20 General utilities library [utilities]

20.10 Memory [memory]

20.10.1 In general [memory.general]

Subclause [memory] describes the contents of the header <memory> and some of the contents of the header <cstdlib>.

20.10.2 Header <memory> synopsis [memory.syn]

The header <memory> defines several types and function templates that describe properties of pointers and pointer-like types, manage memory for containers and other template types, destroy objects, and construct objects in uninitialized memory buffers ([pointer.traits][specialized.addressof] and [specialized.algorithms]).
The header also defines the templates unique_­ptr, shared_­ptr, weak_­ptr, and various function templates that operate on objects of these types ([smartptr]).
#include <compare> // see [compare.syn] namespace std { // [pointer.traits], pointer traits template<class Ptr> struct pointer_traits; template<class T> struct pointer_traits<T*>; // [pointer.conversion], pointer conversion template<class T> constexpr T* to_address(T* p) noexcept; template<class Ptr> constexpr auto to_address(const Ptr& p) noexcept; // [util.dynamic.safety], pointer safety enum class pointer_safety { relaxed, preferred, strict }; void declare_reachable(void* p); template<class T> T* undeclare_reachable(T* p); void declare_no_pointers(char* p, size_t n); void undeclare_no_pointers(char* p, size_t n); pointer_safety get_pointer_safety() noexcept; // [ptr.align], pointer alignment void* align(size_t alignment, size_t size, void*& ptr, size_t& space); template<size_t N, class T> [[nodiscard]] constexpr T* assume_aligned(T* ptr); // [allocator.tag], allocator argument tag struct allocator_arg_t { explicit allocator_arg_t() = default; }; inline constexpr allocator_arg_t allocator_arg{}; // [allocator.uses], uses_­allocator template<class T, class Alloc> struct uses_allocator; // [allocator.uses.trait], uses_­allocator template<class T, class Alloc> inline constexpr bool uses_allocator_v = uses_allocator<T, Alloc>::value; // [allocator.uses.construction], uses-allocator construction template<class T, class Alloc, class... Args> constexpr auto uses_allocator_construction_args(const Alloc& alloc, Args&&... args) noexcept -> see below; template<class T, class Alloc, class Tuple1, class Tuple2> constexpr auto uses_allocator_construction_args(const Alloc& alloc, piecewise_construct_t, Tuple1&& x, Tuple2&& y) noexcept -> see below; template<class T, class Alloc> constexpr auto uses_allocator_construction_args(const Alloc& alloc) noexcept -> see below; template<class T, class Alloc, class U, class V> constexpr auto uses_allocator_construction_args(const Alloc& alloc, U&& u, V&& v) noexcept -> see below; template<class T, class Alloc, class U, class V> constexpr auto uses_allocator_construction_args(const Alloc& alloc, const pair<U,V>& pr) noexcept -> see below; template<class T, class Alloc, class U, class V> constexpr auto uses_allocator_construction_args(const Alloc& alloc, pair<U,V>&& pr) noexcept -> see below; template<class T, class Alloc, class... Args> constexpr T make_obj_using_allocator(const Alloc& alloc, Args&&... args); template<class T, class Alloc, class... Args> constexpr T* uninitialized_construct_using_allocator(T* p, const Alloc& alloc, Args&&... args); // [allocator.traits], allocator traits template<class Alloc> struct allocator_traits; // [default.allocator], the default allocator template<class T> class allocator; template<class T, class U> constexpr bool operator==(const allocator<T>&, const allocator<U>&) noexcept; // [specialized.addressof], addressof template<class T> constexpr T* addressof(T& r) noexcept; template<class T> const T* addressof(const T&&) = delete; // [specialized.algorithms], specialized algorithms // [special.mem.concepts], special memory concepts template<class I> concept no-throw-input-iterator = see below; // exposition only template<class I> concept no-throw-forward-iterator = see below; // exposition only template<class S, class I> concept no-throw-sentinel-for = see below; // exposition only template<class R> concept no-throw-input-range = see below; // exposition only template<class R> concept no-throw-forward-range = see below; // exposition only template<class NoThrowForwardIterator> void uninitialized_default_construct(NoThrowForwardIterator first, NoThrowForwardIterator last); template<class ExecutionPolicy, class NoThrowForwardIterator> void uninitialized_default_construct(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads] NoThrowForwardIterator first, NoThrowForwardIterator last); template<class NoThrowForwardIterator, class Size> NoThrowForwardIterator uninitialized_default_construct_n(NoThrowForwardIterator first, Size n); template<class ExecutionPolicy, class NoThrowForwardIterator, class Size> NoThrowForwardIterator uninitialized_default_construct_n(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads] NoThrowForwardIterator first, Size n); namespace ranges { template<no-throw-forward-iterator I, no-throw-sentinel-for<I> S> requires default_initializable<iter_value_t<I>> I uninitialized_default_construct(I first, S last); template<no-throw-forward-range R> requires default_initializable<range_value_t<R>> borrowed_iterator_t<R> uninitialized_default_construct(R&& r); template<no-throw-forward-iterator I> requires default_initializable<iter_value_t<I>> I uninitialized_default_construct_n(I first, iter_difference_t<I> n); } template<class NoThrowForwardIterator> void uninitialized_value_construct(NoThrowForwardIterator first, NoThrowForwardIterator last); template<class ExecutionPolicy, class NoThrowForwardIterator> void uninitialized_value_construct(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads] NoThrowForwardIterator first, NoThrowForwardIterator last); template<class NoThrowForwardIterator, class Size> NoThrowForwardIterator uninitialized_value_construct_n(NoThrowForwardIterator first, Size n); template<class ExecutionPolicy, class NoThrowForwardIterator, class Size> NoThrowForwardIterator uninitialized_value_construct_n(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads] NoThrowForwardIterator first, Size n); namespace ranges { template<no-throw-forward-iterator I, no-throw-sentinel-for<I> S> requires default_initializable<iter_value_t<I>> I uninitialized_value_construct(I first, S last); template<no-throw-forward-range R> requires default_initializable<range_value_t<R>> borrowed_iterator_t<R> uninitialized_value_construct(R&& r); template<no-throw-forward-iterator I> requires default_initializable<iter_value_t<I>> I uninitialized_value_construct_n(I first, iter_difference_t<I> n); } template<class InputIterator, class