A list is a sequence container that supports bidirectional iterators and allows constant time insert and erase operations anywhere within the sequence, with storage management handled automatically. Unlike vectors and deques, fast random access to list elements is not supported, but many algorithms only need sequential access anyway.
A list satisfies all of the requirements of a container, of a reversible container (given in two tables in [container.requirements]), of a sequence container, including most of the optional sequence container requirements, and of an allocator-aware container. The exceptions are the operator[] and at member functions, which are not provided.258 Descriptions are provided here only for operations on list that are not described in one of these tables or for operations where there is additional semantic information.
namespace std { template <class T, class Allocator = allocator<T>> class list { public: // types: using value_type = T; using allocator_type = Allocator; using pointer = typename allocator_traits<Allocator>::pointer; using const_pointer = typename allocator_traits<Allocator>::const_pointer; using reference = value_type&; using const_reference = const value_type&; using size_type = implementation-defined; // see [container.requirements] using difference_type = implementation-defined; // see [container.requirements] using iterator = implementation-defined; // see [container.requirements] using const_iterator = implementation-defined; // see [container.requirements] using reverse_iterator = std::reverse_iterator<iterator>; using const_reverse_iterator = std::reverse_iterator<const_iterator>; // [list.cons], construct/copy/destroy list() : list(Allocator()) { } explicit list(const Allocator&); explicit list(size_type n, const Allocator& = Allocator()); list(size_type n, const T& value, const Allocator& = Allocator()); template <class InputIterator> list(InputIterator first, InputIterator last, const Allocator& = Allocator()); list(const list& x); list(list&& x); list(const list&, const Allocator&); list(list&&, const Allocator&); list(initializer_list<T>, const Allocator& = Allocator()); ~list(); list& operator=(const list& x); list& operator=(list&& x) noexcept(allocator_traits<Allocator>::is_always_equal::value); list& operator=(initializer_list<T>); template <class InputIterator> void assign(InputIterator first, InputIterator last); void assign(size_type n, const T& t); void assign(initializer_list<T>); allocator_type get_allocator() const noexcept; // iterators: iterator begin() noexcept; const_iterator begin() const noexcept; iterator end() noexcept; const_iterator end() const noexcept; reverse_iterator rbegin() noexcept; const_reverse_iterator rbegin() const noexcept; reverse_iterator rend() noexcept; const_reverse_iterator rend() const noexcept; const_iterator cbegin() const noexcept; const_iterator cend() const noexcept; const_reverse_iterator crbegin() const noexcept; const_reverse_iterator crend() const noexcept; // [list.capacity], capacity bool empty() const noexcept; size_type size() const noexcept; size_type max_size() const noexcept; void resize(size_type sz); void resize(size_type sz, const T& c); // element access: reference front(); const_reference front() const; reference back(); const_reference back() const; // [list.modifiers], modifiers template <class... Args> reference emplace_front(Args&&... args); template <class... Args> reference emplace_back(Args&&... args); void push_front(const T& x); void push_front(T&& x); void pop_front(); void push_back(const T& x); void push_back(T&& x); void pop_back(); template <class... Args> iterator emplace(const_iterator position, Args&&... args); iterator insert(const_iterator position, const T& x); iterator insert(const_iterator position, T&& x); iterator insert(const_iterator position, size_type n, const T& x); template <class InputIterator> iterator insert(const_iterator position, InputIterator first, InputIterator last); iterator insert(const_iterator position, initializer_list<T> il); iterator erase(const_iterator position); iterator erase(const_iterator position, const_iterator last); void swap(list&) noexcept(allocator_traits<Allocator>::is_always_equal::value); void clear() noexcept; // [list.ops], list operations void splice(const_iterator position, list& x); void splice(const_iterator position, list&& x); void splice(const_iterator position, list& x, const_iterator i); void splice(const_iterator position, list&& x, const_iterator i); void splice(const_iterator position, list& x, const_iterator first, const_iterator last); void splice(const_iterator position, list&& x, const_iterator first, const_iterator last); void remove(const T& value); template <class Predicate> void remove_if(Predicate pred); void unique(); template <class BinaryPredicate> void unique(BinaryPredicate binary_pred); void merge(list& x); void merge(list&& x); template <class Compare> void merge(list& x, Compare comp); template <class Compare> void merge(list&& x, Compare comp); void sort(); template <class Compare> void sort(Compare comp); void reverse() noexcept; }; template<class InputIterator, class Allocator = allocator<typename iterator_traits<InputIterator>::value_type>> list(InputIterator, InputIterator, Allocator = Allocator()) -> list<typename iterator_traits<InputIterator>::value_type, Allocator>; template <class T, class Allocator> bool operator==(const list<T, Allocator>& x, const list<T, Allocator>& y); template <class T, class Allocator> bool operator< (const list<T, Allocator>& x, const list<T, Allocator>& y); template <class T, class Allocator> bool operator!=(const list<T, Allocator>& x, const list<T, Allocator>& y); template <class T, class Allocator> bool operator> (const list<T, Allocator>& x, const list<T, Allocator>& y); template <class T, class Allocator> bool operator>=(const list<T, Allocator>& x, const list<T, Allocator>& y); template <class T, class Allocator> bool operator<=(const list<T, Allocator>& x, const list<T, Allocator>& y); // [list.special], specialized algorithms template <class T, class Allocator> void swap(list<T, Allocator>& x, list<T, Allocator>& y) noexcept(noexcept(x.swap(y))); }
An incomplete type T may be used when instantiating list if the allocator satisfies the allocator completeness requirements. T shall be complete before any member of the resulting specialization of list is referenced.
