Subclause | Header | |
Requirements | ||
Floating-point environment | <cfenv> | |
Complex numbers | <complex> | |
Bit manipulation | <bit> | |
Random number generation | <random> | |
Numeric arrays | <valarray> | |
Mathematical functions for floating-point types | <cmath>, <cstdlib> | |
Numbers | <numbers> |
#define FE_ALL_EXCEPT see below #define FE_DIVBYZERO see below // optional #define FE_INEXACT see below // optional #define FE_INVALID see below // optional #define FE_OVERFLOW see below // optional #define FE_UNDERFLOW see below // optional #define FE_DOWNWARD see below // optional #define FE_TONEAREST see below // optional #define FE_TOWARDZERO see below // optional #define FE_UPWARD see below // optional #define FE_DFL_ENV see below namespace std { // types using fenv_t = object type; using fexcept_t = integer type; // functions int feclearexcept(int except); int fegetexceptflag(fexcept_t* pflag, int except); int feraiseexcept(int except); int fesetexceptflag(const fexcept_t* pflag, int except); int fetestexcept(int except); int fegetround(); int fesetround(int mode); int fegetenv(fenv_t* penv); int feholdexcept(fenv_t* penv); int fesetenv(const fenv_t* penv); int feupdateenv(const fenv_t* penv); }
namespace std { // [complex], class template complex template<class T> class complex; // [complex.special], specializations template<> class complex<float>; template<> class complex<double>; template<> class complex<long double>; // [complex.ops], operators template<class T> constexpr complex<T> operator+(const complex<T>&, const complex<T>&); template<class T> constexpr complex<T> operator+(const complex<T>&, const T&); template<class T> constexpr complex<T> operator+(const T&, const complex<T>&); template<class T> constexpr complex<T> operator-(const complex<T>&, const complex<T>&); template<class T> constexpr complex<T> operator-(const complex<T>&, const T&); template<class T> constexpr complex<T> operator-(const T&, const complex<T>&); template<class T> constexpr complex<T> operator*(const complex<T>&, const complex<T>&); template<class T> constexpr complex<T> operator*(const complex<T>&, const T&); template<class T> constexpr complex<T> operator*(const T&, const complex<T>&); template<class T> constexpr complex<T> operator/(const complex<T>&, const complex<T>&); template<class T> constexpr complex<T> operator/(const complex<T>&, const T&); template<class T> constexpr complex<T> operator/(const T&, const complex<T>&); template<class T> constexpr complex<T> operator+(const complex<T>&); template<class T> constexpr complex<T> operator-(const complex<T>&); template<class T> constexpr bool operator==(const complex<T>&, const complex<T>&); template<class T> constexpr bool operator==(const complex<T>&, const T&); template<class T, class charT, class traits> basic_istream<charT, traits>& operator>>(basic_istream<charT, traits>&, complex<T>&); template<class T, class charT, class traits> basic_ostream<charT, traits>& operator<<(basic_ostream<charT, traits>&, const complex<T>&); // [complex.value.ops], values template<class T> constexpr T real(const complex<T>&); template<class T> constexpr T imag(const complex<T>&); template<class T> T abs(const complex<T>&); template<class T> T arg(const complex<T>&); template<class T> constexpr T norm(const complex<T>&); template<class T> constexpr complex<T> conj(const complex<T>&); template<class T> complex<T> proj(const complex<T>&); template<class T> complex<T> polar(const T&, const T& = T()); // [complex.transcendentals], transcendentals template<class T> complex<T> acos(const complex<T>&); template<class T> complex<T> asin(const complex<T>&); template<class T> complex<T> atan(const complex<T>&); template<class T> complex<T> acosh(const complex<T>&); template<class T> complex<T> asinh(const complex<T>&); template<class T> complex<T> atanh(const complex<T>&); template<class T> complex<T> cos (const complex<T>&); template<class T> complex<T> cosh (const complex<T>&); template<class T> complex<T> exp (const complex<T>&); template<class T> complex<T> log (const complex<T>&); template<class T> complex<T> log10(const complex<T>&); template<class T> complex<T> pow (const complex<T>&, const T&); template<class T> complex<T> pow (const complex<T>&, const complex<T>&); template<class T> complex<T> pow (const T&, const complex<T>&); template<class T> complex<T> sin (const complex<T>&); template<class T> complex<T> sinh (const complex<T>&); template<class T> complex<T> sqrt (const complex<T>&); template<class T> complex<T> tan (const complex<T>&); template<class T> complex<T> tanh (const complex<T>&); // [complex.literals], complex literals inline namespace literals { inline namespace complex_literals { constexpr complex<long double> operator""il(long double); constexpr complex<long double> operator""il(unsigned long long); constexpr complex<double> operator""i(long double); constexpr complex<double> operator""i(unsigned long long); constexpr complex<float> operator""if(long double); constexpr complex<float> operator""if(unsigned long long); } } }
namespace std { template<class T> class complex { public: using value_type = T; constexpr complex(const T& re = T(), const T& im = T()); constexpr complex(const complex&); template<class X> constexpr complex(const complex<X>&); constexpr T real() const; constexpr void real(T); constexpr T imag() const; constexpr void imag(T); constexpr complex& operator= (const T&); constexpr complex& operator+=(const T&); constexpr complex& operator-=(const T&); constexpr complex& operator*=(const T&); constexpr complex& operator/=(const T&); constexpr complex& operator=(const complex&); template<class X> constexpr complex& operator= (const complex<X>&); template<class X> constexpr complex& operator+=(const complex<X>&); template<class X> constexpr complex& operator-=(const complex<X>&); template<class X> constexpr complex& operator*=(const complex<X>&); template<class X> constexpr complex& operator/=(const complex<X>&); }; }