NoThrowForwardIterator> NoThrowForwardIterator uninitialized_copy(InputIterator first, InputIterator last, NoThrowForwardIterator result); template<class ExecutionPolicy, class InputIterator, class NoThrowForwardIterator> NoThrowForwardIterator uninitialized_copy(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads] InputIterator first, InputIterator last, NoThrowForwardIterator result); template<class InputIterator, class Size, class NoThrowForwardIterator> NoThrowForwardIterator uninitialized_copy_n(InputIterator first, Size n, NoThrowForwardIterator result); template<class ExecutionPolicy, class InputIterator, class Size, class NoThrowForwardIterator> NoThrowForwardIterator uninitialized_copy_n(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads] InputIterator first, Size n, NoThrowForwardIterator result); namespace ranges { template<class I, class O> using uninitialized_copy_result = in_out_result<I, O>; template<input_­iterator I, sentinel_­for<I> S1, no-throw-forward-iterator O, no-throw-sentinel-for<O> S2> requires constructible_­from<iter_value_t<O>, iter_reference_t<I>> uninitialized_copy_result<I, O> uninitialized_copy(I ifirst, S1 ilast, O ofirst, S2 olast); template<input_­range IR, no-throw-forward-range OR> requires constructible_­from<range_value_t<OR>, range_reference_t<IR>> uninitialized_copy_result<borrowed_iterator_t<IR>, borrowed_iterator_t<OR>> uninitialized_copy(IR&& in_range, OR&& out_range); template<class I, class O> using uninitialized_copy_n_result = in_out_result<I, O>; template<input_­iterator I, no-throw-forward-iterator O, no-throw-sentinel-for<O> S> requires constructible_­from<iter_value_t<O>, iter_reference_t<I>> uninitialized_copy_n_result<I, O> uninitialized_copy_n(I ifirst, iter_difference_t<I> n, O ofirst, S olast); } template<class InputIterator, class NoThrowForwardIterator> NoThrowForwardIterator uninitialized_move(InputIterator first, InputIterator last, NoThrowForwardIterator result); template<class ExecutionPolicy, class InputIterator, class NoThrowForwardIterator> NoThrowForwardIterator uninitialized_move(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads] InputIterator first, InputIterator last, NoThrowForwardIterator result); template<class InputIterator, class Size, class NoThrowForwardIterator> pair<InputIterator, NoThrowForwardIterator> uninitialized_move_n(InputIterator first, Size n, NoThrowForwardIterator result); template<class ExecutionPolicy, class InputIterator, class Size, class NoThrowForwardIterator> pair<InputIterator, NoThrowForwardIterator> uninitialized_move_n(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads] InputIterator first, Size n, NoThrowForwardIterator result); namespace ranges { template<class I, class O> using uninitialized_move_result = in_out_result<I, O>; template<input_­iterator I, sentinel_­for<I> S1, no-throw-forward-iterator O, no-throw-sentinel-for<O> S2> requires constructible_­from<iter_value_t<O>, iter_rvalue_reference_t<I>> uninitialized_move_result<I, O> uninitialized_move(I ifirst, S1 ilast, O ofirst, S2 olast); template<input_­range IR, no-throw-forward-range OR> requires constructible_­from<range_value_t<OR>, range_rvalue_reference_t<IR>> uninitialized_move_result<borrowed_iterator_t<IR>, borrowed_iterator_t<OR>> uninitialized_move(IR&& in_range, OR&& out_range); template<class I, class O> using uninitialized_move_n_result = in_out_result<I, O>; template<input_­iterator I, no-throw-forward-iterator O, no-throw-sentinel-for<O> S> requires constructible_­from<iter_value_t<O>, iter_rvalue_reference_t<I>> uninitialized_move_n_result<I, O> uninitialized_move_n(I ifirst, iter_difference_t<I> n, O ofirst, S olast); } template<class NoThrowForwardIterator, class T> void uninitialized_fill(NoThrowForwardIterator first, NoThrowForwardIterator last, const T& x); template<class ExecutionPolicy, class NoThrowForwardIterator, class T> void uninitialized_fill(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads] NoThrowForwardIterator first, NoThrowForwardIterator last, const T& x); template<class NoThrowForwardIterator, class Size, class T> NoThrowForwardIterator uninitialized_fill_n(NoThrowForwardIterator first, Size n, const T& x); template<class ExecutionPolicy, class NoThrowForwardIterator, class Size, class T> NoThrowForwardIterator uninitialized_fill_n(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads] NoThrowForwardIterator first, Size n, const T& x); namespace ranges { template<no-throw-forward-iterator I, no-throw-sentinel-for<I> S, class T> requires constructible_­from<iter_value_t<I>, const T&> I uninitialized_fill(I first, S last, const T& x); template<no-throw-forward-range R, class T> requires constructible_­from<range_value_t<R>, const T&> borrowed_iterator_t<R> uninitialized_fill(R&& r, const T& x); template<no-throw-forward-iterator I, class T> requires constructible_­from<iter_value_t<I>, const T&> I uninitialized_fill_n(I first, iter_difference_t<I> n, const T& x); } // [specialized.construct], construct_­at template<class T, class... Args> constexpr T* construct_at(T* location, Args&&... args); namespace ranges { template<class T, class... Args> constexpr T* construct_at(T* location, Args&&... args); } // [specialized.destroy], destroy template<class T> constexpr void destroy_at(T* location); template<class NoThrowForwardIterator> constexpr void destroy(NoThrowForwardIterator first, NoThrowForwardIterator last); template<class ExecutionPolicy, class NoThrowForwardIterator> void destroy(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads] NoThrowForwardIterator first, NoThrowForwardIterator last); template<class NoThrowForwardIterator, class Size> constexpr NoThrowForwardIterator destroy_n(NoThrowForwardIterator first, Size n); template<class ExecutionPolicy, class NoThrowForwardIterator, class Size> NoThrowForwardIterator destroy_n(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads] NoThrowForwardIterator first, Size n); namespace ranges { template<destructible T> constexpr void destroy_at(T* location) noexcept; template<no-throw-input-iterator I, no-throw-sentinel-for<I> S> requires destructible<iter_value_t<I>> constexpr I destroy(I first, S last) noexcept; template<no-throw-input-range R> requires destructible<range_value_t<R>> constexpr borrowed_iterator_t<R> destroy(R&& r) noexcept; template<no-throw-input-iterator I> requires destructible<iter_value_t<I>> constexpr I destroy_n(I first, iter_difference_t<I> n) noexcept; } // [unique.ptr], class template unique_­ptr template<class T> struct default_delete; template<class T> struct default_delete<T[]>; template<class T, class D = default_delete<T>> class