The container adaptors each take a Container template parameter, and each constructor takes a Container reference argument. This container is copied into the Container member of each adaptor. If the container takes an allocator, then a compatible allocator may be passed in to the adaptor's constructor. Otherwise, normal copy or move construction is used for the container argument. The first template parameter T of the container adaptors shall denote the same type as Container::value_type.
For container adaptors, no swap function throws an exception unless that exception is thrown by the swap of the adaptor's Container or Compare object (if any).
A deduction guide for a container adaptor shall not participate in overload resolution if any of the following are true:
It has an InputIterator template parameter and a type that does not qualify as an input iterator is deduced for that parameter.
It has a Compare template parameter and a type that qualifies as an allocator is deduced for that parameter.
It has a Container template parameter and a type that qualifies as an allocator is deduced for that parameter.
It has an Allocator template parameter and a type that does not qualify as an allocator is deduced for that parameter.
It has both Container and Allocator template parameters, and uses_allocator_v<Container, Allocator> is false.
#include <initializer_list> namespace std { template <class T, class Container = deque<T>> class queue; template <class T, class Container = vector<T>, class Compare = less<typename Container::value_type>> class priority_queue; template <class T, class Container> bool operator==(const queue<T, Container>& x, const queue<T, Container>& y); template <class T, class Container> bool operator< (const queue<T, Container>& x, const queue<T, Container>& y); template <class T, class Container> bool operator!=(const queue<T, Container>& x, const queue<T, Container>& y); template <class T, class Container> bool operator> (const queue<T, Container>& x, const queue<T, Container>& y); template <class T, class Container> bool operator>=(const queue<T, Container>& x, const queue<T, Container>& y); template <class T, class Container> bool operator<=(const queue<T, Container>& x, const queue<T, Container>& y); template <class T, class Container> void swap(queue<T, Container>& x, queue<T, Container>& y) noexcept(noexcept(x.swap(y))); template <class T, class Container, class Compare> void swap(priority_queue<T, Container, Compare>& x, priority_queue<T, Container, Compare>& y) noexcept(noexcept(x.swap(y))); }
#include <initializer_list> namespace std { template <class T, class Container = deque<T>> class stack; template <class T, class Container> bool operator==(const stack<T, Container>& x, const stack<T, Container>& y); template <class T, class Container> bool operator< (const stack<T, Container>& x, const stack<T, Container>& y); template <class T, class Container> bool operator!=(const stack<T, Container>& x, const stack<T, Container>& y); template <class T, class Container> bool operator> (const stack<T, Container>& x, const stack<T, Container>& y); template <class T, class Container> bool operator>=(const stack<T, Container>& x, const stack<T, Container>& y); template <class T, class Container> bool operator<=(const stack<T, Container>& x, const stack<T, Container>& y); template <class T, class Container> void swap(stack<T, Container>& x, stack<T, Container>& y) noexcept(noexcept(x.swap(y))); }
Any sequence container supporting operations front(), back(), push_back() and pop_front() can be used to instantiate queue. In particular, list and deque can be used.