namespace std { template<> class complex<float> { public: using value_type = float; constexpr complex(float re = 0.0f, float im = 0.0f); constexpr complex(const complex<float>&) = default; constexpr explicit complex(const complex<double>&); constexpr explicit complex(const complex<long double>&); constexpr float real() const; constexpr void real(float); constexpr float imag() const; constexpr void imag(float); constexpr complex& operator= (float); constexpr complex& operator+=(float); constexpr complex& operator-=(float); constexpr complex& operator*=(float); constexpr complex& operator/=(float); constexpr complex& operator=(const complex&); template<class X> constexpr complex& operator= (const complex<X>&); template<class X> constexpr complex& operator+=(const complex<X>&); template<class X> constexpr complex& operator-=(const complex<X>&); template<class X> constexpr complex& operator*=(const complex<X>&); template<class X> constexpr complex& operator/=(const complex<X>&); }; template<> class complex<double> { public: using value_type = double; constexpr complex(double re = 0.0, double im = 0.0); constexpr complex(const complex<float>&); constexpr complex(const complex<double>&) = default; constexpr explicit complex(const complex<long double>&); constexpr double real() const; constexpr void real(double); constexpr double imag() const; constexpr void imag(double); constexpr complex& operator= (double); constexpr complex& operator+=(double); constexpr complex& operator-=(double); constexpr complex& operator*=(double); constexpr complex& operator/=(double); constexpr complex& operator=(const complex&); template<class X> constexpr complex& operator= (const complex<X>&); template<class X> constexpr complex& operator+=(const complex<X>&); template<class X> constexpr complex& operator-=(const complex<X>&); template<class X> constexpr complex& operator*=(const complex<X>&); template<class X> constexpr complex& operator/=(const complex<X>&); }; template<> class complex<long double> { public: using value_type = long double; constexpr complex(long double re = 0.0L, long double im = 0.0L); constexpr complex(const complex<float>&); constexpr complex(const complex<double>&); constexpr complex(const complex<long double>&) = default; constexpr long double real() const; constexpr void real(long double); constexpr long double imag() const; constexpr void imag(long double); constexpr complex& operator= (long double); constexpr complex& operator+=(long double); constexpr complex& operator-=(long double); constexpr complex& operator*=(long double); constexpr complex& operator/=(long double); constexpr complex& operator=(const complex&); template<class X> constexpr complex& operator= (const complex<X>&); template<class X> constexpr complex& operator+=(const complex<X>&); template<class X> constexpr complex& operator-=(const complex<X>&); template<class X> constexpr complex& operator*=(const complex<X>&); template<class X> constexpr complex& operator/=(const complex<X>&); }; }
template<class T> constexpr complex(const T& re = T(), const T& im = T());
constexpr T real() const;
constexpr void real(T val);
constexpr T imag() const;
constexpr void imag(T val);
constexpr complex& operator+=(const T& rhs);
constexpr complex& operator-=(const T& rhs);
constexpr complex& operator*=(const T& rhs);
constexpr complex& operator/=(const T& rhs);
template<class X> constexpr complex& operator+=(const complex<X>& rhs);
template<class X> constexpr complex& operator-=(const complex<X>& rhs);
template<class X> constexpr complex& operator*=(const complex<X>& rhs);
template<class X> constexpr complex& operator/=(const complex<X>& rhs);
template<class T> constexpr complex<T> operator+(const complex<T>& lhs);
template<class T> constexpr complex<T> operator+(const complex<T>& lhs, const complex<T>& rhs);
template<class T> constexpr complex<T> operator+(const complex<T>& lhs, const T& rhs);
template<class T> constexpr complex<T> operator+(const T& lhs, const complex<T>& rhs);
template<class T> constexpr complex<T> operator-(const complex<T>& lhs);
template<class T> constexpr complex<T> operator-(const complex<T>& lhs, const complex<T>& rhs);
template<class T> constexpr complex<T> operator-(const complex<T>& lhs, const T& rhs);
template<class T> constexpr complex<T> operator-(const T& lhs, const complex<T>& rhs);
template<class T> constexpr complex<T> operator*(const complex<T>& lhs, const complex<T>& rhs);
template<class T> constexpr complex<T> operator*(const complex<T>& lhs, const T& rhs);
template<class T> constexpr complex<T> operator*(const T& lhs, const complex<T>& rhs);
template<class T> constexpr complex<T> operator/(const complex<T>& lhs, const complex<T>& rhs);
template<class T> constexpr complex<T> operator/(const complex<T>& lhs, const T& rhs);
template<class T> constexpr complex<T> operator/(const T& lhs, const complex<T>& rhs);
template<class T> constexpr bool operator==(const complex<T>& lhs, const complex<T>& rhs);
template<class T> constexpr bool operator==(const complex<T>& lhs, const T& rhs);
template<class T, class charT, class traits>
basic_istream<charT, traits>& operator>>(basic_istream<charT, traits>& is, complex<T>& x);
template<class T, class charT, class traits>