unique_ptr; template<class T, class D> class unique_ptr<T[], D>; template<class T, class... Args> unique_ptr<T> make_unique(Args&&... args); // T is not array template<class T> unique_ptr<T> make_unique(size_t n); // T is U[] template<class T, class... Args> unspecified make_unique(Args&&...) = delete; // T is U[N] template<class T> unique_ptr<T> make_unique_for_overwrite(); // T is not array template<class T> unique_ptr<T> make_unique_for_overwrite(size_t n); // T is U[] template<class T, class... Args> unspecified make_unique_for_overwrite(Args&&...) = delete; // T is U[N] template<class T, class D> void swap(unique_ptr<T, D>& x, unique_ptr<T, D>& y) noexcept; template<class T1, class D1, class T2, class D2> bool operator==(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template<class T1, class D1, class T2, class D2> bool operator<(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template<class T1, class D1, class T2, class D2> bool operator>(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template<class T1, class D1, class T2, class D2> bool operator<=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template<class T1, class D1, class T2, class D2> bool operator>=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template<class T1, class D1, class T2, class D2> requires three_­way_­comparable_­with<typename unique_ptr<T1, D1>::pointer, typename unique_ptr<T2, D2>::pointer> compare_three_way_result_t<typename unique_ptr<T1, D1>::pointer, typename unique_ptr<T2, D2>::pointer> operator<=>(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template<class T, class D> bool operator==(const unique_ptr<T, D>& x, nullptr_t) noexcept; template<class T, class D> bool operator<(const unique_ptr<T, D>& x, nullptr_t); template<class T, class D> bool operator<(nullptr_t, const unique_ptr<T, D>& y); template<class T, class D> bool operator>(const unique_ptr<T, D>& x, nullptr_t); template<class T, class D> bool operator>(nullptr_t, const unique_ptr<T, D>& y); template<class T, class D> bool operator<=(const unique_ptr<T, D>& x, nullptr_t); template<class T, class D> bool operator<=(nullptr_t, const unique_ptr<T, D>& y); template<class T, class D> bool operator>=(const unique_ptr<T, D>& x, nullptr_t); template<class T, class D> bool operator>=(nullptr_t, const unique_ptr<T, D>& y); template<class T, class D> requires three_­way_­comparable_­with<typename unique_ptr<T, D>::pointer, nullptr_t> compare_three_way_result_t<typename unique_ptr<T, D>::pointer, nullptr_t> operator<=>(const unique_ptr<T, D>& x, nullptr_t); template<class E, class T, class Y, class D> basic_ostream<E, T>& operator<<(basic_ostream<E, T>& os, const unique_ptr<Y, D>& p); // [util.smartptr.weak.bad], class bad_­weak_­ptr class bad_weak_ptr; // [util.smartptr.shared], class template shared_­ptr template<class T> class shared_ptr; // [util.smartptr.shared.create], shared_­ptr creation template<class T, class... Args> shared_ptr<T> make_shared(Args&&... args); // T is not array template<class T, class A, class... Args> shared_ptr<T> allocate_shared(const A& a, Args&&... args); // T is not array template<class T> shared_ptr<T> make_shared(size_t N); // T is U[] template<class T, class A> shared_ptr<T> allocate_shared(const A& a, size_t N); // T is U[] template<class T> shared_ptr<T> make_shared(); // T is U[N] template<class T, class A> shared_ptr<T> allocate_shared(const A& a); // T is U[N] template<class T> shared_ptr<T> make_shared(size_t N, const remove_extent_t<T>& u); // T is U[] template<class T, class A> shared_ptr<T> allocate_shared(const A& a, size_t N, const remove_extent_t<T>& u); // T is U[] template<class T> shared_ptr<T> make_shared(const remove_extent_t<T>& u); // T is U[N] template<class T, class A> shared_ptr<T> allocate_shared(const A& a, const remove_extent_t<T>& u); // T is U[N] template<class T> shared_ptr<T> make_shared_for_overwrite(); // T is not U[] template<class T, class A> shared_ptr<T> allocate_shared_for_overwrite(const A& a); // T is not U[] template<class T> shared_ptr<T> make_shared_for_overwrite(size_t N); // T is U[] template<class T, class A> shared_ptr<T> allocate_shared_for_overwrite(const A& a, size_t N); // T is U[] // [util.smartptr.shared.cmp], shared_­ptr comparisons template<class T, class U> bool operator==(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept; template<class T, class U> strong_ordering operator<=>(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept; template<class T> bool operator==(const shared_ptr<T>& x, nullptr_t) noexcept; template<class T> strong_ordering operator<=>(const shared_ptr<T>& x, nullptr_t) noexcept; // [util.smartptr.shared.spec], shared_­ptr specialized algorithms template<class T> void swap(shared_ptr<T>& a, shared_ptr<T>& b) noexcept; // [util.smartptr.shared.cast], shared_­ptr casts template<class T, class U> shared_ptr<T> static_pointer_cast(const shared_ptr<U>& r) noexcept; template<class T, class U> shared_ptr<T> static_pointer_cast(shared_ptr<U>&& r) noexcept; template<class T, class U> shared_ptr<T> dynamic_pointer_cast(const shared_ptr<U>& r) noexcept; template<class T, class U> shared_ptr<T> dynamic_pointer_cast(shared_ptr<U>&& r) noexcept; template<class T, class U> shared_ptr<T> const_pointer_cast(const shared_ptr<U>& r) noexcept; template<class T, class U> shared_ptr<T> const_pointer_cast(shared_ptr<U>&& r) noexcept; template<class T, class U> shared_ptr<T> reinterpret_pointer_cast(const shared_ptr<U>& r) noexcept; template<class T, class U> shared_ptr<T> reinterpret_pointer_cast(shared_ptr<U>&& r) noexcept; // [util.smartptr.getdeleter], shared_­ptr get_­deleter template<class D, class T> D* get_deleter(const shared_ptr<T>& p) noexcept; // [util.smartptr.shared.io], shared_­ptr I/O template<class E, class T, class Y> basic_ostream<E, T>& operator<<(basic_ostream<E, T>& os, const shared_ptr<Y>& p); // [util.smartptr.weak], class template weak_­ptr template<class T> class weak_ptr; // [util.smartptr.weak.spec], weak_­ptr specialized algorithms template<class T> void swap(weak_ptr<T>& a, weak_ptr<T>& b) noexcept; // [util.smartptr.ownerless], class template owner_­less template<class T = void> struct owner_less; // [util.smartptr.enab], class template enable_­shared_­from_­this template<class T> class enable_shared_from_this; // [util.smartptr.hash], hash support template<class T> struct hash; template<class T, class D> struct hash<unique_ptr<T, D>>; template<class T> struct hash<shared_ptr<T>>; // [util.smartptr.atomic], atomic smart pointers template<class T> struct atomic; template<class T> struct atomic<shared_ptr<T>>; template<class T> struct atomic<weak_ptr<T>>; }