These member functions are only provided by containers whose iterators are random access iterators.
explicit list(const Allocator&);
explicit list(size_type n, const Allocator& = Allocator());
list(size_type n, const T& value, const Allocator& = Allocator());
template <class InputIterator>
list(InputIterator first, InputIterator last, const Allocator& = Allocator());
void resize(size_type sz);
Effects: If size() < sz, appends sz - size() default-inserted elements to the sequence. If sz <= size(), equivalent to:
list<T>::iterator it = begin(); advance(it, sz); erase(it, end());
void resize(size_type sz, const T& c);
Effects: As if by:
if (sz > size())
insert(end(), sz-size(), c);
else if (sz < size()) {
iterator i = begin();
advance(i, sz);
erase(i, end());
}
else
; // do nothing
iterator insert(const_iterator position, const T& x);
iterator insert(const_iterator position, T&& x);
iterator insert(const_iterator position, size_type n, const T& x);
template <class InputIterator>
iterator insert(const_iterator position, InputIterator first,
InputIterator last);
iterator insert(const_iterator position, initializer_list<T>);
template <class... Args> reference emplace_front(Args&&... args);
template <class... Args> reference emplace_back(Args&&... args);
template <class... Args> iterator emplace(const_iterator position, Args&&... args);
void push_front(const T& x);
void push_front(T&& x);
void push_back(const T& x);
void push_back(T&& x);
Remarks: Does not affect the validity of iterators and references. If an exception is thrown there are no effects.
Complexity: Insertion of a single element into a list takes constant time and exactly one call to a constructor of T. Insertion of multiple elements into a list is linear in the number of elements inserted, and the number of calls to the copy constructor or move constructor of T is exactly equal to the number of elements inserted.
iterator erase(const_iterator position);
iterator erase(const_iterator first, const_iterator last);
void pop_front();
void pop_back();
void clear() noexcept;
Since lists allow fast insertion and erasing from the middle of a list, certain operations are provided specifically for them.259
list provides three splice operations that destructively move elements from one list to another. The behavior of splice operations is undefined if get_allocator() != x.get_allocator().
void splice(const_iterator position, list& x);
void splice(const_iterator position, list&& x);
Effects: Inserts the contents of x before position and x becomes empty. Pointers and references to the moved elements of x now refer to those same elements but as members of *this. Iterators referring to the moved elements will continue to refer to their elements, but they now behave as iterators into *this, not into x.
void splice(const_iterator position, list& x, const_iterator i);
void splice(const_iterator position, list&& x, const_iterator i);
Effects: Inserts an element pointed to by i from list x before position and removes the element from x. The result is unchanged if position == i or position == ++i. Pointers and references to *i continue to refer to this same element but as a member of *this. Iterators to *i (including i itself) continue to refer to the same element, but now behave as iterators into *this, not into x.
void splice(const_iterator position, list& x, const_iterator first,
const_iterator last);
void splice(const_iterator position, list&& x, const_iterator first,
const_iterator last);
Requires: [first, last) is a valid range in x. The program has undefined behavior if position is an iterator in the range [first, last).
Effects: Inserts elements in the range [first, last) before position and removes the elements from x. Pointers and references to the moved elements of x now refer to those same elements but as members of *this. Iterators referring to the moved elements will continue to refer to their elements, but they now behave as iterators into *this, not into x.
void remove(const T& value);
template <class Predicate> void remove_if(Predicate pred);
Effects: Erases all the elements in the list referred by a list iterator i for which the following conditions hold: *i == value, pred(*i) != false. Invalidates only the iterators and references to the erased elements.
void unique();
template <class BinaryPredicate> void unique(BinaryPredicate binary_pred);
Effects: Erases all but the first element from every consecutive group of equal elements referred to by the iterator i in the range [first + 1, last) for which *i == *(i-1) (for the version of unique with no arguments) or pred(*i, *(i - 1)) (for the version of unique with a predicate argument) holds. Invalidates only the iterators and references to the erased elements.
Complexity: If the range [first, last) is not empty, exactly (last - first) - 1 applications of the corresponding predicate, otherwise no applications of the predicate.
void merge(list& x);
void merge(list&& x);
template <class Compare> void merge(list& x, Compare comp);
template <class Compare> void merge(list&& x, Compare comp);
Requires: comp shall define a strict weak ordering, and both the list and the argument list shall be sorted according to this ordering.
Effects: If (&x == this) does nothing; otherwise, merges the two sorted ranges [begin(), end()) and [x.begin(), x.end()). The result is a range in which the elements will be sorted in non-decreasing order according to the ordering defined by comp; that is, for every iterator i, in the range other than the first, the condition comp(*i, *(i - 1)) will be false. Pointers and references to the moved elements of x now refer to those same elements but as members of *this. Iterators referring to the moved elements will continue to refer to their elements, but they now behave as iterators into *this, not into x.
Complexity: At most size() + x.size() - 1 applications of comp if (&x != this); otherwise, no applications of comp are performed. If an exception is thrown other than by a comparison there are no effects.
void reverse() noexcept;
Effects: Reverses the order of the elements in the list. Does not affect the validity of iterators and references.
void sort();
template <class Compare> void sort(Compare comp);
Requires: operator< (for the first version) or comp (for the second version) shall define a strict weak ordering.
Effects: Sorts the list according to the operator< or a Compare function object. If an exception is thrown, the order of the elements in *this is unspecified. Does not affect the validity of iterators and references.
As specified in [allocator.requirements], the requirements in this Clause apply only to lists whose allocators compare equal.
template <class T, class Allocator>
void swap(list<T, Allocator>& x, list<T, Allocator>& y)
noexcept(noexcept(x.swap(y)));