<long double>& operator-=(long double); complex<long double>& operator*=(long double); complex<long double>& operator/=(long double); template<class X> complex<long double>& operator= (const complex<X>&); template<class X> complex<long double>& operator+=(const complex<X>&); template<class X> complex<long double>& operator-=(const complex<X>&); template<class X> complex<long double>& operator*=(const complex<X>&); template<class X> complex<long double>& operator/=(const complex<X>&); }; }
template<class T> constexpr complex(const T& re = T(), const T& im = T());
constexpr T real() const;
void real(T val);
constexpr T imag() const;
void imag(T val);
complex<T>& operator+=(const T& rhs);
Effects: Adds the scalar value rhs to the real part of the complex value *this and stores the result in the real part of *this, leaving the imaginary part unchanged.
complex<T>& operator-=(const T& rhs);
Effects: Subtracts the scalar value rhs from the real part of the complex value *this and stores the result in the real part of *this, leaving the imaginary part unchanged.
complex<T>& operator*=(const T& rhs);
Effects: Multiplies the scalar value rhs by the complex value *this and stores the result in *this.
complex<T>& operator/=(const T& rhs);
Effects: Divides the scalar value rhs into the complex value *this and stores the result in *this.
template<class X> complex<T>& operator+=(const complex<X>& rhs);
template<class X> complex<T>& operator-=(const complex<X>& rhs);
Effects: Subtracts the complex value rhs from the complex value *this and stores the difference in *this.
template<class X> complex<T>& operator*=(const complex<X>& rhs);
Effects: Multiplies the complex value rhs by the complex value *this and stores the product in *this.
template<class X> complex<T>& operator/=(const complex<X>& rhs);
Effects: Divides the complex value rhs into the complex value *this and stores the quotient in *this.
template<class T> complex<T> operator+(const complex<T>& lhs);
template<class T> complex<T> operator+(const complex<T>& lhs, const complex<T>& rhs);
template<class T> complex<T> operator+(const complex<T>& lhs, const T& rhs);
template<class T> complex<T> operator+(const T& lhs, const complex<T>& rhs);
template<class T> complex<T> operator-(const complex<T>& lhs);
template<class T> complex<T> operator-(const complex<T>& lhs, const complex<T>& rhs);
template<class T> complex<T> operator-(const complex<T>& lhs, const T& rhs);
template<class T> complex<T> operator-(const T& lhs, const complex<T>& rhs);
template<class T> complex<T> operator*(const complex<T>& lhs, const complex<T>& rhs);
template<class T> complex<T> operator*(const complex<T>& lhs, const T& rhs);
template<class T> complex<T> operator*(const T& lhs, const complex<T>& rhs);
template<class T> complex<T> operator/(const complex<T>& lhs, const complex<T>& rhs);
template<class T> complex<T> operator/(const complex<T>& lhs, const T& rhs);
template<class T> complex<T> operator/(const T& lhs, const complex<T>& rhs);
template<class T> constexpr bool operator==(const complex<T>& lhs, const complex<T>& rhs);
template<class T> constexpr bool operator==(const complex<T>& lhs, const T& rhs);
template<class T> constexpr bool operator==(const T& lhs, const complex<T>& rhs);
template<class T> constexpr bool operator!=(const complex<T>& lhs, const complex<T>& rhs);
template<class T> constexpr bool operator!=(const complex<T>& lhs, const T& rhs);
template<class T> constexpr bool operator!=(const T& lhs, const complex<T>& rhs);
template<class T, class charT, class traits>
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is, complex<T>& x);
Effects: Extracts a complex number x of the form: u, (u), or (u,v), where u is the real part and v is the imaginary part ([istream.formatted]).
If bad input is encountered, calls is.setstate(ios_base::failbit) (which may throw ios::failure ([iostate.flags])).
Remarks: This extraction is performed as a series of simpler extractions. Therefore, the skipping of whitespace is specified to be the same for each of the simpler extractions.
template<class T, class charT, class traits>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& o, const complex<T>& x);
Effects: Inserts the complex number x onto the stream o as if it were implemented as follows:
basic_ostringstream<charT, traits> s; s.flags(o.flags()); s.imbue(o.getloc()); s.precision(o.precision()); s << '(' << x.real() << "," << x.imag() << ')'; return o << s.str();
[ Note: In a locale in which comma is used as a decimal point character, the use of comma as a field separator can be ambiguous. Inserting showpoint into the output stream forces all outputs to show an explicit decimal point character; as a result, all inserted sequences of complex numbers can be extracted unambiguously. — end note ]
template<class T> constexpr T real(const complex<T>& x);
template<class T> constexpr T imag(const complex<T>& x);
template<class T> T abs(const complex<T>& x);
template<class T> T arg(const complex<T>& x);
template<class T> T norm(const complex<T>& x);
template<class T> complex<T> conj(const complex<T>& x);
template<class T> complex<T> proj(const complex<T>& x);
template<class T> complex<T> polar(const T& rho, const T& theta = 0);
template<class T> complex<T> acos(const complex<T>& x);
template<class T> complex<T> asin(const complex<T>& x);
template<class T> complex<T> atan(const complex<T>& x);
template<class T> complex<T> acosh(const complex<T>& x);
template<class T> complex<T> asinh(const complex<T>& x);
template<class T> complex<T> atanh(const complex<T>& x);
template<class T> complex<T> cos(const complex<T>& x);
template<class T> complex<T> cosh(const complex<T>& x);
template<class T> complex<T> exp(const complex<T>& x);
template<class T> complex<T> log(const complex<T>& x);
Returns: The complex natural (base-e) logarithm of x. For all x, imag(log(x)) lies in the interval [−π, π], and when x is a negative real number, imag(log(x)) is π.
template<class T> complex<T> log10(const complex<T>& x);
template<class T> complex<T> pow(const complex<T>& x, const complex<T>& y);
template<class T> complex<T> pow(const complex<T>& x, const T& y);
template<class T> complex<T> pow(const T& x, const complex<T>& y);
template<class T> complex<T> sin(const complex<T>& x);
template<class T> complex<T> sinh(const complex<T>& x);
template<class T> complex<T> sqrt(const complex<T>& x);
Returns: The complex square root of x, in the range of the right half-plane. If the argument is a negative real number, the value returned lies on the positive imaginary axis.
template<class T> complex<T> tan(const complex<T>& x);
template<class T> complex<T> tanh(const complex<T>& x);
Function template pow shall have additional overloads sufficient to ensure, for a call with at least one argument of type complex<T>:
1.If either argument has type complex<long double> or type long double, then both arguments are effectively cast to complex<long double>.
2.Otherwise, if either argument has type complex<double>, double, or an integer type, then both arguments are effectively cast to complex<double>.
3.Otherwise, if either argument has type complex<float> or float, then both arguments are effectively cast to complex<float>.
This section describes literal suffixes for constructing complex number literals. The suffixes i, il, and if create complex numbers of the types complex<double>, complex<long double>, and complex<float> respectively, with their imaginary part denoted by the given literal number and the real part being zero.
constexpr complex<long double> operator""il(long double d);
constexpr complex<long double> operator""il(unsigned long long d);
constexpr complex<double> operator""i(long double d);
constexpr complex<double> operator""i(unsigned long long d);
constexpr complex<float> operator""if(long double d);
constexpr complex<float> operator""if(unsigned long long d);
In addition to a few utilities, four categories of entities are described: uniform random bit generators, random number engines, random number engine adaptors, and random number distributions. These categorizations are applicable to types that satisfy the corresponding requirements, to objects instantiated from such types, and to templates producing such types when instantiated. [ Note: These entities are specified in such a way as to permit the binding of any uniform random bit generator object e as the argument to any random number distribution object d, thus producing a zero-argument function object such as given by bind(d,e). — end note ]
Each of the entities specified via this subclause has an associated arithmetic type identified as result_type. With T as the result_type thus associated with such an entity, that entity is characterized:
a)as boolean or equivalently as boolean-valued, if T is bool;
b)otherwise as integral or equivalently as integer-valued, if numeric_limits<T>::is_integer is true;
c)otherwise as floating or equivalently as real-valued.
If integer-valued, an entity may optionally be further characterized as signed or unsigned, according to numeric_limits<T>::is_signed.
Unless otherwise specified, all descriptions of calculations in this subclause use mathematical real numbers.
Throughout this subclause, the operators bitand , bitor , and xor denote the respective conventional bitwise operations. Further:
Throughout this subclause [rand], the effect of instantiating a template:
a)that has a template type parameter named Sseq is undefined unless the corresponding template argument is cv-unqualified and satisfies the requirements of seed sequence.
b)that has a template type parameter named URBG is undefined unless the corresponding template argument is cv-unqualified and satisfies the requirements of uniform random bit generator.
c)that has a template type parameter named Engine is undefined unless the corresponding template argument is cv-unqualified and satisfies the requirements of random number engine.
d)that has a template type parameter named RealType is undefined unless the corresponding template argument is cv-unqualified and is one of float, double, or long double.
e)that has a template type parameter named IntType is undefined unless the corresponding template argument is cv-unqualified and is one of short, int, long, long long, unsigned short, unsigned int, unsigned long, or unsigned long long.
f)that has a template type parameter named UIntType is undefined unless the corresponding template argument is cv-unqualified and is one of unsigned short, unsigned int, unsigned long, or unsigned long long.
Throughout this subclause [rand], phrases of the form “x is an iterator of a specific kind” shall be interpreted as equivalent to the more formal requirement that “x is a value of a type satisfying the requirements of the specified iterator type”.
A seed sequence is an object that consumes a sequence of integer-valued data and produces a requested number of unsigned integer values i, 0≤i<232, based on the consumed data. [ Note: Such an object provides a mechanism to avoid replication of streams of random variates. This can be useful, for example, in applications requiring large numbers of random number engines. — end note ]
A class S satisfies the requirements of a seed sequence if the expressions shown in Table 102 are valid and have the indicated semantics, and if S also satisfies all other requirements of this section [rand.req.seedseq]. In that Table and throughout this section:
a)T is the type named by S's associated result_type;
b)q is a value of S and r is a possibly const value of S;
c)ib and ie are input iterators with an unsigned integer value_type of at least 32 bits;
d)rb and re are mutable random access iterators with an unsigned integer value_type of at least 32 bits;
e)ob is an output iterator; and
f)il is a value of initializer_list<T>.
Expression | Return type | Pre/post-condition | Complexity |
S::result_type | T | T is an unsigned integer type of at least 32 bits. | compile-time |
S() | Creates a seed sequence with the same initial state as all other default-constructed seed sequences of type S. | constant | |
S(ib,ie) | Creates a seed sequence having internal state that depends on some or all of the bits of the supplied sequence [ib,ie). | O(ie−ib) | |
S(il) | Same as S(il.begin(), il.end()). | same as S(il.begin(), il.end()) | |
q.generate(rb,re) | void | Does nothing if rb == re. Otherwise, fills the supplied sequence [rb,re) with 32-bit quantities that depend on the sequence supplied to the constructor and possibly also depend on the history of generate's previous invocations. | O(re−rb) |
r.size() | size_t | The number of 32-bit units that would be copied by a call to r.param. | constant |
r.param(ob) | void | Copies to the given destination a sequence of 32-bit units that can be provided to the constructor of a second object of type S, and that would reproduce in that second object a state indistinguishable from the state of the first object. | O(r.size()) |
A uniform random bit generator g of type G is a function object returning unsigned integer values such that each value in the range of possible results has (ideally) equal probability of being returned. [ Note: The degree to which g's results approximate the ideal is often determined statistically. — end note ]
A class G satisfies the requirements of a uniform random bit generator if the expressions shown in Table 103 are valid and have the indicated semantics, and if G also satisfies all other requirements of this section [rand.req.urng]. In that Table and throughout this section:
Expression | Return type | Pre/post-condition | Complexity |
G::result_type | T | T is an unsigned integer type. | compile-time |
g() | T | Returns a value in the closed interval [G::min(), G::max()]. | amortized constant |
G::min() | T | Denotes the least value potentially returned by operator(). | compile-time |
G::max() | T | Denotes the greatest value potentially returned by operator(). | compile-time |
A random number engine (commonly shortened to engine) e of type E is a uniform random bit generator that additionally meets the requirements (e.g., for seeding and for input/output) specified in this section.
At any given time, e has a state ei for some integer i≥0. Upon construction, e has an initial state e0. An engine's state may be established via a constructor, a seed function, assignment, or a suitable operator>>.
E's specification shall define:
a)the size of E's state in multiples of the size of result_type, given as an integral constant expression;
b)the transition algorithm TA by which e's state ei is advanced to its successor state ei+1; and
c)the generation algorithm GA by which an engine's state is mapped to a value of type result_type.
A class E that satisfies the requirements of a uniform random bit generator also satisfies the requirements of a random number engine if the expressions shown in Table 104 are valid and have the indicated semantics, and if E also satisfies all other requirements of this section [rand.req.eng]. In that Table and throughout this section:
a)T is the type named by E's associated result_type;
b)e is a value of E, v is an lvalue of E, x and y are (possibly const) values of E;
c)s is a value of T;
d)q is an lvalue satisfying the requirements of a seed sequence;
e)z is a value of type unsigned long long;
f)os is an lvalue of the type of some class template specialization basic_ostream<charT, traits>; and
g)is is an lvalue of the type of some class template specialization basic_istream<charT, traits>;
where charT and traits are constrained according to Clause [strings] and Clause [input.output].
Expression | Return type | Pre/post-condition | Complexity |
E() | Creates an engine with the same initial state as all other default-constructed engines of type E. | O(size of state) | |
E(x) | Creates an engine that compares equal to x. | O(size of state) | |
E(s) | Creates an engine with initial state determined by s. | O(size of state) | |
E(q)268 | Creates an engine with an initial state that depends on a sequence produced by one call to q.generate. | same as complexity of q.generate called on a sequence whose length is size of state | |
e.seed() | void | Postconditions: e == E(). | same as E() |
e.seed(s) | void | Postconditions: e == E(s). | same as E(s) |
e.seed(q) | void | Postconditions: e == E(q). | same as E(q) |
e() | T | Advances e's state ei to ei+1 =TA(ei) and returns GA(ei). | per Table 103 |
e.discard(z) 269 | void | Advances e's state ei to ei+z by any means equivalent to z consecutive calls e(). | no worse than the complexity of z consecutive calls e() |
x == y | bool | This operator is an equivalence relation. With Sx and Sy as the infinite sequences of values that would be generated by repeated future calls to x() and y(), respectively, returns true if Sx=Sy; else returns false. | O(size of state) |
x != y | bool | !(x == y). | O(size of state) |
os << x | reference to the type of os | With os.fmtflags set to ios_base::dec|ios_base::left and the fill character set to the space character, writes to os the textual representation of x's current state. In the output, adjacent numbers are separated by one or more space characters. Postconditions: The os.fmtflags and fill character are unchanged. | O(size of state) |
is >> v | reference to the type of is | With is.fmtflags set to ios_base::dec, sets v's state as determined by reading its textual representation from is. If bad input is encountered, ensures that v's state is unchanged by the operation and calls is.setstate(ios::failbit) (which may throw ios::failure ([iostate.flags])). If a textual representation written via os << x was subsequently read via is >> v, then x == v provided that there have been no intervening invocations of x or of v. Requires: is provides a textual representation that was previously written using an output stream whose imbued locale was the same as that of is, and whose type's template specialization arguments charT and traits were respectively the same as those of is. Postconditions: The is.fmtflags are unchanged. | O(size of state) |
E shall meet the requirements of CopyConstructible and CopyAssignable types. These operations shall each be of complexity no worse than O(size of state).
This constructor (as well as the subsequent corresponding seed() function) may be particularly useful to applications requiring a large number of independent random sequences.
This operation is common in user code, and can often be implemented in an engine-specific manner so as to provide significant performance improvements over an equivalent naive loop that makes z consecutive calls e().
A random number engine adaptor (commonly shortened to adaptor) a of type A is a random number engine that takes values produced by some other random number engine, and applies an algorithm to those values in order to deliver a sequence of values with different randomness properties. An engine b of type B adapted in this way is termed a base engine in this context. The expression a.base() shall be valid and shall return a const reference to a's base engine.
The requirements of a random number engine type shall be interpreted as follows with respect to a random number engine adaptor type.
A::A();
bool operator==(const A& a1, const A& a2);
A::A(result_type s);
template<class Sseq> A::A(Sseq& q);
void seed();
void seed(result_type s);
template<class Sseq> void seed(Sseq& q);
A shall also satisfy the following additional requirements:
a)The complexity of each function shall not exceed the complexity of the corresponding function applied to the base engine.
b)The state of A shall include the state of its base engine. The size of A's state shall be no less than the size of the base engine.
c)Copying A's state (e.g., during copy construction or copy assignment) shall include copying the state of the base engine of A.
d)The textual representation of A shall include the textual representation of its base engine.
A random number distribution (commonly shortened to distribution) d of type D is a function object returning values that are distributed according to an associated mathematical probability density function p(z) or according to an associated discrete probability function P(zi). A distribution's specification identifies its associated probability function p(z) or P(zi).
An associated probability function is typically expressed using certain externally-supplied quantities known as the parameters of the distribution. Such distribution parameters are identified in this context by writing, for example, p(z|a,b) or P(zi|a,b), to name specific parameters, or by writing, for example, p(z |{p}) or P(zi|{p}), to denote a distribution's parameters p taken as a whole.
A class D satisfies the requirements of a random number distribution if the expressions shown in Table 105 are valid and have the indicated semantics, and if D and its associated types also satisfy all other requirements of this section [rand.req.dist]. In that Table and throughout this section,
a)T is the type named by D's associated result_type;
b)P is the type named by D's associated param_type;
c)d is a value of D, and x and y are (possibly const) values of D;
d)glb and lub are values of T respectively corresponding to the greatest lower bound and the least upper bound on the values potentially returned by d's operator(), as determined by the current values of d's parameters;
e)p is a (possibly const) value of P;
f)g, g1, and g2 are lvalues of a type satisfying the requirements of a uniform random bit generator;
g)os is an lvalue of the type of some class template specialization basic_ostream<charT, traits>; and
h)is is an lvalue of the type of some class template specialization basic_istream<charT, traits>;
where charT and traits are constrained according to Clauses [strings] and [input.output].