20.10.3 Pointer traits [pointer.traits]

20.10.3.1 General [pointer.traits.general]

The class template pointer_­traits supplies a uniform interface to certain attributes of pointer-like types.
namespace std { template<class Ptr> struct pointer_traits { using pointer = Ptr; using element_type = see below; using difference_type = see below; template<class U> using rebind = see below; static pointer pointer_to(see below r); }; template<class T> struct pointer_traits<T*> { using pointer = T*; using element_type = T; using difference_type = ptrdiff_t; template<class U> using rebind = U*; static constexpr pointer pointer_to(see below r) noexcept; }; }

20.10.3.2 Member types [pointer.traits.types]

using element_type = see below;
Type: Ptr​::​element_­type if the qualified-id Ptr​::​element_­type is valid and denotes a type ([temp.deduct]); otherwise, T if Ptr is a class template instantiation of the form SomePointer<T, Args>, where Args is zero or more type arguments; otherwise, the specialization is ill-formed.
using difference_type = see below;
Type: Ptr​::​difference_­type if the qualified-id Ptr​::​difference_­type is valid and denotes a type ([temp.deduct]); otherwise, ptrdiff_­t.
template<class U> using rebind = see below;
Alias template: Ptr​::​rebind<U> if the qualified-id Ptr​::​rebind<U> is valid and denotes a type ([temp.deduct]); otherwise, SomePointer<U, Args> if Ptr is a class template instantiation of the form SomePointer<T, Args>, where Args is zero or more type arguments; otherwise, the instantiation of rebind is ill-formed.