basic_ostream<charT, traits>& operator<<(basic_ostream<charT, traits>& o, const complex<T>& x);
basic_ostringstream<charT, traits> s; s.flags(o.flags()); s.imbue(o.getloc()); s.precision(o.precision()); s << '(' << x.real() << "," << x.imag() << ')'; return o << s.str();
template<class T> constexpr T real(const complex<T>& x);
template<class T> constexpr T imag(const complex<T>& x);
template<class T> T abs(const complex<T>& x);
template<class T> T arg(const complex<T>& x);
template<class T> constexpr T norm(const complex<T>& x);
template<class T> constexpr complex<T> conj(const complex<T>& x);
template<class T> complex<T> proj(const complex<T>& x);
template<class T> complex<T> polar(const T& rho, const T& theta = T());
template<class T> complex<T> acos(const complex<T>& x);
template<class T> complex<T> asin(const complex<T>& x);
template<class T> complex<T> atan(const complex<T>& x);
template<class T> complex<T> acosh(const complex<T>& x);
template<class T> complex<T> asinh(const complex<T>& x);
template<class T> complex<T> atanh(const complex<T>& x);
template<class T> complex<T> cos(const complex<T>& x);
template<class T> complex<T> cosh(const complex<T>& x);
template<class T> complex<T> exp(const complex<T>& x);
template<class T> complex<T> log(const complex<T>& x);
template<class T> complex<T> log10(const complex<T>& x);
template<class T> complex<T> pow(const complex<T>& x, const complex<T>& y);
template<class T> complex<T> pow(const complex<T>& x, const T& y);
template<class T> complex<T> pow(const T& x, const complex<T>& y);
template<class T> complex<T> sin(const complex<T>& x);
template<class T> complex<T> sinh(const complex<T>& x);
template<class T> complex<T> sqrt(const complex<T>& x);
template<class T> complex<T> tan(const complex<T>& x);
template<class T> complex<T> tanh(const complex<T>& x);
arg norm conj proj imag realwhere norm, conj, imag, and real are constexpr overloads.
constexpr complex<long double> operator""il(long double d);
constexpr complex<long double> operator""il(unsigned long long d);
constexpr complex<double> operator""i(long double d);
constexpr complex<double> operator""i(unsigned long long d);
constexpr complex<float> operator""if(long double d);
constexpr complex<float> operator""if(unsigned long long d);
namespace std { // [bit.cast], bit_cast template<class To, class From> constexpr To bit_cast(const From& from) noexcept; // [bit.pow.two], integral powers of 2 template<class T> constexpr bool has_single_bit(T x) noexcept; template<class T> constexpr T bit_ceil(T x); template<class T> constexpr T bit_floor(T x) noexcept; template<class T> constexpr T bit_width(T x) noexcept; // [bit.rotate], rotating template<class T> [[nodiscard]] constexpr T rotl(T x, int s) noexcept; template<class T> [[nodiscard]] constexpr T rotr(T x, int s) noexcept; // [bit.count], counting template<class T> constexpr int countl_zero(T x) noexcept; template<class T> constexpr int countl_one(T x) noexcept; template<class T> constexpr int countr_zero(T x) noexcept; template<class T> constexpr int countr_one(T x) noexcept; template<class T> constexpr int popcount(T x) noexcept; // [bit.endian], endian enum class endian { little = see below, big = see below, native = see below }; }
template<class To, class From>
constexpr To bit_cast(const From& from) noexcept;
template<class T>
constexpr bool has_single_bit(T x) noexcept;
template<class T>
constexpr T bit_ceil(T x);
template<class T>
constexpr T bit_floor(T x) noexcept;
template<class T>
constexpr T bit_width(T x) noexcept;
template<class T>
[[nodiscard]] constexpr T rotl(T x, int s) noexcept;
template<class T>
[[nodiscard]] constexpr T rotr(T x, int s) noexcept;
template<class T>
constexpr int countl_zero(T x) noexcept;
template<class T>
constexpr int countl_one(T x) noexcept;
template<class T>
constexpr int countr_zero(T x) noexcept;
template<class T>
constexpr int countr_one(T x) noexcept;
template<class T>
constexpr int popcount(T x) noexcept;
enum class endian {
little = see below,
big = see below,
native = see below
};
#include <initializer_list> namespace std { // [rand.req.urng], uniform random bit generator requirements template<class G> concept uniform_random_bit_generator = see below; // [rand.eng.lcong], class template linear_congruential_engine template<class UIntType, UIntType a, UIntType c, UIntType m> class linear_congruential_engine; // [rand.eng.mers], class template mersenne_twister_engine template<class UIntType, size_t w, size_t n, size_t m, size_t r, UIntType a, size_t u, UIntType d, size_t s, UIntType b, size_t t, UIntType c, size_t l, UIntType f> class mersenne_twister_engine; // [rand.eng.sub], class template subtract_with_carry_engine template<class UIntType, size_t w, size_t s, size_t r> class subtract_with_carry_engine; // [rand.adapt.disc], class template discard_block_engine template<class Engine, size_t p, size_t r> class discard_block_engine; // [rand.adapt.ibits], class template independent_bits_engine template<class Engine, size_t w, class UIntType> class independent_bits_engine; // [rand.adapt.shuf], class template shuffle_order_engine template<class Engine, size_t k> class shuffle_order_engine; // [rand.predef], engines and engine adaptors with predefined parameters using minstd_rand0 = see below; using minstd_rand = see below; using mt19937 = see below; using mt19937_64 = see below; using ranlux24_base = see below; using ranlux48_base = see below; using ranlux24 = see below; using ranlux48 = see below; using knuth_b = see below; using default_random_engine = see below; // [rand.device], class random_device class random_device; // [rand.util.seedseq], class