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1 Scope [intro.scope]
1 This document specifies requirements for implementations of the C++ programming language. The first such

requirement is that an implementation implements the language, so this document also defines C++. Other
requirements and relaxations of the first requirement appear at various places within this document.

2 C++ is a general purpose programming language based on the C programming language as described in
ISO/IEC 9899:2018. C++ provides many facilities beyond those provided by C, including additional data
types, classes, templates, exceptions, namespaces, operator overloading, function name overloading, references,
free store management operators, and additional library facilities.

Scope 1
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2 Normative references [intro.refs]
1 The following documents are referred to in the text in such a way that some or all of their content constitutes

requirements of this document. For dated references, only the edition cited applies. For undated references,
the latest edition of the referenced document (including any amendments) applies.

—(1.1) ISO/IEC 2382, Information technology — Vocabulary
—(1.2) ISO 8601:2004, Data elements and interchange formats — Information interchange — Representation

of dates and times
—(1.3) ISO/IEC 9899:2018, Information technology — Programming languages — C
—(1.4) ISO/IEC/IEEE 9945:2009, Information Technology — Portable Operating System Interface (POSIX1)
—(1.5) ISO/IEC/IEEE 9945:2009/Cor 1:2013, Information Technology — Portable Operating System Interface

(POSIX), Technical Corrigendum 1
—(1.6) ISO/IEC/IEEE 9945:2009/Cor 2:2017, Information Technology — Portable Operating System Interface

(POSIX), Technical Corrigendum 2
—(1.7) ISO/IEC/IEEE 60559:2020, Information technology — Microprocessor Systems — Floating-Point

arithmetic
—(1.8) ISO 80000-2:2009, Quantities and units — Part 2: Mathematical signs and symbols to be used in the

natural sciences and technology
—(1.9) Ecma International, ECMAScript2 Language Specification, Standard Ecma-262, third edition, 1999.
—(1.10) The Unicode Consortium. The Unicode Standard. Available from: https://www.unicode.org/

versions/latest/

1) POSIX® is a registered trademark of the Institute of Electrical and Electronic Engineers, Inc. This information is given for
the convenience of users of this document and does not constitute an endorsement by ISO or IEC of this product.

2) ECMAScript® is a registered trademark of Ecma International. This information is given for the convenience of users of
this document and does not constitute an endorsement by ISO or IEC of this product.

Normative references 2
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3 Terms and definitions [intro.defs]
1 For the purposes of this document, the terms and definitions given in ISO/IEC 2382, the terms, definitions,

and symbols given in ISO 80000-2:2009, and the following apply.
2 ISO and IEC maintain terminology databases for use in standardization at the following addresses:

—(2.1) ISO Online browsing platform: available at https://www.iso.org/obp
—(2.2) IEC Electropedia: available at https://www.electropedia.org/

3.1 [defns.access]
access
〈execution-time action〉 read or modify the value of an object
[Note 1 to entry: Only glvalues of scalar type can be used to access objects. Reads of scalar objects are described in
7.3.2 and modifications of scalar objects are described in 7.6.19, 7.6.1.6, and 7.6.2.3. Attempts to read or modify an
object of class type typically invoke a constructor (11.4.5) or assignment operator (11.4.6); such invocations do not
themselves constitute accesses, although they may involve accesses of scalar subobjects. — end note ]

3.2 [defns.argument]
argument
〈function call expression〉 expression in the comma-separated list bounded by the parentheses

3.3 [defns.argument.macro]
argument
〈function-like macro〉 sequence of preprocessing tokens in the comma-separated list bounded by the parentheses

3.4 [defns.argument.throw]
argument
〈throw expression〉 operand of throw

3.5 [defns.argument.templ]
argument
〈template instantiation〉 constant-expression, type-id , or id-expression in the comma-separated list bounded by
the angle brackets

3.6 [defns.block]
block
〈execution〉 wait for some condition (other than for the implementation to execute the execution steps of the
thread of execution) to be satisfied before continuing execution past the blocking operation

3.7 [defns.block.stmt]
block
〈statement〉 compound statement

3.8 [defns.c.lib]
C standard library
library described in ISO/IEC 9899:2018, Clause 7
[Note 1 to entry: With the qualifications noted in Clause 17 through Clause 33 and in C.7, the C standard library is a
subset of the C++ standard library. — end note ]

3.9 [defns.character]
character
〈library〉 object which, when treated sequentially, can represent text
[Note 1 to entry: The term does not mean only char, char8_t, char16_t, char32_t, and wchar_t objects (6.8.2), but
any value that can be represented by a type that provides the definitions specified in Clause 23, Clause 30, Clause 31,
or Clause 32. — end note ]

§ 3.9 3
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3.10 [defns.character.container]
character container type
〈library〉 class or a type used to represent a character (3.9)
[Note 1 to entry: It is used for one of the template parameters of the string, iostream, and regular expression class
templates. — end note ]

3.11 [defns.regex.collating.element]
collating element
sequence of one or more characters (3.9) within the current locale that collate as if they were a single character

3.12 [defns.component]
component
〈library〉 group of library entities directly related as members, parameters (3.36), or return types
[Note 1 to entry: For example, the class template basic_string and the non-member function templates that operate
on strings are referred to as the string component. — end note ]

3.13 [defns.cond.supp]
conditionally-supported
program construct that an implementation is not required to support
[Note 1 to entry: Each implementation documents all conditionally-supported constructs that it does not support.

— end note ]

3.14 [defns.const.subexpr]
constant subexpression
expression whose evaluation as subexpression of a conditional-expression CE would not prevent CE from being
a core constant expression

3.15 [defns.deadlock]
deadlock
〈library〉 situation wherein one or more threads are unable to continue execution because each is blocked (3.6)
waiting for one or more of the others to satisfy some condition

3.16 [defns.default.behavior.impl]
default behavior
〈library implementation〉 specific behavior provided by the implementation, within the scope of the required
behavior (3.46)

3.17 [defns.diagnostic]
diagnostic message
message belonging to an implementation-defined subset of the implementation’s output messages

3.18 [defns.dynamic.type]
dynamic type
〈glvalue〉 type of the most derived object to which the glvalue refers
[Example 1 : If a pointer (9.3.4.2) p whose static type is “pointer to class B” is pointing to an object of class D, derived
from B (11.7), the dynamic type of the expression *p is “D”. References (9.3.4.3) are treated similarly. — end example ]

3.19 [defns.dynamic.type.prvalue]
dynamic type
〈prvalue〉 static type (3.58) of the prvalue expression

3.20 [defns.expression.equivalent]
expression-equivalent
〈library〉 expressions that all have the same effects, either are all potentially-throwing or are all not potentially-
throwing, and either are all constant subexpressions (3.14) or are all not constant subexpressions
[Example 1 : For a value x of type int and a function f that accepts integer arguments, the expressions f(x + 2),
f(2 + x), and f(1 + x + 1) are expression-equivalent. — end example ]

§ 3.20 4
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3.21 [defns.regex.finite.state.machine]
finite state machine
〈regular expression〉 unspecified data structure that is used to represent a regular expression (3.44), and which
permits efficient matches against the regular expression to be obtained

3.22 [defns.regex.format.specifier]
format specifier
〈regular expression〉 sequence of one or more characters (3.9) that is to be replaced with some part of a
regular expression (3.44) match

3.23 [defns.handler]
handler function
〈library〉 non-reserved function whose definition may be provided by a C++ program
[Note 1 to entry: A C++ program may designate a handler function at various points in its execution by supplying a
pointer to the function when calling any of the library functions that install handler functions (Clause 17). — end
note ]

3.24 [defns.ill.formed]
ill-formed program
program that is not well-formed (3.65)

3.25 [defns.impl.defined]
implementation-defined behavior
behavior, for a well-formed program (3.65) construct and correct data, that depends on the implementation
and that each implementation documents

3.26 [defns.order.ptr]
implementation-defined strict total order over pointers
〈library〉 implementation-defined strict total ordering over all pointer values such that the ordering is consistent
with the partial order imposed by the builtin operators <, >, <=, >=, and <=>

3.27 [defns.impl.limits]
implementation limit
restriction imposed upon programs by the implementation

3.28 [defns.locale.specific]
locale-specific behavior
behavior that depends on local conventions of nationality, culture, and language that each implementation
documents

3.29 [defns.regex.matched]
matched
〈regular expression〉 condition when a sequence of zero or more characters (3.9) correspond to a sequence of
characters defined by the pattern

3.30 [defns.modifier]
modifier function
〈library〉 class member function other than a constructor, assignment operator, or destructor that alters the
state of an object of the class

3.31 [defns.move.assign]
move assignment
〈library〉 assignment of an rvalue of some object type to a modifiable lvalue of the same type

3.32 [defns.move.constr]
move construction
〈library〉 direct-initialization of an object of some type with an rvalue of the same type

§ 3.32 5
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3.33 [defns.nonconst.libcall]
non-constant library call
invocation of a library function that, as part of evaluating any expression E, prevents E from being a core
constant expression

3.34 [defns.ntcts]
NTCTS
〈library〉 sequence of values that have character (3.9) type that precede the terminating null character type
value charT()

3.35 [defns.observer]
observer function
〈library〉 class member function that accesses the state of an object of the class but does not alter that state
[Note 1 to entry: Observer functions are specified as const member functions. — end note ]

3.36 [defns.parameter]
parameter
〈function or catch clause〉 object or reference declared as part of a function declaration or definition or in the
catch clause of an exception handler that acquires a value on entry to the function or handler

3.37 [defns.parameter.macro]
parameter
〈function-like macro〉 identifier from the comma-separated list bounded by the parentheses immediately
following the macro name

3.38 [defns.parameter.templ]
parameter
〈template〉 member of a template-parameter-list

3.39 [defns.regex.primary.equivalence.class]
primary equivalence class
〈regular expression〉 set of one or more characters (3.9) which share the same primary sort key: that is the
sort key weighting that depends only upon character shape, and not accents, case, or locale specific tailorings

3.40 [defns.prog.def.spec]
program-defined specialization
〈library〉 explicit template specialization or partial specialization that is not part of the C++ standard library
and not defined by the implementation

3.41 [defns.prog.def.type]
program-defined type
〈library〉 non-closure class type or enumeration type that is not part of the C++ standard library and not
defined by the implementation, or a closure type of a non-implementation-provided lambda expression, or an
instantiation of a program-defined specialization (3.40)
[Note 1 to entry: Types defined by the implementation include extensions (4.1) and internal types used by the library.

— end note ]

3.42 [defns.projection]
projection
〈library〉 transformation that an algorithm applies before inspecting the values of elements
[Example 1 :

std::pair<int, std::string_view> pairs[] = {{2, "foo"}, {1, "bar"}, {0, "baz"}};
std::ranges::sort(pairs, std::ranges::less{}, [](auto const& p) { return p.first; });

sorts the pairs in increasing order of their first members:
{{0, "baz"}, {1, "bar"}, {2, "foo"}}

— end example ]

§ 3.42 6
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3.43 [defns.referenceable]
referenceable type
type that is either an object type, a function type that does not have cv-qualifiers or a ref-qualifier , or a
reference type
[Note 1 to entry: The term describes a type to which a reference can be created, including reference types. — end
note ]

3.44 [defns.regex.regular.expression]
regular expression
pattern that selects specific strings from a set of character (3.9) strings

3.45 [defns.replacement]
replacement function
〈library〉 non-reserved function whose definition is provided by a C++ program
[Note 1 to entry: Only one definition for such a function is in effect for the duration of the program’s execution, as
the result of creating the program (5.2) and resolving the definitions of all translation units (6.6). — end note ]

3.46 [defns.required.behavior]
required behavior
〈library〉 description of replacement function (3.45) and handler function (3.23) semantics applicable to both
the behavior provided by the implementation and the behavior of any such function definition in the program
[Note 1 to entry: If such a function defined in a C++ program fails to meet the required behavior when it executes,
the behavior is undefined. — end note ]

3.47 [defns.reserved.function]
reserved function
〈library〉 function, specified as part of the C++ standard library, that is defined by the implementation
[Note 1 to entry: If a C++ program provides a definition for any reserved function, the results are undefined. — end
note ]

3.48 [defns.signature]
signature
〈function〉 name, parameter-type-list, and enclosing namespace
[Note 1 to entry: Signatures are used as a basis for name mangling and linking. — end note ]

3.49 [defns.signature.friend]
signature
〈non-template friend function with trailing requires-clause〉 name, parameter-type-list, enclosing class, and
trailing requires-clause

3.50 [defns.signature.templ]
signature
〈function template〉 name, parameter-type-list, enclosing namespace, return type, signature (3.56) of the
template-head , and trailing requires-clause (if any)

3.51 [defns.signature.templ.friend]
signature
〈friend function template with constraint involving enclosing template parameters〉 name, parameter-type-list,
return type, enclosing class, signature (3.56) of the template-head , and trailing requires-clause (if any)

3.52 [defns.signature.spec]
signature
〈function template specialization〉 signature (3.50) of the template of which it is a specialization and its
template arguments (3.5) (whether explicitly specified or deduced)

3.53 [defns.signature.member]
signature
〈class member function〉 name, parameter-type-list, class of which the function is a member, cv-qualifiers (if
any), ref-qualifier (if any), and trailing requires-clause (if any)

§ 3.53 7
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3.54 [defns.signature.member.templ]
signature
〈class member function template〉 name, parameter-type-list, class of which the function is a member, cv-
qualifiers (if any), ref-qualifier (if any), return type (if any), signature (3.56) of the template-head , and trailing
requires-clause (if any)

3.55 [defns.signature.member.spec]
signature
〈class member function template specialization〉 signature (3.54) of the member function template of which it
is a specialization and its template arguments (whether explicitly specified or deduced)

3.56 [defns.signature.template.head]
signature
〈template-head〉 template parameter (3.38) list, excluding template parameter names and default arguments
(3.5), and requires-clause (if any)

3.57 [defns.stable]
stable algorithm
〈library〉 algorithm that preserves, as appropriate to the particular algorithm, the order of elements
[Note 1 to entry: Requirements for stable algorithms are given in 16.4.6.8. — end note ]

3.58 [defns.static.type]
static type
type of an expression resulting from analysis of the program without considering execution semantics
[Note 1 to entry: The static type of an expression depends only on the form of the program in which the expression
appears, and does not change while the program is executing. — end note ]

3.59 [defns.regex.subexpression]
sub-expression
〈regular expression〉 subset of a regular expression (3.44) that has been marked by parentheses

3.60 [defns.traits]
traits class
〈library〉 class that encapsulates a set of types and functions necessary for class templates and function
templates to manipulate objects of types for which they are instantiated

3.61 [defns.unblock]
unblock
satisfy a condition that one or more blocked (3.6) threads of execution are waiting for

3.62 [defns.undefined]
undefined behavior
behavior for which this document imposes no requirements
[Note 1 to entry: Undefined behavior may be expected when this document omits any explicit definition of behavior
or when a program uses an erroneous construct or erroneous data. Permissible undefined behavior ranges from
ignoring the situation completely with unpredictable results, to behaving during translation or program execution in a
documented manner characteristic of the environment (with or without the issuance of a diagnostic message (3.17)), to
terminating a translation or execution (with the issuance of a diagnostic message). Many erroneous program constructs
do not engender undefined behavior; they are required to be diagnosed. Evaluation of a constant expression (7.7)
never exhibits behavior explicitly specified as undefined in Clause 4 through Clause 15. — end note ]

3.63 [defns.unspecified]
unspecified behavior
behavior, for a well-formed program (3.65) construct and correct data, that depends on the implementation
[Note 1 to entry: The implementation is not required to document which behavior occurs. The range of possible
behaviors is usually delineated by this document. — end note ]
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3.64 [defns.valid]
valid but unspecified state
〈library〉 value of an object that is not specified except that the object’s invariants are met and operations on
the object behave as specified for its type
[Example 1 : If an object x of type std::vector<int> is in a valid but unspecified state, x.empty() can be called
unconditionally, and x.front() can be called only if x.empty() returns false. — end example ]

3.65 [defns.well.formed]
well-formed program
C++ program constructed according to the syntax and semantic rules

§ 3.65 9
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4 General principles [intro]
4.1 Implementation compliance [intro.compliance]
4.1.1 General [intro.compliance.general]

1 The set of diagnosable rules consists of all syntactic and semantic rules in this document except for those
rules containing an explicit notation that “no diagnostic is required” or which are described as resulting in
“undefined behavior”.

2 Although this document states only requirements on C++ implementations, those requirements are often
easier to understand if they are phrased as requirements on programs, parts of programs, or execution of
programs. Such requirements have the following meaning:

—(2.1) If a program contains no violations of the rules in Clause 5 through Clause 33 and Annex D, a conforming
implementation shall, within its resource limits as described in Annex B, accept and correctly execute3

that program.
—(2.2) If a program contains a violation of a rule for which no diagnostic is required, this document places no

requirement on implementations with respect to that program.
—(2.3) Otherwise, if a program contains a violation of any diagnosable rule or an occurrence of a construct

described in this document as “conditionally-supported” when the implementation does not support
that construct, a conforming implementation shall issue at least one diagnostic message.

[Note 1 : During template argument deduction and substitution, certain constructs that in other contexts require a
diagnostic are treated differently; see 13.10.3. — end note ]

Furthermore, a conforming implementation
—(2.4) shall not accept a preprocessing translation unit containing a #error preprocessing directive (15.8),
—(2.5) shall issue at least one diagnostic message for each #warning or #error preprocessing directive not

following a #error preprocessing directive in a preprocessing translation unit, and
—(2.6) shall not accept a translation unit with a static_assert-declaration that fails (9.1).

3 For classes and class templates, the library Clauses specify partial definitions. Private members (11.8) are not
specified, but each implementation shall supply them to complete the definitions according to the description
in the library Clauses.

4 For functions, function templates, objects, and values, the library Clauses specify declarations. Implementa-
tions shall supply definitions consistent with the descriptions in the library Clauses.

5 A C++ translation unit (5.2) obtains access to the names defined in the library by including the appropriate
standard library header or importing the appropriate standard library named header unit (16.4.3.2).

6 The templates, classes, functions, and objects in the library have external linkage (6.6). The implementation
provides definitions for standard library entities, as necessary, while combining translation units to form a
complete C++ program (5.2).

7 Two kinds of implementations are defined: a hosted implementation and a freestanding implementation. A
freestanding implementation is one in which execution may take place without the benefit of an operating
system. A hosted implementation supports all the facilities described in this document, while a freestanding
implementation supports the entire C++ language described in Clause 5 through Clause 15 and the subset of
the library facilities described in 16.4.2.5.

8 A conforming implementation may have extensions (including additional library functions), provided they
do not alter the behavior of any well-formed program. Implementations are required to diagnose programs
that use such extensions that are ill-formed according to this document. Having done so, however, they can
compile and execute such programs.

9 Each implementation shall include documentation that identifies all conditionally-supported constructs that
it does not support and defines all locale-specific characteristics.4

3) “Correct execution” can include undefined behavior, depending on the data being processed; see Clause 3 and 6.9.1.
4) This documentation also defines implementation-defined behavior; see 4.1.2.
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4.1.2 Abstract machine [intro.abstract]
1 The semantic descriptions in this document define a parameterized nondeterministic abstract machine. This

document places no requirement on the structure of conforming implementations. In particular, they need
not copy or emulate the structure of the abstract machine. Rather, conforming implementations are required
to emulate (only) the observable behavior of the abstract machine as explained below.5

2 Certain aspects and operations of the abstract machine are described in this document as implementation-
defined (for example, sizeof(int)). These constitute the parameters of the abstract machine. Each
implementation shall include documentation describing its characteristics and behavior in these respects.6
Such documentation shall define the instance of the abstract machine that corresponds to that implementation
(referred to as the “corresponding instance” below).

3 Certain other aspects and operations of the abstract machine are described in this document as unspecified
(for example, order of evaluation of arguments in a function call (7.6.1.3)). Where possible, this document
defines a set of allowable behaviors. These define the nondeterministic aspects of the abstract machine. An
instance of the abstract machine can thus have more than one possible execution for a given program and a
given input.

4 Certain other operations are described in this document as undefined (for example, the effect of attempting
to modify a const object).
[Note 1 : This document imposes no requirements on the behavior of programs that contain undefined behavior.

— end note ]
5 A conforming implementation executing a well-formed program shall produce the same observable behavior as

one of the possible executions of the corresponding instance of the abstract machine with the same program
and the same input. However, if any such execution contains an undefined operation, this document places
no requirement on the implementation executing that program with that input (not even with regard to
operations preceding the first undefined operation).

6 The least requirements on a conforming implementation are:
—(6.1) Accesses through volatile glvalues are evaluated strictly according to the rules of the abstract machine.
—(6.2) At program termination, all data written into files shall be identical to one of the possible results that

execution of the program according to the abstract semantics would have produced.
—(6.3) The input and output dynamics of interactive devices shall take place in such a fashion that prompting

output is actually delivered before a program waits for input. What constitutes an interactive device is
implementation-defined.

These collectively are referred to as the observable behavior of the program.
[Note 2 : More stringent correspondences between abstract and actual semantics can be defined by each implementation.

— end note ]

4.2 Structure of this document [intro.structure]
1 Clause 5 through Clause 15 describe the C++ programming language. That description includes detailed

syntactic specifications in a form described in 4.3. For convenience, Annex A repeats all such syntactic
specifications.

2 Clause 17 through Clause 33 and Annex D (the library clauses) describe the C++ standard library. That
description includes detailed descriptions of the entities and macros that constitute the library, in a form
described in Clause 16.

3 Annex B recommends lower bounds on the capacity of conforming implementations.
4 Annex C summarizes the evolution of C++ since its first published description, and explains in detail the

differences between C++ and C. Certain features of C++ exist solely for compatibility purposes; Annex D
describes those features.

5) This provision is sometimes called the “as-if” rule, because an implementation is free to disregard any requirement of this
document as long as the result is as if the requirement had been obeyed, as far as can be determined from the observable
behavior of the program. For instance, an actual implementation need not evaluate part of an expression if it can deduce that
its value is not used and that no side effects affecting the observable behavior of the program are produced.

6) This documentation also includes conditionally-supported constructs and locale-specific behavior. See 4.1.1.
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4.3 Syntax notation [syntax]
1 In the syntax notation used in this document, syntactic categories are indicated by italic type, and literal

words and characters in constant width type. Alternatives are listed on separate lines except in a few cases
where a long set of alternatives is marked by the phrase “one of”. If the text of an alternative is too long to
fit on a line, the text is continued on subsequent lines indented from the first one. An optional terminal or
non-terminal symbol is indicated by the subscript “opt”, so

{ expressionopt }

indicates an optional expression enclosed in braces.
2 Names for syntactic categories have generally been chosen according to the following rules:

—(2.1) X-name is a use of an identifier in a context that determines its meaning (e.g., class-name, typedef-name).
—(2.2) X-id is an identifier with no context-dependent meaning (e.g., qualified-id).
—(2.3) X-seq is one or more X ’s without intervening delimiters (e.g., declaration-seq is a sequence of declarations).
—(2.4) X-list is one or more X ’s separated by intervening commas (e.g., identifier-list is a sequence of identifiers

separated by commas).
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5 Lexical conventions [lex]
5.1 Separate translation [lex.separate]

1 The text of the program is kept in units called source files in this document. A source file together with all the
headers (16.4.2.3) and source files included (15.3) via the preprocessing directive #include, less any source
lines skipped by any of the conditional inclusion (15.2) preprocessing directives, is called a preprocessing
translation unit.
[Note 1 : A C++ program need not all be translated at the same time. — end note ]

2 [Note 2 : Previously translated translation units and instantiation units can be preserved individually or in libraries.
The separate translation units of a program communicate (6.6) by (for example) calls to functions whose identifiers
have external or module linkage, manipulation of objects whose identifiers have external or module linkage, or
manipulation of data files. Translation units can be separately translated and then later linked to produce an
executable program (6.6). — end note ]

5.2 Phases of translation [lex.phases]
1 The precedence among the syntax rules of translation is specified by the following phases.7

1. An implementation shall support input files that are a sequence of UTF-8 code units (UTF-8 files). It
may also support an implementation-defined set of other kinds of input files, and, if so, the kind of an
input file is determined in an implementation-defined manner that includes a means of designating
input files as UTF-8 files, independent of their content.
[Note 1 : In other words, recognizing the u+feff byte order mark is not sufficient. — end note ]

If an input file is determined to be a UTF-8 file, then it shall be a well-formed UTF-8 code unit sequence
and it is decoded to produce a sequence of Unicode scalar values. A sequence of translation character
set elements is then formed by mapping each Unicode scalar value to the corresponding translation
character set element. In the resulting sequence, each pair of characters in the input sequence consisting
of u+000d carriage return followed by u+000a line feed, as well as each u+000d carriage return
not immediately followed by a u+000a line feed, is replaced by a single new-line character.
For any other kind of input file supported by the implementation, characters are mapped, in an
implementation-defined manner, to a sequence of translation character set elements (5.3), representing
end-of-line indicators as new-line characters.

2. If the first translation character is u+feff byte order mark, it is deleted. Each sequence of a
backslash character (\) immediately followed by zero or more whitespace characters other than new-line
followed by a new-line character is deleted, splicing physical source lines to form logical source lines.
Only the last backslash on any physical source line shall be eligible for being part of such a splice.
Except for splices reverted in a raw string literal, if a splice results in a character sequence that matches
the syntax of a universal-character-name, the behavior is undefined. A source file that is not empty and
that does not end in a new-line character, or that ends in a splice, shall be processed as if an additional
new-line character were appended to the file.

3. The source file is decomposed into preprocessing tokens (5.4) and sequences of whitespace characters
(including comments). A source file shall not end in a partial preprocessing token or in a partial
comment.8 Each comment is replaced by one space character. New-line characters are retained.
Whether each nonempty sequence of whitespace characters other than new-line is retained or replaced
by one space character is unspecified. As characters from the source file are consumed to form the
next preprocessing token (i.e., not being consumed as part of a comment or other forms of whitespace),
except when matching a c-char-sequence, s-char-sequence, r-char-sequence, h-char-sequence, or q-char-
sequence, universal-character-names are recognized and replaced by the designated element of the
translation character set. The process of dividing a source file’s characters into preprocessing tokens is
context-dependent.

7) Implementations behave as if these separate phases occur, although in practice different phases can be folded together.
8) A partial preprocessing token would arise from a source file ending in the first portion of a multi-character token that

requires a terminating sequence of characters, such as a header-name that is missing the closing " or >. A partial comment
would arise from a source file ending with an unclosed /* comment.
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[Example 1 : See the handling of < within a #include preprocessing directive. — end example ]

4. Preprocessing directives are executed, macro invocations are expanded, and _Pragma unary operator
expressions are executed. A #include preprocessing directive causes the named header or source file to
be processed from phase 1 through phase 4, recursively. All preprocessing directives are then deleted.

5. For a sequence of two or more adjacent string-literal tokens, a common encoding-prefix is determined as
specified in 5.13.5. Each such string-literal token is then considered to have that common encoding-prefix .

6. Adjacent string-literal tokens are concatenated (5.13.5).
7. Whitespace characters separating tokens are no longer significant. Each preprocessing token is converted

into a token (5.6). The resulting tokens constitute a translation unit and are syntactically and
semantically analyzed and translated.
[Note 2 : The process of analyzing and translating the tokens can occasionally result in one token being replaced
by a sequence of other tokens (13.3). — end note ]

It is implementation-defined whether the sources for module units and header units on which the
current translation unit has an interface dependency (10.1, 10.3) are required to be available.
[Note 3 : Source files, translation units and translated translation units need not necessarily be stored as files,
nor need there be any one-to-one correspondence between these entities and any external representation. The
description is conceptual only, and does not specify any particular implementation. — end note ]

8. Translated translation units and instantiation units are combined as follows:
[Note 4 : Some or all of these can be supplied from a library. — end note ]

Each translated translation unit is examined to produce a list of required instantiations.
[Note 5 : This can include instantiations which have been explicitly requested (13.9.3). — end note ]

The definitions of the required templates are located. It is implementation-defined whether the source
of the translation units containing these definitions is required to be available.
[Note 6 : An implementation can choose to encode sufficient information into the translated translation unit so
as to ensure the source is not required here. — end note ]

All the required instantiations are performed to produce instantiation units.
[Note 7 : These are similar to translated translation units, but contain no references to uninstantiated templates
and no template definitions. — end note ]

The program is ill-formed if any instantiation fails.
9. All external entity references are resolved. Library components are linked to satisfy external references

to entities not defined in the current translation. All such translator output is collected into a program
image which contains information needed for execution in its execution environment.

5.3 Character sets [lex.charset]
1 The translation character set consists of the following elements:

—(1.1) each abstract character assigned a code point in the Unicode codespace as specified in the Unicode
Standard, and

—(1.2) a distinct character for each Unicode scalar value not assigned to an abstract character.
[Note 1 : Unicode code points are integers in the range [0, 10FFFF] (hexadecimal). A surrogate code point is a value
in the range [D800, DFFF] (hexadecimal). A Unicode scalar value is any code point that is not a surrogate code point.

— end note ]
2 The basic character set is a subset of the translation character set, consisting of 96 characters as specified in

Table 1.
[Note 2 : Unicode short names are given only as a means to identifying the character; the numerical value has no
other meaning in this context. — end note ]

3 The universal-character-name construct provides a way to name other characters.
n-char : one of

any member of the translation character set except the u+007d right curly bracket or new-line
character
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Table 1: Basic character set [tab:lex.charset.basic]

character glyph
u+0009 character tabulation
u+000b line tabulation
u+000c form feed
u+0020 space
u+000a line feed new-line
u+0021 exclamation mark !
u+0022 quotation mark "
u+0023 number sign #
u+0025 percent sign %
u+0026 ampersand &
u+0027 apostrophe ’
u+0028 left parenthesis (
u+0029 right parenthesis )
u+002a asterisk *
u+002b plus sign +
u+002c comma ,
u+002d hyphen-minus -
u+002e full stop .
u+002f solidus /
u+0030 .. u+0039 digit zero .. nine 0 1 2 3 4 5 6 7 8 9
u+003a colon :
u+003b semicolon ;
u+003c less-than sign <
u+003d equals sign =
u+003e greater-than sign >
u+003f question mark ?
u+0041 .. u+005a latin capital letter a .. z A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z
u+005b left square bracket [
u+005c reverse solidus \
u+005d right square bracket ]
u+005e circumflex accent ^
u+005f low line _
u+0061 .. u+007a latin small letter a .. z a b c d e f g h i j k l m

n o p q r s t u v w x y z
u+007b left curly bracket {
u+007c vertical line |
u+007d right curly bracket }
u+007e tilde ~
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n-char-sequence :
n-char
n-char-sequence n-char

named-universal-character :
\N{ n-char-sequence }

hex-quad :
hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit

simple-hexadecimal-digit-sequence :
hexadecimal-digit
simple-hexadecimal-digit-sequence hexadecimal-digit

universal-character-name :
\u hex-quad
\U hex-quad hex-quad
\u{ simple-hexadecimal-digit-sequence }
named-universal-character

4 A universal-character-name of the form \u hex-quad , \U hex-quad hex-quad , or \u{simple-hexadecimal-digit-
sequence} designates the character in the translation character set whose Unicode scalar value is the
hexadecimal number represented by the sequence of hexadecimal-digits in the universal-character-name. The
program is ill-formed if that number is not a Unicode scalar value.

5 A universal-character-name that is a named-universal-character designates the corresponding character in the
Unicode Standard (chapter 4.8 Name) if the n-char-sequence is equal to its character name or to one of its
character name aliases of type “control”, “correction”, or “alternate”; otherwise, the program is ill-formed.
[Note 3 : These aliases are listed in the Unicode Character Database’s NameAliases.txt. None of these names or
aliases have leading or trailing spaces. — end note ]

6 If a universal-character-name outside the c-char-sequence, s-char-sequence, or r-char-sequence of a character-
literal or string-literal (in either case, including within a user-defined-literal) corresponds to a control character
or to a character in the basic character set, the program is ill-formed.
[Note 4 : A sequence of characters resembling a universal-character-name in an r-char-sequence (5.13.5) does not form a
universal-character-name. — end note ]

7 The basic literal character set consists of all characters of the basic character set, plus the control characters
specified in Table 2.

Table 2: Additional control characters in the basic literal character set [tab:lex.charset.literal]

character
u+0000 null
u+0007 alert
u+0008 backspace
u+000d carriage return

8 A code unit is an integer value of character type (6.8.2). Characters in a character-literal other than a
multicharacter or non-encodable character literal or in a string-literal are encoded as a sequence of one or
more code units, as determined by the encoding-prefix (5.13.3, 5.13.5); this is termed the respective literal
encoding. The ordinary literal encoding is the encoding applied to an ordinary character or string literal. The
wide literal encoding is the encoding applied to a wide character or string literal.

9 A literal encoding or a locale-specific encoding of one of the execution character sets (16.3.3.3.4) encodes
each element of the basic literal character set as a single code unit with non-negative value, distinct from the
code unit for any other such element.
[Note 5 : A character not in the basic literal character set can be encoded with more than one code unit; the value of
such a code unit can be the same as that of a code unit for an element of the basic literal character set. — end note ]

The u+0000 null character is encoded as the value 0. No other element of the translation character set is
encoded with a code unit of value 0. The code unit value of each decimal digit character after the digit 0
(u+0030) shall be one greater than the value of the previous. The ordinary and wide literal encodings are
otherwise implementation-defined. For a UTF-8, UTF-16, or UTF-32 literal, the implementation shall encode
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the Unicode scalar value corresponding to each character of the translation character set as specified in the
Unicode Standard for the respective Unicode encoding form.

5.4 Preprocessing tokens [lex.pptoken]
preprocessing-token :

header-name
import-keyword
module-keyword
export-keyword
identifier
pp-number
character-literal
user-defined-character-literal
string-literal
user-defined-string-literal
preprocessing-op-or-punc
each non-whitespace character that cannot be one of the above

1 Each preprocessing token that is converted to a token (5.6) shall have the lexical form of a keyword, an
identifier, a literal, or an operator or punctuator.

2 A preprocessing token is the minimal lexical element of the language in translation phases 3 through 6. In this
document, glyphs are used to identify elements of the basic character set (5.3). The categories of preprocessing
token are: header names, placeholder tokens produced by preprocessing import and module directives (import-
keyword , module-keyword , and export-keyword), identifiers, preprocessing numbers, character literals (including
user-defined character literals), string literals (including user-defined string literals), preprocessing operators
and punctuators, and single non-whitespace characters that do not lexically match the other preprocessing
token categories. If a u+0027 apostrophe or a u+0022 quotation mark character matches the last category,
the behavior is undefined. If any character not in the basic character set matches the last category, the
program is ill-formed. Preprocessing tokens can be separated by whitespace; this consists of comments (5.7), or
whitespace characters (u+0020 space, u+0009 character tabulation, new-line, u+000b line tabulation,
and u+000c form feed), or both. As described in Clause 15, in certain circumstances during translation
phase 4, whitespace (or the absence thereof) serves as more than preprocessing token separation. Whitespace
can appear within a preprocessing token only as part of a header name or between the quotation characters
in a character literal or string literal.

3 If the input stream has been parsed into preprocessing tokens up to a given character:
—(3.1) If the next character begins a sequence of characters that could be the prefix and initial double quote of

a raw string literal, such as R", the next preprocessing token shall be a raw string literal. Between the
initial and final double quote characters of the raw string, any transformations performed in phase 2
(line splicing) are reverted; this reversion shall apply before any d-char , r-char , or delimiting parenthesis
is identified. The raw string literal is defined as the shortest sequence of characters that matches the
raw-string pattern

encoding-prefixopt R raw-string

—(3.2) Otherwise, if the next three characters are <:: and the subsequent character is neither : nor >, the < is
treated as a preprocessing token by itself and not as the first character of the alternative token <:.

—(3.3) Otherwise, the next preprocessing token is the longest sequence of characters that could constitute
a preprocessing token, even if that would cause further lexical analysis to fail, except that a header-
name (5.8) is only formed

—(3.3.1) after the include or import preprocessing token in an #include (15.3) or import (15.5) directive,
or

—(3.3.2) within a has-include-expression.
[Example 1 :

#define R "x"
const char* s = R"y"; // ill-formed raw string, not "x" "y"

— end example ]
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4 The import-keyword is produced by processing an import directive (15.5), the module-keyword is produced by
preprocessing a module directive (15.4), and the export-keyword is produced by preprocessing either of the
previous two directives.
[Note 1 : None has any observable spelling. — end note ]

5 [Example 2 : The program fragment 0xe+foo is parsed as a preprocessing number token (one that is not a valid
integer-literal or floating-point-literal token), even though a parse as three preprocessing tokens 0xe, +, and foo can
produce a valid expression (for example, if foo is a macro defined as 1). Similarly, the program fragment 1E1 is parsed
as a preprocessing number (one that is a valid floating-point-literal token), whether or not E is a macro name. — end
example ]

6 [Example 3 : The program fragment x+++++y is parsed as x ++ ++ + y, which, if x and y have integral types, violates
a constraint on increment operators, even though the parse x ++ + ++ y can yield a correct expression. — end
example ]

5.5 Alternative tokens [lex.digraph]
1 Alternative token representations are provided for some operators and punctuators.9

2 In all respects of the language, each alternative token behaves the same, respectively, as its primary token,
except for its spelling.10 The set of alternative tokens is defined in Table 3.

Table 3: Alternative tokens [tab:lex.digraph]

Alternative Primary Alternative Primary Alternative Primary
<% { and && and_eq &=
%> } bitor | or_eq |=
<: [ or || xor_eq ^=
:> ] xor ^ not !
%: # compl ~ not_eq !=

%:%: ## bitand &

5.6 Tokens [lex.token]
token :

identifier
keyword
literal
operator-or-punctuator

1 There are five kinds of tokens: identifiers, keywords, literals,11 operators, and other separators. Blanks,
horizontal and vertical tabs, newlines, formfeeds, and comments (collectively, “whitespace”), as described
below, are ignored except as they serve to separate tokens.
[Note 1 : Some whitespace is required to separate otherwise adjacent identifiers, keywords, numeric literals, and
alternative tokens containing alphabetic characters. — end note ]

5.7 Comments [lex.comment]
1 The characters /* start a comment, which terminates with the characters */. These comments do not nest.

The characters // start a comment, which terminates immediately before the next new-line character. If
there is a form-feed or a vertical-tab character in such a comment, only whitespace characters shall appear
between it and the new-line that terminates the comment; no diagnostic is required.
[Note 1 : The comment characters //, /*, and */ have no special meaning within a // comment and are treated just
like other characters. Similarly, the comment characters // and /* have no special meaning within a /* comment.

— end note ]

9) These include “digraphs” and additional reserved words. The term “digraph” (token consisting of two characters) is not
perfectly descriptive, since one of the alternative preprocessing-tokens is %:%: and of course several primary tokens contain two
characters. Nonetheless, those alternative tokens that aren’t lexical keywords are colloquially known as “digraphs”.

10) Thus the “stringized” values (15.6.3) of [ and <: will be different, maintaining the source spelling, but the tokens can
otherwise be freely interchanged.

11) Literals include strings and character and numeric literals.
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5.8 Header names [lex.header]
header-name :

< h-char-sequence >
" q-char-sequence "

h-char-sequence :
h-char
h-char-sequence h-char

h-char :
any member of the translation character set except new-line and u+003e greater-than sign

q-char-sequence :
q-char
q-char-sequence q-char

q-char :
any member of the translation character set except new-line and u+0022 quotation mark

1 [Note 1 : Header name preprocessing tokens only appear within a #include preprocessing directive, a __has_include
preprocessing expression, or after certain occurrences of an import token (see 5.4). — end note ]

The sequences in both forms of header-names are mapped in an implementation-defined manner to headers
or to external source file names as specified in 15.3.

2 The appearance of either of the characters ’ or \ or of either of the character sequences /* or // in a
q-char-sequence or an h-char-sequence is conditionally-supported with implementation-defined semantics, as is
the appearance of the character " in an h-char-sequence.12

5.9 Preprocessing numbers [lex.ppnumber]
pp-number :

digit
. digit
pp-number identifier-continue
pp-number ’ digit
pp-number ’ nondigit
pp-number e sign
pp-number E sign
pp-number p sign
pp-number P sign
pp-number .

1 Preprocessing number tokens lexically include all integer-literal tokens (5.13.2) and all floating-point-literal
tokens (5.13.4).

2 A preprocessing number does not have a type or a value; it acquires both after a successful conversion to an
integer-literal token or a floating-point-literal token.

5.10 Identifiers [lex.name]
identifier :

identifier-start
identifier identifier-continue

identifier-start :
nondigit
an element of the translation character set with the Unicode property XID_Start

identifier-continue :
digit
nondigit
an element of the translation character set with the Unicode property XID_Continue

nondigit : one of
a b c d e f g h i j k l m
n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z _

12) Thus, a sequence of characters that resembles an escape sequence can result in an error, be interpreted as the character
corresponding to the escape sequence, or have a completely different meaning, depending on the implementation.
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digit : one of
0 1 2 3 4 5 6 7 8 9

1 [Note 1 : The character properties XID_Start and XID_Continue are Derived Core Properties as described by
UAX #44 of the Unicode Standard.13 — end note ]

The program is ill-formed if an identifier does not conform to Normalization Form C as specified in the
Unicode Standard.
[Note 2 : Identifiers are case-sensitive. — end note ]
[Note 3 : Annex E compares the requirements of UAX #31 of the Unicode Standard with the C++ rules for identifiers.

— end note ]
[Note 4 : In translation phase 4, identifier also includes those preprocessing-tokens (5.4) differentiated as keywords (5.11)
in the later translation phase 7 (5.6). — end note ]

2 The identifiers in Table 4 have a special meaning when appearing in a certain context. When referred to
in the grammar, these identifiers are used explicitly rather than using the identifier grammar production.
Unless otherwise specified, any ambiguity as to whether a given identifier has a special meaning is resolved to
interpret the token as a regular identifier .

Table 4: Identifiers with special meaning [tab:lex.name.special]

final import module override

3 In addition, some identifiers appearing as a token or preprocessing-token are reserved for use by C++ imple-
mentations and shall not be used otherwise; no diagnostic is required.

—(3.1) Each identifier that contains a double underscore __ or begins with an underscore followed by an
uppercase letter is reserved to the implementation for any use.

—(3.2) Each identifier that begins with an underscore is reserved to the implementation for use as a name in
the global namespace.

5.11 Keywords [lex.key]
keyword :

any identifier listed in Table 5
import-keyword
module-keyword
export-keyword

1 The identifiers shown in Table 5 are reserved for use as keywords (that is, they are unconditionally treated as
keywords in phase 7) except in an attribute-token (9.12.1).
[Note 1 : The register keyword is unused but is reserved for future use. — end note ]

2 Furthermore, the alternative representations shown in Table 6 for certain operators and punctuators (5.5)
are reserved and shall not be used otherwise.

5.12 Operators and punctuators [lex.operators]
1 The lexical representation of C++ programs includes a number of preprocessing tokens that are used in the

syntax of the preprocessor or are converted into tokens for operators and punctuators:
preprocessing-op-or-punc :

preprocessing-operator
operator-or-punctuator

preprocessing-operator : one of
# ## %: %:%:

13) On systems in which linkers cannot accept extended characters, an encoding of the universal-character-name can be used
in forming valid external identifiers. For example, some otherwise unused character or sequence of characters can be used to
encode the \u in a universal-character-name. Extended characters can produce a long external identifier, but C++ does not place
a translation limit on significant characters for external identifiers.
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Table 5: Keywords [tab:lex.key]

alignas
alignof
asm
auto
bool
break
case
catch
char
char8_t
char16_t
char32_t
class
concept
const
consteval
constexpr

constinit
const_cast
continue
co_await
co_return
co_yield
decltype
default
delete
do
double
dynamic_cast
else
enum
explicit
export
extern

false
float
for
friend
goto
if
inline
int
long
mutable
namespace
new
noexcept
nullptr
operator
private
protected

public
register
reinterpret_cast
requires
return
short
signed
sizeof
static
static_assert
static_cast
struct
switch
template
this
thread_local
throw

true
try
typedef
typeid
typename
union
unsigned
using
virtual
void
volatile
wchar_t
while

Table 6: Alternative representations [tab:lex.key.digraph]

and and_eq bitand bitor compl not
not_eq or or_eq xor xor_eq

operator-or-punctuator : one of
{ } [ ] ( )
<: :> <% %> ; : ...
? :: . .* -> ->* ~
! + - * / % ^ & |
= += -= *= /= %= ^= &= |=
== != < > <= >= <=> && ||
<< >> <<= >>= ++ -- ,
and or xor not bitand bitor compl
and_eq or_eq xor_eq not_eq

Each operator-or-punctuator is converted to a single token in translation phase 7 (5.2).

