24 Ranges library [ranges]

24.7 Range adaptors [range.adaptors]

This subclause defines range adaptors, which are utilities that transform a range into a view with custom behaviors.
These adaptors can be chained to create pipelines of range transformations that evaluate lazily as the resulting view is iterated.
Range adaptors are declared in namespace std​::​ranges​::​views.
The bitwise OR operator is overloaded for the purpose of creating adaptor chain pipelines.
The adaptors also support function call syntax with equivalent semantics.
Example
:
vector<int> ints{0,1,2,3,4,5};
auto even = [](int i){ return 0 == i % 2; };
auto square = [](int i) { return i * i; };
for (int i : ints | views::filter(even) | views::transform(square)) {
  cout << i << ' '; // prints: 0 4 16
}
assert(ranges::equal(ints | views::filter(even), views::filter(ints, even)));
— end example
 ]

24.7.1 Range adaptor objects [range.adaptor.object]

A range adaptor closure object is a unary function object that accepts a viewable_­range argument and returns a view.
For a range adaptor closure object C and an expression R such that decltype((R)) models viewable_­range, the following expressions are equivalent and yield a view:
C(R)
R | C
Given an additional range adaptor closure object D, the expression C | D is well-formed and produces another range adaptor closure object such that the following two expressions are equivalent:
R | C | D
R | (C | D)
A range adaptor object is a customization point object ([customization.point.object]) that accepts a viewable_­range as its first argument and returns a view.
If a range adaptor object accepts only one argument, then it is a range adaptor closure object.
If a range adaptor object accepts more than one argument, then the following expressions are equivalent:
adaptor(range, args...)
adaptor(args...)(range)
range | adaptor(args...)
In this case, adaptor(args...) is a range adaptor closure object.

24.7.2 Semiregular wrapper [range.semi.wrap]

Many types in this subclause are specified in terms of an exposition-only class template semiregular-box.
semiregular-box<T> behaves exactly like optional<T> with the following differences:
  • semiregular-box<T> constrains its type parameter T with copy_­constructible<T> && is_­object_­v<T>.
  • If T models default_­initializable, the default constructor of semiregular-box<T> is equivalent to:
    constexpr semiregular-box() noexcept(is_nothrow_default_constructible_v<T>)
      : semiregular-box{in_place}
    { }
    
  • If assignable_­from<T&, const T&> is not modeled, the copy assignment operator is equivalent to:
    semiregular-box& operator=(const semiregular-box& that)
      noexcept(is_nothrow_copy_constructible_v<T>)
    {
      if (that) emplace(*that);
      else reset();
      return *this;
    }
    
  • If assignable_­from<T&, T> is not modeled, the move assignment operator is equivalent to:
    semiregular-box& operator=(semiregular-box&& that)
      noexcept(is_nothrow_move_constructible_v<T>)
    {
      if (that) emplace(std::move(*that));
      else reset();
      return *this;
    }
    

24.7.3 All view [range.all]

views​::​all returns a view that includes all elements of its range argument.
The name views​::​all denotes a range adaptor object ([range.adaptor.object]).
Given a subexpression E, the expression views​::​all(E) is expression-equivalent to:
  • decay-copy(E) if the decayed type of E models view.
  • Otherwise, ref_­view{E} if that expression is well-formed.
  • Otherwise, subrange{E}.

24.7.3.1 Class template ref_­view [range.ref.view]

ref_­view is a view of the elements of some other range.
namespace std::ranges {
  template<range R>
    requires is_object_v<R>
  class ref_view : public view_interface<ref_view<R>> {
  private:
    R* r_ = nullptr;            // exposition only
  public:
    constexpr ref_view() noexcept = default;

    template<not-same-as<ref_view> T>
      requires see below
    constexpr ref_view(T&& t);

    constexpr R& base() const { return *r_; }

    constexpr iterator_t<R> begin() const { return ranges::begin(*r_); }
    constexpr sentinel_t<R> end() const { return ranges::end(*r_); }

    constexpr bool empty() const
      requires requires { ranges::empty(*r_); }
    { return ranges::empty(*r_); }

    constexpr auto size() const requires sized_range<R>
    { return ranges::size(*r_); }

    constexpr auto data() const requires contiguous_range<R>
    { return ranges::data(*r_); }
  };
  template<class R>
    ref_view(R&) -> ref_view<R>;
}
template<not-same-as<ref_view> T> requires see below constexpr ref_view(T&& t);
Remarks: Let FUN denote the exposition-only functions
void FUN(R&);
void FUN(R&&) = delete;
The expression in the requires-clause is equivalent to
convertible_to<T, R&> && requires { FUN(declval<T>()); }
Effects: Initializes r_­ with addressof(static_­cast<R&>(std​::​forward<T>(t))).

24.7.4 Filter view [range.filter]

24.7.4.1 Overview [range.filter.overview]

filter_­view presents a view of the elements of an underlying sequence that satisfy a predicate.
The name views​::​filter denotes a range adaptor object ([range.adaptor.object]).
Given subexpressions E and P, the expression views​::​filter(E, P) is expression-equivalent to filter_­view{E, P}.
Example
:
vector<int> is{ 0, 1, 2, 3, 4, 5, 6 };
filter_view evens{is, [](int i) { return 0 == i % 2; }};
for (int i : evens)
  cout << i << ' '; // prints: 0 2 4 6
— end example
 ]

24.7.4.2 Class template filter_­view [range.filter.view]

namespace std::ranges {
  template<input_range V, indirect_unary_predicate<iterator_t<V>> Pred>
    requires view<V> && is_object_v<Pred>
  class filter_view : public view_interface<filter_view<V, Pred>> {
  private:
    V base_ = V();                      // exposition only
    semiregular-box<Pred> pred_;  // exposition only

    // [range.filter.iterator], class filter_­view​::​iterator
    class iterator;                     // exposition only
    // [range.filter.sentinel], class filter_­view​::​sentinel
    class sentinel;                     // exposition only

  public:
    filter_view() = default;
    constexpr filter_view(V base, Pred pred);

    constexpr V base() const& requires copy_constructible<V> { return base_; }
    constexpr V base() && { return std::move(base_); }

    constexpr const Pred& pred() const;

    constexpr iterator begin();
    constexpr auto end() {
      if constexpr (common_range<V>)
        return iterator{*this, ranges::end(base_)};
      else
        return sentinel{*this};
    }
  };

  template<class R, class Pred>
    filter_view(R&&, Pred) -> filter_view<views::all_t<R>, Pred>;
}
constexpr filter_view(V base, Pred pred);
Effects: Initializes base_­ with std​::​move(base) and initializes pred_­ with std​::​move(pred).
constexpr const Pred& pred() const;
Effects: Equivalent to: return *pred_­;
constexpr iterator begin();
Preconditions: pred_­.has_­value().
Returns: {*this, ranges​::​find_­if(base_­, ref(*pred_­))}.
Remarks: In order to provide the amortized constant time complexity required by the range concept when filter_­view models forward_­range, this function caches the result within the filter_­view for use on subsequent calls.

24.7.4.3 Class filter_­view​::​iterator [range.filter.iterator]

namespace std::ranges {
  template<input_range V, indirect_unary_predicate<iterator_t<V>> Pred>
    requires view<V> && is_object_v<Pred>
  class filter_view<V, Pred>::iterator {
  private:
    iterator_t<V> current_ = iterator_t<V>();   // exposition only
    filter_view* parent_ = nullptr;             // exposition only
  public:
    using iterator_concept  = see below;
    using iterator_category = see below;
    using value_type        = range_value_t<V>;
    using difference_type   = range_difference_t<V>;

    iterator() = default;
    constexpr iterator(filter_view& parent, iterator_t<V> current);

    constexpr iterator_t<V> base() const &
      requires copyable<iterator_t<V>>;
    constexpr iterator_t<V> base() &&;
    constexpr range_reference_t<V> operator*() const;
    constexpr iterator_t<V> operator->() const
      requires has-arrow<iterator_t<V>> && copyable<iterator_t<V>>;

    constexpr iterator& operator++();
    constexpr void operator++(int);
    constexpr iterator operator++(int) requires forward_range<V>;

    constexpr iterator& operator--() requires bidirectional_range<V>;
    constexpr iterator operator--(int) requires bidirectional_range<V>;

    friend constexpr bool operator==(const iterator& x, const iterator& y)
      requires equality_comparable<iterator_t<V>>;

    friend constexpr range_rvalue_reference_t<V> iter_move(const iterator& i)
      noexcept(noexcept(ranges::iter_move(i.current_)));
    friend constexpr void iter_swap(const iterator& x, const iterator& y)
      noexcept(noexcept(ranges::iter_swap(x.current_, y.current_)))
      requires indirectly_swappable<iterator_t<V>>;
  };
}
Modification of the element a filter_­view​::​iterator denotes is permitted, but results in undefined behavior if the resulting value does not satisfy the filter predicate.
iterator​::​iterator_­concept is defined as follows:
  • If V models bidirectional_­range, then iterator_­concept denotes bidirectional_­iterator_­tag.
  • Otherwise, if V models forward_­range, then iterator_­concept denotes forward_­iterator_­tag.
  • Otherwise, iterator_­concept denotes input_­iterator_­tag.
iterator​::​iterator_­category is defined as follows:
  • Let C denote the type iterator_­traits<iterator_­t<V>>​::​iterator_­category.
  • If C models derived_­from<bidirectional_­iterator_­tag>, then iterator_­category denotes bidirectional_­iterator_­tag.
  • Otherwise, if C models derived_­from<forward_­iterator_­tag>, then iterator_­category denotes forward_­iterator_­tag.
  • Otherwise, iterator_­category denotes C.
constexpr iterator(filter_view& parent, iterator_t<V> current);
Effects: Initializes current_­ with std​::​move(current) and parent_­ with addressof(parent).
constexpr iterator_t<V> base() const & requires copyable<iterator_t<V>>;
Effects: Equivalent to: return current_­;
constexpr iterator_t<V> base() &&;
Effects: Equivalent to: return std​::​move(current_­);
constexpr range_reference_t<V> operator*() const;
Effects: Equivalent to: return *current_­;
constexpr iterator_t<V> operator->() const requires has-arrow<iterator_t<V>> && copyable<iterator_t<V>>;
Effects: Equivalent to: return current_­;
constexpr iterator& operator++();
Effects: Equivalent to:
current_ = ranges::find_if(std::move(++current_), ranges::end(parent_->base_),
                           ref(*parent_->pred_));
return *this;
constexpr void operator++(int);
Effects: Equivalent to ++*this.
constexpr iterator operator++(int) requires forward_­range<V>;
Effects: Equivalent to:
auto tmp = *this;
++*this;
return tmp;
constexpr iterator& operator--() requires bidirectional_­range<V>;
Effects: Equivalent to:
do
  --current_;
while (!invoke(*parent_->pred_, *current_));
return *this;
constexpr iterator operator--(int) requires bidirectional_­range<V>;
Effects: Equivalent to:
auto tmp = *this;
--*this;
return tmp;
friend constexpr bool operator==(const iterator& x, const iterator& y) requires equality_comparable<iterator_t<V>>;
Effects: Equivalent to: return x.current_­ == y.current_­;
friend constexpr range_rvalue_reference_t<V> iter_move(const iterator& i) noexcept(noexcept(ranges::iter_move(i.current_­)));
Effects: Equivalent to: return ranges​::​iter_­move(i.current_­);
friend constexpr void iter_swap(const iterator& x, const iterator& y) noexcept(noexcept(ranges::iter_swap(x.current_­, y.current_­))) requires indirectly_­swappable<iterator_t<V>>;
Effects: Equivalent to ranges​::​iter_­swap(x.current_­, y.current_­).