seed_seq class seed_seq; // [rand.util.canonical], function template generate_canonical template<class RealType, size_t bits, class URBG> RealType generate_canonical(URBG& g); // [rand.dist.uni.int], class template uniform_int_distribution template<class IntType = int> class uniform_int_distribution; // [rand.dist.uni.real], class template uniform_real_distribution template<class RealType = double> class uniform_real_distribution; // [rand.dist.bern.bernoulli], class bernoulli_distribution class bernoulli_distribution; // [rand.dist.bern.bin], class template binomial_distribution template<class IntType = int> class binomial_distribution; // [rand.dist.bern.geo], class template geometric_distribution template<class IntType = int> class geometric_distribution; // [rand.dist.bern.negbin], class template negative_binomial_distribution template<class IntType = int> class negative_binomial_distribution; // [rand.dist.pois.poisson], class template poisson_distribution template<class IntType = int> class poisson_distribution; // [rand.dist.pois.exp], class template exponential_distribution template<class RealType = double> class exponential_distribution; // [rand.dist.pois.gamma], class template gamma_distribution template<class RealType = double> class gamma_distribution; // [rand.dist.pois.weibull], class template weibull_distribution template<class RealType = double> class weibull_distribution; // [rand.dist.pois.extreme], class template extreme_value_distribution template<class RealType = double> class extreme_value_distribution; // [rand.dist.norm.normal], class template normal_distribution template<class RealType = double> class normal_distribution; // [rand.dist.norm.lognormal], class template lognormal_distribution template<class RealType = double> class lognormal_distribution; // [rand.dist.norm.chisq], class template chi_squared_distribution template<class RealType = double> class chi_squared_distribution; // [rand.dist.norm.cauchy], class template cauchy_distribution template<class RealType = double> class cauchy_distribution; // [rand.dist.norm.f], class template fisher_f_distribution template<class RealType = double> class fisher_f_distribution; // [rand.dist.norm.t], class template student_t_distribution template<class RealType = double> class student_t_distribution; // [rand.dist.samp.discrete], class template discrete_distribution template<class IntType = int> class discrete_distribution; // [rand.dist.samp.pconst], class template piecewise_constant_distribution template<class RealType = double> class piecewise_constant_distribution; // [rand.dist.samp.plinear], class template piecewise_linear_distribution template<class RealType = double> class piecewise_linear_distribution; }
Expression | Return type | Pre/post-condition | Complexity |
T | compile-time | ||
Creates a seed sequence
with the same initial state as all other default-constructed seed sequences
of type S. | constant | ||
Creates a seed sequence
having internal state
that depends on some or all of the bits
of the supplied sequence . | |||
Same as S(il.begin(), il.end()). | same as S(il.begin(), il.end()) | ||
void | Does nothing if rb == re. Otherwise,
fills the supplied sequence
with 32-bit quantities
that depend on the sequence supplied to the constructor
and possibly also depend on the history
of generate's previous invocations. | ||
size_t | The number of 32-bit units
that would be copied
by a call to r.param. | constant | |
void | Copies to the given destination
a sequence of 32-bit units
that can be provided
to the constructor of a second object of type S,
and that would reproduce in that second object
a state indistinguishable
from the state of the first object. |
template<class G> concept uniform_random_bit_generator = invocable<G&> && unsigned_integral<invoke_result_t<G&>> && requires { { G::min() } -> same_as<invoke_result_t<G&>>; { G::max() } -> same_as<invoke_result_t<G&>>; requires bool_constant<(G::min() < G::max())>::value; };
Expression | Return type | Pre/post-condition | Complexity |
Creates an engine
with the same initial state
as all other default-constructed engines
of type E. | |||
Creates an engine
that compares equal to x. | |||
Creates an engine
with initial state determined by s. | |||
Creates an engine
with an initial state
that depends on a sequence
produced by one call
to q.generate. | same as complexity of q.generate
called on a sequence
whose length is size of state | ||
void | same as E() | ||
void | same as E(s) | ||
void | same as E(q) | ||
T | per [rand.req.urng] | ||
void | no worse than the complexity
of z consecutive calls e() | ||
bool | This operator is an equivalence relation. With and
as the infinite sequences of values
that would be generated
by repeated future calls
to x() and y(),
respectively,
returns true
if ;
else returns false. | ||
bool | !(x == y). | ||
reference to the type of os | With os.fmtflags set to
ios_base::dec|ios_base::left
and the fill character set to the space character,
writes to os
the textual representation
of x's current state. In the output,
adjacent numbers are separated
by one or more space characters. | ||
reference to the type of is | With is.fmtflags
set to ios_base::dec,
sets v's state
as determined by reading its textual representation from is. If bad input is encountered,
ensures that v's state is unchanged by the operation
and
calls is.setstate(ios_base::failbit)
(which may throw ios_base::failure ([iostate.flags])). If a textual representation written via os << x
was subsequently read via is >> v,
then x == v
provided that there have been no intervening invocations
