25 Algorithms library [algorithms]

25.1 General [algorithms.general]

This Clause describes components that C++ programs may use to perform algorithmic operations on containers (Clause [containers]) and other sequences.

The following subclauses describe components for non-modifying sequence operation, modifying sequence operations, sorting and related operations, and algorithms from the ISO C library, as summarized in Table [tab:algorithms.summary].

Table 112 — Algorithms library summary
Subclause Header(s)
[alg.nonmodifying] Non-modifying sequence operations
[alg.modifying.operations] Mutating sequence operations <algorithm>
[alg.sorting] Sorting and related operations
[alg.c.library] C library algorithms <cstdlib>

Header <algorithm> synopsis

#include <initializer_list>

namespace std {

  // [alg.nonmodifying], non-modifying sequence operations:
  template <class InputIterator, class Predicate>
    bool all_of(InputIterator first, InputIterator last, Predicate pred);
  template <class InputIterator, class Predicate>
    bool any_of(InputIterator first, InputIterator last, Predicate pred);
  template <class InputIterator, class Predicate>
    bool none_of(InputIterator first, InputIterator last, Predicate pred);

  template<class InputIterator, class Function>
    Function for_each(InputIterator first, InputIterator last, Function f);
  template<class InputIterator, class T>
    InputIterator find(InputIterator first, InputIterator last,
                       const T& value);
  template<class InputIterator, class Predicate>
    InputIterator find_if(InputIterator first, InputIterator last,
                          Predicate pred);
  template<class InputIterator, class Predicate>
    InputIterator find_if_not(InputIterator first, InputIterator last,
                              Predicate pred);
  template<class ForwardIterator1, class ForwardIterator2>
    ForwardIterator1
      find_end(ForwardIterator1 first1, ForwardIterator1 last1,
               ForwardIterator2 first2, ForwardIterator2 last2);
  template<class ForwardIterator1, class ForwardIterator2,
     class BinaryPredicate>
    ForwardIterator1
      find_end(ForwardIterator1 first1, ForwardIterator1 last1,
               ForwardIterator2 first2, ForwardIterator2 last2,
               BinaryPredicate pred);

  template<class InputIterator, class ForwardIterator>
    InputIterator
      find_first_of(InputIterator first1, InputIterator last1,
                    ForwardIterator first2, ForwardIterator last2);
  template<class InputIterator, class ForwardIterator,
     class BinaryPredicate>
    InputIterator
      find_first_of(InputIterator first1, InputIterator last1,
                    ForwardIterator first2, ForwardIterator last2,
                    BinaryPredicate pred);

  template<class ForwardIterator>
    ForwardIterator adjacent_find(ForwardIterator first,
                                  ForwardIterator last);
  template<class ForwardIterator, class BinaryPredicate>
    ForwardIterator adjacent_find(ForwardIterator first,
                                  ForwardIterator last,
                                  BinaryPredicate pred);

  template<class InputIterator, class T>
    typename iterator_traits<InputIterator>::difference_type
      count(InputIterator first, InputIterator last, const T& value);
  template<class InputIterator, class Predicate>
    typename iterator_traits<InputIterator>::difference_type
      count_if(InputIterator first, InputIterator last, Predicate pred);

  template<class InputIterator1, class InputIterator2>
    pair<InputIterator1, InputIterator2>
      mismatch(InputIterator1 first1, InputIterator1 last1,
               InputIterator2 first2);
  template
   <class InputIterator1, class InputIterator2, class BinaryPredicate>
    pair<InputIterator1, InputIterator2>
      mismatch(InputIterator1 first1, InputIterator1 last1,
               InputIterator2 first2, BinaryPredicate pred);

  template<class InputIterator1, class InputIterator2>
    bool equal(InputIterator1 first1, InputIterator1 last1,
               InputIterator2 first2);
  template
   <class InputIterator1, class InputIterator2, class BinaryPredicate>
    bool equal(InputIterator1 first1, InputIterator1 last1,
               InputIterator2 first2, BinaryPredicate pred);