5.13 Literals [lex.literal]
5.13.1 Kinds of literals [lex.literal.kinds]

1 There are several kinds of literals.14

literal :
integer-literal
character-literal
floating-point-literal
string-literal
boolean-literal
pointer-literal
user-defined-literal

[Note 1 : When appearing as an expression, a literal has a type and a value category (7.5.1). — end note ]

5.13.2 Integer literals [lex.icon]
integer-literal :

binary-literal integer-suffixopt
octal-literal integer-suffixopt
decimal-literal integer-suffixopt
hexadecimal-literal integer-suffixopt

14) The term “literal” generally designates, in this document, those tokens that are called “constants” in ISO C.
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binary-literal :
0b binary-digit
0B binary-digit
binary-literal ’opt binary-digit

octal-literal :
0
octal-literal ’opt octal-digit

decimal-literal :
nonzero-digit
decimal-literal ’opt digit

hexadecimal-literal :
hexadecimal-prefix hexadecimal-digit-sequence

binary-digit : one of
0 1

octal-digit : one of
0 1 2 3 4 5 6 7

nonzero-digit : one of
1 2 3 4 5 6 7 8 9

hexadecimal-prefix : one of
0x 0X

hexadecimal-digit-sequence :
hexadecimal-digit
hexadecimal-digit-sequence ’opt hexadecimal-digit

hexadecimal-digit : one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

integer-suffix :
unsigned-suffix long-suffixopt
unsigned-suffix long-long-suffixopt
unsigned-suffix size-suffixopt
long-suffix unsigned-suffixopt
long-long-suffix unsigned-suffixopt
size-suffix unsigned-suffixopt

unsigned-suffix : one of
u U

long-suffix : one of
l L

long-long-suffix : one of
ll LL

size-suffix : one of
z Z

1 In an integer-literal , the sequence of binary-digits, octal-digits, digits, or hexadecimal-digits is interpreted as
a base N integer as shown in table Table 7; the lexically first digit of the sequence of digits is the most
significant.
[Note 1 : The prefix and any optional separating single quotes are ignored when determining the value. — end note ]

Table 7: Base of integer-literals [tab:lex.icon.base]

Kind of integer-literal base N

binary-literal 2
octal-literal 8
decimal-literal 10
hexadecimal-literal 16

2 The hexadecimal-digits a through f and A through F have decimal values ten through fifteen.
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[Example 1 : The number twelve can be written 12, 014, 0XC, or 0b1100. The integer-literals 1048576, 1’048’576,
0X100000, 0x10’0000, and 0’004’000’000 all have the same value. — end example ]

3 The type of an integer-literal is the first type in the list in Table 8 corresponding to its optional integer-suffix
in which its value can be represented.

Table 8: Types of integer-literals [tab:lex.icon.type]

integer-suffix decimal-literal integer-literal other than decimal-literal
none int int

long int unsigned int
long long int long int

unsigned long int
long long int
unsigned long long int

u or U unsigned int unsigned int
unsigned long int unsigned long int
unsigned long long int unsigned long long int

l or L long int long int
long long int unsigned long int

long long int
unsigned long long int

Both u or U unsigned long int unsigned long int
and l or L unsigned long long int unsigned long long int
ll or LL long long int long long int

unsigned long long int
Both u or U unsigned long long int unsigned long long int
and ll or LL
z or Z the signed integer type corresponding the signed integer type

to std::size_t (17.2.4) corresponding to std::size_t
std::size_t

Both u or U std::size_t std::size_t
and z or Z

4 If an integer-literal cannot be represented by any type in its list and an extended integer type (6.8.2) can
represent its value, it may have that extended integer type. If all of the types in the list for the integer-literal
are signed, the extended integer type shall be signed. If all of the types in the list for the integer-literal are
unsigned, the extended integer type shall be unsigned. If the list contains both signed and unsigned types,
the extended integer type may be signed or unsigned. A program is ill-formed if one of its translation units
contains an integer-literal that cannot be represented by any of the allowed types.

5.13.3 Character literals [lex.ccon]
character-literal :

encoding-prefixopt ’ c-char-sequence ’

encoding-prefix : one of
u8 u U L

c-char-sequence :
c-char
c-char-sequence c-char

c-char :
basic-c-char
escape-sequence
universal-character-name

basic-c-char :
any member of the translation character set except the u+0027 apostrophe,

u+005c reverse solidus, or new-line character
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escape-sequence :
simple-escape-sequence
numeric-escape-sequence
conditional-escape-sequence

simple-escape-sequence :
\ simple-escape-sequence-char

simple-escape-sequence-char : one of
’ " ? \ a b f n r t v

numeric-escape-sequence :
octal-escape-sequence
hexadecimal-escape-sequence

simple-octal-digit-sequence :
octal-digit
simple-octal-digit-sequence octal-digit

octal-escape-sequence :
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit
\o{ simple-octal-digit-sequence }

hexadecimal-escape-sequence :
\x simple-hexadecimal-digit-sequence
\x{ simple-hexadecimal-digit-sequence }

conditional-escape-sequence :
\ conditional-escape-sequence-char

conditional-escape-sequence-char :
any member of the basic character set that is not an octal-digit, a simple-escape-sequence-char, or the
characters N, o, u, U, or x

1 A non-encodable character literal is a character-literal whose c-char-sequence consists of a single c-char that is
not a numeric-escape-sequence and that specifies a character that either lacks representation in the literal’s
associated character encoding or that cannot be encoded as a single code unit. A multicharacter literal is a
character-literal whose c-char-sequence consists of more than one c-char . The encoding-prefix of a non-encodable
character literal or a multicharacter literal shall be absent. Such character-literals are conditionally-supported.

2 The kind of a character-literal , its type, and its associated character encoding (5.3) are determined by its
encoding-prefix and its c-char-sequence as defined by Table 9. The special cases for non-encodable character
literals and multicharacter literals take precedence over the base kind.
[Note 1 : The associated character encoding for ordinary character literals determines encodability, but does not
determine the value of non-encodable ordinary character literals or ordinary multicharacter literals. The examples in
Table 9 for non-encodable ordinary character literals assume that the specified character lacks representation in the
ordinary literal encoding or that encoding the character would require more than one code unit. — end note ]

Table 9: Character literals [tab:lex.ccon.literal]

Encoding Kind Type Associated char- Example
prefix acter encoding
none ordinary character literal char ordinary ’v’

non-encodable ordinary character literal int literal ’\U0001F525’
ordinary multicharacter literal int encoding ’abcd’

L wide character literal wchar_t wide literal L’w’
encoding

u8 UTF-8 character literal char8_t UTF-8 u8’x’
u UTF-16 character literal char16_t UTF-16 u’y’
U UTF-32 character literal char32_t UTF-32 U’z’

3 In translation phase 4, the value of a character-literal is determined using the range of representable values of
the character-literal ’s type in translation phase 7. A non-encodable character literal or a multicharacter literal
has an implementation-defined value. The value of any other kind of character-literal is determined as follows:
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—(3.1) A character-literal with a c-char-sequence consisting of a single basic-c-char , simple-escape-sequence, or
universal-character-name is the code unit value of the specified character as encoded in the literal’s
associated character encoding.
[Note 2 : If the specified character lacks representation in the literal’s associated character encoding or if it
cannot be encoded as a single code unit, then the literal is a non-encodable character literal. — end note ]

—(3.2) A character-literal with a c-char-sequence consisting of a single numeric-escape-sequence has a value as
follows:

—(3.2.1) Let v be the integer value represented by the octal number comprising the sequence of octal-
digits in an octal-escape-sequence or by the hexadecimal number comprising the sequence of
hexadecimal-digits in a hexadecimal-escape-sequence.

—(3.2.2) If v does not exceed the range of representable values of the character-literal ’s type, then the value
is v.

—(3.2.3) Otherwise, if the character-literal ’s encoding-prefix is absent or L, and v does not exceed the
range of representable values of the corresponding unsigned type for the underlying type of the
character-literal ’s type, then the value is the unique value of the character-literal ’s type T that is
congruent to v modulo 2N , where N is the width of T.

—(3.2.4) Otherwise, the character-literal is ill-formed.
—(3.3) A character-literal with a c-char-sequence consisting of a single conditional-escape-sequence is conditionally-

supported and has an implementation-defined value.
4 The character specified by a simple-escape-sequence is specified in Table 10.

[Note 3 : Using an escape sequence for a question mark is supported for compatibility with ISO C++ 2014 and ISO C.
— end note ]

Table 10: Simple escape sequences [tab:lex.ccon.esc]

character simple-escape-sequence
u+000a line feed \n
u+0009 character tabulation \t
u+000b line tabulation \v
u+0008 backspace \b
u+000d carriage return \r
u+000c form feed \f
u+0007 alert \a
u+005c reverse solidus \\
u+003f question mark \?
u+0027 apostrophe \’
u+0022 quotation mark \"

5.13.4 Floating-point literals [lex.fcon]
floating-point-literal :

decimal-floating-point-literal
hexadecimal-floating-point-literal

decimal-floating-point-literal :
fractional-constant exponent-partopt floating-point-suffixopt
digit-sequence exponent-part floating-point-suffixopt

hexadecimal-floating-point-literal :
hexadecimal-prefix hexadecimal-fractional-constant binary-exponent-part floating-point-suffixopt
hexadecimal-prefix hexadecimal-digit-sequence binary-exponent-part floating-point-suffixopt

fractional-constant :
digit-sequenceopt . digit-sequence
digit-sequence .

hexadecimal-fractional-constant :
hexadecimal-digit-sequenceopt . hexadecimal-digit-sequence
hexadecimal-digit-sequence .
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exponent-part :
e signopt digit-sequence
E signopt digit-sequence

binary-exponent-part :
p signopt digit-sequence
P signopt digit-sequence

sign : one of
+ -

digit-sequence :
digit
digit-sequence ’opt digit

floating-point-suffix : one of
f l f16 f32 f64 f128 bf16 F L F16 F32 F64 F128 BF16

1 The type of a floating-point-literal (6.8.2, 6.8.3) is determined by its floating-point-suffix as specified in Table 11.
[Note 1 : The floating-point suffixes f16, f32, f64, f128, bf16, F16, F32, F64, F128, and BF16 are conditionally-
supported. See 6.8.3. — end note ]

Table 11: Types of floating-point-literals [tab:lex.fcon.type]

floating-point-suffix type
none double
f or F float
l or L long double
f16 or F16 std::float16_t
f32 or F32 std::float32_t
f64 or F64 std::float64_t
f128 or F128 std::float128_t
bf16 or BF16 std::bfloat16_t

2 The significand of a floating-point-literal is the fractional-constant or digit-sequence of a decimal-floating-point-
literal or the hexadecimal-fractional-constant or hexadecimal-digit-sequence of a hexadecimal-floating-point-literal .
In the significand, the sequence of digits or hexadecimal-digits and optional period are interpreted as a base N
real number s, where N is 10 for a decimal-floating-point-literal and 16 for a hexadecimal-floating-point-literal .
[Note 2 : Any optional separating single quotes are ignored when determining the value. — end note ]

If an exponent-part or binary-exponent-part is present, the exponent e of the floating-point-literal is the
result of interpreting the sequence of an optional sign and the digits as a base 10 integer. Otherwise, the
exponent e is 0. The scaled value of the literal is s × 10e for a decimal-floating-point-literal and s × 2e for a
hexadecimal-floating-point-literal .
[Example 1 : The floating-point-literals 49.625 and 0xC.68p+2 have the same value. The floating-point-literals
1.602’176’565e-19 and 1.602176565e-19 have the same value. — end example ]

3 If the scaled value is not in the range of representable values for its type, the program is ill-formed. Otherwise,
the value of a floating-point-literal is the scaled value if representable, else the larger or smaller representable
value nearest the scaled value, chosen in an implementation-defined manner.

5.13.5 String literals [lex.string]
string-literal :

encoding-prefixopt " s-char-sequenceopt "
encoding-prefixopt R raw-string

s-char-sequence :
s-char
s-char-sequence s-char

s-char :
basic-s-char
escape-sequence
universal-character-name
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basic-s-char :
any member of the translation character set except the u+0022 quotation mark,

u+005c reverse solidus, or new-line character
raw-string :

" d-char-sequenceopt ( r-char-sequenceopt ) d-char-sequenceopt "

r-char-sequence :
r-char
r-char-sequence r-char

r-char :
any member of the translation character set, except a u+0029 right parenthesis followed by

the initial d-char-sequence (which may be empty) followed by a u+0022 quotation mark
d-char-sequence :

d-char
d-char-sequence d-char

d-char :
any member of the basic character set except:

u+0020 space, u+0028 left parenthesis, u+0029 right parenthesis, u+005c reverse solidus,
u+0009 character tabulation, u+000b line tabulation, u+000c form feed, and new-line

1 The kind of a string-literal , its type, and its associated character encoding (5.3) are determined by its encoding
prefix and sequence of s-chars or r-chars as defined by Table 12 where n is the number of encoded code units
as described below.

Table 12: String literals [tab:lex.string.literal]

Encoding Kind Type Associated Examples
prefix character

encoding
none ordinary string literal array of n

const char
ordinary literal
encoding

"ordinary string"
R"(ordinary raw string)"

L wide string literal array of n
const wchar_t

wide literal
encoding

L"wide string"
LR"w(wide raw string)w"

u8 UTF-8 string literal array of n
const char8_t

UTF-8 u8"UTF-8 string"
u8R"x(UTF-8 raw string)x"

u UTF-16 string literal array of n
const char16_t

UTF-16 u"UTF-16 string"
uR"y(UTF-16 raw string)y"

U UTF-32 string literal array of n
const char32_t

UTF-32 U"UTF-32 string"
UR"z(UTF-32 raw string)z"

2 A string-literal that has an R in the prefix is a raw string literal. The d-char-sequence serves as a delimiter. The
terminating d-char-sequence of a raw-string is the same sequence of characters as the initial d-char-sequence.
A d-char-sequence shall consist of at most 16 characters.

3 [Note 1 : The characters ’(’ and ’)’ are permitted in a raw-string . Thus, R"delimiter((a|b))delimiter" is
equivalent to "(a|b)". — end note ]

4 [Note 2 : A source-file new-line in a raw string literal results in a new-line in the resulting execution string literal.
Assuming no whitespace at the beginning of lines in the following example, the assert will succeed:

const char* p = R"(a\
b
c)";
assert(std::strcmp(p, "a\\\nb\nc") == 0);

— end note ]
5 [Example 1 : The raw string

R"a(
)\
a"
)a"
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is equivalent to "\n)\\\na\"\n". The raw string
R"(x = "\"y\"")"

is equivalent to "x = \"\\\"y\\\"\"". — end example ]
6 Ordinary string literals and UTF-8 string literals are also referred to as narrow string literals.
7 The common encoding-prefix for a sequence of adjacent string-literals is determined pairwise as follows: If

two string-literals have the same encoding-prefix , the common encoding-prefix is that encoding-prefix . If one
string-literal has no encoding-prefix , the common encoding-prefix is that of the other string-literal . Any other
combinations are ill-formed.
[Note 3 : A string-literal ’s rawness has no effect on the determination of the common encoding-prefix . — end note ]

8 In translation phase 6 (5.2), adjacent string-literals are concatenated. The lexical structure and grouping of
the contents of the individual string-literals is retained.
[Example 2 :

"\xA" "B"

represents the code unit ’\xA’ and the character ’B’ after concatenation (and not the single code unit ’\xAB’).
Similarly,

R"(\u00)" "41"

represents six characters, starting with a backslash and ending with the digit 1 (and not the single character ’A’
specified by a universal-character-name).
Table 13 has some examples of valid concatenations. — end example ]

Table 13: String literal concatenations [tab:lex.string.concat]

Source Means Source Means Source Means
u"a" u"b" u"ab" U"a" U"b" U"ab" L"a" L"b" L"ab"
u"a" "b" u"ab" U"a" "b" U"ab" L"a" "b" L"ab"
"a" u"b" u"ab" "a" U"b" U"ab" "a" L"b" L"ab"

9 Evaluating a string-literal results in a string literal object with static storage duration (6.7.5). Whether all
string-literals are distinct (that is, are stored in nonoverlapping objects) and whether successive evaluations of
a string-literal yield the same or a different object is unspecified.
[Note 4 : The effect of attempting to modify a string literal object is undefined. — end note ]

10 String literal objects are initialized with the sequence of code unit values corresponding to the string-literal ’s
sequence of s-chars (originally from non-raw string literals) and r-chars (originally from raw string literals),
plus a terminating u+0000 null character, in order as follows:

—(10.1) The sequence of characters denoted by each contiguous sequence of basic-s-chars, r-chars, simple-escape-
sequences (5.13.3), and universal-character-names (5.3) is encoded to a code unit sequence using the
string-literal ’s associated character encoding. If a character lacks representation in the associated
character encoding, then the string-literal is conditionally-supported and an implementation-defined
code unit sequence is encoded.
[Note 5 : No character lacks representation in any Unicode encoding form. — end note ]

When encoding a stateful character encoding, implementations should encode the first such sequence
beginning with the initial encoding state and encode subsequent sequences beginning with the final
encoding state of the prior sequence.
[Note 6 : The encoded code unit sequence can differ from the sequence of code units that would be obtained by
encoding each character independently. — end note ]

—(10.2) Each numeric-escape-sequence (5.13.3) contributes a single code unit with a value as follows:
—(10.2.1) Let v be the integer value represented by the octal number comprising the sequence of octal-

digits in an octal-escape-sequence or by the hexadecimal number comprising the sequence of
hexadecimal-digits in a hexadecimal-escape-sequence.

—(10.2.2) If v does not exceed the range of representable values of the string-literal ’s array element type,
then the value is v.
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—(10.2.3) Otherwise, if the string-literal ’s encoding-prefix is absent or L, and v does not exceed the range of
representable values of the corresponding unsigned type for the underlying type of the string-literal ’s
array element type, then the value is the unique value of the string-literal ’s array element type T
that is congruent to v modulo 2N , where N is the width of T.

—(10.2.4) Otherwise, the string-literal is ill-formed.
When encoding a stateful character encoding, these sequences should have no effect on encoding state.

—(10.3) Each conditional-escape-sequence (5.13.3) contributes an implementation-defined code unit sequence.
When encoding a stateful character encoding, it is implementation-defined what effect these sequences
have on encoding state.

5.13.6 Boolean literals [lex.bool]
boolean-literal :

false
true

1 The Boolean literals are the keywords false and true. Such literals have type bool.

5.13.7 Pointer literals [lex.nullptr]
pointer-literal :

nullptr

1 The pointer literal is the keyword nullptr. It has type std::nullptr_t.
[Note 1 : std::nullptr_t is a distinct type that is neither a pointer type nor a pointer-to-member type; rather, a
prvalue of this type is a null pointer constant and can be converted to a null pointer value or null member pointer
value. See 7.3.12 and 7.3.13. — end note ]

5.13.8 User-defined literals [lex.ext]
user-defined-literal :

user-defined-integer-literal
user-defined-floating-point-literal
user-defined-string-literal
user-defined-character-literal

user-defined-integer-literal :
decimal-literal ud-suffix
octal-literal ud-suffix
hexadecimal-literal ud-suffix
binary-literal ud-suffix

user-defined-floating-point-literal :
fractional-constant exponent-partopt ud-suffix
digit-sequence exponent-part ud-suffix
hexadecimal-prefix hexadecimal-fractional-constant binary-exponent-part ud-suffix
hexadecimal-prefix hexadecimal-digit-sequence binary-exponent-part ud-suffix

user-defined-string-literal :
string-literal ud-suffix

user-defined-character-literal :
character-literal ud-suffix

ud-suffix :
identifier

1 If a token matches both user-defined-literal and another literal kind, it is treated as the latter.
[Example 1 : 123_km is a user-defined-literal , but 12LL is an integer-literal . — end example ]

The syntactic non-terminal preceding the ud-suffix in a user-defined-literal is taken to be the longest sequence
of characters that could match that non-terminal.

2 A user-defined-literal is treated as a call to a literal operator or literal operator template (12.6). To determine
the form of this call for a given user-defined-literal L with ud-suffix X, first let S be the set of declarations
found by unqualified lookup for the literal-operator-id whose literal suffix identifier is X (6.5.3). S shall not
be empty.
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3 If L is a user-defined-integer-literal , let n be the literal without its ud-suffix . If S contains a literal operator
with parameter type unsigned long long, the literal L is treated as a call of the form

operator ""X (n ULL)

Otherwise, S shall contain a raw literal operator or a numeric literal operator template (12.6) but not both.
If S contains a raw literal operator, the literal L is treated as a call of the form

operator ""X ("n ")

Otherwise (S contains a numeric literal operator template), L is treated as a call of the form
operator ""X <'c1', 'c2', ... 'ck'>()

where n is the source character sequence c1c2...ck.
[Note 1 : The sequence c1c2...ck can only contain characters from the basic character set. — end note ]

4 If L is a user-defined-floating-point-literal , let f be the literal without its ud-suffix . If S contains a literal
operator with parameter type long double, the literal L is treated as a call of the form

operator ""X (f L)

Otherwise, S shall contain a raw literal operator or a numeric literal operator template (12.6) but not both.
If S contains a raw literal operator, the literal L is treated as a call of the form

operator ""X ("f ")

Otherwise (S contains a numeric literal operator template), L is treated as a call of the form
operator ""X <'c1', 'c2', ... 'ck'>()

where f is the source character sequence c1c2...ck.
[Note 2 : The sequence c1c2...ck can only contain characters from the basic character set. — end note ]

5 If L is a user-defined-string-literal , let str be the literal without its ud-suffix and let len be the number of
code units in str (i.e., its length excluding the terminating null character). If S contains a literal operator
template with a non-type template parameter for which str is a well-formed template-argument, the literal L
is treated as a call of the form

operator ""X <str >()

Otherwise, the literal L is treated as a call of the form
operator ""X (str , len )

6 If L is a user-defined-character-literal , let ch be the literal without its ud-suffix . S shall contain a literal
operator (12.6) whose only parameter has the type of ch and the literal L is treated as a call of the form

operator ""X (ch )
7 [Example 2 :

long double operator ""_w(long double);
std::string operator ""_w(const char16_t*, std::size_t);
unsigned operator ""_w(const char*);
int main() {

1.2_w; // calls operator ""_w(1.2L)
u"one"_w; // calls operator ""_w(u"one", 3)
12_w; // calls operator ""_w("12")
"two"_w; // error: no applicable literal operator

}

— end example ]
8 In translation phase 6 (5.2), adjacent string-literals are concatenated and user-defined-string-literals are

considered string-literals for that purpose. During concatenation, ud-suffixes are removed and ignored and the
concatenation process occurs as described in 5.13.5. At the end of phase 6, if a string-literal is the result of a
concatenation involving at least one user-defined-string-literal , all the participating user-defined-string-literals
shall have the same ud-suffix and that suffix is applied to the result of the concatenation.

9 [Example 3 :
int main() {

L"A" "B" "C"_x; // OK, same as L"ABC"_x
"P"_x "Q" "R"_y; // error: two different ud-suffixes

}
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— end example ]
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6 Basics [basic]
6.1 Preamble [basic.pre]

1 [Note 1 : This Clause presents the basic concepts of the C++ language. It explains the difference between an object
and a name and how they relate to the value categories for expressions. It introduces the concepts of a declaration
and a definition and presents C++’s notion of type, scope, linkage, and storage duration. The mechanisms for starting
and terminating a program are discussed. Finally, this Clause presents the fundamental types of the language and
lists the ways of constructing compound types from these. — end note ]

2 [Note 2 : This Clause does not cover concepts that affect only a single part of the language. Such concepts are
discussed in the relevant Clauses. — end note ]

3 An entity is a value, object, reference, structured binding, function, enumerator, type, class member, bit-field,
template, template specialization, namespace, or pack.

4 A name is an identifier (5.10), operator-function-id (12.4), literal-operator-id (12.6), or conversion-function-
id (11.4.8.3).

5 Every name is introduced by a declaration, which is a
—(5.1) name-declaration, block-declaration, or member-declaration (9.1, 11.4),
—(5.2) init-declarator (9.3),
—(5.3) identifier in a structured binding declaration (9.6),
—(5.4) init-capture (7.5.5.3),
—(5.5) condition with a declarator (8.1),
—(5.6) member-declarator (11.4),
—(5.7) using-declarator (9.9),
—(5.8) parameter-declaration (9.3.4.6),
—(5.9) type-parameter (13.2),
—(5.10) elaborated-type-specifier that introduces a name (9.2.9.4),
—(5.11) class-specifier (11.1),
—(5.12) enum-specifier or enumerator-definition (9.7.1),
—(5.13) exception-declaration (14.1), or
—(5.14) implicit declaration of an injected-class-name (11.1).

[Note 3 : The interpretation of a for-range-declaration produces one or more of the above (8.6.5). — end note ]

An entity E is denoted by the name (if any) that is introduced by a declaration of E or by a typedef-name
introduced by a declaration specifying E.

6 A variable is introduced by the declaration of a reference other than a non-static data member or of an
object. The variable’s name, if any, denotes the reference or object.

7 A local entity is a variable with automatic storage duration (6.7.5.4), a structured binding (9.6) whose
corresponding variable is such an entity, or the *this object (7.5.2).

8 Some names denote types or templates. In general, whenever a name is encountered it is necessary to
determine whether that name denotes one of these entities before continuing to parse the program that
contains it. The process that determines this is called name lookup (6.5).

9 Two names are the same if
—(9.1) they are identifiers composed of the same character sequence, or
—(9.2) they are operator-function-ids formed with the same operator, or
—(9.3) they are conversion-function-ids formed with equivalent (13.7.7.2) types, or
—(9.4) they are literal-operator-ids (12.6) formed with the same literal suffix identifier.

§ 6.1 32



© ISO/IEC N4950

10 A name used in more than one translation unit can potentially refer to the same entity in these translation
units depending on the linkage (6.6) of the name specified in each translation unit.

6.2 Declarations and definitions [basic.def]
1 A declaration (Clause 9) may (re)introduce one or more names and/or entities into a translation unit. If

so, the declaration specifies the interpretation and semantic properties of these names. A declaration of an
entity or typedef-name X is a redeclaration of X if another declaration of X is reachable from it (10.7). A
declaration may also have effects including:

—(1.1) a static assertion (9.1),
—(1.2) controlling template instantiation (13.9.3),
—(1.3) guiding template argument deduction for constructors (13.7.2.3),
—(1.4) use of attributes (9.12), and
—(1.5) nothing (in the case of an empty-declaration).

2 Each entity declared by a declaration is also defined by that declaration unless:
—(2.1) it declares a function without specifying the function’s body (9.5),
—(2.2) it contains the extern specifier (9.2.2) or a linkage-specification15 (9.11) and neither an initializer nor a

function-body ,
—(2.3) it declares a non-inline static data member in a class definition (11.4, 11.4.9),
—(2.4) it declares a static data member outside a class definition and the variable was defined within the class

with the constexpr specifier (this usage is deprecated; see D.6),
—(2.5) it is an elaborated-type-specifier (11.3),
—(2.6) it is an opaque-enum-declaration (9.7.1),
—(2.7) it is a template-parameter (13.2),
—(2.8) it is a parameter-declaration (9.3.4.6) in a function declarator that is not the declarator of a function-

definition,
—(2.9) it is a typedef declaration (9.2.4),
—(2.10) it is an alias-declaration (9.2.4),
—(2.11) it is a using-declaration (9.9),
—(2.12) it is a deduction-guide (13.7.2.3),
—(2.13) it is a static_assert-declaration (9.1),
—(2.14) it is an attribute-declaration (9.1),
—(2.15) it is an empty-declaration (9.1),
—(2.16) it is a using-directive (9.8.4),
—(2.17) it is a using-enum-declaration (9.7.2),
—(2.18) it is a template-declaration (13.1) whose template-head is not followed by either a concept-definition or a

declaration that defines a function, a class, a variable, or a static data member.
—(2.19) it is an explicit instantiation declaration (13.9.3), or
—(2.20) it is an explicit specialization (13.9.4) whose declaration is not a definition.

A declaration is said to be a definition of each entity that it defines.
[Example 1 : All but one of the following are definitions:

int a; // defines a
extern const int c = 1; // defines c
int f(int x) { return x+a; } // defines f and defines x
struct S { int a; int b; }; // defines S, S::a, and S::b
struct X { // defines X

int x; // defines non-static data member x

15) Appearing inside the brace-enclosed declaration-seq in a linkage-specification does not affect whether a declaration is a
definition.
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static int y; // declares static data member y
X(): x(0) { } // defines a constructor of X

};
int X::y = 1; // defines X::y
enum { up, down }; // defines up and down
namespace N { int d; } // defines N and N::d
namespace N1 = N; // defines N1
X anX; // defines anX

whereas these are just declarations:
extern int a; // declares a
extern const int c; // declares c
int f(int); // declares f
struct S; // declares S
typedef int Int; // declares Int
extern X anotherX; // declares anotherX
using N::d; // declares d

— end example ]
3 [Note 1 : In some circumstances, C++ implementations implicitly define the default constructor (11.4.5.2), copy

constructor, move constructor (11.4.5.3), copy assignment operator, move assignment operator (11.4.6), or destructor
(11.4.7) member functions. — end note ]
[Example 2 : Given

#include <string>

struct C {
std::string s; // std::string is the standard library class (23.4)

};

int main() {
C a;
C b = a;
b = a;

}

the implementation will implicitly define functions to make the definition of C equivalent to
struct C {

std::string s;
C() : s() { }
C(const C& x): s(x.s) { }
C(C&& x): s(static_cast<std::string&&>(x.s)) { }

// : s(std::move(x.s)) { }
C& operator=(const C& x) { s = x.s; return *this; }
C& operator=(C&& x) { s = static_cast<std::string&&>(x.s); return *this; }

// { s = std::move(x.s); return *this; }
~C() { }

};

— end example ]
4 [Note 2 : A class name can also be implicitly declared by an elaborated-type-specifier (9.2.9.4). — end note ]
5 In the definition of an object, the type of that object shall not be an incomplete type (6.8.1), an abstract

class type (11.7.4), or a (possibly multidimensional) array thereof.

6.3 One-definition rule [basic.def.odr]
1 Each of the following is termed a definable item:

—(1.1) a class type (Clause 11),
—(1.2) an enumeration type (9.7.1),
—(1.3) a function (9.3.4.6),
—(1.4) a variable (6.1),
—(1.5) a templated entity (13.1),
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—(1.6) a default argument for a parameter (for a function in a given scope) (9.3.4.7), or
—(1.7) a default template argument (13.2).

2 No translation unit shall contain more than one definition of any definable item.
3 An expression or conversion is potentially evaluated unless it is an unevaluated operand (7.2.3), a subexpression

thereof, or a conversion in an initialization or conversion sequence in such a context. The set of potential
results of an expression E is defined as follows:

—(3.1) If E is an id-expression (7.5.4), the set contains only E.
—(3.2) If E is a subscripting operation (7.6.1.2) with an array operand, the set contains the potential results

of that operand.
—(3.3) If E is a class member access expression (7.6.1.5) of the form E1 . templateopt E2 naming a non-static

data member, the set contains the potential results of E1.
—(3.4) If E is a class member access expression naming a static data member, the set contains the id-expression

designating the data member.
—(3.5) If E is a pointer-to-member expression (7.6.4) of the form E1 .* E2, the set contains the potential

results of E1.
—(3.6) If E has the form (E1), the set contains the potential results of E1.
—(3.7) If E is a glvalue conditional expression (7.6.16), the set is the union of the sets of potential results of

the second and third operands.
—(3.8) If E is a comma expression (7.6.20), the set contains the potential results of the right operand.
—(3.9) Otherwise, the set is empty.

[Note 1 : This set is a (possibly-empty) set of id-expressions, each of which is either E or a subexpression of E.
[Example 1 : In the following example, the set of potential results of the initializer of n contains the first S::x
subexpression, but not the second S::x subexpression.

struct S { static const int x = 0; };
const int &f(const int &r);
int n = b ? (1, S::x) // S::x is not odr-used here

: f(S::x); // S::x is odr-used here, so a definition is required
— end example ]
— end note ]

4 A function is named by an expression or conversion as follows:
—(4.1) A function is named by an expression or conversion if it is the selected member of an overload set (6.5,

12.2, 12.3) in an overload resolution performed as part of forming that expression or conversion, unless
it is a pure virtual function and either the expression is not an id-expression naming the function with
an explicitly qualified name or the expression forms a pointer to member (7.6.2.2).
[Note 2 : This covers taking the address of functions (7.3.4, 7.6.2.2), calls to named functions (7.6.1.3), operator
overloading (Clause 12), user-defined conversions (11.4.8.3), allocation functions for new-expressions (7.6.2.8), as
well as non-default initialization (9.4). A constructor selected to copy or move an object of class type is considered
to be named by an expression or conversion even if the call is actually elided by the implementation (11.9.6).

— end note ]

—(4.2) A deallocation function for a class is named by a new-expression if it is the single matching deallocation
function for the allocation function selected by overload resolution, as specified in 7.6.2.8.

—(4.3) A deallocation function for a class is named by a delete-expression if it is the selected usual deallocation
function as specified in 7.6.2.9 and 11.4.11.

5 A variable is named by an expression if the expression is an id-expression that denotes it. A variable x that is
named by a potentially-evaluated expression E is odr-used by E unless

—(5.1) x is a reference that is usable in constant expressions (7.7), or
—(5.2) x is a variable of non-reference type that is usable in constant expressions and has no mutable subobjects,

and E is an element of the set of potential results of an expression of non-volatile-qualified non-class
type to which the lvalue-to-rvalue conversion (7.3.2) is applied, or

§ 6.3 35



© ISO/IEC N4950

—(5.3) x is a variable of non-reference type, and E is an element of the set of potential results of a discarded-value
expression (7.2.3) to which the lvalue-to-rvalue conversion is not applied.

6 A structured binding is odr-used if it appears as a potentially-evaluated expression.
7 *this is odr-used if this appears as a potentially-evaluated expression (including as the result of the implicit

transformation in the body of a non-static member function (11.4.3)).
8 A virtual member function is odr-used if it is not pure. A function is odr-used if it is named by a potentially-

evaluated expression or conversion. A non-placement allocation or deallocation function for a class is odr-used
by the definition of a constructor of that class. A non-placement deallocation function for a class is odr-used
by the definition of the destructor of that class, or by being selected by the lookup at the point of definition
of a virtual destructor (11.4.7).16

9 An assignment operator function in a class is odr-used by an implicitly-defined copy-assignment or move-
assignment function for another class as specified in 11.4.6. A constructor for a class is odr-used as specified
in 9.4. A destructor for a class is odr-used if it is potentially invoked (11.4.7).

10 A local entity (6.1) is odr-usable in a scope (6.4.1) if:
—(10.1) either the local entity is not *this, or an enclosing class or non-lambda function parameter scope exists

and, if the innermost such scope is a function parameter scope, it corresponds to a non-static member
function, and

—(10.2) for each intervening scope (6.4.1) between the point at which the entity is introduced and the scope
(where *this is considered to be introduced within the innermost enclosing class or non-lambda function
definition scope), either:

—(10.2.1) the intervening scope is a block scope, or
—(10.2.2) the intervening scope is the function parameter scope of a lambda-expression that has a simple-

capture naming the entity or has a capture-default, and the block scope of the lambda-expression is
also an intervening scope.

If a local entity is odr-used in a scope in which it is not odr-usable, the program is ill-formed.
[Example 2 :

void f(int n) {
[] { n = 1; }; // error: n is not odr-usable due to intervening lambda-expression
struct A {

void f() { n = 2; } // error: n is not odr-usable due to intervening function definition scope
};
void g(int = n); // error: n is not odr-usable due to intervening function parameter scope
[=](int k = n) {}; // error: n is not odr-usable due to being

// outside the block scope of the lambda-expression
[&] { [n]{ return n; }; }; // OK

}

— end example ]
11 Every program shall contain at least one definition of every function or variable that is odr-used in that

program outside of a discarded statement (8.5.2); no diagnostic required. The definition can appear explicitly
in the program, it can be found in the standard or a user-defined library, or (when appropriate) it is implicitly
defined (see 11.4.5.2, 11.4.5.3, 11.4.7, and 11.4.6).
[Example 3 :

auto f() {
struct A {};
return A{};

}
decltype(f()) g();
auto x = g();

A program containing this translation unit is ill-formed because g is odr-used but not defined, and cannot be defined
in any other translation unit because the local class A cannot be named outside this translation unit. — end example ]

16) An implementation is not required to call allocation and deallocation functions from constructors or destructors; however,
this is a permissible implementation technique.
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12 A definition domain is a private-module-fragment or the portion of a translation unit excluding its private-
module-fragment (if any). A definition of an inline function or variable shall be reachable from the end of
every definition domain in which it is odr-used outside of a discarded statement.

13 A definition of a class shall be reachable in every context in which the class is used in a way that requires the
class type to be complete.
[Example 4 : The following complete translation unit is well-formed, even though it never defines X:

struct X; // declare X as a struct type
struct X* x1; // use X in pointer formation
X* x2; // use X in pointer formation

— end example ]
[Note 3 : The rules for declarations and expressions describe in which contexts complete class types are required. A
class type T must be complete if:

—(13.1) an object of type T is defined (6.2), or
—(13.2) a non-static class data member of type T is declared (11.4), or
—(13.3) T is used as the allocated type or array element type in a new-expression (7.6.2.8), or
—(13.4) an lvalue-to-rvalue conversion is applied to a glvalue referring to an object of type T (7.3.2), or
—(13.5) an expression is converted (either implicitly or explicitly) to type T (7.3, 7.6.1.4, 7.6.1.7, 7.6.1.9, 7.6.3), or
—(13.6) an expression that is not a null pointer constant, and has type other than cv void*, is converted to the type pointer

to T or reference to T using a standard conversion (7.3), a dynamic_cast (7.6.1.7) or a static_cast (7.6.1.9), or
—(13.7) a class member access operator is applied to an expression of type T (7.6.1.5), or
—(13.8) the typeid operator (7.6.1.8) or the sizeof operator (7.6.2.5) is applied to an operand of type T, or
—(13.9) a function with a return type or argument type of type T is defined (6.2) or called (7.6.1.3), or
—(13.10) a class with a base class of type T is defined (11.7), or
—(13.11) an lvalue of type T is assigned to (7.6.19), or
—(13.12) the type T is the subject of an alignof expression (7.6.2.6), or
—(13.13) an exception-declaration has type T, reference to T, or pointer to T (14.4).

— end note ]
14 For any definable item D with definitions in multiple translation units,

—(14.1) if D is a non-inline non-templated function or variable, or
—(14.2) if the definitions in different translation units do not satisfy the following requirements,

the program is ill-formed; a diagnostic is required only if the definable item is attached to a named module
and a prior definition is reachable at the point where a later definition occurs. Given such an item, for all
definitions of D, or, if D is an unnamed enumeration, for all definitions of D that are reachable at any given
program point, the following requirements shall be satisfied.

—(14.3) Each such definition shall not be attached to a named module (10.1).
—(14.4) Each such definition shall consist of the same sequence of tokens, where the definition of a closure type

is considered to consist of the sequence of tokens of the corresponding lambda-expression.
—(14.5) In each such definition, corresponding names, looked up according to 6.5, shall refer to the same entity,

after overload resolution (12.2) and after matching of partial template specialization (13.10.4), except
that a name can refer to

—(14.5.1) a non-volatile const object with internal or no linkage if the object
—(14.5.1.1) has the same literal type in all definitions of D,
—(14.5.1.2) is initialized with a constant expression (7.7),
—(14.5.1.3) is not odr-used in any definition of D, and
—(14.5.1.4) has the same value in all definitions of D,

or
—(14.5.2) a reference with internal or no linkage initialized with a constant expression such that the reference

refers to the same entity in all definitions of D.
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—(14.6) In each such definition, except within the default arguments and default template arguments of D,
corresponding lambda-expressions shall have the same closure type (see below).

—(14.7) In each such definition, corresponding entities shall have the same language linkage.
—(14.8) In each such definition, const objects with static or thread storage duration shall be constant-initialized

if the object is constant-initialized in any such definition.
—(14.9) In each such definition, corresponding manifestly constant-evaluated expressions that are not value-

dependent shall have the same value (7.7, 13.8.3.4).
—(14.10) In each such definition, the overloaded operators referred to, the implicit calls to conversion functions,

constructors, operator new functions and operator delete functions, shall refer to the same function.
—(14.11) In each such definition, a default argument used by an (implicit or explicit) function call or a default

template argument used by an (implicit or explicit) template-id or simple-template-id is treated as if its
token sequence were present in the definition of D; that is, the default argument or default template
argument is subject to the requirements described in this paragraph (recursively).

—(14.12) If D is a class with an implicitly-declared constructor (11.4.5.2, 11.4.5.3), it is as if the constructor was
implicitly defined in every translation unit where it is odr-used, and the implicit definition in every
translation unit shall call the same constructor for a subobject of D.
[Example 5 :

// translation unit 1:
struct X {

X(int, int);
X(int, int, int);

};
X::X(int, int = 0) { }
class D {

X x = 0;
};
D d1; // X(int, int) called by D()

// translation unit 2:
struct X {

X(int, int);
X(int, int, int);

};
X::X(int, int = 0, int = 0) { }
class D {

X x = 0;
};
D d2; // X(int, int, int) called by D();

// D()’s implicit definition violates the ODR
— end example ]

—(14.13) If D is a class with a defaulted three-way comparison operator function (11.10.3), it is as if the operator
was implicitly defined in every translation unit where it is odr-used, and the implicit definition in every
translation unit shall call the same comparison operators for each subobject of D.

15 If D is a template and is defined in more than one translation unit, then the preceding requirements shall apply
both to names from the template’s enclosing scope used in the template definition, and also to dependent
names at the point of instantiation (13.8.3). These requirements also apply to corresponding entities defined
within each definition of D (including the closure types of lambda-expressions, but excluding entities defined
within default arguments or default template arguments of either D or an entity not defined within D). For
each such entity and for D itself, the behavior is as if there is a single entity with a single definition, including
in the application of these requirements to other entities.
[Note 4 : The entity is still declared in multiple translation units, and 6.6 still applies to these declarations. In
particular, lambda-expressions (7.5.5) appearing in the type of D can result in the different declarations having distinct
types, and lambda-expressions appearing in a default argument of D might still denote different types in different
translation units. — end note ]

16 [Example 6 :
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inline void f(bool cond, void (*p)()) {
if (cond) f(false, []{});

}
inline void g(bool cond, void (*p)() = []{}) {

if (cond) g(false);
}
struct X {

void h(bool cond, void (*p)() = []{}) {
if (cond) h(false);

}
};

If the definition of f appears in multiple translation units, the behavior of the program is as if there is only one
definition of f. If the definition of g appears in multiple translation units, the program is ill-formed (no diagnostic
required) because each such definition uses a default argument that refers to a distinct lambda-expression closure type.
The definition of X can appear in multiple translation units of a valid program; the lambda-expressions defined within
the default argument of X::h within the definition of X denote the same closure type in each translation unit. — end
example ]

17 If, at any point in the program, there is more than one reachable unnamed enumeration definition in the same
scope that have the same first enumerator name and do not have typedef names for linkage purposes (9.7.1),
those unnamed enumeration types shall be the same; no diagnostic required.

6.4 Scope [basic.scope]
6.4.1 General [basic.scope.scope]

1 The declarations in a program appear in a number of scopes that are in general discontiguous. The global scope
contains the entire program; every other scope S is introduced by a declaration, parameter-declaration-clause,
statement, or handler (as described in the following subclauses of 6.4) appearing in another scope which
thereby contains S. An enclosing scope at a program point is any scope that contains it; the smallest such
scope is said to be the immediate scope at that point. A scope intervenes between a program point P and a
scope S (that does not contain P ) if it is or contains S but does not contain P .

2 Unless otherwise specified:
—(2.1) The smallest scope that contains a scope S is the parent scope of S.
—(2.2) No two declarations (re)introduce the same entity.
—(2.3) A declaration inhabits the immediate scope at its locus (6.4.2).
—(2.4) A declaration’s target scope is the scope it inhabits.
—(2.5) Any names (re)introduced by a declaration are bound to it in its target scope.

An entity belongs to a scope S if S is the target scope of a declaration of the entity.
[Note 1 : Special cases include that:

—(2.6) Template parameter scopes are parents only to other template parameter scopes (6.4.9).
—(2.7) Corresponding declarations with appropriate linkage declare the same entity (6.6).
—(2.8) The declaration in a template-declaration inhabits the same scope as the template-declaration.
—(2.9) Friend declarations and declarations of qualified names and template specializations do not bind names (9.3.4);

those with qualified names target a specified scope, and other friend declarations and certain elaborated-type-
specifiers (9.2.9.4) target a larger enclosing scope.

—(2.10) Block-scope extern declarations target a larger enclosing scope but bind a name in their immediate scope.
—(2.11) The names of unscoped enumerators are bound in the two innermost enclosing scopes (9.7.1).
—(2.12) A class’s name is also bound in its own scope (11.1).
—(2.13) The names of the members of an anonymous union are bound in the union’s parent scope (11.5.2).

— end note ]
3 Two non-static member functions have corresponding object parameters if:

—(3.1) exactly one is an implicit object member function with no ref-qualifier and the types of their object
parameters (9.3.4.6), after removing top-level references, are the same, or

—(3.2) their object parameters have the same type.
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Two non-static member function templates have corresponding object parameters if:
—(3.3) exactly one is an implicit object member function with no ref-qualifier and the types of their object

parameters, after removing any references, are equivalent, or
—(3.4) the types of their object parameters are equivalent.