Expression | Return type | Pre/post-condition | Complexity |
D::result_type | T | T is an arithmetic type. | compile-time |
D::param_type | P | compile-time | |
D() | Creates a distribution whose behavior is indistinguishable from that of any other newly default-constructed distribution of type D. | constant | |
D(p) | Creates a distribution whose behavior is indistinguishable from that of a distribution newly constructed directly from the values used to construct p. | same as p's construction | |
d.reset() | void | Subsequent uses of d do not depend on values produced by any engine prior to invoking reset. | constant |
x.param() | P | Returns a value p such that D(p).param() == p. | no worse than the complexity of D(p) |
d.param(p) | void | Postconditions: d.param() == p. | no worse than the complexity of D(p) |
d(g) | T | With p=d.param(), the sequence of numbers returned by successive invocations with the same object g is randomly distributed according to the associated p(z |{p}) or P(zi|{p}) function. | amortized constant number of invocations of g |
d(g,p) | T | The sequence of numbers returned by successive invocations with the same objects g and p is randomly distributed according to the associated p(z |{p}) or P(zi|{p}) function. | amortized constant number of invocations of g |
x.min() | T | Returns glb. | constant |
x.max() | T | Returns lub. | constant |
x == y | bool | This operator is an equivalence relation. Returns true if x.param() == y.param() and S1=S2, where S1 and S2 are the infinite sequences of values that would be generated, respectively, by repeated future calls to x(g1) and y(g2) whenever g1 == g2. Otherwise returns false. | constant |
x != y | bool | !(x == y). | same as x == y. |
os << x | reference to the type of os | Writes to os a textual representation for the parameters and the additional internal data of x. Postconditions: The os.fmtflags and fill character are unchanged. | |
is >> d | reference to the type of is | Restores from is the parameters and additional internal data of the lvalue d. If bad input is encountered, ensures that d is unchanged by the operation and calls is.setstate(ios::failbit) (which may throw ios::failure ([iostate.flags])). Requires: is provides a textual representation that was previously written using an os whose imbued locale and whose type's template specialization arguments charT and traits were the same as those of is. Postconditions: The is.fmtflags are unchanged. |
The sequence of numbers produced by repeated invocations of d(g) shall be independent of any invocation of os << d or of any const member function of D between any of the invocations d(g).
If a textual representation is written using os << x and that representation is restored into the same or a different object y of the same type using is >> y, repeated invocations of y(g) shall produce the same sequence of numbers as would repeated invocations of x(g).
It is unspecified whether D::param_type is declared as a (nested) class or via a typedef. In this subclause [rand], declarations of D::param_type are in the form of typedefs for convenience of exposition only.
P shall satisfy the requirements of CopyConstructible, CopyAssignable, and EqualityComparable types.
For each of the constructors of D taking arguments corresponding to parameters of the distribution, P shall have a corresponding constructor subject to the same requirements and taking arguments identical in number, type, and default values. Moreover, for each of the member functions of D that return values corresponding to parameters of the distribution, P shall have a corresponding member function with the identical name, type, and semantics.
#include <initializer_list> namespace std { // [rand.eng.lcong], class template linear_congruential_engine template<class UIntType, UIntType a, UIntType c, UIntType m> class linear_congruential_engine; // [rand.eng.mers], class template mersenne_twister_engine template<class UIntType, size_t w, size_t n, size_t m, size_t r, UIntType a, size_t u, UIntType d, size_t s, UIntType b, size_t t, UIntType c, size_t l, UIntType f> class mersenne_twister_engine; // [rand.eng.sub], class template subtract_with_carry_engine template<class UIntType, size_t w, size_t s, size_t r> class subtract_with_carry_engine; // [rand.adapt.disc], class template discard_block_engine template<class Engine, size_t p, size_t r> class discard_block_engine; // [rand.adapt.ibits], class template independent_bits_engine template<class Engine, size_t w, class UIntType> class independent_bits_engine; // [rand.adapt.shuf], class template shuffle_order_engine template<class Engine, size_t k> class shuffle_order_engine; // [rand.predef], engines and engine adaptors with predefined parameters using minstd_rand0 = see below; using minstd_rand = see below; using mt19937 = see below; using mt19937_64 = see below; using ranlux24_base = see below; using ranlux48_base = see below; using ranlux24 = see below; using ranlux48 = see below; using knuth_b = see below; using default_random_engine = see below; // [rand.device], class random_device class random_device; // [rand.util.seedseq], class seed_seq class seed_seq; // [rand.util.canonical], function template generate_canonical template<class RealType, size_t bits, class URBG> RealType generate_canonical(URBG& g); // [rand.dist.uni.int], class template uniform_int_distribution template<class IntType = int> class uniform_int_distribution; // [rand.dist.uni.real], class template uniform_real_distribution template<class RealType = double> class uniform_real_distribution; // [rand.dist.bern.bernoulli], class bernoulli_distribution class bernoulli_distribution; // [rand.dist.bern.bin], class template binomial_distribution template<class IntType = int> class binomial_distribution; // [rand.dist.bern.geo], class template geometric_distribution template<class IntType = int> class geometric_distribution; // [rand.dist.bern.negbin], class template negative_binomial_distribution template<class IntType = int> class negative_binomial_distribution; // [rand.dist.pois.poisson], class template poisson_distribution template<class IntType = int> class poisson_distribution; // [rand.dist.pois.exp], class template exponential_distribution template<class RealType = double> class exponential_distribution; // [rand.dist.pois.gamma], class template gamma_distribution template<class RealType = double> class gamma_distribution; // [rand.dist.pois.weibull], class template weibull_distribution template<class RealType = double> class weibull_distribution; // [rand.dist.pois.extreme], class template extreme_value_distribution template<class RealType = double> class extreme_value_distribution; // [rand.dist.norm.normal], class template normal_distribution template<class RealType = double> class normal_distribution; // [rand.dist.norm.lognormal], class template lognormal_distribution template<class RealType = double> class lognormal_distribution; // [rand.dist.norm.chisq], class template chi_squared_distribution template<class RealType = double> class chi_squared_distribution; // [rand.dist.norm.cauchy], class template cauchy_distribution template<class RealType = double> class cauchy_distribution; // [rand.dist.norm.f], class template fisher_f_distribution template<class RealType = double> class fisher_f_distribution; // [rand.dist.norm.t], class template student_t_distribution template<class RealType = double> class student_t_distribution; // [rand.dist.samp.discrete], class template discrete_distribution template<class IntType = int> class discrete_distribution; // [rand.dist.samp.pconst], class template piecewise_constant_distribution template<class RealType = double> class piecewise_constant_distribution; // [rand.dist.samp.plinear], class template piecewise_linear_distribution template<class RealType = double> class piecewise_linear_distribution; }
Each type instantiated from a class template specified in this section [rand.eng] satisfies the requirements of a random number engine type.
Except where specified otherwise, the complexity of each function specified in this section [rand.eng] is constant.
Except where specified otherwise, no function described in this section [rand.eng] throws an exception.
Every function described in this section [rand.eng] that has a function parameter q of type Sseq& for a template type parameter named Sseq that is different from type seed_seq throws what and when the invocation of q.generate throws.
Descriptions are provided in this section [rand.eng] only for engine operations that are not described in [rand.req.eng] or for operations where there is additional semantic information. In particular, declarations for copy constructors, for copy assignment operators, for streaming operators, and for equality and inequality operators are not shown in the synopses.
Each template specified in this section [rand.eng] requires one or more relationships, involving the value(s) of its non-type template parameter(s), to hold. A program instantiating any of these templates is ill-formed if any such required relationship fails to hold.
For every random number engine and for every random number engine adaptor X defined in this subclause ([rand.eng]) and in subclause [rand.adapt]:
if the constructor
template <class Sseq> explicit X(Sseq& q);
is called with a type Sseq that does not qualify as a seed sequence, then this constructor shall not participate in overload resolution;
if the member function
template <class Sseq> void seed(Sseq& q);
is called with a type Sseq that does not qualify as a seed sequence, then this function shall not participate in overload resolution.
The extent to which an implementation determines that a type cannot be a seed sequence is unspecified, except that as a minimum a type shall not qualify as a seed sequence if it is implicitly convertible to X::result_type.
A linear_congruential_engine random number engine produces unsigned integer random numbers. The state xi of a linear_congruential_engine object x is of size 1 and consists of a single integer. The transition algorithm is a modular linear function of the form TA(xi)=(a⋅xi+c)modm; the generation algorithm is GA(xi)=xi+1.
template<class UIntType, UIntType a, UIntType c, UIntType m> class linear_congruential_engine { public: // types using result_type = UIntType; // engine characteristics static constexpr result_type multiplier = a; static constexpr result_type increment = c; static constexpr result_type modulus = m; static constexpr result_type min() { return c == 0u ? 1u: 0u; } static constexpr result_type max() { return m - 1u; } static constexpr result_type default_seed = 1u; // constructors and seeding functions explicit linear_congruential_engine(result_type s = default_seed); template<class Sseq> explicit linear_congruential_engine(Sseq& q); void seed(result_type s = default_seed); template<class Sseq> void seed(Sseq& q); // generating functions result_type operator()(); void discard(unsigned long long z); };
If the template parameter m is 0, the modulus m used throughout this section [rand.eng.lcong] is numeric_limits<result_type>::max() plus 1. [ Note: m need not be representable as a value of type result_type. — end note ]
explicit linear_congruential_engine(result_type s = default_seed);
Effects: Constructs a linear_congruential_engine object. If cmodm is 0 and smodm is 0, sets the engine's state to 1, otherwise sets the engine's state to smodm.
template<class Sseq> explicit linear_congruential_engine(Sseq& q);
A mersenne_twister_engine random number engine270 produces unsigned integer random numbers in the closed interval [0,2w−1]. The state xi of a mersenne_twister_engine object x is of size n and consists of a sequence X of n values of the type delivered by x; all subscripts applied to X are to be taken modulo n.
The transition algorithm employs a twisted generalized feedback shift register defined by shift values n and m, a twist value r, and a conditional xor-mask a. To improve the uniformity of the result, the bits of the raw shift register are additionally tempered (i.e., scrambled) according to a bit-scrambling matrix defined by values u,d,s,b,t,c, and ℓ.
The state transition is performed as follows:
a)Concatenate the upper w−r bits of Xi−n with the lower r bits of Xi+1−n to obtain an unsigned integer value Y.
b)With α=a⋅(Ybitand1), set Xi to Xi+m−nxor(Yrshift1)xorα.
The sequence X is initialized with the help of an initialization multiplier f.
The generation algorithm determines the unsigned integer values z1,z2,z3,z4 as follows, then delivers z4 as its result:
a)Let z1=Xixor((Xirshiftu)bitandd).
b)Let z2=z1xor((z1lshiftws)bitandb).
c)Let z3=z2xor((z2lshiftwt)bitandc).
d)Let z4=z3xor(z3rshiftℓ).
template<class UIntType, size_t w, size_t n, size_t m, size_t r, UIntType a, size_t u, UIntType d, size_t s, UIntType b, size_t t, UIntType c, size_t l, UIntType f> class mersenne_twister_engine { public: // types using result_type = UIntType; // engine characteristics static constexpr size_t word_size = w; static constexpr size_t state_size = n; static constexpr size_t shift_size = m; static constexpr size_t mask_bits = r; static constexpr UIntType xor_mask = a; static constexpr size_t tempering_u = u; static constexpr UIntType tempering_d = d; static constexpr size_t tempering_s = s; static constexpr UIntType tempering_b = b; static constexpr size_t tempering_t = t; static constexpr UIntType tempering_c = c; static constexpr size_t tempering_l = l; static constexpr UIntType initialization_multiplier = f; static constexpr result_type min() { return 0; } static constexpr result_type max() { return 2w−1; } static constexpr result_type default_seed = 5489u; // constructors and seeding functions explicit mersenne_twister_engine(result_type value = default_seed); template<class Sseq> explicit mersenne_twister_engine(Sseq& q); void seed(result_type value = default_seed); template<class Sseq> void seed(Sseq& q); // generating functions result_type operator()(); void discard(unsigned long long z); };
The following relations shall hold: 0 < m, m <= n, 2u < w, r <= w, u <= w, s <= w, t <= w, l <= w, w <= numeric_limits<UIntType>::digits, a <= (1u<<w) - 1u, b <= (1u<<w) - 1u, c <= (1u<<w) - 1u, d <= (1u<<w) - 1u, and f <= (1u<<w) - 1u.
explicit mersenne_twister_engine(result_type value = default_seed);
Effects: Constructs a mersenne_twister_engine object. Sets X−n to valuemod2w. Then, iteratively for i=1−n,…,−1, sets Xi to
[f⋅(Xi−1xor(Xi−1rshift(w−2)))+imodn]mod2w.
template<class Sseq> explicit mersenne_twister_engine(Sseq& q);
Effects: Constructs a mersenne_twister_engine object. With k=⌈w/32⌉ and a an array (or equivalent) of length n⋅k, invokes q.generate(a+0, a+n⋅k) and then, iteratively for i=−n,…,−1, sets Xi to (∑k−1j=0ak(i+n)+j⋅232j)mod2w. Finally, if the most significant w−r bits of X−n are zero, and if each of the other resulting Xi is 0, changes X−n to 2w−1.
The name of this engine refers, in part, to a property of its period: For properly-selected values of the parameters, the period is closely related to a large Mersenne prime number.
The state xi of a subtract_with_carry_engine object x is of size O(r), and consists of a sequence X of r integer values 0≤Xi<m=2w; all subscripts applied to X are to be taken modulo r. The state xi additionally consists of an integer c (known as the carry) whose value is either 0 or 1.
The state transition is performed as follows:
[ Note: This algorithm corresponds to a modular linear function of the form TA(xi)=(a⋅xi)modb, where b is of the form mr−ms+1 and a=b−(b−1)/m. — end note ]
The generation algorithm is given by GA(xi)=y, where y is the value produced as a result of advancing the engine's state as described above.
template<class UIntType, size_t w, size_t s, size_t r> class subtract_with_carry_engine { public: // types using result_type = UIntType; // engine characteristics static constexpr size_t word_size = w; static constexpr size_t short_lag = s; static constexpr size_t long_lag = r; static constexpr result_type min() { return 0; } static constexpr result_type max() { return m−1; } static constexpr result_type default_seed = 19780503u; // constructors and seeding functions explicit subtract_with_carry_engine(result_type value = default_seed); template<class Sseq> explicit subtract_with_carry_engine(Sseq& q); void seed(result_type value = default_seed); template<class Sseq> void seed(Sseq& q); // generating functions result_type operator()(); void discard(unsigned long long z); };
The following relations shall hold: 0u < s, s < r, 0 < w, and w <= numeric_limits<UIntType>::digits.
explicit subtract_with_carry_engine(result_type value = default_seed);
Effects: Constructs a subtract_with_carry_engine object. Sets the values of X−r,…,X−1, in that order, as specified below. If X−1 is then 0, sets c to 1; otherwise sets c to 0.
To set the values Xk, first construct e, a linear_congruential_engine object, as if by the following definition:
linear_congruential_engine<result_type, 40014u,0u,2147483563u> e(value == 0u ? default_seed : value);
Then, to set each Xk, obtain new values z0,…,zn−1 from n=⌈w/32⌉ successive invocations of e taken modulo 232. Set Xk to (∑n−1j=0zj⋅232j)modm.
template<class Sseq> explicit subtract_with_carry_engine(Sseq& q);
Each type instantiated from a class template specified in this section [rand.adapt] satisfies the requirements of a random number engine adaptor type.
Except where specified otherwise, the complexity of each function specified in this section [rand.adapt] is constant.
Except where specified otherwise, no function described in this section [rand.adapt] throws an exception.
Every function described in this section [rand.adapt] that has a function parameter q of type Sseq& for a template type parameter named Sseq that is different from type seed_seq throws what and when the invocation of q.generate throws.
Descriptions are provided in this section [rand.adapt] only for adaptor operations that are not described in section [rand.req.adapt] or for operations where there is additional semantic information. In particular, declarations for copy constructors, for copy assignment operators, for streaming operators, and for equality and inequality operators are not shown in the synopses.
Each template specified in this section [rand.adapt] requires one or more relationships, involving the value(s) of its non-type template parameter(s), to hold. A program instantiating any of these templates is ill-formed if any such required relationship fails to hold.
A discard_block_engine random number engine adaptor produces random numbers selected from those produced by some base engine e. The state xi of a discard_block_engine engine adaptor object x consists of the state ei of its base engine e and an additional integer n. The size of the state is the size of e's state plus 1.
The transition algorithm discards all but r>0 values from each block of p≥r values delivered by e. The state transition is performed as follows: If n≥r, advance the state of e from ei to ei+p−r and set n to 0. In any case, then increment n and advance e's then-current state ej to ej+1.
The generation algorithm yields the value returned by the last invocation of e() while advancing e's state as described above.
template<class Engine, size_t p, size_t r> class discard_block_engine { public: // types using result_type = typename Engine::result_type; // engine characteristics static constexpr size_t block_size = p; static constexpr size_t used_block = r; static constexpr result_type min() { return Engine::min(); } static constexpr result_type max() { return Engine::max(); } // constructors and seeding functions discard_block_engine(); explicit discard_block_engine(const Engine& e); explicit discard_block_engine(Engine&& e); explicit discard_block_engine(result_type s); template<class Sseq> explicit discard_block_engine(Sseq& q); void seed(); void seed(result_type s); template<class Sseq> void seed(Sseq& q); // generating functions result_type operator()(); void discard(unsigned long long z); // property functions const Engine& base() const noexcept { return e; }; private: Engine e; // exposition only int n; // exposition only };
In addition to its behavior pursuant to section [rand.req.adapt], each constructor that is not a copy constructor sets n to 0.
An independent_bits_engine random number engine adaptor combines random numbers that are produced by some base engine e, so as to produce random numbers with a specified number of bits w. The state xi of an independent_bits_engine engine adaptor object x consists of the state ei of its base engine e; the size of the state is the size of e's state.
The transition and generation algorithms are described in terms of the following integral constants:
a)Let R=e.max() - e.min() + 1 and m=⌊log2R⌋.
b)With n as determined below, let w0=⌊w/n⌋, n0=n−wmodn, y0=2w0⌊R/2w0⌋, and y1=2w0+1⌊R/2w0+1⌋.
c)Let n=⌈w/m⌉ if and only if the relation R−y0≤⌊y0/n⌋ holds as a result. Otherwise let n=1+⌈w/m⌉.
[ Note: The relation w=n0w0+(n−n0)(w0+1) always holds. — end note ]
The transition algorithm is carried out by invoking e() as often as needed to obtain n0 values less than y0+e.min() and n−n0 values less than y1+e.min().