24.7.4.4 Class filter_­view​::​sentinel [range.filter.sentinel]

namespace std::ranges {
  template<input_range V, indirect_unary_predicate<iterator_t<V>> Pred>
    requires view<V> && is_object_v<Pred>
  class filter_view<V, Pred>::sentinel {
  private:
    sentinel_t<V> end_ = sentinel_t<V>();       // exposition only
  public:
    sentinel() = default;
    constexpr explicit sentinel(filter_view& parent);

    constexpr sentinel_t<V> base() const;

    friend constexpr bool operator==(const iterator& x, const sentinel& y);
  };
}
constexpr explicit sentinel(filter_view& parent);
Effects: Initializes end_­ with ranges​::​end(parent.base_­).
constexpr sentinel_t<V> base() const;
Effects: Equivalent to: return end_­;
friend constexpr bool operator==(const iterator& x, const sentinel& y);
Effects: Equivalent to: return x.current_­ == y.end_­;

24.7.5 Transform view [range.transform]

24.7.5.1 Overview [range.transform.overview]

transform_­view presents a view of an underlying sequence after applying a transformation function to each element.
The name views​::​transform denotes a range adaptor object ([range.adaptor.object]).
Given subexpressions E and F, the expression views​::​transform(E, F) is expression-equivalent to transform_­view{E, F}.
Example
:
vector<int> is{ 0, 1, 2, 3, 4 };
transform_view squares{is, [](int i) { return i * i; }};
for (int i : squares)
  cout << i << ' '; // prints: 0 1 4 9 16
— end example
 ]

24.7.5.2 Class template transform_­view [range.transform.view]

namespace std::ranges {
  template<input_range V, copy_constructible F>
    requires view<V> && is_object_v<F> &&
             regular_invocable<F&, range_reference_t<V>> &&
             can-reference<invoke_result_t<F&, range_reference_t<V>>>
  class transform_view : public view_interface<transform_view<V, F>> {
  private:
    // [range.transform.iterator], class template transform_­view​::​iterator
    template<bool> struct iterator;             // exposition only
    // [range.transform.sentinel], class template transform_­view​::​sentinel
    template<bool> struct sentinel;             // exposition only

    V base_ = V();                              // exposition only
    semiregular-box<F> fun_;                    // exposition only

  public:
    transform_view() = default;
    constexpr transform_view(V base, F fun);

    constexpr V base() const& requires copy_constructible<V> { return base_; }
    constexpr V base() && { return std::move(base_); }

    constexpr iterator<false> begin();
    constexpr iterator<true> begin() const
      requires range<const V> &&
               regular_invocable<const F&, range_reference_t<const V>>;

    constexpr sentinel<false> end();
    constexpr iterator<false> end() requires common_range<V>;
    constexpr sentinel<true> end() const
      requires range<const V> &&
               regular_invocable<const F&, range_reference_t<const V>>;
    constexpr iterator<true> end() const
      requires common_range<const V> &&
               regular_invocable<const F&, range_reference_t<const V>>;

    constexpr auto size() requires sized_range<V> { return ranges::size(base_); }
    constexpr auto size() const requires sized_range<const V>
    { return ranges::size(base_); }
  };

  template<class R, class F>
    transform_view(R&&, F) -> transform_view<views::all_t<R>, F>;
}
constexpr transform_view(V base, F fun);
Effects: Initializes base_­ with std​::​move(base) and fun_­ with std​::​move(fun).
constexpr iterator<false> begin();
Effects: Equivalent to:
return iterator<false>{*this, ranges::begin(base_)};
constexpr iterator<true> begin() const requires range<const V> && regular_invocable<const F&, range_reference_t<const V>>;
Effects: Equivalent to:
return iterator<true>{*this, ranges::begin(base_)};
constexpr sentinel<false> end();
Effects: Equivalent to:
return sentinel<false>{ranges::end(base_)};
constexpr iterator<false> end() requires common_range<V>;
Effects: Equivalent to:
return iterator<false>{*this, ranges::end(base_)};
constexpr sentinel<true> end() const requires range<const V> && regular_invocable<const F&, range_reference_t<const V>>;
Effects: Equivalent to:
return sentinel<true>{ranges::end(base_)};
constexpr iterator<true> end() const requires common_range<const V> && regular_invocable<const F&, range_reference_t<const V>>;
Effects: Equivalent to:
return iterator<true>{*this, ranges::end(base_)};

24.7.5.3 Class template transform_­view​::​iterator [range.transform.iterator]

namespace std::ranges {
  template<input_range V, copy_constructible F>
    requires view<V> && is_object_v<F> &&
             regular_invocable<F&, range_reference_t<V>> &&
             can-reference<invoke_result_t<F&, range_reference_t<V>>>
  template<bool Const>
  class transform_view<V, F>::iterator {
  private:
    using Parent =                              // exposition only
      conditional_t<Const, const transform_view, transform_view>;
    using Base   =                              // exposition only
      conditional_t<Const, const V, V>;
    iterator_t<Base> current_ =                 // exposition only
      iterator_t<Base>();
    Parent* parent_ = nullptr;                  // exposition only
  public:
    using iterator_concept  = see below;
    using iterator_category = see below;
    using value_type        =
      remove_cvref_t<invoke_result_t<F&, range_reference_t<Base>>>;
    using difference_type   = range_difference_t<Base>;

    iterator() = default;
    constexpr iterator(Parent& parent, iterator_t<Base> current);
    constexpr iterator(iterator<!Const> i)
      requires Const && convertible_to<iterator_t<V>, iterator_t<Base>>;

    constexpr iterator_t<Base> base() const &
      requires copyable<iterator_t<Base>>;
    constexpr iterator_t<Base> base() &&;
    constexpr decltype(auto) operator*() const
    { return invoke(*parent_->fun_, *current_); }

    constexpr iterator& operator++();
    constexpr void operator++(int);
    constexpr iterator operator++(int) requires forward_range<Base>;

    constexpr iterator& operator--() requires bidirectional_range<Base>;
    constexpr iterator operator--(int) requires bidirectional_range<Base>;

    constexpr iterator& operator+=(difference_type n)
      requires random_access_range<Base>;
    constexpr iterator& operator-=(difference_type n)
      requires random_access_range<Base>;
    constexpr decltype(auto) operator[](difference_type n) const
      requires random_access_range<Base>
    { return invoke(*parent_->fun_, current_[n]); }

    friend constexpr bool operator==(const iterator& x, const iterator& y)
      requires equality_comparable<iterator_t<Base>>;

    friend constexpr bool operator<(const iterator& x, const iterator& y)
      requires random_access_range<Base>;
    friend constexpr bool operator>(const iterator& x, const iterator& y)
      requires random_access_range<Base>;
    friend constexpr bool operator<=(const iterator& x, const iterator& y)
      requires random_access_range<Base>;
    friend constexpr bool operator>=(const iterator& x, const iterator& y)
      requires random_access_range<Base>;
    friend constexpr auto operator<=>(const iterator& x, const iterator& y)
      requires random_access_range<Base> && three_way_comparable<iterator_t<Base>>;

    friend constexpr iterator operator+(iterator i, difference_type n)
      requires random_access_range<Base>;
    friend constexpr iterator operator+(difference_type n, iterator i)
      requires random_access_range<Base>;

    friend constexpr iterator operator-(iterator i, difference_type n)
      requires random_access_range<Base>;
    friend constexpr difference_type operator-(const iterator& x, const iterator& y)
      requires random_access_range<Base>;

    friend constexpr decltype(auto) iter_move(const iterator& i)
      noexcept(noexcept(invoke(*i.parent_->fun_, *i.current_)))
    {
      if constexpr (is_lvalue_reference_v<decltype(*i)>)
        return std::move(*i);
      else
        return *i;
    }