of x or of v. Preconditions:
is provides a textual representation
that was previously written
using an output stream
whose imbued locale
was the same as that of is,
and whose type's template specialization arguments
charT and traits
were respectively the same as those of is. |
A::A();
bool operator==(const A& a1, const A& a2);
A::A(result_type s);
template<class Sseq> A::A(Sseq& q);
void seed();
void seed(result_type s);
template<class Sseq> void seed(Sseq& q);
Expression | Return type | Pre/post-condition | Complexity |
T | compile-time | ||
P | compile-time | ||
Creates a distribution whose behavior is indistinguishable
from that of any other newly default-constructed distribution
of type D. | constant | ||
Creates a distribution whose behavior is indistinguishable
from that of a distribution
newly constructed directly from the values used to construct p. | same as p's construction | ||
void | constant | ||
P | no worse than the complexity of D(p) | ||
void | no worse than the complexity of D(p) | ||
T | With ,
the sequence of numbers
returned by successive invocations
with the same object g
is randomly distributed
according to the associated
p(z |{p})
or
function. | amortized constant number of invocations of g | |
T | The sequence of numbers
returned by successive invocations
with the same objects g and p
is randomly distributed
according to the associated
p(z |{p})
or
function. | amortized constant number of invocations of g | |
T | Returns glb. | constant | |
T | Returns lub. | constant | |
bool | This operator is an equivalence relation. Returns true
if x.param() == y.param() and ,
where and are
the infinite sequences of values
that would be generated, respectively,
by repeated future calls
to x(g1) and y(g2)
whenever g1 == g2. Otherwise returns false. | constant | |
bool | !(x == y). | same as x == y. | |
reference to the type of os | |||
reference to the type of is | If bad input is encountered,
ensures that d is unchanged by the operation
and
calls is.setstate(ios_base::failbit)
(which may throw ios_base::failure ([iostate.flags])). Preconditions:
is provides a textual representation
that was previously written
using an os whose imbued locale
and whose type's template specialization arguments
charT and traits
were the same as those of is. |
template<class Sseq> explicit X(Sseq& q);is called with a type Sseq that does not qualify as a seed sequence, then this constructor shall not participate in overload resolution;
template<class Sseq> void seed(Sseq& q);is called with a type Sseq that does not qualify as a seed sequence, then this function shall not participate in overload resolution.
template<class UIntType, UIntType a, UIntType c, UIntType m> class linear_congruential_engine { public: // types using result_type = UIntType; // engine characteristics static constexpr result_type multiplier = a; static constexpr result_type increment = c; static constexpr result_type modulus = m; static constexpr result_type min() { return c == 0u ? 1u: 0u; } static constexpr result_type max() { return m - 1u; } static constexpr result_type default_seed = 1u; // constructors and seeding functions linear_congruential_engine() : linear_congruential_engine(default_seed) {} explicit linear_congruential_engine(result_type s); template<class Sseq> explicit linear_congruential_engine(Sseq& q); void seed(result_type s = default_seed); template<class Sseq> void seed(Sseq& q); // generating functions result_type operator()(); void discard(unsigned long long z); };
explicit linear_congruential_engine(result_type s);
template<class Sseq> explicit linear_congruential_engine(Sseq& q);
template<class UIntType, size_t w, size_t n, size_t m, size_t r, UIntType a, size_t u, UIntType d, size_t s, UIntType b, size_t t, UIntType c, size_t l, UIntType f> class mersenne_twister_engine { public: // types using result_type = UIntType; // engine characteristics static constexpr size_t word_size = w; static constexpr size_t state_size = n; static constexpr size_t shift_size = m; static constexpr size_t mask_bits = r; static constexpr UIntType xor_mask = a; static constexpr size_t tempering_u = u; static constexpr UIntType tempering_d = d; static constexpr size_t tempering_s = s; static constexpr UIntType tempering_b = b; static constexpr size_t tempering_t = t; static constexpr UIntType tempering_c = c; static constexpr size_t tempering_l = l; static constexpr UIntType initialization_multiplier = f; static constexpr result_type min() { return 0; } static constexpr result_type max() { return ; } static constexpr result_type default_seed = 5489u; // constructors and seeding functions mersenne_twister_engine() : mersenne_twister_engine(default_seed) {} explicit mersenne_twister_engine(result_type value); template<class Sseq> explicit mersenne_twister_engine(Sseq& q); void seed(result_type value = default_seed); template<class Sseq> void seed(Sseq& q); // generating functions result_type operator()(); void discard(unsigned long long z); };
explicit mersenne_twister_engine(result_type value);
template<class Sseq> explicit mersenne_twister_engine(Sseq& q);
template<class UIntType, size_t w, size_t s, size_t r> class subtract_with_carry_engine { public: // types using result_type = UIntType; // engine characteristics static constexpr size_t word_size = w; static constexpr size_t short_lag = s; static constexpr size_t long_lag = r; static constexpr result_type min() { return 0; } static constexpr result_type max() { return ; } static constexpr result_type default_seed = 19780503u; // constructors and seeding functions subtract_with_carry_engine() : subtract_with_carry_engine(default_seed) {} explicit subtract_with_carry_engine(result_type value); template<class Sseq> explicit subtract_with_carry_engine(Sseq& q); void seed(result_type value = default_seed); template<class Sseq> void seed(Sseq& q); // generating functions result_type operator()(); void discard(unsigned long long z); };
