namespace std { template <class T, class D = default_delete<T>> class unique_ptr { public: using pointer = see below; using element_type = T; using deleter_type = D; // [unique.ptr.single.ctor], constructors constexpr unique_ptr() noexcept; explicit unique_ptr(pointer p) noexcept; unique_ptr(pointer p, see below d1) noexcept; unique_ptr(pointer p, see below d2) noexcept; unique_ptr(unique_ptr&& u) noexcept; constexpr unique_ptr(nullptr_t) noexcept; template <class U, class E> unique_ptr(unique_ptr<U, E>&& u) noexcept; // [unique.ptr.single.dtor], destructor ~unique_ptr(); // [unique.ptr.single.asgn], assignment unique_ptr& operator=(unique_ptr&& u) noexcept; template <class U, class E> unique_ptr& operator=(unique_ptr<U, E>&& u) noexcept; unique_ptr& operator=(nullptr_t) noexcept; // [unique.ptr.single.observers], observers add_lvalue_reference_t<T> operator*() const; pointer operator->() const noexcept; pointer get() const noexcept; deleter_type& get_deleter() noexcept; const deleter_type& get_deleter() const noexcept; explicit operator bool() const noexcept; // [unique.ptr.single.modifiers], modifiers pointer release() noexcept; void reset(pointer p = pointer()) noexcept; void swap(unique_ptr& u) noexcept; // disable copy from lvalue unique_ptr(const unique_ptr&) = delete; unique_ptr& operator=(const unique_ptr&) = delete; }; }
The default type for the template parameter D is default_delete. A client-supplied template argument D shall be a function object type, lvalue reference to function, or lvalue reference to function object type for which, given a value d of type D and a value ptr of type unique_ptr<T, D>::pointer, the expression d(ptr) is valid and has the effect of disposing of the pointer as appropriate for that deleter.
If the deleter's type D is not a reference type, D shall satisfy the requirements of Destructible.
If the qualified-id remove_reference_t<D>::pointer is valid and denotes a type ([temp.deduct]), then unique_ptr<T, D>::pointer shall be a synonym for remove_reference_t<D>::pointer. Otherwise unique_ptr<T, D>::pointer shall be a synonym for element_type*. The type unique_ptr<T, D>::pointer shall satisfy the requirements of NullablePointer.
[ Example: Given an allocator type X ([allocator.requirements]) and letting A be a synonym for allocator_traits<X>, the types A::pointer, A::const_pointer, A::void_pointer, and A::const_void_pointer may be used as unique_ptr<T, D>::pointer. — end example ]
constexpr unique_ptr() noexcept;
constexpr unique_ptr(nullptr_t) noexcept;
Requires: D shall satisfy the requirements of DefaultConstructible, and that construction shall not throw an exception.
Effects: Constructs a unique_ptr object that owns nothing, value-initializing the stored pointer and the stored deleter.
Remarks: If is_pointer_v<deleter_type> is true or is_default_constructible_v<deleter_type> is false, this constructor shall not participate in overload resolution.
explicit unique_ptr(pointer p) noexcept;
Requires: D shall satisfy the requirements of DefaultConstructible, and that construction shall not throw an exception.
Effects: Constructs a unique_ptr which owns p, initializing the stored pointer with p and value-initializing the stored deleter.
Remarks: If is_pointer_v<deleter_type> is true or is_default_constructible_v<deleter_type> is false, this constructor shall not participate in overload resolution. If class template argument deduction ([over.match.class.deduct]) would select the function template corresponding to this constructor, then the program is ill-formed.
unique_ptr(pointer p, see below d1) noexcept;
unique_ptr(pointer p, see below d2) noexcept;
The signature of these constructors depends upon whether D is a reference type. If D is a non-reference type A, then the signatures are:
unique_ptr(pointer p, const A& d) noexcept; unique_ptr(pointer p, A&& d) noexcept;
If D is an lvalue reference type A&, then the signatures are:
unique_ptr(pointer p, A& d) noexcept; unique_ptr(pointer p, A&& d) = delete;
If D is an lvalue reference type const A&, then the signatures are:
unique_ptr(pointer p, const A& d) noexcept; unique_ptr(pointer p, const A&& d) = delete;
Effects: Constructs a unique_ptr object which owns p, initializing the stored pointer with p and initializing the deleter from std::forward<decltype(d)>(d).
Remarks: These constructors shall not participate in overload resolution unless is_constructible_v<D, decltype(d)> is true.