    friend constexpr void iter_swap(const iterator& x, const iterator& y)
      noexcept(noexcept(ranges::iter_swap(x.current_, y.current_)))
      requires indirectly_swappable<iterator_t<Base>>;
  };
}
iterator​::​iterator_­concept is defined as follows:
  • If V models random_­access_­range, then iterator_­concept denotes random_­access_­iterator_­tag.
  • Otherwise, if V models bidirectional_­range, then iterator_­concept denotes bidirectional_­iterator_­tag.
  • Otherwise, if V models forward_­range, then iterator_­concept denotes forward_­iterator_­tag.
  • Otherwise, iterator_­concept denotes input_­iterator_­tag.
iterator​::​iterator_­category is defined as follows: Let C denote the type iterator_­traits<iterator_­t<Base>>​::​iterator_­category.
  • If is_­lvalue_­reference_­v<invoke_­result_­t<F&, range_­reference_­t<Base>>> is true, then
    • if C models derived_­from<contiguous_­iterator_­tag>, iterator_­category denotes random_­access_­iterator_­tag;
    • otherwise, iterator_­category denotes C.
  • Otherwise, iterator_­category denotes input_­iterator_­tag.
constexpr iterator(Parent& parent, iterator_t<Base> current);
Effects: Initializes current_­ with std​::​move(current) and parent_­ with addressof(parent).
constexpr iterator(iterator<!Const> i) requires Const && convertible_­to<iterator_t<V>, iterator_t<Base>>;
Effects: Initializes current_­ with std​::​move(i.current_­) and parent_­ with i.parent_­.
constexpr iterator_t<Base> base() const & requires copyable<iterator_t<Base>>;
Effects: Equivalent to: return current_­;
constexpr iterator_t<Base> base() &&;
Effects: Equivalent to: return std​::​move(current_­);
constexpr iterator& operator++();
Effects: Equivalent to:
++current_;
return *this;
constexpr void operator++(int);
Effects: Equivalent to ++current_­.
constexpr iterator operator++(int) requires forward_­range<Base>;
Effects: Equivalent to:
auto tmp = *this;
++*this;
return tmp;
constexpr iterator& operator--() requires bidirectional_­range<Base>;
Effects: Equivalent to:
--current_;
return *this;
constexpr iterator operator--(int) requires bidirectional_­range<Base>;
Effects: Equivalent to:
auto tmp = *this;
--*this;
return tmp;
constexpr iterator& operator+=(difference_type n) requires random_­access_­range<Base>;
Effects: Equivalent to:
current_ += n;
return *this;
constexpr iterator& operator-=(difference_type n) requires random_­access_­range<Base>;
Effects: Equivalent to:
current_ -= n;
return *this;
friend constexpr bool operator==(const iterator& x, const iterator& y) requires equality_comparable<iterator_t<Base>>;
Effects: Equivalent to: return x.current_­ == y.current_­;
friend constexpr bool operator<(const iterator& x, const iterator& y) requires random_­access_­range<Base>;
Effects: Equivalent to: return x.current_­ < y.current_­;
friend constexpr bool operator>(const iterator& x, const iterator& y) requires random_­access_­range<Base>;
Effects: Equivalent to: return y < x;
friend constexpr bool operator<=(const iterator& x, const iterator& y) requires random_­access_­range<Base>;
Effects: Equivalent to: return !(y < x);
friend constexpr bool operator>=(const iterator& x, const iterator& y) requires random_­access_­range<Base>;
Effects: Equivalent to: return !(x < y);
friend constexpr auto operator<=>(const iterator& x, const iterator& y) requires random_­access_­range<Base> && three_­way_­comparable<iterator_t<Base>>;
Effects: Equivalent to: return x.current_­ <=> y.current_­;
friend constexpr iterator operator+(iterator i, difference_type n) requires random_­access_­range<Base>; friend constexpr iterator operator+(difference_type n, iterator i) requires random_­access_­range<Base>;
Effects: Equivalent to: return iterator{*i.parent_­, i.current_­ + n};
friend constexpr iterator operator-(iterator i, difference_type n) requires random_­access_­range<Base>;
Effects: Equivalent to: return iterator{*i.parent_­, i.current_­ - n};
friend constexpr difference_type operator-(const iterator& x, const iterator& y) requires random_­access_­range<Base>;
Effects: Equivalent to: return x.current_­ - y.current_­;
friend constexpr void iter_swap(const iterator& x, const iterator& y) noexcept(noexcept(ranges::iter_swap(x.current_­, y.current_­))) requires indirectly_­swappable<iterator_t<Base>>;
Effects: Equivalent to ranges​::​iter_­swap(x.current_­, y.current_­).

24.7.5.4 Class template transform_­view​::​sentinel [range.transform.sentinel]

namespace std::ranges {
  template<input_range V, copy_constructible F>
    requires view<V> && is_object_v<F> &&
             regular_invocable<F&, range_reference_t<V>> &&
             can-reference<invoke_result_t<F&, range_reference_t<V>>>
  template<bool Const>
  class transform_view<V, F>::sentinel {
  private:
    using Parent =                                      // exposition only
      conditional_t<Const, const transform_view, transform_view>;
    using Base = conditional_t<Const, const V, V>;      // exposition only
    sentinel_t<Base> end_ = sentinel_t<Base>();         // exposition only
  public:
    sentinel() = default;
    constexpr explicit sentinel(sentinel_t<Base> end);
    constexpr sentinel(sentinel<!Const> i)
      requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base>>;

    constexpr sentinel_t<Base> base() const;

    friend constexpr bool operator==(const iterator<Const>& x, const sentinel& y);

    friend constexpr range_difference_t<Base>
      operator-(const iterator<Const>& x, const sentinel& y)
        requires sized_sentinel_for<sentinel_t<Base>, iterator_t<Base>>;
    friend constexpr range_difference_t<Base>
      operator-(const sentinel& y, const iterator<Const>& x)
        requires sized_sentinel_for<sentinel_t<Base>, iterator_t<Base>>;
  };
}
constexpr explicit sentinel(sentinel_t<Base> end);
Effects: Initializes end_­ with end.
constexpr sentinel(sentinel<!Const> i) requires Const && convertible_­to<sentinel_t<V>, sentinel_t<Base>>;
Effects: Initializes end_­ with std​::​move(i.end_­).
constexpr sentinel_t<Base> base() const;
Effects: Equivalent to: return end_­;
friend constexpr bool operator==(const iterator<Const>& x, const sentinel& y);
Effects: Equivalent to: return x.current_­ == y.end_­;
friend constexpr range_difference_t<Base> operator-(const iterator<Const>& x, const sentinel& y) requires sized_­sentinel_­for<sentinel_t<Base>, iterator_t<Base>>;
Effects: Equivalent to: return x.current_­ - y.end_­;
friend constexpr range_difference_t<Base> operator-(const sentinel& y, const iterator<Const>& x) requires sized_­sentinel_­for<sentinel_t<Base>, iterator_t<Base>>;
Effects: Equivalent to: return y.end_­ - x.current_­;

24.7.6 Take view [range.take]

24.7.6.1 Overview [range.take.overview]

take_­view produces a view of the first N elements from another view, or all the elements if the adapted view contains fewer than N.
The name views​::​take denotes a range adaptor object ([range.adaptor.object]).
Let E and F be expressions, let T be remove_­cvref_­t<decltype((E))>, and let D be range_­difference_­t<decltype((E))>.
If decltype((F)) does not model convertible_­to<D>, views​::​take(E, F) is ill-formed.
Otherwise, the expression views​::​take(E, F) is expression-equivalent to:
  • If T is a specialization of ranges​::​empty_­view ([range.empty.view]), then ((void) F, decay-copy(E)).
  • Otherwise, if T models random_­access_­range and sized_­range and is then T{ranges​::​begin(E), ranges​::​begin(E) + min<D>(ranges​::​size(E), F)}, except that E is evaluated only once.
  • Otherwise, ranges​::​take_­view{E, F}.
Example
:
vector<int> is{0,1,2,3,4,5,6,7,8,9};
take_view few{is, 5};
for (int i : few)
  cout << i << ' '; // prints: 0 1 2 3 4
— end example
 ]

24.7.6.2 Class template take_­view [range.take.view]

namespace std::ranges {
  template<view V>
  class take_view : public view_interface<take_view<V>> {
  private:
    V base_ = V();                                      // exposition only
    range_difference_t<V> count_ = 0;                   // exposition only
    // [range.take.sentinel], class template take_­view​::​sentinel
    template<bool> struct sentinel;                     // exposition only
  public:
    take_view() = default;
    constexpr take_view(V base, range_difference_t<V> count);

    constexpr V base() const& requires copy_constructible<V> { return base_; }
    constexpr V base() && { return std::move(base_); }

    constexpr auto begin() requires (!simple-view<V>) {
      if constexpr (sized_range<V>) {
        if constexpr (random_access_range<V>)
          return ranges::begin(base_);
        else {
          auto sz = size();
          return counted_iterator{ranges::begin(base_), sz};
        }
      } else
        return counted_iterator{ranges::begin(base_), count_};
    }

    constexpr auto begin() const requires range<const V> {
      if constexpr (sized_range<const V>) {
        if constexpr (random_access_range<const V>)
          return ranges::begin(base_);
        else {
          auto sz = size();
          return counted_iterator{ranges::begin(base_), sz};
        }
      } else
        return counted_iterator{ranges::begin(base_), count_};
    }

    constexpr auto end() requires (!simple-view<V>) {
      if constexpr (sized_range<V>) {
        if constexpr (random_access_range<V>)
          return ranges::begin(base_) + size();
        else
          return default_sentinel;
      } else
        return sentinel<false>{ranges::end(base_)};
    }

    constexpr auto end() const requires range<const V> {
      if constexpr (sized_range<const V>) {
        if constexpr (random_access_range<const V>)
          return ranges::begin(base_) + size();
        else
          return default_sentinel;
      } else
        return sentinel<true>{ranges::end(base_)};
    }

    constexpr auto size() requires sized_range<V> {
      auto n = ranges::size(base_);
      return ranges::min(n, static_cast<decltype(n)>(count_));
    }

    constexpr auto size() const requires sized_range<const V> {
      auto n = ranges::size(base_);
      return ranges::min(n, static_cast<decltype(n)>(count_));
    }
  };

  template<range R>
    take_view(R&&, range_difference_t<R>)
      -> take_view<views::all_t<R>>;
}
constexpr take_view(V base, range_difference_t<V> count);
Effects: Initializes base_­ with std​::​move(base) and count_­ with count.