explicit subtract_with_carry_engine(result_type value);
linear_congruential_engine<result_type, 40014u,0u,2147483563u> e(value == 0u ? default_seed : value);
template<class Sseq> explicit subtract_with_carry_engine(Sseq& q);
template<class Engine, size_t p, size_t r> class discard_block_engine { public: // types using result_type = typename Engine::result_type; // engine characteristics static constexpr size_t block_size = p; static constexpr size_t used_block = r; static constexpr result_type min() { return Engine::min(); } static constexpr result_type max() { return Engine::max(); } // constructors and seeding functions discard_block_engine(); explicit discard_block_engine(const Engine& e); explicit discard_block_engine(Engine&& e); explicit discard_block_engine(result_type s); template<class Sseq> explicit discard_block_engine(Sseq& q); void seed(); void seed(result_type s); template<class Sseq> void seed(Sseq& q); // generating functions result_type operator()(); void discard(unsigned long long z); // property functions const Engine& base() const noexcept { return e; }; private: Engine e; // exposition only int n; // exposition only };
S = 0; for (k = 0; ; k += 1) { do u = e() - e.min(); while (); S = ; } for (k = ; ; k += 1) { do u = e() - e.min(); while (); S = ; }
template<class Engine, size_t w, class UIntType> class independent_bits_engine { public: // types using result_type = UIntType; // engine characteristics static constexpr result_type min() { return 0; } static constexpr result_type max() { return ; } // constructors and seeding functions independent_bits_engine(); explicit independent_bits_engine(const Engine& e); explicit independent_bits_engine(Engine&& e); explicit independent_bits_engine(result_type s); template<class Sseq> explicit independent_bits_engine(Sseq& q); void seed(); void seed(result_type s); template<class Sseq> void seed(Sseq& q); // generating functions result_type operator()(); void discard(unsigned long long z); // property functions const Engine& base() const noexcept { return e; }; private: Engine e; // exposition only };
template<class Engine, size_t k> class shuffle_order_engine { public: // types using result_type = typename Engine::result_type; // engine characteristics static constexpr size_t table_size = k; static constexpr result_type min() { return Engine::min(); } static constexpr result_type max() { return Engine::max(); } // constructors and seeding functions shuffle_order_engine(); explicit shuffle_order_engine(const Engine& e); explicit shuffle_order_engine(Engine&& e); explicit shuffle_order_engine(result_type s); template<class Sseq> explicit shuffle_order_engine(Sseq& q); void seed(); void seed(result_type s); template<class Sseq> void seed(Sseq& q); // generating functions result_type operator()(); void discard(unsigned long long z); // property functions const Engine& base() const noexcept { return e; }; private: Engine e; // exposition only result_type V[k]; // exposition only result_type Y; // exposition only };
using minstd_rand0 =
linear_congruential_engine<uint_fast32_t, 16'807, 0, 2'147'483'647>;
using minstd_rand =
linear_congruential_engine<uint_fast32_t, 48'271, 0, 2'147'483'647>;
using mt19937 =
mersenne_twister_engine<uint_fast32_t, 32, 624, 397, 31,
0x9908'b0df, 11, 0xffff'ffff, 7, 0x9d2c'5680, 15, 0xefc6'0000, 18, 1'812'433'253>;
using mt19937_64 =
mersenne_twister_engine<uint_fast64_t, 64, 312, 156, 31,
0xb502'6f5a'a966'19e9, 29, 0x5555'5555'5555'5555, 17,
0x71d6'7fff'eda6'0000, 37, 0xfff7'eee0'0000'0000, 43, 6'364'136'223'846'793'005>;
using ranlux24_base =
subtract_with_carry_engine<uint_fast32_t, 24, 10, 24>;
using ranlux48_base =
subtract_with_carry_engine<uint_fast64_t, 48, 5, 12>;
using ranlux24 = discard_block_engine<ranlux24_base, 223, 23>;
using ranlux48 = discard_block_engine<ranlux48_base, 389, 11>;
using knuth_b = shuffle_order_engine<minstd_rand0,256>;
class random_device { public: // types using result_type = unsigned int; // generator characteristics static constexpr result_type min() { return numeric_limits<result_type>::min(); } static constexpr result_type max() { return numeric_limits<result_type>::max(); } // constructors random_device() : random_device(implementation-defined) {} explicit random_device(const string& token); // generating functions result_type operator()(); // property functions double entropy() const noexcept; // no copy functions random_device(const random_device&) = delete; void operator=(const random_device&) = delete; };
explicit random_device(const string& token);
double entropy() const noexcept;
result_type operator()();
class seed_seq { public: // types using result_type = uint_least32_t; // constructors seed_seq(); template<class T> seed_seq(initializer_list<T> il); template<class InputIterator> seed_seq(InputIterator begin, InputIterator end); // generating functions template<class RandomAccessIterator> void generate(RandomAccessIterator begin, RandomAccessIterator end); // property functions size_t size() const noexcept; template<class OutputIterator> void param(OutputIterator dest) const; // no copy functions seed_seq(const seed_seq&) = delete; void operator=(const seed_seq&) = delete; private: vector<result_type> v; // exposition only };
seed_seq();
template<class T>