  template<class ForwardIterator1, class ForwardIterator2>
    bool is_permutation(ForwardIterator1 first1, ForwardIterator1 last1,
                        ForwardIterator2 first2);
  template<class ForwardIterator1, class ForwardIterator2,
                   class BinaryPredicate>
    bool is_permutation(ForwardIterator1 first1, ForwardIterator1 last1,
                        ForwardIterator2 first2, BinaryPredicate pred);

  template<class ForwardIterator1, class ForwardIterator2>
    ForwardIterator1 search(
      ForwardIterator1 first1, ForwardIterator1 last1,
      ForwardIterator2 first2, ForwardIterator2 last2);
  template<class ForwardIterator1, class ForwardIterator2,
     class BinaryPredicate>
    ForwardIterator1 search(
      ForwardIterator1 first1, ForwardIterator1 last1,
      ForwardIterator2 first2, ForwardIterator2 last2,
      BinaryPredicate pred);
  template<class ForwardIterator, class Size, class T>
    ForwardIterator search_n(ForwardIterator first, ForwardIterator last,
                             Size count, const T& value);
  template
   <class ForwardIterator, class Size, class T, class BinaryPredicate>
    ForwardIterator1 search_n(ForwardIterator first, ForwardIterator last,
                              Size count, const T& value,
                              BinaryPredicate pred);

  // [alg.modifying.operations], modifying sequence operations:
  // [alg.copy], copy:
  template<class InputIterator, class OutputIterator>
    OutputIterator copy(InputIterator first, InputIterator last,
                        OutputIterator result);
  template<class InputIterator, class Size, class OutputIterator>
    OutputIterator copy_n(InputIterator first, Size n,
                          OutputIterator result);
  template<class InputIterator, class OutputIterator, class Predicate>
    OutputIterator copy_if(InputIterator first, InputIterator last,
                          OutputIterator result, Predicate pred);
  template<class BidirectionalIterator1, class BidirectionalIterator2>
    BidirectionalIterator2 copy_backward(
      BidirectionalIterator1 first, BidirectionalIterator1 last,
      BidirectionalIterator2 result);

  // [alg.move], move:
  template<class InputIterator, class OutputIterator>
    OutputIterator move(InputIterator first, InputIterator last,
                        OutputIterator result);
  template<class BidirectionalIterator1, class BidirectionalIterator2>
    BidirectionalIterator2 move_backward(
      BidirectionalIterator1 first, BidirectionalIterator1 last,
      BidirectionalIterator2 result);

  // [alg.swap], swap:
  template<class ForwardIterator1, class ForwardIterator2>
    ForwardIterator2 swap_ranges(ForwardIterator1 first1,
    ForwardIterator1 last1, ForwardIterator2 first2);
  template<class ForwardIterator1, class ForwardIterator2>
    void iter_swap(ForwardIterator1 a, ForwardIterator2 b);

  template<class InputIterator, class OutputIterator, class UnaryOperation>
    OutputIterator transform(InputIterator first, InputIterator last,
                             OutputIterator result, UnaryOperation op);
  template<class InputIterator1, class InputIterator2, class OutputIterator,
     class BinaryOperation>
    OutputIterator transform(InputIterator1 first1, InputIterator1 last1,
                             InputIterator2 first2, OutputIterator result,
                             BinaryOperation binary_op);

  template<class ForwardIterator, class T>
    void replace(ForwardIterator first, ForwardIterator last,
                 const T& old_value, const T& new_value);
  template<class ForwardIterator, class Predicate, class T>
    void replace_if(ForwardIterator first, ForwardIterator last,
                    Predicate pred, const T& new_value);
  template<class InputIterator, class OutputIterator, class T>
    OutputIterator replace_copy(InputIterator first, InputIterator last,
                                OutputIterator result,
                                const T& old_value, const T& new_value);
  template<class InputIterator, class OutputIterator, class Predicate, class T>
    OutputIterator replace_copy_if(InputIterator first, InputIterator last,
                                   OutputIterator result,
                                   Predicate pred, const T& new_value);