namespace std { template <class T, class Container = deque<T>> class queue { public: using value_type = typename Container::value_type; using reference = typename Container::reference; using const_reference = typename Container::const_reference; using size_type = typename Container::size_type; using container_type = Container; protected: Container c; public: explicit queue(const Container&); explicit queue(Container&& = Container()); template <class Alloc> explicit queue(const Alloc&); template <class Alloc> queue(const Container&, const Alloc&); template <class Alloc> queue(Container&&, const Alloc&); template <class Alloc> queue(const queue&, const Alloc&); template <class Alloc> queue(queue&&, const Alloc&); bool empty() const { return c.empty(); } size_type size() const { return c.size(); } reference front() { return c.front(); } const_reference front() const { return c.front(); } reference back() { return c.back(); } const_reference back() const { return c.back(); } void push(const value_type& x) { c.push_back(x); } void push(value_type&& x) { c.push_back(std::move(x)); } template <class... Args> reference emplace(Args&&... args) { return c.emplace_back(std::forward<Args>(args)...); } void pop() { c.pop_front(); } void swap(queue& q) noexcept(is_nothrow_swappable_v<Container>) { using std::swap; swap(c, q.c); } }; template<class Container> queue(Container) -> queue<typename Container::value_type, Container>; template<class Container, class Allocator> queue(Container, Allocator) -> queue<typename Container::value_type, Container>; template <class T, class Container> bool operator==(const queue<T, Container>& x, const queue<T, Container>& y); template <class T, class Container> bool operator< (const queue<T, Container>& x, const queue<T, Container>& y); template <class T, class Container> bool operator!=(const queue<T, Container>& x, const queue<T, Container>& y); template <class T, class Container> bool operator> (const queue<T, Container>& x, const queue<T, Container>& y); template <class T, class Container> bool operator>=(const queue<T, Container>& x, const queue<T, Container>& y); template <class T, class Container> bool operator<=(const queue<T, Container>& x, const queue<T, Container>& y); template <class T, class Container> void swap(queue<T, Container>& x, queue<T, Container>& y) noexcept(noexcept(x.swap(y))); template <class T, class Container, class Alloc> struct uses_allocator<queue<T, Container>, Alloc> : uses_allocator<Container, Alloc>::type { }; }
explicit queue(const Container& cont);
explicit queue(Container&& cont = Container());
If uses_allocator_v<container_type, Alloc> is false the constructors in this subclause shall not participate in overload resolution.
template <class Alloc> explicit queue(const Alloc& a);
template <class Alloc> queue(const container_type& cont, const Alloc& a);
template <class Alloc> queue(container_type&& cont, const Alloc& a);
template <class Alloc> queue(const queue& q, const Alloc& a);
template <class Alloc> queue(queue&& q, const Alloc& a);
template <class T, class Container>
bool operator==(const queue<T, Container>& x, const queue<T, Container>& y);
template <class T, class Container>
bool operator!=(const queue<T, Container>& x, const queue<T, Container>& y);
template <class T, class Container>
bool operator< (const queue<T, Container>& x, const queue<T, Container>& y);
template <class T, class Container>
bool operator<=(const queue<T, Container>& x, const queue<T, Container>& y);
template <class T, class Container>
bool operator> (const queue<T, Container>& x, const queue<T, Container>& y);
template <class T, class Container>
bool operator>=(const queue<T, Container>& x,
const queue<T, Container>& y);
template <class T, class Container>
void swap(queue<T, Container>& x, queue<T, Container>& y) noexcept(noexcept(x.swap(y)));
Remarks: This function shall not participate in overload resolution unless is_swappable_v<Container> is true.
Any sequence container with random access iterator and supporting operations front(), push_back() and pop_back() can be used to instantiate priority_queue. In particular, vector and deque can be used. Instantiating priority_queue also involves supplying a function or function object for making priority comparisons; the library assumes that the function or function object defines a strict weak ordering.