seed_seq(initializer_list<T> il);
template<class InputIterator>
seed_seq(InputIterator begin, InputIterator end);
for (InputIterator s = begin; s != end; ++s) v.push_back((*s));
template<class RandomAccessIterator>
void generate(RandomAccessIterator begin, RandomAccessIterator end);
size_t size() const noexcept;
template<class OutputIterator>
void param(OutputIterator dest) const;
copy(v.begin(), v.end(), dest);
template<class RealType, size_t bits, class URBG>
RealType generate_canonical(URBG& g);
template<class IntType = int> class uniform_int_distribution { public: // types using result_type = IntType; using param_type = unspecified; // constructors and reset functions uniform_int_distribution() : uniform_int_distribution(0) {} explicit uniform_int_distribution(IntType a, IntType b = numeric_limits<IntType>::max()); explicit uniform_int_distribution(const param_type& parm); void reset(); // generating functions template<class URBG> result_type operator()(URBG& g); template<class URBG> result_type operator()(URBG& g, const param_type& parm); // property functions result_type a() const; result_type b() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
explicit uniform_int_distribution(IntType a, IntType b = numeric_limits<IntType>::max());
result_type a() const;
result_type b() const;
template<class RealType = double> class uniform_real_distribution { public: // types using result_type = RealType; using param_type = unspecified; // constructors and reset functions uniform_real_distribution() : uniform_real_distribution(0.0) {} explicit uniform_real_distribution(RealType a, RealType b = 1.0); explicit uniform_real_distribution(const param_type& parm); void reset(); // generating functions template<class URBG> result_type operator()(URBG& g); template<class URBG> result_type operator()(URBG& g, const param_type& parm); // property functions result_type a() const; result_type b() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
explicit uniform_real_distribution(RealType a, RealType b = 1.0);
result_type a() const;
result_type b() const;
class bernoulli_distribution { public: // types using result_type = bool; using param_type = unspecified; // constructors and reset functions bernoulli_distribution() : bernoulli_distribution(0.5) {} explicit bernoulli_distribution(double p); explicit bernoulli_distribution(const param_type& parm); void reset(); // generating functions template<class URBG> result_type operator()(URBG& g); template<class URBG> result_type operator()(URBG& g, const param_type& parm); // property functions double p() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
explicit bernoulli_distribution(double p);
double p() const;
template<class IntType = int> class binomial_distribution { public: // types using result_type = IntType; using param_type = unspecified; // constructors and reset functions binomial_distribution() : binomial_distribution(1) {} explicit binomial_distribution(IntType t, double p = 0.5); explicit binomial_distribution(const param_type& parm); void reset(); // generating functions template<class URBG> result_type operator()(URBG& g); template<class URBG> result_type operator()(URBG& g, const param_type& parm); // property functions IntType t() const; double p() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
explicit binomial_distribution(IntType t, double p = 0.5);
IntType t() const;
double p() const;
template<class IntType = int> class geometric_distribution { public: // types using result_type = IntType; using param_type = unspecified; // constructors and reset functions geometric_distribution() : geometric_distribution(0.5) {} explicit geometric_distribution(double p); explicit geometric_distribution(const param_type& parm); void reset(); // generating functions template<class URBG> result_type operator()(URBG& g); template<class URBG> result_type operator()(URBG& g, const param_type& parm); // property functions double p() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
explicit geometric_distribution(double p);
double p() const;
template<class IntType = int> class negative_binomial_distribution { public: // types using result_type = IntType; using param_type = unspecified; // constructor and reset functions negative_binomial_distribution() : negative_binomial_distribution(1) {} explicit negative_binomial_distribution(IntType k, double p = 0.5); explicit negative_binomial_distribution(const param_type& parm); void reset(); // generating functions template<class URBG> result_type operator()(URBG& g); template<class URBG> result_type operator()(URBG& g, const param_type& parm); // property functions IntType k() const; double p() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
explicit negative_binomial_distribution(IntType k, double p = 0.5);
IntType k() const;
double p() const;
template<class IntType = int> class poisson_distribution { public: // types using result_type = IntType; using param_type = unspecified; // constructors and reset functions poisson_distribution() : poisson_distribution(1.0) {} explicit poisson_distribution(double mean); explicit poisson_distribution(const param_type& parm); void reset(); // generating functions template<class URBG> result_type operator()(URBG& g); template<class URBG> result_type operator()(URBG& g, const param_type& parm); // property functions double mean() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
explicit poisson_distribution(double mean);
double mean() const;