The generation algorithm uses the values produced while advancing the state as described above to yield a quantity S obtained as if by the following algorithm:
S = 0; for (k = 0; k≠n0; k += 1) { do u = e() - e.min(); while (u≥y0); S = 2w0⋅S+umod2w0; } for (k = n0; k≠n; k += 1) { do u = e() - e.min(); while (u≥y1); S = 2w0+1⋅S+umod2w0+1; }
template<class Engine, size_t w, class UIntType> class independent_bits_engine { public: // types using result_type = UIntType; // engine characteristics static constexpr result_type min() { return 0; } static constexpr result_type max() { return 2w−1; } // constructors and seeding functions independent_bits_engine(); explicit independent_bits_engine(const Engine& e); explicit independent_bits_engine(Engine&& e); explicit independent_bits_engine(result_type s); template<class Sseq> explicit independent_bits_engine(Sseq& q); void seed(); void seed(result_type s); template<class Sseq> void seed(Sseq& q); // generating functions result_type operator()(); void discard(unsigned long long z); // property functions const Engine& base() const noexcept { return e; }; private: Engine e; // exposition only };
A shuffle_order_engine random number engine adaptor produces the same random numbers that are produced by some base engine e, but delivers them in a different sequence. The state xi of a shuffle_order_engine engine adaptor object x consists of the state ei of its base engine e, an additional value Y of the type delivered by e, and an additional sequence V of k values also of the type delivered by e. The size of the state is the size of e's state plus k+1.
The transition algorithm permutes the values produced by e. The state transition is performed as follows:
The generation algorithm yields the last value of Y produced while advancing e's state as described above.
template<class Engine, size_t k> class shuffle_order_engine { public: // types using result_type = typename Engine::result_type; // engine characteristics static constexpr size_t table_size = k; static constexpr result_type min() { return Engine::min(); } static constexpr result_type max() { return Engine::max(); } // constructors and seeding functions shuffle_order_engine(); explicit shuffle_order_engine(const Engine& e); explicit shuffle_order_engine(Engine&& e); explicit shuffle_order_engine(result_type s); template<class Sseq> explicit shuffle_order_engine(Sseq& q); void seed(); void seed(result_type s); template<class Sseq> void seed(Sseq& q); // generating functions result_type operator()(); void discard(unsigned long long z); // property functions const Engine& base() const noexcept { return e; }; private: Engine e; // exposition only result_type V[k]; // exposition only result_type Y; // exposition only };
The textual representation consists of the textual representation of e, followed by the k values of V, followed by the value of Y.
In addition to its behavior pursuant to section [rand.req.adapt], each constructor that is not a copy constructor initializes V[0],…,V[k-1] and Y, in that order, with values returned by successive invocations of e().
using minstd_rand0 =
linear_congruential_engine<uint_fast32_t, 16807, 0, 2147483647>;
Required behavior: The 10000th consecutive invocation of a default-constructed object of type minstd_rand0 shall produce the value 1043618065.
using minstd_rand =
linear_congruential_engine<uint_fast32_t, 48271, 0, 2147483647>;
Required behavior: The 10000th consecutive invocation of a default-constructed object of type minstd_rand shall produce the value 399268537.
using mt19937 =
mersenne_twister_engine<uint_fast32_t,
32,624,397,31,0x9908b0df,11,0xffffffff,7,0x9d2c5680,15,0xefc60000,18,1812433253>;
Required behavior: The 10000th consecutive invocation of a default-constructed object of type mt19937 shall produce the value 4123659995.
using mt19937_64 =
mersenne_twister_engine<uint_fast64_t,
64,312,156,31,0xb5026f5aa96619e9,29,
0x5555555555555555,17,
0x71d67fffeda60000,37,
0xfff7eee000000000,43,
6364136223846793005>;
Required behavior: The 10000th consecutive invocation of a default-constructed object of type mt19937_64 shall produce the value 9981545732273789042.
using ranlux24_base =
subtract_with_carry_engine<uint_fast32_t, 24, 10, 24>;
Required behavior: The 10000th consecutive invocation of a default-constructed object of type ranlux24_base shall produce the value 7937952.
using ranlux48_base =
subtract_with_carry_engine<uint_fast64_t, 48, 5, 12>;
Required behavior: The 10000th consecutive invocation of a default-constructed object of type ranlux48_base shall produce the value 61839128582725.
using ranlux24 = discard_block_engine<ranlux24_base, 223, 23>;
Required behavior: The 10000th consecutive invocation of a default-constructed object of type ranlux24 shall produce the value 9901578.
using ranlux48 = discard_block_engine<ranlux48_base, 389, 11>;
Required behavior: The 10000th consecutive invocation of a default-constructed object of type ranlux48 shall produce the value 249142670248501.
using knuth_b = shuffle_order_engine<minstd_rand0,256>;
Required behavior: The 10000th consecutive invocation of a default-constructed object of type knuth_b shall produce the value 1112339016.
using default_random_engine = implementation-defined;
Remarks: The choice of engine type named by this typedef is implementation-defined. [ Note: The implementation may select this type on the basis of performance, size, quality, or any combination of such factors, so as to provide at least acceptable engine behavior for relatively casual, inexpert, and/or lightweight use. Because different implementations may select different underlying engine types, code that uses this typedef need not generate identical sequences across implementations. — end note ]
If implementation limitations prevent generating nondeterministic random numbers, the implementation may employ a random number engine.
class random_device { public: // types using result_type = unsigned int; // generator characteristics static constexpr result_type min() { return numeric_limits<result_type>::min(); } static constexpr result_type max() { return numeric_limits<result_type>::max(); } // constructors explicit random_device(const string& token = implementation-defined); // generating functions result_type operator()(); // property functions double entropy() const noexcept; // no copy functions random_device(const random_device& ) = delete; void operator=(const random_device& ) = delete; };
explicit random_device(const string& token = implementation-defined);
double entropy() const noexcept;
result_type operator()();
The parameter is intended to allow an implementation to differentiate between different sources of randomness.
If a device has n states
whose respective probabilities are
P0,…,Pn−1,
the device entropy S is defined as
S=−∑n−1i=0Pi⋅logPi.
class seed_seq { public: // types using result_type = uint_least32_t; // constructors seed_seq(); template<class T> seed_seq(initializer_list<T> il); template<class InputIterator> seed_seq(InputIterator begin, InputIterator end); // generating functions template<class RandomAccessIterator> void generate(RandomAccessIterator begin, RandomAccessIterator end); // property functions size_t size() const noexcept; template<class OutputIterator> void param(OutputIterator dest) const; // no copy functions seed_seq(const seed_seq& ) = delete; void operator=(const seed_seq& ) = delete; private: vector<result_type> v; // exposition only };
seed_seq();
template<class T>
seed_seq(initializer_list<T> il);
template<class InputIterator>
seed_seq(InputIterator begin, InputIterator end);
Requires: InputIterator shall satisfy the requirements of an input iterator type. Moreover, iterator_traits<InputIterator>::value_type shall denote an integer type.
Effects: Constructs a seed_seq object by the following algorithm:
for( InputIterator s = begin; s != end; ++s)
v.push_back((*s)mod232);
template<class RandomAccessIterator>
void generate(RandomAccessIterator begin, RandomAccessIterator end);
Requires: RandomAccessIterator shall meet the requirements of a mutable random access iterator. Moreover, iterator_traits<RandomAccessIterator>::value_type shall denote an unsigned integer type capable of accommodating 32-bit quantities.
Effects: Does nothing if begin == end. Otherwise, with s=v.size() and n=end−begin, fills the supplied range [begin,end) according to the following algorithm in which each operation is to be carried out modulo 232, each indexing operator applied to begin is to be taken modulo n, and T(x) is defined as xxor(xrshift27):
a)By way of initialization, set each element of the range to the value 0x8b8b8b8b. Additionally, for use in subsequent steps, let p=(n−t)/2 and let q=p+t, where
t=(n≥623) ? 11 : (n≥68) ? 7 : (n≥39) ? 5 : (n≥7) ? 3 : (n−1)/2;
b)With m as the larger of s+1 and n, transform the elements of the range: iteratively for k=0,…,m−1, calculate values
r1=1664525⋅T(begin[k]xorbegin[k+p]xorbegin[k−1])r2=r1+⎧⎪⎨⎪⎩s, k=0kmodn+v[k−1], 0<k≤skmodn, s<k
and, in order, increment begin[k+p] by r1, increment begin[k+q] by r2, and set begin[k] to r2.
c)Transform the elements of the range again, beginning where the previous step ended: iteratively for k=m,…,m+n−1, calculate values
r3=1566083941⋅T(begin[k]+begin[k+p]+begin[k−1])r4=r3−(kmodn)
and, in order, update begin[k+p] by xoring it with r3, update begin[k+q] by xoring it with r4, and set begin[k] to r4.
size_t size() const noexcept;
template<class OutputIterator>
void param(OutputIterator dest) const;
Requires: OutputIterator shall satisfy the requirements of an output iterator. Moreover, the expression *dest = rt shall be valid for a value rt of type result_type.
Effects: Copies the sequence of prepared 32-bit units to the given destination, as if by executing the following statement:
copy(v.begin(), v.end(), dest);
Each function instantiated from the template described in this section [rand.util.canonical] maps the result of one or more invocations of a supplied uniform random bit generator g to one member of the specified RealType such that, if the values gi produced by g are uniformly distributed, the instantiation's results tj, 0≤tj<1, are distributed as uniformly as possible as specified below.
[ Note: Obtaining a value in this way can be a useful step in the process of transforming a value generated by a uniform random bit generator into a value that can be delivered by a random number distribution. — end note ]
template<class RealType, size_t bits, class URBG>
RealType generate_canonical(URBG& g);
Effects: Invokes g() k times to obtain values g0,…,gk−1, respectively. Calculates a quantity
S=k−1∑i=0(gi−g.min())⋅Ri
using arithmetic of type RealType.
b is introduced to avoid any attempt to produce more bits of randomness than can be held in RealType.
Each type instantiated from a class template specified in this section [rand.dist] satisfies the requirements of a random number distribution type.
Descriptions are provided in this section [rand.dist] only for distribution operations that are not described in [rand.req.dist] or for operations where there is additional semantic information. In particular, declarations for copy constructors, for copy assignment operators, for streaming operators, and for equality and inequality operators are not shown in the synopses.
A uniform_int_distribution random number distribution produces random integers i, a≤i≤b, distributed according to the constant discrete probability function
P(i|a,b)=1/(b−a+1).
template<class IntType = int> class uniform_int_distribution { public: // types using result_type = IntType; using param_type = unspecified; // constructors and reset functions explicit uniform_int_distribution(IntType a = 0, IntType b = numeric_limits<IntType>::max()); explicit uniform_int_distribution(const param_type& parm); void reset(); // generating functions template<class URBG> result_type operator()(URBG& g); template<class URBG> result_type operator()(URBG& g, const param_type& parm); // property functions result_type a() const; result_type b() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
explicit uniform_int_distribution(IntType a = 0, IntType b = numeric_limits<IntType>::max());
Effects: Constructs a uniform_int_distribution object; a and b correspond to the respective parameters of the distribution.
result_type a() const;
result_type b() const;
A uniform_real_distribution random number distribution produces random numbers x, a≤x<b, distributed according to the constant probability density function
p(x|a,b)=1/(b−a).
[ Note: This implies that p(x|a,b) is undefined when a == b. — end note ]
template<class RealType = double> class uniform_real_distribution { public: // types using result_type = RealType; using param_type = unspecified; // constructors and reset functions explicit uniform_real_distribution(RealType a = 0.0, RealType b = 1.0); explicit uniform_real_distribution(const param_type& parm); void reset(); // generating functions template<class URBG> result_type operator()(URBG& g); template<class URBG> result_type operator()(URBG& g, const param_type& parm); // property functions result_type a() const; result_type b() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
explicit uniform_real_distribution(RealType a = 0.0, RealType b = 1.0);
Effects: Constructs a uniform_real_distribution object; a and b correspond to the respective parameters of the distribution.
result_type a() const;
result_type b() const;
A bernoulli_distribution random number distribution produces bool values b distributed according to the discrete probability function
P(b|p)={pifb=true1−pifb=false.
class bernoulli_distribution { public: // types using result_type = bool; using param_type = unspecified; // constructors and reset functions explicit bernoulli_distribution(double p = 0.5); explicit bernoulli_distribution(const param_type& parm); void reset(); // generating functions template<class URBG> result_type operator()(URBG& g); template<class URBG> result_type operator()(URBG& g, const param_type& parm); // property functions double p() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
explicit bernoulli_distribution(double p = 0.5);
Effects: Constructs a bernoulli_distribution object; p corresponds to the parameter of the distribution.
double p() const;
A binomial_distribution random number distribution produces integer values i≥0 distributed according to the discrete probability function
P(i|t,p)=(ti)⋅pi⋅(1−p)t−i.
template<class IntType = int> class binomial_distribution { public: // types using result_type = IntType; using param_type = unspecified; // constructors and reset functions explicit binomial_distribution(IntType t = 1, double p = 0.5); explicit binomial_distribution(const param_type& parm); void reset(); // generating functions template<class URBG> result_type operator()(URBG& g); template<class URBG> result_type operator()(URBG& g, const param_type& parm); // property functions IntType t() const; double p() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
explicit binomial_distribution(IntType t = 1, double p = 0.5);
Effects: Constructs a binomial_distribution object; t and p correspond to the respective parameters of the distribution.
IntType t() const;
double p() const;
A geometric_distribution random number distribution produces integer values i≥0 distributed according to the discrete probability function
P(i|p)=p⋅(1−p)i.
template<class IntType = int> class geometric_distribution { public: // types using result_type = IntType; using param_type = unspecified; // constructors and reset functions explicit geometric_distribution(double p = 0.5); explicit geometric_distribution(const param_type& parm); void reset(); // generating functions template<class URBG> result_type operator()(URBG& g); template<class URBG> result_type operator()(URBG& g, const param_type& parm); // property functions double p() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
explicit geometric_distribution(double p = 0.5);
Effects: Constructs a geometric_distribution object; p corresponds to the parameter of the distribution.
double p() const;
A negative_binomial_distribution random number distribution produces random integers i≥0 distributed according to the discrete probability function
P(i|k,p)=(k+i−1i)⋅pk⋅(1−p)i.
[ Note: This implies that P(i|k,p) is undefined when p == 1. — end note ]
template<class IntType = int> class negative_binomial_distribution { public: // types using result_type = IntType; using param_type = unspecified; // constructor and reset functions explicit negative_binomial_distribution(IntType k = 1, double p = 0.5); explicit negative_binomial_distribution(const param_type& parm); void reset(); // generating functions template<class URBG> result_type operator()(URBG& g); template<class URBG> result_type operator()(URBG& g, const param_type& parm); // property functions IntType k() const; double p() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
explicit negative_binomial_distribution(IntType k = 1, double p = 0.5);
Effects: Constructs a negative_binomial_distribution object; k and p correspond to the respective parameters of the distribution.
IntType k() const;
double p() const;
A poisson_distribution random number distribution produces integer values i≥0 distributed according to the discrete probability function
P(i|μ)=e−μμii!.
The distribution parameter μ is also known as this distribution's mean.
template<class IntType = int> class poisson_distribution { public: // types using result_type = IntType; using param_type = unspecified; // constructors and reset functions explicit poisson_distribution(double mean = 1.0); explicit poisson_distribution(const param_type& parm); void reset(); // generating functions template<class URBG> result_type operator()(URBG& g); template<class URBG> result_type operator()(URBG& g, const param_type& parm); // property functions double mean() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
explicit poisson_distribution(double mean = 1.0);
Effects: Constructs a poisson_distribution object; mean corresponds to the parameter of the distribution.
double mean() const;
An exponential_distribution random number distribution produces random numbers x>0 distributed according to the probability density function
p(x|λ)=λe−λx.
template<class RealType = double> class exponential_distribution { public: // types using result_type = RealType; using param_type = unspecified; // constructors and reset functions explicit exponential_distribution(RealType lambda = 1.0); explicit exponential_distribution(const param_type& parm); void reset(); // generating functions template<class URBG> result_type operator()(URBG& g); template<class URBG> result_type operator()(URBG& g, const param_type& parm); // property functions RealType lambda() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
explicit exponential_distribution(RealType lambda = 1.0);
Effects: Constructs an exponential_distribution object; lambda corresponds to the parameter of the distribution.
RealType lambda() const;
A gamma_distribution random number distribution produces random numbers x>0 distributed according to the probability density function
p(x|α,β)=e−x/ββα⋅Γ(α)⋅xα−1.
template<class RealType = double> class gamma_distribution { public: // types using result_type = RealType; using param_type = unspecified; // constructors and reset functions explicit gamma_distribution(RealType alpha = 1.0, RealType beta = 1.0); explicit gamma_distribution(const param_type& parm); void reset(); // generating functions template<class URBG> result_type operator()(URBG& g); template<class URBG> result_type operator()(URBG& g, const param_type& parm); // property functions RealType alpha() const; RealType beta() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
explicit gamma_distribution(RealType alpha = 1.0, RealType beta = 1.0);
Effects: Constructs a gamma_distribution object; alpha and beta correspond to the parameters of the distribution.
RealType alpha() const;
RealType beta() const;
A weibull_distribution random number distribution produces random numbers x≥0 distributed according to the probability density function
p(x|a,b)=ab⋅(xb)a−1⋅exp(−(xb)a).
template<class RealType = double> class weibull_distribution { public: // types using result_type = RealType; using param_type = unspecified; // constructor and reset functions explicit weibull_distribution(RealType a = 1.0, RealType b = 1.0); explicit weibull_distribution(const param_type& parm); void reset(); // generating functions template<class URBG> result_type operator()(URBG& g); template<class URBG> result_type operator()(URBG& g, const param_type& parm); // property functions RealType a() const; RealType b() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
explicit weibull_distribution(RealType a = 1.0, RealType b = 1.0);
Effects: Constructs a weibull_distribution object; a and b correspond to the respective parameters of the distribution.
RealType a() const;
RealType b() const;
An extreme_value_distribution random number distribution produces random numbers x distributed according to the probability density function274
p(x|a,b)=1b⋅exp(a−xb−exp(a−xb)).
template<class RealType = double> class extreme_value_distribution { public: // types using result_type = RealType; using param_type = unspecified; // constructor and reset functions explicit extreme_value_distribution(RealType a = 0.0, RealType b = 1.0); explicit extreme_value_distribution(const param_type& parm); void reset(); // generating functions template<class URBG> result_type operator()(URBG& g); template<class URBG> result_type operator()(URBG& g, const param_type& parm); // property functions RealType a() const; RealType b() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
explicit extreme_value_distribution(RealType a = 0.0, RealType b = 1.0);
Effects: Constructs an extreme_value_distribution object; a and b correspond to the respective parameters of the distribution.
RealType a() const;
RealType b() const;
The distribution corresponding to this probability density function is also known (with a possible change of variable) as the Gumbel Type I, the log-Weibull, or the Fisher-Tippett Type I distribution.
A normal_distribution random number distribution produces random numbers x distributed according to the probability density function
p(x|μ,σ)=1σ√2π⋅exp(−(x−μ)22σ2).