Two function templates have corresponding signatures if their template-parameter-lists have the same length,
their corresponding template-parameters are equivalent, they have equivalent non-object-parameter-type-lists
and return types (if any), and, if both are non-static members, they have corresponding object parameters.

4 Two declarations correspond if they (re)introduce the same name, both declare constructors, or both declare
destructors, unless

—(4.1) either is a using-declarator , or
—(4.2) one declares a type (not a typedef-name) and the other declares a variable, non-static data member

other than of an anonymous union (11.5.2), enumerator, function, or function template, or
—(4.3) each declares a function or function template, except when

—(4.3.1) both declare functions with the same non-object-parameter-type-list,17 equivalent (13.7.7.2) trailing
requires-clauses (if any, except as specified in 13.7.5), and, if both are non-static members, they
have corresponding object parameters, or

—(4.3.2) both declare function templates with corresponding signatures and equivalent template-heads and
trailing requires-clauses (if any).

[Note 2 : Declarations can correspond even if neither binds a name.
[Example 1 :

struct A {
friend void f(); // #1

};
struct B {

friend void f() {} // corresponds to, and defines, #1
};

— end example ]
— end note ]
[Example 2 :

typedef int Int;
enum E : int { a };
void f(int); // #1
void f(Int) {} // defines #1
void f(E) {} // OK, another overload

struct X {
static void f();
void f() const; // error: redeclaration
void g();
void g() const; // OK
void g() &; // error: redeclaration

void h(this X&, int);
void h(int) &&; // OK, another overload
void j(this const X&);
void j() const &; // error: redeclaration
void k();
void k(this X&); // error: redeclaration

};

— end example ]
5 Two declarations potentially conflict if they correspond and cause their shared name to denote different

entities (6.6). The program is ill-formed if, in any scope, a name is bound to two declarations that potentially
conflict and one precedes the other (6.5).

17) An implicit object parameter (12.2.2) is not part of the parameter-type-list.
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[Note 3 : Overload resolution can consider potentially conflicting declarations found in multiple scopes (e.g., via
using-directives or for operator functions), in which case it is often ambiguous. — end note ]
[Example 3 :

void f() {
int x,y;
void x(); // error: different entity for x
int y; // error: redefinition

}
enum { f }; // error: different entity for ::f
namespace A {}
namespace B = A;
namespace B = A; // OK, no effect
namespace B = B; // OK, no effect
namespace A = B; // OK, no effect
namespace B {} // error: different entity for B

— end example ]
6 A declaration is nominable in a class, class template, or namespace E at a point P if it precedes P , it does

not inhabit a block scope, and its target scope is the scope associated with E or, if E is a namespace, any
element of the inline namespace set of E (9.8.2).
[Example 4 :

namespace A {
void f() {void g();}
inline namespace B {

struct S {
friend void h();
static int i;

};
}

}

At the end of this example, the declarations of f, B, S, and h are nominable in A, but those of g and i are not. — end
example ]

7 When instantiating a templated entity (13.1), any scope S introduced by any part of the template definition
is considered to be introduced by the instantiated entity and to contain the instantiations of any declarations
that inhabit S.

6.4.2 Point of declaration [basic.scope.pdecl]
1 The locus of a declaration (6.1) that is a declarator is immediately after the complete declarator (9.3).

[Example 1 :
unsigned char x = 12;
{ unsigned char x = x; }

Here, the initialization of the second x has undefined behavior, because the initializer accesses the second x outside its
lifetime (6.7.3). — end example ]

2 [Note 1 : A name from an outer scope remains visible up to the locus of the declaration that hides it.
[Example 2 :

const int i = 2;
{ int i[i]; }

declares a block-scope array of two integers. — end example ]
— end note ]

3 The locus of a class-specifier is immediately after the identifier or simple-template-id (if any) in its class-
head (11.1). The locus of an enum-specifier is immediately after its enum-head ; the locus of an opaque-enum-
declaration is immediately after it (9.7.1). The locus of an alias-declaration is immediately after it.

4 The locus of a using-declarator that does not name a constructor is immediately after the using-declarator (9.9).
5 The locus of an enumerator-definition is immediately after it.

[Example 3 :
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const int x = 12;
{ enum { x = x }; }

Here, the enumerator x is initialized with the value of the constant x, namely 12. — end example ]
6 [Note 2 : After the declaration of a class member, the member name can be found in the scope of its class even if the

class is an incomplete class.
[Example 4 :

struct X {
enum E { z = 16 };
int b[X::z]; // OK

};

— end example ]
— end note ]

7 The locus of an elaborated-type-specifier that is a declaration (9.2.9.4) is immediately after it.
8 The locus of an injected-class-name declaration (11.1) is immediately following the opening brace of the class

definition.
9 The locus of the implicit declaration of a function-local predefined variable (9.5.1) is immediately before the

function-body of its function’s definition.
10 The locus of the declaration of a structured binding (9.6) is immediately after the identifier-list of the

structured binding declaration.
11 The locus of a for-range-declaration of a range-based for statement (8.6.5) is immediately after the for-range-

initializer .
12 The locus of a template-parameter is immediately after it.

[Example 5 :
typedef unsigned char T;
template<class T

= T // lookup finds the typedef-name
, T // lookup finds the template parameter

N = 0> struct A { };

— end example ]
13 The locus of a concept-definition is immediately after its concept-name (13.7.9).

[Note 3 : The constraint-expression cannot use the concept-name. — end note ]
14 The locus of a namespace-definition with an identifier is immediately after the identifier .

[Note 4 : An identifier is invented for an unnamed-namespace-definition (9.8.2.2). — end note ]
15 [Note 5 : Friend declarations can introduce functions or classes that belong to the nearest enclosing namespace or block

scope, but they do not bind names anywhere (11.8.4). Function declarations at block scope and variable declarations
with the extern specifier at block scope declare entities that belong to the nearest enclosing namespace, but they do
not bind names in it. — end note ]

16 [Note 6 : For point of instantiation of a template, see 13.8.4.1. — end note ]

6.4.3 Block scope [basic.scope.block]
1 Each

—(1.1) selection or iteration statement (8.5, 8.6),
—(1.2) substatement of such a statement,
—(1.3) handler (14.1), or
—(1.4) compound statement (8.4) that is not the compound-statement of a handler

introduces a block scope that includes that statement or handler .
[Note 1 : A substatement that is also a block has only one scope. — end note ]

A variable that belongs to a block scope is a block variable.
[Example 1 :

int i = 42;
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int a[10];

for (int i = 0; i < 10; i++)
a[i] = i;

int j = i; // j = 42

— end example ]
2 If a declaration whose target scope is the block scope S of a

—(2.1) compound-statement of a lambda-expression, function-body , or function-try-block,
—(2.2) substatement of a selection or iteration statement that is not itself a selection or iteration statement, or
—(2.3) handler of a function-try-block

potentially conflicts with a declaration whose target scope is the parent scope of S, the program is ill-formed.
[Example 2 :

if (int x = f()) {
int x; // error: redeclaration of x

}
else {

int x; // error: redeclaration of x
}

— end example ]

6.4.4 Function parameter scope [basic.scope.param]
1 A parameter-declaration-clause P introduces a function parameter scope that includes P .

[Note 1 : A function parameter cannot be used for its value within the parameter-declaration-clause (9.3.4.7). — end
note ]

—(1.1) If P is associated with a declarator and is preceded by a (possibly-parenthesized) noptr-declarator of the
form declarator-id attribute-specifier-seqopt, its scope extends to the end of the nearest enclosing init-
declarator , member-declarator , declarator of a parameter-declaration or a nodeclspec-function-declaration,
or function-definition, but does not include the locus of the associated declarator .
[Note 2 : In this case, P declares the parameters of a function (or a function or template parameter declared
with function type). A member function’s parameter scope is nested within its class’s scope. — end note ]

—(1.2) If P is associated with a lambda-declarator , its scope extends to the end of the compound-statement in
the lambda-expression.

—(1.3) If P is associated with a requirement-parameter-list, its scope extends to the end of the requirement-body
of the requires-expression.

—(1.4) If P is associated with a deduction-guide, its scope extends to the end of the deduction-guide.

6.4.5 Lambda scope [basic.scope.lambda]
A lambda-expression E introduces a lambda scope that starts immediately after the lambda-introducer of E
and extends to the end of the compound-statement of E.

6.4.6 Namespace scope [basic.scope.namespace]
1 Any namespace-definition for a namespace N introduces a namespace scope that includes the namespace-body

for every namespace-definition for N . For each non-friend redeclaration or specialization whose target scope is
or is contained by the scope, the portion after the declarator-id , class-head-name, or enum-head-name is also
included in the scope. The global scope is the namespace scope of the global namespace (9.8).
[Example 1 :

namespace Q {
namespace V { void f(); }
void V::f() { // in the scope of V

void h(); // declares Q::V::h
}

}

— end example ]
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6.4.7 Class scope [basic.scope.class]
1 Any declaration of a class or class template C introduces a class scope that includes the member-specification

of the class-specifier for C (if any). For each non-friend redeclaration or specialization whose target scope is
or is contained by the scope, the portion after the declarator-id , class-head-name, or enum-head-name is also
included in the scope.
[Note 1 : Lookup from a program point before the class-specifier of a class will find no bindings in the class scope.
[Example 1 :

template<class D>
struct B {

D::type x; // #1
};

struct A { using type = int; };
struct C : A, B<C> {}; // error at #1: C::type not found

— end example ]
— end note ]

6.4.8 Enumeration scope [basic.scope.enum]
1 Any declaration of an enumeration E introduces an enumeration scope that includes the enumerator-list of

the enum-specifier for E (if any).

6.4.9 Template parameter scope [basic.scope.temp]
1 Each template template-parameter introduces a template parameter scope that includes the template-head of

the template-parameter .
2 Each template-declaration D introduces a template parameter scope that extends from the beginning of its

template-parameter-list to the end of the template-declaration. Any declaration outside the template-parameter-
list that would inhabit that scope instead inhabits the same scope as D. The parent scope of any scope S
that is not a template parameter scope is the smallest scope that contains S and is not a template parameter
scope.
[Note 1 : Therefore, only template parameters belong to a template parameter scope, and only template parameter
scopes have a template parameter scope as a parent scope. — end note ]

6.5 Name lookup [basic.lookup]
6.5.1 General [basic.lookup.general]

1 The name lookup rules apply uniformly to all names (including typedef-names (9.2.4), namespace-names (9.8),
and class-names (11.3)) wherever the grammar allows such names in the context discussed by a particular rule.
Name lookup associates the use of a name with a set of declarations (6.2) of that name. Unless otherwise
specified, the program is ill-formed if no declarations are found. If the declarations found by name lookup
all denote functions or function templates, the declarations are said to form an overload set. Otherwise,
if the declarations found by name lookup do not all denote the same entity, they are ambiguous and the
program is ill-formed. Overload resolution (12.2, 12.3) takes place after name lookup has succeeded. The
access rules (11.8) are considered only once name lookup and function overload resolution (if applicable) have
succeeded. Only after name lookup, function overload resolution (if applicable) and access checking have
succeeded are the semantic properties introduced by the declarations used in further processing.

2 A program point P is said to follow any declaration in the same translation unit whose locus (6.4.2) is before
P .
[Note 1 : The declaration might appear in a scope that does not contain P . — end note ]

A declaration X precedes a program point P in a translation unit L if P follows X, X inhabits a class scope
and is reachable from P , or else X appears in a translation unit D and

—(2.1) P follows a module-import-declaration or module-declaration that imports D (directly or indirectly), and
—(2.2) X appears after the module-declaration in D (if any) and before the private-module-fragment in D (if

any), and
—(2.3) either X is exported or else D and L are part of the same module and X does not inhabit a namespace

with internal linkage or declare a name with internal linkage.
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[Note 2 : Names declared by a using-declaration have no linkage. — end note ]
[Note 3 : A module-import-declaration imports both the named translation unit(s) and any modules named by exported
module-import-declarations within them, recursively.
[Example 1 :

Translation unit #1:
export module Q;
export int sq(int i) { return i*i; }

Translation unit #2:
export module R;
export import Q;

Translation unit #3:
import R;
int main() { return sq(9); } // OK, sq from module Q

— end example ]
— end note ]

3 A single search in a scope S for a name N from a program point P finds all declarations that precede P
to which any name that is the same as N (6.1) is bound in S. If any such declaration is a using-declarator
whose terminal name (7.5.4.2) is not dependent (13.8.3.2), it is replaced by the declarations named by the
using-declarator (9.9).

4 In certain contexts, only certain kinds of declarations are included. After any such restriction, any declarations
of classes or enumerations are discarded if any other declarations are found.
[Note 4 : A type (but not a typedef-name or template) is therefore hidden by any other entity in its scope. — end note ]

However, if a lookup is type-only, only declarations of types and templates whose specializations are types
are considered; furthermore, if declarations of a typedef-name and of the type to which it refers are found,
the declaration of the typedef-name is discarded instead of the type declaration.

6.5.2 Member name lookup [class.member.lookup]
1 A search in a scope X for a name M from a program point P is a single search in X for M from P unless X

is the scope of a class or class template T , in which case the following steps define the result of the search.
[Note 1 : The result differs only if M is a conversion-function-id or if the single search would find nothing. — end note ]

2 The lookup set for a name N in a class or class template C, called S(N, C), consists of two component sets:
the declaration set, a set of members named N ; and the subobject set, a set of subobjects where declarations
of these members were found (possibly via using-declarations). In the declaration set, type declarations
(including injected-class-names) are replaced by the types they designate. S(N, C) is calculated as follows:

3 The declaration set is the result of a single search in the scope of C for N from immediately after the
class-specifier of C if P is in a complete-class context of C or from P otherwise. If the resulting declaration
set is not empty, the subobject set contains C itself, and calculation is complete.

4 Otherwise (i.e., C does not contain a declaration of N or the resulting declaration set is empty), S(N, C) is
initially empty. Calculate the lookup set for N in each direct non-dependent (13.8.3.2) base class subobject
Bi, and merge each such lookup set S(N, Bi) in turn into S(N, C).
[Note 2 : If C is incomplete, only base classes whose base-specifier appears before P are considered. If C is an
instantiated class, its base classes are not dependent. — end note ]

5 The following steps define the result of merging lookup set S(N, Bi) into the intermediate S(N, C):
—(5.1) If each of the subobject members of S(N, Bi) is a base class subobject of at least one of the subobject

members of S(N, C), or if S(N, Bi) is empty, S(N, C) is unchanged and the merge is complete.
Conversely, if each of the subobject members of S(N, C) is a base class subobject of at least one of the
subobject members of S(N, Bi), or if S(N, C) is empty, the new S(N, C) is a copy of S(N, Bi).

—(5.2) Otherwise, if the declaration sets of S(N, Bi) and S(N, C) differ, the merge is ambiguous: the new
S(N, C) is a lookup set with an invalid declaration set and the union of the subobject sets. In subsequent
merges, an invalid declaration set is considered different from any other.
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—(5.3) Otherwise, the new S(N, C) is a lookup set with the shared set of declarations and the union of the
subobject sets.

6 The result of the search is the declaration set of S(M, T ). If it is an invalid set, the program is ill-formed.
If it differs from the result of a search in T for M in a complete-class context (11.4) of T , the program is
ill-formed, no diagnostic required.
[Example 1 :

struct A { int x; }; // S(x,A) = { { A::x }, { A } }
struct B { float x; }; // S(x,B) = { { B::x }, { B } }
struct C: public A, public B { }; // S(x,C) = { invalid, { A in C, B in C } }
struct D: public virtual C { }; // S(x,D) = S(x,C)
struct E: public virtual C { char x; }; // S(x,E) = { { E::x }, { E } }
struct F: public D, public E { }; // S(x,F) = S(x,E)
int main() {

F f;
f.x = 0; // OK, lookup finds E::x

}

S(x, F) is unambiguous because the A and B base class subobjects of D are also base class subobjects of E, so S(x, D) is
discarded in the first merge step. — end example ]

7 If M is a non-dependent conversion-function-id , conversion function templates that are members of T are
considered. For each such template F , the lookup set S(t, T ) is constructed, considering a function template
declaration to have the name t only if it corresponds to a declaration of F (6.4.1). The members of the
declaration set of each such lookup set, which shall not be an invalid set, are included in the result.
[Note 3 : Overload resolution will discard those that cannot convert to the type specified by M (13.10.4). — end note ]

8 [Note 4 : A static member, a nested type or an enumerator defined in a base class T can unambiguously be found even
if an object has more than one base class subobject of type T. Two base class subobjects share the non-static member
subobjects of their common virtual base classes. — end note ]
[Example 2 :

struct V {
int v;

};
struct A {

int a;
static int s;
enum { e };

};
struct B : A, virtual V { };
struct C : A, virtual V { };
struct D : B, C { };

void f(D* pd) {
pd->v++; // OK, only one v (virtual)
pd->s++; // OK, only one s (static)
int i = pd->e; // OK, only one e (enumerator)
pd->a++; // error: ambiguous: two as in D

}

— end example ]
9 [Note 5 : When virtual base classes are used, a hidden declaration can be reached along a path through the subobject

lattice that does not pass through the hiding declaration. This is not an ambiguity. The identical use with non-virtual
base classes is an ambiguity; in that case there is no unique instance of the name that hides all the others. — end
note ]
[Example 3 :

struct V { int f(); int x; };
struct W { int g(); int y; };
struct B : virtual V, W {

int f(); int x;
int g(); int y;

};
struct C : virtual V, W { };
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struct D : B, C { void glorp(); };

W V W

B C

D

Figure 1: Name lookup [fig:class.lookup]

As illustrated in Figure 1, the names declared in V and the left-hand instance of W are hidden by those in B, but the
names declared in the right-hand instance of W are not hidden at all.

void D::glorp() {
x++; // OK, B::x hides V::x
f(); // OK, B::f() hides V::f()
y++; // error: B::y and C’s W::y
g(); // error: B::g() and C’s W::g()

}

— end example ]
10 An explicit or implicit conversion from a pointer to or an expression designating an object of a derived class

to a pointer or reference to one of its base classes shall unambiguously refer to a unique object representing
the base class.
[Example 4 :

struct V { };
struct A { };
struct B : A, virtual V { };
struct C : A, virtual V { };
struct D : B, C { };

void g() {
D d;
B* pb = &d;
A* pa = &d; // error: ambiguous: C’s A or B’s A?
V* pv = &d; // OK, only one V subobject

}

— end example ]
11 [Note 6 : Even if the result of name lookup is unambiguous, use of a name found in multiple subobjects might still be

ambiguous (7.3.13, 7.6.1.5, 11.8.3). — end note ]
[Example 5 :

struct B1 {
void f();
static void f(int);
int i;

};
struct B2 {

void f(double);
};
struct I1: B1 { };
struct I2: B1 { };

struct D: I1, I2, B2 {
using B1::f;
using B2::f;
void g() {

f(); // Ambiguous conversion of this
f(0); // Unambiguous (static)
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f(0.0); // Unambiguous (only one B2)
int B1::* mpB1 = &D::i; // Unambiguous
int D::* mpD = &D::i; // Ambiguous conversion

}
};

— end example ]

6.5.3 Unqualified name lookup [basic.lookup.unqual]
1 A using-directive is active in a scope S at a program point P if it precedes P and inhabits either S or the

scope of a namespace nominated by a using-directive that is active in S at P .
2 An unqualified search in a scope S from a program point P includes the results of searches from P in

—(2.1) S, and
—(2.2) for any scope U that contains P and is or is contained by S, each namespace contained by S that is

nominated by a using-directive that is active in U at P .
If no declarations are found, the results of the unqualified search are the results of an unqualified search in
the parent scope of S, if any, from P .
[Note 1 : When a class scope is searched, the scopes of its base classes are also searched (6.5.2). If it inherits from a
single base, it is as if the scope of the base immediately contains the scope of the derived class. Template parameter
scopes that are associated with one scope in the chain of parents are also considered (13.8.2). — end note ]

3 Unqualified name lookup from a program point performs an unqualified search in its immediate scope.
4 An unqualified name is a name that does not immediately follow a nested-name-specifier or the . or -> in a

class member access expression (7.6.1.5), possibly after a template keyword or ~. Unless otherwise specified,
such a name undergoes unqualified name lookup from the point where it appears.

5 An unqualified name that is a component name (7.5.4.2) of a type-specifier or ptr-operator of a conversion-
type-id is looked up in the same fashion as the conversion-function-id in which it appears. If that lookup finds
nothing, it undergoes unqualified name lookup; in each case, only names that denote types or templates
whose specializations are types are considered.
[Example 1 :

struct T1 { struct U { int i; }; };
struct T2 { };
struct U1 {};
struct U2 {};

struct B {
using T = T1;
using U = U1;
operator U1 T1::*();
operator U1 T2::*();
operator U2 T1::*();
operator U2 T2::*();

};

template<class X, class T>
int g() {

using U = U2;
X().operator U T::*(); // #1, searches for T in the scope of X first
X().operator U decltype(T())::*(); // #2
return 0;

}
int x = g<B, T2>(); // #1 calls B::operator U1 T1::*

// #2 calls B::operator U1 T2::*

— end example ]
6 In a friend declaration declarator whose declarator-id is a qualified-id whose lookup context (6.5.5) is a class or

namespace S, lookup for an unqualified name that appears after the declarator-id performs a search in the
scope associated with S. If that lookup finds nothing, it undergoes unqualified name lookup.
[Example 2 :
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using I = int;
using D = double;
namespace A {

inline namespace N {using C = char; }
using F = float;
void f(I);
void f(D);
void f(C);
void f(F);

}
struct X0 {using F = float; };
struct W {

using D = void;
struct X : X0 {

void g(I);
void g(::D);
void g(F);

};
};
namespace B {

typedef short I, F;
class Y {

friend void A::f(I); // error: no void A::f(short)
friend void A::f(D); // OK
friend void A::f(C); // error: A::N::C not found
friend void A::f(F); // OK
friend void W::X::g(I); // error: no void X::g(short)
friend void W::X::g(D); // OK
friend void W::X::g(F); // OK

};
}

— end example ]

6.5.4 Argument-dependent name lookup [basic.lookup.argdep]
1 When the postfix-expression in a function call (7.6.1.3) is an unqualified-id , and unqualified lookup (6.5.3) for

the name in the unqualified-id does not find any
—(1.1) declaration of a class member, or
—(1.2) function declaration inhabiting a block scope, or
—(1.3) declaration not of a function or function template

then lookup for the name also includes the result of argument-dependent lookup in a set of associated
namespaces that depends on the types of the arguments (and for template template arguments, the namespace
of the template argument), as specified below.
[Example 1 :

namespace N {
struct S { };
void f(S);

}

void g() {
N::S s;
f(s); // OK, calls N::f
(f)(s); // error: N::f not considered; parentheses prevent argument-dependent lookup

}

— end example ]
2 [Note 1 : For purposes of determining (during parsing) whether an expression is a postfix-expression for a function call,

the usual name lookup rules apply. In some cases a name followed by < is treated as a template-name even though
name lookup did not find a template-name (see 13.3). For example,

int h;
void g();
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namespace N {
struct A {};
template <class T> int f(T);
template <class T> int g(T);
template <class T> int h(T);

}

int x = f<N::A>(N::A()); // OK, lookup of f finds nothing, f treated as template name
int y = g<N::A>(N::A()); // OK, lookup of g finds a function, g treated as template name
int z = h<N::A>(N::A()); // error: h< does not begin a template-id

The rules have no effect on the syntactic interpretation of an expression. For example,
typedef int f;
namespace N {

struct A {
friend void f(A &);
operator int();
void g(A a) {

int i = f(a); // f is the typedef, not the friend function: equivalent to int(a)
}

};
}

Because the expression is not a function call, argument-dependent name lookup does not apply and the friend function
f is not found. — end note ]

3 For each argument type T in the function call, there is a set of zero or more associated entities to be considered.
The set of entities is determined entirely by the types of the function arguments (and any template template
arguments). Any typedef-names and using-declarations used to specify the types do not contribute to this set.
The set of entities is determined in the following way:

—(3.1) If T is a fundamental type, its associated set of entities is empty.
—(3.2) If T is a class type (including unions), its associated entities are: the class itself; the class of which

it is a member, if any; and its direct and indirect base classes. Furthermore, if T is a class template
specialization, its associated entities also include: the entities associated with the types of the template
arguments provided for template type parameters; the templates used as template template arguments;
and the classes of which any member templates used as template template arguments are members.
[Note 2 : Non-type template arguments do not contribute to the set of associated entities. — end note ]

—(3.3) If T is an enumeration type, its associated entities are T and, if it is a class member, the member’s class.
—(3.4) If T is a pointer to U or an array of U, its associated entities are those associated with U.
—(3.5) If T is a function type, its associated entities are those associated with the function parameter types

and those associated with the return type.
—(3.6) If T is a pointer to a member function of a class X, its associated entities are those associated with the

function parameter types and return type, together with those associated with X.
—(3.7) If T is a pointer to a data member of class X, its associated entities are those associated with the

member type together with those associated with X.
In addition, if the argument is an overload set or the address of such a set, its associated entities are the union
of those associated with each of the members of the set, i.e., the entities associated with its parameter types
and return type. Additionally, if the aforementioned overload set is named with a template-id , its associated
entities also include its template template-arguments and those associated with its type template-arguments.

4 The associated namespaces for a call are the innermost enclosing non-inline namespaces for its associated
entities as well as every element of the inline namespace set (9.8.2) of those namespaces. Argument-dependent
lookup finds all declarations of functions and function templates that

—(4.1) are found by a search of any associated namespace, or
—(4.2) are declared as a friend (11.8.4) of any class with a reachable definition in the set of associated entities,

or
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—(4.3) are exported, are attached to a named module M (10.2), do not appear in the translation unit containing
the point of the lookup, and have the same innermost enclosing non-inline namespace scope as a
declaration of an associated entity attached to M (6.6).

If the lookup is for a dependent name (13.8.3, 13.8.4.2), the above lookup is also performed from each point in
the instantiation context (10.6) of the lookup, additionally ignoring any declaration that appears in another
translation unit, is attached to the global module, and is either discarded (10.4) or has internal linkage.

5 [Example 2 :

Translation unit #1:
export module M;
namespace R {

export struct X {};
export void f(X);

}
namespace S {

export void f(R::X, R::X);
}

Translation unit #2:
export module N;
import M;
export R::X make();
namespace R { static int g(X); }
export template<typename T, typename U> void apply(T t, U u) {

f(t, u);
g(t);

}

Translation unit #3:
module Q;
import N;
namespace S {

struct Z { template<typename T> operator T(); };
}
void test() {

auto x = make(); // OK, decltype(x) is R::X in module M
R::f(x); // error: R and R::f are not visible here
f(x); // OK, calls R::f from interface of M
f(x, S::Z()); // error: S::f in module M not considered

// even though S is an associated namespace
apply(x, S::Z()); // error: S::f is visible in instantiation context, but

// R::g has internal linkage and cannot be used outside TU #2
}

— end example ]
6 [Note 3 : The associated namespace can include namespaces already considered by ordinary unqualified lookup. — end

note ]
[Example 3 :

namespace NS {
class T { };
void f(T);
void g(T, int);

}
NS::T parm;
void g(NS::T, float);
int main() {

f(parm); // OK, calls NS::f
extern void g(NS::T, float);
g(parm, 1); // OK, calls g(NS::T, float)

}

— end example ]
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6.5.5 Qualified name lookup [basic.lookup.qual]
6.5.5.1 General [basic.lookup.qual.general]

1 Lookup of an identifier followed by a :: scope resolution operator considers only namespaces, types, and
templates whose specializations are types. If a name, template-id , or decltype-specifier is followed by a ::, it
shall designate a namespace, class, enumeration, or dependent type, and the :: is never interpreted as a
complete nested-name-specifier .
[Example 1 :

class A {
public:

static int n;
};
int main() {

int A;
A::n = 42; // OK
A b; // error: A does not name a type

}
template<int> struct B : A {};
namespace N {

template<int> void B();
int f() {

return B<0>::n; // error: N::B<0> is not a type
}

}

— end example ]
2 A member-qualified name is the (unique) component name (7.5.4.2), if any, of

—(2.1) an unqualified-id or
—(2.2) a nested-name-specifier of the form type-name :: or namespace-name ::

in the id-expression of a class member access expression (7.6.1.5). A qualified name is
—(2.3) a member-qualified name or
—(2.4) the terminal name of

—(2.4.1) a qualified-id ,
—(2.4.2) a using-declarator ,
—(2.4.3) a typename-specifier ,
—(2.4.4) a qualified-namespace-specifier , or
—(2.4.5) a nested-name-specifier , elaborated-type-specifier , or class-or-decltype that has a nested-name-

specifier (7.5.4.3).
The lookup context of a member-qualified name is the type of its associated object expression (considered
dependent if the object expression is type-dependent). The lookup context of any other qualified name is the
type, template, or namespace nominated by the preceding nested-name-specifier .
[Note 1 : When parsing a class member access, the name following the -> or . is a qualified name even though it is
not yet known of which kind. — end note ]
[Example 2 : In

N::C::m.Base::f()

Base is a member-qualified name; the other qualified names are C, m, and f. — end example ]
3 Qualified name lookup in a class, namespace, or enumeration performs a search of the scope associated with

it (6.5.2) except as specified below. Unless otherwise specified, a qualified name undergoes qualified name
lookup in its lookup context from the point where it appears unless the lookup context either is dependent
and is not the current instantiation (13.8.3.2) or is not a class or class template. If nothing is found by
qualified lookup for a member-qualified name that is the terminal name (7.5.4.2) of a nested-name-specifier
and is not dependent, it undergoes unqualified lookup.
[Note 2 : During lookup for a template specialization, no names are dependent. — end note ]

§ 6.5.5.1 52



© ISO/IEC N4950

[Example 3 :
int f();
struct A {

int B, C;
template<int> using D = void;
using T = void;
void f();

};
using B = A;
template<int> using C = A;
template<int> using D = A;
template<int> using X = A;

template<class T>
void g(T *p) { // as instantiated for g<A>:

p->X<0>::f(); // error: A::X not found in ((p->X) < 0) > ::f()
p->template X<0>::f(); // OK, ::X found in definition context
p->B::f(); // OK, non-type A::B ignored
p->template C<0>::f(); // error: A::C is not a template
p->template D<0>::f(); // error: A::D<0> is not a class type
p->T::f(); // error: A::T is not a class type

}
template void g(A*);

— end example ]
4 If a qualified name Q follows a ~:

—(4.1) If Q is a member-qualified name, it undergoes unqualified lookup as well as qualified lookup.
—(4.2) Otherwise, its nested-name-specifier N shall nominate a type. If N has another nested-name-specifier S,

Q is looked up as if its lookup context were that nominated by S.
—(4.3) Otherwise, if the terminal name of N is a member-qualified name M , Q is looked up as if ~Q appeared

in place of M (as above).
—(4.4) Otherwise, Q undergoes unqualified lookup.
—(4.5) Each lookup for Q considers only types (if Q is not followed by a <) and templates whose specializations

are types. If it finds nothing or is ambiguous, it is discarded.
—(4.6) The type-name that is or contains Q shall refer to its (original) lookup context (ignoring cv-qualification)

under the interpretation established by at least one (successful) lookup performed.
[Example 4 :

struct C {
typedef int I;

};
typedef int I1, I2;
extern int* p;
extern int* q;
void f() {

p->C::I::~I(); // I is looked up in the scope of C
q->I1::~I2(); // I2 is found by unqualified lookup

}
struct A {

~A();
};
typedef A AB;
int main() {

AB* p;
p->AB::~AB(); // explicitly calls the destructor for A

}

— end example ]
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6.5.5.2 Class members [class.qual]
1 In a lookup for a qualified name N whose lookup context is a class C in which function names are not

ignored,18

—(1.1) if the search finds the injected-class-name of C (11.1), or
—(1.2) if N is dependent and is the terminal name of a using-declarator (9.9) that names a constructor,

N is instead considered to name the constructor of class C. Such a constructor name shall be used only in the
declarator-id of a (friend) declaration of a constructor or in a using-declaration.
[Example 1 :

struct A { A(); };
struct B: public A { B(); };

A::A() { }
B::B() { }

B::A ba; // object of type A
A::A a; // error: A::A is not a type name
struct A::A a2; // object of type A

— end example ]

6.5.5.3 Namespace members [namespace.qual]
1 Qualified name lookup in a namespace N additionally searches every element of the inline namespace set

of N (9.8.2). If nothing is found, the results of the lookup are the results of qualified name lookup in each
namespace nominated by a using-directive that precedes the point of the lookup and inhabits N or an element
of N ’s inline namespace set.
[Note 1 : If a using-directive refers to a namespace that has already been considered, it does not affect the result.

— end note ]
[Example 1 :

int x;
namespace Y {

void f(float);
void h(int);

}

namespace Z {
void h(double);

}

namespace A {
using namespace Y;
void f(int);
void g(int);
int i;

}

namespace B {
using namespace Z;
void f(char);
int i;

}

namespace AB {
using namespace A;
using namespace B;
void g();

}

18) Lookups in which function names are ignored include names appearing in a nested-name-specifier , an elaborated-type-specifier ,
or a base-specifier .
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void h()
{

AB::g(); // g is declared directly in AB, therefore S is {AB::g()} and AB::g() is chosen

AB::f(1); // f is not declared directly in AB so the rules are applied recursively to A and B;
// namespace Y is not searched and Y::f(float) is not considered;
// S is {A::f(int), B::f(char)} and overload resolution chooses A::f(int)

AB::f('c'); // as above but resolution chooses B::f(char)

AB::x++; // x is not declared directly in AB, and is not declared in A or B, so the rules
// are applied recursively to Y and Z, S is {} so the program is ill-formed

AB::i++; // i is not declared directly in AB so the rules are applied recursively to A and B,
// S is {A::i, B::i} so the use is ambiguous and the program is ill-formed

AB::h(16.8); // h is not declared directly in AB and not declared directly in A or B so the rules
// are applied recursively to Y and Z, S is {Y::h(int), Z::h(double)} and
// overload resolution chooses Z::h(double)

}

— end example ]
2 [Note 2 : The same declaration found more than once is not an ambiguity (because it is still a unique declaration).

[Example 2 :
namespace A {

int a;
}

namespace B {
using namespace A;

}

namespace C {
using namespace A;

}

namespace BC {
using namespace B;
using namespace C;

}

void f()
{

BC::a++; // OK, S is {A::a, A::a}
}

namespace D {
using A::a;

}

namespace BD {
using namespace B;
using namespace D;

}

void g()
{

BD::a++; // OK, S is {A::a, A::a}
}

— end example ]
— end note ]
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3 [Example 3 : Because each referenced namespace is searched at most once, the following is well-defined:
namespace B {

int b;
}

namespace A {
using namespace B;
int a;

}

namespace B {
using namespace A;

}

void f()
{

A::a++; // OK, a declared directly in A, S is {A::a}
B::a++; // OK, both A and B searched (once), S is {A::a}
A::b++; // OK, both A and B searched (once), S is {B::b}
B::b++; // OK, b declared directly in B, S is {B::b}

}

— end example ]
4 [Note 3 : Class and enumeration declarations are not discarded because of other declarations found in other searches.

— end note ]
[Example 4 :

namespace A {
struct x { };
int x;
int y;

}

namespace B {
struct y { };

}

namespace C {
using namespace A;
using namespace B;
int i = C::x; // OK, A::x (of type int)
int j = C::y; // ambiguous, A::y or B::y

}

— end example ]

6.5.6 Elaborated type specifiers [basic.lookup.elab]
1 If the class-key or enum keyword in an elaborated-type-specifier is followed by an identifier that is not followed

by ::, lookup for the identifier is type-only (6.5.1).
[Note 1 : In general, the recognition of an elaborated-type-specifier depends on the following tokens. If the identifier is
followed by ::, see 6.5.5. — end note ]

2 If the terminal name of the elaborated-type-specifier is a qualified name, lookup for it is type-only. If the
name lookup does not find a previously declared type-name, the elaborated-type-specifier is ill-formed.

3 [Example 1 :
struct Node {

struct Node* Next; // OK, refers to injected-class-name Node
struct Data* Data; // OK, declares type Data at global scope and member Data

};

struct Data {
struct Node* Node; // OK, refers to Node at global scope
friend struct ::Glob; // error: Glob is not declared, cannot introduce a qualified type (9.2.9.4)
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friend struct Glob; // OK, refers to (as yet) undeclared Glob at global scope.
/* ... */

};

struct Base {
struct Data; // OK, declares nested Data
struct ::Data* thatData; // OK, refers to ::Data
struct Base::Data* thisData; // OK, refers to nested Data
friend class ::Data; // OK, global Data is a friend
friend class Data; // OK, nested Data is a friend
struct Data { /* ... */ }; // Defines nested Data

};

struct Data; // OK, redeclares Data at global scope
struct ::Data; // error: cannot introduce a qualified type (9.2.9.4)
struct Base::Data; // error: cannot introduce a qualified type (9.2.9.4)
struct Base::Datum; // error: Datum undefined
struct Base::Data* pBase; // OK, refers to nested Data

— end example ]

6.5.7 Using-directives and namespace aliases [basic.lookup.udir]
1 In a using-directive or namespace-alias-definition, during the lookup for a namespace-name or for a name in a

nested-name-specifier only namespace names are considered.

6.6 Program and linkage [basic.link]
1 A program consists of one or more translation units (5.1) linked together. A translation unit consists of a

sequence of declarations.
translation-unit :

declaration-seqopt
global-module-fragmentopt module-declaration declaration-seqopt private-module-fragmentopt

2 A name is said to have linkage when it can denote the same object, reference, function, type, template,
namespace or value as a name introduced by a declaration in another scope:

—(2.1) When a name has external linkage, the entity it denotes can be referred to by names from scopes of
other translation units or from other scopes of the same translation unit.

—(2.2) When a name has module linkage, the entity it denotes can be referred to by names from other scopes
of the same module unit (10.1) or from scopes of other module units of that same module.

—(2.3) When a name has internal linkage, the entity it denotes can be referred to by names from other scopes
in the same translation unit.

—(2.4) When a name has no linkage, the entity it denotes cannot be referred to by names from other scopes.
3 The name of an entity that belongs to a namespace scope (6.4.6) has internal linkage if it is the name of

—(3.1) a variable, variable template, function, or function template that is explicitly declared static; or
—(3.2) a non-template variable of non-volatile const-qualified type, unless

—(3.2.1) it is declared in the purview of a module interface unit (outside the private-module-fragment, if
any) or module partition, or

—(3.2.2) it is explicitly declared extern, or
—(3.2.3) it is inline, or
—(3.2.4) it was previously declared and the prior declaration did not have internal linkage; or

—(3.3) a data member of an anonymous union.
[Note 1 : An instantiated variable template that has const-qualified type can have external or module linkage, even if
not declared extern. — end note ]

4 An unnamed namespace or a namespace declared directly or indirectly within an unnamed namespace has
internal linkage. All other namespaces have external linkage. The name of an entity that belongs to a
namespace scope that has not been given internal linkage above and that is the name of

—(4.1) a variable; or
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—(4.2) a function; or
—(4.3) a named class (11.1), or an unnamed class defined in a typedef declaration in which the class has the

typedef name for linkage purposes (9.2.4); or
—(4.4) a named enumeration (9.7.1), or an unnamed enumeration defined in a typedef declaration in which

the enumeration has the typedef name for linkage purposes (9.2.4); or
—(4.5) an unnamed enumeration that has an enumerator as a name for linkage purposes (9.7.1); or
—(4.6) a template

has its linkage determined as follows:
—(4.7) if the enclosing namespace has internal linkage, the name has internal linkage;
—(4.8) otherwise, if the declaration of the name is attached to a named module (10.1) and is not exported (10.2),

the name has module linkage;
—(4.9) otherwise, the name has external linkage.

5 In addition, a member function, a static data member, a named class or enumeration that inhabits a class
scope, or an unnamed class or enumeration defined in a typedef declaration that inhabits a class scope such
that the class or enumeration has the typedef name for linkage purposes (9.2.4), has the same linkage, if any,
as the name of the class of which it is a member.

6 [Example 1 :
static void f();
extern "C" void h();
static int i = 0; // #1
void q() {

extern void f(); // internal linkage
extern void g(); // ::g, external linkage
extern void h(); // C language linkage
int i; // #2: i has no linkage
{

extern void f(); // internal linkage
extern int i; // #3: internal linkage

}
}

Even though the declaration at line #2 hides the declaration at line #1, the declaration at line #3 still redeclares #1
and receives internal linkage. — end example ]

7 Names not covered by these rules have no linkage. Moreover, except as noted, a name declared at block
scope (6.4.3) has no linkage.

8 Two declarations of entities declare the same entity if, considering declarations of unnamed types to introduce
their names for linkage purposes, if any (9.2.4, 9.7.1), they correspond (6.4.1), have the same target scope
that is not a function or template parameter scope, and either

—(8.1) they appear in the same translation unit, or
—(8.2) they both declare names with module linkage and are attached to the same module, or
—(8.3) they both declare names with external linkage.

[Note 2 : There are other circumstances in which declarations declare the same entity (9.11, 13.6, 13.7.6). — end note ]
9 If a declaration H that declares a name with internal linkage precedes a declaration D in another translation

unit U and would declare the same entity as D if it appeared in U , the program is ill-formed.
[Note 3 : Such an H can appear only in a header unit. — end note ]

10 If two declarations of an entity are attached to different modules, the program is ill-formed; no diagnostic is
required if neither is reachable from the other.
[Example 2 :

"decls.h":
int f(); // #1, attached to the global module
int g(); // #2, attached to the global module
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Module interface of M:
module;
#include "decls.h"
export module M;
export using ::f; // OK, does not declare an entity, exports #1
int g(); // error: matches #2, but attached to M
export int h(); // #3
export int k(); // #4

Other translation unit:
import M;
static int h(); // error: matches #3
int k(); // error: matches #4

— end example ]

As a consequence of these rules, all declarations of an entity are attached to the same module; the entity is
said to be attached to that module.

11 For any two declarations of an entity E:
—(11.1) If one declares E to be a variable or function, the other shall declare E as one of the same type.
—(11.2) If one declares E to be an enumerator, the other shall do so.
—(11.3) If one declares E to be a namespace, the other shall do so.
—(11.4) If one declares E to be a type, the other shall declare E to be a type of the same kind (9.2.9.4).
—(11.5) If one declares E to be a class template, the other shall do so with the same kind and an equivalent

template-head (13.7.7.2).
[Note 4 : The declarations can supply different default template arguments. — end note ]

—(11.6) If one declares E to be a function template or a (partial specialization of a) variable template, the other
shall declare E to be one with an equivalent template-head and type.

—(11.7) If one declares E to be an alias template, the other shall declare E to be one with an equivalent
template-head and defining-type-id .

—(11.8) If one declares E to be a concept, the other shall do so.
Types are compared after all adjustments of types (during which typedefs (9.2.4) are replaced by their
definitions); declarations for an array object can specify array types that differ by the presence or absence of
a major array bound (9.3.4.5). No diagnostic is required if neither declaration is reachable from the other.
[Example 3 :

int f(int x, int x); // error: different entities for x
void g(); // #1
void g(int); // OK, different entity from #1
int g(); // error: same entity as #1 with different type
void h(); // #2
namespace h {} // error: same entity as #2, but not a function

— end example ]
12 [Note 5 : Linkage to non-C++ declarations can be achieved using a linkage-specification (9.11). — end note ]
13 A declaration D names an entity E if

—(13.1) D contains a lambda-expression whose closure type is E,
—(13.2) E is not a function or function template and D contains an id-expression, type-specifier , nested-name-

specifier , template-name, or concept-name denoting E, or
—(13.3) E is a function or function template and D contains an expression that names E (6.3) or an id-expression

that refers to a set of overloads that contains E.
[Note 6 : Non-dependent names in an instantiated declaration do not refer to a set of overloads (13.8). — end
note ]

14 A declaration is an exposure if it either names a TU-local entity (defined below), ignoring
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—(14.1) the function-body for a non-inline function or function template (but not the deduced return type for
a (possibly instantiated) definition of a function with a declared return type that uses a placeholder
type (9.2.9.6)),

—(14.2) the initializer for a variable or variable template (but not the variable’s type),
—(14.3) friend declarations in a class definition, and
—(14.4) any reference to a non-volatile const object or reference with internal or no linkage initialized with a

constant expression that is not an odr-use (6.3),
or defines a constexpr variable initialized to a TU-local value (defined below).
[Note 7 : An inline function template can be an exposure even though certain explicit specializations of it would be
usable in other translation units. — end note ]

15 An entity is TU-local if it is
—(15.1) a type, function, variable, or template that

—(15.1.1) has a name with internal linkage, or
—(15.1.2) does not have a name with linkage and is declared, or introduced by a lambda-expression, within

the definition of a TU-local entity,
—(15.2) a type with no name that is defined outside a class-specifier , function body, or initializer or is introduced

by a defining-type-specifier that is used to declare only TU-local entities,
—(15.3) a specialization of a TU-local template,
—(15.4) a specialization of a template with any TU-local template argument, or
—(15.5) a specialization of a template whose (possibly instantiated) declaration is an exposure.