20.10.3.3 Member functions [pointer.traits.functions]

static pointer pointer_traits::pointer_to(see below r); static constexpr pointer pointer_traits<T*>::pointer_to(see below r) noexcept;
Mandates: For the first member function, Ptr​::​pointer_­to(r) is well-formed.
Preconditions: For the first member function, Ptr​::​pointer_­to(r) returns a pointer to r through which indirection is valid.
Returns: The first member function returns Ptr​::​pointer_­to(r).
The second member function returns addressof(r).
Remarks: If element_­type is cv void, the type of r is unspecified; otherwise, it is element_­type&.

20.10.3.4 Optional members [pointer.traits.optmem]

Specializations of pointer_­traits may define the member declared in this subclause to customize the behavior of the standard library.
static element_type* to_address(pointer p) noexcept;
Returns: A pointer of type element_­type* that references the same location as the argument p.
[Note 1:
This function is intended to be the inverse of pointer_­to.
If defined, it customizes the behavior of the non-member function to_­address ([pointer.conversion]).
— end note]

20.10.4 Pointer conversion [pointer.conversion]

template<class T> constexpr T* to_address(T* p) noexcept;
Mandates: T is not a function type.
Returns: p.
template<class Ptr> constexpr auto to_address(const Ptr& p) noexcept;
Returns: pointer_­traits<Ptr>​::​to_­address(p) if that expression is well-formed (see [pointer.traits.optmem]), otherwise to_­address(p.operator->()).

20.10.5 Pointer safety [util.dynamic.safety]

A complete object is declared reachable while the number of calls to declare_­reachable with an argument referencing the object exceeds the number of calls to undeclare_­reachable with an argument referencing the object.
void declare_reachable(void* p);
Preconditions: p is a safely-derived pointer ([basic.stc.dynamic.safety]) or a null pointer value.
Effects: If p is not null, the complete object referenced by p is subsequently declared reachable ([basic.stc.dynamic.safety]).
Throws: May throw bad_­alloc if the system cannot allocate additional memory that may be required to track objects declared reachable.
template<class T> T* undeclare_reachable(T* p);
Preconditions: If p is not null, the complete object referenced by p has been previously declared reachable, and is live ([basic.life]) from the time of the call until the last undeclare_­reachable(p) call on the object.
Returns: A safely derived copy of p which compares equal to p.
Throws: Nothing.
[Note 1:
It is expected that calls to declare_­reachable(p) consume a small amount of memory in addition to that occupied by the referenced object until the matching call to undeclare_­reachable(p) is encountered.
Thus, long-running programs where calls are not matched can exhibit a memory leak.
— end note]
void declare_no_pointers(char* p, size_t n);
Preconditions: No bytes in the specified range are currently registered with declare_­no_­pointers().
If the specified range is in an allocated object, then it is entirely within a single allocated object.
The object is live until the corresponding undeclare_­no_­pointers() call.
[Note 2:
In a garbage-collecting implementation, the fact that a region in an object is registered with declare_­no_­pointers() does not prevent the object from being collected.
— end note]
Effects: The n bytes starting at p no longer contain traceable pointer locations, independent of their type.
Hence indirection through a pointer located there is undefined if the object it points to was created by global operator new and not previously declared reachable.
[Note 3:
This can be used to inform a garbage collector or leak detector that this region of memory need not be traced.
— end note]
Throws: Nothing.
[Note 4:
The request can be ignored if a memory allocation needed by the implementation fails.
— end note]
void undeclare_no_pointers(char* p, size_t n);
Preconditions: The same range has previously been passed to declare_­no_­pointers().
Effects: Unregisters a range registered with declare_­no_­pointers() for destruction.
It shall be called before the lifetime of the object ends.
Throws: Nothing.
pointer_safety get_pointer_safety() noexcept;
Returns: pointer_­safety​::​strict if the implementation has strict pointer safety.
It is implementation-defined whether get_­pointer_­safety returns pointer_­safety​::​relaxed or pointer_­safety​::​preferred if the implementation has relaxed pointer safety.224
pointer_­safety​::​preferred might be returned to indicate that a leak detector is running so that the program can avoid spurious leak reports.
 

20.10.6 Pointer alignment [ptr.align]

void* align(size_t alignment, size_t size, void*& ptr, size_t& space);
Preconditions:
  • alignment is a power of two
  • ptr represents the address of contiguous storage of at least space bytes
Effects: If it is possible to fit size bytes of storage aligned by alignment into the buffer pointed to by ptr with length space, the function updates ptr to represent the first possible address of such storage and decreases space by the number of bytes used for alignment.
Otherwise, the function does nothing.
Returns: A null pointer if the requested aligned buffer would not fit into the available space, otherwise the adjusted value of ptr.
[Note 1:
The function updates its ptr and space arguments so that it can be called repeatedly with possibly different alignment and size arguments for the same buffer.
— end note]
template<size_t N, class T> [[nodiscard]] constexpr T* assume_aligned(T* ptr);
Mandates: N is a power of two.
Preconditions: ptr points to an object X of a type similar ([conv.qual]) to T, where X has alignment N ([basic.align]).
Returns: ptr.
Throws: Nothing.
[Note 2:
The alignment assumption on an object X expressed by a call to assume_­aligned might result in generation of more efficient code.
It is up to the program to ensure that the assumption actually holds.
The call does not cause the compiler to verify or enforce this.
An implementation might only make the assumption for those operations on X that access X through the pointer returned by assume_­aligned.
— end note]

20.10.7 Allocator argument tag [allocator.tag]

namespace std { struct allocator_arg_t { explicit allocator_arg_t() = default; }; inline constexpr allocator_arg_t allocator_arg{}; }
The allocator_­arg_­t struct is an empty class type used as a unique type to disambiguate constructor and function overloading.
Specifically, several types (see tuple [tuple]) have constructors with allocator_­arg_­t as the first argument, immediately followed by an argument of a type that meets the Cpp17Allocator requirements (Table 36).