The distribution parameters μ and σ are also known as this distribution's mean and standard deviation.
template<class RealType = double> class normal_distribution { public: // types using result_type = RealType; using param_type = unspecified; // constructors and reset functions explicit normal_distribution(RealType mean = 0.0, RealType stddev = 1.0); explicit normal_distribution(const param_type& parm); void reset(); // generating functions template<class URBG> result_type operator()(URBG& g); template<class URBG> result_type operator()(URBG& g, const param_type& parm); // property functions RealType mean() const; RealType stddev() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
explicit normal_distribution(RealType mean = 0.0, RealType stddev = 1.0);
Effects: Constructs a normal_distribution object; mean and stddev correspond to the respective parameters of the distribution.
RealType mean() const;
RealType stddev() const;
A lognormal_distribution random number distribution produces random numbers x>0 distributed according to the probability density function
p(x|m,s)=1sx√2π⋅exp(−(lnx−m)22s2).
template<class RealType = double> class lognormal_distribution { public: // types using result_type = RealType; using param_type = unspecified; // constructor and reset functions explicit lognormal_distribution(RealType m = 0.0, RealType s = 1.0); explicit lognormal_distribution(const param_type& parm); void reset(); // generating functions template<class URBG> result_type operator()(URBG& g); template<class URBG> result_type operator()(URBG& g, const param_type& parm); // property functions RealType m() const; RealType s() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
explicit lognormal_distribution(RealType m = 0.0, RealType s = 1.0);
Effects: Constructs a lognormal_distribution object; m and s correspond to the respective parameters of the distribution.
RealType m() const;
RealType s() const;
A chi_squared_distribution random number distribution produces random numbers x>0 distributed according to the probability density function
p(x|n)=x(n/2)−1⋅e−x/2Γ(n/2)⋅2n/2.
template<class RealType = double> class chi_squared_distribution { public: // types using result_type = RealType; using param_type = unspecified; // constructor and reset functions explicit chi_squared_distribution(RealType n = 1); explicit chi_squared_distribution(const param_type& parm); void reset(); // generating functions template<class URBG> result_type operator()(URBG& g); template<class URBG> result_type operator()(URBG& g, const param_type& parm); // property functions RealType n() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
explicit chi_squared_distribution(RealType n = 1);
Effects: Constructs a chi_squared_distribution object; n corresponds to the parameter of the distribution.
RealType n() const;
A cauchy_distribution random number distribution produces random numbers x distributed according to the probability density function
p(x|a,b)=(πb(1+(x−ab)2))−1.
template<class RealType = double> class cauchy_distribution { public: // types using result_type = RealType; using param_type = unspecified; // constructor and reset functions explicit cauchy_distribution(RealType a = 0.0, RealType b = 1.0); explicit cauchy_distribution(const param_type& parm); void reset(); // generating functions template<class URBG> result_type operator()(URBG& g); template<class URBG> result_type operator()(URBG& g, const param_type& parm); // property functions RealType a() const; RealType b() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
explicit cauchy_distribution(RealType a = 0.0, RealType b = 1.0);
Effects: Constructs a cauchy_distribution object; a and b correspond to the respective parameters of the distribution.
RealType a() const;
RealType b() const;
A fisher_f_distribution random number distribution produces random numbers x≥0 distributed according to the probability density function
p(x|m,n)=Γ((m+n)/2)Γ(m/2)Γ(n/2)⋅(mn)m/2⋅x(m/2)−1⋅(1+mxn)−(m+n)/2.
template<class RealType = double> class fisher_f_distribution { public: // types using result_type = RealType; using param_type = unspecified; // constructor and reset functions explicit fisher_f_distribution(RealType m = 1, RealType n = 1); explicit fisher_f_distribution(const param_type& parm); void reset(); // generating functions template<class URBG> result_type operator()(URBG& g); template<class URBG> result_type operator()(URBG& g, const param_type& parm); // property functions RealType m() const; RealType n() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
explicit fisher_f_distribution(RealType m = 1, RealType n = 1);
Effects: Constructs a fisher_f_distribution object; m and n correspond to the respective parameters of the distribution.
RealType m() const;
RealType n() const;
A student_t_distribution random number distribution produces random numbers x distributed according to the probability density function
p(x|n)=1√nπ⋅Γ((n+1)/2)Γ(n/2)⋅(1+x2n)−(n+1)/2.
template<class RealType = double> class student_t_distribution { public: // types using result_type = RealType; using param_type = unspecified; // constructor and reset functions explicit student_t_distribution(RealType n = 1); explicit student_t_distribution(const param_type& parm); void reset(); // generating functions template<class URBG> result_type operator()(URBG& g); template<class URBG> result_type operator()(URBG& g, const param_type& parm); // property functions RealType n() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
explicit student_t_distribution(RealType n = 1);
Effects: Constructs a student_t_distribution object; n corresponds to the parameter of the distribution.
RealType n() const;
A discrete_distribution random number distribution produces random integers i, 0≤i<n, distributed according to the discrete probability function
P(i|p0,…,pn−1)=pi.
Unless specified otherwise, the distribution parameters are calculated as: pk=wk/S for k=0,…,n−1 , in which the values wk, commonly known as the weights, shall be non-negative, non-NaN, and non-infinity. Moreover, the following relation shall hold: 0<S=w0+⋯+wn−1.
template<class IntType = int> class discrete_distribution { public: // types using result_type = IntType; using param_type = unspecified; // constructor and reset functions discrete_distribution(); template<class InputIterator> discrete_distribution(InputIterator firstW, InputIterator lastW); discrete_distribution(initializer_list<double> wl); template<class UnaryOperation> discrete_distribution(size_t nw, double xmin, double xmax, UnaryOperation fw); explicit discrete_distribution(const param_type& parm); void reset(); // generating functions template<class URBG> result_type operator()(URBG& g); template<class URBG> result_type operator()(URBG& g, const param_type& parm); // property functions vector<double> probabilities() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
discrete_distribution();
Effects: Constructs a discrete_distribution object with n=1 and p0=1. [ Note: Such an object will always deliver the value 0. — end note ]
template<class InputIterator>
discrete_distribution(InputIterator firstW, InputIterator lastW);
Requires: InputIterator shall satisfy the requirements of an input iterator. Moreover, iterator_traits<InputIterator>::value_type shall denote a type that is convertible to double. If firstW == lastW, let n=1 and w0=1. Otherwise, [firstW,lastW) shall form a sequence w of length n>0.
Effects: Constructs a discrete_distribution object with probabilities given by the formula above.
discrete_distribution(initializer_list<double> wl);
template<class UnaryOperation>
discrete_distribution(size_t nw, double xmin, double xmax, UnaryOperation fw);
Requires: Each instance of type UnaryOperation shall be a function object whose return type shall be convertible to double. Moreover, double shall be convertible to the type of UnaryOperation's sole parameter. If nw=0, let n=1, otherwise let n=nw. The relation 0<δ=(xmax−xmin)/n shall hold.
Effects: Constructs a discrete_distribution object with probabilities given by the formula above, using the following values: If nw=0, let w0=1. Otherwise, let wk=fw(xmin+k⋅δ+δ/2) for k=0,…,n−1.
vector<double> probabilities() const;
A piecewise_constant_distribution random number distribution produces random numbers x, b0≤x<bn, uniformly distributed over each subinterval [bi,bi+1) according to the probability density function
p(x|b0,…,bn,ρ0,…,ρn−1)=ρi, for bi≤x<bi+1.
The n+1 distribution parameters bi, also known as this distribution's interval boundaries, shall satisfy the relation bi<bi+1 for i=0,…,n−1. Unless specified otherwise, the remaining n distribution parameters are calculated as:
ρk=wkS⋅(bk+1−bk) for k=0,…,n−1,
in which the values wk, commonly known as the weights, shall be non-negative, non-NaN, and non-infinity. Moreover, the following relation shall hold: 0<S=w0+⋯+wn−1.
template<class RealType = double> class piecewise_constant_distribution { public: // types using result_type = RealType; using param_type = unspecified; // constructor and reset functions piecewise_constant_distribution(); template<class InputIteratorB, class InputIteratorW> piecewise_constant_distribution(InputIteratorB firstB, InputIteratorB lastB, InputIteratorW firstW); template<class UnaryOperation> piecewise_constant_distribution(initializer_list<RealType> bl, UnaryOperation fw); template<class UnaryOperation> piecewise_constant_distribution(size_t nw, RealType xmin, RealType xmax, UnaryOperation fw); explicit piecewise_constant_distribution(const param_type& parm); void reset(); // generating functions template<class URBG> result_type operator()(URBG& g); template<class URBG> result_type operator()(URBG& g, const param_type& parm); // property functions vector<result_type> intervals() const; vector<result_type> densities() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
piecewise_constant_distribution();
template<class InputIteratorB, class InputIteratorW>
piecewise_constant_distribution(InputIteratorB firstB, InputIteratorB lastB,
InputIteratorW firstW);
Requires: InputIteratorB and InputIteratorW shall each satisfy the requirements of an input iterator type. Moreover, iterator_traits<InputIteratorB>::value_type and iterator_traits<InputIteratorW>::value_type shall each denote a type that is convertible to double. If firstB == lastB or ++firstB == lastB, let n=1, w0=1, b0=0, and b1=1. Otherwise, [firstB,lastB) shall form a sequence b of length n+1, the length of the sequence w starting from firstW shall be at least n, and any wk for k≥n shall be ignored by the distribution.
Effects: Constructs a piecewise_constant_distribution object with parameters as specified above.
template<class UnaryOperation>
piecewise_constant_distribution(initializer_list<RealType> bl, UnaryOperation fw);
Requires: Each instance of type UnaryOperation shall be a function object whose return type shall be convertible to double. Moreover, double shall be convertible to the type of UnaryOperation's sole parameter.
Effects: Constructs a piecewise_constant_distribution object with parameters taken or calculated from the following values: If bl.size()<2, let n=1, w0=1, b0=0, and b1=1. Otherwise, let [bl.begin(),bl.end()) form a sequence b0,…,bn, and let wk=fw((bk+1+bk)/2) for k=0,…,n−1.
template<class UnaryOperation>
piecewise_constant_distribution(size_t nw, RealType xmin, RealType xmax, UnaryOperation fw);
Requires: Each instance of type UnaryOperation shall be a function object whose return type shall be convertible to double. Moreover, double shall be convertible to the type of UnaryOperation's sole parameter. If nw=0, let n=1, otherwise let n=nw. The relation 0<δ=(xmax−xmin)/n shall hold.
Effects: Constructs a piecewise_constant_distribution object with parameters taken or calculated from the following values: Let bk=xmin+k⋅δ for k=0,…,n, and wk=fw(bk+δ/2) for k=0,…,n−1.
vector<result_type> intervals() const;
Returns: A vector<result_type> whose size member returns n+1 and whose operator[] member returns bk when invoked with argument k for k=0,…,n.
vector<result_type> densities() const;
A piecewise_linear_distribution random number distribution produces random numbers x, b0≤x<bn, distributed over each subinterval [bi,bi+1) according to the probability density function
p(x|b0,…,bn,ρ0,…,ρn)=ρi⋅bi+1−xbi+1−bi+ρi+1⋅x−bibi+1−bi, for bi≤x<bi+1.
The n+1 distribution parameters bi, also known as this distribution's interval boundaries, shall satisfy the relation bi<bi+1 for i=0,…,n−1. Unless specified otherwise, the remaining n+1 distribution parameters are calculated as ρk=wk/S for k=0,…,n, in which the values wk, commonly known as the weights at boundaries, shall be non-negative, non-NaN, and non-infinity. Moreover, the following relation shall hold:
0<S=12⋅n−1∑k=0(wk+wk+1)⋅(bk+1−bk).
template<class RealType = double> class piecewise_linear_distribution { public: // types using result_type = RealType; using param_type = unspecified; // constructor and reset functions piecewise_linear_distribution(); template<class InputIteratorB, class InputIteratorW> piecewise_linear_distribution(InputIteratorB firstB, InputIteratorB lastB, InputIteratorW firstW); template<class UnaryOperation> piecewise_linear_distribution(initializer_list<RealType> bl, UnaryOperation fw); template<class UnaryOperation> piecewise_linear_distribution(size_t nw, RealType xmin, RealType xmax, UnaryOperation fw); explicit piecewise_linear_distribution(const param_type& parm); void reset(); // generating functions template<class URBG> result_type operator()(URBG& g); template<class URBG> result_type operator()(URBG& g, const param_type& parm); // property functions vector<result_type> intervals() const; vector<result_type> densities() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
piecewise_linear_distribution();
template<class InputIteratorB, class InputIteratorW>
piecewise_linear_distribution(InputIteratorB firstB, InputIteratorB lastB,
InputIteratorW firstW);
Requires: InputIteratorB and InputIteratorW shall each satisfy the requirements of an input iterator type. Moreover, iterator_traits<InputIteratorB>::value_type and iterator_traits<InputIteratorW>::value_type shall each denote a type that is convertible to double. If firstB == lastB or ++firstB == lastB, let n=1, ρ0=ρ1=1, b0=0, and b1=1. Otherwise, [firstB,lastB) shall form a sequence b of length n+1, the length of the sequence w starting from firstW shall be at least n+1, and any wk for k≥n+1 shall be ignored by the distribution.
template<class UnaryOperation>
piecewise_linear_distribution(initializer_list<RealType> bl, UnaryOperation fw);
Requires: Each instance of type UnaryOperation shall be a function object whose return type shall be convertible to double. Moreover, double shall be convertible to the type of UnaryOperation's sole parameter.
Effects: Constructs a piecewise_linear_distribution object with parameters taken or calculated from the following values: If bl.size()<2, let n=1, ρ0=ρ1=1, b0=0, and b1=1. Otherwise, let [bl.begin(),bl.end()) form a sequence b0,…,bn, and let wk=fw(bk) for k=0,…,n.
template<class UnaryOperation>
piecewise_linear_distribution(size_t nw, RealType xmin, RealType xmax, UnaryOperation fw);
Requires: Each instance of type UnaryOperation shall be a function object whose return type shall be convertible to double. Moreover, double shall be convertible to the type of UnaryOperation's sole parameter. If nw=0, let n=1, otherwise let n=nw. The relation 0<δ=(xmax−xmin)/n shall hold.
Effects: Constructs a piecewise_linear_distribution object with parameters taken or calculated from the following values: Let bk=xmin+k⋅δ for k=0,…,n, and wk=fw(bk) for k=0,…,n.
vector<result_type> intervals() const;
Returns: A vector<result_type> whose size member returns n+1 and whose operator[] member returns bk when invoked with argument k for k=0,…,n.
vector<result_type> densities() const;
int rand();
void srand(unsigned int seed);
Remarks: The implementation may specify that particular library functions may call rand. It is implementation-defined whether the rand function may introduce data races ([res.on.data.races]). [ Note: The other random number generation facilities in this International Standard ([rand]) are often preferable to rand, because rand's underlying algorithm is unspecified. Use of rand therefore continues to be non-portable, with unpredictable and oft-questionable quality and performance. — end note ]
See also: ISO C 7.22.2
#include <initializer_list> namespace std { template<class T> class valarray; // An array of type T class slice; // a BLAS-like slice out of an array template<class T> class slice_array; class gslice; // a generalized slice out of an array template<class T> class gslice_array; template<class T> class mask_array; // a masked array template<class T> class indirect_array; // an indirected array template<class T> void swap(valarray<T>&, valarray<T>&) noexcept; template<class T> valarray<T> operator* (const valarray<T>&, const valarray<T>&); template<class T> valarray<T> operator* (const valarray<T>&, const T&); template<class T> valarray<T> operator* (const T&, const valarray<T>&); template<class T> valarray<T> operator/ (const valarray<T>&, const valarray<T>&); template<class T> valarray<T> operator/ (const valarray<T>&, const T&); template<class T> valarray<T> operator/ (const T&, const valarray<T>&); template<class T> valarray<T> operator% (const valarray<T>&, const valarray<T>&); template<class T> valarray<T> operator% (const valarray<T>&, const T&); template<class T> valarray<T> operator% (const T&, const valarray<T>&); template<class T> valarray<T> operator+ (const valarray<T>&, const valarray<T>&); template<class T> valarray<T> operator+ (const valarray<T>&, const T&); template<class T> valarray<T> operator+ (const T&, const valarray<T>&); template<class T> valarray<T> operator- (const valarray<T>&, const valarray<T>&); template<class T> valarray<T> operator- (const valarray<T>&, const T&); template<class T> valarray<T> operator- (const T&, const valarray<T>&); template<class T> valarray<T> operator^ (const valarray<T>&, const valarray<T>&); template<class T> valarray<T> operator^ (const valarray<T>&, const T&); template<class T> valarray<T> operator^ (const T&, const valarray<T>&); template<class T> valarray<T> operator& (const valarray<T>&, const valarray<T>&); template<class T> valarray<T> operator& (const valarray<T>&, const T&); template<class T> valarray<T> operator& (const T&, const valarray<T>&); template<class T> valarray<T> operator| (const valarray<T>&, const valarray<T>&); template<class T> valarray<T> operator| (const valarray<T>&, const T&); template<class T> valarray<T> operator| (const T&, const valarray<T>&); template<class T> valarray<T> operator<<(const valarray<T>&, const valarray<T>&); template<class T> valarray<T> operator<<(const valarray<T>&, const T&); template<class T> valarray<T> operator<<(const T&, const valarray<T>&); template<class T> valarray<T> operator>>(const valarray<T>&, const valarray<T>&); template<class T> valarray<T> operator>>(const valarray<T>&, const T&); template<class T> valarray<T> operator>>(const T&, const valarray<T>&); template<class T> valarray<bool> operator&&(const valarray<T>&, const valarray<T>&); template<class T> valarray<bool> operator&&(const valarray<T>&, const T&); template<class T> valarray<bool> operator&&(const T&, const valarray<T>&); template<class T> valarray<bool> operator||(const valarray<T>&, const valarray<T>&); template<class T> valarray<bool> operator||(const valarray<T>&, const T&); template<class T> valarray<bool> operator||(const T&, const valarray<T>&); template<class T> valarray<bool> operator==(const valarray<T>&, const valarray<T>&); template<class T> valarray<bool> operator==(const valarray<T>&, const T&); template<class T> valarray<bool> operator==(const T&, const valarray<T>&); template<class T> valarray<bool> operator!=(const valarray<T>&, const valarray<T>&); template<class T> valarray<bool> operator!=(const valarray<T>&, const T&); template<class T> valarray<bool> operator!=(const T&, const valarray<T>&); template<class T> valarray<bool> operator< (const valarray<T>&, const valarray<T>&); template<class T> valarray<bool> operator< (const valarray<T>&, const T&); template<class T> valarray<bool> operator< (const T&, const valarray<T>&); template<class T> valarray<bool> operator> (const valarray<T>&, const valarray<T>&); template<class T> valarray<bool> operator> (const valarray<T>&, const T&); template<class T> valarray<bool> operator> (const T&, const valarray<T>&); template<class T> valarray<bool> operator<=(const valarray<T>&, const valarray<T>&); template<class T> valarray<bool> operator<=(const valarray<T>&, const T&); template<class T> valarray<bool> operator<=(const T&, const valarray<T>&); template<class T> valarray<bool> operator>=(const valarray<T>&, const valarray<T>&); template<class T> valarray<bool> operator>=(const valarray<T>&, const T&); template<class T> valarray<bool> operator>=(const T&, const valarray<T>&); template<class T> valarray<T> abs (const valarray<T>&); template<class T> valarray<T> acos (const valarray<T>&); template<class T> valarray<T> asin (const valarray<T>&); template<class T> valarray<T> atan (const valarray<T>&); template<class T> valarray<T> atan2(const valarray<T>&, const valarray<T>&); template<class T> valarray<T> atan2(const valarray<T>&, const T&); template<class T> valarray<T> atan2(const T&, const valarray<T>&); template<class T> valarray<T> cos (const valarray<T>&); template<class T> valarray<T> cosh (const valarray<T>&); template<class T> valarray<T> exp (const valarray<T>&); template<class T> valarray<T> log (const valarray<T>&); template<class T> valarray<T> log10(const valarray<T>&); template<class T> valarray<T> pow(const valarray<T>&, const valarray<T>&); template<class T> valarray<T> pow(const valarray<T>&, const T&); template<class T> valarray<T> pow(const T&, const valarray<T>&); template<class T> valarray<T> sin (const valarray<T>&); template<class T> valarray<T> sinh (const valarray<T>&); template<class T> valarray<T> sqrt (const valarray<T>&); template<class T> valarray<T> tan (const valarray<T>&); template<class T> valarray<T> tanh (const valarray<T>&); template <class T> unspecified1 begin(valarray<T>& v); template <class T> unspecified2 begin(const valarray<T>& v); template <class T> unspecified1 end(valarray<T>& v); template <class T> unspecified2 end(const valarray<T>& v); }
The header <valarray> defines five class templates (valarray, slice_array, gslice_array, mask_array, and indirect_array), two classes (slice and gslice), and a series of related function templates for representing and manipulating arrays of values.