namespace std {
template <class T, class Container = vector<T>,
class Compare = less<typename Container::value_type>>
class priority_queue {
public:
using value_type = typename Container::value_type;
using reference = typename Container::reference;
using const_reference = typename Container::const_reference;
using size_type = typename Container::size_type;
using container_type = Container;
using value_compare = Compare;
protected:
Container c;
Compare comp;
public:
priority_queue(const Compare& x, const Container&);
explicit priority_queue(const Compare& x = Compare(), Container&& = Container());
template <class InputIterator>
priority_queue(InputIterator first, InputIterator last,
const Compare& x, const Container&);
template <class InputIterator>
priority_queue(InputIterator first, InputIterator last,
const Compare& x = Compare(), Container&& = Container());
template <class Alloc> explicit priority_queue(const Alloc&);
template <class Alloc> priority_queue(const Compare&, const Alloc&);
template <class Alloc> priority_queue(const Compare&, const Container&, const Alloc&);
template <class Alloc> priority_queue(const Compare&, Container&&, const Alloc&);
template <class Alloc> priority_queue(const priority_queue&, const Alloc&);
template <class Alloc> priority_queue(priority_queue&&, const Alloc&);
bool empty() const { return c.empty(); }
size_type size() const { return c.size(); }
const_reference top() const { return c.front(); }
void push(const value_type& x);
void push(value_type&& x);
template <class... Args> void emplace(Args&&... args);
void pop();
void swap(priority_queue& q) noexcept(is_nothrow_swappable_v<Container> &&
is_nothrow_swappable_v<Compare>)
{ using std::swap; swap(c, q.c); swap(comp, q.comp); }
};
template<class Compare, class Container>
priority_queue(Compare, Container)
-> priority_queue<typename Container::value_type, Container, Compare>;
template<class InputIterator,
class Compare = less<typename iterator_traits<InputIterator>::value_type>,
class Container = vector<typename iterator_traits<InputIterator>::value_type>>
priority_queue(InputIterator, InputIterator, Compare = Compare(), Container = Container())
-> priority_queue<typename iterator_traits<InputIterator>::value_type, Container, Compare>;
template<class Compare, class Container, class Allocator>
priority_queue(Compare, Container, Allocator)
-> priority_queue<typename Container::value_type, Container, Compare>;
// no equality is provided
template <class T, class Container, class Compare>
void swap(priority_queue<T, Container, Compare>& x,
priority_queue<T, Container, Compare>& y) noexcept(noexcept(x.swap(y)));
template <class T, class Container, class Compare, class Alloc>
struct uses_allocator<priority_queue<T, Container, Compare>, Alloc>
: uses_allocator<Container, Alloc>::type { };
}
priority_queue(const Compare& x, const Container& y);
explicit priority_queue(const Compare& x = Compare(), Container&& y = Container());
Requires: x shall define a strict weak ordering.
Effects: Initializes comp with x and c with y (copy constructing or move constructing as appropriate); calls make_heap(c.begin(), c.end(), comp).
template <class InputIterator>
priority_queue(InputIterator first, InputIterator last,
const Compare& x,
const Container& y);
template <class InputIterator>
priority_queue(InputIterator first, InputIterator last,
const Compare& x = Compare(),
Container&& y = Container());
Requires: x shall define a strict weak ordering.
If uses_allocator_v<container_type, Alloc> is false the constructors in this subclause shall not participate in overload resolution.
template <class Alloc> explicit priority_queue(const Alloc& a);
template <class Alloc> priority_queue(const Compare& compare, const Alloc& a);
template <class Alloc>
priority_queue(const Compare& compare, const Container& cont, const Alloc& a);
Effects: Initializes c with cont as the first argument and a as the second argument, and initializes comp with compare; calls make_heap(c.begin(), c.end(), comp).
template <class Alloc>
priority_queue(const Compare& compare, Container&& cont, const Alloc& a);
Effects: Initializes c with std::move(cont) as the first argument and a as the second argument, and initializes comp with compare; calls make_heap(c.begin(), c.end(), comp).
template <class Alloc> priority_queue(const priority_queue& q, const Alloc& a);
Effects: Initializes c with q.c as the first argument and a as the second argument, and initializes comp with q.comp.
template <class Alloc> priority_queue(priority_queue&& q, const Alloc& a);
void push(const value_type& x);
void push(value_type&& x);
template <class... Args> void emplace(Args&&... args)
Effects: As if by:
c.emplace_back(std::forward<Args>(args)...); push_heap(c.begin(), c.end(), comp);
void pop();
template <class T, class Container, class Compare>
void swap(priority_queue<T, Container, Compare>& x,
priority_queue<T, Container, Compare>& y) noexcept(noexcept(x.swap(y)));
Remarks: This function shall not participate in overload resolution unless is_swappable_v<Container> is true and is_swappable_v<Compare> is true.