24.7.6.3 Class template take_­view​::​sentinel [range.take.sentinel]

namespace std::ranges {
  template<view V>
  template<bool Const>
  class take_view<V>::sentinel {
  private:
    using Base = conditional_t<Const, const V, V>;      // exposition only
    using CI = counted_iterator<iterator_t<Base>>;      // exposition only
    sentinel_t<Base> end_ = sentinel_t<Base>();         // exposition only
  public:
    sentinel() = default;
    constexpr explicit sentinel(sentinel_t<Base> end);
    constexpr sentinel(sentinel<!Const> s)
      requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base>>;

    constexpr sentinel_t<Base> base() const;

    friend constexpr bool operator==(const CI& y, const sentinel& x);
  };
}
constexpr explicit sentinel(sentinel_t<Base> end);
Effects: Initializes end_­ with end.
constexpr sentinel(sentinel<!Const> s) requires Const && convertible_­to<sentinel_t<V>, sentinel_t<Base>>;
Effects: Initializes end_­ with std​::​move(s.end_­).
constexpr sentinel_t<Base> base() const;
Effects: Equivalent to: return end_­;
friend constexpr bool operator==(const CI& y, const sentinel& x);
Effects: Equivalent to: return y.count() == 0 || y.base() == x.end_­;

24.7.7 Take while view [range.take.while]

24.7.7.1 Overview [range.take.while.overview]

Given a unary predicate pred and a view r, take_­while_­view produces a view of the range [begin(r), ranges​::​find_­if_­not(r, pred)).
The name views​::​take_­while denotes a range adaptor object ([range.adaptor.object]).
Given subexpressions E and F, the expression views​::​take_­while(E, F) is expression-equivalent to take_­while_­view{E, F}.
Example
:
auto input = istringstream{"0 1 2 3 4 5 6 7 8 9"};
auto small = [](const auto x) noexcept { return x < 5; };
auto small_ints = istream_view<int>(input) | views::take_while(small);
for (const auto i : small_ints) {
  cout << i << ' ';                             // prints 0 1 2 3 4
}
auto i = 0;
input >> i;
cout << i;                                      // prints 6
— end example
 ]

24.7.7.2 Class template take_­while_­view [range.take.while.view]

namespace std::ranges {
  template<view V, class Pred>
    requires input_range<V> && is_object_v<Pred> &&
             indirect_unary_predicate<const Pred, iterator_t<V>>
  class take_while_view : public view_interface<take_while_view<V, Pred>> {
    // [range.take.while.sentinel], class template take_­while_­view​::​sentinel
    template<bool> class sentinel;                      // exposition only

    V base_ = V();                                      // exposition only
    semiregular-box<Pred> pred_;                        // exposition only

  public:
    take_while_view() = default;
    constexpr take_while_view(V base, Pred pred);

    constexpr V base() const& requires copy_constructible<V> { return base_; }
    constexpr V base() && { return std::move(base_); }

    constexpr const Pred& pred() const;

    constexpr auto begin() requires (!simple-view<V>)
    { return ranges::begin(base_); }

    constexpr auto begin() const requires range<const V>
    { return ranges::begin(base_); }

    constexpr auto end() requires (!simple-view<V>)
    { return sentinel<false>(ranges::end(base_), addressof(*pred_)); }

    constexpr auto end() const requires range<const V>
    { return sentinel<true>(ranges::end(base_), addressof(*pred_)); }
  };

  template<class R, class Pred>
    take_while_view(R&&, Pred) -> take_while_view<views::all_t<R>, Pred>;
}
constexpr take_while_view(V base, Pred pred);
Effects: Initializes base_­ with std​::​move(base) and pred_­ with std​::​move(pred).
constexpr const Pred& pred() const;
Effects: Equivalent to: return *pred_­;

24.7.7.3 Class template take_­while_­view​::​sentinel [range.take.while.sentinel]

namespace std::ranges {
  template<view V, class Pred>
    requires input_range<V> && is_object_v<Pred> &&
             indirect_unary_predicate<const Pred, iterator_t<V>>
  template<bool Const>
  class take_while_view<V, Pred>::sentinel {            // exposition only
    using Base = conditional_t<Const, const V, V>;      // exposition only

    sentinel_t<Base> end_ = sentinel_t<Base>();         // exposition only
    const Pred* pred_ = nullptr;                        // exposition only
  public:
    sentinel() = default;
    constexpr explicit sentinel(sentinel_t<Base> end, const Pred* pred);
    constexpr sentinel(sentinel<!Const> s)
      requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base>>;

    constexpr sentinel_t<Base> base() const { return end_; }

    friend constexpr bool operator==(const iterator_t<Base>& x, const sentinel& y);
  };
}
constexpr explicit sentinel(sentinel_t<Base> end, const Pred* pred);
Effects: Initializes end_­ with end and pred_­ with pred.
constexpr sentinel(sentinel<!Const> s) requires Const && convertible_­to<sentinel_t<V>, sentinel_t<Base>>;
Effects: Initializes end_­ with s.end_­ and pred_­ with s.pred_­.
friend constexpr bool operator==(const iterator_t<Base>& x, const sentinel& y);
Effects: Equivalent to: return y.end_­ == x || !invoke(*y.pred_­, *x);

24.7.8 Drop view [range.drop]

24.7.8.1 Overview [range.drop.overview]

drop_­view produces a view excluding the first N elements from another view, or an empty range if the adapted view contains fewer than N elements.
The name views​::​drop denotes a range adaptor object ([range.adaptor.object]).
Let E and F be expressions, let T be remove_­cvref_­t<decltype((E))>, and let D be range_­difference_­t<decltype((E))>.
If decltype((F)) does not model convertible_­to<D>, views​::​drop(E, F) is ill-formed.
Otherwise, the expression views​::​drop(E, F) is expression-equivalent to:
  • If T is a specialization of ranges​::​empty_­view ([range.empty.view]), then ((void) F, decay-copy(E)).
  • Otherwise, if T models random_­access_­range and sized_­range and is then T{ranges​::​begin(E) + min<D>(ranges​::​size(E), F), ranges​::​end(E)}, except that E is evaluated only once.
  • Otherwise, ranges​::​drop_­view{E, F}.
Example
:
auto ints = views::iota(0) | views::take(10);
auto latter_half = drop_view{ints, 5};
for (auto i : latter_half) {
  cout << i << ' ';                             // prints 5 6 7 8 9
}
— end example
 ]

24.7.8.2 Class template drop_­view [range.drop.view]

namespace std::ranges {
  template<view V>
  class drop_view : public view_interface<drop_view<V>> {
  public:
    drop_view() = default;
    constexpr drop_view(V base, range_difference_t<V> count);

    constexpr V base() const& requires copy_constructible<V> { return base_; }
    constexpr V base() && { return std::move(base_); }

    constexpr auto begin()
      requires (!(simple-view<V> && random_access_range<V>));
    constexpr auto begin() const
      requires random_access_range<const V>;

    constexpr auto end()
      requires (!simple-view<V>)
    { return ranges::end(base_); }

    constexpr auto end() const
      requires range<const V>
    { return ranges::end(base_); }

    constexpr auto size()
      requires sized_range<V>
    {
      const auto s = ranges::size(base_);
      const auto c = static_cast<decltype(s)>(count_);
      return s < c ? 0 : s - c;
    }

    constexpr auto size() const
      requires sized_range<const V>
    {
      const auto s = ranges::size(base_);
      const auto c = static_cast<decltype(s)>(count_);
      return s < c ? 0 : s - c;
    }
  private:
    V base_ = V();                              // exposition only
    range_difference_t<V> count_ = 0;           // exposition only
  };

  template<class R>
    drop_view(R&&, range_difference_t<R>) -> drop_view<views::all_t<R>>;
}
constexpr drop_view(V base, range_difference_t<V> count);
Preconditions: count >= 0 is true.
Effects: Initializes base_­ with std​::​move(base) and count_­ with count.
constexpr auto begin() requires (!(simple-view<V> && random_­access_­range<V>)); constexpr auto begin() const requires random_access_range<const V>;
Returns: ranges​::​next(ranges​::​begin(base_­), count_­, ranges​::​end(base_­)).
Remarks: In order to provide the amortized constant-time complexity required by the range concept when drop_­view models forward_­range, the first overload caches the result within the drop_­view for use on subsequent calls.
Note
:
Without this, applying a reverse_­view over a drop_­view would have quadratic iteration complexity.
— end note
 ]

24.7.9 Drop while view [range.drop.while]

24.7.9.1 Overview [range.drop.while.overview]

Given a unary predicate pred and a view r, drop_­while_­view produces a view of the range [ranges​::​find_­if_­not(r, pred), ranges​::​end(r)).
The name views​::​drop_­while denotes a range adaptor object ([range.adaptor.object]).
Given subexpressions E and F, the expression views​::​drop_­while(E, F) is expression-equivalent to drop_­while_­view{E, F}.
Example
:
constexpr auto source = "  \t   \t   \t   hello there";
auto is_invisible = [](const auto x) { return x == ' ' || x == '\t'; };
auto skip_ws = drop_while_view{source, is_invisible};
for (auto c : skip_ws) {
  cout << c;                                    // prints hello there with no leading space
}
— end example
 ]

24.7.9.2 Class template drop_­while_­view [range.drop.while.view]

namespace std::ranges {
  template<view V, class Pred>
    requires input_range<V> && is_object_v<Pred> &&
             indirect_unary_predicate<const Pred, iterator_t<V>>
  class drop_while_view : public view_interface<drop_while_view<V, Pred>> {
  public:
    drop_while_view() = default;
    constexpr drop_while_view(V base, Pred pred);

    constexpr V base() const& requires copy_constructible<V> { return base_; }
    constexpr V base() && { return std::move(base_); }

    constexpr const Pred& pred() const;

    constexpr auto begin();

    constexpr auto end()
    { return ranges::end(base_); }

  private:
    V base_ = V();                                      // exposition only
    semiregular-box<Pred> pred_;                        // exposition only
  };

  template<class R, class Pred>
    drop_while_view(R&&, Pred) -> drop_while_view<views::all_t<R>, Pred>;
}
constexpr drop_while_view(V base, Pred pred);
Effects: Initializes base_­ with std​::​move(base) and pred_­ with std​::​move(pred).
constexpr const Pred& pred() const;
Effects: Equivalent to: return *pred_­;
constexpr auto begin();
Returns: ranges​::​find_­if_­not(base_­, cref(*pred_­)).
Remarks: In order to provide the amortized constant-time complexity required by the range concept when drop_­while_­view models forward_­range, the first call caches the result within the drop_­while_­view for use on subsequent calls.
Note
:
Without this, applying a reverse_­view over a drop_­while_­view would have quadratic iteration complexity.
— end note
 ]

24.7.10 Join view [range.join]

24.7.10.1 Overview [range.join.overview]

join_­view flattens a view of ranges into a view.
The name views​::​join denotes a range adaptor object ([range.adaptor.object]).
Given a subexpression E, the expression views​::​join(E) is expression-equivalent to join_­view{E}.
Example
:
vector<string> ss{"hello", " ", "world", "!"};
join_view greeting{ss};
for (char ch : greeting)
  cout << ch;                                   // prints: hello world!
— end example
 ]

24.7.10.2 Class template join_­view [range.join.view]

namespace std::ranges {
  template<input_range V>
    requires view<V> && input_range<range_reference_t<V>> &&
             (is_reference_v<range_reference_t<V>> ||
              view<range_value_t<V>>)
  class join_view : public view_interface<join_view<V>> {
  private:
    using InnerRng =                    // exposition only
      range_reference_t<V>;
    // [range.join.iterator], class template join_­view​::​iterator
    template<bool Const>
      struct iterator;                  // exposition only
    // [range.join.sentinel], class template join_­view​::​sentinel
    template<bool Const>
      struct sentinel;                  // exposition only