The valarray array classes are defined to be free of certain forms of aliasing, thus allowing operations on these classes to be optimized.
Any function returning a valarray<T> is permitted to return an object of another type, provided all the const member functions of valarray<T> are also applicable to this type. This return type shall not add more than two levels of template nesting over the most deeply nested argument type.275
Implementations introducing such replacement types shall provide additional functions and operators as follows:
for every function taking a const valarray<T>& other than begin and end, identical functions taking the replacement types shall be added;
for every function taking two const valarray<T>& arguments, identical functions taking every combination of const valarray<T>& and replacement types shall be added.
In particular, an implementation shall allow a valarray<T> to be constructed from such replacement types and shall allow assignments and compound assignments of such types to valarray<T>, slice_array<T>, gslice_array<T>, mask_array<T> and indirect_array<T> objects.
These library functions are permitted to throw a bad_alloc exception if there are not sufficient resources available to carry out the operation. Note that the exception is not mandated.
Annex [implimits] recommends a minimum number of recursively nested template instantiations. This requirement thus indirectly suggests a minimum allowable complexity for valarray expressions.
namespace std { template<class T> class valarray { public: using value_type = T; // [valarray.cons], construct/destroy valarray(); explicit valarray(size_t); valarray(const T&, size_t); valarray(const T*, size_t); valarray(const valarray&); valarray(valarray&&) noexcept; valarray(const slice_array<T>&); valarray(const gslice_array<T>&); valarray(const mask_array<T>&); valarray(const indirect_array<T>&); valarray(initializer_list<T>); ~valarray(); // [valarray.assign], assignment valarray& operator=(const valarray&); valarray& operator=(valarray&&) noexcept; valarray& operator=(initializer_list<T>); valarray& operator=(const T&); valarray& operator=(const slice_array<T>&); valarray& operator=(const gslice_array<T>&); valarray& operator=(const mask_array<T>&); valarray& operator=(const indirect_array<T>&); // [valarray.access], element access const T& operator[](size_t) const; T& operator[](size_t); // [valarray.sub], subset operations valarray operator[](slice) const; slice_array<T> operator[](slice); valarray operator[](const gslice&) const; gslice_array<T> operator[](const gslice&); valarray operator[](const valarray<bool>&) const; mask_array<T> operator[](const valarray<bool>&); valarray operator[](const valarray<size_t>&) const; indirect_array<T> operator[](const valarray<size_t>&); // [valarray.unary], unary operators valarray operator+() const; valarray operator-() const; valarray operator~() const; valarray<bool> operator!() const; // [valarray.cassign], compound assignment valarray& operator*= (const T&); valarray& operator/= (const T&); valarray& operator%= (const T&); valarray& operator+= (const T&); valarray& operator-= (const T&); valarray& operator^= (const T&); valarray& operator&= (const T&); valarray& operator|= (const T&); valarray& operator<<=(const T&); valarray& operator>>=(const T&); valarray& operator*= (const valarray&); valarray& operator/= (const valarray&); valarray& operator%= (const valarray&); valarray& operator+= (const valarray&); valarray& operator-= (const valarray&); valarray& operator^= (const valarray&); valarray& operator|= (const valarray&); valarray& operator&= (const valarray&); valarray& operator<<=(const valarray&); valarray& operator>>=(const valarray&); // [valarray.members], member functions void swap(valarray&) noexcept; size_t size() const; T sum() const; T min() const; T max() const; valarray shift (int) const; valarray cshift(int) const; valarray apply(T func(T)) const; valarray apply(T func(const T&)) const; void resize(size_t sz, T c = T()); }; template<class T, size_t cnt> valarray(const T(&)[cnt], size_t) -> valarray<T>; }
The class template valarray<T> is a one-dimensional smart array, with elements numbered sequentially from zero. It is a representation of the mathematical concept of an ordered set of values. For convenience, an object of type valarray<T> is referred to as an “array” throughout the remainder of [numarray]. The illusion of higher dimensionality may be produced by the familiar idiom of computed indices, together with the powerful subsetting capabilities provided by the generalized subscript operators.276
The intent is to specify an array template that has the minimum functionality necessary to address aliasing ambiguities and the proliferation of temporaries. Thus, the valarray template is neither a matrix class nor a field class. However, it is a very useful building block for designing such classes.
valarray();
explicit valarray(size_t n);
Effects: Constructs a valarray that has length n. Each element of the array is value-initialized.
valarray(const T& v, size_t n);
Effects: Constructs a valarray that has length n. Each element of the array is initialized with v.
valarray(const T* p, size_t n);
Requires: p points to an array ([dcl.array]) of at least n elements.
Effects: Constructs a valarray that has length n. The values of the elements of the array are initialized with the first n values pointed to by the first argument.278
valarray(const valarray& v);
valarray(valarray&& v) noexcept;
Effects: Constructs a valarray that has the same length as v. The elements are initialized with the values of the corresponding elements of v.
valarray(initializer_list<T> il);
valarray(const slice_array<T>&);
valarray(const gslice_array<T>&);
valarray(const mask_array<T>&);
valarray(const indirect_array<T>&);
~valarray();
Effects: The destructor is applied to every element of *this; an implementation may return all allocated memory.
This default constructor is essential, since arrays of valarray may be useful. After initialization, the length of an empty array can be increased with the resize member function.
This constructor is the preferred method for converting a C array to a valarray object.
This copy constructor creates a distinct array rather than an alias. Implementations in which arrays share storage are permitted, but they shall implement a copy-on-reference mechanism to ensure that arrays are conceptually distinct.
valarray& operator=(const valarray& v);
Effects: Each element of the *this array is assigned the value of the corresponding element of v. If the length of v is not equal to the length of *this, resizes *this to make the two arrays the same length, as if by calling resize(v.size()), before performing the assignment.
valarray& operator=(valarray&& v) noexcept;
valarray& operator=(initializer_list<T> il);
valarray& operator=(const T& v);
valarray& operator=(const slice_array<T>&);
valarray& operator=(const gslice_array<T>&);
valarray& operator=(const mask_array<T>&);
valarray& operator=(const indirect_array<T>&);
Requires: The length of the array to which the argument refers equals size(). The value of an element in the left-hand side of a valarray assignment operator does not depend on the value of another element in that left-hand side.
const T& operator[](size_t n) const;
T& operator[](size_t n);
Returns: A reference to the corresponding element of the array. [ Note: The expression (a[i] = q, a[i]) == q evaluates to true for any non-constant valarray<T> a, any T q, and for any size_t i such that the value of i is less than the length of a. — end note ]
Remarks: The expression &a[i+j] == &a[i] + j evaluates to true for all size_t i and size_t j such that i+j < a.size().
The expression &a[i] != &b[j] evaluates to true for any two arrays a and b and for any size_t i and size_t j such that i < a.size() and j < b.size(). [ Note: This property indicates an absence of aliasing and may be used to advantage by optimizing compilers. Compilers may take advantage of inlining, constant propagation, loop fusion, tracking of pointers obtained from operator new, and other techniques to generate efficient valarrays. — end note ]
The reference returned by the subscript operator for an array shall be valid until the member function resize(size_t, T) is called for that array or until the lifetime of that array ends, whichever happens first.
The member operator[] is overloaded to provide several ways to select sequences of elements from among those controlled by *this. Each of these operations returns a subset of the array. The const-qualified versions return this subset as a new valarray object. The non-const versions return a class template object which has reference semantics to the original array, working in conjunction with various overloads of operator= and other assigning operators to allow selective replacement (slicing) of the controlled sequence. In each case the selected element(s) must exist.
valarray operator[](slice slicearr) const;
Returns: A valarray containing those elements of the controlled sequence designated by slicearr. [ Example:
const valarray<char> v0("abcdefghijklmnop", 16);
// v0[slice(2, 5, 3)] returns valarray<char>("cfilo", 5)
— end example ]
slice_array<T> operator[](slice slicearr);
Returns: An object that holds references to elements of the controlled sequence selected by slicearr. [ Example:
valarray<char> v0("abcdefghijklmnop", 16);
valarray<char> v1("ABCDE", 5);
v0[slice(2, 5, 3)] = v1;
// v0 == valarray<char>("abAdeBghCjkDmnEp", 16);
— end example ]
valarray operator[](const gslice& gslicearr) const;
Returns: A valarray containing those elements of the controlled sequence designated by gslicearr. [ Example:
const valarray<char> v0("abcdefghijklmnop", 16); const size_t lv[] = { 2, 3 }; const size_t dv[] = { 7, 2 }; const valarray<size_t> len(lv, 2), str(dv, 2); // v0[gslice(3, len, str)] returns // valarray<char>("dfhkmo", 6)
— end example ]
gslice_array<T> operator[](const gslice& gslicearr);
Returns: An object that holds references to elements of the controlled sequence selected by gslicearr. [ Example:
valarray<char> v0("abcdefghijklmnop", 16);
valarray<char> v1("ABCDEF", 6);
const size_t lv[] = { 2, 3 };
const size_t dv[] = { 7, 2 };
const valarray<size_t> len(lv, 2), str(dv, 2);
v0[gslice(3, len, str)] = v1;
// v0 == valarray<char>("abcAeBgCijDlEnFp", 16)
— end example ]
valarray operator[](const valarray<bool>& boolarr) const;
Returns: A valarray containing those elements of the controlled sequence designated by boolarr. [ Example:
const valarray<char> v0("abcdefghijklmnop", 16); const bool vb[] = { false, false, true, true, false, true }; // v0[valarray<bool>(vb, 6)] returns // valarray<char>("cdf", 3)
— end example ]
mask_array<T> operator[](const valarray<bool>& boolarr);
Returns: An object that holds references to elements of the controlled sequence selected by boolarr. [ Example:
valarray<char> v0("abcdefghijklmnop", 16);
valarray<char> v1("ABC", 3);
const bool vb[] = { false, false, true, true, false, true };
v0[valarray<bool>(vb, 6)] = v1;
// v0 == valarray<char>("abABeCghijklmnop", 16)
— end example ]
valarray operator[](const valarray<size_t>& indarr) const;
Returns: A valarray containing those elements of the controlled sequence designated by indarr. [ Example:
const valarray<char> v0("abcdefghijklmnop", 16); const size_t vi[] = { 7, 5, 2, 3, 8 }; // v0[valarray<size_t>(vi, 5)] returns // valarray<char>("hfcdi", 5)
— end example ]
indirect_array<T> operator[](const valarray<size_t>& indarr);
Returns: An object that holds references to elements of the controlled sequence selected by indarr. [ Example:
valarray<char> v0("abcdefghijklmnop", 16);
valarray<char> v1("ABCDE", 5);
const size_t vi[] = { 7, 5, 2, 3, 8 };
v0[valarray<size_t>(vi, 5)] = v1;
// v0 == valarray<char>("abCDeBgAEjklmnop", 16)
— end example ]
valarray operator+() const;
valarray operator-() const;
valarray operator~() const;
valarray<bool> operator!() const;
Requires: Each of these operators may only be instantiated for a type T to which the indicated operator can be applied and for which the indicated operator returns a value which is of type T (bool for operator!) or which may be unambiguously implicitly converted to type T (bool for operator!).
valarray& operator*= (const valarray& v);
valarray& operator/= (const valarray& v);
valarray& operator%= (const valarray& v);
valarray& operator+= (const valarray& v);
valarray& operator-= (const valarray& v);
valarray& operator^= (const valarray& v);
valarray& operator&= (const valarray& v);
valarray& operator|= (const valarray& v);
valarray& operator<<=(const valarray& v);
valarray& operator>>=(const valarray& v);
Requires: size() == v.size(). Each of these operators may only be instantiated for a type T if the indicated operator can be applied to two operands of type T. The value of an element in the left-hand side of a valarray compound assignment operator does not depend on the value of another element in that left hand side.
Effects: Each of these operators performs the indicated operation on each of the elements of *this and the corresponding element of v.
Remarks: The appearance of an array on the left-hand side of a compound assignment does not invalidate references or pointers.
valarray& operator*= (const T& v);
valarray& operator/= (const T& v);
valarray& operator%= (const T& v);
valarray& operator+= (const T& v);
valarray& operator-= (const T& v);
valarray& operator^= (const T& v);
valarray& operator&= (const T& v);
valarray& operator|= (const T& v);
valarray& operator<<=(const T& v);
valarray& operator>>=(const T& v);
Requires: Each of these operators may only be instantiated for a type T if the indicated operator can be applied to two operands of type T.
void swap(valarray& v) noexcept;
size_t size() const;
T sum() const;
Requires: size() > 0. This function may only be instantiated for a type T to which operator+= can be applied.
Returns: The sum of all the elements of the array. If the array has length 1, returns the value of element 0. Otherwise, the returned value is calculated by applying operator+= to a copy of an element of the array and all other elements of the array in an unspecified order.
T min() const;
Returns: The minimum value contained in *this. For an array of length 1, the value of element 0 is returned. For all other array lengths, the determination is made using operator<.
T max() const;
Returns: The maximum value contained in *this. For an array of length 1, the value of element 0 is returned. For all other array lengths, the determination is made using operator<.
valarray shift(int n) const;
Returns: A valarray of length size(), each of whose elements I is (*this)[I + n] if I + n is non-negative and less than size(), otherwise T(). [ Note: If element zero is taken as the leftmost element, a positive value of n shifts the elements left n places, with zero fill. — end note ]
[ Example: If the argument has the value -2, the first two elements of the result will be value-initialized; the third element of the result will be assigned the value of the first element of the argument; etc. — end example ]
valarray cshift(int n) const;
Returns: A valarray of length size() that is a circular shift of *this. If element zero is taken as the leftmost element, a non-negative value of n shifts the elements circularly left n places and a negative value of n shifts the elements circularly right −n places.
valarray apply(T func(T)) const;
valarray apply(T func(const T&)) const;
Returns: A valarray whose length is size(). Each element of the returned array is assigned the value returned by applying the argument function to the corresponding element of *this.
void resize(size_t sz, T c = T());
template<class T> valarray<T> operator*
(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator/
(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator%
(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator+
(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator-
(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator^
(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator&
(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator|
(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator<<
(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator>>
(const valarray<T>&, const valarray<T>&);
Requires: Each of these operators may only be instantiated for a type T to which the indicated operator can be applied and for which the indicated operator returns a value which is of type T or which can be unambiguously implicitly converted to type T. The argument arrays have the same length.
Returns: A valarray whose length is equal to the lengths of the argument arrays. Each element of the returned array is initialized with the result of applying the indicated operator to the corresponding elements of the argument arrays.
template<class T> valarray<T> operator* (const valarray<T>&, const T&);
template<class T> valarray<T> operator* (const T&, const valarray<T>&);
template<class T> valarray<T> operator/ (const valarray<T>&, const T&);
template<class T> valarray<T> operator/ (const T&, const valarray<T>&);
template<class T> valarray<T> operator% (const valarray<T>&, const T&);
template<class T> valarray<T> operator% (const T&, const valarray<T>&);
template<class T> valarray<T> operator+ (const valarray<T>&, const T&);
template<class T> valarray<T> operator+ (const T&, const valarray<T>&);
template<class T> valarray<T> operator- (const valarray<T>&, const T&);
template<class T> valarray<T> operator- (const T&, const valarray<T>&);
template<class T> valarray<T> operator^ (const valarray<T>&, const T&);
template<class T> valarray<T> operator^ (const T&, const valarray<T>&);
template<class T> valarray<T> operator& (const valarray<T>&, const T&);
template<class T> valarray<T> operator& (const T&, const valarray<T>&);
template<class T> valarray<T> operator| (const valarray<T>&, const T&);
template<class T> valarray<T> operator| (const T&, const valarray<T>&);
template<class T> valarray<T> operator<<(const valarray<T>&, const T&);
template<class T> valarray<T> operator<<(const T&, const valarray<T>&);
template<class T> valarray<T> operator>>(const valarray<T>&, const T&);
template<class T> valarray<T> operator>>(const T&, const valarray<T>&);
Requires: Each of these operators may only be instantiated for a type T to which the indicated operator can be applied and for which the indicated operator returns a value which is of type T or which can be unambiguously implicitly converted to type T.
template<class T> valarray<bool> operator==
(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator!=
(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator<
(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator>
(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator<=
(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator>=
(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator&&
(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator||
(const valarray<T>&, const valarray<T>&);
Requires: Each of these operators may only be instantiated for a type T to which the indicated operator can be applied and for which the indicated operator returns a value which is of type bool or which can be unambiguously implicitly converted to type bool. The two array arguments have the same length.
