26 Numerics library [numerics]

26.6 Random number generation [rand]

26.6.5 Random number engine adaptor class templates [rand.adapt]

26.6.5.3 Class template independent_­bits_­engine [rand.adapt.ibits]

An independent_­bits_­engine random number engine adaptor combines random numbers that are produced by some base engine e, so as to produce random numbers with a specified number of bits w.
The state x of an independent_­bits_­engine engine adaptor object x consists of the state e of its base engine e; the size of the state is the size of e's state.
The transition and generation algorithms are described in terms of the following integral constants:
  • Let and .
  • With n as determined below, let , , , and .
  • Let if and only if the relation holds as a result.
    Otherwise let .
[Note 1:
The relation always holds.
— end note]
The transition algorithm is carried out by invoking e() as often as needed to obtain values less than and values less than .
The generation algorithm uses the values produced while advancing the state as described above to yield a quantity S obtained as if by the following algorithm: S = 0; for (k = 0; ; k += 1) { do u = e() - e.min(); while (); S = ; } for (k = ; ; k += 1) { do u = e() - e.min(); while (); S = ; }
template<class Engine, size_t w, class UIntType> class independent_bits_engine { public: // types using result_type = UIntType; // engine characteristics static constexpr result_type min() { return 0; } static constexpr result_type max() { return ; } // constructors and seeding functions independent_bits_engine(); explicit independent_bits_engine(const Engine& e); explicit independent_bits_engine(Engine&& e); explicit independent_bits_engine(result_type s); template<class Sseq> explicit independent_bits_engine(Sseq& q); void seed(); void seed(result_type s); template<class Sseq> void seed(Sseq& q); // generating functions result_type operator()(); void discard(unsigned long long z); // property functions const Engine& base() const noexcept { return e; }; private: Engine e; // exposition only };
The following relations shall hold: 0 < w and w <= numeric_­limits<result_­type>​::​digits.
The textual representation consists of the textual representation of e.