  template<class ForwardIterator, class T>
    void fill(ForwardIterator first, ForwardIterator last, const T& value);
  template<class OutputIterator, class Size, class T>
    OutputIterator fill_n(OutputIterator first, Size n, const T& value);

  template<class ForwardIterator, class Generator>
    void generate(ForwardIterator first, ForwardIterator last,
                  Generator gen);
  template<class OutputIterator, class Size, class Generator>
    OutputIterator generate_n(OutputIterator first, Size n, Generator gen);

  template<class ForwardIterator, class T>
    ForwardIterator remove(ForwardIterator first, ForwardIterator last,
                           const T& value);
  template<class ForwardIterator, class Predicate>
    ForwardIterator remove_if(ForwardIterator first, ForwardIterator last,
                              Predicate pred);
  template<class InputIterator, class OutputIterator, class T>
    OutputIterator remove_copy(InputIterator first, InputIterator last,
                               OutputIterator result, const T& value);
  template<class InputIterator, class OutputIterator, class Predicate>
    OutputIterator remove_copy_if(InputIterator first, InputIterator last,
                                  OutputIterator result, Predicate pred);

  template<class ForwardIterator>
    ForwardIterator unique(ForwardIterator first, ForwardIterator last);
  template<class ForwardIterator, class BinaryPredicate>
    ForwardIterator unique(ForwardIterator first, ForwardIterator last,
                           BinaryPredicate pred);
  template<class InputIterator, class OutputIterator>
    OutputIterator unique_copy(InputIterator first, InputIterator last,
                               OutputIterator result);
  template<class InputIterator, class OutputIterator, class BinaryPredicate>
    OutputIterator unique_copy(InputIterator first, InputIterator last,
                               OutputIterator result, BinaryPredicate pred);

  template<class BidirectionalIterator>
    void reverse(BidirectionalIterator first, BidirectionalIterator last);
  template<class BidirectionalIterator, class OutputIterator>
    OutputIterator reverse_copy(BidirectionalIterator first,
                                BidirectionalIterator last,
                                OutputIterator result);

  template<class ForwardIterator>
    ForwardIterator rotate(ForwardIterator first, ForwardIterator middle,
                           ForwardIterator last);
  template<class ForwardIterator, class OutputIterator>
    OutputIterator rotate_copy(
      ForwardIterator first, ForwardIterator middle,
      ForwardIterator last, OutputIterator result);

  template<class RandomAccessIterator>
    void random_shuffle(RandomAccessIterator first,
                        RandomAccessIterator last);
  template<class RandomAccessIterator, class RandomNumberGenerator>
    void random_shuffle(RandomAccessIterator first,
                        RandomAccessIterator last,
                        RandomNumberGenerator&& rand);
  template<class RandomAccessIterator, class UniformRandomNumberGenerator>
    void shuffle(RandomAccessIterator first,
                        RandomAccessIterator last,
                        UniformRandomNumberGenerator&& rand);

  // [alg.partitions], partitions:
  template <class InputIterator, class Predicate>
    bool is_partitioned(InputIterator first, InputIterator last, Predicate pred);

  template<class ForwardIterator, class Predicate>
    ForwardIterator partition(ForwardIterator first,
                              ForwardIterator last,
                              Predicate pred);
  template<class BidirectionalIterator, class Predicate>
    BidirectionalIterator stable_partition(BidirectionalIterator first,
                                           BidirectionalIterator last,
                                           Predicate pred);
  template <class InputIterator, class OutputIterator1,
            class OutputIterator2, class Predicate>
    pair<OutputIterator1, OutputIterator2>
    partition_copy(InputIterator first, InputIterator last,
                   OutputIterator1 out_true, OutputIterator2 out_false,
                   Predicate pred);
  template<class ForwardIterator, class Predicate>
    ForwardIterator partition_point(ForwardIterator first,
                                    ForwardIterator last,
                                    Predicate pred);