template<class RealType = double> class exponential_distribution { public: // types using result_type = RealType; using param_type = unspecified; // constructors and reset functions exponential_distribution() : exponential_distribution(1.0) {} explicit exponential_distribution(RealType lambda); explicit exponential_distribution(const param_type& parm); void reset(); // generating functions template<class URBG> result_type operator()(URBG& g); template<class URBG> result_type operator()(URBG& g, const param_type& parm); // property functions RealType lambda() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
explicit exponential_distribution(RealType lambda);
RealType lambda() const;
template<class RealType = double> class gamma_distribution { public: // types using result_type = RealType; using param_type = unspecified; // constructors and reset functions gamma_distribution() : gamma_distribution(1.0) {} explicit gamma_distribution(RealType alpha, RealType beta = 1.0); explicit gamma_distribution(const param_type& parm); void reset(); // generating functions template<class URBG> result_type operator()(URBG& g); template<class URBG> result_type operator()(URBG& g, const param_type& parm); // property functions RealType alpha() const; RealType beta() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
explicit gamma_distribution(RealType alpha, RealType beta = 1.0);
RealType alpha() const;
RealType beta() const;
template<class RealType = double> class weibull_distribution { public: // types using result_type = RealType; using param_type = unspecified; // constructor and reset functions weibull_distribution() : weibull_distribution(1.0) {} explicit weibull_distribution(RealType a, RealType b = 1.0); explicit weibull_distribution(const param_type& parm); void reset(); // generating functions template<class URBG> result_type operator()(URBG& g); template<class URBG> result_type operator()(URBG& g, const param_type& parm); // property functions RealType a() const; RealType b() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
explicit weibull_distribution(RealType a, RealType b = 1.0);
RealType a() const;
RealType b() const;
template<class RealType = double> class extreme_value_distribution { public: // types using result_type = RealType; using param_type = unspecified; // constructor and reset functions extreme_value_distribution() : extreme_value_distribution(0.0) {} explicit extreme_value_distribution(RealType a, RealType b = 1.0); explicit extreme_value_distribution(const param_type& parm); void reset(); // generating functions template<class URBG> result_type operator()(URBG& g); template<class URBG> result_type operator()(URBG& g, const param_type& parm); // property functions RealType a() const; RealType b() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
explicit extreme_value_distribution(RealType a, RealType b = 1.0);
RealType a() const;
RealType b() const;
template<class RealType = double> class normal_distribution { public: // types using result_type = RealType; using param_type = unspecified; // constructors and reset functions normal_distribution() : normal_distribution(0.0) {} explicit normal_distribution(RealType mean, RealType stddev = 1.0); explicit normal_distribution(const param_type& parm); void reset(); // generating functions template<class URBG> result_type operator()(URBG& g); template<class URBG> result_type operator()(URBG& g, const param_type& parm); // property functions RealType mean() const; RealType stddev() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
explicit normal_distribution(RealType mean, RealType stddev = 1.0);
RealType mean() const;
RealType stddev() const;
template<class RealType = double> class lognormal_distribution { public: // types using result_type = RealType; using param_type = unspecified; // constructor and reset functions lognormal_distribution() : lognormal_distribution(0.0) {} explicit lognormal_distribution(RealType m, RealType s = 1.0); explicit lognormal_distribution(const param_type& parm); void reset(); // generating functions template<class URBG> result_type operator()(URBG& g); template<class URBG> result_type operator()(URBG& g, const param_type& parm); // property functions RealType m() const; RealType s() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
explicit lognormal_distribution(RealType m, RealType s = 1.0);
RealType m() const;
RealType s() const;
template<class RealType = double> class chi_squared_distribution { public: // types using result_type = RealType; using param_type = unspecified; // constructor and reset functions chi_squared_distribution() : chi_squared_distribution(1.0) {} explicit chi_squared_distribution(RealType n); explicit chi_squared_distribution(const param_type& parm); void reset(); // generating functions template<class URBG> result_type operator()(URBG& g); template<class URBG> result_type operator()(URBG& g, const param_type& parm); // property functions RealType n() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
explicit chi_squared_distribution(RealType n);
RealType n() const;
template<class RealType = double> class cauchy_distribution { public: // types using result_type = RealType; using param_type = unspecified; // constructor and reset functions cauchy_distribution() : cauchy_distribution(0.0) {} explicit cauchy_distribution(RealType a, RealType b = 1.0); explicit cauchy_distribution(const param_type& parm); void reset(); // generating functions template<class URBG> result_type operator()(URBG& g); template<class URBG> result_type operator()(URBG& g, const param_type& parm); // property functions RealType a() const; RealType b() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
explicit cauchy_distribution(RealType a, RealType b = 1.0);