[Note 8 : A specialization can be produced by implicit or explicit instantiation. — end note ]
16 A value or object is TU-local if either

—(16.1) it is, or is a pointer to, a TU-local function or the object associated with a TU-local variable, or
—(16.2) it is an object of class or array type and any of its subobjects or any of the objects or functions to which

its non-static data members of reference type refer is TU-local and is usable in constant expressions.
17 If a (possibly instantiated) declaration of, or a deduction guide for, a non-TU-local entity in a module

interface unit (outside the private-module-fragment, if any) or module partition (10.1) is an exposure, the
program is ill-formed. Such a declaration in any other context is deprecated (D.7).

18 If a declaration that appears in one translation unit names a TU-local entity declared in another translation
unit that is not a header unit, the program is ill-formed. A declaration instantiated for a template
specialization (13.9) appears at the point of instantiation of the specialization (13.8.4.1).

19 [Example 4 :

Translation unit #1:
export module A;
static void f() {}
inline void it() { f(); } // error: is an exposure of f
static inline void its() { f(); } // OK
template<int> void g() { its(); } // OK
template void g<0>();

decltype(f) *fp; // error: f (though not its type) is TU-local
auto &fr = f; // OK
constexpr auto &fr2 = fr; // error: is an exposure of f
constexpr static auto fp2 = fr; // OK

struct S { void (&ref)(); } s{f}; // OK, value is TU-local
constexpr extern struct W { S &s; } wrap{s}; // OK, value is not TU-local

static auto x = []{f();}; // OK
auto x2 = x; // error: the closure type is TU-local
int y = ([]{f();}(),0); // error: the closure type is not TU-local
int y2 = (x,0); // OK
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namespace N {
struct A {};
void adl(A);
static void adl(int);

}
void adl(double);

inline void h(auto x) { adl(x); } // OK, but certain specializations are exposures

Translation unit #2:
module A;
void other() {

g<0>(); // OK, specialization is explicitly instantiated
g<1>(); // error: instantiation uses TU-local its
h(N::A{}); // error: overload set contains TU-local N::adl(int)
h(0); // OK, calls adl(double)
adl(N::A{}); // OK; N::adl(int) not found, calls N::adl(N::A)
fr(); // OK, calls f
constexpr auto ptr = fr; // error: fr is not usable in constant expressions here

}

— end example ]

6.7 Memory and objects [basic.memobj]
6.7.1 Memory model [intro.memory]

1 The fundamental storage unit in the C++ memory model is the byte. A byte is at least large enough to
contain the ordinary literal encoding of any element of the basic literal character set (5.3) and the eight-bit
code units of the Unicode19 UTF-8 encoding form and is composed of a contiguous sequence of bits,20 the
number of which is implementation-defined. The least significant bit is called the low-order bit; the most
significant bit is called the high-order bit. The memory available to a C++ program consists of one or more
sequences of contiguous bytes. Every byte has a unique address.

2 [Note 1 : The representation of types is described in 6.8.1. — end note ]
3 A memory location is either an object of scalar type that is not a bit-field or a maximal sequence of adjacent

bit-fields all having nonzero width.
[Note 2 : Various features of the language, such as references and virtual functions, might involve additional memory
locations that are not accessible to programs but are managed by the implementation. — end note ]

Two or more threads of execution (6.9.2) can access separate memory locations without interfering with each
other.

4 [Note 3 : Thus a bit-field and an adjacent non-bit-field are in separate memory locations, and therefore can be
concurrently updated by two threads of execution without interference. The same applies to two bit-fields, if one is
declared inside a nested struct declaration and the other is not, or if the two are separated by a zero-length bit-field
declaration, or if they are separated by a non-bit-field declaration. It is not safe to concurrently update two bit-fields
in the same struct if all fields between them are also bit-fields of nonzero width. — end note ]

5 [Example 1 : A class declared as
struct {

char a;
int b:5,
c:11,
:0,
d:8;
struct {int ee:8;} e;

};

contains four separate memory locations: The member a and bit-fields d and e.ee are each separate memory locations,
and can be modified concurrently without interfering with each other. The bit-fields b and c together constitute the
fourth memory location. The bit-fields b and c cannot be concurrently modified, but b and a, for example, can be.

— end example ]

19) Unicode® is a registered trademark of Unicode, Inc. This information is given for the convenience of users of this document
and does not constitute an endorsement by ISO or IEC of this product.

20) The number of bits in a byte is reported by the macro CHAR_BIT in the header <climits> (17.3.6).
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6.7.2 Object model [intro.object]
1 The constructs in a C++ program create, destroy, refer to, access, and manipulate objects. An object is

created by a definition (6.2), by a new-expression (7.6.2.8), by an operation that implicitly creates objects
(see below), when implicitly changing the active member of a union (11.5), or when a temporary object is
created (7.3.5, 6.7.7). An object occupies a region of storage in its period of construction (11.9.5), throughout
its lifetime (6.7.3), and in its period of destruction (11.9.5).
[Note 1 : A function is not an object, regardless of whether or not it occupies storage in the way that objects do.

— end note ]

The properties of an object are determined when the object is created. An object can have a name (6.1). An
object has a storage duration (6.7.5) which influences its lifetime (6.7.3). An object has a type (6.8).
[Note 2 : Some objects are polymorphic (11.7.3); the implementation generates information associated with each such
object that makes it possible to determine that object’s type during program execution. — end note ]

2 Objects can contain other objects, called subobjects. A subobject can be a member subobject (11.4), a base
class subobject (11.7), or an array element. An object that is not a subobject of any other object is called a
complete object. If an object is created in storage associated with a member subobject or array element e
(which may or may not be within its lifetime), the created object is a subobject of e’s containing object if:

—(2.1) the lifetime of e’s containing object has begun and not ended, and
—(2.2) the storage for the new object exactly overlays the storage location associated with e, and
—(2.3) the new object is of the same type as e (ignoring cv-qualification).

3 If a complete object is created (7.6.2.8) in storage associated with another object e of type “array of N
unsigned char” or of type “array of N std::byte” (17.2.1), that array provides storage for the created
object if:

—(3.1) the lifetime of e has begun and not ended, and
—(3.2) the storage for the new object fits entirely within e, and
—(3.3) there is no array object that satisfies these constraints nested within e.

[Note 3 : If that portion of the array previously provided storage for another object, the lifetime of that object ends
because its storage was reused (6.7.3). — end note ]
[Example 1 :

template<typename ...T>
struct AlignedUnion {

alignas(T...) unsigned char data[max(sizeof(T)...)];
};
int f() {

AlignedUnion<int, char> au;
int *p = new (au.data) int; // OK, au.data provides storage
char *c = new (au.data) char(); // OK, ends lifetime of *p
char *d = new (au.data + 1) char();
return *c + *d; // OK

}

struct A { unsigned char a[32]; };
struct B { unsigned char b[16]; };
A a;
B *b = new (a.a + 8) B; // a.a provides storage for *b
int *p = new (b->b + 4) int; // b->b provides storage for *p

// a.a does not provide storage for *p (directly),
// but *p is nested within a (see below)

— end example ]
4 An object a is nested within another object b if:

—(4.1) a is a subobject of b, or
—(4.2) b provides storage for a, or
—(4.3) there exists an object c where a is nested within c, and c is nested within b.

5 For every object x, there is some object called the complete object of x, determined as follows:
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—(5.1) If x is a complete object, then the complete object of x is itself.
—(5.2) Otherwise, the complete object of x is the complete object of the (unique) object that contains x.

6 If a complete object, a member subobject, or an array element is of class type, its type is considered the most
derived class, to distinguish it from the class type of any base class subobject; an object of a most derived
class type or of a non-class type is called a most derived object.

7 A potentially-overlapping subobject is either:
—(7.1) a base class subobject, or
—(7.2) a non-static data member declared with the no_unique_address attribute (9.12.11).

8 An object has nonzero size if it
—(8.1) is not a potentially-overlapping subobject, or
—(8.2) is not of class type, or
—(8.3) is of a class type with virtual member functions or virtual base classes, or
—(8.4) has subobjects of nonzero size or unnamed bit-fields of nonzero length.

Otherwise, if the object is a base class subobject of a standard-layout class type with no non-static data
members, it has zero size. Otherwise, the circumstances under which the object has zero size are implementa-
tion-defined. Unless it is a bit-field (11.4.10), an object with nonzero size shall occupy one or more bytes of
storage, including every byte that is occupied in full or in part by any of its subobjects. An object of trivially
copyable or standard-layout type (6.8.1) shall occupy contiguous bytes of storage.

9 Unless an object is a bit-field or a subobject of zero size, the address of that object is the address of the first
byte it occupies. Two objects with overlapping lifetimes that are not bit-fields may have the same address if
one is nested within the other, or if at least one is a subobject of zero size and they are of different types;
otherwise, they have distinct addresses and occupy disjoint bytes of storage.21

[Example 2 :
static const char test1 = 'x';
static const char test2 = 'x';
const bool b = &test1 != &test2; // always true

— end example ]

The address of a non-bit-field subobject of zero size is the address of an unspecified byte of storage occupied
by the complete object of that subobject.

10 Some operations are described as implicitly creating objects within a specified region of storage. For each
operation that is specified as implicitly creating objects, that operation implicitly creates and starts the
lifetime of zero or more objects of implicit-lifetime types (6.8.1) in its specified region of storage if doing
so would result in the program having defined behavior. If no such set of objects would give the program
defined behavior, the behavior of the program is undefined. If multiple such sets of objects would give the
program defined behavior, it is unspecified which such set of objects is created.
[Note 4 : Such operations do not start the lifetimes of subobjects of such objects that are not themselves of implicit-
lifetime types. — end note ]

11 Further, after implicitly creating objects within a specified region of storage, some operations are described as
producing a pointer to a suitable created object. These operations select one of the implicitly-created objects
whose address is the address of the start of the region of storage, and produce a pointer value that points
to that object, if that value would result in the program having defined behavior. If no such pointer value
would give the program defined behavior, the behavior of the program is undefined. If multiple such pointer
values would give the program defined behavior, it is unspecified which such pointer value is produced.

12 [Example 3 :
#include <cstdlib>
struct X { int a, b; };
X *make_x() {

// The call to std::malloc implicitly creates an object of type X
// and its subobjects a and b, and returns a pointer to that X object
// (or an object that is pointer-interconvertible (6.8.4) with it),

21) Under the “as-if” rule an implementation is allowed to store two objects at the same machine address or not store an object
at all if the program cannot observe the difference (6.9.1).
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// in order to give the subsequent class member access operations
// defined behavior.
X *p = (X*)std::malloc(sizeof(struct X));
p->a = 1;
p->b = 2;
return p;

}

— end example ]
13 An operation that begins the lifetime of an array of unsigned char or std::byte implicitly creates objects

within the region of storage occupied by the array.
[Note 5 : The array object provides storage for these objects. — end note ]

Any implicit or explicit invocation of a function named operator new or operator new[] implicitly creates
objects in the returned region of storage and returns a pointer to a suitable created object.
[Note 6 : Some functions in the C++ standard library implicitly create objects (20.2.6, 20.2.9.3, 20.2.12, 23.5.3, 22.15.3).

— end note ]

6.7.3 Lifetime [basic.life]
1 The lifetime of an object or reference is a runtime property of the object or reference. A variable is said to

have vacuous initialization if it is default-initialized and, if it is of class type or a (possibly multidimensional)
array thereof, that class type has a trivial default constructor. The lifetime of an object of type T begins
when:

—(1.1) storage with the proper alignment and size for type T is obtained, and
—(1.2) its initialization (if any) is complete (including vacuous initialization) (9.4),

except that if the object is a union member or subobject thereof, its lifetime only begins if that union member
is the initialized member in the union (9.4.2, 11.9.3), or as described in 11.5, 11.4.5.3, and 11.4.6, and except
as described in 20.2.10.2. The lifetime of an object o of type T ends when:

—(1.3) if T is a non-class type, the object is destroyed, or
—(1.4) if T is a class type, the destructor call starts, or
—(1.5) the storage which the object occupies is released, or is reused by an object that is not nested within

o (6.7.2).
2 The lifetime of a reference begins when its initialization is complete. The lifetime of a reference ends as if it

were a scalar object requiring storage.
3 [Note 1 : 11.9.3 describes the lifetime of base and member subobjects. — end note ]
4 The properties ascribed to objects and references throughout this document apply for a given object or

reference only during its lifetime.
[Note 2 : In particular, before the lifetime of an object starts and after its lifetime ends there are significant restrictions
on the use of the object, as described below, in 11.9.3, and in 11.9.5. Also, the behavior of an object under construction
and destruction can differ from the behavior of an object whose lifetime has started and not ended. 11.9.3 and 11.9.5
describe the behavior of an object during its periods of construction and destruction. — end note ]

5 A program may end the lifetime of an object of class type without invoking the destructor, by reusing or
releasing the storage as described above.
[Note 3 : A delete-expression (7.6.2.9) invokes the destructor prior to releasing the storage. — end note ]

In this case, the destructor is not implicitly invoked.
[Note 4 : The correct behavior of a program often depends on the destructor being invoked for each object of class
type. — end note ]

6 Before the lifetime of an object has started but after the storage which the object will occupy has been
allocated22 or, after the lifetime of an object has ended and before the storage which the object occupied
is reused or released, any pointer that represents the address of the storage location where the object will
be or was located may be used but only in limited ways. For an object under construction or destruction,
see 11.9.5. Otherwise, such a pointer refers to allocated storage (6.7.5.5.2), and using the pointer as if the

22) For example, before the dynamic initialization of an object with static storage duration (6.9.3.3).
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pointer were of type void* is well-defined. Indirection through such a pointer is permitted but the resulting
lvalue may only be used in limited ways, as described below. The program has undefined behavior if:

—(6.1) the pointer is used as the operand of a delete-expression,
—(6.2) the pointer is used to access a non-static data member or call a non-static member function of the

object, or
—(6.3) the pointer is implicitly converted (7.3.12) to a pointer to a virtual base class, or
—(6.4) the pointer is used as the operand of a static_cast (7.6.1.9), except when the conversion is to pointer

to cv void, or to pointer to cv void and subsequently to pointer to cv char, cv unsigned char, or
cv std::byte (17.2.1), or

—(6.5) the pointer is used as the operand of a dynamic_cast (7.6.1.7).
[Example 1 :

#include <cstdlib>

struct B {
virtual void f();
void mutate();
virtual ~B();

};

struct D1 : B { void f(); };
struct D2 : B { void f(); };

void B::mutate() {
new (this) D2; // reuses storage — ends the lifetime of *this
f(); // undefined behavior
... = this; // OK, this points to valid memory

}

void g() {
void* p = std::malloc(sizeof(D1) + sizeof(D2));
B* pb = new (p) D1;
pb->mutate();
*pb; // OK, pb points to valid memory
void* q = pb; // OK, pb points to valid memory
pb->f(); // undefined behavior: lifetime of *pb has ended

}

— end example ]
7 Similarly, before the lifetime of an object has started but after the storage which the object will occupy has

been allocated or, after the lifetime of an object has ended and before the storage which the object occupied
is reused or released, any glvalue that refers to the original object may be used but only in limited ways.
For an object under construction or destruction, see 11.9.5. Otherwise, such a glvalue refers to allocated
storage (6.7.5.5.2), and using the properties of the glvalue that do not depend on its value is well-defined.
The program has undefined behavior if:

—(7.1) the glvalue is used to access the object, or
—(7.2) the glvalue is used to call a non-static member function of the object, or
—(7.3) the glvalue is bound to a reference to a virtual base class (9.4.4), or
—(7.4) the glvalue is used as the operand of a dynamic_cast (7.6.1.7) or as the operand of typeid.

8 If, after the lifetime of an object has ended and before the storage which the object occupied is reused or
released, a new object is created at the storage location which the original object occupied, a pointer that
pointed to the original object, a reference that referred to the original object, or the name of the original
object will automatically refer to the new object and, once the lifetime of the new object has started, can be
used to manipulate the new object, if the original object is transparently replaceable (see below) by the new
object. An object o1 is transparently replaceable by an object o2 if:

—(8.1) the storage that o2 occupies exactly overlays the storage that o1 occupied, and
—(8.2) o1 and o2 are of the same type (ignoring the top-level cv-qualifiers), and
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—(8.3) o1 is not a const, complete object, and
—(8.4) neither o1 nor o2 is a potentially-overlapping subobject (6.7.2), and
—(8.5) either o1 and o2 are both complete objects, or o1 and o2 are direct subobjects of objects p1 and p2,

respectively, and p1 is transparently replaceable by p2.
[Example 2 :

struct C {
int i;
void f();
const C& operator=( const C& );

};

const C& C::operator=( const C& other) {
if ( this != &other ) {

this->~C(); // lifetime of *this ends
new (this) C(other); // new object of type C created
f(); // well-defined

}
return *this;

}

C c1;
C c2;
c1 = c2; // well-defined
c1.f(); // well-defined; c1 refers to a new object of type C

— end example ]
[Note 5 : If these conditions are not met, a pointer to the new object can be obtained from a pointer that represents
the address of its storage by calling std::launder (17.6.5). — end note ]

9 If a program ends the lifetime of an object of type T with static (6.7.5.2), thread (6.7.5.3), or automatic (6.7.5.4)
storage duration and if T has a non-trivial destructor,23 and another object of the original type does not
occupy that same storage location when the implicit destructor call takes place, the behavior of the program
is undefined. This is true even if the block is exited with an exception.
[Example 3 :

class T { };
struct B {

~B();
};

void h() {
B b;
new (&b) T;

} // undefined behavior at block exit
— end example ]

10 Creating a new object within the storage that a const, complete object with static, thread, or automatic
storage duration occupies, or within the storage that such a const object used to occupy before its lifetime
ended, results in undefined behavior.
[Example 4 :

struct B {
B();
~B();

};

const B b;

23) That is, an object for which a destructor will be called implicitly—upon exit from the block for an object with automatic
storage duration, upon exit from the thread for an object with thread storage duration, or upon exit from the program for an
object with static storage duration.
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void h() {
b.~B();
new (const_cast<B*>(&b)) const B; // undefined behavior

}

— end example ]
11 In this subclause, “before” and “after” refer to the “happens before” relation (6.9.2).

[Note 6 : Therefore, undefined behavior results if an object that is being constructed in one thread is referenced from
another thread without adequate synchronization. — end note ]

6.7.4 Indeterminate values [basic.indet]
1 When storage for an object with automatic or dynamic storage duration is obtained, the object has an

indeterminate value, and if no initialization is performed for the object, that object retains an indeterminate
value until that value is replaced (7.6.19).
[Note 1 : Objects with static or thread storage duration are zero-initialized, see 6.9.3.2. — end note ]

2 If an indeterminate value is produced by an evaluation, the behavior is undefined except in the following
cases:

—(2.1) If an indeterminate value of unsigned ordinary character type (6.8.2) or std::byte type (17.2.1) is
produced by the evaluation of:

—(2.1.1) the second or third operand of a conditional expression (7.6.16),
—(2.1.2) the right operand of a comma expression (7.6.20),
—(2.1.3) the operand of a cast or conversion (7.3.9, 7.6.1.4, 7.6.1.9, 7.6.3) to an unsigned ordinary character

type or std::byte type (17.2.1), or
—(2.1.4) a discarded-value expression (7.2.3),

then the result of the operation is an indeterminate value.
—(2.2) If an indeterminate value of unsigned ordinary character type or std::byte type is produced by the

evaluation of the right operand of a simple assignment operator (7.6.19) whose first operand is an lvalue
of unsigned ordinary character type or std::byte type, an indeterminate value replaces the value of
the object referred to by the left operand.

—(2.3) If an indeterminate value of unsigned ordinary character type is produced by the evaluation of the
initialization expression when initializing an object of unsigned ordinary character type, that object is
initialized to an indeterminate value.

—(2.4) If an indeterminate value of unsigned ordinary character type or std::byte type is produced by the
evaluation of the initialization expression when initializing an object of std::byte type, that object is
initialized to an indeterminate value.

[Example 1 :
int f(bool b) {

unsigned char c;
unsigned char d = c; // OK, d has an indeterminate value
int e = d; // undefined behavior
return b ? d : 0; // undefined behavior if b is true

}

— end example ]

6.7.5 Storage duration [basic.stc]
6.7.5.1 General [basic.stc.general]

1 The storage duration is the property of an object that defines the minimum potential lifetime of the storage
containing the object. The storage duration is determined by the construct used to create the object and is
one of the following:

—(1.1) static storage duration
—(1.2) thread storage duration
—(1.3) automatic storage duration
—(1.4) dynamic storage duration
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2 Static, thread, and automatic storage durations are associated with objects introduced by declarations (6.2)
and implicitly created by the implementation (6.7.7). The dynamic storage duration is associated with
objects created by a new-expression (7.6.2.8).

3 The storage duration categories apply to references as well.
4 When the end of the duration of a region of storage is reached, the values of all pointers representing the

address of any part of that region of storage become invalid pointer values (6.8.4). Indirection through an
invalid pointer value and passing an invalid pointer value to a deallocation function have undefined behavior.
Any other use of an invalid pointer value has implementation-defined behavior.24

6.7.5.2 Static storage duration [basic.stc.static]
1 All variables which

—(1.1) do not have thread storage duration and
—(1.2) belong to a namespace scope (6.4.6) or are first declared with the static or extern keywords (9.2.2)

have static storage duration. The storage for these entities lasts for the duration of the program (6.9.3.2,
6.9.3.4).

2 If a variable with static storage duration has initialization or a destructor with side effects, it shall not be
eliminated even if it appears to be unused, except that a class object or its copy/move may be eliminated as
specified in 11.9.6.

3 [Note 1 : The keyword static can be used to declare a block variable (6.4.3) with static storage duration; 8.8 and
6.9.3.4 describe the initialization and destruction of such variables. The keyword static applied to a class data
member in a class definition gives the data member static storage duration (11.4.9.3). — end note ]

6.7.5.3 Thread storage duration [basic.stc.thread]
1 All variables declared with the thread_local keyword have thread storage duration. The storage for these

entities lasts for the duration of the thread in which they are created. There is a distinct object or reference
per thread, and use of the declared name refers to the entity associated with the current thread.

2 [Note 1 : A variable with thread storage duration is initialized as specified in 6.9.3.2, 6.9.3.3, and 8.8 and, if constructed,
is destroyed on thread exit (6.9.3.4). — end note ]

6.7.5.4 Automatic storage duration [basic.stc.auto]
1 Variables that belong to a block or parameter scope and are not explicitly declared static, thread_local,

or extern have automatic storage duration. The storage for these entities lasts until the block in which they
are created exits.

2 [Note 1 : These variables are initialized and destroyed as described in 8.8. — end note ]
3 If a variable with automatic storage duration has initialization or a destructor with side effects, an implemen-

tation shall not destroy it before the end of its block nor eliminate it as an optimization, even if it appears to
be unused, except that a class object or its copy/move may be eliminated as specified in 11.9.6.

6.7.5.5 Dynamic storage duration [basic.stc.dynamic]
6.7.5.5.1 General [basic.stc.dynamic.general]

1 Objects can be created dynamically during program execution (6.9.1), using new-expressions (7.6.2.8), and
destroyed using delete-expressions (7.6.2.9). A C++ implementation provides access to, and management
of, dynamic storage via the global allocation functions operator new and operator new[] and the global
deallocation functions operator delete and operator delete[].
[Note 1 : The non-allocating forms described in 17.6.3.4 do not perform allocation or deallocation. — end note ]

2 The library provides default definitions for the global allocation and deallocation functions. Some global
allocation and deallocation functions are replaceable (17.6.3); these are attached to the global module (10.1).
A C++ program shall provide at most one definition of a replaceable allocation or deallocation function.
Any such function definition replaces the default version provided in the library (16.4.5.6). The following
allocation and deallocation functions (17.6) are implicitly declared in global scope in each translation unit of
a program.

[[nodiscard]] void* operator new(std::size_t);
[[nodiscard]] void* operator new(std::size_t, std::align_val_t);

24) Some implementations might define that copying an invalid pointer value causes a system-generated runtime fault.
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void operator delete(void*) noexcept;
void operator delete(void*, std::size_t) noexcept;
void operator delete(void*, std::align_val_t) noexcept;
void operator delete(void*, std::size_t, std::align_val_t) noexcept;

[[nodiscard]] void* operator new[](std::size_t);
[[nodiscard]] void* operator new[](std::size_t, std::align_val_t);

void operator delete[](void*) noexcept;
void operator delete[](void*, std::size_t) noexcept;
void operator delete[](void*, std::align_val_t) noexcept;
void operator delete[](void*, std::size_t, std::align_val_t) noexcept;

These implicit declarations introduce only the function names operator new, operator new[], operator
delete, and operator delete[].
[Note 2 : The implicit declarations do not introduce the names std, std::size_t, std::align_val_t, or any other
names that the library uses to declare these names. Thus, a new-expression, delete-expression, or function call that
refers to one of these functions without importing or including the header <new> (17.6.2) or importing a C++ library
module (16.4.2.4) is well-formed. However, referring to std or std::size_t or std::align_val_t is ill-formed unless
a standard library declaration (17.2.1, 17.6.2, 16.4.2.4) of that name precedes (6.5.1) the use of that name. — end
note ]

Allocation and/or deallocation functions may also be declared and defined for any class (11.4.11).
3 If the behavior of an allocation or deallocation function does not satisfy the semantic constraints specified

in 6.7.5.5.2 and 6.7.5.5.3, the behavior is undefined.

6.7.5.5.2 Allocation functions [basic.stc.dynamic.allocation]
1 An allocation function that is not a class member function shall belong to the global scope and not have a

name with internal linkage. The return type shall be void*. The first parameter shall have type std::size_-
t (17.2). The first parameter shall not have an associated default argument (9.3.4.7). The value of the first
parameter is interpreted as the requested size of the allocation. An allocation function can be a function
template. Such a template shall declare its return type and first parameter as specified above (that is,
template parameter types shall not be used in the return type and first parameter type). Allocation function
templates shall have two or more parameters.

2 An allocation function attempts to allocate the requested amount of storage. If it is successful, it returns
the address of the start of a block of storage whose length in bytes is at least as large as the requested size.
The order, contiguity, and initial value of storage allocated by successive calls to an allocation function are
unspecified. Even if the size of the space requested is zero, the request can fail. If the request succeeds, the
value returned by a replaceable allocation function is a non-null pointer value (6.8.4) p0 different from any
previously returned value p1, unless that value p1 was subsequently passed to a replaceable deallocation
function. Furthermore, for the library allocation functions in 17.6.3.2 and 17.6.3.3, p0 represents the address
of a block of storage disjoint from the storage for any other object accessible to the caller. The effect of
indirecting through a pointer returned from a request for zero size is undefined.25

3 For an allocation function other than a reserved placement allocation function (17.6.3.4), the pointer returned
on a successful call shall represent the address of storage that is aligned as follows:

—(3.1) If the allocation function takes an argument of type std::align_val_t, the storage will have the
alignment specified by the value of this argument.

—(3.2) Otherwise, if the allocation function is named operator new[], the storage is aligned for any object
that does not have new-extended alignment (6.7.6) and is no larger than the requested size.

—(3.3) Otherwise, the storage is aligned for any object that does not have new-extended alignment and is of
the requested size.

4 An allocation function that fails to allocate storage can invoke the currently installed new-handler function
(17.6.4.3), if any.
[Note 1 : A program-supplied allocation function can obtain the address of the currently installed new_handler using
the std::get_new_handler function (17.6.4.5). — end note ]

25) The intent is to have operator new() implementable by calling std::malloc() or std::calloc(), so the rules are substan-
tially the same. C++ differs from C in requiring a zero request to return a non-null pointer.
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An allocation function that has a non-throwing exception specification (14.5) indicates failure by returning a
null pointer value. Any other allocation function never returns a null pointer value and indicates failure only by
throwing an exception (14.2) of a type that would match a handler (14.4) of type std::bad_alloc (17.6.4.1).

5 A global allocation function is only called as the result of a new expression (7.6.2.8), or called directly using
the function call syntax (7.6.1.3), or called indirectly to allocate storage for a coroutine state (9.5.4), or called
indirectly through calls to the functions in the C++ standard library.
[Note 2 : In particular, a global allocation function is not called to allocate storage for objects with static storage
duration (6.7.5.2), for objects or references with thread storage duration (6.7.5.3), for objects of type std::type_-
info (7.6.1.8), or for an exception object (14.2). — end note ]

6.7.5.5.3 Deallocation functions [basic.stc.dynamic.deallocation]
1 A deallocation function that is not a class member function shall belong to the global scope and not have a

name with internal linkage.
2 A deallocation function is a destroying operator delete if it has at least two parameters and its second

parameter is of type std::destroying_delete_t. A destroying operator delete shall be a class member
function named operator delete.
[Note 1 : Array deletion cannot use a destroying operator delete. — end note ]

3 Each deallocation function shall return void. If the function is a destroying operator delete declared in class
type C, the type of its first parameter shall be C*; otherwise, the type of its first parameter shall be void*. A
deallocation function may have more than one parameter. A usual deallocation function is a deallocation
function whose parameters after the first are

—(3.1) optionally, a parameter of type std::destroying_delete_t, then
—(3.2) optionally, a parameter of type std::size_t,26 then
—(3.3) optionally, a parameter of type std::align_val_t.

A destroying operator delete shall be a usual deallocation function. A deallocation function may be an
instance of a function template. Neither the first parameter nor the return type shall depend on a template
parameter. A deallocation function template shall have two or more function parameters. A template instance
is never a usual deallocation function, regardless of its signature.

4 If a deallocation function terminates by throwing an exception, the behavior is undefined. The value of the
first argument supplied to a deallocation function may be a null pointer value; if so, and if the deallocation
function is one supplied in the standard library, the call has no effect.

5 If the argument given to a deallocation function in the standard library is a pointer that is not the null
pointer value (6.8.4), the deallocation function shall deallocate the storage referenced by the pointer, ending
the duration of the region of storage.

6.7.5.6 Duration of subobjects [basic.stc.inherit]
1 The storage duration of subobjects and reference members is that of their complete object (6.7.2).

6.7.6 Alignment [basic.align]
1 Object types have alignment requirements (6.8.2, 6.8.4) which place restrictions on the addresses at which an

object of that type may be allocated. An alignment is an implementation-defined integer value representing
the number of bytes between successive addresses at which a given object can be allocated. An object type
imposes an alignment requirement on every object of that type; stricter alignment can be requested using the
alignment specifier (9.12.2).

2 A fundamental alignment is represented by an alignment less than or equal to the greatest alignment supported
by the implementation in all contexts, which is equal to alignof(std::max_align_t) (17.2). The alignment
required for a type may be different when it is used as the type of a complete object and when it is used as
the type of a subobject.
[Example 1 :

struct B { long double d; };
struct D : virtual B { char c; };

26) The global operator delete(void*, std::size_t) precludes use of an allocation function void operator new(std::size_-
t, std::size_t) as a placement allocation function (C.4.3).
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When D is the type of a complete object, it will have a subobject of type B, so it must be aligned appropriately for a
long double. If D appears as a subobject of another object that also has B as a virtual base class, the B subobject
might be part of a different subobject, reducing the alignment requirements on the D subobject. — end example ]

The result of the alignof operator reflects the alignment requirement of the type in the complete-object case.
3 An extended alignment is represented by an alignment greater than alignof(std::max_align_t). It is

implementation-defined whether any extended alignments are supported and the contexts in which they are
supported (9.12.2). A type having an extended alignment requirement is an over-aligned type.
[Note 1 : Every over-aligned type is or contains a class type to which extended alignment applies (possibly through a
non-static data member). — end note ]

A new-extended alignment is represented by an alignment greater than __STDCPP_DEFAULT_NEW_ALIGNMENT__
(15.11).

4 Alignments are represented as values of the type std::size_t. Valid alignments include only those values
returned by an alignof expression for the fundamental types plus an additional implementation-defined set
of values, which may be empty. Every alignment value shall be a non-negative integral power of two.

5 Alignments have an order from weaker to stronger or stricter alignments. Stricter alignments have larger
alignment values. An address that satisfies an alignment requirement also satisfies any weaker valid alignment
requirement.

6 The alignment requirement of a complete type can be queried using an alignof expression (7.6.2.6).
Furthermore, the narrow character types (6.8.2) shall have the weakest alignment requirement.
[Note 2 : This enables the ordinary character types to be used as the underlying type for an aligned memory
area (9.12.2). — end note ]

7 Comparing alignments is meaningful and provides the obvious results:
—(7.1) Two alignments are equal when their numeric values are equal.
—(7.2) Two alignments are different when their numeric values are not equal.
—(7.3) When an alignment is larger than another it represents a stricter alignment.

8 [Note 3 : The runtime pointer alignment function (20.2.5) can be used to obtain an aligned pointer within a buffer; an
alignment-specifier (9.12.2) can be used to align storage explicitly. — end note ]

9 If a request for a specific extended alignment in a specific context is not supported by an implementation,
the program is ill-formed.

6.7.7 Temporary objects [class.temporary]
1 Temporary objects are created

—(1.1) when a prvalue is converted to an xvalue (7.3.5),
—(1.2) when needed by the implementation to pass or return an object of trivially copyable type (see below),

and
—(1.3) when throwing an exception (14.2).

[Note 1 : The lifetime of exception objects is described in 14.2. — end note ]

Even when the creation of the temporary object is unevaluated (7.2.3), all the semantic restrictions shall be
respected as if the temporary object had been created and later destroyed.
[Note 2 : This includes accessibility (11.8) and whether it is deleted, for the constructor selected and for the destructor.
However, in the special case of the operand of a decltype-specifier (9.2.9.5), no temporary is introduced, so the foregoing
does not apply to such a prvalue. — end note ]

2 The materialization of a temporary object is generally delayed as long as possible in order to avoid creating
unnecessary temporary objects.
[Note 3 : Temporary objects are materialized:

—(2.1) when binding a reference to a prvalue (9.4.4, 7.6.1.4, 7.6.1.7, 7.6.1.9, 7.6.1.11, 7.6.3),
—(2.2) when performing member access on a class prvalue (7.6.1.5, 7.6.4),
—(2.3) when performing an array-to-pointer conversion or subscripting on an array prvalue (7.3.3, 7.6.1.2),
—(2.4) when initializing an object of type std::initializer_list<T> from a braced-init-list (9.4.5),
—(2.5) for certain unevaluated operands (7.6.1.8, 7.6.2.5), and
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—(2.6) when a prvalue that has type other than cv void appears as a discarded-value expression (7.2.3).
— end note ]
[Example 1 : Consider the following code:

class X {
public:

X(int);
X(const X&);
X& operator=(const X&);
~X();

};

class Y {
public:

Y(int);
Y(Y&&);
~Y();

};

X f(X);
Y g(Y);

void h() {
X a(1);
X b = f(X(2));
Y c = g(Y(3));
a = f(a);

}

X(2) is constructed in the space used to hold f()’s argument and Y(3) is constructed in the space used to hold g()’s
argument. Likewise, f()’s result is constructed directly in b and g()’s result is constructed directly in c. On the
other hand, the expression a = f(a) requires a temporary for the result of f(a), which is materialized so that the
reference parameter of X::operator=(const X&) can bind to it. — end example ]

3 When an object of class type X is passed to or returned from a function, if X has at least one eligible copy
or move constructor (11.4.4), each such constructor is trivial, and the destructor of X is either trivial or
deleted, implementations are permitted to create a temporary object to hold the function parameter or result
object. The temporary object is constructed from the function argument or return value, respectively, and
the function’s parameter or return object is initialized as if by using the eligible trivial constructor to copy
the temporary (even if that constructor is inaccessible or would not be selected by overload resolution to
perform a copy or move of the object).
[Note 4 : This latitude is granted to allow objects of class type to be passed to or returned from functions in registers.

— end note ]
4 When an implementation introduces a temporary object of a class that has a non-trivial constructor (11.4.5.2,

11.4.5.3), it shall ensure that a constructor is called for the temporary object. Similarly, the destructor
shall be called for a temporary with a non-trivial destructor (11.4.7). Temporary objects are destroyed as
the last step in evaluating the full-expression (6.9.1) that (lexically) contains the point where they were
created. This is true even if that evaluation ends in throwing an exception. The value computations and side
effects of destroying a temporary object are associated only with the full-expression, not with any specific
subexpression.

5 There are four contexts in which temporaries are destroyed at a different point than the end of the full-
expression. The first context is when a default constructor is called to initialize an element of an array with
no corresponding initializer (9.4). The second context is when a copy constructor is called to copy an element
of an array while the entire array is copied (7.5.5.3, 11.4.5.3). In either case, if the constructor has one or
more default arguments, the destruction of every temporary created in a default argument is sequenced
before the construction of the next array element, if any.

6 The third context is when a reference binds to a temporary object.27 The temporary object to which the
reference is bound or the temporary object that is the complete object of a subobject to which the reference

27) The same rules apply to initialization of an initializer_list object (9.4.5) with its underlying temporary array.
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is bound persists for the lifetime of the reference if the glvalue to which the reference is bound was obtained
through one of the following:

—(6.1) a temporary materialization conversion (7.3.5),
—(6.2) ( expression ), where expression is one of these expressions,
—(6.3) subscripting (7.6.1.2) of an array operand, where that operand is one of these expressions,
—(6.4) a class member access (7.6.1.5) using the . operator where the left operand is one of these expressions

and the right operand designates a non-static data member of non-reference type,
—(6.5) a pointer-to-member operation (7.6.4) using the .* operator where the left operand is one of these

expressions and the right operand is a pointer to data member of non-reference type,
—(6.6) a

—(6.6.1) const_cast (7.6.1.11),
—(6.6.2) static_cast (7.6.1.9),
—(6.6.3) dynamic_cast (7.6.1.7), or
—(6.6.4) reinterpret_cast (7.6.1.10)

converting, without a user-defined conversion, a glvalue operand that is one of these expressions to a
glvalue that refers to the object designated by the operand, or to its complete object or a subobject
thereof,

—(6.7) a conditional expression (7.6.16) that is a glvalue where the second or third operand is one of these
expressions, or

—(6.8) a comma expression (7.6.20) that is a glvalue where the right operand is one of these expressions.
[Example 2 :

template<typename T> using id = T;

int i = 1;
int&& a = id<int[3]>{1, 2, 3}[i]; // temporary array has same lifetime as a
const int& b = static_cast<const int&>(0); // temporary int has same lifetime as b
int&& c = cond ? id<int[3]>{1, 2, 3}[i] : static_cast<int&&>(0);

// exactly one of the two temporaries is lifetime-extended
— end example ]
[Note 5 : An explicit type conversion (7.6.1.4, 7.6.3) is interpreted as a sequence of elementary casts, covered above.
[Example 3 :

const int& x = (const int&)1; // temporary for value 1 has same lifetime as x
— end example ]
— end note ]
[Note 6 : If a temporary object has a reference member initialized by another temporary object, lifetime extension
applies recursively to such a member’s initializer.
[Example 4 :

struct S {
const int& m;

};
const S& s = S{1}; // both S and int temporaries have lifetime of s

— end example ]
— end note ]

The exceptions to this lifetime rule are:
—(6.9) A temporary object bound to a reference parameter in a function call (7.6.1.3) persists until the

completion of the full-expression containing the call.
—(6.10) A temporary object bound to a reference element of an aggregate of class type initialized from a

parenthesized expression-list (9.4) persists until the completion of the full-expression containing the
expression-list.
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—(6.11) The lifetime of a temporary bound to the returned value in a function return statement (8.7.4) is not
extended; the temporary is destroyed at the end of the full-expression in the return statement.

—(6.12) A temporary bound to a reference in a new-initializer (7.6.2.8) persists until the completion of the
full-expression containing the new-initializer .
[Note 7 : This might introduce a dangling reference. — end note ]
[Example 5 :

struct S { int mi; const std::pair<int,int>& mp; };
S a { 1, {2,3} };
S* p = new S{ 1, {2,3} }; // creates dangling reference

— end example ]
7 The fourth context is when a temporary object other than a function parameter object is created in the

for-range-initializer of a range-based for statement. If such a temporary object would otherwise be destroyed
at the end of the for-range-initializer full-expression, the object persists for the lifetime of the reference
initialized by the for-range-initializer .

8 The destruction of a temporary whose lifetime is not extended beyond the full-expression in which it was
created is sequenced before the destruction of every temporary which is constructed earlier in the same
full-expression. If the lifetime of two or more temporaries with lifetimes extending beyond the full-expressions
in which they were created ends at the same point, these temporaries are destroyed at that point in the reverse
order of the completion of their construction. In addition, the destruction of such temporaries shall take into
account the ordering of destruction of objects with static, thread, or automatic storage duration (6.7.5.2,
6.7.5.3, 6.7.5.4); that is, if obj1 is an object with the same storage duration as the temporary and created
before the temporary is created the temporary shall be destroyed before obj1 is destroyed; if obj2 is an
object with the same storage duration as the temporary and created after the temporary is created the
temporary shall be destroyed after obj2 is destroyed.

9 [Example 6 :
struct S {

S();
S(int);
friend S operator+(const S&, const S&);
~S();

};
S obj1;
const S& cr = S(16)+S(23);
S obj2;

The expression S(16) + S(23) creates three temporaries: a first temporary T1 to hold the result of the expression
S(16), a second temporary T2 to hold the result of the expression S(23), and a third temporary T3 to hold the result
of the addition of these two expressions. The temporary T3 is then bound to the reference cr. It is unspecified whether
T1 or T2 is created first. On an implementation where T1 is created before T2, T2 shall be destroyed before T1. The
temporaries T1 and T2 are bound to the reference parameters of operator+; these temporaries are destroyed at the
end of the full-expression containing the call to operator+. The temporary T3 bound to the reference cr is destroyed
at the end of cr’s lifetime, that is, at the end of the program. In addition, the order in which T3 is destroyed takes
into account the destruction order of other objects with static storage duration. That is, because obj1 is constructed
before T3, and T3 is constructed before obj2, obj2 shall be destroyed before T3, and T3 shall be destroyed before obj1.

— end example ]

6.8 Types [basic.types]
6.8.1 General [basic.types.general]

1 [Note 1 : 6.8 and the subclauses thereof impose requirements on implementations regarding the representation of
types. There are two kinds of types: fundamental types and compound types. Types describe objects (6.7.2),
references (9.3.4.3), or functions (9.3.4.6). — end note ]

2 For any object (other than a potentially-overlapping subobject) of trivially copyable type T, whether or not
the object holds a valid value of type T, the underlying bytes (6.7.1) making up the object can be copied into
an array of char, unsigned char, or std::byte (17.2.1).28 If the content of that array is copied back into
the object, the object shall subsequently hold its original value.
[Example 1 :

28) By using, for example, the library functions (16.4.2.3) std::memcpy or std::memmove.
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constexpr std::size_t N = sizeof(T);
char buf[N];
T obj; // obj initialized to its original value
std::memcpy(buf, &obj, N); // between these two calls to std::memcpy, obj might be modified
std::memcpy(&obj, buf, N); // at this point, each subobject of obj of scalar type holds its original value

— end example ]
3 For two distinct objects obj1 and obj2 of trivially copyable type T, where neither obj1 nor obj2 is a

potentially-overlapping subobject, if the underlying bytes (6.7.1) making up obj1 are copied into obj2,29

obj2 shall subsequently hold the same value as obj1.
[Example 2 :

T* t1p;
T* t2p;

// provided that t2p points to an initialized object ...
std::memcpy(t1p, t2p, sizeof(T));

// at this point, every subobject of trivially copyable type in *t1p contains
// the same value as the corresponding subobject in *t2p

— end example ]
4 The object representation of an object of type T is the sequence of N unsigned char objects taken up by the

object of type T, where N equals sizeof(T). The value representation of an object of type T is the set of bits
that participate in representing a value of type T. Bits in the object representation that are not part of the
value representation are padding bits. For trivially copyable types, the value representation is a set of bits in
the object representation that determines a value, which is one discrete element of an implementation-defined
set of values.30

5 A class that has been declared but not defined, an enumeration type in certain contexts (9.7.1), or an array of
unknown bound or of incomplete element type, is an incompletely-defined object type.31 Incompletely-defined
object types and cv void are incomplete types (6.8.2).
[Note 2 : Objects cannot be defined to have an incomplete type (6.2). — end note ]

6 A class type (such as “class X”) can be incomplete at one point in a translation unit and complete later on;
the type “class X” is the same type at both points. The declared type of an array object can be an array of
incomplete class type and therefore incomplete; if the class type is completed later on in the translation unit,
the array type becomes complete; the array type at those two points is the same type. The declared type of
an array object can be an array of unknown bound and therefore be incomplete at one point in a translation
unit and complete later on; the array types at those two points (“array of unknown bound of T” and “array
of N T”) are different types.
[Note 3 : The type of a pointer or reference to array of unknown bound permanently points to or refers to an incomplete
type. An array of unknown bound named by a typedef declaration permanently refers to an incomplete type. In
either case, the array type cannot be completed. — end note ]
[Example 3 :

class X; // X is an incomplete type
extern X* xp; // xp is a pointer to an incomplete type
extern int arr[]; // the type of arr is incomplete
typedef int UNKA[]; // UNKA is an incomplete type
UNKA* arrp; // arrp is a pointer to an incomplete type
UNKA** arrpp;

void foo() {
xp++; // error: X is incomplete
arrp++; // error: incomplete type
arrpp++; // OK, sizeof UNKA* is known

}

struct X { int i; }; // now X is a complete type
int arr[10]; // now the type of arr is complete

29) By using, for example, the library functions (16.4.2.3) std::memcpy or std::memmove.
30) The intent is that the memory model of C++ is compatible with that of the C programming language.
31) The size and layout of an instance of an incompletely-defined object type is unknown.
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X x;
void bar() {

xp = &x; // OK; type is “pointer to X”
arrp = &arr; // OK; qualification conversion (7.3.6)
xp++; // OK, X is complete
arrp++; // error: UNKA can’t be completed

}

— end example ]
7 [Note 4 : The rules for declarations and expressions describe in which contexts incomplete types are prohibited. — end

note ]
8 An object type is a (possibly cv-qualified) type that is not a function type, not a reference type, and not

cv void.
9 Arithmetic types (6.8.2), enumeration types, pointer types, pointer-to-member types (6.8.4), std::nullptr_t,

and cv-qualified (6.8.5) versions of these types are collectively called scalar types. Scalar types, trivially
copyable class types (11.2), arrays of such types, and cv-qualified versions of these types are collectively called
trivially copyable types. Scalar types, trivial class types (11.2), arrays of such types and cv-qualified versions
of these types are collectively called trivial types. Scalar types, standard-layout class types (11.2), arrays of
such types and cv-qualified versions of these types are collectively called standard-layout types. Scalar types,
implicit-lifetime class types (11.2), array types, and cv-qualified versions of these types are collectively called
implicit-lifetime types.