Returns: A valarray<bool> whose length is equal to the length of the array arguments. Each element of the returned array is initialized with the result of applying the indicated operator to the corresponding elements of the argument arrays.
template<class T> valarray<bool> operator==(const valarray<T>&, const T&);
template<class T> valarray<bool> operator==(const T&, const valarray<T>&);
template<class T> valarray<bool> operator!=(const valarray<T>&, const T&);
template<class T> valarray<bool> operator!=(const T&, const valarray<T>&);
template<class T> valarray<bool> operator< (const valarray<T>&, const T&);
template<class T> valarray<bool> operator< (const T&, const valarray<T>&);
template<class T> valarray<bool> operator> (const valarray<T>&, const T&);
template<class T> valarray<bool> operator> (const T&, const valarray<T>&);
template<class T> valarray<bool> operator<=(const valarray<T>&, const T&);
template<class T> valarray<bool> operator<=(const T&, const valarray<T>&);
template<class T> valarray<bool> operator>=(const valarray<T>&, const T&);
template<class T> valarray<bool> operator>=(const T&, const valarray<T>&);
template<class T> valarray<bool> operator&&(const valarray<T>&, const T&);
template<class T> valarray<bool> operator&&(const T&, const valarray<T>&);
template<class T> valarray<bool> operator||(const valarray<T>&, const T&);
template<class T> valarray<bool> operator||(const T&, const valarray<T>&);
Requires: Each of these operators may only be instantiated for a type T to which the indicated operator can be applied and for which the indicated operator returns a value which is of type bool or which can be unambiguously implicitly converted to type bool.
template<class T> valarray<T> abs (const valarray<T>&);
template<class T> valarray<T> acos (const valarray<T>&);
template<class T> valarray<T> asin (const valarray<T>&);
template<class T> valarray<T> atan (const valarray<T>&);
template<class T> valarray<T> atan2
(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> atan2(const valarray<T>&, const T&);
template<class T> valarray<T> atan2(const T&, const valarray<T>&);
template<class T> valarray<T> cos (const valarray<T>&);
template<class T> valarray<T> cosh (const valarray<T>&);
template<class T> valarray<T> exp (const valarray<T>&);
template<class T> valarray<T> log (const valarray<T>&);
template<class T> valarray<T> log10(const valarray<T>&);
template<class T> valarray<T> pow
(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> pow (const valarray<T>&, const T&);
template<class T> valarray<T> pow (const T&, const valarray<T>&);
template<class T> valarray<T> sin (const valarray<T>&);
template<class T> valarray<T> sinh (const valarray<T>&);
template<class T> valarray<T> sqrt (const valarray<T>&);
template<class T> valarray<T> tan (const valarray<T>&);
template<class T> valarray<T> tanh (const valarray<T>&);
template <class T> void swap(valarray<T>& x, valarray<T>& y) noexcept;
namespace std { class slice { public: slice(); slice(size_t, size_t, size_t); size_t start() const; size_t size() const; size_t stride() const; }; }
The slice class represents a BLAS-like slice from an array. Such a slice is specified by a starting index, a length, and a stride.280
BLAS stands for Basic Linear Algebra Subprograms. C++ programs may instantiate this class. See, for example, Dongarra, Du Croz, Duff, and Hammerling: A set of Level 3 Basic Linear Algebra Subprograms; Technical Report MCS-P1-0888, Argonne National Laboratory (USA), Mathematics and Computer Science Division, August, 1988.
slice();
slice(size_t start, size_t length, size_t stride);
slice(const slice&);
The default constructor is equivalent to slice(0, 0, 0). A default constructor is provided only to permit the declaration of arrays of slices. The constructor with arguments for a slice takes a start, length, and stride parameter.
namespace std {
template <class T> class slice_array {
public:
using value_type = T;
void operator= (const valarray<T>&) const;
void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;
slice_array(const slice_array&);
~slice_array();
const slice_array& operator=(const slice_array&) const;
void operator=(const T&) const;
slice_array() = delete; // as implied by declaring copy constructor above
};
}
The slice_array template is a helper template used by the slice subscript operator
slice_array<T> valarray<T>::operator[](slice);
It has reference semantics to a subset of an array specified by a slice object.
void operator=(const valarray<T>&) const;
const slice_array& operator=(const slice_array&) const;
void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;
void operator=(const T&) const;
namespace std { class gslice { public: gslice(); gslice(size_t s, const valarray<size_t>& l, const valarray<size_t>& d); size_t start() const; valarray<size_t> size() const; valarray<size_t> stride() const; }; }
This class represents a generalized slice out of an array. A gslice is defined by a starting offset (s), a set of lengths (lj), and a set of strides (dj). The number of lengths shall equal the number of strides.
A gslice represents a mapping from a set of indices (ij), equal in number to the number of strides, to a single index k. It is useful for building multidimensional array classes using the valarray template, which is one-dimensional. The set of one-dimensional index values specified by a gslice are
k=s+∑jijdj
where the multidimensional indices ij range in value from 0 to lij−1.
[ Example: The gslice specification
start = 3 length = {2, 4, 3} stride = {19, 4, 1}
yields the sequence of one-dimensional indices
k=3+(0,1)×19+(0,1,2,3)×4+(0,1,2)×1
which are ordered as shown in the following table:
(i0,i1,i2,k)= (0,0,0, 3), (0,0,1, 4), (0,0,2, 5), (0,1,0, 7), (0,1,1, 8), (0,1,2, 9), (0,2,0,11), (0,2,1,12), (0,2,2,13), (0,3,0,15), (0,3,1,16), (0,3,2,17), (1,0,0,22), (1,0,1,23), … (1,3,2,36)
That is, the highest-ordered index turns fastest. — end example ]
[ Example: If the stride parameters in the previous example are changed to {1, 1, 1}, the first few elements of the resulting sequence of indices will be
(0,0,0, 3), (0,0,1, 4), (0,0,2, 5), (0,1,0, 4), (0,1,1, 5), (0,1,2, 6), …
— end example ]
gslice();
gslice(size_t start, const valarray<size_t>& lengths,
const valarray<size_t>& strides);
gslice(const gslice&);
size_t start() const;
valarray<size_t> size() const;
valarray<size_t> stride() const;
namespace std {
template <class T> class gslice_array {
public:
using value_type = T;
void operator= (const valarray<T>&) const;
void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;
gslice_array(const gslice_array&);
~gslice_array();
const gslice_array& operator=(const gslice_array&) const;
void operator=(const T&) const;
gslice_array() = delete; // as implied by declaring copy constructor above
};
}
gslice_array<T> valarray<T>::operator[](const gslice&);
void operator=(const valarray<T>&) const;
const gslice_array& operator=(const gslice_array&) const;
void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;
void operator=(const T&) const;
namespace std {
template <class T> class mask_array {
public:
using value_type = T;
void operator= (const valarray<T>&) const;
void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;
mask_array(const mask_array&);
~mask_array();
const mask_array& operator=(const mask_array&) const;
void operator=(const T&) const;
mask_array() = delete; // as implied by declaring copy constructor above
};
}
mask_array<T> valarray<T>::operator[](const valarray<bool>&).
void operator=(const valarray<T>&) const;
const mask_array& operator=(const mask_array&) const;
void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;
void operator=(const T&) const;
namespace std {
template <class T> class indirect_array {
public:
using value_type = T;
void operator= (const valarray<T>&) const;
void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;
indirect_array(const indirect_array&);
~indirect_array();
const indirect_array& operator=(const indirect_array&) const;
void operator=(const T&) const;
indirect_array() = delete; // as implied by declaring copy constructor above
};
}
indirect_array<T> valarray<T>::operator[](const valarray<size_t>&).
void operator=(const valarray<T>&) const;
const indirect_array& operator=(const indirect_array&) const;
These assignment operators have reference semantics, assigning the values of the argument array elements to selected elements of the valarray<T> object to which it refers.
void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;
These compound assignments have reference semantics, applying the indicated operation to the elements of the argument array and selected elements of the valarray<T> object to which the indirect_array object refers.
void operator=(const T&) const;
In the begin and end function templates that follow, unspecified1 is a type that meets the requirements of a mutable random access iterator and of a contiguous iterator whose value_type is the template parameter T and whose reference type is T&. unspecified2 is a type that meets the requirements of a constant random access iterator and of a contiguous iterator whose value_type is the template parameter T and whose reference type is const T&.
The iterators returned by begin and end for an array are guaranteed to be valid until the member function resize(size_t, T) is called for that array or until the lifetime of that array ends, whichever happens first.
template <class T> unspecified1 begin(valarray<T>& v);
template <class T> unspecified2 begin(const valarray<T>& v);
template <class T> unspecified1 end(valarray<T>& v);
template <class T> unspecified2 end(const valarray<T>& v);
namespace std { // [accumulate], accumulate template <class InputIterator, class T> T accumulate(InputIterator first, InputIterator last, T init); template <class InputIterator, class T, class BinaryOperation> T accumulate(InputIterator first, InputIterator last, T init, BinaryOperation binary_op); // [reduce], reduce template<class InputIterator> typename iterator_traits<InputIterator>::value_type reduce(InputIterator first, InputIterator last); template<class InputIterator, class T> T reduce(InputIterator first, InputIterator last, T init); template<class InputIterator, class T, class BinaryOperation> T reduce(InputIterator first, InputIterator last, T init, BinaryOperation binary_op); template<class ExecutionPolicy, class ForwardIterator> typename iterator_traits<ForwardIterator>::value_type reduce(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads] ForwardIterator first, ForwardIterator last); template<class ExecutionPolicy, class ForwardIterator, class T> T reduce(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads] ForwardIterator first, ForwardIterator last, T init); template<class ExecutionPolicy, class ForwardIterator, class T, class BinaryOperation> T reduce(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads] ForwardIterator first, ForwardIterator last, T init, BinaryOperation binary_op); // [inner.product], inner product template <class InputIterator1, class InputIterator2, class T> T inner_product(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, T init); template <class InputIterator1, class InputIterator2, class T, class BinaryOperation1, class BinaryOperation2> T inner_product(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, T init, BinaryOperation1 binary_op1, BinaryOperation2 binary_op2); // [transform.reduce], transform reduce template<class InputIterator1, class InputIterator2, class T> T transform_reduce(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, T init); template<class InputIterator1, class InputIterator2, class T, class BinaryOperation1, class BinaryOperation2> T transform_reduce(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, T init, BinaryOperation1 binary_op1, BinaryOperation2 binary_op2); template<class InputIterator, class T, class BinaryOperation, class UnaryOperation> T transform_reduce(InputIterator first, InputIterator last, T init, BinaryOperation binary_op, UnaryOperation unary_op); template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2, class T> T transform_reduce(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads] ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, T init); template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2, class T, class BinaryOperation1, class BinaryOperation2> T transform_reduce(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads] ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, T init, BinaryOperation1 binary_op1, BinaryOperation2 binary_op2); template<class ExecutionPolicy, class ForwardIterator, class T, class BinaryOperation, class UnaryOperation> T transform_reduce(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads] ForwardIterator first, ForwardIterator last, T init, BinaryOperation binary_op, UnaryOperation unary_op); // [partial.sum], partial sum template <class InputIterator, class OutputIterator> OutputIterator partial_sum(InputIterator first, InputIterator last, OutputIterator result); template <class InputIterator, class OutputIterator, class BinaryOperation> OutputIterator partial_sum(InputIterator first, InputIterator last, OutputIterator result, BinaryOperation binary_op); // [exclusive.scan], exclusive scan template<class InputIterator, class OutputIterator, class T> OutputIterator exclusive_scan(InputIterator first, InputIterator last, OutputIterator result, T init); template<class InputIterator, class OutputIterator, class T, class BinaryOperation> OutputIterator exclusive_scan(InputIterator first, InputIterator last, OutputIterator result, T init, BinaryOperation binary_op); template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2, class T> ForwardIterator2 exclusive_scan(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads] ForwardIterator1 first, ForwardIterator1 last, ForwardIterator2 result, T init); template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2, class T, class BinaryOperation> ForwardIterator2 exclusive_scan(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads] ForwardIterator1 first, ForwardIterator1 last, ForwardIterator2 result, T init, BinaryOperation binary_op); // [inclusive.scan], inclusive scan template<class InputIterator, class OutputIterator> OutputIterator inclusive_scan(InputIterator first, InputIterator last, OutputIterator result); template<class InputIterator, class OutputIterator, class BinaryOperation> OutputIterator inclusive_scan(InputIterator first, InputIterator last, OutputIterator result, BinaryOperation binary_op); template<class InputIterator, class OutputIterator, class BinaryOperation, class T> OutputIterator inclusive_scan(InputIterator first, InputIterator last, OutputIterator result, BinaryOperation binary_op, T init); template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2> ForwardIterator2 inclusive_scan(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads] ForwardIterator1 first, ForwardIterator1 last, ForwardIterator2 result); template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2, class BinaryOperation> ForwardIterator2 inclusive_scan(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads] ForwardIterator1 first, ForwardIterator1 last, ForwardIterator2 result, BinaryOperation binary_op); template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2, class BinaryOperation, class T> ForwardIterator2 inclusive_scan(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads] ForwardIterator1 first, ForwardIterator1 last, ForwardIterator2 result, BinaryOperation binary_op, T init); // [transform.exclusive.scan], transform exclusive scan template<class InputIterator, class OutputIterator, class T, class BinaryOperation, class UnaryOperation> OutputIterator transform_exclusive_scan(InputIterator first, InputIterator last, OutputIterator result, T init, BinaryOperation binary_op, UnaryOperation unary_op); template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2, class T, class BinaryOperation, class UnaryOperation> ForwardIterator2 transform_exclusive_scan(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads] ForwardIterator1 first, ForwardIterator1 last, ForwardIterator2 result, T init, BinaryOperation binary_op, UnaryOperation unary_op); // [transform.inclusive.scan], transform inclusive scan template<class InputIterator, class OutputIterator, class BinaryOperation, class UnaryOperation> OutputIterator transform_inclusive_scan(InputIterator first, InputIterator last, OutputIterator result, BinaryOperation binary_op, UnaryOperation unary_op); template<class InputIterator, class OutputIterator, class BinaryOperation, class UnaryOperation, class T> OutputIterator transform_inclusive_scan(InputIterator first, InputIterator last, OutputIterator result, BinaryOperation binary_op, UnaryOperation unary_op, T init); template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2, class BinaryOperation, class UnaryOperation> ForwardIterator2 transform_inclusive_scan(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads] ForwardIterator1 first, ForwardIterator1 last, ForwardIterator2 result, BinaryOperation binary_op, UnaryOperation unary_op); template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2, class BinaryOperation, class UnaryOperation, class T> ForwardIterator2 transform_inclusive_scan(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads] ForwardIterator1 first, ForwardIterator1 last, ForwardIterator2 result, BinaryOperation binary_op, UnaryOperation unary_op, T init); // [adjacent.difference], adjacent difference template <class InputIterator, class OutputIterator> OutputIterator adjacent_difference(InputIterator first, InputIterator last, OutputIterator result); template <class InputIterator, class OutputIterator, class BinaryOperation> OutputIterator adjacent_difference(InputIterator first, InputIterator last, OutputIterator result, BinaryOperation binary_op); template <class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2> ForwardIterator2 adjacent_difference(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads] ForwardIterator1 first, ForwardIterator1 last, ForwardIterator2 result); template <class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2, class BinaryOperation> ForwardIterator2 adjacent_difference(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads] ForwardIterator1 first, ForwardIterator1 last, ForwardIterator2 result, BinaryOperation binary_op); // [numeric.iota], iota template <class ForwardIterator, class T> void iota(ForwardIterator first, ForwardIterator last, T value); // [numeric.ops.gcd], greatest common divisor template <class M, class N> constexpr common_type_t<M,N> gcd(M m, N n); // [numeric.ops.lcm], least common multiple template <class M, class N> constexpr common_type_t<M,N> lcm(M m, N n); }
The requirements on the types of algorithms' arguments that are described in the introduction to Clause [algorithms] also apply to the following algorithms.
Throughout this subclause, the parameters UnaryOperation, BinaryOperation, BinaryOperation1, and BinaryOperation2 are used whenever an algorithm expects a function object ([function.objects]).
template <class InputIterator, class T>
T accumulate(InputIterator first, InputIterator last, T init);
template <class InputIterator, class T, class BinaryOperation>
T accumulate(InputIterator first, InputIterator last, T init,
BinaryOperation binary_op);
Requires: T shall meet the requirements of CopyConstructible and CopyAssignable types. In the range [first, last], binary_op shall neither modify elements nor invalidate iterators or subranges.281
The use of fully closed ranges is intentional.
accumulate is similar to the APL reduction operator and Common Lisp reduce function, but it avoids the difficulty of defining the result of reduction on an empty sequence by always requiring an initial value.
template<class InputIterator>
typename iterator_traits<InputIterator>::value_type
reduce(InputIterator first, InputIterator last);
Effects: Equivalent to:
return reduce(first, last, typename iterator_traits<InputIterator>::value_type{});
template<class ExecutionPolicy, class ForwardIterator>
typename iterator_traits<ForwardIterator>::value_type
reduce(ExecutionPolicy&& exec,
ForwardIterator first, ForwardIterator last);
Effects: Equivalent to:
return reduce(std::forward<ExecutionPolicy>(exec), first, last, typename iterator_traits<ForwardIterator>::value_type{});
template<class InputIterator, class T>
T reduce(InputIterator first, InputIterator last, T init);
template<class ExecutionPolicy, class ForwardIterator, class T>
T reduce(ExecutionPolicy&& exec,
ForwardIterator first, ForwardIterator last, T init);
Effects: Equivalent to:
return reduce(std::forward<ExecutionPolicy>(exec), first, last, init, plus<>());
template<class InputIterator, class T, class BinaryOperation>
T reduce(InputIterator first, InputIterator last, T init,
BinaryOperation binary_op);
template<class ExecutionPolicy, class ForwardIterator, class T, class BinaryOperation>
T reduce(ExecutionPolicy&& exec,
ForwardIterator first, ForwardIterator last, T init,
BinaryOperation binary_op);
Requires:
T shall be MoveConstructible (Table 23).
All of binary_op(init, *first), binary_op(*first, init), binary_op(init, init), and binary_op(*first, *first) shall be convertible to T.
binary_op shall neither invalidate iterators or subranges, nor modify elements in the range [first, last].
template <class InputIterator1, class InputIterator2, class T>
T inner_product(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, T init);
template <class InputIterator1, class InputIterator2, class T,
class BinaryOperation1, class BinaryOperation2>
T inner_product(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, T init,
BinaryOperation1 binary_op1,
BinaryOperation2 binary_op2);
Requires: T shall meet the requirements of CopyConstructible and CopyAssignable types. In the ranges [first1, last1] and [first2, first2 + (last1 - first1)] binary_op1 and binary_op2 shall neither modify elements nor invalidate iterators or subranges.283
Effects: Computes its result by initializing the accumulator acc with the initial value init and then modifying it with acc = acc + (*i1) * (*i2) or acc = binary_op1(acc, binary_op2(*i1, *i2)) for every iterator i1 in the range [first1, last1) and iterator i2 in the range [first2, first2 + (last1 - first1)) in order.