  // [alg.sorting], sorting and related operations:
  // [alg.sort], sorting:
  template<class RandomAccessIterator>
    void sort(RandomAccessIterator first, RandomAccessIterator last);
  template<class RandomAccessIterator, class Compare>
    void sort(RandomAccessIterator first, RandomAccessIterator last,
              Compare comp);

  template<class RandomAccessIterator>
    void stable_sort(RandomAccessIterator first, RandomAccessIterator last);
  template<class RandomAccessIterator, class Compare>
    void stable_sort(RandomAccessIterator first, RandomAccessIterator last,
                     Compare comp);

  template<class RandomAccessIterator>
    void partial_sort(RandomAccessIterator first,
                      RandomAccessIterator middle,
                      RandomAccessIterator last);
  template<class RandomAccessIterator, class Compare>
    void partial_sort(RandomAccessIterator first,
                      RandomAccessIterator middle,
                      RandomAccessIterator last, Compare comp);
  template<class InputIterator, class RandomAccessIterator>
    RandomAccessIterator partial_sort_copy(
      InputIterator first, InputIterator last,
      RandomAccessIterator result_first,
      RandomAccessIterator result_last);
  template<class InputIterator, class RandomAccessIterator, class Compare>
    RandomAccessIterator partial_sort_copy(
      InputIterator first, InputIterator last,
      RandomAccessIterator result_first,
      RandomAccessIterator result_last,
      Compare comp);
  template<class ForwardIterator>
    bool is_sorted(ForwardIterator first, ForwardIterator last);
  template<class ForwardIterator, class Compare>
    bool is_sorted(ForwardIterator first, ForwardIterator last,
                   Compare comp);
  template<class ForwardIterator>
    ForwardIterator is_sorted_until(ForwardIterator first, ForwardIterator last);
  template<class ForwardIterator, class Compare>
    ForwardIterator is_sorted_until(ForwardIterator first, ForwardIterator last,
                                    Compare comp);

  template<class RandomAccessIterator>
    void nth_element(RandomAccessIterator first, RandomAccessIterator nth,
                     RandomAccessIterator last);
  template<class RandomAccessIterator, class Compare>
    void nth_element(RandomAccessIterator first, RandomAccessIterator nth,
                     RandomAccessIterator last, Compare comp);

  // [alg.binary.search], binary search:
  template<class ForwardIterator, class T>
    ForwardIterator lower_bound(ForwardIterator first, ForwardIterator last,
                                const T& value);
  template<class ForwardIterator, class T, class Compare>
    ForwardIterator lower_bound(ForwardIterator first, ForwardIterator last,
                                const T& value, Compare comp);

  template<class ForwardIterator, class T>
    ForwardIterator upper_bound(ForwardIterator first, ForwardIterator last,
                                const T& value);
  template<class ForwardIterator, class T, class Compare>
    ForwardIterator upper_bound(ForwardIterator first, ForwardIterator last,
                                const T& value, Compare comp);

  template<class ForwardIterator, class T>
    pair<ForwardIterator, ForwardIterator>
      equal_range(ForwardIterator first, ForwardIterator last,
                  const T& value);
  template<class ForwardIterator, class T, class Compare>
    pair<ForwardIterator, ForwardIterator>
      equal_range(ForwardIterator first, ForwardIterator last,
                  const T& value, Compare comp);

  template<class ForwardIterator, class T>
    bool binary_search(ForwardIterator first, ForwardIterator last,
                       const T& value);
  template<class ForwardIterator, class T, class Compare>
    bool binary_search(ForwardIterator first, ForwardIterator last,
                       const T& value, Compare comp);