10 A type is a literal type if it is:
—(10.1) cv void; or
—(10.2) a scalar type; or
—(10.3) a reference type; or
—(10.4) an array of literal type; or
—(10.5) a possibly cv-qualified class type (Clause 11) that has all of the following properties:

—(10.5.1) it has a constexpr destructor (9.2.6),
—(10.5.2) all of its non-static non-variant data members and base classes are of non-volatile literal types, and
—(10.5.3) it

—(10.5.3.1) is a closure type (7.5.5.2),
—(10.5.3.2) is an aggregate union type that has either no variant members or at least one variant member

of non-volatile literal type,
—(10.5.3.3) is a non-union aggregate type for which each of its anonymous union members satisfies the

above requirements for an aggregate union type, or
—(10.5.3.4) has at least one constexpr constructor or constructor template (possibly inherited (9.9) from

a base class) that is not a copy or move constructor.
[Note 5 : A literal type is one for which it might be possible to create an object within a constant expression. It is
not a guarantee that it is possible to create such an object, nor is it a guarantee that any object of that type will be
usable in a constant expression. — end note ]

11 Two types cv1 T1 and cv2 T2 are layout-compatible types if T1 and T2 are the same type, layout-compatible
enumerations (9.7.1), or layout-compatible standard-layout class types (11.4).

6.8.2 Fundamental types [basic.fundamental]
1 There are five standard signed integer types: “signed char”, “short int”, “int”, “long int”, and “long

long int”. In this list, each type provides at least as much storage as those preceding it in the list. There
may also be implementation-defined extended signed integer types. The standard and extended signed integer
types are collectively called signed integer types. The range of representable values for a signed integer type
is −2N−1 to 2N−1 − 1 (inclusive), where N is called the width of the type.
[Note 1 : Plain ints are intended to have the natural width suggested by the architecture of the execution environment;
the other signed integer types are provided to meet special needs. — end note ]

2 For each of the standard signed integer types, there exists a corresponding (but different) standard un-
signed integer type: “unsigned char”, “unsigned short int”, “unsigned int”, “unsigned long int”,
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and “unsigned long long int”. Likewise, for each of the extended signed integer types, there exists a cor-
responding extended unsigned integer type. The standard and extended unsigned integer types are collectively
called unsigned integer types. An unsigned integer type has the same width N as the corresponding signed
integer type. The range of representable values for the unsigned type is 0 to 2N − 1 (inclusive); arithmetic
for the unsigned type is performed modulo 2N .
[Note 2 : Unsigned arithmetic does not overflow. Overflow for signed arithmetic yields undefined behavior (7.1).

— end note ]
3 An unsigned integer type has the same object representation, value representation, and alignment requirements

(6.7.6) as the corresponding signed integer type. For each value x of a signed integer type, the value of the
corresponding unsigned integer type congruent to x modulo 2N has the same value of corresponding bits in
its value representation.32

[Example 1 : The value −1 of a signed integer type has the same representation as the largest value of the corresponding
unsigned type. — end example ]

Table 14: Minimum width [tab:basic.fundamental.width]

Type Minimum width N

signed char 8
short int 16
int 16
long int 32
long long int 64

4 The width of each signed integer type shall not be less than the values specified in Table 14. The value
representation of a signed or unsigned integer type comprises N bits, where N is the respective width. Each
set of values for any padding bits (6.8.1) in the object representation are alternative representations of the
value specified by the value representation.
[Note 3 : Padding bits have unspecified value, but cannot cause traps. In contrast, see ISO C 6.2.6.2. — end note ]
[Note 4 : The signed and unsigned integer types satisfy the constraints given in ISO C 5.2.4.2.1. — end note ]

Except as specified above, the width of a signed or unsigned integer type is implementation-defined.
5 Each value x of an unsigned integer type with width N has a unique representation x = x020 + x121 +

. . . + xN−12N−1, where each coefficient xi is either 0 or 1; this is called the base-2 representation of x. The
base-2 representation of a value of signed integer type is the base-2 representation of the congruent value of
the corresponding unsigned integer type. The standard signed integer types and standard unsigned integer
types are collectively called the standard integer types, and the extended signed integer types and extended
unsigned integer types are collectively called the extended integer types.

6 A fundamental type specified to have a signed or unsigned integer type as its underlying type has the same
object representation, value representation, alignment requirements (6.7.6), and range of representable values
as the underlying type. Further, each value has the same representation in both types.

7 Type char is a distinct type that has an implementation-defined choice of “signed char” or “unsigned
char” as its underlying type. The three types char, signed char, and unsigned char are collectively called
ordinary character types. The ordinary character types and char8_t are collectively called narrow character
types. For narrow character types, each possible bit pattern of the object representation represents a distinct
value.
[Note 5 : This requirement does not hold for other types. — end note ]
[Note 6 : A bit-field of narrow character type whose width is larger than the width of that type has padding bits; see
6.8.1. — end note ]

8 Type wchar_t is a distinct type that has an implementation-defined signed or unsigned integer type as its
underlying type.

9 Type char8_t denotes a distinct type whose underlying type is unsigned char. Types char16_t and
char32_t denote distinct types whose underlying types are uint_least16_t and uint_least32_t, respec-
tively, in <cstdint> (17.4.1).

32) This is also known as two’s complement representation.
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10 Type bool is a distinct type that has the same object representation, value representation, and alignment
requirements as an implementation-defined unsigned integer type. The values of type bool are true and
false.
[Note 7 : There are no signed, unsigned, short, or long bool types or values. — end note ]

11 The types char, wchar_t, char8_t, char16_t, and char32_t are collectively called character types. The
character types, bool, the signed and unsigned integer types, and cv-qualified versions (6.8.5) thereof, are
collectively termed integral types. A synonym for integral type is integer type.
[Note 8 : Enumerations (9.7.1) are not integral; however, unscoped enumerations can be promoted to integral types as
specified in 7.3.7. — end note ]

12 The three distinct types float, double, and long double can represent floating-point numbers. The type
double provides at least as much precision as float, and the type long double provides at least as much
precision as double. The set of values of the type float is a subset of the set of values of the type double;
the set of values of the type double is a subset of the set of values of the type long double. The types
float, double, and long double, and cv-qualified versions (6.8.5) thereof, are collectively termed standard
floating-point types. An implementation may also provide additional types that represent floating-point values
and define them (and cv-qualified versions thereof) to be extended floating-point types. The standard and
extended floating-point types are collectively termed floating-point types.
[Note 9 : Any additional implementation-specific types representing floating-point values that are not defined by the
implementation to be extended floating-point types are not considered to be floating-point types, and this document
imposes no requirements on them or their interactions with floating-point types. — end note ]

Except as specified in 6.8.3, the object and value representations and accuracy of operations of floating-point
types are implementation-defined.

13 Integral and floating-point types are collectively termed arithmetic types.
[Note 10 : Properties of the arithmetic types, such as their minimum and maximum representable value, can be queried
using the facilities in the standard library headers <limits> (17.3.3), <climits> (17.3.6), and <cfloat> (17.3.7).

— end note ]
14 A type cv void is an incomplete type that cannot be completed; such a type has an empty set of values. It is

used as the return type for functions that do not return a value. Any expression can be explicitly converted
to type cv void (7.6.1.4, 7.6.1.9, 7.6.3). An expression of type cv void shall be used only as an expression
statement (8.3), as an operand of a comma expression (7.6.20), as a second or third operand of ?: (7.6.16),
as the operand of typeid, noexcept, or decltype, as the expression in a return statement (8.7.4) for a
function with the return type cv void, or as the operand of an explicit conversion to type cv void.

15 A value of type std::nullptr_t is a null pointer constant (7.3.12). Such values participate in the
pointer and the pointer-to-member conversions (7.3.12, 7.3.13). sizeof(std::nullptr_t) shall be equal to
sizeof(void*).

16 The types described in this subclause are called fundamental types.
[Note 11 : Even if the implementation defines two or more fundamental types to have the same value representation,
they are nevertheless different types. — end note ]

6.8.3 Optional extended floating-point types [basic.extended.fp]
1 If the implementation supports an extended floating-point type (6.8.2) whose properties are specified by the

ISO/IEC/IEEE 60559 floating-point interchange format binary16, then the typedef-name std::float16_t
is defined in the header <stdfloat> (17.4.2) and names such a type, the macro __STDCPP_FLOAT16_T__ is
defined (15.11), and the floating-point literal suffixes f16 and F16 are supported (5.13.4).

2 If the implementation supports an extended floating-point type whose properties are specified by the
ISO/IEC/IEEE 60559 floating-point interchange format binary32, then the typedef-name std::float32_t
is defined in the header <stdfloat> and names such a type, the macro __STDCPP_FLOAT32_T__ is defined,
and the floating-point literal suffixes f32 and F32 are supported.

3 If the implementation supports an extended floating-point type whose properties are specified by the
ISO/IEC/IEEE 60559 floating-point interchange format binary64, then the typedef-name std::float64_t
is defined in the header <stdfloat> and names such a type, the macro __STDCPP_FLOAT64_T__ is defined,
and the floating-point literal suffixes f64 and F64 are supported.

4 If the implementation supports an extended floating-point type whose properties are specified by the
ISO/IEC/IEEE 60559 floating-point interchange format binary128, then the typedef-name std::float128_t
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is defined in the header <stdfloat> and names such a type, the macro __STDCPP_FLOAT128_T__ is defined,
and the floating-point literal suffixes f128 and F128 are supported.

5 If the implementation supports an extended floating-point type with the properties, as specified by
ISO/IEC/IEEE 60559, of radix (b) of 2, storage width in bits (k) of 16, precision in bits (p) of 8, maximum
exponent (emax) of 127, and exponent field width in bits (w) of 8, then the typedef-name std::bfloat16_t
is defined in the header <stdfloat> and names such a type, the macro __STDCPP_BFLOAT16_T__ is defined,
and the floating-point literal suffixes bf16 and BF16 are supported.

6 [Note 1 : A summary of the parameters for each type is given in Table 15. The precision p includes the implicit 1 bit
at the beginning of the mantissa, so the storage used for the mantissa is p − 1 bits. ISO/IEC/IEEE 60559 does not
assign a name for a type having the parameters specified for std::bfloat16_t. — end note ]

Table 15: Properties of named extended floating-point types [tab:basic.extended.fp]

Parameter float16_t float32_t float64_t float128_t bfloat16_t
ISO/IEC/IEEE 60559 name binary16 binary32 binary64 binary128
k, storage width in bits 16 32 64 128 16
p, precision in bits 11 24 53 113 8
emax, maximum exponent 15 127 1023 16383 127
w, exponent field width in bits 5 8 11 15 8

7 Recommended practice: Any names that the implementation provides for the extended floating-point types
described in this subsection that are in addition to the names defined in the <stdfloat> header should
be chosen to increase compatibility and interoperability with the interchange types _Float16, _Float32,
_Float64, and _Float128 defined in ISO/IEC TS 18661-3 and with future versions of ISO/IEC 9899.

6.8.4 Compound types [basic.compound]
1 Compound types can be constructed in the following ways:

—(1.1) arrays of objects of a given type, 9.3.4.5;
—(1.2) functions, which have parameters of given types and return void or references or objects of a given

type, 9.3.4.6;
—(1.3) pointers to cv void or objects or functions (including static members of classes) of a given type, 9.3.4.2;
—(1.4) references to objects or functions of a given type, 9.3.4.3. There are two types of references:

—(1.4.1) lvalue reference
—(1.4.2) rvalue reference

—(1.5) classes containing a sequence of objects of various types (Clause 11), a set of types, enumerations
and functions for manipulating these objects (11.4.2), and a set of restrictions on the access to these
entities (11.8);

—(1.6) unions, which are classes capable of containing objects of different types at different times, 11.5;
—(1.7) enumerations, which comprise a set of named constant values, 9.7.1;
—(1.8) pointers to non-static class members,33 which identify members of a given type within objects of a

given class, 9.3.4.4. Pointers to data members and pointers to member functions are collectively called
pointer-to-member types.

2 These methods of constructing types can be applied recursively; restrictions are mentioned in 9.3.4. Con-
structing a type such that the number of bytes in its object representation exceeds the maximum value
representable in the type std::size_t (17.2) is ill-formed.

3 The type of a pointer to cv void or a pointer to an object type is called an object pointer type.
[Note 1 : A pointer to void does not have a pointer-to-object type, however, because void is not an object type.

— end note ]

33) Static class members are objects or functions, and pointers to them are ordinary pointers to objects or functions.
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The type of a pointer that can designate a function is called a function pointer type. A pointer to an object
of type T is referred to as a “pointer to T”.
[Example 1 : A pointer to an object of type int is referred to as “pointer to int” and a pointer to an object of class X
is called a “pointer to X”. — end example ]

Except for pointers to static members, text referring to “pointers” does not apply to pointers to members.
Pointers to incomplete types are allowed although there are restrictions on what can be done with them (6.7.6).
Every value of pointer type is one of the following:

—(3.1) a pointer to an object or function (the pointer is said to point to the object or function), or
—(3.2) a pointer past the end of an object (7.6.6), or
—(3.3) the null pointer value for that type, or
—(3.4) an invalid pointer value.

A value of a pointer type that is a pointer to or past the end of an object represents the address of the first
byte in memory (6.7.1) occupied by the object34 or the first byte in memory after the end of the storage
occupied by the object, respectively.
[Note 2 : A pointer past the end of an object (7.6.6) is not considered to point to an unrelated object of the object’s
type, even if the unrelated object is located at that address. A pointer value becomes invalid when the storage it
denotes reaches the end of its storage duration; see 6.7.5. — end note ]

For purposes of pointer arithmetic (7.6.6) and comparison (7.6.9, 7.6.10), a pointer past the end of the
last element of an array x of n elements is considered to be equivalent to a pointer to a hypothetical array
element n of x and an object of type T that is not an array element is considered to belong to an array
with one element of type T. The value representation of pointer types is implementation-defined. Pointers to
layout-compatible types shall have the same value representation and alignment requirements (6.7.6).
[Note 3 : Pointers to over-aligned types (6.7.6) have no special representation, but their range of valid values is
restricted by the extended alignment requirement. — end note ]

4 Two objects a and b are pointer-interconvertible if:
—(4.1) they are the same object, or
—(4.2) one is a union object and the other is a non-static data member of that object (11.5), or
—(4.3) one is a standard-layout class object and the other is the first non-static data member of that object or

any base class subobject of that object (11.4), or
—(4.4) there exists an object c such that a and c are pointer-interconvertible, and c and b are pointer-

interconvertible.
If two objects are pointer-interconvertible, then they have the same address, and it is possible to obtain a
pointer to one from a pointer to the other via a reinterpret_cast (7.6.1.10).
[Note 4 : An array object and its first element are not pointer-interconvertible, even though they have the same
address. — end note ]

5 A byte of storage b is reachable through a pointer value that points to an object x if there is an object y,
pointer-interconvertible with x, such that b is within the storage occupied by y, or the immediately-enclosing
array object if y is an array element.

6 A pointer to cv void can be used to point to objects of unknown type. Such a pointer shall be able to hold
any object pointer. An object of type “pointer to cv void” shall have the same representation and alignment
requirements as an object of type “pointer to cv char”.

6.8.5 CV-qualifiers [basic.type.qualifier]
1 Each type other than a function or reference type is part of a group of four distinct, but related, types:

a cv-unqualified version, a const-qualified version, a volatile-qualified version, and a const-volatile-qualified
version. The types in each such group shall have the same representation and alignment requirements (6.7.6).35

A function or reference type is always cv-unqualified.
—(1.1) A const object is an object of type const T or a non-mutable subobject of a const object.

34) For an object that is not within its lifetime, this is the first byte in memory that it will occupy or used to occupy.
35) The same representation and alignment requirements are meant to imply interchangeability as arguments to functions,

return values from functions, and non-static data members of unions.
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—(1.2) A volatile object is an object of type volatile T or a subobject of a volatile object.
—(1.3) A const volatile object is an object of type const volatile T, a non-mutable subobject of a const

volatile object, a const subobject of a volatile object, or a non-mutable volatile subobject of a const
object.

[Note 1 : The type of an object (6.7.2) includes the cv-qualifiers specified in the decl-specifier-seq (9.2), declarator (9.3),
type-id (9.3.2), or new-type-id (7.6.2.8) when the object is created. — end note ]

2 Except for array types, a compound type (6.8.4) is not cv-qualified by the cv-qualifiers (if any) of the types
from which it is compounded.

3 An array type whose elements are cv-qualified is also considered to have the same cv-qualifications as its
elements.
[Note 2 : Cv-qualifiers applied to an array type attach to the underlying element type, so the notation “cv T”, where T
is an array type, refers to an array whose elements are so-qualified (9.3.4.5). — end note ]
[Example 1 :

typedef char CA[5];
typedef const char CC;
CC arr1[5] = { 0 };
const CA arr2 = { 0 };

The type of both arr1 and arr2 is “array of 5 const char”, and the array type is considered to be const-qualified.
— end example ]

4 [Note 3 : See 9.3.4.6 and 12.2.2 regarding function types that have cv-qualifiers. — end note ]
5 There is a partial ordering on cv-qualifiers, so that a type can be said to be more cv-qualified than another.

Table 16 shows the relations that constitute this ordering.

Table 16: Relations on const and volatile [tab:basic.type.qualifier.rel]

no cv-qualifier < const
no cv-qualifier < volatile
no cv-qualifier < const volatile

const < const volatile
volatile < const volatile

6 In this document, the notation cv (or cv1, cv2, etc.), used in the description of types, represents an arbitrary
set of cv-qualifiers, i.e., one of {const}, {volatile}, {const, volatile}, or the empty set. For a type cv T,
the top-level cv-qualifiers of that type are those denoted by cv.
[Example 2 : The type corresponding to the type-id const int& has no top-level cv-qualifiers. The type corresponding
to the type-id volatile int * const has the top-level cv-qualifier const. For a class type C, the type corresponding
to the type-id void (C::* volatile)(int) const has the top-level cv-qualifier volatile. — end example ]

6.8.6 Conversion ranks [conv.rank]
1 Every integer type has an integer conversion rank defined as follows:

—(1.1) No two signed integer types other than char and signed char (if char is signed) have the same rank,
even if they have the same representation.

—(1.2) The rank of a signed integer type is greater than the rank of any signed integer type with a smaller
width.

—(1.3) The rank of long long int is greater than the rank of long int, which is greater than the rank of
int, which is greater than the rank of short int, which is greater than the rank of signed char.

—(1.4) The rank of any unsigned integer type equals the rank of the corresponding signed integer type.
—(1.5) The rank of any standard integer type is greater than the rank of any extended integer type with the

same width.
—(1.6) The rank of char equals the rank of signed char and unsigned char.
—(1.7) The rank of bool is less than the rank of all standard integer types.
—(1.8) The ranks of char8_t, char16_t, char32_t, and wchar_t equal the ranks of their underlying types

(6.8.2).
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—(1.9) The rank of any extended signed integer type relative to another extended signed integer type with the
same width is implementation-defined, but still subject to the other rules for determining the integer
conversion rank.

—(1.10) For all integer types T1, T2, and T3, if T1 has greater rank than T2 and T2 has greater rank than T3,
then T1 has greater rank than T3.

[Note 1 : The integer conversion rank is used in the definition of the integral promotions (7.3.7) and the usual
arithmetic conversions (7.4). — end note ]

2 Every floating-point type has a floating-point conversion rank defined as follows:
—(2.1) The rank of a floating point type T is greater than the rank of any floating-point type whose set of

values is a proper subset of the set of values of T.
—(2.2) The rank of long double is greater than the rank of double, which is greater than the rank of float.
—(2.3) Two extended floating-point types with the same set of values have equal ranks.
—(2.4) An extended floating-point type with the same set of values as exactly one cv-unqualified standard

floating-point type has a rank equal to the rank of that standard floating-point type.
—(2.5) An extended floating-point type with the same set of values as more than one cv-unqualified standard

floating-point type has a rank equal to the rank of double.
[Note 2 : The conversion ranks of floating-point types T1 and T2 are unordered if the set of values of T1 is neither a
subset nor a superset of the set of values of T2. This can happen when one type has both a larger range and a lower
precision than the other. — end note ]

3 Floating-point types that have equal floating-point conversion ranks are ordered by floating-point conversion
subrank. The subrank forms a total order among types with equal ranks. The types std::float16_t,
std::float32_t, std::float64_t, and std::float128_t (17.4.2) have a greater conversion subrank than
any standard floating-point type with equal conversion rank. Otherwise, the conversion subrank order is
implementation-defined.

4 [Note 3 : The floating-point conversion rank and subrank are used in the definition of the usual arithmetic conversions
(7.4). — end note ]

6.9 Program execution [basic.exec]
6.9.1 Sequential execution [intro.execution]

1 An instance of each object with automatic storage duration (6.7.5.4) is associated with each entry into its
block. Such an object exists and retains its last-stored value during the execution of the block and while the
block is suspended (by a call of a function, suspension of a coroutine (7.6.2.4), or receipt of a signal).

2 A constituent expression is defined as follows:
—(2.1) The constituent expression of an expression is that expression.
—(2.2) The constituent expression of a conversion is the corresponding implicit function call, if any, or the

converted expression otherwise.
—(2.3) The constituent expressions of a braced-init-list or of a (possibly parenthesized) expression-list are the

constituent expressions of the elements of the respective list.
—(2.4) The constituent expressions of a brace-or-equal-initializer of the form = initializer-clause are the constituent

expressions of the initializer-clause.
[Example 1 :

struct A { int x; };
struct B { int y; struct A a; };
B b = { 5, { 1+1 } };

The constituent expressions of the initializer used for the initialization of b are 5 and 1+1. — end example ]
3 The immediate subexpressions of an expression E are

—(3.1) the constituent expressions of E’s operands (7.2),
—(3.2) any function call that E implicitly invokes,
—(3.3) if E is a lambda-expression (7.5.5), the initialization of the entities captured by copy and the constituent

expressions of the initializer of the init-captures,
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—(3.4) if E is a function call (7.6.1.3) or implicitly invokes a function, the constituent expressions of each
default argument (9.3.4.7) used in the call, or

—(3.5) if E creates an aggregate object (9.4.2), the constituent expressions of each default member initializer
(11.4) used in the initialization.

4 A subexpression of an expression E is an immediate subexpression of E or a subexpression of an immediate
subexpression of E.
[Note 1 : Expressions appearing in the compound-statement of a lambda-expression are not subexpressions of the
lambda-expression. — end note ]

The potentially-evaluated subexpressions of an expression, conversion, or initializer E are
—(4.1) the constituent expressions of E and
—(4.2) the subexpressions thereof that are not subexpressions of a nested unevaluated operand (7.2.3).

5 A full-expression is
—(5.1) an unevaluated operand (7.2.3),
—(5.2) a constant-expression (7.7),
—(5.3) an immediate invocation (7.7),
—(5.4) an init-declarator (9.3) or a mem-initializer (11.9.3), including the constituent expressions of the initializer,
—(5.5) an invocation of a destructor generated at the end of the lifetime of an object other than a temporary

object (6.7.7) whose lifetime has not been extended, or
—(5.6) an expression that is not a subexpression of another expression and that is not otherwise part of a

full-expression.
If a language construct is defined to produce an implicit call of a function, a use of the language construct is
considered to be an expression for the purposes of this definition. Conversions applied to the result of an
expression in order to satisfy the requirements of the language construct in which the expression appears are
also considered to be part of the full-expression. For an initializer, performing the initialization of the entity
(including evaluating default member initializers of an aggregate) is also considered part of the full-expression.
[Example 2 :

struct S {
S(int i): I(i) { } // full-expression is initialization of I
int& v() { return I; }
~S() noexcept(false) { }

private:
int I;

};

S s1(1); // full-expression comprises call of S::S(int)
void f() {

S s2 = 2; // full-expression comprises call of S::S(int)
if (S(3).v()) // full-expression includes lvalue-to-rvalue and int to bool conversions,

// performed before temporary is deleted at end of full-expression
{ }
bool b = noexcept(S()); // exception specification of destructor of S considered for noexcept

// full-expression is destruction of s2 at end of block
}
struct B {

B(S = S(0));
};
B b[2] = { B(), B() }; // full-expression is the entire initialization

// including the destruction of temporaries
— end example ]

6 [Note 2 : The evaluation of a full-expression can include the evaluation of subexpressions that are not lexically part of
the full-expression. For example, subexpressions involved in evaluating default arguments (9.3.4.7) are considered to
be created in the expression that calls the function, not the expression that defines the default argument. — end note ]
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7 Reading an object designated by a volatile glvalue (7.2.1), modifying an object, calling a library I/O
function, or calling a function that does any of those operations are all side effects, which are changes in the
state of the execution environment. Evaluation of an expression (or a subexpression) in general includes both
value computations (including determining the identity of an object for glvalue evaluation and fetching a
value previously assigned to an object for prvalue evaluation) and initiation of side effects. When a call to a
library I/O function returns or an access through a volatile glvalue is evaluated the side effect is considered
complete, even though some external actions implied by the call (such as the I/O itself) or by the volatile
access may not have completed yet.

8 Sequenced before is an asymmetric, transitive, pair-wise relation between evaluations executed by a single
thread (6.9.2), which induces a partial order among those evaluations. Given any two evaluations A and B,
if A is sequenced before B (or, equivalently, B is sequenced after A), then the execution of A shall precede
the execution of B. If A is not sequenced before B and B is not sequenced before A, then A and B are
unsequenced.
[Note 3 : The execution of unsequenced evaluations can overlap. — end note ]

Evaluations A and B are indeterminately sequenced when either A is sequenced before B or B is sequenced
before A, but it is unspecified which.
[Note 4 : Indeterminately sequenced evaluations cannot overlap, but either can be executed first. — end note ]

An expression X is said to be sequenced before an expression Y if every value computation and every side
effect associated with the expression X is sequenced before every value computation and every side effect
associated with the expression Y.

9 Every value computation and side effect associated with a full-expression is sequenced before every value
computation and side effect associated with the next full-expression to be evaluated.36

10 Except where noted, evaluations of operands of individual operators and of subexpressions of individual
expressions are unsequenced.
[Note 5 : In an expression that is evaluated more than once during the execution of a program, unsequenced and
indeterminately sequenced evaluations of its subexpressions need not be performed consistently in different evaluations.

— end note ]

The value computations of the operands of an operator are sequenced before the value computation of the
result of the operator. If a side effect on a memory location (6.7.1) is unsequenced relative to either another
side effect on the same memory location or a value computation using the value of any object in the same
memory location, and they are not potentially concurrent (6.9.2), the behavior is undefined.
[Note 6 : The next subclause imposes similar, but more complex restrictions on potentially concurrent computations.

— end note ]
[Example 3 :

void g(int i) {
i = 7, i++, i++; // i becomes 9

i = i++ + 1; // the value of i is incremented
i = i++ + i; // undefined behavior
i = i + 1; // the value of i is incremented

}

— end example ]
11 When invoking a function (whether or not the function is inline), every argument expression and the postfix

expression designating the called function are sequenced before every expression or statement in the body
of the called function. For each function invocation or evaluation of an await-expression F, each evaluation
that does not occur within F but is evaluated on the same thread and as part of the same signal handler (if
any) is either sequenced before all evaluations that occur within F or sequenced after all evaluations that
occur within F ;37 if F invokes or resumes a coroutine (7.6.2.4), only evaluations subsequent to the previous
suspension (if any) and prior to the next suspension (if any) are considered to occur within F.
Several contexts in C++ cause evaluation of a function call, even though no corresponding function call syntax
appears in the translation unit.

36) As specified in 6.7.7, after a full-expression is evaluated, a sequence of zero or more invocations of destructor functions for
temporary objects takes place, usually in reverse order of the construction of each temporary object.

37) In other words, function executions do not interleave with each other.
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[Example 4 : Evaluation of a new-expression invokes one or more allocation and constructor functions; see 7.6.2.8. For
another example, invocation of a conversion function (11.4.8.3) can arise in contexts in which no function call syntax
appears. — end example ]

The sequencing constraints on the execution of the called function (as described above) are features of the
function calls as evaluated, regardless of the syntax of the expression that calls the function.

12 If a signal handler is executed as a result of a call to the std::raise function, then the execution of the
handler is sequenced after the invocation of the std::raise function and before its return.
[Note 7 : When a signal is received for another reason, the execution of the signal handler is usually unsequenced with
respect to the rest of the program. — end note ]

6.9.2 Multi-threaded executions and data races [intro.multithread]
6.9.2.1 General [intro.multithread.general]

1 A thread of execution (also known as a thread) is a single flow of control within a program, including the initial
invocation of a specific top-level function, and recursively including every function invocation subsequently
executed by the thread.
[Note 1 : When one thread creates another, the initial call to the top-level function of the new thread is executed by
the new thread, not by the creating thread. — end note ]

Every thread in a program can potentially access every object and function in a program.38 Under a hosted
implementation, a C++ program can have more than one thread running concurrently. The execution of each
thread proceeds as defined by the remainder of this document. The execution of the entire program consists
of an execution of all of its threads.
[Note 2 : Usually the execution can be viewed as an interleaving of all its threads. However, some kinds of atomic
operations, for example, allow executions inconsistent with a simple interleaving, as described below. — end note ]

Under a freestanding implementation, it is implementation-defined whether a program can have more than
one thread of execution.

2 For a signal handler that is not executed as a result of a call to the std::raise function, it is unspecified
which thread of execution contains the signal handler invocation.

6.9.2.2 Data races [intro.races]
1 The value of an object visible to a thread T at a particular point is the initial value of the object, a value

assigned to the object by T , or a value assigned to the object by another thread, according to the rules below.
[Note 1 : In some cases, there might instead be undefined behavior. Much of this subclause is motivated by the desire
to support atomic operations with explicit and detailed visibility constraints. However, it also implicitly supports a
simpler view for more restricted programs. — end note ]

2 Two expression evaluations conflict if one of them modifies a memory location (6.7.1) and the other one reads
or modifies the same memory location.

3 The library defines a number of atomic operations (33.5) and operations on mutexes (Clause 33) that are
specially identified as synchronization operations. These operations play a special role in making assignments
in one thread visible to another. A synchronization operation on one or more memory locations is either a
consume operation, an acquire operation, a release operation, or both an acquire and release operation. A
synchronization operation without an associated memory location is a fence and can be either an acquire
fence, a release fence, or both an acquire and release fence. In addition, there are relaxed atomic operations,
which are not synchronization operations, and atomic read-modify-write operations, which have special
characteristics.
[Note 2 : For example, a call that acquires a mutex will perform an acquire operation on the locations comprising the
mutex. Correspondingly, a call that releases the same mutex will perform a release operation on those same locations.
Informally, performing a release operation on A forces prior side effects on other memory locations to become visible
to other threads that later perform a consume or an acquire operation on A. “Relaxed” atomic operations are not
synchronization operations even though, like synchronization operations, they cannot contribute to data races. — end
note ]

38) An object with automatic or thread storage duration (6.7.5) is associated with one specific thread, and can be accessed by
a different thread only indirectly through a pointer or reference (6.8.4).
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4 All modifications to a particular atomic object M occur in some particular total order, called the modification
order of M .
[Note 3 : There is a separate order for each atomic object. There is no requirement that these can be combined into a
single total order for all objects. In general this will be impossible since different threads can observe modifications to
different objects in inconsistent orders. — end note ]

5 A release sequence headed by a release operation A on an atomic object M is a maximal contiguous sub-
sequence of side effects in the modification order of M , where the first operation is A, and every subsequent
operation is an atomic read-modify-write operation.

6 Certain library calls synchronize with other library calls performed by another thread. For example, an
atomic store-release synchronizes with a load-acquire that takes its value from the store (33.5.4).
[Note 4 : Except in the specified cases, reading a later value does not necessarily ensure visibility as described below.
Such a requirement would sometimes interfere with efficient implementation. — end note ]
[Note 5 : The specifications of the synchronization operations define when one reads the value written by another. For
atomic objects, the definition is clear. All operations on a given mutex occur in a single total order. Each mutex
acquisition “reads the value written” by the last mutex release. — end note ]

7 An evaluation A carries a dependency to an evaluation B if
—(7.1) the value of A is used as an operand of B, unless:

—(7.1.1) B is an invocation of any specialization of std::kill_dependency (33.5.4), or
—(7.1.2) A is the left operand of a built-in logical and (&&, see 7.6.14) or logical or (||, see 7.6.15) operator,

or
—(7.1.3) A is the left operand of a conditional (?:, see 7.6.16) operator, or
—(7.1.4) A is the left operand of the built-in comma (,) operator (7.6.20);

or
—(7.2) A writes a scalar object or bit-field M , B reads the value written by A from M , and A is sequenced

before B, or
—(7.3) for some evaluation X, A carries a dependency to X, and X carries a dependency to B.

[Note 6 : “Carries a dependency to” is a subset of “is sequenced before”, and is similarly strictly intra-thread. — end
note ]

8 An evaluation A is dependency-ordered before an evaluation B if
—(8.1) A performs a release operation on an atomic object M , and, in another thread, B performs a consume

operation on M and reads the value written by A, or
—(8.2) for some evaluation X, A is dependency-ordered before X and X carries a dependency to B.

[Note 7 : The relation “is dependency-ordered before” is analogous to “synchronizes with”, but uses release/consume
in place of release/acquire. — end note ]

9 An evaluation A inter-thread happens before an evaluation B if
—(9.1) A synchronizes with B, or
—(9.2) A is dependency-ordered before B, or
—(9.3) for some evaluation X

—(9.3.1) A synchronizes with X and X is sequenced before B, or
—(9.3.2) A is sequenced before X and X inter-thread happens before B, or
—(9.3.3) A inter-thread happens before X and X inter-thread happens before B.

[Note 8 : The “inter-thread happens before” relation describes arbitrary concatenations of “sequenced before”,
“synchronizes with” and “dependency-ordered before” relationships, with two exceptions. The first exception is that a
concatenation is not permitted to end with “dependency-ordered before” followed by “sequenced before”. The reason
for this limitation is that a consume operation participating in a “dependency-ordered before” relationship provides
ordering only with respect to operations to which this consume operation actually carries a dependency. The reason
that this limitation applies only to the end of such a concatenation is that any subsequent release operation will provide
the required ordering for a prior consume operation. The second exception is that a concatenation is not permitted to
consist entirely of “sequenced before”. The reasons for this limitation are (1) to permit “inter-thread happens before”
to be transitively closed and (2) the “happens before” relation, defined below, provides for relationships consisting
entirely of “sequenced before”. — end note ]
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10 An evaluation A happens before an evaluation B (or, equivalently, B happens after A) if:
—(10.1) A is sequenced before B, or
—(10.2) A inter-thread happens before B.

The implementation shall ensure that no program execution demonstrates a cycle in the “happens before”
relation.
[Note 9 : This cycle would otherwise be possible only through the use of consume operations. — end note ]

11 An evaluation A simply happens before an evaluation B if either
—(11.1) A is sequenced before B, or
—(11.2) A synchronizes with B, or
—(11.3) A simply happens before X and X simply happens before B.

[Note 10 : In the absence of consume operations, the happens before and simply happens before relations are identical.
— end note ]

12 An evaluation A strongly happens before an evaluation D if, either
—(12.1) A is sequenced before D, or
—(12.2) A synchronizes with D, and both A and D are sequentially consistent atomic operations (33.5.4), or
—(12.3) there are evaluations B and C such that A is sequenced before B, B simply happens before C, and C

is sequenced before D, or
—(12.4) there is an evaluation B such that A strongly happens before B, and B strongly happens before D.

[Note 11 : Informally, if A strongly happens before B, then A appears to be evaluated before B in all contexts.
Strongly happens before excludes consume operations. — end note ]

13 A visible side effect A on a scalar object or bit-field M with respect to a value computation B of M satisfies
the conditions:

—(13.1) A happens before B and
—(13.2) there is no other side effect X to M such that A happens before X and X happens before B.

The value of a non-atomic scalar object or bit-field M , as determined by evaluation B, shall be the value
stored by the visible side effect A.
[Note 12 : If there is ambiguity about which side effect to a non-atomic object or bit-field is visible, then the behavior
is either unspecified or undefined. — end note ]
[Note 13 : This states that operations on ordinary objects are not visibly reordered. This is not actually detectable
without data races, but it is necessary to ensure that data races, as defined below, and with suitable restrictions on
the use of atomics, correspond to data races in a simple interleaved (sequentially consistent) execution. — end note ]

14 The value of an atomic object M , as determined by evaluation B, shall be the value stored by some side
effect A that modifies M , where B does not happen before A.
[Note 14 : The set of such side effects is also restricted by the rest of the rules described here, and in particular, by
the coherence requirements below. — end note ]

15 If an operation A that modifies an atomic object M happens before an operation B that modifies M , then A
shall be earlier than B in the modification order of M .
[Note 15 : This requirement is known as write-write coherence. — end note ]

16 If a value computation A of an atomic object M happens before a value computation B of M , and A takes
its value from a side effect X on M , then the value computed by B shall either be the value stored by X or
the value stored by a side effect Y on M , where Y follows X in the modification order of M .
[Note 16 : This requirement is known as read-read coherence. — end note ]

17 If a value computation A of an atomic object M happens before an operation B that modifies M , then A
shall take its value from a side effect X on M , where X precedes B in the modification order of M .
[Note 17 : This requirement is known as read-write coherence. — end note ]

18 If a side effect X on an atomic object M happens before a value computation B of M , then the evaluation B
shall take its value from X or from a side effect Y that follows X in the modification order of M .
[Note 18 : This requirement is known as write-read coherence. — end note ]
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19 [Note 19 : The four preceding coherence requirements effectively disallow compiler reordering of atomic operations
to a single object, even if both operations are relaxed loads. This effectively makes the cache coherence guarantee
provided by most hardware available to C++ atomic operations. — end note ]

20 [Note 20 : The value observed by a load of an atomic depends on the “happens before” relation, which depends on the
values observed by loads of atomics. The intended reading is that there must exist an association of atomic loads with
modifications they observe that, together with suitably chosen modification orders and the “happens before” relation
derived as described above, satisfy the resulting constraints as imposed here. — end note ]

21 Two actions are potentially concurrent if
—(21.1) they are performed by different threads, or
—(21.2) they are unsequenced, at least one is performed by a signal handler, and they are not both performed

by the same signal handler invocation.
The execution of a program contains a data race if it contains two potentially concurrent conflicting actions,
at least one of which is not atomic, and neither happens before the other, except for the special case for
signal handlers described below. Any such data race results in undefined behavior.
[Note 21 : It can be shown that programs that correctly use mutexes and memory_order::seq_cst operations to
prevent all data races and use no other synchronization operations behave as if the operations executed by their
constituent threads were simply interleaved, with each value computation of an object being taken from the last side
effect on that object in that interleaving. This is normally referred to as “sequential consistency”. However, this applies
only to data-race-free programs, and data-race-free programs cannot observe most program transformations that do
not change single-threaded program semantics. In fact, most single-threaded program transformations continue to be
allowed, since any program that behaves differently as a result has undefined behavior. — end note ]

22 Two accesses to the same object of type volatile std::sig_atomic_t do not result in a data race if
both occur in the same thread, even if one or more occurs in a signal handler. For each signal handler
invocation, evaluations performed by the thread invoking a signal handler can be divided into two groups A
and B, such that no evaluations in B happen before evaluations in A, and the evaluations of such volatile
std::sig_atomic_t objects take values as though all evaluations in A happened before the execution of the
signal handler and the execution of the signal handler happened before all evaluations in B.

23 [Note 22 : Compiler transformations that introduce assignments to a potentially shared memory location that would
not be modified by the abstract machine are generally precluded by this document, since such an assignment might
overwrite another assignment by a different thread in cases in which an abstract machine execution would not have
encountered a data race. This includes implementations of data member assignment that overwrite adjacent members
in separate memory locations. Reordering of atomic loads in cases in which the atomics in question might alias is also
generally precluded, since this could violate the coherence rules. — end note ]

24 [Note 23 : Transformations that introduce a speculative read of a potentially shared memory location might not
preserve the semantics of the C++ program as defined in this document, since they potentially introduce a data
race. However, they are typically valid in the context of an optimizing compiler that targets a specific machine with
well-defined semantics for data races. They would be invalid for a hypothetical machine that is not tolerant of races
or provides hardware race detection. — end note ]

6.9.2.3 Forward progress [intro.progress]
1 The implementation may assume that any thread will eventually do one of the following:

—(1.1) terminate,
—(1.2) make a call to a library I/O function,
—(1.3) perform an access through a volatile glvalue, or
—(1.4) perform a synchronization operation or an atomic operation.

[Note 1 : This is intended to allow compiler transformations such as removal of empty loops, even when termination
cannot be proven. — end note ]

2 Executions of atomic functions that are either defined to be lock-free (33.5.10) or indicated as lock-free (33.5.5)
are lock-free executions.

—(2.1) If there is only one thread that is not blocked (3.6) in a standard library function, a lock-free execution
in that thread shall complete.
[Note 2 : Concurrently executing threads might prevent progress of a lock-free execution. For example, this
situation can occur with load-locked store-conditional implementations. This property is sometimes termed
obstruction-free. — end note ]
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—(2.2) When one or more lock-free executions run concurrently, at least one should complete.
[Note 3 : It is difficult for some implementations to provide absolute guarantees to this effect, since repeated
and particularly inopportune interference from other threads could prevent forward progress, e.g., by repeatedly
stealing a cache line for unrelated purposes between load-locked and store-conditional instructions. For
implementations that follow this recommendation and ensure that such effects cannot indefinitely delay progress
under expected operating conditions, such anomalies can therefore safely be ignored by programmers. Outside
this document, this property is sometimes termed lock-free. — end note ]

3 During the execution of a thread of execution, each of the following is termed an execution step:
—(3.1) termination of the thread of execution,
—(3.2) performing an access through a volatile glvalue, or
—(3.3) completion of a call to a library I/O function, a synchronization operation, or an atomic operation.

4 An invocation of a standard library function that blocks (3.6) is considered to continuously execute execution
steps while waiting for the condition that it blocks on to be satisfied.
[Example 1 : A library I/O function that blocks until the I/O operation is complete can be considered to continuously
check whether the operation is complete. Each such check consists of one or more execution steps, for example using
observable behavior of the abstract machine. — end example ]

5 [Note 4 : Because of this and the preceding requirement regarding what threads of execution have to perform eventually,
it follows that no thread of execution can execute forever without an execution step occurring. — end note ]

6 A thread of execution makes progress when an execution step occurs or a lock-free execution does not complete
because there are other concurrent threads that are not blocked in a standard library function (see above).

7 For a thread of execution providing concurrent forward progress guarantees, the implementation ensures that
the thread will eventually make progress for as long as it has not terminated.
[Note 5 : This is required regardless of whether or not other threads of execution (if any) have been or are making
progress. To eventually fulfill this requirement means that this will happen in an unspecified but finite amount of
time. — end note ]

8 It is implementation-defined whether the implementation-created thread of execution that executes main
(6.9.3.1) and the threads of execution created by std::thread (33.4.3) or std::jthread (33.4.4) provide
concurrent forward progress guarantees. General-purpose implementations should provide these guarantees.

9 For a thread of execution providing parallel forward progress guarantees, the implementation is not required
to ensure that the thread will eventually make progress if it has not yet executed any execution step; once
this thread has executed a step, it provides concurrent forward progress guarantees.

10 [Note 6 : This does not specify a requirement for when to start this thread of execution, which will typically be specified
by the entity that creates this thread of execution. For example, a thread of execution that provides concurrent
forward progress guarantees and executes tasks from a set of tasks in an arbitrary order, one after the other, satisfies
the requirements of parallel forward progress for these tasks. — end note ]

11 For a thread of execution providing weakly parallel forward progress guarantees, the implementation does not
ensure that the thread will eventually make progress.