20.10.8 uses_­allocator [allocator.uses]

20.10.8.1 uses_­allocator trait [allocator.uses.trait]

template<class T, class Alloc> struct uses_allocator;
Remarks: Automatically detects whether T has a nested allocator_­type that is convertible from Alloc.
Meets the Cpp17BinaryTypeTrait requirements ([meta.rqmts]).
The implementation shall provide a definition that is derived from true_­type if the qualified-id T​::​allocator_­type is valid and denotes a type ([temp.deduct]) and is_­convertible_­v<Alloc, T​::​allocator_­type> != false, otherwise it shall be derived from false_­type.
A program may specialize this template to derive from true_­type for a program-defined type T that does not have a nested allocator_­type but nonetheless can be constructed with an allocator where either:
  • the first argument of a constructor has type allocator_­arg_­t and the second argument has type Alloc or
  • the last argument of a constructor has type Alloc.

20.10.8.2 Uses-allocator construction [allocator.uses.construction]

Uses-allocator construction with allocator alloc and constructor arguments args... refers to the construction of an object of type T such that alloc is passed to the constructor of T if T uses an allocator type compatible with alloc.
When applied to the construction of an object of type T, it is equivalent to initializing it with the value of the expression make_­obj_­using_­allocator<T>(alloc, args...), described below.
The following utility functions support three conventions for passing alloc to a constructor:
  • If T does not use an allocator compatible with alloc, then alloc is ignored.
  • Otherwise, if T has a constructor invocable as T(allocator_­arg, alloc, args...) (leading-allocator convention), then uses-allocator construction chooses this constructor form.
  • Otherwise, if T has a constructor invocable as T(args..., alloc) (trailing-allocator convention), then uses-allocator construction chooses this constructor form.
The uses_­allocator_­construction_­args function template takes an allocator and argument list and produces (as a tuple) a new argument list matching one of the above conventions.
Additionally, overloads are provided that treat specializations of pair such that uses-allocator construction is applied individually to the first and second data members.
The make_­obj_­using_­allocator and uninitialized_­construct_­using_­allocator function templates apply the modified constructor arguments to construct an object of type T as a return value or in-place, respectively.
[Note 1:
For uses_­allocator_­construction_­args and make_­obj_­using_­allocator, type T is not deduced and must therefore be specified explicitly by the caller.
— end note]
template<class T, class Alloc, class... Args> constexpr auto uses_allocator_construction_args(const Alloc& alloc, Args&&... args) noexcept -> see below;
Constraints: T is not a specialization of pair.
Returns: A tuple value determined as follows:
  • If uses_­allocator_­v<T, Alloc> is false and is_­constructible_­v<T, Args...> is true, return forward_­as_­tuple(std​::​forward<Args>(args)...).
  • Otherwise, if uses_­allocator_­v<T, Alloc> is true and is_­constructible_­v<T, allocator_­arg_­t, const Alloc&, Args...> is true, return tuple<allocator_arg_t, const Alloc&, Args&&...>( allocator_arg, alloc, std::forward<Args>(args)...)
  • Otherwise, if uses_­allocator_­v<T, Alloc> is true and is_­constructible_­v<T, Args..., const Alloc&> is true, return forward_­as_­tuple(std​::​forward<Args>(args)..., alloc).
  • Otherwise, the program is ill-formed.
[Note 2:
This definition prevents a silent failure to pass the allocator to a constructor of a type for which uses_­allocator_­v<T, Alloc> is true.
— end note]
template<class T, class Alloc, class Tuple1, class Tuple2> constexpr auto uses_allocator_construction_args(const Alloc& alloc, piecewise_construct_t, Tuple1&& x, Tuple2&& y) noexcept -> see below;
Constraints: T is a specialization of pair.
Effects: For T specified as pair<T1, T2>, equivalent to: return make_tuple( piecewise_construct, apply([&alloc](auto&&... args1) { return uses_allocator_construction_args<T1>( alloc, std::forward<decltype(args1)>(args1)...); }, std::forward<Tuple1>(x)), apply([&alloc](auto&&... args2) { return uses_allocator_construction_args<T2>( alloc, std::forward<decltype(args2)>(args2)...); }, std::forward<Tuple2>(y)));
template<class T, class Alloc> constexpr auto uses_allocator_construction_args(const Alloc& alloc) noexcept -> see below;
Constraints: T is a specialization of pair.
Effects: Equivalent to: return uses_allocator_construction_args<T>(alloc, piecewise_construct, tuple<>{}, tuple<>{});
template<class T, class Alloc, class U, class V> constexpr auto uses_allocator_construction_args(const Alloc& alloc, U&& u, V&& v) noexcept -> see below;
Constraints: T is a specialization of pair.
Effects: Equivalent to: return uses_allocator_construction_args<T>(alloc, piecewise_construct, forward_as_tuple(std::forward<U>(u)), forward_as_tuple(std::forward<V>(v)));
template<class T, class Alloc, class U, class V> constexpr auto uses_allocator_construction_args(const Alloc& alloc, const pair<U,V>& pr) noexcept -> see below;
Constraints: T is a specialization of pair.
Effects: Equivalent to: return uses_allocator_construction_args<T>(alloc, piecewise_construct, forward_as_tuple(pr.first), forward_as_tuple(pr.second));
template<class T, class Alloc, class U, class V> constexpr auto uses_allocator_construction_args(const Alloc& alloc, pair<U,V>&& pr) noexcept -> see below;
Constraints: T is a specialization of pair.
Effects: Equivalent to: return uses_allocator_construction_args<T>(alloc, piecewise_construct, forward_as_tuple(std::move(pr).first), forward_as_tuple(std::move(pr).second));
template<class T, class Alloc, class... Args> constexpr T make_obj_using_allocator(const Alloc& alloc, Args&&... args);
Effects: Equivalent to: return make_from_tuple<T>(uses_allocator_construction_args<T>( alloc, std::forward<Args>(args)...));
template<class T, class Alloc, class... Args> constexpr T* uninitialized_construct_using_allocator(T* p, const Alloc& alloc, Args&&... args);
Effects: Equivalent to: return apply([&]<class... U>(U&&... xs) { return construct_at(p, std::forward<U>(xs)...); }, uses_allocator_construction_args<T>(alloc, std::forward<Args>(args)...));