    V base_ = V();                      // exposition only
    views::all_t<InnerRng> inner_ =     // exposition only, present only when !is_­reference_­v<InnerRng>
      views::all_t<InnerRng>();
  public:
    join_view() = default;
    constexpr explicit join_view(V base);

    constexpr V base() const& requires copy_constructible<V> { return base_; }
    constexpr V base() && { return std::move(base_); }

    constexpr auto begin() {
      constexpr bool use_const = simple-view<V> &&
                                 is_reference_v<range_reference_t<V>>;
      return iterator<use_const>{*this, ranges::begin(base_)};
    }

    constexpr auto begin() const
    requires input_range<const V> &&
             is_reference_v<range_reference_t<const V>> {
      return iterator<true>{*this, ranges::begin(base_)};
    }

    constexpr auto end() {
      if constexpr (forward_range<V> &&
                    is_reference_v<InnerRng> && forward_range<InnerRng> &&
                    common_range<V> && common_range<InnerRng>)
        return iterator<simple-view<V>>{*this, ranges::end(base_)};
      else
        return sentinel<simple-view<V>>{*this};
    }

    constexpr auto end() const
    requires input_range<const V> &&
             is_reference_v<range_reference_t<const V>> {
      if constexpr (forward_range<const V> &&
                    is_reference_v<range_reference_t<const V>> &&
                    forward_range<range_reference_t<const V>> &&
                    common_range<const V> &&
                    common_range<range_reference_t<const V>>)
        return iterator<true>{*this, ranges::end(base_)};
      else
        return sentinel<true>{*this};
    }
  };

  template<class R>
    explicit join_view(R&&) -> join_view<views::all_t<R>>;
}
constexpr explicit join_view(V base);
Effects: Initializes base_­ with std​::​move(base).

24.7.10.3 Class template join_­view​::​iterator [range.join.iterator]

namespace std::ranges {
  template<input_range V>
    requires view<V> && input_range<range_reference_t<V>> &&
             (is_reference_v<range_reference_t<V>> ||
              view<range_value_t<V>>)
  template<bool Const>
  struct join_view<V>::iterator {
  private:
    using Parent =                                              // exposition only
      conditional_t<Const, const join_view, join_view>;
    using Base   = conditional_t<Const, const V, V>;            // exposition only

    static constexpr bool ref-is-glvalue =                      // exposition only
      is_reference_v<range_reference_t<Base>>;

    iterator_t<Base> outer_ = iterator_t<Base>();               // exposition only
    iterator_t<range_reference_t<Base>> inner_ =                // exposition only
      iterator_t<range_reference_t<Base>>();
    Parent* parent_ = nullptr;                                  // exposition only

    constexpr void satisfy();                                   // exposition only
  public:
    using iterator_concept  = see below;
    using iterator_category = see below;
    using value_type        = range_value_t<range_reference_t<Base>>;
    using difference_type   = see below;

    iterator() = default;
    constexpr iterator(Parent& parent, iterator_t<Base> outer);
    constexpr iterator(iterator<!Const> i)
      requires Const &&
               convertible_to<iterator_t<V>, iterator_t<Base>> &&
               convertible_to<iterator_t<InnerRng>,
                              iterator_t<range_reference_t<Base>>>;

    constexpr decltype(auto) operator*() const { return *inner_; }

    constexpr iterator_t<Base> operator->() const
      requires has-arrow<iterator_t<Base>> && copyable<iterator_t<Base>>;

    constexpr iterator& operator++();
    constexpr void operator++(int);
    constexpr iterator operator++(int)
      requires ref-is-glvalue && forward_range<Base> &&
               forward_range<range_reference_t<Base>>;

    constexpr iterator& operator--()
      requires ref-is-glvalue && bidirectional_range<Base> &&
               bidirectional_range<range_reference_t<Base>> &&
               common_range<range_reference_t<Base>>;

    constexpr iterator operator--(int)
      requires ref-is-glvalue && bidirectional_range<Base> &&
               bidirectional_range<range_reference_t<Base>> &&
               common_range<range_reference_t<Base>>;

    friend constexpr bool operator==(const iterator& x, const iterator& y)
      requires ref-is-glvalue && equality_comparable<iterator_t<Base>> &&
               equality_comparable<iterator_t<range_reference_t<Base>>>;

    friend constexpr decltype(auto) iter_move(const iterator& i)
    noexcept(noexcept(ranges::iter_move(i.inner_))) {
      return ranges::iter_move(i.inner_);
    }

    friend constexpr void iter_swap(const iterator& x, const iterator& y)
      noexcept(noexcept(ranges::iter_swap(x.inner_, y.inner_)));
  };
}
iterator​::​iterator_­concept is defined as follows:
  • If ref-is-glvalue is true and Base and range_­reference_­t<Base> each model bidirectional_­range, then iterator_­concept denotes bidirectional_­iterator_­tag.
  • Otherwise, if ref-is-glvalue is true and Base and range_­reference_­t<Base> each model forward_­range, then iterator_­concept denotes forward_­iterator_­tag.
  • Otherwise, iterator_­concept denotes input_­iterator_­tag.
iterator​::​iterator_­category is defined as follows:
  • Let OUTERC denote iterator_­traits<iterator_­t<Base>>​::​iterator_­category, and let INNERC denote iterator_­traits<iterator_­t<range_­reference_­t<Base>>>​::​iterator_­category.
  • If ref-is-glvalue is true and OUTERC and INNERC each model derived_­from<bidirectional_­iterator_­tag>, iterator_­category denotes bidirectional_­iterator_­tag.
  • Otherwise, if ref-is-glvalue is true and OUTERC and INNERC each model derived_­from<forward_­iterator_­tag>, iterator_­category denotes forward_­iterator_­tag.
  • Otherwise, if OUTERC and INNERC each model derived_­from<input_­iterator_­tag>, iterator_­category denotes input_­iterator_­tag.
  • Otherwise, iterator_­category denotes output_­iterator_­tag.
iterator​::​difference_­type denotes the type:
common_type_t<
  range_difference_t<Base>,
  range_difference_t<range_reference_t<Base>>>
join_­view iterators use the satisfy function to skip over empty inner ranges.
constexpr void satisfy(); // exposition only
Effects: Equivalent to:
auto update_inner = [this](range_reference_t<Base> x) -> auto& {
  if constexpr (ref-is-glvalue) // x is a reference
    return x;
  else
    return (parent_->inner_ = views::all(std::move(x)));
};

for (; outer_ != ranges::end(parent_->base_); ++outer_) {
  auto& inner = update_inner(*outer_);
  inner_ = ranges::begin(inner);
  if (inner_ != ranges::end(inner))
    return;
}
if constexpr (ref-is-glvalue)
  inner_ = iterator_t<range_reference_t<Base>>();
constexpr iterator(Parent& parent, iterator_t<Base> outer);
Effects: Initializes outer_­ with std​::​move(outer) and parent_­ with addressof(parent); then calls satisfy().
constexpr iterator(iterator<!Const> i) requires Const && convertible_­to<iterator_t<V>, iterator_t<Base>> && convertible_­to<iterator_t<InnerRng>, iterator_t<range_reference_t<Base>>>;
Effects: Initializes outer_­ with std​::​move(i.outer_­), inner_­ with std​::​move(i.inner_­), and parent_­ with i.parent_­.
constexpr iterator_t<Base> operator->() const requires has-arrow<iterator_t<Base>> && copyable<iterator_t<Base>>;
Effects: Equivalent to return inner_­;
constexpr iterator& operator++();
Let inner-range be:
  • If ref-is-glvalue is true, *outer_­.
  • Otherwise, parent_­->inner_­.
Effects: Equivalent to:
auto&& inner_rng = inner-range;
if (++inner_ == ranges::end(inner_rng)) {
  ++outer_;
  satisfy();
}
return *this;
constexpr void operator++(int);
Effects: Equivalent to: ++*this.
constexpr iterator operator++(int) requires ref-is-glvalue && forward_­range<Base> && forward_­range<range_reference_t<Base>>;
Effects: Equivalent to:
auto tmp = *this;
++*this;
return tmp;
constexpr iterator& operator--() requires ref-is-glvalue && bidirectional_­range<Base> && bidirectional_­range<range_reference_t<Base>> && common_range<range_reference_t<Base>>;
Effects: Equivalent to:
if (outer_ == ranges::end(parent_->base_))
  inner_ = ranges::end(*--outer_);
while (inner_ == ranges::begin(*outer_))
  inner_ = ranges::end(*--outer_);
--inner_;
return *this;
constexpr iterator operator--(int) requires ref-is-glvalue && bidirectional_­range<Base> && bidirectional_­range<range_reference_t<Base>> && common_range<range_reference_t<Base>>;
Effects: Equivalent to:
auto tmp = *this;
--*this;
return tmp;
friend constexpr bool operator==(const iterator& x, const iterator& y) requires ref-is-glvalue && equality_comparable<iterator_t<Base>> && equality_comparable<iterator_t<range_reference_t<Base>>>;
Effects: Equivalent to: return x.outer_­ == y.outer_­ && x.inner_­ == y.inner_­;
friend constexpr void iter_swap(const iterator& x, const iterator& y) noexcept(noexcept(ranges::iter_swap(x.inner_­, y.inner_­)));
Effects: Equivalent to: return ranges​::​iter_­swap(x.inner_­, y.inner_­);

24.7.10.4 Class template join_­view​::​sentinel [range.join.sentinel]

namespace std::ranges {
  template<input_range V>
    requires view<V> && input_range<range_reference_t<V>> &&
             (is_reference_v<range_reference_t<V>> ||
              view<range_value_t<V>>)
  template<bool Const>
  struct join_view<V>::sentinel {
  private:
    using Parent =                                      // exposition only
      conditional_t<Const, const join_view, join_view>;
    using Base   = conditional_t<Const, const V, V>;    // exposition only
    sentinel_t<Base> end_ = sentinel_t<Base>();         // exposition only
  public:
    sentinel() = default;

    constexpr explicit sentinel(Parent& parent);
    constexpr sentinel(sentinel<!Const> s)
      requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base>>;

    friend constexpr bool operator==(const iterator<Const>& x, const sentinel& y);
  };
}
constexpr explicit sentinel(Parent& parent);
Effects: Initializes end_­ with ranges​::​end(parent.base_­).
constexpr sentinel(sentinel<!Const> s) requires Const && convertible_­to<sentinel_t<V>, sentinel_t<Base>>;
Effects: Initializes end_­ with std​::​move(s.end_­).
friend constexpr bool operator==(const iterator<Const>& x, const sentinel& y);
Effects: Equivalent to: return x.outer_­ == y.end_­;