Postconditions: get() == p. get_deleter() returns a reference to the stored deleter. If D is a reference type then get_deleter() returns a reference to the lvalue d.
Remarks: If class template argument deduction ([over.match.class.deduct]) would select a function template corresponding to either of these constructors, then the program is ill-formed.
[ Example:
D d; unique_ptr<int, D> p1(new int, D()); // D must be MoveConstructible unique_ptr<int, D> p2(new int, d); // D must be CopyConstructible unique_ptr<int, D&> p3(new int, d); // p3 holds a reference to d unique_ptr<int, const D&> p4(new int, D()); // error: rvalue deleter object combined // with reference deleter type
— end example ]
unique_ptr(unique_ptr&& u) noexcept;
Requires: If D is not a reference type, D shall satisfy the requirements of MoveConstructible. Construction of the deleter from an rvalue of type D shall not throw an exception.
Effects: Constructs a unique_ptr by transferring ownership from u to *this. If D is a reference type, this deleter is copy constructed from u's deleter; otherwise, this deleter is move constructed from u's deleter. [ Note: The deleter constructor can be implemented with std::forward<D>. — end note ]
Postconditions: get() yields the value u.get() yielded before the construction. get_deleter() returns a reference to the stored deleter that was constructed from u.get_deleter(). If D is a reference type then get_deleter() and u.get_deleter() both reference the same lvalue deleter.
template <class U, class E> unique_ptr(unique_ptr<U, E>&& u) noexcept;
Requires: If E is not a reference type, construction of the deleter from an rvalue of type E shall be well formed and shall not throw an exception. Otherwise, E is a reference type and construction of the deleter from an lvalue of type E shall be well formed and shall not throw an exception.
Remarks: This constructor shall not participate in overload resolution unless:
unique_ptr<U, E>::pointer is implicitly convertible to pointer,
U is not an array type, and
either D is a reference type and E is the same type as D, or D is not a reference type and E is implicitly convertible to D.
Effects: Constructs a unique_ptr by transferring ownership from u to *this. If E is a reference type, this deleter is copy constructed from u's deleter; otherwise, this deleter is move constructed from u's deleter. [ Note: The deleter constructor can be implemented with std::forward<E>. — end note ]
~unique_ptr();
Requires: The expression get_deleter()(get()) shall be well formed, shall have well-defined behavior, and shall not throw exceptions. [ Note: The use of default_delete requires T to be a complete type. — end note ]
unique_ptr& operator=(unique_ptr&& u) noexcept;
Requires: If D is not a reference type, D shall satisfy the requirements of MoveAssignable and assignment of the deleter from an rvalue of type D shall not throw an exception. Otherwise, D is a reference type; remove_reference_t<D> shall satisfy the CopyAssignable requirements and assignment of the deleter from an lvalue of type D shall not throw an exception.
Effects: Transfers ownership from u to *this as if by calling reset(u.release()) followed by get_deleter() = std::forward<D>(u.get_deleter()).
template <class U, class E> unique_ptr& operator=(unique_ptr<U, E>&& u) noexcept;
Requires: If E is not a reference type, assignment of the deleter from an rvalue of type E shall be well-formed and shall not throw an exception. Otherwise, E is a reference type and assignment of the deleter from an lvalue of type E shall be well-formed and shall not throw an exception.
Effects: Transfers ownership from u to *this as if by calling reset(u.release()) followed by get_deleter() = std::forward<E>(u.get_deleter()).
unique_ptr& operator=(nullptr_t) noexcept;
add_lvalue_reference_t<T> operator*() const;
pointer operator->() const noexcept;
pointer get() const noexcept;
deleter_type& get_deleter() noexcept;
const deleter_type& get_deleter() const noexcept;
explicit operator bool() const noexcept;
pointer release() noexcept;
void reset(pointer p = pointer()) noexcept;
Requires: The expression get_deleter()(get()) shall be well formed, shall have well-defined behavior, and shall not throw exceptions.
Effects: Assigns p to the stored pointer, and then if and only if the old value of the stored pointer, old_p, was not equal to nullptr, calls get_deleter()(old_p). [ Note: The order of these operations is significant because the call to get_deleter() may destroy *this. — end note ]
Postconditions: get() == p. [ Note: The postcondition does not hold if the call to get_deleter() destroys *this since this->get() is no longer a valid expression. — end note ]
void swap(unique_ptr& u) noexcept;