12 [Note 7 : Threads of execution providing weakly parallel forward progress guarantees cannot be expected to make
progress regardless of whether other threads make progress or not; however, blocking with forward progress guarantee
delegation, as defined below, can be used to ensure that such threads of execution make progress eventually. — end
note ]

13 Concurrent forward progress guarantees are stronger than parallel forward progress guarantees, which in
turn are stronger than weakly parallel forward progress guarantees.
[Note 8 : For example, some kinds of synchronization between threads of execution might only make progress if the
respective threads of execution provide parallel forward progress guarantees, but will fail to make progress under
weakly parallel guarantees. — end note ]

14 When a thread of execution P is specified to block with forward progress guarantee delegation on the completion
of a set S of threads of execution, then throughout the whole time of P being blocked on S, the implementation
shall ensure that the forward progress guarantees provided by at least one thread of execution in S is at least
as strong as P ’s forward progress guarantees.
[Note 9 : It is unspecified which thread or threads of execution in S are chosen and for which number of execution
steps. The strengthening is not permanent and not necessarily in place for the rest of the lifetime of the affected
thread of execution. As long as P is blocked, the implementation has to eventually select and potentially strengthen a
thread of execution in S. — end note ]
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Once a thread of execution in S terminates, it is removed from S. Once S is empty, P is unblocked.
15 [Note 10 : A thread of execution B thus can temporarily provide an effectively stronger forward progress guarantee for

a certain amount of time, due to a second thread of execution A being blocked on it with forward progress guarantee
delegation. In turn, if B then blocks with forward progress guarantee delegation on C, this can also temporarily
provide a stronger forward progress guarantee to C. — end note ]

16 [Note 11 : If all threads of execution in S finish executing (e.g., they terminate and do not use blocking synchronization
incorrectly), then P ’s execution of the operation that blocks with forward progress guarantee delegation will not result
in P ’s progress guarantee being effectively weakened. — end note ]

17 [Note 12 : This does not remove any constraints regarding blocking synchronization for threads of execution providing
parallel or weakly parallel forward progress guarantees because the implementation is not required to strengthen a
particular thread of execution whose too-weak progress guarantee is preventing overall progress. — end note ]

18 An implementation should ensure that the last value (in modification order) assigned by an atomic or
synchronization operation will become visible to all other threads in a finite period of time.

6.9.3 Start and termination [basic.start]
6.9.3.1 main function [basic.start.main]

1 A program shall contain exactly one function called main that belongs to the global scope. Executing
a program starts a main thread of execution (6.9.2, 33.4) in which the main function is invoked. It is
implementation-defined whether a program in a freestanding environment is required to define a main
function.
[Note 1 : In a freestanding environment, startup and termination is implementation-defined; startup contains the
execution of constructors for non-local objects with static storage duration; termination contains the execution of
destructors for objects with static storage duration. — end note ]

2 An implementation shall not predefine the main function. Its type shall have C++ language linkage and
it shall have a declared return type of type int, but otherwise its type is implementation-defined. An
implementation shall allow both

—(2.1) a function of () returning int and
—(2.2) a function of (int, pointer to pointer to char) returning int

as the type of main (9.3.4.6). In the latter form, for purposes of exposition, the first function parameter is
called argc and the second function parameter is called argv, where argc shall be the number of arguments
passed to the program from the environment in which the program is run. If argc is nonzero these arguments
shall be supplied in argv[0] through argv[argc-1] as pointers to the initial characters of null-terminated
multibyte strings (ntmbss) (16.3.3.3.4.3) and argv[0] shall be the pointer to the initial character of a ntmbs
that represents the name used to invoke the program or "". The value of argc shall be non-negative. The
value of argv[argc] shall be 0.
Recommended practice: Any further (optional) parameters should be added after argv.

3 The function main shall not be used within a program. The linkage (6.6) of main is implementation-defined. A
program that defines main as deleted or that declares main to be inline, static, constexpr, or consteval
is ill-formed. The function main shall not be a coroutine (9.5.4). The main function shall not be declared
with a linkage-specification (9.11). A program that declares

—(3.1) a variable main that belongs to the global scope, or
—(3.2) a function main that belongs to the global scope and is attached to a named module, or
—(3.3) a function template main that belongs to the global scope, or
—(3.4) an entity named main with C language linkage (in any namespace)

is ill-formed. The name main is not otherwise reserved.
[Example 1 : Member functions, classes, and enumerations can be called main, as can entities in other namespaces.

— end example ]
4 Terminating the program without leaving the current block (e.g., by calling the function std::exit(int)

(17.5)) does not destroy any objects with automatic storage duration (11.4.7). If std::exit is invoked during
the destruction of an object with static or thread storage duration, the program has undefined behavior.

5 A return statement (8.7.4) in main has the effect of leaving the main function (destroying any objects with
automatic storage duration) and calling std::exit with the return value as the argument. If control flows
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off the end of the compound-statement of main, the effect is equivalent to a return with operand 0 (see also
14.4).

6.9.3.2 Static initialization [basic.start.static]
1 Variables with static storage duration are initialized as a consequence of program initiation. Variables with

thread storage duration are initialized as a consequence of thread execution. Within each of these phases of
initiation, initialization occurs as follows.

2 Constant initialization is performed if a variable or temporary object with static or thread storage duration
is constant-initialized (7.7). If constant initialization is not performed, a variable with static storage
duration (6.7.5.2) or thread storage duration (6.7.5.3) is zero-initialized (9.4). Together, zero-initialization
and constant initialization are called static initialization; all other initialization is dynamic initialization. All
static initialization strongly happens before (6.9.2.2) any dynamic initialization.
[Note 1 : The dynamic initialization of non-block variables is described in 6.9.3.3; that of static block variables is
described in 8.8. — end note ]

3 An implementation is permitted to perform the initialization of a variable with static or thread storage
duration as a static initialization even if such initialization is not required to be done statically, provided that

—(3.1) the dynamic version of the initialization does not change the value of any other object of static or
thread storage duration prior to its initialization, and

—(3.2) the static version of the initialization produces the same value in the initialized variable as would be
produced by the dynamic initialization if all variables not required to be initialized statically were
initialized dynamically.

[Note 2 : As a consequence, if the initialization of an object obj1 refers to an object obj2 potentially requiring dynamic
initialization and defined later in the same translation unit, it is unspecified whether the value of obj2 used will be
the value of the fully initialized obj2 (because obj2 was statically initialized) or will be the value of obj2 merely
zero-initialized. For example,

inline double fd() { return 1.0; }
extern double d1;
double d2 = d1; // unspecified:

// either statically initialized to 0.0 or
// dynamically initialized to 0.0 if d1 is
// dynamically initialized, or 1.0 otherwise

double d1 = fd(); // either initialized statically or dynamically to 1.0

— end note ]

6.9.3.3 Dynamic initialization of non-block variables [basic.start.dynamic]
1 Dynamic initialization of a non-block variable with static storage duration is unordered if the variable is an

implicitly or explicitly instantiated specialization, is partially-ordered if the variable is an inline variable that
is not an implicitly or explicitly instantiated specialization, and otherwise is ordered.
[Note 1 : A non-inline explicit specialization of a templated variable has ordered initialization. — end note ]

2 A declaration D is appearance-ordered before a declaration E if
—(2.1) D appears in the same translation unit as E, or
—(2.2) the translation unit containing E has an interface dependency on the translation unit containing D,

in either case prior to E.
3 Dynamic initialization of non-block variables V and W with static storage duration are ordered as follows:

—(3.1) If V and W have ordered initialization and the definition of V is appearance-ordered before the definition
of W, or if V has partially-ordered initialization, W does not have unordered initialization, and for every
definition E of W there exists a definition D of V such that D is appearance-ordered before E, then

—(3.1.1) if the program does not start a thread (6.9.2) other than the main thread (6.9.3.1) or V and W
have ordered initialization and they are defined in the same translation unit, the initialization of V
is sequenced before the initialization of W;

—(3.1.2) otherwise, the initialization of V strongly happens before the initialization of W.
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—(3.2) Otherwise, if the program starts a thread other than the main thread before either V or W is initialized,
it is unspecified in which threads the initializations of V and W occur; the initializations are unsequenced
if they occur in the same thread.

—(3.3) Otherwise, the initializations of V and W are indeterminately sequenced.
[Note 2 : This definition permits initialization of a sequence of ordered variables concurrently with another sequence.

— end note ]
4 A non-initialization odr-use is an odr-use (6.3) not caused directly or indirectly by the initialization of a

non-block static or thread storage duration variable.
5 It is implementation-defined whether the dynamic initialization of a non-block non-inline variable with static

storage duration is sequenced before the first statement of main or is deferred. If it is deferred, it strongly
happens before any non-initialization odr-use of any non-inline function or non-inline variable defined in the
same translation unit as the variable to be initialized.39 It is implementation-defined in which threads and at
which points in the program such deferred dynamic initialization occurs.
Recommended practice: An implementation should choose such points in a way that allows the programmer
to avoid deadlocks.
[Example 1 :

// - File 1 -
#include "a.h"
#include "b.h"
B b;
A::A() {

b.Use();
}

// - File 2 -
#include "a.h"
A a;

// - File 3 -
#include "a.h"
#include "b.h"
extern A a;
extern B b;

int main() {
a.Use();
b.Use();

}

It is implementation-defined whether either a or b is initialized before main is entered or whether the initializations
are delayed until a is first odr-used in main. In particular, if a is initialized before main is entered, it is not guaranteed
that b will be initialized before it is odr-used by the initialization of a, that is, before A::A is called. If, however, a is
initialized at some point after the first statement of main, b will be initialized prior to its use in A::A. — end example ]

6 It is implementation-defined whether the dynamic initialization of a non-block inline variable with static
storage duration is sequenced before the first statement of main or is deferred. If it is deferred, it strongly
happens before any non-initialization odr-use of that variable. It is implementation-defined in which threads
and at which points in the program such deferred dynamic initialization occurs.

7 It is implementation-defined whether the dynamic initialization of a non-block non-inline variable with thread
storage duration is sequenced before the first statement of the initial function of a thread or is deferred. If it is
deferred, the initialization associated with the entity for thread t is sequenced before the first non-initialization
odr-use by t of any non-inline variable with thread storage duration defined in the same translation unit
as the variable to be initialized. It is implementation-defined in which threads and at which points in the
program such deferred dynamic initialization occurs.

8 If the initialization of a non-block variable with static or thread storage duration exits via an exception, the
function std::terminate is called (14.6.2).

39) A non-block variable with static storage duration having initialization with side effects is initialized in this case, even if it is
not itself odr-used (6.3, 6.7.5.2).
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6.9.3.4 Termination [basic.start.term]
1 Constructed objects (9.4) with static storage duration are destroyed and functions registered with std::atexit

are called as part of a call to std::exit (17.5). The call to std::exit is sequenced before the destructions
and the registered functions.
[Note 1 : Returning from main invokes std::exit (6.9.3.1). — end note ]

2 Constructed objects with thread storage duration within a given thread are destroyed as a result of returning
from the initial function of that thread and as a result of that thread calling std::exit. The destruction of
all constructed objects with thread storage duration within that thread strongly happens before destroying
any object with static storage duration.

3 If the completion of the constructor or dynamic initialization of an object with static storage duration
strongly happens before that of another, the completion of the destructor of the second is sequenced before
the initiation of the destructor of the first. If the completion of the constructor or dynamic initialization of an
object with thread storage duration is sequenced before that of another, the completion of the destructor of
the second is sequenced before the initiation of the destructor of the first. If an object is initialized statically,
the object is destroyed in the same order as if the object was dynamically initialized. For an object of array or
class type, all subobjects of that object are destroyed before any block variable with static storage duration
initialized during the construction of the subobjects is destroyed. If the destruction of an object with static
or thread storage duration exits via an exception, the function std::terminate is called (14.6.2).

4 If a function contains a block variable of static or thread storage duration that has been destroyed and the
function is called during the destruction of an object with static or thread storage duration, the program
has undefined behavior if the flow of control passes through the definition of the previously destroyed block
variable.
[Note 2 : Likewise, the behavior is undefined if the block variable is used indirectly (e.g., through a pointer) after its
destruction. — end note ]

5 If the completion of the initialization of an object with static storage duration strongly happens before a call
to std::atexit (see <cstdlib>, 17.5), the call to the function passed to std::atexit is sequenced before
the call to the destructor for the object. If a call to std::atexit strongly happens before the completion of
the initialization of an object with static storage duration, the call to the destructor for the object is sequenced
before the call to the function passed to std::atexit. If a call to std::atexit strongly happens before
another call to std::atexit, the call to the function passed to the second std::atexit call is sequenced
before the call to the function passed to the first std::atexit call.

6 If there is a use of a standard library object or function not permitted within signal handlers (17.13) that
does not happen before (6.9.2) completion of destruction of objects with static storage duration and execution
of std::atexit registered functions (17.5), the program has undefined behavior.
[Note 3 : If there is a use of an object with static storage duration that does not happen before the object’s destruction,
the program has undefined behavior. Terminating every thread before a call to std::exit or the exit from main
is sufficient, but not necessary, to satisfy these requirements. These requirements permit thread managers as
static-storage-duration objects. — end note ]

7 Calling the function std::abort() declared in <cstdlib> (17.2.2) terminates the program without executing
any destructors and without calling the functions passed to std::atexit() or std::at_quick_exit().
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7 Expressions [expr]
7.1 Preamble [expr.pre]

1 [Note 1 : Clause 7 defines the syntax, order of evaluation, and meaning of expressions.40 An expression is a sequence
of operators and operands that specifies a computation. An expression can result in a value and can cause side effects.

— end note ]
2 [Note 2 : Operators can be overloaded, that is, given meaning when applied to expressions of class type (Clause 11)

or enumeration type (9.7.1). Uses of overloaded operators are transformed into function calls as described in 12.4.
Overloaded operators obey the rules for syntax and evaluation order specified in 7.6, but the requirements of operand
type and value category are replaced by the rules for function call. Relations between operators, such as ++a meaning
a+=1, are not guaranteed for overloaded operators (12.4). — end note ]

3 Subclause 7.6 defines the effects of operators when applied to types for which they have not been overloaded.
Operator overloading shall not modify the rules for the built-in operators, that is, for operators applied to
types for which they are defined by this Standard. However, these built-in operators participate in overload
resolution, and as part of that process user-defined conversions will be considered where necessary to convert
the operands to types appropriate for the built-in operator. If a built-in operator is selected, such conversions
will be applied to the operands before the operation is considered further according to the rules in subclause
7.6; see 12.2.2.3, 12.5.

4 If during the evaluation of an expression, the result is not mathematically defined or not in the range of
representable values for its type, the behavior is undefined.
[Note 3 : Treatment of division by zero, forming a remainder using a zero divisor, and all floating-point exceptions
varies among machines, and is sometimes adjustable by a library function. — end note ]

5 [Note 4 : The implementation can regroup operators according to the usual mathematical rules only where the
operators really are associative or commutative.41 For example, in the following fragment

int a, b;
/* ... */
a = a + 32760 + b + 5;

the expression statement behaves exactly the same as
a = (((a + 32760) + b) + 5);

due to the associativity and precedence of these operators. Thus, the result of the sum (a + 32760) is next added to
b, and that result is then added to 5 which results in the value assigned to a. On a machine in which overflows produce
an exception and in which the range of values representable by an int is [-32768, +32767], the implementation cannot
rewrite this expression as

a = ((a + b) + 32765);

since if the values for a and b were, respectively, −32754 and −15, the sum a + b would produce an exception while
the original expression would not; nor can the expression be rewritten as either

a = ((a + 32765) + b);

or
a = (a + (b + 32765));

since the values for a and b might have been, respectively, 4 and −8 or −17 and 12. However on a machine in which
overflows do not produce an exception and in which the results of overflows are reversible, the above expression
statement can be rewritten by the implementation in any of the above ways because the same result will occur. — end
note ]

6 The values of the floating-point operands and the results of floating-point expressions may be represented in
greater precision and range than that required by the type; the types are not changed thereby.42

40) The precedence of operators is not directly specified, but it can be derived from the syntax.
41) Overloaded operators are never assumed to be associative or commutative.
42) The cast and assignment operators must still perform their specific conversions as described in 7.6.1.4, 7.6.3, 7.6.1.9

and 7.6.19.

§ 7.1 94



© ISO/IEC N4950

7.2 Properties of expressions [expr.prop]
7.2.1 Value category [basic.lval]

1 Expressions are categorized according to the taxonomy in Figure 2.

expression

glvalue rvalue

lvalue xvalue prvalue

Figure 2: Expression category taxonomy [fig:basic.lval]

—(1.1) A glvalue is an expression whose evaluation determines the identity of an object or function.
—(1.2) A prvalue is an expression whose evaluation initializes an object or computes the value of an operand

of an operator, as specified by the context in which it appears, or an expression that has type cv void.
—(1.3) An xvalue is a glvalue that denotes an object whose resources can be reused (usually because it is near

the end of its lifetime).
—(1.4) An lvalue is a glvalue that is not an xvalue.
—(1.5) An rvalue is a prvalue or an xvalue.

2 Every expression belongs to exactly one of the fundamental classifications in this taxonomy: lvalue, xvalue,
or prvalue. This property of an expression is called its value category.
[Note 1 : The discussion of each built-in operator in 7.6 indicates the category of the value it yields and the value
categories of the operands it expects. For example, the built-in assignment operators expect that the left operand is an
lvalue and that the right operand is a prvalue and yield an lvalue as the result. User-defined operators are functions,
and the categories of values they expect and yield are determined by their parameter and return types. — end note ]

3 [Note 2 : Historically, lvalues and rvalues were so-called because they could appear on the left- and right-hand side
of an assignment (although this is no longer generally true); glvalues are “generalized” lvalues, prvalues are “pure”
rvalues, and xvalues are “eXpiring” lvalues. Despite their names, these terms classify expressions, not values. — end
note ]

4 [Note 3 : An expression is an xvalue if it is:
—(4.1) a move-eligible id-expression (7.5.4.2),
—(4.2) the result of calling a function, whether implicitly or explicitly, whose return type is an rvalue reference to

object type (7.6.1.3),
—(4.3) a cast to an rvalue reference to object type (7.6.1.4, 7.6.1.7, 7.6.1.9, 7.6.1.10, 7.6.1.11, 7.6.3),
—(4.4) a subscripting operation with an xvalue array operand (7.6.1.2),
—(4.5) a class member access expression designating a non-static data member of non-reference type in which the

object expression is an xvalue (7.6.1.5), or
—(4.6) a .* pointer-to-member expression in which the first operand is an xvalue and the second operand is a pointer

to data member (7.6.4).
In general, the effect of this rule is that named rvalue references are treated as lvalues and unnamed rvalue references
to objects are treated as xvalues; rvalue references to functions are treated as lvalues whether named or not. — end
note ]
[Example 1 :

struct A {
int m;

};
A&& operator+(A, A);
A&& f();

A a;
A&& ar = static_cast<A&&>(a);
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The expressions f(), f().m, static_cast<A&&>(a), and a + a are xvalues. The expression ar is an lvalue. — end
example ]

5 The result of a glvalue is the entity denoted by the expression. The result of a prvalue is the value that the
expression stores into its context; a prvalue that has type cv void has no result. A prvalue whose result
is the value V is sometimes said to have or name the value V. The result object of a prvalue is the object
initialized by the prvalue; a non-discarded prvalue that is used to compute the value of an operand of a
built-in operator or a prvalue that has type cv void has no result object.
[Note 4 : Except when the prvalue is the operand of a decltype-specifier , a prvalue of class or array type always has a
result object. For a discarded prvalue that has type other than cv void, a temporary object is materialized; see 7.2.3.

— end note ]
6 Whenever a glvalue appears as an operand of an operator that expects a prvalue for that operand, the

lvalue-to-rvalue (7.3.2), array-to-pointer (7.3.3), or function-to-pointer (7.3.4) standard conversions are applied
to convert the expression to a prvalue.
[Note 5 : An attempt to bind an rvalue reference to an lvalue is not such a context; see 9.4.4. — end note ]
[Note 6 : Because cv-qualifiers are removed from the type of an expression of non-class type when the expression is
converted to a prvalue, an lvalue of type const int can, for example, be used where a prvalue of type int is required.

— end note ]
[Note 7 : There are no prvalue bit-fields; if a bit-field is converted to a prvalue (7.3.2), a prvalue of the type of the
bit-field is created, which might then be promoted (7.3.7). — end note ]

7 Whenever a prvalue appears as an operand of an operator that expects a glvalue for that operand, the
temporary materialization conversion (7.3.5) is applied to convert the expression to an xvalue.

8 The discussion of reference initialization in 9.4.4 and of temporaries in 6.7.7 indicates the behavior of lvalues
and rvalues in other significant contexts.

9 Unless otherwise indicated (9.2.9.5), a prvalue shall always have complete type or the void type; if it has a
class type or (possibly multidimensional) array of class type, that class shall not be an abstract class (11.7.4).
A glvalue shall not have type cv void.
[Note 8 : A glvalue can have complete or incomplete non-void type. Class and array prvalues can have cv-qualified
types; other prvalues always have cv-unqualified types. See 7.2.2. — end note ]

10 An lvalue is modifiable unless its type is const-qualified or is a function type.
[Note 9 : A program that attempts to modify an object through a nonmodifiable lvalue or through an rvalue is
ill-formed (7.6.19, 7.6.1.6, 7.6.2.3). — end note ]

11 If a program attempts to access (3.1) the stored value of an object through a glvalue whose type is not
similar (7.3.6) to one of the following types the behavior is undefined:43

—(11.1) the dynamic type of the object,
—(11.2) a type that is the signed or unsigned type corresponding to the dynamic type of the object, or
—(11.3) a char, unsigned char, or std::byte type.

If a program invokes a defaulted copy/move constructor or copy/move assignment operator for a union of
type U with a glvalue argument that does not denote an object of type cv U within its lifetime, the behavior
is undefined.
[Note 10 : In C, an entire object of structure type can be accessed, e.g., using assignment. By contrast, C++ has no
notion of accessing an object of class type through an lvalue of class type. — end note ]

7.2.2 Type [expr.type]
1 If an expression initially has the type “reference to T” (9.3.4.3, 9.4.4), the type is adjusted to T prior to

any further analysis. The expression designates the object or function denoted by the reference, and the
expression is an lvalue or an xvalue, depending on the expression.
[Note 1 : Before the lifetime of the reference has started or after it has ended, the behavior is undefined (see 6.7.3).

— end note ]
2 If a prvalue initially has the type “cv T”, where T is a cv-unqualified non-class, non-array type, the type of

the expression is adjusted to T prior to any further analysis.

43) The intent of this list is to specify those circumstances in which an object can or cannot be aliased.
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3 The composite pointer type of two operands p1 and p2 having types T1 and T2, respectively, where at least
one is a pointer or pointer-to-member type or std::nullptr_t, is:

—(3.1) if both p1 and p2 are null pointer constants, std::nullptr_t;
—(3.2) if either p1 or p2 is a null pointer constant, T2 or T1, respectively;
—(3.3) if T1 or T2 is “pointer to cv1 void” and the other type is “pointer to cv2 T”, where T is an object type

or void, “pointer to cv12 void”, where cv12 is the union of cv1 and cv2 ;
—(3.4) if T1 or T2 is “pointer to noexcept function” and the other type is “pointer to function”, where the

function types are otherwise the same, “pointer to function”;
—(3.5) if T1 is “pointer to cv1 C1” and T2 is “pointer to cv2 C2”, where C1 is reference-related to C2 or

C2 is reference-related to C1 (9.4.4), the qualification-combined type (7.3.6) of T1 and T2 or the
qualification-combined type of T2 and T1, respectively;

—(3.6) if T1 or T2 is “pointer to member of C1 of type function”, the other type is “pointer to member of C2 of
type noexcept function”, and C1 is reference-related to C2 or C2 is reference-related to C1 (9.4.4), where
the function types are otherwise the same, “pointer to member of C2 of type function” or “pointer to
member of C1 of type function”, respectively;

—(3.7) if T1 is “pointer to member of C1 of type cv1 U” and T2 is “pointer to member of C2 of type cv2 U”, for
some non-function type U, where C1 is reference-related to C2 or C2 is reference-related to C1 (9.4.4), the
qualification-combined type of T2 and T1 or the qualification-combined type of T1 and T2, respectively;

—(3.8) if T1 and T2 are similar types (7.3.6), the qualification-combined type of T1 and T2;
—(3.9) otherwise, a program that necessitates the determination of a composite pointer type is ill-formed.

[Example 1 :
typedef void *p;
typedef const int *q;
typedef int **pi;
typedef const int **pci;

The composite pointer type of p and q is “pointer to const void”; the composite pointer type of pi and pci is
“pointer to const pointer to const int”. — end example ]

7.2.3 Context dependence [expr.context]
1 In some contexts, unevaluated operands appear (7.5.7, 7.6.1.8, 7.6.2.5, 7.6.2.7, 9.2.9.5, 13.1, 13.7.9). An

unevaluated operand is not evaluated.
[Note 1 : In an unevaluated operand, a non-static class member can be named (7.5.4) and naming of objects or
functions does not, by itself, require that a definition be provided (6.3). An unevaluated operand is considered a
full-expression (6.9.1). — end note ]

2 In some contexts, an expression only appears for its side effects. Such an expression is called a discarded-value
expression. The array-to-pointer (7.3.3) and function-to-pointer (7.3.4) standard conversions are not applied.
The lvalue-to-rvalue conversion (7.3.2) is applied if and only if the expression is a glvalue of volatile-qualified
type and it is one of the following:

—(2.1) ( expression ), where expression is one of these expressions,
—(2.2) id-expression (7.5.4),
—(2.3) subscripting (7.6.1.2),
—(2.4) class member access (7.6.1.5),
—(2.5) indirection (7.6.2.2),
—(2.6) pointer-to-member operation (7.6.4),
—(2.7) conditional expression (7.6.16) where both the second and the third operands are one of these expressions,

or
—(2.8) comma expression (7.6.20) where the right operand is one of these expressions.

[Note 2 : Using an overloaded operator causes a function call; the above covers only operators with built-in meaning.
— end note ]

The temporary materialization conversion (7.3.5) is applied if the (possibly converted) expression is a prvalue
of object type.
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[Note 3 : If the original expression is an lvalue of class type, it must have a volatile copy constructor to initialize the
temporary object that is the result object of the temporary materialization conversion. — end note ]

The expression is evaluated and its result (if any) is discarded.

7.3 Standard conversions [conv]
7.3.1 General [conv.general]

1 Standard conversions are implicit conversions with built-in meaning. 7.3 enumerates the full set of such
conversions. A standard conversion sequence is a sequence of standard conversions in the following order:

—(1.1) Zero or one conversion from the following set: lvalue-to-rvalue conversion, array-to-pointer conversion,
and function-to-pointer conversion.

—(1.2) Zero or one conversion from the following set: integral promotions, floating-point promotion, integral
conversions, floating-point conversions, floating-integral conversions, pointer conversions, pointer-to-
member conversions, and boolean conversions.

—(1.3) Zero or one function pointer conversion.
—(1.4) Zero or one qualification conversion.

[Note 1 : A standard conversion sequence can be empty, i.e., it can consist of no conversions. — end note ]

A standard conversion sequence will be applied to an expression if necessary to convert it to a required
destination type.

2 [Note 2 : Expressions with a given type will be implicitly converted to other types in several contexts:
—(2.1) When used as operands of operators. The operator’s requirements for its operands dictate the destination

type (7.6).
—(2.2) When used in the condition of an if statement (8.5.2) or iteration statement (8.6). The destination type is

bool.
—(2.3) When used in the expression of a switch statement (8.5.3). The destination type is integral.
—(2.4) When used as the source expression for an initialization (which includes use as an argument in a function call

and use as the expression in a return statement). The type of the entity being initialized is (generally) the
destination type. See 9.4, 9.4.4.

— end note ]
3 An expression E can be implicitly converted to a type T if and only if the declaration T t=E; is well-formed,

for some invented temporary variable t (9.4).
4 Certain language constructs require that an expression be converted to a Boolean value. An expression E

appearing in such a context is said to be contextually converted to bool and is well-formed if and only if the
declaration bool t(E); is well-formed, for some invented temporary variable t (9.4).

5 Certain language constructs require conversion to a value having one of a specified set of types appropriate
to the construct. An expression E of class type C appearing in such a context is said to be contextually
implicitly converted to a specified type T and is well-formed if and only if E can be implicitly converted to a
type T that is determined as follows: C is searched for non-explicit conversion functions whose return type is
cv T or reference to cv T such that T is allowed by the context. There shall be exactly one such T.

6 The effect of any implicit conversion is the same as performing the corresponding declaration and initialization
and then using the temporary variable as the result of the conversion. The result is an lvalue if T is an lvalue
reference type or an rvalue reference to function type (9.3.4.3), an xvalue if T is an rvalue reference to object
type, and a prvalue otherwise. The expression E is used as a glvalue if and only if the initialization uses it as
a glvalue.

7 [Note 3 : For class types, user-defined conversions are considered as well; see 11.4.8. In general, an implicit conversion
sequence (12.2.4.2) consists of a standard conversion sequence followed by a user-defined conversion followed by
another standard conversion sequence. — end note ]

8 [Note 4 : There are some contexts where certain conversions are suppressed. For example, the lvalue-to-rvalue
conversion is not done on the operand of the unary & operator. Specific exceptions are given in the descriptions of
those operators and contexts. — end note ]
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7.3.2 Lvalue-to-rvalue conversion [conv.lval]
1 A glvalue (7.2.1) of a non-function, non-array type T can be converted to a prvalue.44 If T is an incomplete

type, a program that necessitates this conversion is ill-formed. If T is a non-class type, the type of the prvalue
is the cv-unqualified version of T. Otherwise, the type of the prvalue is T.45

2 When an lvalue-to-rvalue conversion is applied to an expression E, and either
—(2.1) E is not potentially evaluated, or
—(2.2) the evaluation of E results in the evaluation of a member Ex of the set of potential results of E, and

Ex names a variable x that is not odr-used by Ex (6.3),
the value contained in the referenced object is not accessed.
[Example 1 :

struct S { int n; };
auto f() {

S x { 1 };
constexpr S y { 2 };
return [&](bool b) { return (b ? y : x).n; };

}
auto g = f();
int m = g(false); // undefined behavior: access of x.n outside its lifetime
int n = g(true); // OK, does not access y.n

— end example ]
3 The result of the conversion is determined according to the following rules:

—(3.1) If T is cv std::nullptr_t, the result is a null pointer constant (7.3.12).
[Note 1 : Since the conversion does not access the object to which the glvalue refers, there is no side effect even
if T is volatile-qualified (6.9.1), and the glvalue can refer to an inactive member of a union (11.5). — end note ]

—(3.2) Otherwise, if T has a class type, the conversion copy-initializes the result object from the glvalue.
—(3.3) Otherwise, if the object to which the glvalue refers contains an invalid pointer value (6.7.5.5.3), the

behavior is implementation-defined.
—(3.4) Otherwise, the object indicated by the glvalue is read (3.1), and the value contained in the object is the

prvalue result.
4 [Note 2 : See also 7.2.1. — end note ]

7.3.3 Array-to-pointer conversion [conv.array]
1 An lvalue or rvalue of type “array of N T” or “array of unknown bound of T” can be converted to a prvalue of

type “pointer to T”. The temporary materialization conversion (7.3.5) is applied. The result is a pointer to
the first element of the array.

7.3.4 Function-to-pointer conversion [conv.func]
1 An lvalue of function type T can be converted to a prvalue of type “pointer to T”. The result is a pointer to

the function.46

7.3.5 Temporary materialization conversion [conv.rval]
1 A prvalue of type T can be converted to an xvalue of type T. This conversion initializes a temporary

object (6.7.7) of type T from the prvalue by evaluating the prvalue with the temporary object as its result
object, and produces an xvalue denoting the temporary object. T shall be a complete type.
[Note 1 : If T is a class type (or array thereof), it must have an accessible and non-deleted destructor; see 11.4.7.

— end note ]

44) For historical reasons, this conversion is called the “lvalue-to-rvalue” conversion, even though that name does not accurately
reflect the taxonomy of expressions described in 7.2.1.

45) In C++ class and array prvalues can have cv-qualified types. This differs from ISO C, in which non-lvalues never have
cv-qualified types.

46) This conversion never applies to non-static member functions because an lvalue that refers to a non-static member function
cannot be obtained.
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[Example 1 :
struct X { int n; };
int k = X().n; // OK, X() prvalue is converted to xvalue

— end example ]

7.3.6 Qualification conversions [conv.qual]
1 A qualification-decomposition of a type T is a sequence of cvi and Pi such that T is

“cv0 P0 cv1 P1 · · · cvn−1 Pn−1 cvn U” for n ≥ 0,
where each cvi is a set of cv-qualifiers (6.8.5), and each Pi is “pointer to” (9.3.4.2), “pointer to member of
class Ci of type” (9.3.4.4), “array of Ni”, or “array of unknown bound of” (9.3.4.5). If Pi designates an array,
the cv-qualifiers cvi+1 on the element type are also taken as the cv-qualifiers cvi of the array.
[Example 1 : The type denoted by the type-id const int ** has three qualification-decompositions, taking U as “int”,
as “pointer to const int”, and as “pointer to pointer to const int”. — end example ]

The n-tuple of cv-qualifiers after the first one in the longest qualification-decomposition of T, that is,
cv1, cv2, . . . , cvn, is called the cv-qualification signature of T.

2 Two types T1 and T2 are similar if they have qualification-decompositions with the same n such that
corresponding Pi components are either the same or one is “array of Ni” and the other is “array of unknown
bound of”, and the types denoted by U are the same.

3 The qualification-combined type of two types T1 and T2 is the type T3 similar to T1 whose qualification-
decomposition is such that:

—(3.1) for every i > 0, cv3
i is the union of cv1

i and cv2
i ,

—(3.2) if either P 1
i or P 2

i is “array of unknown bound of”, P 3
i is “array of unknown bound of”, otherwise it is

P 1
i , and

—(3.3) if the resulting cv3
i is different from cv1

i or cv2
i , or the resulting P 3

i is different from P 1
i or P 2

i , then
const is added to every cv3

k for 0 < k < i,

where cvj
i and P j

i are the components of the qualification-decomposition of Tj. A prvalue of type T1 can be
converted to type T2 if the qualification-combined type of T1 and T2 is T2.
[Note 1 : If a program could assign a pointer of type T** to a pointer of type const T** (that is, if line #1 below were
allowed), a program could inadvertently modify a const object (as it is done on line #2). For example,

int main() {
const char c = 'c';
char* pc;
const char** pcc = &pc; // #1: not allowed
*pcc = &c;
*pc = 'C'; // #2: modifies a const object

}

— end note ]
[Note 2 : Given similar types T1 and T2, this construction ensures that both can be converted to the qualification-
combined type of T1 and T2. — end note ]

4 [Note 3 : A prvalue of type “pointer to cv1 T” can be converted to a prvalue of type “pointer to cv2 T” if “cv2 T”
is more cv-qualified than “cv1 T”. A prvalue of type “pointer to member of X of type cv1 T” can be converted to a
prvalue of type “pointer to member of X of type cv2 T” if “cv2 T” is more cv-qualified than “cv1 T”. — end note ]

5 [Note 4 : Function types (including those used in pointer-to-member-function types) are never cv-qualified (9.3.4.6).
— end note ]

7.3.7 Integral promotions [conv.prom]
1 A prvalue of an integer type other than bool, char8_t, char16_t, char32_t, or wchar_t whose integer

conversion rank (6.8.6) is less than the rank of int can be converted to a prvalue of type int if int can
represent all the values of the source type; otherwise, the source prvalue can be converted to a prvalue of
type unsigned int.

2 A prvalue of type char8_t, char16_t, char32_t, or wchar_t (6.8.2) can be converted to a prvalue of the first
of the following types that can represent all the values of its underlying type: int, unsigned int, long int,
unsigned long int, long long int, or unsigned long long int. If none of the types in that list can
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represent all the values of its underlying type, a prvalue of type char8_t, char16_t, char32_t, or wchar_t
can be converted to a prvalue of its underlying type.

3 A prvalue of an unscoped enumeration type whose underlying type is not fixed can be converted to a prvalue
of the first of the following types that can represent all the values of the enumeration (9.7.1): int, unsigned
int, long int, unsigned long int, long long int, or unsigned long long int. If none of the types in
that list can represent all the values of the enumeration, a prvalue of an unscoped enumeration type can be
converted to a prvalue of the extended integer type with lowest integer conversion rank (6.8.6) greater than
the rank of long long in which all the values of the enumeration can be represented. If there are two such
extended types, the signed one is chosen.

4 A prvalue of an unscoped enumeration type whose underlying type is fixed (9.7.1) can be converted to a
prvalue of its underlying type. Moreover, if integral promotion can be applied to its underlying type, a
prvalue of an unscoped enumeration type whose underlying type is fixed can also be converted to a prvalue
of the promoted underlying type.

5 A prvalue for an integral bit-field (11.4.10) can be converted to a prvalue of type int if int can represent all
the values of the bit-field; otherwise, it can be converted to unsigned int if unsigned int can represent all
the values of the bit-field. If the bit-field is larger yet, no integral promotion applies to it. If the bit-field has
enumeration type, it is treated as any other value of that type for promotion purposes.

6 A prvalue of type bool can be converted to a prvalue of type int, with false becoming zero and true
becoming one.

7 These conversions are called integral promotions.

7.3.8 Floating-point promotion [conv.fpprom]
1 A prvalue of type float can be converted to a prvalue of type double. The value is unchanged.
2 This conversion is called floating-point promotion.

7.3.9 Integral conversions [conv.integral]
1 A prvalue of an integer type can be converted to a prvalue of another integer type. A prvalue of an unscoped

enumeration type can be converted to a prvalue of an integer type.
2 If the destination type is bool, see 7.3.15. If the source type is bool, the value false is converted to zero

and the value true is converted to one.
3 Otherwise, the result is the unique value of the destination type that is congruent to the source integer

modulo 2N , where N is the width of the destination type.
4 The conversions allowed as integral promotions are excluded from the set of integral conversions.

7.3.10 Floating-point conversions [conv.double]
1 A prvalue of floating-point type can be converted to a prvalue of another floating-point type with a greater

or equal conversion rank (6.8.6). A prvalue of standard floating-point type can be converted to a prvalue of
another standard floating-point type.

2 If the source value can be exactly represented in the destination type, the result of the conversion is that exact
representation. If the source value is between two adjacent destination values, the result of the conversion is
an implementation-defined choice of either of those values. Otherwise, the behavior is undefined.

3 The conversions allowed as floating-point promotions are excluded from the set of floating-point conversions.

7.3.11 Floating-integral conversions [conv.fpint]
1 A prvalue of a floating-point type can be converted to a prvalue of an integer type. The conversion truncates;

that is, the fractional part is discarded. The behavior is undefined if the truncated value cannot be represented
in the destination type.
[Note 1 : If the destination type is bool, see 7.3.15. — end note ]

2 A prvalue of an integer type or of an unscoped enumeration type can be converted to a prvalue of a floating-
point type. The result is exact if possible. If the value being converted is in the range of values that can be
represented but the value cannot be represented exactly, it is an implementation-defined choice of either the
next lower or higher representable value.
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[Note 2 : Loss of precision occurs if the integral value cannot be represented exactly as a value of the floating-point
type. — end note ]

If the value being converted is outside the range of values that can be represented, the behavior is undefined.
If the source type is bool, the value false is converted to zero and the value true is converted to one.

7.3.12 Pointer conversions [conv.ptr]
1 A null pointer constant is an integer literal (5.13.2) with value zero or a prvalue of type std::nullptr_t. A

null pointer constant can be converted to a pointer type; the result is the null pointer value of that type (6.8.4)
and is distinguishable from every other value of object pointer or function pointer type. Such a conversion
is called a null pointer conversion. Two null pointer values of the same type shall compare equal. The
conversion of a null pointer constant to a pointer to cv-qualified type is a single conversion, and not the
sequence of a pointer conversion followed by a qualification conversion (7.3.6). A null pointer constant of
integral type can be converted to a prvalue of type std::nullptr_t.
[Note 1 : The resulting prvalue is not a null pointer value. — end note ]

2 A prvalue of type “pointer to cv T”, where T is an object type, can be converted to a prvalue of type “pointer
to cv void”. The pointer value (6.8.4) is unchanged by this conversion.

3 A prvalue of type “pointer to cv D”, where D is a complete class type, can be converted to a prvalue of type
“pointer to cv B”, where B is a base class (11.7) of D. If B is an inaccessible (11.8) or ambiguous (6.5.2) base
class of D, a program that necessitates this conversion is ill-formed. The result of the conversion is a pointer
to the base class subobject of the derived class object. The null pointer value is converted to the null pointer
value of the destination type.

7.3.13 Pointer-to-member conversions [conv.mem]
1 A null pointer constant (7.3.12) can be converted to a pointer-to-member type; the result is the null member

pointer value of that type and is distinguishable from any pointer to member not created from a null pointer
constant. Such a conversion is called a null member pointer conversion. Two null member pointer values of
the same type shall compare equal. The conversion of a null pointer constant to a pointer to member of
cv-qualified type is a single conversion, and not the sequence of a pointer-to-member conversion followed by a
qualification conversion (7.3.6).

2 A prvalue of type “pointer to member of B of type cv T”, where B is a class type, can be converted to a
prvalue of type “pointer to member of D of type cv T”, where D is a complete class derived (11.7) from B. If B
is an inaccessible (11.8), ambiguous (6.5.2), or virtual (11.7.2) base class of D, or a base class of a virtual
base class of D, a program that necessitates this conversion is ill-formed. The result of the conversion refers
to the same member as the pointer to member before the conversion took place, but it refers to the base
class member as if it were a member of the derived class. The result refers to the member in D’s instance of
B. Since the result has type “pointer to member of D of type cv T”, indirection through it with a D object is
valid. The result is the same as if indirecting through the pointer to member of B with the B subobject of D.
The null member pointer value is converted to the null member pointer value of the destination type.47

7.3.14 Function pointer conversions [conv.fctptr]
1 A prvalue of type “pointer to noexcept function” can be converted to a prvalue of type “pointer to function”.

The result is a pointer to the function. A prvalue of type “pointer to member of type noexcept function” can
be converted to a prvalue of type “pointer to member of type function”. The result designates the member
function.
[Example 1 :

void (*p)();
void (**pp)() noexcept = &p; // error: cannot convert to pointer to noexcept function

struct S { typedef void (*p)(); operator p(); };
void (*q)() noexcept = S(); // error: cannot convert to pointer to noexcept function

— end example ]

47) The rule for conversion of pointers to members (from pointer to member of base to pointer to member of derived) appears
inverted compared to the rule for pointers to objects (from pointer to derived to pointer to base) (7.3.12, 11.7). This inversion is
necessary to ensure type safety. Note that a pointer to member is not an object pointer or a function pointer and the rules for
conversions of such pointers do not apply to pointers to members. In particular, a pointer to member cannot be converted to a
void*.
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7.3.15 Boolean conversions [conv.bool]
1 A prvalue of arithmetic, unscoped enumeration, pointer, or pointer-to-member type can be converted to a

prvalue of type bool. A zero value, null pointer value, or null member pointer value is converted to false;
any other value is converted to true.

7.4 Usual arithmetic conversions [expr.arith.conv]
1 Many binary operators that expect operands of arithmetic or enumeration type cause conversions and yield

result types in a similar way. The purpose is to yield a common type, which is also the type of the result.
This pattern is called the usual arithmetic conversions, which are defined as follows:

—(1.1) If either operand is of scoped enumeration type (9.7.1), no conversions are performed; if the other
operand does not have the same type, the expression is ill-formed.

—(1.2) Otherwise, if either operand is of floating-point type, the following rules are applied:
—(1.2.1) If both operands have the same type, no further conversion is needed.
—(1.2.2) Otherwise, if one of the operands is of a non-floating-point type, that operand is converted to the

type of the operand with the floating-point type.
—(1.2.3) Otherwise, if the floating-point conversion ranks (6.8.6) of the types of the operands are ordered

but not equal, then the operand of the type with the lesser floating-point conversion rank is
converted to the type of the other operand.

—(1.2.4) Otherwise, if the floating-point conversion ranks of the types of the operands are equal, then the
operand with the lesser floating-point conversion subrank (6.8.6) is converted to the type of the
other operand.

—(1.2.5) Otherwise, the expression is ill-formed.
—(1.3) Otherwise, each operand is converted to a common type C. The integral promotion rules (7.3.7) are

used to determine a type T1 and type T2 for each operand.48 Then the following rules are applied to
determine C:

—(1.3.1) If T1 and T2 are the same type, C is that type.
—(1.3.2) Otherwise, if T1 and T2 are both signed integer types or are both unsigned integer types, C is the

type with greater rank.
—(1.3.3) Otherwise, let U be the unsigned integer type and S be the signed integer type.