24.7.11 Split view [range.split]

24.7.11.1 Overview [range.split.overview]

split_­view takes a view and a delimiter, and splits the view into subranges on the delimiter.
The delimiter can be a single element or a view of elements.
The name views​::​split denotes a range adaptor object ([range.adaptor.object]).
Given subexpressions E and F, the expression views​::​split(E, F) is expression-equivalent to split_­view{E, F}.
Example
:
string str{"the quick brown fox"};
split_view sentence{str, ' '};
for (auto word : sentence) {
  for (char ch : word)
    cout << ch;
  cout << '*';
}
// The above prints: the*quick*brown*fox*
— end example
 ]

24.7.11.2 Class template split_­view [range.split.view]

namespace std::ranges {
  template<auto> struct require-constant;       // exposition only

  template<class R>
  concept tiny-range =                          // exposition only
    sized_range<R> &&
    requires { typename require-constant<remove_reference_t<R>::size()>; } &&
    (remove_reference_t<R>::size() <= 1);

  template<input_range V, forward_range Pattern>
    requires view<V> && view<Pattern> &&
             indirectly_comparable<iterator_t<V>, iterator_t<Pattern>, ranges::equal_to> &&
             (forward_range<V> || tiny-range<Pattern>)
  class split_view : public view_interface<split_view<V, Pattern>> {
  private:
    V base_ = V();                              // exposition only
    Pattern pattern_ = Pattern();               // exposition only
    iterator_t<V> current_ = iterator_t<V>();   // exposition only, present only if !forward_­range<V>
    // [range.split.outer], class template split_­view​::​outer-iterator
    template<bool> struct outer-iterator;       // exposition only
    // [range.split.inner], class template split_­view​::​inner-iterator
    template<bool> struct inner-iterator;       // exposition only
  public:
    split_view() = default;
    constexpr split_view(V base, Pattern pattern);

    template<input_range R>
      requires constructible_from<V, views::all_t<R>> &&
               constructible_from<Pattern, single_view<range_value_t<R>>>
    constexpr split_view(R&& r, range_value_t<R> e);

    constexpr V base() const& requires copy_constructible<V> { return base_; }
    constexpr V base() && { return std::move(base_); }

    constexpr auto begin() {
      if constexpr (forward_range<V>)
        return outer-iterator<simple-view<V>>{*this, ranges::begin(base_)};
      else {
        current_ = ranges::begin(base_);
        return outer-iterator<false>{*this};
      }
    }

    constexpr auto begin() const requires forward_range<V> && forward_range<const V> {
      return outer-iterator<true>{*this, ranges::begin(base_)};
    }

    constexpr auto end() requires forward_range<V> && common_range<V> {
      return outer-iterator<simple-view<V>>{*this, ranges::end(base_)};
    }

    constexpr auto end() const {
      if constexpr (forward_range<V> && forward_range<const V> && common_range<const V>)
        return outer-iterator<true>{*this, ranges::end(base_)};
      else
        return default_sentinel;
    }
  };

  template<class R, class P>
    split_view(R&&, P&&) -> split_view<views::all_t<R>, views::all_t<P>>;

  template<input_range R>
    split_view(R&&, range_value_t<R>)
      -> split_view<views::all_t<R>, single_view<range_value_t<R>>>;
}
constexpr split_view(V base, Pattern pattern);
Effects: Initializes base_­ with std​::​move(base), and pattern_­ with std​::​move(pattern).
template<input_­range R> requires constructible_­from<V, views::all_t<R>> && constructible_­from<Pattern, single_view<range_value_t<R>>> constexpr split_view(R&& r, range_value_t<R> e);
Effects: Initializes base_­ with views​::​all(std​::​forward<R>(r)), and pattern_­ with single_­view{​std​::​move(e)}.

24.7.11.3 Class template split_­view​::​outer-iterator [range.split.outer]

namespace std::ranges {
  template<input_range V, forward_range Pattern>
    requires view<V> && view<Pattern> &&
             indirectly_comparable<iterator_t<V>, iterator_t<Pattern>, ranges::equal_to> &&
             (forward_range<V> || tiny-range<Pattern>)
  template<bool Const>
  struct split_view<V, Pattern>::outer-iterator {
  private:
    using Parent =                          // exposition only
      conditional_t<Const, const split_view, split_view>;
    using Base   =                          // exposition only
      conditional_t<Const, const V, V>;
    Parent* parent_ = nullptr;              // exposition only
    iterator_t<Base> current_ =             // exposition only, present only if V models forward_­range
      iterator_t<Base>();

  public:
    using iterator_concept  =
      conditional_t<forward_range<Base>, forward_iterator_tag, input_iterator_tag>;
    using iterator_category = input_iterator_tag;
    // [range.split.outer.value], class split_­view​::​outer-iterator​::​value_­type
    struct value_type;
    using difference_type   = range_difference_t<Base>;

    outer-iterator() = default;
    constexpr explicit outer-iterator(Parent& parent)
      requires (!forward_range<Base>);
    constexpr outer-iterator(Parent& parent, iterator_t<Base> current)
      requires forward_range<Base>;
    constexpr outer-iterator(outer-iterator<!Const> i)
      requires Const && convertible_to<iterator_t<V>, iterator_t<Base>>;

    constexpr value_type operator*() const;

    constexpr outer-iterator& operator++();
    constexpr decltype(auto) operator++(int) {
      if constexpr (forward_range<Base>) {
        auto tmp = *this;
        ++*this;
        return tmp;
      } else
        ++*this;
    }

    friend constexpr bool operator==(const outer-iterator& x, const outer-iterator& y)
      requires forward_range<Base>;

    friend constexpr bool operator==(const outer-iterator& x, default_sentinel_t);
  };
}
Many of the following specifications refer to the notional member current of outer-iterator.
current is equivalent to current_­ if V models forward_­range, and parent_­->current_­ otherwise.
constexpr explicit outer-iterator(Parent& parent) requires (!forward_­range<Base>);
Effects: Initializes parent_­ with addressof(parent).
constexpr outer-iterator(Parent& parent, iterator_t<Base> current) requires forward_­range<Base>;
Effects: Initializes parent_­ with addressof(parent) and current_­ with std​::​move(current).
constexpr outer-iterator(outer-iterator<!Const> i) requires Const && convertible_­to<iterator_t<V>, iterator_t<Base>>;
Effects: Initializes parent_­ with i.parent_­ and current_­ with std​::​move(i.current_­).
constexpr value_type operator*() const;
Effects: Equivalent to: return value_­type{*this};
constexpr outer-iterator& operator++();
Effects: Equivalent to:
const auto end = ranges::end(parent_->base_);
if (current == end) return *this;
const auto [pbegin, pend] = subrange{parent_->pattern_};
if (pbegin == pend) ++current;
else {
  do {
    auto [b, p] = ranges::mismatch(std::move(current), end, pbegin, pend);
    current = std::move(b);
    if (p == pend) {
      break;            // The pattern matched; skip it
    }
  } while (++current != end);
}
return *this;
friend constexpr bool operator==(const outer-iterator& x, const outer-iterator& y) requires forward_­range<Base>;
Effects: Equivalent to: return x.current_­ == y.current_­;
friend constexpr bool operator==(const outer-iterator& x, default_sentinel_t);
Effects: Equivalent to: return x.current == ranges​::​end(x.parent_­->base_­);

24.7.11.4 Class split_­view​::​outer-iterator​::​value_­type [range.split.outer.value]

namespace std::ranges {
  template<input_range V, forward_range Pattern>
    requires view<V> && view<Pattern> &&
             indirectly_comparable<iterator_t<V>, iterator_t<Pattern>, ranges::equal_to> &&
             (forward_range<V> || tiny-range<Pattern>)
  template<bool Const>
  struct split_view<V, Pattern>::outer-iterator<Const>::value_type
    : view_interface<value_type> {
  private:
    outer-iterator i_ = outer-iterator();               // exposition only
  public:
    value_type() = default;
    constexpr explicit value_type(outer-iterator i);

    constexpr inner-iterator<Const> begin() const requires copyable<outer-iterator>;
    constexpr inner-iterator<Const> begin() requires (!copyable<outer-iterator>);
    constexpr default_sentinel_t end() const;
  };
}
constexpr explicit value_type(outer-iterator i);
Effects: Initializes i_­ with std​::​move(i).
constexpr inner-iterator<Const> begin() const requires copyable<outer-iterator>;
Effects: Equivalent to: return inner-iterator<Const>{i_­};
constexpr inner-iterator<Const> begin() requires (!copyable<outer-iterator>);
Effects: Equivalent to: return inner-iterator<Const>{std​::​move(i_­)};
constexpr default_sentinel_t end() const;
Effects: Equivalent to: return default_­sentinel;

24.7.11.5 Class template split_­view​::​inner-iterator [range.split.inner]

namespace std::ranges {
  template<input_range V, forward_range Pattern>
    requires view<V> && view<Pattern> &&
             indirectly_comparable<iterator_t<V>, iterator_t<Pattern>, ranges::equal_to> &&
             (forward_range<V> || tiny-range<Pattern>)
  template<bool Const>
  struct split_view<V, Pattern>::inner-iterator {
  private:
    using Base = conditional_t<Const, const V, V>;      // exposition only
    outer-iterator<Const> i_ = outer-iterator<Const>(); // exposition only
    bool incremented_ = false;                          // exposition only
  public:
    using iterator_concept  = typename outer-iterator<Const>::iterator_concept;
    using iterator_category = see below;
    using value_type        = range_value_t<Base>;
    using difference_type   = range_difference_t<Base>;

    inner-iterator() = default;
    constexpr explicit inner-iterator(outer-iterator<Const> i);

    constexpr decltype(auto) operator*() const { return *i_.current; }

    constexpr inner-iterator& operator++();
    constexpr decltype(auto) operator++(int) {
      if constexpr (forward_range<V>) {
        auto tmp = *this;
        ++*this;
        return tmp;
      } else
        ++*this;
    }

    friend constexpr bool operator==(const inner-iterator& x, const inner-iterator& y)
      requires forward_range<Base>;

    friend constexpr bool operator==(const inner-iterator& x, default_sentinel_t);

    friend constexpr decltype(auto) iter_move(const inner-iterator& i)
    noexcept(noexcept(ranges::iter_move(i.i_.current))) {
      return ranges::iter_move(i.i_.current);
    }