  // [alg.merge], merge:
  template<class InputIterator1, class InputIterator2, class OutputIterator>
    OutputIterator merge(InputIterator1 first1, InputIterator1 last1,
                         InputIterator2 first2, InputIterator2 last2,
                         OutputIterator result);
  template<class InputIterator1, class InputIterator2, class OutputIterator,
     class Compare>
    OutputIterator merge(InputIterator1 first1, InputIterator1 last1,
                         InputIterator2 first2, InputIterator2 last2,
                         OutputIterator result, Compare comp);

  template<class BidirectionalIterator>
    void inplace_merge(BidirectionalIterator first,
                       BidirectionalIterator middle,
                       BidirectionalIterator last);
  template<class BidirectionalIterator, class Compare>
    void inplace_merge(BidirectionalIterator first,
                       BidirectionalIterator middle,
                       BidirectionalIterator last, Compare comp);

  // [alg.set.operations], set operations:
  template<class InputIterator1, class InputIterator2>
    bool includes(InputIterator1 first1, InputIterator1 last1,
                  InputIterator2 first2, InputIterator2 last2);
  template<class InputIterator1, class InputIterator2, class Compare>
    bool includes(
      InputIterator1 first1, InputIterator1 last1,
      InputIterator2 first2, InputIterator2 last2, Compare comp);

  template<class InputIterator1, class InputIterator2, class OutputIterator>
    OutputIterator set_union(InputIterator1 first1, InputIterator1 last1,
                             InputIterator2 first2, InputIterator2 last2,
                             OutputIterator result);
  template<class InputIterator1, class InputIterator2, class OutputIterator,
     class Compare>
    OutputIterator set_union(InputIterator1 first1, InputIterator1 last1,
                             InputIterator2 first2, InputIterator2 last2,
                             OutputIterator result, Compare comp);

  template<class InputIterator1, class InputIterator2, class OutputIterator>
    OutputIterator set_intersection(
      InputIterator1 first1, InputIterator1 last1,
      InputIterator2 first2, InputIterator2 last2,
      OutputIterator result);
  template<class InputIterator1, class InputIterator2, class OutputIterator,
     class Compare>
    OutputIterator set_intersection(
      InputIterator1 first1, InputIterator1 last1,
      InputIterator2 first2, InputIterator2 last2,
      OutputIterator result, Compare comp);

  template<class InputIterator1, class InputIterator2, class OutputIterator>
    OutputIterator set_difference(
      InputIterator1 first1, InputIterator1 last1,
      InputIterator2 first2, InputIterator2 last2,
      OutputIterator result);
  template<class InputIterator1, class InputIterator2, class OutputIterator,
     class Compare>
    OutputIterator set_difference(
      InputIterator1 first1, InputIterator1 last1,
      InputIterator2 first2, InputIterator2 last2,
      OutputIterator result, Compare comp);

  template<class InputIterator1, class InputIterator2, class OutputIterator>
    OutputIterator set_symmetric_difference(
      InputIterator1 first1, InputIterator1 last1,
      InputIterator2 first2, InputIterator2 last2,
      OutputIterator result);
  template<class InputIterator1, class InputIterator2, class OutputIterator,
      class Compare>
    OutputIterator set_symmetric_difference(
      InputIterator1 first1, InputIterator1 last1,
      InputIterator2 first2, InputIterator2 last2,
      OutputIterator result, Compare comp);