The use of fully closed ranges is intentional.
template <class InputIterator1, class InputIterator2, class T>
T transform_reduce(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2,
T init);
template <class ExecutionPolicy,
class ForwardIterator1, class ForwardIterator2, class T>
T transform_reduce(ExecutionPolicy&& exec,
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2,
T init);
Effects: Equivalent to:
return transform_reduce(first1, last1, first2, init, plus<>(), multiplies<>());
template <class InputIterator1, class InputIterator2, class T,
class BinaryOperation1, class BinaryOperation2>
T transform_reduce(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2,
T init,
BinaryOperation1 binary_op1,
BinaryOperation2 binary_op2);
template <class ExecutionPolicy,
class ForwardIterator1, class ForwardIterator2, class T,
class BinaryOperation1, class BinaryOperation2>
T transform_reduce(ExecutionPolicy&& exec,
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2,
T init,
BinaryOperation1 binary_op1,
BinaryOperation2 binary_op2);
Requires:
T shall be MoveConstructible (Table 23).
All of
binary_op1(init, init),
binary_op1(init, binary_op2(*first1, *first2)),
binary_op1(binary_op2(*first1, *first2), init), and
binary_op1(binary_op2(*first1, *first2), binary_op2(*first1, *first2))
shall be convertible to T.
Neither binary_op1 nor binary_op2 shall invalidate subranges, or modify elements in the ranges [first1, last1] and [first2, first2 + (last1 - first1)].
Returns:
GENERALIZED_SUM(binary_op1, init, binary_op2(*i, *(first2 + (i - first1))), ...)
for every iterator i in [first1, last1).
template<class InputIterator, class T,
class BinaryOperation, class UnaryOperation>
T transform_reduce(InputIterator first, InputIterator last, T init,
BinaryOperation binary_op, UnaryOperation unary_op);
template<class ExecutionPolicy,
class ForwardIterator, class T,
class BinaryOperation, class UnaryOperation>
T transform_reduce(ExecutionPolicy&& exec,
ForwardIterator first, ForwardIterator last,
T init, BinaryOperation binary_op, UnaryOperation unary_op);
Requires:
T shall be MoveConstructible (Table 23).
All of
binary_op(init, init),
binary_op(init, unary_op(*first)),
binary_op(unary_op(*first), init), and
binary_op(unary_op(*first), unary_op(*first))
shall be convertible to T.
Neither unary_op nor binary_op shall invalidate subranges, or modify elements in the range [first, last].
template <class InputIterator, class OutputIterator>
OutputIterator partial_sum(
InputIterator first, InputIterator last,
OutputIterator result);
template <class InputIterator, class OutputIterator, class BinaryOperation>
OutputIterator partial_sum(
InputIterator first, InputIterator last,
OutputIterator result, BinaryOperation binary_op);
Requires: InputIterator's value type shall be constructible from the type of *first. The result of the expression acc + *i or binary_op(acc, *i) shall be implicitly convertible to InputIterator's value type. acc shall be writable to the result output iterator. In the ranges [first, last] and [result, result + (last - first)] binary_op shall neither modify elements nor invalidate iterators or subranges.284
Effects: For a non-empty range, the function creates an accumulator acc whose type is InputIterator's value type, initializes it with *first, and assigns the result to *result. For every iterator i in [first + 1, last) in order, acc is then modified by acc = acc + *i or acc = binary_op(acc, *i) and the result is assigned to *(result + (i - first)).
The use of fully closed ranges is intentional.
template<class InputIterator, class OutputIterator, class T>
OutputIterator exclusive_scan(InputIterator first, InputIterator last,
OutputIterator result,
T init);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2, class T>
ForwardIterator2 exclusive_scan(ExecutionPolicy&& exec,
ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result,
T init);
Effects: Equivalent to:
return exclusive_scan(std::forward<ExecutionPolicy>(exec), first, last, result, init, plus<>());
template<class InputIterator, class OutputIterator, class T, class BinaryOperation>
OutputIterator exclusive_scan(InputIterator first, InputIterator last,
OutputIterator result,
T init, BinaryOperation binary_op);
template<class ExecutionPolicy,
class ForwardIterator1, class ForwardIterator2, class T, class BinaryOperation>
ForwardIterator2 exclusive_scan(ExecutionPolicy&& exec,
ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result,
T init, BinaryOperation binary_op);
Requires:
T shall be MoveConstructible (Table 23).
All of binary_op(init, init), binary_op(init, *first), and binary_op(*first, *first) shall be convertible to T.
binary_op shall neither invalidate iterators or subranges, nor modify elements in the ranges [first, last] or [result, result + (last - first)].
Effects: For each integer K in [0, last - first) assigns through result + K the value of:
GENERALIZED_NONCOMMUTATIVE_SUM(
binary_op, init, *(first + 0), *(first + 1), ..., *(first + K - 1))
template<class InputIterator, class OutputIterator>
OutputIterator inclusive_scan(InputIterator first, InputIterator last,
OutputIterator result);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
ForwardIterator2 inclusive_scan(ExecutionPolicy&& exec,
ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result);
Effects: Equivalent to:
return inclusive_scan(std::forward<ExecutionPolicy>(exec), first, last, result, plus<>());
template<class InputIterator, class OutputIterator, class BinaryOperation>
OutputIterator inclusive_scan(InputIterator first, InputIterator last,
OutputIterator result,
BinaryOperation binary_op);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class BinaryOperation>
ForwardIterator2 inclusive_scan(ExecutionPolicy&& exec,
ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result,
BinaryOperation binary_op);
template<class InputIterator, class OutputIterator, class BinaryOperation, class T>
OutputIterator inclusive_scan(InputIterator first, InputIterator last,
OutputIterator result,
BinaryOperation binary_op, T init);
template<class ExecutionPolicy,
class ForwardIterator1, class ForwardIterator2, class BinaryOperation, class T>
ForwardIterator2 inclusive_scan(ExecutionPolicy&& exec,
ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result,
BinaryOperation binary_op, T init);
Requires:
If init is provided, T shall be MoveConstructible (Table 23); otherwise, ForwardIterator1's value type shall be MoveConstructible.
If init is provided, all of binary_op(init, init), binary_op(init, *first), and binary_op(*first, *first) shall be convertible to T; otherwise, binary_op(*first, *first) shall be convertible to ForwardIterator1's value type.
binary_op shall neither invalidate iterators or subranges, nor modify elements in the ranges [first, last] or [result, result + (last - first)].
Effects: For each integer K in [0, last - first) assigns through result + K the value of
GENERALIZED_NONCOMMUTATIVE_SUM(
binary_op,
init, *(first + 0), *(first + 1), ..., *(first + K))
if init is provided, or
GENERALIZED_NONCOMMUTATIVE_SUM(
binary_op,
*(first + 0), *(first + 1), ..., *(first + K))
otherwise.
template<class InputIterator, class OutputIterator, class T,
class BinaryOperation, class UnaryOperation>
OutputIterator transform_exclusive_scan(InputIterator first, InputIterator last,
OutputIterator result,
T init,
BinaryOperation binary_op,
UnaryOperation unary_op);
template<class ExecutionPolicy,
class ForwardIterator1, class ForwardIterator2, class T,
class BinaryOperation, class UnaryOperation>
ForwardIterator2 transform_exclusive_scan(ExecutionPolicy&& exec,
ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result,
T init,
BinaryOperation binary_op,
UnaryOperation unary_op);
Requires:
T shall be MoveConstructible (Table 23).
All of
binary_op(init, init),
binary_op(init, unary_op(*first)), and
binary_op(unary_op(*first), unary_op(*first))
shall be convertible to T.
Neither unary_op nor binary_op shall invalidate iterators or subranges, or modify elements in the ranges [first, last] or [result, result + (last - first)].
Effects: For each integer K in [0, last - first) assigns through result + K the value of:
GENERALIZED_NONCOMMUTATIVE_SUM(
binary_op, init,
unary_op(*(first + 0)), unary_op(*(first + 1)), ..., unary_op(*(first + K - 1)))
[ Note: The difference between transform_exclusive_scan and transform_inclusive_scan is that transform_exclusive_scan excludes the ith input element from the ith sum. If binary_op is not mathematically associative, the behavior of transform_exclusive_scan may be nondeterministic. transform_exclusive_scan does not apply unary_op to init. — end note ]
template<class InputIterator, class OutputIterator,
class BinaryOperation, class UnaryOperation>
OutputIterator transform_inclusive_scan(InputIterator first, InputIterator last,
OutputIterator result,
BinaryOperation binary_op,
UnaryOperation unary_op);
template<class ExecutionPolicy,
class ForwardIterator1, class ForwardIterator2,
class BinaryOperation, class UnaryOperation>
ForwardIterator2 transform_inclusive_scan(ExecutionPolicy&& exec,
ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result,
BinaryOperation binary_op,
UnaryOperation unary_op);
template<class InputIterator, class OutputIterator,
class BinaryOperation, class UnaryOperation, class T>
OutputIterator transform_inclusive_scan(InputIterator first, InputIterator last,
OutputIterator result,
BinaryOperation binary_op,
UnaryOperation unary_op,
T init);
template<class ExecutionPolicy,
class ForwardIterator1, class ForwardIterator2,
class BinaryOperation, class UnaryOperation, class T>
ForwardIterator2 transform_inclusive_scan(ExecutionPolicy&& exec,
ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result,
BinaryOperation binary_op,
UnaryOperation unary_op,
T init);
Requires:
If init is provided, T shall be MoveConstructible (Table 23); otherwise, ForwardIterator1's value type shall be MoveConstructible.
If init is provided, all of
binary_op(init, init),
binary_op(init, unary_op(*first)), and
binary_op(unary_op(*first), unary_op(*first))
shall be convertible to T; otherwise, binary_op(unary_op(*first), unary_op(*first)) shall be convertible to ForwardIterator1's value type.
Neither unary_op nor binary_op shall invalidate iterators or subranges, nor modify elements in the ranges [first, last] or [result, result + (last - first)].
Effects: For each integer K in [0, last - first) assigns through result + K the value of
GENERALIZED_NONCOMMUTATIVE_SUM(
binary_op, init,
unary_op(*(first + 0)), unary_op(*(first + 1)), ..., unary_op(*(first + K)))
if init is provided, or
GENERALIZED_NONCOMMUTATIVE_SUM(
binary_op,
unary_op(*(first + 0)), unary_op(*(first + 1)), ..., unary_op(*(first + K)))
otherwise.
[ Note: The difference between transform_exclusive_scan and transform_inclusive_scan is that transform_inclusive_scan includes the ith input element in the ith sum. If binary_op is not mathematically associative, the behavior of transform_inclusive_scan may be nondeterministic. transform_inclusive_scan does not apply unary_op to init. — end note ]
template <class InputIterator, class OutputIterator>
OutputIterator
adjacent_difference(InputIterator first, InputIterator last,
OutputIterator result);
template <class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
ForwardIterator2
adjacent_difference(ExecutionPolicy&& exec,
ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result);
template <class InputIterator, class OutputIterator, class BinaryOperation>
OutputIterator
adjacent_difference(InputIterator first, InputIterator last,
OutputIterator result,
BinaryOperation binary_op);
template <class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class BinaryOperation>
ForwardIterator2
adjacent_difference(ExecutionPolicy&& exec,
ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result,
BinaryOperation binary_op);
Requires:
For the overloads with no ExecutionPolicy, InputIterator's value type shall be MoveAssignable (Table 25) and shall be constructible from the type of *first. acc (defined below) shall be writable ([iterator.requirements.general]) to the result output iterator. The result of the expression val - acc or binary_op(val, acc) shall be writable to the result output iterator.
For the overloads with an ExecutionPolicy, the value type of ForwardIterator1 shall be CopyConstructible (Table 24), constructible from the expression *first - *first or binary_op(*first, *first), and assignable to the value type of ForwardIterator2.
For all overloads, in the ranges [first, last] and [result, result + (last - first)], binary_op shall neither modify elements nor invalidate iterators or subranges.285
Effects: For the overloads with no ExecutionPolicy and a non-empty range, the function creates an accumulator acc whose type is InputIterator's value type, initializes it with *first, and assigns the result to *result. For every iterator i in [first + 1, last) in order, creates an object val whose type is InputIterator's value type, initializes it with *i, computes val - acc or binary_op(val, acc), assigns the result to *(result + (i - first)), and move assigns from val to acc.
For the overloads with an ExecutionPolicy and a non-empty range, first the function creates an object whose type is ForwardIterator1's value type, initializes it with *first, and assigns the result to *result. Then for every d in [1, last - first - 1], creates an object val whose type is ForwardIterator1's value type, initializes it with *(first + d) - *(first + d - 1) or binary_op(*(first + d), *(first + d - 1)), and assigns the result to *(result + d).
Remarks: For the overloads with no ExecutionPolicy, result may be equal to first. For the overloads with an ExecutionPolicy, the ranges [first, last) and [result, result + (last - first)) shall not overlap.
The use of fully closed ranges is intentional.
template <class ForwardIterator, class T>
void iota(ForwardIterator first, ForwardIterator last, T value);
Requires: T shall be convertible to ForwardIterator's value type. The expression ++val, where val has type T, shall be well formed.
Effects: For each element referred to by the iterator i in the range [first, last), assigns *i = value and increments value as if by ++value.
template <class M, class N>
constexpr common_type_t<M,N> gcd(M m, N n);
Requires: |m| and |n| shall be representable as a value of common_type_t<M, N>. [ Note: These requirements ensure, for example, that gcd(m, m) = |m| is representable as a value of type M. — end note ]
Remarks: If either M or N is not an integer type, or if either is cv bool, the program is ill-formed.
Returns: Zero when m and n are both zero. Otherwise, returns the greatest common divisor of |m| and |n|.
template <class M, class N>
constexpr common_type_t<M,N> lcm(M m, N n);
Requires: |m| and |n| shall be representable as a value of common_type_t<M, N>. The least common multiple of |m| and |n| shall be representable as a value of type common_type_t<M,N>.
Remarks: If either M or N is not an integer type, or if either is cv bool the program is ill-formed.
Returns: Zero when either m or n is zero. Otherwise, returns the least common multiple of |m| and |n|.