    friend constexpr void iter_swap(const inner-iterator& x, const inner-iterator& y)
      noexcept(noexcept(ranges::iter_swap(x.i_.current, y.i_.current)))
      requires indirectly_swappable<iterator_t<Base>>;
  };
}
The typedef-name iterator_­category denotes:
  • forward_­iterator_­tag if iterator_­traits<iterator_­t<Base>>​::​iterator_­category models
    derived_­from<forward_­iterator_­tag>;
  • otherwise, iterator_­traits<iterator_­t<Base>>​::​iterator_­category.
constexpr explicit inner-iterator(outer-iterator<Const> i);
Effects: Initializes i_­ with std​::​move(i).
constexpr inner-iterator& operator++();
Effects: Equivalent to:
incremented_ = true;
if constexpr (!forward_range<Base>) {
  if constexpr (Pattern::size() == 0) {
    return *this;
  }
}
++i_.current;
return *this;
friend constexpr bool operator==(const inner-iterator& x, const inner-iterator& y) requires forward_­range<Base>;
Effects: Equivalent to: return x.i_­.current == y.i_­.current;
friend constexpr bool operator==(const inner-iterator& x, default_sentinel_t);
Effects: Equivalent to:
auto [pcur, pend] = subrange{x.i_.parent_->pattern_};
auto end = ranges::end(x.i_.parent_->base_);
if constexpr (tiny-range<Pattern>) {
  const auto & cur = x.i_.current;
  if (cur == end) return true;
  if (pcur == pend) return x.incremented_;
  return *cur == *pcur;
} else {
  auto cur = x.i_.current;
  if (cur == end) return true;
  if (pcur == pend) return x.incremented_;
  do {
    if (*cur != *pcur) return false;
    if (++pcur == pend) return true;
  } while (++cur != end);
  return false;
}
friend constexpr void iter_swap(const inner-iterator& x, const inner-iterator& y) noexcept(noexcept(ranges::iter_swap(x.i_­.current, y.i_­.current))) requires indirectly_­swappable<iterator_t<Base>>;
Effects: Equivalent to ranges​::​iter_­swap(x.i_­.current, y.i_­.current).

24.7.12 Counted view [range.counted]

A counted view presents a view of the elements of the counted range ([iterator.requirements.general]) for an iterator i and non-negative integer n.
The name views​::​counted denotes a customization point object ([customization.point.object]).
Let E and F be expressions, let T be decay_­t<decltype((E))>, and let D be iter_­difference_­t<T>.
If decltype((F)) does not model convertible_­to<D>, views​::​counted(E, F) is ill-formed.
Note
:
This case can result in substitution failure when views​::​counted(E, F) appears in the immediate context of a template instantiation.
— end note
 ]
Otherwise, views​::​counted(E, F) is expression-equivalent to:
  • If T models contiguous_­iterator, then span{to_­address(E), static_­cast<D>(F)}.
  • Otherwise, if T models random_­access_­iterator, then subrange{E, E + static_­cast<D>(F)}, except that E is evaluated only once.
  • Otherwise, subrange{counted_­iterator{E, F}, default_­sentinel}.

24.7.13 Common view [range.common]

24.7.13.1 Overview [range.common.overview]

common_­view takes a view which has different types for its iterator and sentinel and turns it into a view of the same elements with an iterator and sentinel of the same type.
Note
:
common_­view is useful for calling legacy algorithms that expect a range's iterator and sentinel types to be the same.
— end note
 ]
The name views​::​common denotes a range adaptor object ([range.adaptor.object]).
Given a subexpression E, the expression views​::​common(E) is expression-equivalent to:
  • views​::​all(E), if decltype((E)) models common_­range and views​::​all(E) is a well-formed expression.
  • Otherwise, common_­view{E}.
Example
:
// Legacy algorithm:
template<class ForwardIterator>
size_t count(ForwardIterator first, ForwardIterator last);

template<forward_range R>
void my_algo(R&& r) {
  auto&& common = common_view{r};
  auto cnt = count(common.begin(), common.end());
  // ...
}
— end example
 ]

24.7.13.2 Class template common_­view [range.common.view]

namespace std::ranges {
  template<view V>
    requires (!common_range<V> && copyable<iterator_t<V>>)
  class common_view : public view_interface<common_view<V>> {
  private:
    V base_ = V();  // exposition only
  public:
    common_view() = default;

    constexpr explicit common_view(V r);

    template<viewable_range R>
      requires (!common_range<R> && constructible_from<V, views::all_t<R>>)
    constexpr explicit common_view(R&& r);

    constexpr V base() const& requires copy_constructible<V> { return base_; }
    constexpr V base() && { return std::move(base_); }

    constexpr auto begin() {
      if constexpr (random_access_range<V> && sized_range<V>)
        return ranges::begin(base_);
      else
        return common_iterator<iterator_t<V>, sentinel_t<V>>(ranges::begin(base_));
    }

    constexpr auto begin() const requires range<const V> {
      if constexpr (random_access_range<const V> && sized_range<const V>)
        return ranges::begin(base_);
      else
        return common_iterator<iterator_t<const V>, sentinel_t<const V>>(ranges::begin(base_));
    }

    constexpr auto end() {
      if constexpr (random_access_range<V> && sized_range<V>)
        return ranges::begin(base_) + ranges::size(base_);
      else
        return common_iterator<iterator_t<V>, sentinel_t<V>>(ranges::end(base_));
    }

    constexpr auto end() const requires range<const V> {
      if constexpr (random_access_range<const V> && sized_range<const V>)
        return ranges::begin(base_) + ranges::size(base_);
      else
        return common_iterator<iterator_t<const V>, sentinel_t<const V>>(ranges::end(base_));
    }

    constexpr auto size() requires sized_range<V> {
      return ranges::size(base_);
    }
    constexpr auto size() const requires sized_range<const V> {
      return ranges::size(base_);
    }
  };

  template<class R>
    common_view(R&&) -> common_view<views::all_t<R>>;
}
constexpr explicit common_view(V base);
Effects: Initializes base_­ with std​::​move(base).
template<viewable_range R> requires (!common_range<R> && constructible_­from<V, views::all_t<R>>) constexpr explicit common_view(R&& r);
Effects: Initializes base_­ with views​::​all(std​::​forward<R>(r)).

24.7.14 Reverse view [range.reverse]

24.7.14.1 Overview [range.reverse.overview]

reverse_­view takes a bidirectional view and produces another view that iterates the same elements in reverse order.
The name views​::​reverse denotes a range adaptor object ([range.adaptor.object]).
Given a subexpression E, the expression views​::​reverse(E) is expression-equivalent to:
  • If the type of E is a (possibly cv-qualified) specialization of reverse_­view, equivalent to E.base().
  • Otherwise, if the type of E is cv-qualified
    subrange<reverse_iterator<I>, reverse_iterator<I>, K>
    
    for some iterator type I and value K of type subrange_­kind,
    • if K is subrange_­kind​::​sized, equivalent to:
      subrange<I, I, K>(E.end().base(), E.begin().base(), E.size())
      
    • otherwise, equivalent to:
      subrange<I, I, K>(E.end().base(), E.begin().base())
      
    However, in either case E is evaluated only once.
  • Otherwise, equivalent to reverse_­view{E}.
Example
:
vector<int> is {0,1,2,3,4};
reverse_view rv {is};
for (int i : rv)
  cout << i << ' '; // prints: 4 3 2 1 0
— end example
 ]

24.7.14.2 Class template reverse_­view [range.reverse.view]

namespace std::ranges {
  template<view V>
    requires bidirectional_range<V>
  class reverse_view : public view_interface<reverse_view<V>> {
  private:
    V base_ = V();  // exposition only
  public:
    reverse_view() = default;

    constexpr explicit reverse_view(V r);

    constexpr V base() const& requires copy_constructible<V> { return base_; }
    constexpr V base() && { return std::move(base_); }

    constexpr reverse_iterator<iterator_t<V>> begin();
    constexpr reverse_iterator<iterator_t<V>> begin() requires common_range<V>;
    constexpr auto begin() const requires common_range<const V>;

    constexpr reverse_iterator<iterator_t<V>> end();
    constexpr auto end() const requires common_range<const V>;

    constexpr auto size() requires sized_range<V> {
      return ranges::size(base_);
    }
    constexpr auto size() const requires sized_range<const V> {
      return ranges::size(base_);
    }
  };

  template<class R>
    reverse_view(R&&) -> reverse_view<views::all_t<R>>;
}
constexpr explicit reverse_view(V base);
Effects: Initializes base_­ with std​::​move(base).
constexpr reverse_iterator<iterator_t<V>> begin();
Returns:
make_reverse_iterator(ranges::next(ranges::begin(base_), ranges::end(base_)))
Remarks: In order to provide the amortized constant time complexity required by the range concept, this function caches the result within the reverse_­view for use on subsequent calls.
constexpr reverse_iterator<iterator_t<V>> begin() requires common_range<V>; constexpr auto begin() const requires common_range<const V>;
Effects: Equivalent to: return make_­reverse_­iterator(ranges​::​end(base_­));
constexpr reverse_iterator<iterator_t<V>> end(); constexpr auto end() const requires common_range<const V>;
Effects: Equivalent to: return make_­reverse_­iterator(ranges​::​begin(base_­));

24.7.15 Elements view [range.elements]

24.7.15.1 Overview [range.elements.overview]

elements_­view takes a view of tuple-like values and a size_­t, and produces a view with a value-type of the element of the adapted view's value-type.
The name views​::​elements<N> denotes a range adaptor object ([range.adaptor.object]).
Given a subexpression E and constant expression N, the expression views​::​elements<N>(E) is expression-equivalent to elements_­view<views​::​all_­t<decltype((E))>, N>{E}.
Example
:
auto historical_figures = map{
  {"Lovelace"sv, 1815},
  {"Turing"sv, 1912},
  {"Babbage"sv, 1791},
  {"Hamilton"sv, 1936}
};

auto names = historical_figures | views::elements<0>;
for (auto&& name : names) {
  cout << name << ' ';          // prints Babbage Hamilton Lovelace Turing 
}

auto birth_years = historical_figures | views::elements<1>;
for (auto&& born : birth_years) {
  cout << born << ' ';          // prints 1791 1936 1815 1912 
}
— end example
 ]
keys_­view is an alias for elements_­view<views​::​all_­t<R>, 0>, and is useful for extracting keys from associative containers.
Example
:
auto names = keys_view{historical_figures};
for (auto&& name : names) {
  cout << name << ' ';          // prints Babbage Hamilton Lovelace Turing 
}
— end example
 ]
values_­view is an alias for elements_­view<views​::​all_­t<R>, 1>, and is useful for extracting values from associative containers.
Example
:
auto is_even = [](const auto x) { return x % 2 == 0; };
cout << ranges::count_if(values_view{historical_figures}, is_even);     // prints 2
— end example
 ]

