22 General utilities library [utilities]

22.10 Function objects [function.objects]

22.10.15 Function object binders [func.bind]

22.10.15.1 General [func.bind.general]

Subclause [func.bind] describes a uniform mechanism for binding arguments of callable objects.

22.10.15.2 Class template is_bind_expression [func.bind.isbind]

namespace std { template<class T> struct is_bind_expression; // see below }
The class template is_bind_expression can be used to detect function objects generated by bind.
The function template bind uses is_bind_expression to detect subexpressions.
Specializations of the is_bind_expression template shall meet the Cpp17UnaryTypeTrait requirements ([meta.rqmts]).
The implementation provides a definition that has a base characteristic of true_type if T is a type returned from bind, otherwise it has a base characteristic of false_type.
A program may specialize this template for a program-defined type T to have a base characteristic of true_type to indicate that T should be treated as a subexpression in a bind call.

22.10.15.3 Class template is_placeholder [func.bind.isplace]

namespace std { template<class T> struct is_placeholder; // see below }
The class template is_placeholder can be used to detect the standard placeholders _1, _2, and so on ([func.bind.place]).
The function template bind uses is_placeholder to detect placeholders.
Specializations of the is_placeholder template shall meet the Cpp17UnaryTypeTrait requirements ([meta.rqmts]).
The implementation provides a definition that has the base characteristic of integral_constant<int, J> if T is the type of std​::​placeholders​::​_J, otherwise it has a base characteristic of integral_constant<int, 0>.
A program may specialize this template for a program-defined type T to have a base characteristic of integral_constant<int, N> with N > 0 to indicate that T should be treated as a placeholder type.

22.10.15.4 Function template bind [func.bind.bind]

In the text that follows:
  • g is a value of the result of a bind invocation,
  • FD is the type decay_t<F>,
  • fd is an lvalue that is a target object of g ([func.def]) of type FD direct-non-list-initialized with std​::​forward<F>(f),
  • is the type in the template parameter pack BoundArgs,
  • is the type decay_t<>,
  • is the argument in the function parameter pack bound_args,
  • is a bound argument entity of g ([func.def]) of type direct-non-list-initialized with std​::​forward<>(),
  • is the deduced type of the UnBoundArgs&&... parameter of the argument forwarding call wrapper, and
  • is the argument associated with .
template<class F, class... BoundArgs> constexpr unspecified bind(F&& f, BoundArgs&&... bound_args); template<class R, class F, class... BoundArgs> constexpr unspecified bind(F&& f, BoundArgs&&... bound_args);
Mandates: is_constructible_v<FD, F> is true.
For each in BoundArgs, is_constructible_v<, > is true.
Preconditions: FD and each meet the Cpp17MoveConstructible and Cpp17Destructible requirements.
INVOKE(fd, , , , ) ([func.require]) is a valid expression for some values , , , , where N has the value sizeof...(bound_args).
Returns: An argument forwarding call wrapper g ([func.require]).
A program that attempts to invoke a volatile-qualified g is ill-formed.
When g is not volatile-qualified, invocation of g(, , , ) is expression-equivalent ([defns.expression.equivalent]) to INVOKE(static_cast<>(), static_cast<>(), static_cast<>(), , static_cast<>()) for the first overload, and INVOKE<R>(static_cast<>(), static_cast<>(), static_cast<>(), , static_cast<>()) for the second overload, where the values and types of the target argument and of the bound arguments , , , are determined as specified below.
Throws: Any exception thrown by the initialization of the state entities of g.
[Note 1: 
If all of FD and meet the requirements of Cpp17CopyConstructible, then the return type meets the requirements of Cpp17CopyConstructible.
— end note]
The values of the bound arguments , , , and their corresponding types , , , depend on the types derived from the call to bind and the cv-qualifiers cv of the call wrapper g as follows:
  • if is reference_wrapper<T>, the argument is .get() and its type is T&;
  • if the value of is_bind_expression_v<> is true, the argument is static_cast<cv &>()(std::forward<>()...) and its type is invoke_result_t<cv &, ...>&&;
  • if the value j of is_placeholder_v<> is not zero, the argument is std​::​forward<>() and its type is &&;
  • otherwise, the value is and its type is cv &.
The value of the target argument is fd and its corresponding type is cv FD&.

22.10.15.5 Placeholders [func.bind.place]

namespace std::placeholders { // M is the number of placeholders see below _1; see below _2; . . . see below _M; }
The number M of placeholders is implementation-defined.
All placeholder types meet the Cpp17DefaultConstructible and Cpp17CopyConstructible requirements, and their default constructors and copy/move constructors are constexpr functions that do not throw exceptions.
It is implementation-defined whether placeholder types meet the Cpp17CopyAssignable requirements, but if so, their copy assignment operators are constexpr functions that do not throw exceptions.
Placeholders should be defined as: inline constexpr unspecified _1{};
If they are not, they are declared as: extern unspecified _1;
Placeholders are freestanding items ([freestanding.item]).