20.10.9 Allocator traits [allocator.traits]

20.10.9.1 General [allocator.traits.general]

The class template allocator_­traits supplies a uniform interface to all allocator types.
An allocator cannot be a non-class type, however, even if allocator_­traits supplies the entire required interface.
[Note 1:
Thus, it is always possible to create a derived class from an allocator.
— end note]
namespace std { template<class Alloc> struct allocator_traits { using allocator_type = Alloc; using value_type = typename Alloc::value_type; using pointer = see below; using const_pointer = see below; using void_pointer = see below; using const_void_pointer = see below; using difference_type = see below; using size_type = see below; using propagate_on_container_copy_assignment = see below; using propagate_on_container_move_assignment = see below; using propagate_on_container_swap = see below; using is_always_equal = see below; template<class T> using rebind_alloc = see below; template<class T> using rebind_traits = allocator_traits<rebind_alloc<T>>; [[nodiscard]] static constexpr pointer allocate(Alloc& a, size_type n); [[nodiscard]] static constexpr pointer allocate(Alloc& a, size_type n, const_void_pointer hint); static constexpr void deallocate(Alloc& a, pointer p, size_type n); template<class T, class... Args> static constexpr void construct(Alloc& a, T* p, Args&&... args); template<class T> static constexpr void destroy(Alloc& a, T* p); static constexpr size_type max_size(const Alloc& a) noexcept; static constexpr Alloc select_on_container_copy_construction(const Alloc& rhs); }; }

20.10.9.2 Member types [allocator.traits.types]

using pointer = see below;
Type: Alloc​::​pointer if the qualified-id Alloc​::​pointer is valid and denotes a type ([temp.deduct]); otherwise, value_­type*.
using const_pointer = see below;
Type: Alloc​::​const_­pointer if the qualified-id Alloc​::​const_­pointer is valid and denotes a type ([temp.deduct]); otherwise, pointer_­traits<pointer>​::​rebind<const value_­type>.
using void_pointer = see below;
Type: Alloc​::​void_­pointer if the qualified-id Alloc​::​void_­pointer is valid and denotes a type ([temp.deduct]); otherwise, pointer_­traits<pointer>​::​rebind<void>.
using const_void_pointer = see below;
Type: Alloc​::​const_­void_­pointer if the qualified-id Alloc​::​const_­void_­pointer is valid and denotes a type ([temp.deduct]); otherwise, pointer_­traits<pointer>​::​​rebind<const void>.
using difference_type = see below;
Type: Alloc​::​difference_­type if the qualified-id Alloc​::​difference_­type is valid and denotes a type ([temp.deduct]); otherwise, pointer_­traits<pointer>​::​difference_­type.
using size_type = see below;
Type: Alloc​::​size_­type if the qualified-id Alloc​::​size_­type is valid and denotes a type ([temp.deduct]); otherwise, make_­unsigned_­t<difference_­type>.
using propagate_on_container_copy_assignment = see below;
Type: Alloc​::​propagate_­on_­container_­copy_­assignment if the qualified-id Alloc​::​propagate_­on_­container_­copy_­assignment is valid and denotes a type ([temp.deduct]); otherwise false_­type.
using propagate_on_container_move_assignment = see below;
Type: Alloc​::​propagate_­on_­container_­move_­assignment if the qualified-id Alloc​::​propagate_­on_­container_­move_­assignment is valid and denotes a type ([temp.deduct]); otherwise false_­type.
using propagate_on_container_swap = see below;
Type: Alloc​::​propagate_­on_­container_­swap if the qualified-id Alloc​::​propagate_­on_­container_­swap is valid and denotes a type ([temp.deduct]); otherwise false_­type.
using is_always_equal = see below;
Type: Alloc​::​is_­always_­equal if the qualified-id Alloc​::​is_­always_­equal is valid and denotes a type ([temp.deduct]); otherwise is_­empty<Alloc>​::​type.
template<class T> using rebind_alloc = see below;
Alias template: Alloc​::​rebind<T>​::​other if the qualified-id Alloc​::​rebind<T>​::​other is valid and denotes a type ([temp.deduct]); otherwise, Alloc<T, Args> if Alloc is a class template instantiation of the form Alloc<U, Args>, where Args is zero or more type arguments; otherwise, the instantiation of rebind_­alloc is ill-formed.