Any sequence container supporting operations back(), push_back() and pop_back() can be used to instantiate stack. In particular, vector, list and deque can be used.
namespace std { template <class T, class Container = deque<T>> class stack { public: using value_type = typename Container::value_type; using reference = typename Container::reference; using const_reference = typename Container::const_reference; using size_type = typename Container::size_type; using container_type = Container; protected: Container c; public: explicit stack(const Container&); explicit stack(Container&& = Container()); template <class Alloc> explicit stack(const Alloc&); template <class Alloc> stack(const Container&, const Alloc&); template <class Alloc> stack(Container&&, const Alloc&); template <class Alloc> stack(const stack&, const Alloc&); template <class Alloc> stack(stack&&, const Alloc&); bool empty() const { return c.empty(); } size_type size() const { return c.size(); } reference top() { return c.back(); } const_reference top() const { return c.back(); } void push(const value_type& x) { c.push_back(x); } void push(value_type&& x) { c.push_back(std::move(x)); } template <class... Args> reference emplace(Args&&... args) { return c.emplace_back(std::forward<Args>(args)...); } void pop() { c.pop_back(); } void swap(stack& s) noexcept(is_nothrow_swappable_v<Container>) { using std::swap; swap(c, s.c); } }; template<class Container> stack(Container) -> stack<typename Container::value_type, Container>; template<class Container, class Allocator> stack(Container, Allocator) -> stack<typename Container::value_type, Container>; template <class T, class Container> bool operator==(const stack<T, Container>& x, const stack<T, Container>& y); template <class T, class Container> bool operator< (const stack<T, Container>& x, const stack<T, Container>& y); template <class T, class Container> bool operator!=(const stack<T, Container>& x, const stack<T, Container>& y); template <class T, class Container> bool operator> (const stack<T, Container>& x, const stack<T, Container>& y); template <class T, class Container> bool operator>=(const stack<T, Container>& x, const stack<T, Container>& y); template <class T, class Container> bool operator<=(const stack<T, Container>& x, const stack<T, Container>& y); template <class T, class Container> void swap(stack<T, Container>& x, stack<T, Container>& y) noexcept(noexcept(x.swap(y))); template <class T, class Container, class Alloc> struct uses_allocator<stack<T, Container>, Alloc> : uses_allocator<Container, Alloc>::type { }; }
explicit stack(const Container& cont);
explicit stack(Container&& cont = Container());
If uses_allocator_v<container_type, Alloc> is false the constructors in this subclause shall not participate in overload resolution.
template <class Alloc> explicit stack(const Alloc& a);
template <class Alloc> stack(const container_type& cont, const Alloc& a);
template <class Alloc> stack(container_type&& cont, const Alloc& a);
template <class Alloc> stack(const stack& s, const Alloc& a);
template <class Alloc> stack(stack&& s, const Alloc& a);
template <class T, class Container>
bool operator==(const stack<T, Container>& x, const stack<T, Container>& y);
template <class T, class Container>
bool operator!=(const stack<T, Container>& x, const stack<T, Container>& y);
template <class T, class Container>
bool operator< (const stack<T, Container>& x, const stack<T, Container>& y);
template <class T, class Container>
bool operator<=(const stack<T, Container>& x, const stack<T, Container>& y);
template <class T, class Container>
bool operator> (const stack<T, Container>& x, const stack<T, Container>& y);
template <class T, class Container>
bool operator>=(const stack<T, Container>& x, const stack<T, Container>& y);
template <class T, class Container>
void swap(stack<T, Container>& x, stack<T, Container>& y) noexcept(noexcept(x.swap(y)));
Remarks: This function shall not participate in overload resolution unless is_swappable_v<Container> is true.