—(1.3.3.1) If U has rank greater than or equal to the rank of S, C is U.
—(1.3.3.2) Otherwise, if S can represent all of the values of U, C is S.
—(1.3.3.3) Otherwise, C is the unsigned integer type corresponding to S.

2 If one operand is of enumeration type and the other operand is of a different enumeration type or a
floating-point type, this behavior is deprecated (D.2).

7.5 Primary expressions [expr.prim]
primary-expression :

literal
this
( expression )
id-expression
lambda-expression
fold-expression
requires-expression

7.5.1 Literals [expr.prim.literal]
1 The type of a literal is determined based on its form as specified in 5.13. A string-literal is an lvalue

designating a corresponding string literal object (5.13.5), a user-defined-literal has the same value category as
the corresponding operator call expression described in 5.13.8, and any other literal is a prvalue.

48) As a consequence, operands of type bool, char8_t, char16_t, char32_t, wchar_t, or of enumeration type are converted to
some integral type.
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7.5.2 This [expr.prim.this]
1 The keyword this names a pointer to the object for which an implicit object member function (11.4.3) is

invoked or a non-static data member’s initializer (11.4) is evaluated.
2 The current class at a program point is the class associated with the innermost class scope containing that

point.
[Note 1 : A lambda-expression does not introduce a class scope. — end note ]

3 If a declaration declares a member function or member function template of a class X, the expression this
is a prvalue of type “pointer to cv-qualifier-seq X” wherever X is the current class between the optional
cv-qualifier-seq and the end of the function-definition, member-declarator , or declarator . It shall not appear
within the declaration of either a static member function or an explicit object member function of the current
class (although its type and value category are defined within such member functions as they are within an
implicit object member function).
[Note 2 : This is because declaration matching does not occur until the complete declarator is known. — end note ]
[Note 3 : In a trailing-return-type, the class being defined is not required to be complete for purposes of class member
access (7.6.1.5). Class members declared later are not visible.
[Example 1 :

struct A {
char g();
template<class T> auto f(T t) -> decltype(t + g())

{ return t + g(); }
};
template auto A::f(int t) -> decltype(t + g());

— end example ]
— end note ]

4 Otherwise, if a member-declarator declares a non-static data member (11.4) of a class X, the expression
this is a prvalue of type “pointer to X” wherever X is the current class within the optional default member
initializer (11.4).

5 The expression this shall not appear in any other context.
[Example 2 :

class Outer {
int a[sizeof(*this)]; // error: not inside a member function
unsigned int sz = sizeof(*this); // OK, in default member initializer

void f() {
int b[sizeof(*this)]; // OK

struct Inner {
int c[sizeof(*this)]; // error: not inside a member function of Inner

};
}

};

— end example ]

7.5.3 Parentheses [expr.prim.paren]
1 A parenthesized expression (E) is a primary expression whose type, result, and value category are identical

to those of E. The parenthesized expression can be used in exactly the same contexts as those where E can
be used, and with the same meaning, except as otherwise indicated.

7.5.4 Names [expr.prim.id]
7.5.4.1 General [expr.prim.id.general]

id-expression :
unqualified-id
qualified-id

1 An id-expression is a restricted form of a primary-expression.
[Note 1 : An id-expression can appear after . and -> operators (7.6.1.5). — end note ]
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2 If an id-expression E denotes a member M of an anonymous union (11.5.2) U :
—(2.1) If U is a non-static data member, E refers to M as a member of the lookup context of the terminal

name of E (after any transformation to a class member access expression (11.4.3)).
[Example 1 : o.x is interpreted as o.u.x, where u names the anonymous union member. — end example ]

—(2.2) Otherwise, E is interpreted as a class member access (7.6.1.5) that designates the member subobject
M of the anonymous union variable for U .
[Note 2 : Under this interpretation, E no longer denotes a non-static data member. — end note ]
[Example 2 : N::x is interpreted as N::u.x, where u names the anonymous union variable. — end example ]

3 An id-expression that denotes a non-static data member or implicit object member function of a class can
only be used:

—(3.1) as part of a class member access (7.6.1.5) in which the object expression refers to the member’s class49

or a class derived from that class, or
—(3.2) to form a pointer to member (7.6.2.2), or
—(3.3) if that id-expression denotes a non-static data member and it appears in an unevaluated operand.

[Example 3 :
struct S {

int m;
};
int i = sizeof(S::m); // OK
int j = sizeof(S::m + 42); // OK

— end example ]
4 For an id-expression that denotes an overload set, overload resolution is performed to select a unique

function (12.2, 12.3).
[Note 3 : A program cannot refer to a function with a trailing requires-clause whose constraint-expression is not satisfied,
because such functions are never selected by overload resolution.
[Example 4 :

template<typename T> struct A {
static void f(int) requires false;

};

void g() {
A<int>::f(0); // error: cannot call f
void (*p1)(int) = A<int>::f; // error: cannot take the address of f
decltype(A<int>::f)* p2 = nullptr; // error: the type decltype(A<int>::f) is invalid

}

In each case, the constraints of f are not satisfied. In the declaration of p2, those constraints are required to be
satisfied even though f is an unevaluated operand (7.2.3). — end example ]
— end note ]

7.5.4.2 Unqualified names [expr.prim.id.unqual]
unqualified-id :

identifier
operator-function-id
conversion-function-id
literal-operator-id
~ type-name
~ decltype-specifier
template-id

1 An identifier is only an id-expression if it has been suitably declared (Clause 9) or if it appears as part of a
declarator-id (9.3). An identifier that names a coroutine parameter refers to the copy of the parameter (9.5.4).
[Note 1 : For operator-function-ids, see 12.4; for conversion-function-ids, see 11.4.8.3; for literal-operator-ids, see 12.6; for
template-ids, see 13.3. A type-name or decltype-specifier prefixed by ~ denotes the destructor of the type so named;

49) This also applies when the object expression is an implicit (*this) (11.4.3).
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see 7.5.4.4. Within the definition of a non-static member function, an identifier that names a non-static member is
transformed to a class member access expression (11.4.3). — end note ]

2 A component name of an unqualified-id U is
—(2.1) U if it is a name or
—(2.2) the component name of the template-id or type-name of U , if any.

[Note 2 : Other constructs that contain names to look up can have several component names (7.5.4.3, 9.2.9.3, 9.2.9.4,
9.3.4.4, 9.9, 13.2, 13.3, 13.8). — end note ]

The terminal name of a construct is the component name of that construct that appears lexically last.
3 The result is the entity denoted by the unqualified-id (6.5.3). If the unqualified-id appears in a lambda-expression

at program point P and the entity is a local entity (6.1) or a variable declared by an init-capture (7.5.5.3),
then let S be the compound-statement of the innermost enclosing lambda-expression of P . If naming the
entity from outside of an unevaluated operand within S would refer to an entity captured by copy in some
intervening lambda-expression, then let E be the innermost such lambda-expression.

—(3.1) If there is such a lambda-expression and if P is in E’s function parameter scope but not its parameter-
declaration-clause, then the type of the expression is the type of a class member access expression
(7.6.1.5) naming the non-static data member that would be declared for such a capture in the object
parameter (9.3.4.6) of the function call operator of E.
[Note 3 : If E is not declared mutable, the type of such an identifier will typically be const qualified. — end
note ]

—(3.2) Otherwise (if there is no such lambda-expression or if P either precedes E’s function parameter scope or
is in E’s parameter-declaration-clause), the type of the expression is the type of the result.

[Note 4 : If the entity is a template parameter object for a template parameter of type T (13.2), the type of the
expression is const T. — end note ]
[Note 5 : The type will be adjusted as described in 7.2.2 if it is cv-qualified or is a reference type. — end note ]

The expression is an xvalue if it is move-eligible (see below); an lvalue if the entity is a function, variable,
structured binding (9.6), data member, or template parameter object; and a prvalue otherwise (7.2.1); it is a
bit-field if the identifier designates a bit-field.
[Example 1 :

void f() {
float x, &r = x;

[=]() -> decltype((x)) { // lambda returns float const& because this lambda is not mutable and
// x is an lvalue

decltype(x) y1; // y1 has type float
decltype((x)) y2 = y1; // y2 has type float const&
decltype(r) r1 = y1; // r1 has type float&
decltype((r)) r2 = y2; // r2 has type float const&
return y2;

};

[=](decltype((x)) y) {
decltype((x)) z = x; // OK, y has type float&, z has type float const&

};

[=] {
[](decltype((x)) y) {}; // OK, lambda takes a parameter of type float const&

[x=1](decltype((x)) y) {
decltype((x)) z = x; // OK, y has type int&, z has type int const&

};
};

}

— end example ]
4 An implicitly movable entity is a variable of automatic storage duration that is either a non-volatile object or

an rvalue reference to a non-volatile object type. In the following contexts, an id-expression is move-eligible:
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—(4.1) If the id-expression (possibly parenthesized) is the operand of a return (8.7.4) or co_return (8.7.5)
statement, and names an implicitly movable entity declared in the body or parameter-declaration-clause
of the innermost enclosing function or lambda-expression, or

—(4.2) if the id-expression (possibly parenthesized) is the operand of a throw-expression (7.6.18), and names
an implicitly movable entity that belongs to a scope that does not contain the compound-statement of
the innermost lambda-expression, try-block, or function-try-block (if any) whose compound-statement or
ctor-initializer contains the throw-expression.

7.5.4.3 Qualified names [expr.prim.id.qual]
qualified-id :

nested-name-specifier templateopt unqualified-id
nested-name-specifier :

::
type-name ::
namespace-name ::
decltype-specifier ::
nested-name-specifier identifier ::
nested-name-specifier templateopt simple-template-id ::

1 The component names of a qualified-id are those of its nested-name-specifier and unqualified-id . The component
names of a nested-name-specifier are its identifier (if any) and those of its type-name, namespace-name, simple-
template-id , and/or nested-name-specifier .

2 A nested-name-specifier is declarative if it is part of
—(2.1) a class-head-name,
—(2.2) an enum-head-name,
—(2.3) a qualified-id that is the id-expression of a declarator-id , or
—(2.4) a declarative nested-name-specifier .

A declarative nested-name-specifier shall not have a decltype-specifier . A declaration that uses a declarative
nested-name-specifier shall be a friend declaration or inhabit a scope that contains the entity being redeclared
or specialized.

3 The nested-name-specifier :: nominates the global namespace. A nested-name-specifier with a decltype-
specifier nominates the type denoted by the decltype-specifier , which shall be a class or enumeration type. If
a nested-name-specifier N is declarative and has a simple-template-id with a template argument list A that
involves a template parameter, let T be the template nominated by N without A. T shall be a class template.

—(3.1) If A is the template argument list (13.4) of the corresponding template-head H (13.7.3), N nominates
the primary template of T ; H shall be equivalent to the template-head of T (13.7.7.2).

—(3.2) Otherwise, N nominates the partial specialization (13.7.6) of T whose template argument list is
equivalent to A (13.7.7.2); the program is ill-formed if no such partial specialization exists.

Any other nested-name-specifier nominates the entity denoted by its type-name, namespace-name, identifier ,
or simple-template-id . If the nested-name-specifier is not declarative, the entity shall not be a template.

4 A qualified-id shall not be of the form nested-name-specifier templateopt ~ decltype-specifier nor of the form
decltype-specifier :: ~ type-name.

5 The result of a qualified-id Q is the entity it denotes (6.5.5). The type of the expression is the type of the
result. The result is an lvalue if the member is

—(5.1) a function other than a non-static member function,
—(5.2) a non-static member function if Q is the operand of a unary & operator,
—(5.3) a variable,
—(5.4) a structured binding (9.6), or
—(5.5) a data member,

and a prvalue otherwise.

§ 7.5.4.3 107



© ISO/IEC N4950

7.5.4.4 Destruction [expr.prim.id.dtor]
1 An id-expression that denotes the destructor of a type T names the destructor of T if T is a class type (11.4.7),

otherwise the id-expression is said to name a pseudo-destructor.
2 If the id-expression names a pseudo-destructor, T shall be a scalar type and the id-expression shall appear as the

right operand of a class member access (7.6.1.5) that forms the postfix-expression of a function call (7.6.1.3).
[Note 1 : Such a call ends the lifetime of the object (7.6.1.3, 6.7.3). — end note ]

3 [Example 1 :
struct C { };
void f() {

C * pc = new C;
using C2 = C;
pc->C::~C2(); // OK, destroys *pc
C().C::~C(); // undefined behavior: temporary of type C destroyed twice
using T = int;
0 .T::~T(); // OK, no effect
0.T::~T(); // error: 0.T is a user-defined-floating-point-literal (5.13.8)

}

— end example ]

7.5.5 Lambda expressions [expr.prim.lambda]
7.5.5.1 General [expr.prim.lambda.general]

lambda-expression :
lambda-introducer attribute-specifier-seqopt lambda-declarator compound-statement
lambda-introducer < template-parameter-list > requires-clauseopt attribute-specifier-seqopt

lambda-declarator compound-statement
lambda-introducer :

[ lambda-captureopt ]

lambda-declarator :
lambda-specifier-seq noexcept-specifieropt attribute-specifier-seqopt trailing-return-typeopt
noexcept-specifier attribute-specifier-seqopt trailing-return-typeopt
trailing-return-typeopt
( parameter-declaration-clause ) lambda-specifier-seqopt noexcept-specifieropt attribute-specifier-seqopt

trailing-return-typeopt requires-clauseopt

lambda-specifier :
consteval
constexpr
mutable
static

lambda-specifier-seq :
lambda-specifier
lambda-specifier lambda-specifier-seq

1 A lambda-expression provides a concise way to create a simple function object.
[Example 1 :

#include <algorithm>
#include <cmath>
void abssort(float* x, unsigned N) {

std::sort(x, x + N, [](float a, float b) { return std::abs(a) < std::abs(b); });
}

— end example ]
2 A lambda-expression is a prvalue whose result object is called the closure object.

[Note 1 : A closure object behaves like a function object (22.10). — end note ]
3 An ambiguity can arise because a requires-clause can end in an attribute-specifier-seq, which collides with the

attribute-specifier-seq in lambda-expression. In such cases, any attributes are treated as attribute-specifier-seq
in lambda-expression.
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[Note 2 : Such ambiguous cases cannot have valid semantics because the constraint expression would not have type
bool. — end note ]

4 A lambda-specifier-seq shall contain at most one of each lambda-specifier and shall not contain both constexpr
and consteval. If the lambda-declarator contains an explicit object parameter (9.3.4.6), then no lambda-
specifier in the lambda-specifier-seq shall be mutable or static. The lambda-specifier-seq shall not contain
both mutable and static. If the lambda-specifier-seq contains static, there shall be no lambda-capture.
[Note 3 : The trailing requires-clause is described in 9.3. — end note ]

5 If a lambda-declarator does not include a parameter-declaration-clause, it is as if () were inserted at the start
of the lambda-declarator . If the lambda-declarator does not include a trailing-return-type, it is considered to be
-> auto.
[Note 4 : In that case, the return type is deduced from return statements as described in 9.2.9.6. — end note ]
[Example 2 :

auto x1 = [](int i) { return i; }; // OK, return type is int
auto x2 = []{ return { 1, 2 }; }; // error: deducing return type from braced-init-list
int j;
auto x3 = [&]()->auto&& { return j; }; // OK, return type is int&

— end example ]
6 A lambda is a generic lambda if the lambda-expression has any generic parameter type placeholders (9.2.9.6),

or if the lambda has a template-parameter-list.
[Example 3 :

int i = [](int i, auto a) { return i; }(3, 4); // OK, a generic lambda
int j = []<class T>(T t, int i) { return i; }(3, 4); // OK, a generic lambda

— end example ]

7.5.5.2 Closure types [expr.prim.lambda.closure]
1 The type of a lambda-expression (which is also the type of the closure object) is a unique, unnamed non-union

class type, called the closure type, whose properties are described below.
2 The closure type is declared in the smallest block scope, class scope, or namespace scope that contains the

corresponding lambda-expression.
[Note 1 : This determines the set of namespaces and classes associated with the closure type (6.5.4). The parameter
types of a lambda-declarator do not affect these associated namespaces and classes. — end note ]

The closure type is not an aggregate type (9.4.2). An implementation may define the closure type differently
from what is described below provided this does not alter the observable behavior of the program other than
by changing:

—(2.1) the size and/or alignment of the closure type,
—(2.2) whether the closure type is trivially copyable (11.2), or
—(2.3) whether the closure type is a standard-layout class (11.2).

An implementation shall not add members of rvalue reference type to the closure type.
3 The closure type for a lambda-expression has a public inline function call operator (for a non-generic lambda)

or function call operator template (for a generic lambda) (12.4.4) whose parameters and return type are
described by the lambda-expression’s parameter-declaration-clause and trailing-return-type respectively, and
whose template-parameter-list consists of the specified template-parameter-list, if any. The requires-clause of
the function call operator template is the requires-clause immediately following < template-parameter-list >, if
any. The trailing requires-clause of the function call operator or operator template is the requires-clause of the
lambda-declarator , if any.
[Note 2 : The function call operator template for a generic lambda can be an abbreviated function template (9.3.4.6).

— end note ]
[Example 1 :

auto glambda = [](auto a, auto&& b) { return a < b; };
bool b = glambda(3, 3.14); // OK
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auto vglambda = [](auto printer) {
return [=](auto&& ... ts) { // OK, ts is a function parameter pack

printer(std::forward<decltype(ts)>(ts)...);

return [=]() {
printer(ts ...);

};
};

};
auto p = vglambda( [](auto v1, auto v2, auto v3)

{ std::cout << v1 << v2 << v3; } );
auto q = p(1, 'a', 3.14); // OK, outputs 1a3.14
q(); // OK, outputs 1a3.14

auto fact = [](this auto self, int n) -> int { // OK, explicit object parameter
return (n <= 1) ? 1 : n * self(n-1);

};
std::cout << fact(5); // OK, outputs 120

— end example ]
4 Given a lambda with a lambda-capture, the type of the explicit object parameter, if any, of the lambda’s

function call operator (possibly instantiated from a function call operator template) shall be either:
—(4.1) the closure type,
—(4.2) a class type derived from the closure type, or
—(4.3) a reference to a possibly cv-qualified such type.

[Example 2 :
struct C {

template <typename T>
C(T);

};

void func(int i) {
int x = [=](this auto&&) { return i; }(); // OK
int y = [=](this C) { return i; }(); // error
int z = [](this C) { return 42; }(); // OK

}

— end example ]
5 The function call operator or operator template is a static member function or static member function

template (11.4.9.2) if the lambda-expression’s parameter-declaration-clause is followed by static. Otherwise, it
is a non-static member function or member function template (11.4.3) that is declared const (11.4.3) if and only
if the lambda-expression’s parameter-declaration-clause is not followed by mutable and the lambda-declarator
does not contain an explicit object parameter. It is neither virtual nor declared volatile. Any noexcept-
specifier specified on a lambda-expression applies to the corresponding function call operator or operator
template. An attribute-specifier-seq in a lambda-declarator appertains to the type of the corresponding
function call operator or operator template. An attribute-specifier-seq in a lambda-expression preceding
a lambda-declarator appertains to the corresponding function call operator or operator template. The
function call operator or any given operator template specialization is a constexpr function if either the
corresponding lambda-expression’s parameter-declaration-clause is followed by constexpr or consteval, or
it is constexpr-suitable (9.2.6). It is an immediate function (9.2.6) if the corresponding lambda-expression’s
parameter-declaration-clause is followed by consteval.
[Example 3 :

auto ID = [](auto a) { return a; };
static_assert(ID(3) == 3); // OK

struct NonLiteral {
NonLiteral(int n) : n(n) { }
int n;

};
static_assert(ID(NonLiteral{3}).n == 3); // error
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— end example ]
6 [Example 4 :

auto monoid = [](auto v) { return [=] { return v; }; };
auto add = [](auto m1) constexpr {

auto ret = m1();
return [=](auto m2) mutable {

auto m1val = m1();
auto plus = [=](auto m2val) mutable constexpr

{ return m1val += m2val; };
ret = plus(m2());
return monoid(ret);

};
};
constexpr auto zero = monoid(0);
constexpr auto one = monoid(1);
static_assert(add(one)(zero)() == one()); // OK

// Since two below is not declared constexpr, an evaluation of its constexpr member function call operator
// cannot perform an lvalue-to-rvalue conversion on one of its subobjects (that represents its capture)
// in a constant expression.
auto two = monoid(2);
assert(two() == 2); // OK, not a constant expression.
static_assert(add(one)(one)() == two()); // error: two() is not a constant expression
static_assert(add(one)(one)() == monoid(2)()); // OK

— end example ]
7 [Note 3 : The function call operator or operator template can be constrained (13.5.3) by a type-constraint (13.2), a

requires-clause (13.1), or a trailing requires-clause (9.3).
[Example 5 :

template <typename T> concept C1 = /* ... */;
template <std::size_t N> concept C2 = /* ... */;
template <typename A, typename B> concept C3 = /* ... */;

auto f = []<typename T1, C1 T2> requires C2<sizeof(T1) + sizeof(T2)>
(T1 a1, T1 b1, T2 a2, auto a3, auto a4) requires C3<decltype(a4), T2> {

// T2 is constrained by a type-constraint.
// T1 and T2 are constrained by a requires-clause, and
// T2 and the type of a4 are constrained by a trailing requires-clause.

};

— end example ]
— end note ]

8 The closure type for a non-generic lambda-expression with no lambda-capture whose constraints (if any) are
satisfied has a conversion function to pointer to function with C++ language linkage (9.11) having the same
parameter and return types as the closure type’s function call operator. The conversion is to “pointer to
noexcept function” if the function call operator has a non-throwing exception specification. If the function
call operator is a static member function, then the value returned by this conversion function is the address
of the function call operator. Otherwise, the value returned by this conversion function is the address of a
function F that, when invoked, has the same effect as invoking the closure type’s function call operator on a
default-constructed instance of the closure type. F is a constexpr function if the function call operator is a
constexpr function and is an immediate function if the function call operator is an immediate function.

9 For a generic lambda with no lambda-capture, the closure type has a conversion function template to pointer
to function. The conversion function template has the same invented template parameter list, and the pointer
to function has the same parameter types, as the function call operator template. The return type of the
pointer to function shall behave as if it were a decltype-specifier denoting the return type of the corresponding
function call operator template specialization.

10 [Note 4 : If the generic lambda has no trailing-return-type or the trailing-return-type contains a placeholder type, return
type deduction of the corresponding function call operator template specialization has to be done. The corresponding
specialization is that instantiation of the function call operator template with the same template arguments as those
deduced for the conversion function template. Consider the following:
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auto glambda = [](auto a) { return a; };
int (*fp)(int) = glambda;

The behavior of the conversion function of glambda above is like that of the following conversion function:
struct Closure {

template<class T> auto operator()(T t) const { /* ... */ }
template<class T> static auto lambda_call_operator_invoker(T a) {

// forwards execution to operator()(a) and therefore has
// the same return type deduced
/* ... */

}
template<class T> using fptr_t =

decltype(lambda_call_operator_invoker(declval<T>())) (*)(T);

template<class T> operator fptr_t<T>() const
{ return &lambda_call_operator_invoker; }

};

— end note ]
[Example 6 :

void f1(int (*)(int)) { }
void f2(char (*)(int)) { }

void g(int (*)(int)) { } // #1
void g(char (*)(char)) { } // #2

void h(int (*)(int)) { } // #3
void h(char (*)(int)) { } // #4

auto glambda = [](auto a) { return a; };
f1(glambda); // OK
f2(glambda); // error: ID is not convertible
g(glambda); // error: ambiguous
h(glambda); // OK, calls #3 since it is convertible from ID
int& (*fpi)(int*) = [](auto* a) -> auto& { return *a; }; // OK

— end example ]
11 If the function call operator template is a static member function template, then the value returned by any

given specialization of this conversion function template is the address of the corresponding function call
operator template specialization. Otherwise, the value returned by any given specialization of this conversion
function template is the address of a function F that, when invoked, has the same effect as invoking the generic
lambda’s corresponding function call operator template specialization on a default-constructed instance of
the closure type. F is a constexpr function if the corresponding specialization is a constexpr function and F is
an immediate function if the function call operator template specialization is an immediate function.
[Note 5 : This will result in the implicit instantiation of the generic lambda’s body. The instantiated generic lambda’s
return type and parameter types are required to match the return type and parameter types of the pointer to function.

— end note ]
[Example 7 :

auto GL = [](auto a) { std::cout << a; return a; };
int (*GL_int)(int) = GL; // OK, through conversion function template
GL_int(3); // OK, same as GL(3)

— end example ]
12 The conversion function or conversion function template is public, constexpr, non-virtual, non-explicit, const,

and has a non-throwing exception specification (14.5).
[Example 8 :

auto Fwd = [](int (*fp)(int), auto a) { return fp(a); };
auto C = [](auto a) { return a; };

static_assert(Fwd(C,3) == 3); // OK
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// No specialization of the function call operator template can be constexpr (due to the local static).
auto NC = [](auto a) { static int s; return a; };
static_assert(Fwd(NC,3) == 3); // error

— end example ]
13 The lambda-expression’s compound-statement yields the function-body (9.5) of the function call operator, but

it is not within the scope of the closure type.
[Example 9 :

struct S1 {
int x, y;
int operator()(int);
void f() {

[=]()->int {
return operator()(this->x + y); // equivalent to S1::operator()(this->x + (*this).y)

// this has type S1*
};

}
};

— end example ]

Further, a variable __func__ is implicitly defined at the beginning of the compound-statement of the
lambda-expression, with semantics as described in 9.5.1.

14 The closure type associated with a lambda-expression has no default constructor if the lambda-expression has
a lambda-capture and a defaulted default constructor otherwise. It has a defaulted copy constructor and a
defaulted move constructor (11.4.5.3). It has a deleted copy assignment operator if the lambda-expression has
a lambda-capture and defaulted copy and move assignment operators otherwise (11.4.6).
[Note 6 : These special member functions are implicitly defined as usual, which can result in them being defined as
deleted. — end note ]

15 The closure type associated with a lambda-expression has an implicitly-declared destructor (11.4.7).
16 A member of a closure type shall not be explicitly instantiated (13.9.3), explicitly specialized (13.9.4), or

named in a friend declaration (11.8.4).

7.5.5.3 Captures [expr.prim.lambda.capture]
lambda-capture :

capture-default
capture-list
capture-default , capture-list

capture-default :
&
=

capture-list :
capture
capture-list , capture

capture :
simple-capture
init-capture

simple-capture :
identifier ...opt
& identifier ...opt
this
* this

init-capture :
...opt identifier initializer
& ...opt identifier initializer

1 The body of a lambda-expression may refer to local entities of enclosing block scopes by capturing those
entities, as described below.
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2 If a lambda-capture includes a capture-default that is &, no identifier in a simple-capture of that lambda-capture
shall be preceded by &. If a lambda-capture includes a capture-default that is =, each simple-capture of that
lambda-capture shall be of the form “& identifier ...opt”, “this”, or “* this”.
[Note 1 : The form [&,this] is redundant but accepted for compatibility with ISO C++ 2014. — end note ]

Ignoring appearances in initializers of init-captures, an identifier or this shall not appear more than once in a
lambda-capture.
[Example 1 :

struct S2 { void f(int i); };
void S2::f(int i) {

[&, i]{ }; // OK
[&, this, i]{ }; // OK, equivalent to [&, i]
[&, &i]{ }; // error: i preceded by & when & is the default
[=, *this]{ }; // OK
[=, this]{ }; // OK, equivalent to [=]
[i, i]{ }; // error: i repeated
[this, *this]{ }; // error: this appears twice

}

— end example ]
3 A lambda-expression shall not have a capture-default or simple-capture in its lambda-introducer unless its

innermost enclosing scope is a block scope (6.4.3) or it appears within a default member initializer and its
innermost enclosing scope is the corresponding class scope (6.4.7).

4 The identifier in a simple-capture shall denote a local entity (6.5.3, 6.1). The simple-captures this and *
this denote the local entity *this. An entity that is designated by a simple-capture is said to be explicitly
captured.

5 If an identifier in a capture appears as the declarator-id of a parameter of the lambda-declarator ’s parameter-
declaration-clause or as the name of a template parameter of the lambda-expression’s template-parameter-list,
the program is ill-formed.
[Example 2 :

void f() {
int x = 0;
auto g = [x](int x) { return 0; }; // error: parameter and capture have the same name
auto h = [y = 0]<typename y>(y) { return 0; }; // error: template parameter and capture

// have the same name
}

— end example ]
6 An init-capture inhabits the lambda scope (6.4.5) of the lambda-expression. An init-capture without ellipsis

behaves as if it declares and explicitly captures a variable of the form “auto init-capture ;”, except that:
—(6.1) if the capture is by copy (see below), the non-static data member declared for the capture and the

variable are treated as two different ways of referring to the same object, which has the lifetime of the
non-static data member, and no additional copy and destruction is performed, and

—(6.2) if the capture is by reference, the variable’s lifetime ends when the closure object’s lifetime ends.
[Note 2 : This enables an init-capture like “x = std::move(x)”; the second “x” must bind to a declaration in the
surrounding context. — end note ]
[Example 3 :

int x = 4;
auto y = [&r = x, x = x+1]()->int {

r += 2;
return x+2;

}(); // Updates ::x to 6, and initializes y to 7.

auto z = [a = 42](int a) { return 1; }; // error: parameter and conceptual local variable have the same
name
auto counter = [i=0]() mutable -> decltype(i) { // OK, returns int

return i++;
};
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— end example ]
7 For the purposes of lambda capture, an expression potentially references local entities as follows:

—(7.1) An id-expression that names a local entity potentially references that entity; an id-expression that names
one or more non-static class members and does not form a pointer to member (7.6.2.2) potentially
references *this.
[Note 3 : This occurs even if overload resolution selects a static member function for the id-expression. — end
note ]

—(7.2) A this expression potentially references *this.
—(7.3) A lambda-expression potentially references the local entities named by its simple-captures.

If an expression potentially references a local entity within a scope in which it is odr-usable (6.3), and the
expression would be potentially evaluated if the effect of any enclosing typeid expressions (7.6.1.8) were
ignored, the entity is said to be implicitly captured by each intervening lambda-expression with an associated
capture-default that does not explicitly capture it. The implicit capture of *this is deprecated when the
capture-default is =; see D.3.
[Example 4 :

void f(int, const int (&)[2] = {}); // #1
void f(const int&, const int (&)[1]); // #2
void test() {

const int x = 17;
auto g = [](auto a) {

f(x); // OK, calls #1, does not capture x
};

auto g1 = [=](auto a) {
f(x); // OK, calls #1, captures x

};

auto g2 = [=](auto a) {
int selector[sizeof(a) == 1 ? 1 : 2]{};
f(x, selector); // OK, captures x, can call #1 or #2

};

auto g3 = [=](auto a) {
typeid(a + x); // captures x regardless of whether a + x is an unevaluated operand

};
}

Within g1, an implementation can optimize away the capture of x as it is not odr-used. — end example ]
[Note 4 : The set of captured entities is determined syntactically, and entities are implicitly captured even if the
expression denoting a local entity is within a discarded statement (8.5.2).
[Example 5 :

template<bool B>
void f(int n) {

[=](auto a) {
if constexpr (B && sizeof(a) > 4) {

(void)n; // captures n regardless of the value of B and sizeof(int)
}

}(0);
}

— end example ]
— end note ]

8 An entity is captured if it is captured explicitly or implicitly. An entity captured by a lambda-expression is
odr-used (6.3) by the lambda-expression.
[Note 5 : As a consequence, if a lambda-expression explicitly captures an entity that is not odr-usable, the program is
ill-formed (6.3). — end note ]
[Example 6 :
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void f1(int i) {
int const N = 20;
auto m1 = [=]{

int const M = 30;
auto m2 = [i]{

int x[N][M]; // OK, N and M are not odr-used
x[0][0] = i; // OK, i is explicitly captured by m2 and implicitly captured by m1

};
};
struct s1 {

int f;
void work(int n) {

int m = n*n;
int j = 40;
auto m3 = [this,m] {

auto m4 = [&,j] { // error: j not odr-usable due to intervening lambda m3
int x = n; // error: n is odr-used but not odr-usable due to intervening lambda m3
x += m; // OK, m implicitly captured by m4 and explicitly captured by m3
x += i; // error: i is odr-used but not odr-usable

// due to intervening function and class scopes
x += f; // OK, this captured implicitly by m4 and explicitly by m3

};
};

}
};

}

struct s2 {
double ohseven = .007;
auto f() {

return [this] {
return [*this] {

return ohseven; // OK
};

}();
}
auto g() {

return [] {
return [*this] { }; // error: *this not captured by outer lambda-expression

}();
}

};

— end example ]
9 [Note 6 : Because local entities are not odr-usable within a default argument (6.3), a lambda-expression appearing in

a default argument cannot implicitly or explicitly capture any local entity. Such a lambda-expression can still have
an init-capture if any full-expression in its initializer satisfies the constraints of an expression appearing in a default
argument (9.3.4.7). — end note ]
[Example 7 :

void f2() {
int i = 1;
void g1(int = ([i]{ return i; })()); // error
void g2(int = ([i]{ return 0; })()); // error
void g3(int = ([=]{ return i; })()); // error
void g4(int = ([=]{ return 0; })()); // OK
void g5(int = ([]{ return sizeof i; })()); // OK
void g6(int = ([x=1]{ return x; })()); // OK
void g7(int = ([x=i]{ return x; })()); // error

}

— end example ]
10 An entity is captured by copy if

—(10.1) it is implicitly captured, the capture-default is =, and the captured entity is not *this, or
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—(10.2) it is explicitly captured with a capture that is not of the form this, & identifier , or & identifier initializer .
For each entity captured by copy, an unnamed non-static data member is declared in the closure type. The
declaration order of these members is unspecified. The type of such a data member is the referenced type
if the entity is a reference to an object, an lvalue reference to the referenced function type if the entity
is a reference to a function, or the type of the corresponding captured entity otherwise. A member of an
anonymous union shall not be captured by copy.

11 Every id-expression within the compound-statement of a lambda-expression that is an odr-use (6.3) of an entity
captured by copy is transformed into an access to the corresponding unnamed data member of the closure
type.
[Note 7 : An id-expression that is not an odr-use refers to the original entity, never to a member of the closure type.
However, such an id-expression can still cause the implicit capture of the entity. — end note ]

If *this is captured by copy, each expression that odr-uses *this is transformed to instead refer to the
corresponding unnamed data member of the closure type.
[Example 8 :

void f(const int*);
void g() {

const int N = 10;
[=] {

int arr[N]; // OK, not an odr-use, refers to automatic variable
f(&N); // OK, causes N to be captured; &N points to

// the corresponding member of the closure type
};

}

— end example ]
12 An entity is captured by reference if it is implicitly or explicitly captured but not captured by copy. It is

unspecified whether additional unnamed non-static data members are declared in the closure type for entities
captured by reference. If declared, such non-static data members shall be of literal type.
[Example 9 :

// The inner closure type must be a literal type regardless of how reference captures are represented.
static_assert([](int n) { return [&n] { return ++n; }(); }(3) == 4);

— end example ]

A bit-field or a member of an anonymous union shall not be captured by reference.
13 An id-expression within the compound-statement of a lambda-expression that is an odr-use of a reference

captured by reference refers to the entity to which the captured reference is bound and not to the captured
reference.
[Note 8 : The validity of such captures is determined by the lifetime of the object to which the reference refers, not by
the lifetime of the reference itself. — end note ]
[Example 10 :

auto h(int &r) {
return [&] {

++r; // Valid after h returns if the lifetime of the
// object to which r is bound has not ended

};
}

— end example ]
14 If a lambda-expression m2 captures an entity and that entity is captured by an immediately enclosing

lambda-expression m1, then m2’s capture is transformed as follows:
—(14.1) If m1 captures the entity by copy, m2 captures the corresponding non-static data member of m1’s closure

type; if m1 is not mutable, the non-static data member is considered to be const-qualified.
—(14.2) If m1 captures the entity by reference, m2 captures the same entity captured by m1.

[Example 11 : The nested lambda-expressions and invocations below will output 123234.
int a = 1, b = 1, c = 1;
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auto m1 = [a, &b, &c]() mutable {
auto m2 = [a, b, &c]() mutable {

std::cout << a << b << c;
a = 4; b = 4; c = 4;

};
a = 3; b = 3; c = 3;
m2();

};
a = 2; b = 2; c = 2;
m1();
std::cout << a << b << c;

— end example ]
15 When the lambda-expression is evaluated, the entities that are captured by copy are used to direct-initialize

each corresponding non-static data member of the resulting closure object, and the non-static data members
corresponding to the init-captures are initialized as indicated by the corresponding initializer (which may be
copy- or direct-initialization). (For array members, the array elements are direct-initialized in increasing
subscript order.) These initializations are performed in the (unspecified) order in which the non-static data
members are declared.
[Note 9 : This ensures that the destructions will occur in the reverse order of the constructions. — end note ]

16 [Note 10 : If a non-reference entity is implicitly or explicitly captured by reference, invoking the function call operator
of the corresponding lambda-expression after the lifetime of the entity has ended is likely to result in undefined behavior.

— end note ]
17 A simple-capture containing an ellipsis is a pack expansion (13.7.4). An init-capture containing an ellipsis is a

pack expansion that declares an init-capture pack (13.7.4).
[Example 12 :

template<class... Args>
void f(Args... args) {

auto lm = [&, args...] { return g(args...); };
lm();

auto lm2 = [...xs=std::move(args)] { return g(xs...); };
lm2();

}

— end example ]

7.5.6 Fold expressions [expr.prim.fold]
1 A fold expression performs a fold of a pack (13.7.4) over a binary operator.

fold-expression :
( cast-expression fold-operator ... )
( ... fold-operator cast-expression )
( cast-expression fold-operator ... fold-operator cast-expression )

fold-operator : one of
+ - * / % ^ & | << >>
+= -= *= /= %= ^= &= |= <<= >>= =
== != < > <= >= && || , .* ->*

2 An expression of the form (... op e) where op is a fold-operator is called a unary left fold. An expression
of the form (e op ...) where op is a fold-operator is called a unary right fold. Unary left folds and unary
right folds are collectively called unary folds. In a unary fold, the cast-expression shall contain an unexpanded
pack (13.7.4).

3 An expression of the form (e1 op1 ... op2 e2) where op1 and op2 are fold-operators is called a binary fold.
In a binary fold, op1 and op2 shall be the same fold-operator , and either e1 shall contain an unexpanded pack
or e2 shall contain an unexpanded pack, but not both. If e2 contains an unexpanded pack, the expression is
called a binary left fold. If e1 contains an unexpanded pack, the expression is called a binary right fold.
[Example 1 :
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template<typename ...Args>
bool f(Args ...args) {

return (true && ... && args); // OK
}

template<typename ...Args>
bool f(Args ...args) {

return (args + ... + args); // error: both operands contain unexpanded packs
}

— end example ]

7.5.7 Requires expressions [expr.prim.req]
7.5.7.1 General [expr.prim.req.general]

1 A requires-expression provides a concise way to express requirements on template arguments that can be
checked by name lookup (6.5) or by checking properties of types and expressions.

requires-expression :
requires requirement-parameter-listopt requirement-body

requirement-parameter-list :
( parameter-declaration-clause )

requirement-body :
{ requirement-seq }

requirement-seq :
requirement
requirement requirement-seq

requirement :
simple-requirement
type-requirement
compound-requirement
nested-requirement

2 A requires-expression is a prvalue of type bool whose value is described below. Expressions appearing within
a requirement-body are unevaluated operands (7.2.3).

3 [Example 1 : A common use of requires-expressions is to define requirements in concepts such as the one below:
template<typename T>

concept R = requires (T i) {
typename T::type;
{*i} -> std::convertible_to<const typename T::type&>;

};

A requires-expression can also be used in a requires-clause (13.1) as a way of writing ad hoc constraints on template
arguments such as the one below:

template<typename T>
requires requires (T x) { x + x; }

T add(T a, T b) { return a + b; }

The first requires introduces the requires-clause, and the second introduces the requires-expression. — end example ]
4 A requires-expression may introduce local parameters using a parameter-declaration-clause (9.3.4.6). A local

parameter of a requires-expression shall not have a default argument. These parameters have no linkage,
storage, or lifetime; they are only used as notation for the purpose of defining requirements. The parameter-
declaration-clause of a requirement-parameter-list shall not terminate with an ellipsis.
[Example 2 :

template<typename T>
concept C = requires(T t, ...) { // error: terminates with an ellipsis

t;
};

— end example ]
5 The substitution of template arguments into a requires-expression may result in the formation of invalid

types or expressions in its requirements or the violation of the semantic constraints of those requirements. In
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such cases, the requires-expression evaluates to false; it does not cause the program to be ill-formed. The
substitution and semantic constraint checking proceeds in lexical order and stops when a condition that
determines the result of the requires-expression is encountered. If substitution (if any) and semantic constraint
checking succeed, the requires-expression evaluates to true.
[Note 1 : If a requires-expression contains invalid types or expressions in its requirements, and it does not appear within
the declaration of a templated entity, then the program is ill-formed. — end note ]

If the substitution of template arguments into a requirement would always result in a substitution failure, the
program is ill-formed; no diagnostic required.
[Example 3 :

template<typename T> concept C =
requires {

new int[-(int)sizeof(T)]; // ill-formed, no diagnostic required
};

— end example ]

7.5.7.2 Simple requirements [expr.prim.req.simple]
simple-requirement :

expression ;

1 A simple-requirement asserts the validity of an expression.
[Note 1 : The enclosing requires-expression will evaluate to false if substitution of template arguments into the
expression fails. The expression is an unevaluated operand (7.2.3). — end note ]
[Example 1 :

template<typename T> concept C =
requires (T a, T b) {

a + b; // C<T> is true if a + b is a valid expression
};

— end example ]
2 A requirement that starts with a requires token is never interpreted as a simple-requirement.

[Note 2 : This simplifies distinguishing between a simple-requirement and a nested-requirement. — end note ]

7.5.7.3 Type requirements [expr.prim.req.type]
type-requirement :

typename nested-name-specifieropt type-name ;

1 A type-requirement asserts the validity of a type.
[Note 1 : The enclosing requires-expression will evaluate to false if substitution of template arguments fails. — end
note ]
[Example 1 :

template<typename T, typename T::type = 0> struct S;
template<typename T> using Ref = T&;

template<typename T> concept C = requires {
typename T::inner; // required nested member name
typename S<T>; // required valid (13.3) template-id;

// fails if T::type does not exist as a type to which 0 can be implicitly converted
typename Ref<T>; // required alias template substitution, fails if T is void

};

— end example ]
2 A type-requirement that names a class template specialization does not require that type to be complete (6.8.1).

7.5.7.4 Compound requirements [expr.prim.req.compound]
compound-requirement :

{ expression } noexceptopt return-type-requirementopt ;

return-type-requirement :
-> type-constraint
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1 A compound-requirement asserts properties of the expression E. Substitution of template arguments (if any)
and verification of semantic properties proceed in the following order:

—(1.1) Substitution of template arguments (if any) into the expression is performed.
—(1.2) If the noexcept specifier is present, E shall not be a potentially-throwing expression (14.5).
—(1.3) If the return-type-requirement is present, then:

—(1.3.1) Substitution of template arguments (if any) into the return-type-requirement is performed.
—(1.3.2) The immediately-declared constraint (13.2) of the type-constraint for decltype((E)) shall be

satisfied.
[Example 1 : Given concepts C and D,

requires {
{ E1 } -> C;
{ E2 } -> D<A1, · · · , An>;

};

is equivalent to
requires {

E1; requires C<decltype((E1))>;
E2; requires D<decltype((E2)), A1, · · · , An>;

};

(including in the case where n is zero). — end example ]
[Example 2 :

template<typename T> concept C1 = requires(T x) {
{x++};

};

The compound-requirement in C1 requires that x++ is a valid expression. It is equivalent to the simple-requirement
x++;.

template<typename T> concept C2 = requires(T x) {
{*x} -> std::same_as<typename T::inner>;

};

The compound-requirement in C2 requires that *x is a valid expression, that typename T::inner is a valid type, and
that std::same_as<decltype((*x)), typename T::inner> is satisfied.

template<typename T> concept C3 =
requires(T x) {

{g(x)} noexcept;
};

The compound-requirement in C3 requires that g(x) is a valid expression and that g(x) is non-throwing. — end
example ]

7.5.7.5 Nested requirements [expr.prim.req.nested]
nested-requirement :

requires constraint-expression ;

1 A nested-requirement can be used to specify additional constraints in terms of local parameters. The
constraint-expression shall be satisfied (13.5.3) by the substituted template arguments, if any. Substitution of
template arguments into a nested-requirement does not result in substitution into the constraint-expression
other than as specified in 13.5.2.
[Example 1 :

template<typename U> concept C = sizeof(U) == 1;

template<typename T> concept D = requires (T t) {
requires C<decltype (+t)>;

};

D<T> is satisfied if sizeof(decltype (+t)) == 1 (13.5.2.3). — end example ]
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7.6 Compound expressions [expr.compound]
7.6.1 Postfix expressions [expr.post]
7.6.1.1 General [expr.post.general]

1 Postfix expressions group left-to-right.
postfix-expression :

primary-expression
postfix-expression [ expression-listopt ]
postfix-expression ( expression-listopt )
simple-type-specifier ( expression-listopt )
typename-specifier ( expression-listopt )
simple-type-specifier braced-init-list
typename-specifier braced-init-list
postfix-expression . templateopt id-expression
postfix-expression -> templateopt id-expression
postfix-expression ++
postfix-expression --
dynamic_cast < type-id > ( expression )
static_cast < type-id > ( expression )
reinterpret_cast < type-id > ( expression )
const_cast < type-id > ( expression )
typeid ( expression )
typeid ( type-id )

expression-list :
initializer-list

2 [Note 1 : The > token following the type-id in a dynamic_cast, static_cast, reinterpret_cast, or const_cast can
be the product of replacing a >> token by two consecutive > tokens (13.3). — end note ]

7.6.1.2 Subscripting [expr.sub]
1 A subscript expression is a postfix expression followed by square brackets containing a possibly empty,

comma-separated list of initializer-clauses that constitute the arguments to the subscript operator. The
postfix-expression and the initialization of the object parameter of any applicable subscript operator function is
sequenced before each expression in the expression-list and also before any default argument. The initialization
of a non-object parameter of a subscript operator function S (12.4.5), including every associated value
computation and side effect, is indeterminately sequenced with respect to that of any other non-object
parameter of S.