  // [alg.heap.operations], heap operations:
  template<class RandomAccessIterator>
    void push_heap(RandomAccessIterator first, RandomAccessIterator last);
  template<class RandomAccessIterator, class Compare>
    void push_heap(RandomAccessIterator first, RandomAccessIterator last,
                   Compare comp);

  template<class RandomAccessIterator>
    void pop_heap(RandomAccessIterator first, RandomAccessIterator last);
  template<class RandomAccessIterator, class Compare>
    void pop_heap(RandomAccessIterator first, RandomAccessIterator last,
                  Compare comp);

  template<class RandomAccessIterator>
    void make_heap(RandomAccessIterator first, RandomAccessIterator last);
  template<class RandomAccessIterator, class Compare>
    void make_heap(RandomAccessIterator first, RandomAccessIterator last,
                   Compare comp);

  template<class RandomAccessIterator>
    void sort_heap(RandomAccessIterator first, RandomAccessIterator last);
  template<class RandomAccessIterator, class Compare>
    void sort_heap(RandomAccessIterator first, RandomAccessIterator last,
                   Compare comp);

  template<class RandomAccessIterator>
    bool is_heap(RandomAccessIterator first, RandomAccessIterator last);
  template<class RandomAccessIterator, class Compare>
    bool is_heap(RandomAccessIterator first, RandomAccessIterator last, Compare comp);
  template<class RandomAccessIterator>
    RandomAccessIterator is_heap_until(RandomAccessIterator first, RandomAccessIterator last);
  template<class RandomAccessIterator, class Compare>
    RandomAccessIterator is_heap_until(RandomAccessIterator first, RandomAccessIterator last,
                                       Compare comp);

  // [alg.min.max], minimum and maximum:
  template<class T> const T& min(const T& a, const T& b);
  template<class T, class Compare>
    const T& min(const T& a, const T& b, Compare comp);
  template<class T>
    T min(initializer_list<T> t);
  template<class T, class Compare>
    T min(initializer_list<T> t, Compare comp);

  template<class T> const T& max(const T& a, const T& b);
  template<class T, class Compare>
    const T& max(const T& a, const T& b, Compare comp);
  template<class T>
    T max(initializer_list<T> t);
  template<class T, class Compare>
    T max(initializer_list<T> t, Compare comp);

  template<class T> pair<const T&, const T&> minmax(const T& a, const T& b);
  template<class T, class Compare>
    pair<const T&, const T&> minmax(const T& a, const T& b, Compare comp);
  template<class T>
    pair<T, T> minmax(initializer_list<T> t);
  template<class T, class Compare>
    pair<T, T> minmax(initializer_list<T> t, Compare comp);

  template<class ForwardIterator>
    ForwardIterator min_element(ForwardIterator first, ForwardIterator last);
  template<class ForwardIterator, class Compare>
    ForwardIterator min_element(ForwardIterator first, ForwardIterator last,
                                Compare comp);
  template<class ForwardIterator>
    ForwardIterator max_element(ForwardIterator first, ForwardIterator last);
  template<class ForwardIterator, class Compare>
    ForwardIterator max_element(ForwardIterator first, ForwardIterator last,
                                Compare comp);
  template<class ForwardIterator>
    pair<ForwardIterator, ForwardIterator>
      minmax_element(ForwardIterator first, ForwardIterator last);
  template<class ForwardIterator, class Compare>
    pair<ForwardIterator, ForwardIterator>
      minmax_element(ForwardIterator first, ForwardIterator last, Compare comp);

  template<class InputIterator1, class InputIterator2>
    bool lexicographical_compare(
      InputIterator1 first1, InputIterator1 last1,
      InputIterator2 first2, InputIterator2 last2);
  template<class InputIterator1, class InputIterator2, class Compare>
    bool lexicographical_compare(
      InputIterator1 first1, InputIterator1 last1,
      InputIterator2 first2, InputIterator2 last2,
      Compare comp);

  // [alg.permutation.generators], permutations:
  template<class BidirectionalIterator>
    bool next_permutation(BidirectionalIterator first,
                          BidirectionalIterator last);
  template<class BidirectionalIterator, class Compare>
    bool next_permutation(BidirectionalIterator first,
                          BidirectionalIterator last, Compare comp);
  template<class BidirectionalIterator>
    bool prev_permutation(BidirectionalIterator first,
                          BidirectionalIterator last);
  template<class BidirectionalIterator, class Compare>
    bool prev_permutation(BidirectionalIterator first,
                          BidirectionalIterator last, Compare comp);
}

All of the algorithms are separated from the particular implementations of data structures and are parameterized by iterator types. Because of this, they can work with program-defined data structures, as long as these data structures have iterator types satisfying the assumptions on the algorithms.