20.10.9.3 Static member functions [allocator.traits.members]

[[nodiscard]] static constexpr pointer allocate(Alloc& a, size_type n);
Returns: a.allocate(n).
[[nodiscard]] static constexpr pointer allocate(Alloc& a, size_type n, const_void_pointer hint);
Returns: a.allocate(n, hint) if that expression is well-formed; otherwise, a.allocate(n).
static constexpr void deallocate(Alloc& a, pointer p, size_type n);
Effects: Calls a.deallocate(p, n).
Throws: Nothing.
template<class T, class... Args> static constexpr void construct(Alloc& a, T* p, Args&&... args);
Effects: Calls a.construct(p, std​::​forward<Args>(args)...) if that call is well-formed; otherwise, invokes construct_­at(p, std​::​forward<Args>(args)...).
template<class T> static constexpr void destroy(Alloc& a, T* p);
Effects: Calls a.destroy(p) if that call is well-formed; otherwise, invokes destroy_­at(p).
static constexpr size_type max_size(const Alloc& a) noexcept;
Returns: a.max_­size() if that expression is well-formed; otherwise, numeric_­limits<size_­type>​::​​max()/sizeof(value_­type).
static constexpr Alloc select_on_container_copy_construction(const Alloc& rhs);
Returns: rhs.select_­on_­container_­copy_­construction() if that expression is well-formed; otherwise, rhs.

20.10.10 The default allocator [default.allocator]

20.10.10.1 General [default.allocator.general]

All specializations of the default allocator meet the allocator completeness requirements ([allocator.requirements.completeness]).
namespace std { template<class T> class allocator { public: using value_type = T; using size_type = size_t; using difference_type = ptrdiff_t; using propagate_on_container_move_assignment = true_type; using is_always_equal = true_type; constexpr allocator() noexcept; constexpr allocator(const allocator&) noexcept; template<class U> constexpr allocator(const allocator<U>&) noexcept; constexpr ~allocator(); constexpr allocator& operator=(const allocator&) = default; [[nodiscard]] constexpr T* allocate(size_t n); constexpr void deallocate(T* p, size_t n); }; }

20.10.10.2 Members [allocator.members]

Except for the destructor, member functions of the default allocator shall not introduce data races as a result of concurrent calls to those member functions from different threads.
Calls to these functions that allocate or deallocate a particular unit of storage shall occur in a single total order, and each such deallocation call shall happen before the next allocation (if any) in this order.
[[nodiscard]] constexpr T* allocate(size_t n);
Mandates: T is not an incomplete type ([basic.types]).
Returns: A pointer to the initial element of an array of n T.
Throws: bad_­array_­new_­length if numeric_­limits<size_­t>​::​max() / sizeof(T) < n, or bad_­alloc if the storage cannot be obtained.
Remarks: The storage for the array is obtained by calling ​::​operator new, but it is unspecified when or how often this function is called.
This function starts the lifetime of the array object, but not that of any of the array elements.
constexpr void deallocate(T* p, size_t n);
Preconditions: p is a pointer value obtained from allocate().
n equals the value passed as the first argument to the invocation of allocate which returned p.
Effects: Deallocates the storage referenced by p.
Remarks: Uses ​::​operator delete, but it is unspecified when this function is called.

20.10.10.3 Operators [allocator.globals]

template<class T, class U> constexpr bool operator==(const allocator<T>&, const allocator<U>&) noexcept;
Returns: true.

20.10.11 addressof [specialized.addressof]

template<class T> constexpr T* addressof(T& r) noexcept;
Returns: The actual address of the object or function referenced by r, even in the presence of an overloaded operator&.
Remarks: An expression addressof(E) is a constant subexpression ([defns.const.subexpr]) if E is an lvalue constant subexpression.

20.10.12 C library memory allocation [c.malloc]

[Note 1:
The header <cstdlib> declares the functions described in this subclause.
— end note]
void* aligned_alloc(size_t alignment, size_t size); void* calloc(size_t nmemb, size_t size); void* malloc(size_t size); void* realloc(void* ptr, size_t size);
Effects: These functions have the semantics specified in the C standard library.
Remarks: These functions do not attempt to allocate storage by calling ​::​operator new() ([new.delete]).
Storage allocated directly with these functions is implicitly declared reachable (see [basic.stc.dynamic.safety]) on allocation, ceases to be declared reachable on deallocation, and need not cease to be declared reachable as the result of an undeclare_­reachable() call.
[Note 2:
This allows existing C libraries to remain unaffected by restrictions on pointers that are not safely derived, at the expense of providing far fewer garbage collection and leak detection options for malloc()-allocated objects.
It also allows malloc() to be implemented with a separate allocation arena, bypassing the normal declare_­reachable() implementation.
— end note]
These functions implicitly create objects ([intro.object]) in the returned region of storage and return a pointer to a suitable created object.
In the case of calloc and realloc, the objects are created before the storage is zeroed or copied, respectively.
void free(void* ptr);
Effects: This function has the semantics specified in the C standard library.
Remarks: This function does not attempt to deallocate storage by calling ​::​operator delete().
See also: ISO C 7.22.3