namespace std { using float_t = see below; using double_t = see below; } #define HUGE_VAL see below #define HUGE_VALF see below #define HUGE_VALL see below #define INFINITY see below #define NAN see below #define FP_INFINITE see below #define FP_NAN see below #define FP_NORMAL see below #define FP_SUBNORMAL see below #define FP_ZERO see below #define FP_FAST_FMA see below #define FP_FAST_FMAF see below #define FP_FAST_FMAL see below #define FP_ILOGB0 see below #define FP_ILOGBNAN see below #define MATH_ERRNO see below #define MATH_ERREXCEPT see below #define math_errhandling see below namespace std { float acos(float x); // see [library.c] double acos(double x); long double acos(long double x); // see [library.c] float acosf(float x); long double acosl(long double x); float asin(float x); // see [library.c] double asin(double x); long double asin(long double x); // see [library.c] float asinf(float x); long double asinl(long double x); float atan(float x); // see [library.c] double atan(double x); long double atan(long double x); // see [library.c] float atanf(float x); long double atanl(long double x); float atan2(float y, float x); // see [library.c] double atan2(double y, double x); long double atan2(long double y, long double x); // see [library.c] float atan2f(float y, float x); long double atan2l(long double y, long double x); float cos(float x); // see [library.c] double cos(double x); long double cos(long double x); // see [library.c] float cosf(float x); long double cosl(long double x); float sin(float x); // see [library.c] double sin(double x); long double sin(long double x); // see [library.c] float sinf(float x); long double sinl(long double x); float tan(float x); // see [library.c] double tan(double x); long double tan(long double x); // see [library.c] float tanf(float x); long double tanl(long double x); float acosh(float x); // see [library.c] double acosh(double x); long double acosh(long double x); // see [library.c] float acoshf(float x); long double acoshl(long double x); float asinh(float x); // see [library.c] double asinh(double x); long double asinh(long double x); // see [library.c] float asinhf(float x); long double asinhl(long double x); float atanh(float x); // see [library.c] double atanh(double x); long double atanh(long double x); // see [library.c] float atanhf(float x); long double atanhl(long double x); float cosh(float x); // see [library.c] double cosh(double x); long double cosh(long double x); // see [library.c] float coshf(float x); long double coshl(long double x); float sinh(float x); // see [library.c] double sinh(double x); long double sinh(long double x); // see [library.c] float sinhf(float x); long double sinhl(long double x); float tanh(float x); // see [library.c] double tanh(double x); long double tanh(long double x); // see [library.c] float tanhf(float x); long double tanhl(long double x); float exp(float x); // see [library.c] double exp(double x); long double exp(long double x); // see [library.c] float expf(float x); long double expl(long double x); float exp2(float x); // see [library.c] double exp2(double x); long double exp2(long double x); // see [library.c] float exp2f(float x); long double exp2l(long double x); float expm1(float x); // see [library.c] double expm1(double x); long double expm1(long double x); // see [library.c] float expm1f(float x); long double expm1l(long double x); float frexp(float value, int* exp); // see [library.c] double frexp(double value, int* exp); long double frexp(long double value, int* exp); // see [library.c] float frexpf(float value, int* exp); long double frexpl(long double value, int* exp); int ilogb(float x); // see [library.c] int ilogb(double x); int ilogb(long double x); // see [library.c] int ilogbf(float x); int ilogbl(long double x); float ldexp(float x, int exp); // see [library.c] double ldexp(double x, int exp); long double ldexp(long double x, int exp); // see [library.c] float ldexpf(float x, int exp); long double ldexpl(long double x, int exp); float log(float x); // see [library.c] double log(double x); long double log(long double x); // see [library.c] float logf(float x); long double logl(long double x); float log10(float x); // see [library.c] double log10(double x); long double log10(long double x); // see [library.c] float log10f(float x); long double log10l(long double x); float log1p(float x); // see [library.c] double log1p(double x); long double log1p(long double x); // see [library.c] float log1pf(float x); long double log1pl(long double x); float log2(float x); // see [library.c] double log2(double x); long double log2(long double x); // see [library.c] float log2f(float x); long double log2l(long double x); float logb(float x); // see [library.c] double logb(double x); long double logb(long double x); // see [library.c] float logbf(float x); long double logbl(long double x); float modf(float value, float* iptr); // see [library.c] double modf(double value, double* iptr); long double modf(long double value, long double* iptr); // see [library.c] float modff(float value, float* iptr); long double modfl(long double value, long double* iptr); float scalbn(float x, int n); // see [library.c] double scalbn(double x, int n); long double scalbn(long double x, int n); // see [library.c] float scalbnf(float x, int n); long double scalbnl(long double x, int n); float scalbln(float x, long int n); // see [library.c] double scalbln(double x, long int n); long double scalbln(long double x, long int n); // see [library.c] float scalblnf(float x, long int n); long double scalblnl(long double x, long int n); float cbrt(float x); // see [library.c] double cbrt(double x); long double cbrt(long double x); // see [library.c] float cbrtf(float x); long double cbrtl(long double x); // [c.math.abs], absolute values int abs(int j); long int abs(long int j); long long int abs(long long int j); float abs(float j); double abs(double j); long double abs(long double j); float fabs(float x); // see [library.c] double fabs(double x); long double fabs(long double x); // see [library.c] float fabsf(float x); long double fabsl(long double x); float hypot(float x, float y); // see [library.c] double hypot(double x, double y); long double hypot(double x, double y); // see [library.c] float hypotf(float x, float y); long double hypotl(long double x, long double y); // [c.math.hypot3], three-dimensional hypotenuse float hypot(float x, float y, float z); double hypot(double x, double y, double z); long double hypot(long double x, long double y, long double z); float pow(float x, float y); // see [library.c] double pow(double x, double y); long double pow(long double x, long double y); // see [library.c] float powf(float x, float y); long double powl(long double x, long double y); float sqrt(float x); // see [library.c] double sqrt(double x); long double sqrt(long double x); // see [library.c] float sqrtf(float x); long double sqrtl(long double x); float erf(float x); // see [library.c] double erf(double x); long double erf(long double x); // see [library.c] float erff(float x); long double erfl(long double x); float erfc(float x); // see [library.c] double erfc(double x); long double erfc(long double x); // see [library.c] float erfcf(float x); long double erfcl(long double x); float lgamma(float x); // see [library.c] double lgamma(double x); long double lgamma(long double x); // see [library.c] float lgammaf(float x); long double lgammal(long double x); float tgamma(float x); // see [library.c] double tgamma(double x); long double tgamma(long double x); // see [library.c] float tgammaf(float x); long double tgammal(long double x); float ceil(float x); // see [library.c] double ceil(double x); long double ceil(long double x); // see [library.c] float ceilf(float x); long double ceill(long double x); float floor(float x); // see [library.c] double floor(double x); long double floor(long double x); // see [library.c] float floorf(float x); long double floorl(long double x); float nearbyint(float x); // see [library.c] double nearbyint(double x); long double nearbyint(long double x); // see [library.c] float nearbyintf(float x); long double nearbyintl(long double x); float rint(float x); // see [library.c] double rint(double x); long double rint(long double x); // see [library.c] float rintf(float x); long double rintl(long double x); long int lrint(float x); // see [library.c] long int lrint(double x); long int lrint(long double x); // see [library.c] long int lrintf(float x); long int lrintl(long double x); long long int llrint(float x); // see [library.c] long long int llrint(double x); long long int llrint(long double x); // see [library.c] long long int llrintf(float x); long long int llrintl(long double x); float round(float x); // see [library.c] double round(double x); long double round(long double x); // see [library.c] float roundf(float x); long double roundl(long double x); long int lround(float x); // see [library.c] long int lround(double x); long int lround(long double x); // see [library.c] long int lroundf(float x); long int lroundl(long double x); long long int llround(float x); // see [library.c] long long int llround(double x); long long int llround(long double x); // see [library.c] long long int llroundf(float x); long long int llroundl(long double x); float trunc(float x); // see [library.c] double trunc(double x); long double trunc(long double x); // see [library.c] float truncf(float x); long double truncl(long double x); float fmod(float x, float y); // see [library.c] double fmod(double x, double y); long double fmod(long double x, long double y); // see [library.c] float fmodf(float x, float y); long double fmodl(long double x, long double y); float remainder(float x, float y); // see [library.c] double remainder(double x, double y); long double remainder(long double x, long double y); // see [library.c] float remainderf(float x, float y); long double remainderl(long double x, long double y); float remquo(float x, float y, int* quo); // see [library.c] double remquo(double x, double y, int* quo); long double remquo(long double x, long double y, int* quo); // see [library.c] float remquof(float x, float y, int* quo); long double remquol(long double x, long double y, int* quo); float copysign(float x, float y); // see [library.c] double copysign(double x, double y); long double copysign(long double x, long double y); // see [library.c] float copysignf(float x, float y); long double copysignl(long double x, long double y); double nan(const char* tagp); float nanf(const char* tagp); long double nanl(const char* tagp); float nextafter(float x, float y); // see [library.c] double nextafter(double x, double y); long double nextafter(long double x, long double y); // see [library.c] float nextafterf(float x, float y); long double nextafterl(long double x, long double y); float nexttoward(float x, long double y); // see [library.c] double nexttoward(double x, long double y); long double nexttoward(long double x, long double y); // see [library.c] float nexttowardf(float x, long double y); long double nexttowardl(long double x, long double y); float fdim(float x, float y); // see [library.c] double fdim(double x, double y); long double fdim(long double x, long double y); // see [library.c] float fdimf(float x, float y); long double fdiml(long double x, long double y); float fmax(float x, float y); // see [library.c] double fmax(double x, double y); long double fmax(long double x, long double y); // see [library.c] float fmaxf(float x, float y); long double fmaxl(long double x, long double y); float fmin(float x, float y); // see [library.c] double fmin(double x, double y); long double fmin(long double x, long double y); // see [library.c] float fminf(float x, float y); long double fminl(long double x, long double y); float fma(float x, float y, float z); // see [library.c] double fma(double x, double y, double z); long double fma(long double x, long double y, long double z); // see [library.c] float fmaf(float x, float y, float z); long double fmal(long double x, long double y, long double z); // [c.math.fpclass], classification / comparison functions int fpclassify(float x); int fpclassify(double x); int fpclassify(long double x); int isfinite(float x); int isfinite(double x); int isfinite(long double x); int isinf(float x); int isinf(double x); int isinf(long double x); int isnan(float x); int isnan(double x); int isnan(long double x); int isnormal(float x); int isnormal(double x); int isnormal(long double x); int signbit(float x); int signbit(double x); int signbit(long double x); int isgreater(float x, float y); int isgreater(double x, double y); int isgreater(long double x, long double y); int isgreaterequal(float x, float y); int isgreaterequal(double x, double y); int isgreaterequal(long double x, long double y); int isless(float x, float y); int isless(double x, double y); int isless(long double x, long double y); int islessequal(float x, float y); int islessequal(double x, double y); int islessequal(long double x, long double y); int islessgreater(float x, float y); int islessgreater(double x, double y); int islessgreater(long double x, long double y); int isunordered(float x, float y); int isunordered(double x, double y); int isunordered(long double x, long double y); // [sf.cmath], mathematical special functions // [sf.cmath.assoc_laguerre], associated Laguerre polynomials double assoc_laguerre(unsigned n, unsigned m, double x); float assoc_laguerref(unsigned n, unsigned m, float x); long double assoc_laguerrel(unsigned n, unsigned m, long double x); // [sf.cmath.assoc_legendre], associated Legendre functions double assoc_legendre(unsigned l, unsigned m, double x); float assoc_legendref(unsigned l, unsigned m, float x); long double assoc_legendrel(unsigned l, unsigned m, long double x); // [sf.cmath.beta], beta function double beta(double x, double y); float betaf(float x, float y); long double betal(long double x, long double y); // [sf.cmath.comp_ellint_1], complete elliptic integral of the first kind double comp_ellint_1(double k); float comp_ellint_1f(float k); long double comp_ellint_1l(long double k); // [sf.cmath.comp_ellint_2], complete elliptic integral of the second kind double comp_ellint_2(double k); float comp_ellint_2f(float k); long double comp_ellint_2l(long double k); // [sf.cmath.comp_ellint_3], complete elliptic integral of the third kind double comp_ellint_3(double k, double nu); float comp_ellint_3f(float k, float nu); long double comp_ellint_3l(long double k, long double nu); // [sf.cmath.cyl_bessel_i], regular modified cylindrical Bessel functions double cyl_bessel_i(double nu, double x); float cyl_bessel_if(float nu, float x); long double cyl_bessel_il(long double nu, long double x); // [sf.cmath.cyl_bessel_j], cylindrical Bessel functions of the first kind double cyl_bessel_j(double nu, double x); float cyl_bessel_jf(float nu, float x); long double cyl_bessel_jl(long double nu, long double x); // [sf.cmath.cyl_bessel_k], irregular modified cylindrical Bessel functions double cyl_bessel_k(double nu, double x); float cyl_bessel_kf(float nu, float x); long double cyl_bessel_kl(long double nu, long double x); // [sf.cmath.cyl_neumann], cylindrical Neumann functions; // cylindrical Bessel functions of the second kind double cyl_neumann(double nu, double x); float cyl_neumannf(float nu, float x); long double cyl_neumannl(long double nu, long double x); // [sf.cmath.ellint_1], incomplete elliptic integral of the first kind double ellint_1(double k, double phi); float ellint_1f(float k, float phi); long double ellint_1l(long double k, long double phi); // [sf.cmath.ellint_2], incomplete elliptic integral of the second kind double ellint_2(double k, double phi); float ellint_2f(float k, float phi); long double ellint_2l(long double k, long double phi); // [sf.cmath.ellint_3], incomplete elliptic integral of the third kind double ellint_3(double k, double nu, double phi); float ellint_3f(float k, float nu, float phi); long double ellint_3l(long double k, long double nu, long double phi); // [sf.cmath.expint], exponential integral double expint(double x); float expintf(float x); long double expintl(long double x); // [sf.cmath.hermite], Hermite polynomials double hermite(unsigned n, double x); float hermitef(unsigned n, float x); long double hermitel(unsigned n, long double x); // [sf.cmath.laguerre], Laguerre polynomials double laguerre(unsigned n, double x); float laguerref(unsigned n, float x); long double laguerrel(unsigned n, long double x); // [sf.cmath.legendre], Legendre polynomials double legendre(unsigned l, double x); float legendref(unsigned l, float x); long double legendrel(unsigned l, long double x); // [sf.cmath.riemann_zeta], Riemann zeta function double riemann_zeta(double x); float riemann_zetaf(float x); long double riemann_zetal(long double x); // [sf.cmath.sph_bessel], spherical Bessel functions of the first kind double sph_bessel(unsigned n, double x); float sph_besself(unsigned n, float x); long double sph_bessell(unsigned n, long double x); // [sf.cmath.sph_legendre], spherical associated Legendre functions double sph_legendre(unsigned l, unsigned m, double theta); float sph_legendref(unsigned l, unsigned m, float theta); long double sph_legendrel(unsigned l, unsigned m, long double theta); // [sf.cmath.sph_neumann], spherical Neumann functions; // spherical Bessel functions of the second kind: double sph_neumann(unsigned n, double x); float sph_neumannf(unsigned n, float x); long double sph_neumannl(unsigned n, long double x); }
The contents and meaning of the header <cmath> are the same as the C standard library header <math.h>, with the addition of a three-dimensional hypotenuse function and the mathematical special functions described in [sf.cmath]. [ Note: Several functions have additional overloads in this International Standard, but they have the same behavior as in the C standard library. — end note ]
For each set of overloaded functions within <cmath>, with the exception of abs, there shall be additional overloads sufficient to ensure:
1.If any argument of arithmetic type corresponding to a double parameter has type long double, then all arguments of arithmetic type corresponding to double parameters are effectively cast to long double.
2.Otherwise, if any argument of arithmetic type corresponding to a double parameter has type double or an integer type, then all arguments of arithmetic type corresponding to double parameters are effectively cast to double.
3.Otherwise, all arguments of arithmetic type corresponding to double parameters have type float.
[ Note: abs is exempted from these rules in order to stay compatible with C. — end note ]
See also: ISO C 7.12
[ Note: The headers <cstdlib> and <cmath> declare the functions described in this subclause. — end note ]
int abs(int j);
long int abs(long int j);
long long int abs(long long int j);
float abs(float j);
double abs(double j);
long double abs(long double j);
Effects: The abs functions have the semantics specified in the C standard library for the functions abs, labs, llabs, fabsf, fabs, and fabsl.
Remarks: If abs() is called with an argument of type X for which is_unsigned_v<X> is true and if X cannot be converted to int by integral promotion, the program is ill-formed. [ Note: Arguments that can be promoted to int are permitted for compatibility with C. — end note ]
See also: ISO C 7.12.7.2, 7.22.6.1
float hypot(float x, float y, float z);
double hypot(double x, double y, double z);
long double hypot(long double x, long double y, long double z);
If any argument value to any of the functions specified in this subclause is a NaN (Not a Number), the function shall return a NaN but it shall not report a domain error. Otherwise, the function shall report a domain error for just those argument values for which:
the function description's Returns: clause explicitly specifies a domain and those argument values fall outside the specified domain, or
the corresponding mathematical function value has a nonzero imaginary component, or
the corresponding mathematical function is not mathematically defined.286
Unless otherwise specified, each function is defined for all finite values, for negative infinity, and for positive infinity.
A mathematical function is mathematically defined for a given set of argument values (a) if it is explicitly defined for that set of argument values, or (b) if its limiting value exists and does not depend on the direction of approach.
double assoc_laguerre(unsigned n, unsigned m, double x);
float assoc_laguerref(unsigned n, unsigned m, float x);
long double assoc_laguerrel(unsigned n, unsigned m, long double x);
Effects: These functions compute the associated Laguerre polynomials of their respective arguments n, m, and x.
double assoc_legendre(unsigned l, unsigned m, double x);
float assoc_legendref(unsigned l, unsigned m, float x);
long double assoc_legendrel(unsigned l, unsigned m, long double x);
Effects: These functions compute the associated Legendre functions of their respective arguments l, m, and x.
double beta(double x, double y);
float betaf(float x, float y);
long double betal(long double x, long double y);
double comp_ellint_1(double k);
float comp_ellint_1f(float k);
long double comp_ellint_1l(long double k);
Effects: These functions compute the complete elliptic integral of the first kind of their respective arguments k.
See also [sf.cmath.ellint_1].
double comp_ellint_2(double k);
float comp_ellint_2f(float k);
long double comp_ellint_2l(long double k);
Effects: These functions compute the complete elliptic integral of the second kind of their respective arguments k.
See also [sf.cmath.ellint_2].
double comp_ellint_3(double k, double nu);
float comp_ellint_3f(float k, float nu);
long double comp_ellint_3l(long double k, long double nu);
Effects: These functions compute the complete elliptic integral of the third kind of their respective arguments k and nu.
See also [sf.cmath.ellint_3].
double cyl_bessel_i(double nu, double x);
float cyl_bessel_if(float nu, float x);
long double cyl_bessel_il(long double nu, long double x);
Effects: These functions compute the regular modified cylindrical Bessel functions of their respective arguments nu and x.
See also [sf.cmath.cyl_bessel_j].
double cyl_bessel_j(double nu, double x);
float cyl_bessel_jf(float nu, float x);
long double cyl_bessel_jl(long double nu, long double x);
Effects: These functions compute the cylindrical Bessel functions of the first kind of their respective arguments nu and x.
double cyl_bessel_k(double nu, double x);
float cyl_bessel_kf(float nu, float x);
long double cyl_bessel_kl(long double nu, long double x);
Effects: These functions compute the irregular modified cylindrical Bessel functions of their respective arguments nu and x.
Returns:
Kν(x)=(π/2)iν+1(Jν(ix)+iNν(ix))=⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩π2I−ν(x)−Iν(x)sinνπ,for x≥0 and non-integral νπ2limμ→νI−μ(x)−Iμ(x)sinμπ,for x≥0 and integral ν
where ν is nu and x is x.
double cyl_neumann(double nu, double x);
float cyl_neumannf(float nu, float x);
long double cyl_neumannl(long double nu, long double x);
Effects: These functions compute the cylindrical Neumann functions, also known as the cylindrical Bessel functions of the second kind, of their respective arguments nu and x.
Returns:
Nν(x)=⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩Jν(x)cosνπ−J−ν(x)sinνπ,for x≥0 and non-integral νlimμ→νJμ(x)cosμπ−J−μ(x)sinμπ,for x≥0 and integral ν
where ν is nu and x is x.
See also [sf.cmath.cyl_bessel_j].
double ellint_1(double k, double phi);
float ellint_1f(float k, float phi);
long double ellint_1l(long double k, long double phi);
Effects: These functions compute the incomplete elliptic integral of the first kind of their respective arguments k and phi (phi measured in radians).
double ellint_2(double k, double phi);
float ellint_2f(float k, float phi);
long double ellint_2l(long double k, long double phi);
Effects: These functions compute the incomplete elliptic integral of the second kind of their respective arguments k and phi (phi measured in radians).
double ellint_3(double k, double nu, double phi);
float ellint_3f(float k, float nu, float phi);
long double ellint_3l(long double k, long double nu, long double phi);
Effects: These functions compute the incomplete elliptic integral of the third kind of their respective arguments k, nu, and phi (phi measured in radians).
double expint(double x);
float expintf(float x);
long double expintl(long double x);
double hermite(unsigned n, double x);
float hermitef(unsigned n, float x);
long double hermitel(unsigned n, long double x);
double laguerre(unsigned n, double x);
float laguerref(unsigned n, float x);
long double laguerrel(unsigned n, long double x);
double legendre(unsigned l, double x);
float legendref(unsigned l, float x);
long double legendrel(unsigned l, long double x);
double riemann_zeta(double x);
float riemann_zetaf(float x);
long double riemann_zetal(long double x);
double sph_bessel(unsigned n, double x);
float sph_besself(unsigned n, float x);
long double sph_bessell(unsigned n, long double x);
Effects: These functions compute the spherical Bessel functions of the first kind of their respective arguments n and x.
See also [sf.cmath.cyl_bessel_j].
double sph_legendre(unsigned l, unsigned m, double theta);
float sph_legendref(unsigned l, unsigned m, float theta);
long double sph_legendrel(unsigned l, unsigned m, long double theta);
Effects: These functions compute the spherical associated Legendre functions of their respective arguments l, m, and theta (theta measured in radians).
Returns:
Ymℓ(θ,0)
where
Ymℓ(θ,ϕ)=(−1)m[(2ℓ+1)4π(ℓ−m)!(ℓ+m)!]1/2Pmℓ(cosθ)eimϕ,for |m|≤ℓ
and l is l, m is m, and θ is theta.
See also [sf.cmath.assoc_legendre].
double sph_neumann(unsigned n, double x);
float sph_neumannf(unsigned n, float x);
long double sph_neumannl(unsigned n, long double x);
Effects: These functions compute the spherical Neumann functions, also known as the spherical Bessel functions of the second kind, of their respective arguments n and x.
See also [sf.cmath.cyl_neumann].