24.7.15.2 Class template elements_­view [range.elements.view]

namespace std::ranges {
  template<class T, size_t N>
  concept has-tuple-element =                   // exposition only
    requires(T t) {
      typename tuple_size<T>::type;
      requires N < tuple_size_v<T>;
      typename tuple_element_t<N, T>;
      { get<N>(t) } -> convertible_to<const tuple_element_t<N, T>&>;
    };


  template<input_range V, size_t N>
    requires view<V> && has-tuple-element<range_value_t<V>, N> &&
             has-tuple-element<remove_reference_t<range_reference_t<V>>, N>
  class elements_view : public view_interface<elements_view<V, N>> {
  public:
    elements_view() = default;
    constexpr explicit elements_view(V base);

    constexpr V base() const& requires copy_constructible<V> { return base_; }
    constexpr V base() && { return std::move(base_); }

    constexpr auto begin() requires (!simple-view<V>)
    { return iterator<false>(ranges::begin(base_)); }

    constexpr auto begin() const requires simple-view<V>
    { return iterator<true>(ranges::begin(base_)); }

    constexpr auto end()
    { return sentinel<false>{ranges::end(base_)}; }

    constexpr auto end() requires common_range<V>
    { return iterator<false>{ranges::end(base_)}; }

    constexpr auto end() const requires range<const V>
    { return sentinel<true>{ranges::end(base_)}; }

    constexpr auto end() const requires common_range<const V>
    { return iterator<true>{ranges::end(base_)}; }

    constexpr auto size() requires sized_range<V>
    { return ranges::size(base_); }

    constexpr auto size() const requires sized_range<const V>
    { return ranges::size(base_); }

  private:
    // [range.elements.iterator], class template elements_­view​::​iterator
    template<bool> struct iterator;                     // exposition only
    // [range.elements.sentinel], class template elements_­view​::​sentinel
    template<bool> struct sentinel;                     // exposition only
    V base_ = V();                                      // exposition only
  };
}
constexpr explicit elements_view(V base);
Effects: Initializes base_­ with std​::​move(base).

24.7.15.3 Class template elements_­view​::​iterator [range.elements.iterator]

namespace std::ranges {
  template<input_range V, size_t N>
    requires view<V> && has-tuple-element<range_value_t<V>, N> &&
             has-tuple-element<remove_reference_t<range_reference_t<V>>, N>
  template<bool Const>
  class elements_view<V, N>::iterator {                 // exposition only
    using Base = conditional_t<Const, const V, V>;      // exposition only

    iterator_t<Base> current_ = iterator_t<Base>();
  public:
    using iterator_category = typename iterator_traits<iterator_t<Base>>::iterator_category;
    using value_type = remove_cvref_t<tuple_element_t<N, range_value_t<Base>>>;
    using difference_type = range_difference_t<Base>;

    iterator() = default;
    constexpr explicit iterator(iterator_t<Base> current);
    constexpr iterator(iterator<!Const> i)
      requires Const && convertible_to<iterator_t<V>, iterator_t<Base>>;

    constexpr iterator_t<Base> base() const&
      requires copyable<iterator_t<Base>>;
    constexpr iterator_t<Base> base() &&;

    constexpr decltype(auto) operator*() const
    { return get<N>(*current_); }

    constexpr iterator& operator++();
    constexpr void operator++(int) requires (!forward_range<Base>);
    constexpr iterator operator++(int) requires forward_range<Base>;

    constexpr iterator& operator--() requires bidirectional_range<Base>;
    constexpr iterator operator--(int) requires bidirectional_range<Base>;

    constexpr iterator& operator+=(difference_type x)
      requires random_access_range<Base>;
    constexpr iterator& operator-=(difference_type x)
      requires random_access_range<Base>;

    constexpr decltype(auto) operator[](difference_type n) const
      requires random_access_range<Base>
    { return get<N>(*(current_ + n)); }

    friend constexpr bool operator==(const iterator& x, const iterator& y)
      requires equality_comparable<iterator_t<Base>>;

    friend constexpr bool operator<(const iterator& x, const iterator& y)
      requires random_access_range<Base>;
    friend constexpr bool operator>(const iterator& x, const iterator& y)
      requires random_access_range<Base>;
    friend constexpr bool operator<=(const iterator& y, const iterator& y)
      requires random_access_range<Base>;
    friend constexpr bool operator>=(const iterator& x, const iterator& y)
      requires random_access_range<Base>;
    friend constexpr auto operator<=>(const iterator& x, const iterator& y)
      requires random_access_range<Base> && three_way_comparable<iterator_t<Base>>;

    friend constexpr iterator operator+(const iterator& x, difference_type y)
      requires random_access_range<Base>;
    friend constexpr iterator operator+(difference_type x, const iterator& y)
      requires random_access_range<Base>;
    friend constexpr iterator operator-(const iterator& x, difference_type y)
      requires random_access_range<Base>;
    friend constexpr difference_type operator-(const iterator& x, const iterator& y)
      requires random_access_range<Base>;
  };
}
constexpr explicit iterator(iterator_t<Base> current);
Effects: Initializes current_­ with std​::​move(current).
constexpr iterator(iterator<!Const> i) requires Const && convertible_­to<iterator_t<V>, iterator_t<Base>>;
Effects: Initializes current_­ with std​::​move(i.current_­).
constexpr iterator_t<Base> base() const& requires copyable<iterator_t<Base>>;
Effects: Equivalent to: return current_­;
constexpr iterator_t<Base> base() &&;
Effects: Equivalent to: return std​::​move(current_­);
constexpr iterator& operator++();
Effects: Equivalent to:
++current_;
return *this;
constexpr void operator++(int) requires (!forward_­range<Base>);
Effects: Equivalent to: ++current_­.
constexpr iterator operator++(int) requires forward_­range<Base>;
Effects: Equivalent to:
auto temp = *this;
++current_;
return temp;
constexpr iterator& operator--() requires bidirectional_­range<Base>;
Effects: Equivalent to:
--current_;
return *this;
constexpr iterator operator--(int) requires bidirectional_­range<Base>;
Effects: Equivalent to:
auto temp = *this;
--current_;
return temp;
constexpr iterator& operator+=(difference_type n); requires random_­access_­range<Base>;
Effects: Equivalent to:
current_ += n;
return *this;
constexpr iterator& operator-=(difference_type n) requires random_­access_­range<Base>;
Effects: Equivalent to:
current_ -= n;
return *this;
friend constexpr bool operator==(const iterator& x, const iterator& y) requires equality_comparable<Base>;
Effects: Equivalent to: return x.current_­ == y.current_­;
friend constexpr bool operator<(const iterator& x, const iterator& y) requires random_­access_­range<Base>;
Effects: Equivalent to: return x.current_­ < y.current_­;
friend constexpr bool operator>(const iterator& x, const iterator& y) requires random_­access_­range<Base>;
Effects: Equivalent to: return y < x;
friend constexpr bool operator<=(const iterator& x, const iterator& y) requires random_­access_­range<Base>;
Effects: Equivalent to: return !(y < x);
friend constexpr bool operator>=(const iterator& x, const iterator& y) requires random_­access_­range<Base>;
Effects: Equivalent to: return !(x < y);
friend constexpr auto operator<=>(const iterator& x, const iterator& y) requires random_­access_­range<Base> && three_­way_­comparable<iterator_t<Base>>;
Effects: Equivalent to: return x.current_­ <=> y.current_­;
friend constexpr iterator operator+(const iterator& x, difference_type y) requires random_­access_­range<Base>;
Effects: Equivalent to: return iterator{x} += y;
friend constexpr iterator operator+(difference_type x, const iterator& y) requires random_­access_­range<Base>;
Effects: Equivalent to: return y + x;
constexpr iterator operator-(const iterator& x, difference_type y) requires random_­access_­range<Base>;
Effects: Equivalent to: return iterator{x} -= y;
constexpr difference_type operator-(const iterator& x, const iterator& y) requires random_­access_­range<Base>;
Effects: Equivalent to: return x.current_­ - y.current_­;

24.7.15.4 Class template elements_­view​::​sentinel [range.elements.sentinel]

namespace std::ranges {
  template<input_range V, size_t N>
    requires view<V> && has-tuple-element<range_value_t<V>, N> &&
             has-tuple-element<remove_reference_t<range_reference_t<V>>, N>
  template<bool Const>
  class elements_view<V, N>::sentinel {                 // exposition only
  private:
    using Base = conditional_t<Const, const V, V>;      // exposition only
    sentinel_t<Base> end_ = sentinel_t<Base>();         // exposition only
  public:
    sentinel() = default;
    constexpr explicit sentinel(sentinel_t<Base> end);
    constexpr sentinel(sentinel<!Const> other)
      requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base>>;

    constexpr sentinel_t<Base> base() const;

    friend constexpr bool operator==(const iterator<Const>& x, const sentinel& y);

    friend constexpr range_difference_t<Base>
      operator-(const iterator<Const>& x, const sentinel& y)
        requires sized_sentinel_for<sentinel_t<Base>, iterator_t<Base>>;

    friend constexpr range_difference_t<Base>
      operator-(const sentinel& x, const iterator<Const>& y)
        requires sized_sentinel_for<sentinel_t<Base>, iterator_t<Base>>;
  };
}
constexpr explicit sentinel(sentinel_t<Base> end);
Effects: Initializes end_­ with end.
constexpr sentinel(sentinel<!Const> other) requires Const && convertible_­to<sentinel_t<V>, sentinel_t<Base>>;
Effects: Initializes end_­ with std​::​move(other.end_­).
constexpr sentinel_t<Base> base() const;
Effects: Equivalent to: return end_­;
friend constexpr bool operator==(const iterator<Const>& x, const sentinel& y);
Effects: Equivalent to: return x.current_­ == y.end_­;
friend constexpr range_difference_t<Base> operator-(const iterator<Const>& x, const sentinel& y) requires sized_sentinel_for<sentinel_t<Base>, iterator_t<Base>>;
Effects: Equivalent to: return x.current_­ - y.end_­;
friend constexpr range_difference_t<Base> operator-(const sentinel& x, const iterator<Const>& y) requires sized_sentinel_for<sentinel_t<Base>, iterator_t<Base>>;
Effects: Equivalent to: return x.end_­ - y.current_­;