For purposes of determining the existence of data races, algorithms shall not modify objects referenced through an iterator argument unless the specification requires such modification.

Throughout this Clause, the names of template parameters are used to express type requirements. If an algorithm's template parameter is InputIterator, InputIterator1, or InputIterator2, the actual template argument shall satisfy the requirements of an input iterator ([input.iterators]). If an algorithm's template parameter is OutputIterator, OutputIterator1, or OutputIterator2, the actual template argument shall satisfy the requirements of an output iterator ([output.iterators]). If an algorithm's template parameter is ForwardIterator, ForwardIterator1, or ForwardIterator2, the actual template argument shall satisfy the requirements of a forward iterator ([forward.iterators]). If an algorithm's template parameter is BidirectionalIterator, BidirectionalIterator1, or BidirectionalIterator2, the actual template argument shall satisfy the requirements of a bidirectional iterator ([bidirectional.iterators]). If an algorithm's template parameter is RandomAccessIterator, RandomAccessIterator1, or RandomAccessIterator2, the actual template argument shall satisfy the requirements of a random-access iterator ([random.access.iterators]).

If an algorithm's Effects section says that a value pointed to by any iterator passed as an argument is modified, then that algorithm has an additional type requirement: The type of that argument shall satisfy the requirements of a mutable iterator ([iterator.requirements]). [ Note: This requirement does not affect arguments that are declared as OutputIterator, OutputIterator1, or OutputIterator2, because output iterators must always be mutable.  — end note ]

Both in-place and copying versions are provided for certain algorithms.269 When such a version is provided for algorithm it is called algorithm_copy. Algorithms that take predicates end with the suffix _if (which follows the suffix _copy).

The Predicate parameter is used whenever an algorithm expects a function object ([function.objects]) that, when applied to the result of dereferencing the corresponding iterator, returns a value testable as true. In other words, if an algorithm takes Predicate pred as its argument and first as its iterator argument, it should work correctly in the construct pred(*first) contextually converted to bool (Clause [conv]). The function object pred shall not apply any non-constant function through the dereferenced iterator.

The BinaryPredicate parameter is used whenever an algorithm expects a function object that when applied to the result of dereferencing two corresponding iterators or to dereferencing an iterator and type T when T is part of the signature returns a value testable as true. In other words, if an algorithm takes BinaryPredicate binary_pred as its argument and first1 and first2 as its iterator arguments, it should work correctly in the construct binary_pred(*first1, *first2) contextually converted to bool (Clause [conv]). BinaryPredicate always takes the first iterator's value_type as its first argument, that is, in those cases when T value is part of the signature, it should work correctly in the construct binary_pred(*first1, value) contextually converted to bool (Clause [conv]). binary_pred shall not apply any non-constant function through the dereferenced iterators.

Note: Unless otherwise specified, algorithms that take function objects as arguments are permitted to copy those function objects freely. Programmers for whom object identity is important should consider using a wrapper class that points to a noncopied implementation object such as reference_wrapper<T> ([refwrap]), or some equivalent solution.  — end note ]

When the description of an algorithm gives an expression such as *first == value for a condition, the expression shall evaluate to either true or false in boolean contexts.

In the description of the algorithms operators + and - are used for some of the iterator categories for which they do not have to be defined. In these cases the semantics of a+n is the same as that of

X tmp = a;
advance(tmp, n);
return tmp;

and that of b-a is the same as of

return distance(a, b);

The decision whether to include a copying version was usually based on complexity considerations. When the cost of doing the operation dominates the cost of copy, the copying version is not included. For example, sort_copy is not included because the cost of sorting is much more significant, and users might as well do copy followed by sort.