2 With the built-in subscript operator, an expression-list shall be present, consisting of a single assignment-
expression. One of the expressions shall be a glvalue of type “array of T” or a prvalue of type “pointer to T”
and the other shall be a prvalue of unscoped enumeration or integral type. The result is of type “T”. The
type “T” shall be a completely-defined object type.50 The expression E1[E2] is identical (by definition) to
*((E1)+(E2)), except that in the case of an array operand, the result is an lvalue if that operand is an lvalue
and an xvalue otherwise.

3 [Note 1 : Despite its asymmetric appearance, subscripting is a commutative operation except for sequencing. See 7.6.2
and 7.6.6 for details of * and + and 9.3.4.5 for details of array types. — end note ]

7.6.1.3 Function call [expr.call]
1 A function call is a postfix expression followed by parentheses containing a possibly empty, comma-separated

list of initializer-clauses which constitute the arguments to the function.
[Note 1 : If the postfix expression is a function or member function name, the appropriate function and the validity of
the call are determined according to the rules in 12.2. — end note ]

The postfix expression shall have function type or function pointer type. For a call to a non-member function
or to a static member function, the postfix expression shall either be an lvalue that refers to a function (in
which case the function-to-pointer standard conversion (7.3.4) is suppressed on the postfix expression), or
have function pointer type.

2 If the selected function is non-virtual, or if the id-expression in the class member access expression is a
qualified-id , that function is called. Otherwise, its final overrider (11.7.3) in the dynamic type of the object
expression is called; such a call is referred to as a virtual function call.

50) This is true even if the subscript operator is used in the following common idiom: &x[0].
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[Note 2 : The dynamic type is the type of the object referred to by the current value of the object expression.
11.9.5 describes the behavior of virtual function calls when the object expression refers to an object under construction
or destruction. — end note ]

3 [Note 3 : If a function or member function name is used, and name lookup (6.5) does not find a declaration of that
name, the program is ill-formed. No function is implicitly declared by such a call. — end note ]

4 If the postfix-expression names a destructor or pseudo-destructor (7.5.4.4), the type of the function call
expression is void; otherwise, the type of the function call expression is the return type of the statically
chosen function (i.e., ignoring the virtual keyword), even if the type of the function actually called is
different. If the postfix-expression names a pseudo-destructor (in which case the postfix-expression is a possibly-
parenthesized class member access), the function call destroys the object of scalar type denoted by the object
expression of the class member access (7.6.1.5, 6.7.3).

5 Calling a function through an expression whose function type E is different from the function type F of the
called function’s definition results in undefined behavior unless the type “pointer to F” can be converted to
the type “pointer to E” via a function pointer conversion (7.3.14).
[Note 4 : The exception applies when the expression has the type of a potentially-throwing function, but the called
function has a non-throwing exception specification, and the function types are otherwise the same. — end note ]

6 When a function is called, each parameter (9.3.4.6) is initialized (9.4, 11.4.5.3) with its corresponding argument.
If the function is an explicit object member function and there is an implied object argument (12.2.2.2.2), the
list of provided arguments is preceded by the implied object argument for the purposes of this correspondence.
If there is no corresponding argument, the default argument for the parameter is used.
[Example 1 :

template<typename ...T> int f(int n = 0, T ...t);
int x = f<int>(); // error: no argument for second function parameter

— end example ]

If the function is an implicit object member function, the this parameter of the function (7.5.2) is initialized
with a pointer to the object of the call, converted as if by an explicit type conversion (7.6.3).
[Note 5 : There is no access or ambiguity checking on this conversion; the access checking and disambiguation are
done as part of the (possibly implicit) class member access operator. See 6.5.2, 11.8.3, and 7.6.1.5. — end note ]

When a function is called, the type of any parameter shall not be a class type that is either incomplete or
abstract.
[Note 6 : This still allows a parameter to be a pointer or reference to such a type. However, it prevents a passed-by-value
parameter to have an incomplete or abstract class type. — end note ]

It is implementation-defined whether the lifetime of a parameter ends when the function in which it is defined
returns or at the end of the enclosing full-expression. The initialization and destruction of each parameter
occurs within the context of the calling function.
[Example 2 : The access of the constructor, conversion functions or destructor is checked at the point of call in the
calling function. If a constructor or destructor for a function parameter throws an exception, the search for a handler
starts in the calling function; in particular, if the function called has a function-try-block (14.1) with a handler that
can handle the exception, this handler is not considered. — end example ]

7 The postfix-expression is sequenced before each expression in the expression-list and any default argument. The
initialization of a parameter, including every associated value computation and side effect, is indeterminately
sequenced with respect to that of any other parameter.
[Note 7 : All side effects of argument evaluations are sequenced before the function is entered (see 6.9.1). — end note ]
[Example 3 :

void f() {
std::string s = "but I have heard it works even if you don't believe in it";
s.replace(0, 4, "").replace(s.find("even"), 4, "only").replace(s.find(" don't"), 6, "");
assert(s == "I have heard it works only if you believe in it"); // OK

}

— end example ]
[Note 8 : If an operator function is invoked using operator notation, argument evaluation is sequenced as specified for
the built-in operator; see 12.2.2.3. — end note ]
[Example 4 :
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struct S {
S(int);

};
int operator<<(S, int);
int i, j;
int x = S(i=1) << (i=2);
int y = operator<<(S(j=1), j=2);

After performing the initializations, the value of i is 2 (see 7.6.7), but it is unspecified whether the value of j is 1 or
2. — end example ]

8 The result of a function call is the result of the possibly-converted operand of the return statement (8.7.4)
that transferred control out of the called function (if any), except in a virtual function call if the return type
of the final overrider is different from the return type of the statically chosen function, the value returned
from the final overrider is converted to the return type of the statically chosen function.

9 [Note 9 : A function can change the values of its non-const parameters, but these changes cannot affect the values
of the arguments except where a parameter is of a reference type (9.3.4.3); if the reference is to a const-qualified
type, const_cast is required to be used to cast away the constness in order to modify the argument’s value. Where a
parameter is of const reference type a temporary object is introduced if needed (9.2.9, 5.13, 5.13.5, 9.3.4.5, 6.7.7). In
addition, it is possible to modify the values of non-constant objects through pointer parameters. — end note ]

10 A function can be declared to accept fewer arguments (by declaring default arguments (9.3.4.7)) or more
arguments (by using the ellipsis, ..., or a function parameter pack (9.3.4.6)) than the number of parameters
in the function definition (9.5).
[Note 10 : This implies that, except where the ellipsis (...) or a function parameter pack is used, a parameter is
available for each argument. — end note ]

11 When there is no parameter for a given argument, the argument is passed in such a way that the receiving
function can obtain the value of the argument by invoking va_arg (17.13).
[Note 11 : This paragraph does not apply to arguments passed to a function parameter pack. Function parameter
packs are expanded during template instantiation (13.7.4), thus each such argument has a corresponding parameter
when a function template specialization is actually called. — end note ]

The lvalue-to-rvalue (7.3.2), array-to-pointer (7.3.3), and function-to-pointer (7.3.4) standard conversions
are performed on the argument expression. An argument that has type cv std::nullptr_t is converted to
type void* (7.3.12). After these conversions, if the argument does not have arithmetic, enumeration, pointer,
pointer-to-member, or class type, the program is ill-formed. Passing a potentially-evaluated argument of a
scoped enumeration type or of a class type (Clause 11) having an eligible non-trivial copy constructor, an
eligible non-trivial move constructor, or a non-trivial destructor (11.4.4), with no corresponding parameter, is
conditionally-supported with implementation-defined semantics. If the argument has integral or enumeration
type that is subject to the integral promotions (7.3.7), or a floating-point type that is subject to the floating-
point promotion (7.3.8), the value of the argument is converted to the promoted type before the call. These
promotions are referred to as the default argument promotions.

12 Recursive calls are permitted, except to the main function (6.9.3.1).
13 A function call is an lvalue if the result type is an lvalue reference type or an rvalue reference to function

type, an xvalue if the result type is an rvalue reference to object type, and a prvalue otherwise.

7.6.1.4 Explicit type conversion (functional notation) [expr.type.conv]
1 A simple-type-specifier (9.2.9.3) or typename-specifier (13.8) followed by a parenthesized optional expression-list

or by a braced-init-list (the initializer) constructs a value of the specified type given the initializer. If the type
is a placeholder for a deduced class type, it is replaced by the return type of the function selected by overload
resolution for class template deduction (12.2.2.9) for the remainder of this subclause. Otherwise, if the type
contains a placeholder type, it is replaced by the type determined by placeholder type deduction (9.2.9.6.2).
[Example 1 :

struct A {};
void f(A&); // #1
void f(A&&); // #2
A& g();
void h() {

f(g()); // calls #1
f(A(g())); // calls #2 with a temporary object
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f(auto(g())); // calls #2 with a temporary object
}

— end example ]
2 If the initializer is a parenthesized single expression, the type conversion expression is equivalent to the

corresponding cast expression (7.6.3). Otherwise, if the type is cv void and the initializer is () or {} (after
pack expansion, if any), the expression is a prvalue of type void that performs no initialization. Otherwise,
the expression is a prvalue of the specified type whose result object is direct-initialized (9.4) with the initializer.
If the initializer is a parenthesized optional expression-list, the specified type shall not be an array type.

7.6.1.5 Class member access [expr.ref]
1 A postfix expression followed by a dot . or an arrow ->, optionally followed by the keyword template, and

then followed by an id-expression, is a postfix expression. The postfix expression before the dot or arrow is
evaluated;51 the result of that evaluation, together with the id-expression, determines the result of the entire
postfix expression.
[Note 1 : If the keyword template is used, the following unqualified name is considered to refer to a template (13.3).
If a simple-template-id results and is followed by a ::, the id-expression is a qualified-id . — end note ]

2 For the first option (dot) the first expression shall be a glvalue. For the second option (arrow) the first
expression shall be a prvalue having pointer type. The expression E1->E2 is converted to the equivalent form
(*(E1)).E2; the remainder of 7.6.1.5 will address only the first option (dot).52

3 Abbreviating postfix-expression.id-expression as E1.E2, E1 is called the object expression. If the object
expression is of scalar type, E2 shall name the pseudo-destructor of that same type (ignoring cv-qualifications)
and E1.E2 is a prvalue of type “function of () returning void”.
[Note 2 : This value can only be used for a notional function call (7.5.4.4). — end note ]

4 Otherwise, the object expression shall be of class type. The class type shall be complete unless the class
member access appears in the definition of that class.
[Note 3 : The program is ill-formed if the result differs from that when the class is complete (6.5.2). — end note ]
[Note 4 : 6.5.5 describes how names are looked up after the . and -> operators. — end note ]

5 If E2 is a bit-field, E1.E2 is a bit-field. The type and value category of E1.E2 are determined as follows.
In the remainder of 7.6.1.5, cq represents either const or the absence of const and vq represents either
volatile or the absence of volatile. cv represents an arbitrary set of cv-qualifiers, as defined in 6.8.5.

6 If E2 is declared to have type “reference to T”, then E1.E2 is an lvalue of type T. If E2 is a static data
member, E1.E2 designates the object or function to which the reference is bound, otherwise E1.E2 designates
the object or function to which the corresponding reference member of E1 is bound. Otherwise, one of the
following rules applies.

—(6.1) If E2 is a static data member and the type of E2 is T, then E1.E2 is an lvalue; the expression designates
the named member of the class. The type of E1.E2 is T.

—(6.2) If E2 is a non-static data member and the type of E1 is “cq1 vq1 X”, and the type of E2 is “cq2 vq2 T”,
the expression designates the corresponding member subobject of the object designated by the first
expression. If E1 is an lvalue, then E1.E2 is an lvalue; otherwise E1.E2 is an xvalue. Let the notation
vq12 stand for the “union” of vq1 and vq2 ; that is, if vq1 or vq2 is volatile, then vq12 is volatile.
Similarly, let the notation cq12 stand for the “union” of cq1 and cq2 ; that is, if cq1 or cq2 is const,
then cq12 is const. If E2 is declared to be a mutable member, then the type of E1.E2 is “vq12 T”. If
E2 is not declared to be a mutable member, then the type of E1.E2 is “cq12 vq12 T”.

—(6.3) If E2 is an overload set, function overload resolution (12.2) is used to select the function to which E2
refers. The type of E1.E2 is the type of E2 and E1.E2 refers to the function referred to by E2.

—(6.3.1) If E2 refers to a static member function, E1.E2 is an lvalue.
—(6.3.2) Otherwise (when E2 refers to a non-static member function), E1.E2 is a prvalue. The expression

can be used only as the left-hand operand of a member function call (11.4.2).
[Note 5 : Any redundant set of parentheses surrounding the expression is ignored (7.5.3). — end note ]

51) If the class member access expression is evaluated, the subexpression evaluation happens even if the result is unnecessary to
determine the value of the entire postfix expression, for example if the id-expression denotes a static member.

52) Note that (*(E1)) is an lvalue.
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—(6.4) If E2 is a nested type, the expression E1.E2 is ill-formed.
—(6.5) If E2 is a member enumerator and the type of E2 is T, the expression E1.E2 is a prvalue of type T

whose value is the value of the enumerator.
7 If E2 is a non-static member, the program is ill-formed if the class of which E2 is directly a member is an

ambiguous base (6.5.2) of the naming class (11.8.3) of E2.
[Note 6 : The program is also ill-formed if the naming class is an ambiguous base of the class type of the object
expression; see 11.8.3. — end note ]

8 If E2 is a non-static member and the result of E1 is an object whose type is not similar (7.3.6) to the type of
E1, the behavior is undefined.
[Example 1 :

struct A { int i; };
struct B { int j; };
struct D : A, B {};
void f() {

D d;
static_cast<B&>(d).j; // OK, object expression designates the B subobject of d
reinterpret_cast<B&>(d).j; // undefined behavior

}

— end example ]

7.6.1.6 Increment and decrement [expr.post.incr]
1 The value of a postfix ++ expression is the value of its operand.

[Note 1 : The value obtained is a copy of the original value. — end note ]

The operand shall be a modifiable lvalue. The type of the operand shall be an arithmetic type other than
cv bool, or a pointer to a complete object type. An operand with volatile-qualified type is deprecated; see D.5.
The value of the operand object is modified (3.1) by adding 1 to it. The value computation of the ++ expression
is sequenced before the modification of the operand object. With respect to an indeterminately-sequenced
function call, the operation of postfix ++ is a single evaluation.
[Note 2 : Therefore, a function call cannot intervene between the lvalue-to-rvalue conversion and the side effect
associated with any single postfix ++ operator. — end note ]

The result is a prvalue. The type of the result is the cv-unqualified version of the type of the operand. If
the operand is a bit-field that cannot represent the incremented value, the resulting value of the bit-field is
implementation-defined. See also 7.6.6 and 7.6.19.

2 The operand of postfix -- is decremented analogously to the postfix ++ operator.
[Note 3 : For prefix increment and decrement, see 7.6.2.3. — end note ]

7.6.1.7 Dynamic cast [expr.dynamic.cast]
1 The result of the expression dynamic_cast<T>(v) is the result of converting the expression v to type T. T

shall be a pointer or reference to a complete class type, or “pointer to cv void”. The dynamic_cast operator
shall not cast away constness (7.6.1.11).

2 If T is a pointer type, v shall be a prvalue of a pointer to complete class type, and the result is a prvalue of
type T. If T is an lvalue reference type, v shall be an lvalue of a complete class type, and the result is an
lvalue of the type referred to by T. If T is an rvalue reference type, v shall be a glvalue having a complete
class type, and the result is an xvalue of the type referred to by T.

3 If the type of v is the same as T (ignoring cv-qualifications), the result is v (converted if necessary).
4 If T is “pointer to cv1 B” and v has type “pointer to cv2 D” such that B is a base class of D, the result is a

pointer to the unique B subobject of the D object pointed to by v, or a null pointer value if v is a null pointer
value. Similarly, if T is “reference to cv1 B” and v has type cv2 D such that B is a base class of D, the result
is the unique B subobject of the D object referred to by v.53 In both the pointer and reference cases, the
program is ill-formed if B is an inaccessible or ambiguous base class of D.
[Example 1 :

struct B { };

53) The most derived object (6.7.2) pointed or referred to by v can contain other B objects as base classes, but these are ignored.
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struct D : B { };
void foo(D* dp) {

B* bp = dynamic_cast<B*>(dp); // equivalent to B* bp = dp;
}

— end example ]
5 Otherwise, v shall be a pointer to or a glvalue of a polymorphic type (11.7.3).
6 If v is a null pointer value, the result is a null pointer value.
7 If T is “pointer to cv void”, then the result is a pointer to the most derived object pointed to by v. Otherwise,

a runtime check is applied to see if the object pointed or referred to by v can be converted to the type pointed
or referred to by T.

8 Let C be the class type to which T points or refers. The runtime check logically executes as follows:
—(8.1) If, in the most derived object pointed (referred) to by v, v points (refers) to a public base class subobject

of a C object, and if only one object of type C is derived from the subobject pointed (referred) to by v
the result points (refers) to that C object.

—(8.2) Otherwise, if v points (refers) to a public base class subobject of the most derived object, and the type
of the most derived object has a base class, of type C, that is unambiguous and public, the result points
(refers) to the C subobject of the most derived object.

—(8.3) Otherwise, the runtime check fails.
9 The value of a failed cast to pointer type is the null pointer value of the required result type. A failed

cast to reference type throws an exception (14.2) of a type that would match a handler (14.4) of type
std::bad_cast (17.7.4).
[Example 2 :

class A { virtual void f(); };
class B { virtual void g(); };
class D : public virtual A, private B { };
void g() {

D d;
B* bp = (B*)&d; // cast needed to break protection
A* ap = &d; // public derivation, no cast needed
D& dr = dynamic_cast<D&>(*bp); // fails
ap = dynamic_cast<A*>(bp); // fails
bp = dynamic_cast<B*>(ap); // fails
ap = dynamic_cast<A*>(&d); // succeeds
bp = dynamic_cast<B*>(&d); // ill-formed (not a runtime check)

}

class E : public D, public B { };
class F : public E, public D { };
void h() {

F f;
A* ap = &f; // succeeds: finds unique A
D* dp = dynamic_cast<D*>(ap); // fails: yields null; f has two D subobjects
E* ep = (E*)ap; // error: cast from virtual base
E* ep1 = dynamic_cast<E*>(ap); // succeeds

}

— end example ]
[Note 1 : Subclause 11.9.5 describes the behavior of a dynamic_cast applied to an object under construction or
destruction. — end note ]

7.6.1.8 Type identification [expr.typeid]
1 The result of a typeid expression is an lvalue of static type const std::type_info (17.7.3) and dynamic type

const std::type_info or const name where name is an implementation-defined class publicly derived from
std::type_info which preserves the behavior described in 17.7.3.54 The lifetime of the object referred to by
the lvalue extends to the end of the program. Whether or not the destructor is called for the std::type_info
object at the end of the program is unspecified.

54) The recommended name for such a class is extended_type_info.

§ 7.6.1.8 127



© ISO/IEC N4950

2 If the type of the expression or type-id operand is a (possibly cv-qualified) class type or a reference to (possibly
cv-qualified) class type, that class shall be completely defined.

3 When typeid is applied to a glvalue whose type is a polymorphic class type (11.7.3), the result refers to a
std::type_info object representing the type of the most derived object (6.7.2) (that is, the dynamic type)
to which the glvalue refers. If the glvalue is obtained by applying the unary * operator to a pointer55 and
the pointer is a null pointer value (6.8.4), the typeid expression throws an exception (14.2) of a type that
would match a handler of type std::bad_typeid exception (17.7.5).

4 When typeid is applied to an expression other than a glvalue of a polymorphic class type, the result
refers to a std::type_info object representing the static type of the expression. Lvalue-to-rvalue (7.3.2),
array-to-pointer (7.3.3), and function-to-pointer (7.3.4) conversions are not applied to the expression. If the
expression is a prvalue, the temporary materialization conversion (7.3.5) is applied. The expression is an
unevaluated operand (7.2.3).

5 When typeid is applied to a type-id , the result refers to a std::type_info object representing the type of
the type-id . If the type of the type-id is a reference to a possibly cv-qualified type, the result of the typeid
expression refers to a std::type_info object representing the cv-unqualified referenced type.
[Note 1 : The type-id cannot denote a function type with a cv-qualifier-seq or a ref-qualifier (9.3.4.6). — end note ]

6 If the type of the expression or type-id is a cv-qualified type, the result of the typeid expression refers to a
std::type_info object representing the cv-unqualified type.
[Example 1 :

class D { /* ... */ };
D d1;
const D d2;

typeid(d1) == typeid(d2); // yields true
typeid(D) == typeid(const D); // yields true
typeid(D) == typeid(d2); // yields true
typeid(D) == typeid(const D&); // yields true

— end example ]
7 The type std::type_info (17.7.3) is not predefined; if a standard library declaration (17.7.2, 16.4.2.4) of

std::type_info does not precede (6.5.1) a typeid expression, the program is ill-formed.
8 [Note 2 : Subclause 11.9.5 describes the behavior of typeid applied to an object under construction or destruction.

— end note ]

7.6.1.9 Static cast [expr.static.cast]
1 The result of the expression static_cast<T>(v) is the result of converting the expression v to type T. If T

is an lvalue reference type or an rvalue reference to function type, the result is an lvalue; if T is an rvalue
reference to object type, the result is an xvalue; otherwise, the result is a prvalue. The static_cast operator
shall not cast away constness (7.6.1.11).

2 An lvalue of type “cv1 B”, where B is a class type, can be cast to type “reference to cv2 D”, where D is a
class derived (11.7) from B, if cv2 is the same cv-qualification as, or greater cv-qualification than, cv1. If
B is a virtual base class of D or a base class of a virtual base class of D, or if no valid standard conversion
from “pointer to D” to “pointer to B” exists (7.3.12), the program is ill-formed. An xvalue of type “cv1 B”
can be cast to type “rvalue reference to cv2 D” with the same constraints as for an lvalue of type “cv1 B”. If
the object of type “cv1 B” is actually a base class subobject of an object of type D, the result refers to the
enclosing object of type D. Otherwise, the behavior is undefined.
[Example 1 :

struct B { };
struct D : public B { };
D d;
B &br = d;

static_cast<D&>(br); // produces lvalue denoting the original d object
— end example ]

55) If p is an expression of pointer type, then *p, (*p), *(p), ((*p)), *((p)), and so on all meet this requirement.
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3 An lvalue of type T1 can be cast to type “rvalue reference to T2” if T2 is reference-compatible with T1 (9.4.4).
If the value is not a bit-field, the result refers to the object or the specified base class subobject thereof;
otherwise, the lvalue-to-rvalue conversion (7.3.2) is applied to the bit-field and the resulting prvalue is used
as the operand of the static_cast for the remainder of this subclause. If T2 is an inaccessible (11.8) or
ambiguous (6.5.2) base class of T1, a program that necessitates such a cast is ill-formed.

4 An expression E can be explicitly converted to a type T if there is an implicit conversion sequence (12.2.4.2)
from E to T, if overload resolution for a direct-initialization (9.4) of an object or reference of type T from E
would find at least one viable function (12.2.3), or if T is an aggregate type (9.4.2) having a first element x
and there is an implicit conversion sequence from E to the type of x. If T is a reference type, the effect is the
same as performing the declaration and initialization

T t(E);

for some invented temporary variable t (9.4) and then using the temporary variable as the result of the
conversion. Otherwise, the result object is direct-initialized from E.
[Note 1 : The conversion is ill-formed when attempting to convert an expression of class type to an inaccessible or
ambiguous base class. — end note ]
[Note 2 : If T is “array of unknown bound of U”, this direct-initialization defines the type of the expression as U[1].

— end note ]
5 Otherwise, the static_cast shall perform one of the conversions listed below. No other conversion shall be

performed explicitly using a static_cast.
6 Any expression can be explicitly converted to type cv void, in which case the operand is a discarded-value

expression (7.2).
[Note 3 : Such a static_cast has no result as it is a prvalue of type void; see 7.2.1. — end note ]
[Note 4 : However, if the value is in a temporary object (6.7.7), the destructor for that object is not executed until the
usual time, and the value of the object is preserved for the purpose of executing the destructor. — end note ]

7 The inverse of any standard conversion sequence (7.3) not containing an lvalue-to-rvalue (7.3.2), array-to-
pointer (7.3.3), function-to-pointer (7.3.4), null pointer (7.3.12), null member pointer (7.3.13), boolean (7.3.15),
or function pointer (7.3.14) conversion, can be performed explicitly using static_cast. A program is ill-
formed if it uses static_cast to perform the inverse of an ill-formed standard conversion sequence.
[Example 2 :

struct B { };
struct D : private B { };
void f() {

static_cast<D*>((B*)0); // error: B is a private base of D
static_cast<int B::*>((int D::*)0); // error: B is a private base of D

}

— end example ]
8 The lvalue-to-rvalue (7.3.2), array-to-pointer (7.3.3), and function-to-pointer (7.3.4) conversions are applied

to the operand. Such a static_cast is subject to the restriction that the explicit conversion does not cast
away constness (7.6.1.11), and the following additional rules for specific cases:

9 A value of a scoped enumeration type (9.7.1) can be explicitly converted to an integral type; the result is the
same as that of converting to the enumeration’s underlying type and then to the destination type. A value of
a scoped enumeration type can also be explicitly converted to a floating-point type; the result is the same as
that of converting from the original value to the floating-point type.

10 A value of integral or enumeration type can be explicitly converted to a complete enumeration type. If
the enumeration type has a fixed underlying type, the value is first converted to that type by integral
promotion (7.3.7) or integral conversion (7.3.9), if necessary, and then to the enumeration type. If the
enumeration type does not have a fixed underlying type, the value is unchanged if the original value is
within the range of the enumeration values (9.7.1), and otherwise, the behavior is undefined. A value of
floating-point type can also be explicitly converted to an enumeration type. The resulting value is the same
as converting the original value to the underlying type of the enumeration (7.3.11), and subsequently to the
enumeration type.

11 A prvalue of floating-point type can be explicitly converted to any other floating-point type. If the source value
can be exactly represented in the destination type, the result of the conversion has that exact representation.
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If the source value is between two adjacent destination values, the result of the conversion is an implementa-
tion-defined choice of either of those values. Otherwise, the behavior is undefined.

12 A prvalue of type “pointer to cv1 B”, where B is a class type, can be converted to a prvalue of type “pointer
to cv2 D”, where D is a complete class derived (11.7) from B, if cv2 is the same cv-qualification as, or greater
cv-qualification than, cv1. If B is a virtual base class of D or a base class of a virtual base class of D, or if no
valid standard conversion from “pointer to D” to “pointer to B” exists (7.3.12), the program is ill-formed.
The null pointer value (6.8.4) is converted to the null pointer value of the destination type. If the prvalue
of type “pointer to cv1 B” points to a B that is actually a base class subobject of an object of type D, the
resulting pointer points to the enclosing object of type D. Otherwise, the behavior is undefined.

13 A prvalue of type “pointer to member of D of type cv1 T” can be converted to a prvalue of type “pointer to
member of B of type cv2 T”, where D is a complete class type and B is a base class (11.7) of D, if cv2 is the
same cv-qualification as, or greater cv-qualification than, cv1.
[Note 5 : Function types (including those used in pointer-to-member-function types) are never cv-qualified (9.3.4.6).

— end note ]

If no valid standard conversion from “pointer to member of B of type T” to “pointer to member of D of type
T” exists (7.3.13), the program is ill-formed. The null member pointer value (7.3.13) is converted to the null
member pointer value of the destination type. If class B contains the original member, or is a base or derived
class of the class containing the original member, the resulting pointer to member points to the original
member. Otherwise, the behavior is undefined.
[Note 6 : Although class B need not contain the original member, the dynamic type of the object with which indirection
through the pointer to member is performed must contain the original member; see 7.6.4. — end note ]

14 A prvalue of type “pointer to cv1 void” can be converted to a prvalue of type “pointer to cv2 T”, where T is
an object type and cv2 is the same cv-qualification as, or greater cv-qualification than, cv1. If the original
pointer value represents the address A of a byte in memory and A does not satisfy the alignment requirement
of T, then the resulting pointer value is unspecified. Otherwise, if the original pointer value points to an
object a, and there is an object b of type similar to T that is pointer-interconvertible (6.8.4) with a, the result
is a pointer to b. Otherwise, the pointer value is unchanged by the conversion.
[Example 3 :

T* p1 = new T;
const T* p2 = static_cast<const T*>(static_cast<void*>(p1));
bool b = p1 == p2; // b will have the value true.

— end example ]

7.6.1.10 Reinterpret cast [expr.reinterpret.cast]
1 The result of the expression reinterpret_cast<T>(v) is the result of converting the expression v to type

T. If T is an lvalue reference type or an rvalue reference to function type, the result is an lvalue; if T
is an rvalue reference to object type, the result is an xvalue; otherwise, the result is a prvalue and the
lvalue-to-rvalue (7.3.2), array-to-pointer (7.3.3), and function-to-pointer (7.3.4) standard conversions are
performed on the expression v. Conversions that can be performed explicitly using reinterpret_cast are
listed below. No other conversion can be performed explicitly using reinterpret_cast.

2 The reinterpret_cast operator shall not cast away constness (7.6.1.11). An expression of integral, enumer-
ation, pointer, or pointer-to-member type can be explicitly converted to its own type; such a cast yields the
value of its operand.

3 [Note 1 : The mapping performed by reinterpret_cast might, or might not, produce a representation different from
the original value. — end note ]

4 A pointer can be explicitly converted to any integral type large enough to hold all values of its type. The
mapping function is implementation-defined.
[Note 2 : It is intended to be unsurprising to those who know the addressing structure of the underlying machine.

— end note ]

A value of type std::nullptr_t can be converted to an integral type; the conversion has the same meaning
and validity as a conversion of (void*)0 to the integral type.
[Note 3 : A reinterpret_cast cannot be used to convert a value of any type to the type std::nullptr_t. — end
note ]

§ 7.6.1.10 130



© ISO/IEC N4950

5 A value of integral type or enumeration type can be explicitly converted to a pointer. A pointer converted to
an integer of sufficient size (if any such exists on the implementation) and back to the same pointer type will
have its original value; mappings between pointers and integers are otherwise implementation-defined.

6 A function pointer can be explicitly converted to a function pointer of a different type.
[Note 4 : The effect of calling a function through a pointer to a function type (9.3.4.6) that is not the same as the
type used in the definition of the function is undefined (7.6.1.3). — end note ]

Except that converting a prvalue of type “pointer to T1” to the type “pointer to T2” (where T1 and T2 are
function types) and back to its original type yields the original pointer value, the result of such a pointer
conversion is unspecified.
[Note 5 : See also 7.3.12 for more details of pointer conversions. — end note ]

7 An object pointer can be explicitly converted to an object pointer of a different type.56 When a prvalue v of
object pointer type is converted to the object pointer type “pointer to cv T”, the result is static_cast<cv
T*>(static_cast<cv void*>(v)).
[Note 6 : Converting a pointer of type “pointer to T1” that points to an object of type T1 to the type “pointer to T2”
(where T2 is an object type and the alignment requirements of T2 are no stricter than those of T1) and back to its
original type yields the original pointer value. — end note ]

8 Converting a function pointer to an object pointer type or vice versa is conditionally-supported. The meaning
of such a conversion is implementation-defined, except that if an implementation supports conversions in both
directions, converting a prvalue of one type to the other type and back, possibly with different cv-qualification,
shall yield the original pointer value.

9 The null pointer value (6.8.4) is converted to the null pointer value of the destination type.
[Note 7 : A null pointer constant of type std::nullptr_t cannot be converted to a pointer type, and a null pointer
constant of integral type is not necessarily converted to a null pointer value. — end note ]

10 A prvalue of type “pointer to member of X of type T1” can be explicitly converted to a prvalue of a different
type “pointer to member of Y of type T2” if T1 and T2 are both function types or both object types.57 The
null member pointer value (7.3.13) is converted to the null member pointer value of the destination type.
The result of this conversion is unspecified, except in the following cases:

—(10.1) Converting a prvalue of type “pointer to member function” to a different pointer-to-member-function
type and back to its original type yields the original pointer-to-member value.

—(10.2) Converting a prvalue of type “pointer to data member of X of type T1” to the type “pointer to data
member of Y of type T2” (where the alignment requirements of T2 are no stricter than those of T1) and
back to its original type yields the original pointer-to-member value.

11 A glvalue of type T1, designating an object x, can be cast to the type “reference to T2” if an expression
of type “pointer to T1” can be explicitly converted to the type “pointer to T2” using a reinterpret_cast.
The result is that of *reinterpret_cast<T2 *>(p) where p is a pointer to x of type “pointer to T1”. No
temporary is created, no copy is made, and no constructors (11.4.5) or conversion functions (11.4.8) are
called.58

7.6.1.11 Const cast [expr.const.cast]
1 The result of the expression const_cast<T>(v) is of type T. If T is an lvalue reference to object type,

the result is an lvalue; if T is an rvalue reference to object type, the result is an xvalue; otherwise, the
result is a prvalue and the lvalue-to-rvalue (7.3.2), array-to-pointer (7.3.3), and function-to-pointer (7.3.4)
standard conversions are performed on the expression v. Conversions that can be performed explicitly using
const_cast are listed below. No other conversion shall be performed explicitly using const_cast.

2 [Note 1 : Subject to the restrictions in this subclause, an expression can be cast to its own type using a const_cast
operator. — end note ]

3 For two similar types T1 and T2 (7.3.6), a prvalue of type T1 may be explicitly converted to the type T2 using
a const_cast if, considering the qualification-decompositions of both types, each P 1

i is the same as P 2
i for

all i. The result of a const_cast refers to the original entity.

56) The types can have different cv-qualifiers, subject to the overall restriction that a reinterpret_cast cannot cast away
constness.

57) T1 and T2 can have different cv-qualifiers, subject to the overall restriction that a reinterpret_cast cannot cast away
constness.

58) This is sometimes referred to as a type pun when the result refers to the same object as the source glvalue.
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[Example 1 :
typedef int *A[3]; // array of 3 pointer to int
typedef const int *const CA[3]; // array of 3 const pointer to const int

CA &&r = A{}; // OK, reference binds to temporary array object
// after qualification conversion to type CA

A &&r1 = const_cast<A>(CA{}); // error: temporary array decayed to pointer
A &&r2 = const_cast<A&&>(CA{}); // OK

— end example ]
4 For two object types T1 and T2, if a pointer to T1 can be explicitly converted to the type “pointer to T2”

using a const_cast, then the following conversions can also be made:
—(4.1) an lvalue of type T1 can be explicitly converted to an lvalue of type T2 using the cast const_cast<T2&>;
—(4.2) a glvalue of type T1 can be explicitly converted to an xvalue of type T2 using the cast const_cast<T2&&>;

and
—(4.3) if T1 is a class type, a prvalue of type T1 can be explicitly converted to an xvalue of type T2 using the

cast const_cast<T2&&>.
The result of a reference const_cast refers to the original object if the operand is a glvalue and to the result
of applying the temporary materialization conversion (7.3.5) otherwise.

5 A null pointer value (6.8.4) is converted to the null pointer value of the destination type. The null member
pointer value (7.3.13) is converted to the null member pointer value of the destination type.

6 [Note 2 : Depending on the type of the object, a write operation through the pointer, lvalue or pointer to data member
resulting from a const_cast that casts away a const-qualifier59 can produce undefined behavior (9.2.9.2). — end
note ]

7 A conversion from a type T1 to a type T2 casts away constness if T1 and T2 are different, there is a
qualification-decomposition (7.3.6) of T1 yielding n such that T2 has a qualification-decomposition of the
form

cv2
0 P 2

0 cv2
1 P 2

1 · · · cv2
n−1 P 2

n−1 cv2
n U2,

and there is no qualification conversion that converts T1 to
cv2

0 P 1
0 cv2

1 P 1
1 · · · cv2

n−1 P 1
n−1 cv2

n U1.
8 Casting from an lvalue of type T1 to an lvalue of type T2 using an lvalue reference cast or casting from an

expression of type T1 to an xvalue of type T2 using an rvalue reference cast casts away constness if a cast
from a prvalue of type “pointer to T1” to the type “pointer to T2” casts away constness.

9 [Note 3 : Some conversions which involve only changes in cv-qualification cannot be done using const_cast. For
instance, conversions between pointers to functions are not covered because such conversions lead to values whose
use causes undefined behavior. For the same reasons, conversions between pointers to member functions, and in
particular, the conversion from a pointer to a const member function to a pointer to a non-const member function,
are not covered. — end note ]

7.6.2 Unary expressions [expr.unary]
7.6.2.1 General [expr.unary.general]

1 Expressions with unary operators group right-to-left.

59) const_cast is not limited to conversions that cast away a const-qualifier.
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unary-expression :
postfix-expression
unary-operator cast-expression
++ cast-expression
-- cast-expression
await-expression
sizeof unary-expression
sizeof ( type-id )
sizeof ... ( identifier )
alignof ( type-id )
noexcept-expression
new-expression
delete-expression

unary-operator : one of
* & + - ! ~

7.6.2.2 Unary operators [expr.unary.op]
1 The unary * operator performs indirection. Its operand shall be a prvalue of type “pointer to T”, where T is

an object or function type. The operator yields an lvalue of type T denoting the object or function to which
the operand points.
[Note 1 : Indirection through a pointer to an incomplete type (other than cv void) is valid. The lvalue thus obtained
can be used in limited ways (to initialize a reference, for example); this lvalue must not be converted to a prvalue,
see 7.3.2. — end note ]

2 Each of the following unary operators yields a prvalue.
3 The operand of the unary & operator shall be an lvalue of some type T. The result is a prvalue.

—(3.1) If the operand is a qualified-id naming a non-static or variant member m of some class C, other than
an explicit object member function, the result has type “pointer to member of class C of type T” and
designates C::m.

—(3.2) Otherwise, the result has type “pointer to T” and points to the designated object (6.7.1) or function
(6.8.4). If the operand names an explicit object member function (9.3.4.6), the operand shall be a
qualified-id .
[Note 2 : In particular, taking the address of a variable of type “cv T” yields a pointer of type “pointer to cv T”.

— end note ]
[Example 1 :

struct A { int i; };
struct B : A { };
... &B::i ... // has type int A::*
int a;
int* p1 = &a;
int* p2 = p1 + 1; // defined behavior
bool b = p2 > p1; // defined behavior, with value true

— end example ]
[Note 3 : A pointer to member formed from a mutable non-static data member (9.2.2) does not reflect the mutable
specifier associated with the non-static data member. — end note ]

4 A pointer to member is only formed when an explicit & is used and its operand is a qualified-id not enclosed
in parentheses.
[Note 4 : That is, the expression &(qualified-id), where the qualified-id is enclosed in parentheses, does not form an
expression of type “pointer to member”. Neither does qualified-id, because there is no implicit conversion from a
qualified-id for a non-static member function to the type “pointer to member function” as there is from an lvalue of
function type to the type “pointer to function” (7.3.4). Nor is &unqualified-id a pointer to member, even within
the scope of the unqualified-id ’s class. — end note ]

5 If & is applied to an lvalue of incomplete class type and the complete type declares operator&(), it is
unspecified whether the operator has the built-in meaning or the operator function is called. The operand of
& shall not be a bit-field.

6 [Note 5 : The address of an overload set (Clause 12) can be taken only in a context that uniquely determines which
function is referred to (see 12.3). Since the context can affect whether the operand is a static or non-static member
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function, the context can also affect whether the expression has type “pointer to function” or “pointer to member
function”. — end note ]

7 The operand of the unary + operator shall have arithmetic, unscoped enumeration, or pointer type and the
result is the value of the argument. Integral promotion is performed on integral or enumeration operands.
The type of the result is the type of the promoted operand.

8 The operand of the unary - operator shall have arithmetic or unscoped enumeration type and the result
is the negative of its operand. Integral promotion is performed on integral or enumeration operands. The
negative of an unsigned quantity is computed by subtracting its value from 2n, where n is the number of bits
in the promoted operand. The type of the result is the type of the promoted operand.
[Note 6 : The result is the two’s complement of the operand (where operand and result are considered as unsigned).

— end note ]
9 The operand of the logical negation operator ! is contextually converted to bool (7.3); its value is true if

the converted operand is false and false otherwise. The type of the result is bool.
10 The operand of the ~ operator shall have integral or unscoped enumeration type. Integral promotions are

performed. The type of the result is the type of the promoted operand. Given the coefficients xi of the base-2
representation (6.8.2) of the promoted operand x, the coefficient ri of the base-2 representation of the result
r is 1 if xi is 0, and 0 otherwise.
[Note 7 : The result is the ones’ complement of the operand (where operand and result are considered as unsigned).

— end note ]

There is an ambiguity in the grammar when ~ is followed by a type-name or decltype-specifier . The ambiguity
is resolved by treating ~ as the operator rather than as the start of an unqualified-id naming a destructor.
[Note 8 : Because the grammar does not permit an operator to follow the ., ->, or :: tokens, a ~ followed by a
type-name or decltype-specifier in a member access expression or qualified-id is unambiguously parsed as a destructor
name. — end note ]

7.6.2.3 Increment and decrement [expr.pre.incr]
1 The operand of prefix ++ is modified (3.1) by adding 1. The operand shall be a modifiable lvalue. The type

of the operand shall be an arithmetic type other than cv bool, or a pointer to a completely-defined object
type. An operand with volatile-qualified type is deprecated; see D.5. The result is the updated operand; it is
an lvalue, and it is a bit-field if the operand is a bit-field. The expression ++x is equivalent to x+=1.
[Note 1 : See the discussions of addition (7.6.6) and assignment operators (7.6.19) for information on conversions.

— end note ]
2 The operand of prefix -- is modified (3.1) by subtracting 1. The requirements on the operand of prefix --

and the properties of its result are otherwise the same as those of prefix ++.
[Note 2 : For postfix increment and decrement, see 7.6.1.6. — end note ]

7.6.2.4 Await [expr.await]
1 The co_await expression is used to suspend evaluation of a coroutine (9.5.4) while awaiting completion of

the computation represented by the operand expression.
await-expression :

co_await cast-expression
2 An await-expression shall appear only in a potentially-evaluated expression within the compound-statement of

a function-body outside of a handler (14.1). In a declaration-statement or in the simple-declaration (if any)
of an init-statement, an await-expression shall appear only in an initializer of that declaration-statement or
simple-declaration. An await-expression shall not appear in a default argument (9.3.4.7). An await-expression
shall not appear in the initializer of a block variable with static or thread storage duration. A context within
a function where an await-expression can appear is called a suspension context of the function.

3 Evaluation of an await-expression involves the following auxiliary types, expressions, and objects:
—(3.1) p is an lvalue naming the promise object (9.5.4) of the enclosing coroutine and P is the type of that

object.
—(3.2) Unless the await-expression was implicitly produced by a yield-expression (7.6.17), an initial await

expression, or a final await expression (9.5.4), a search is performed for the name await_transform
in the scope of P (6.5.2). If this search is performed and finds at least one declaration, then a is
p.await_transform(cast-expression); otherwise, a is the cast-expression.
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—(3.3) o is determined by enumerating the applicable operator co_await functions for an argument a
(12.2.2.3), and choosing the best one through overload resolution (12.2). If overload resolution is
ambiguous, the program is ill-formed. If no viable functions are found, o is a. Otherwise, o is a call
to the selected function with the argument a. If o would be a prvalue, the temporary materialization
conversion (7.3.5) is applied.

—(3.4) e is an lvalue referring to the result of evaluating the (possibly-converted) o.
—(3.5) h is an object of type std::coroutine_handle<P> referring to the enclosing coroutine.
—(3.6) await-ready is the expression e.await_ready(), contextually converted to bool.
—(3.7) await-suspend is the expression e.await_suspend(h), which shall be a prvalue of type void, bool, or

std::coroutine_handle<Z> for some type Z.
—(3.8) await-resume is the expression e.await_resume().

4 The await-expression has the same type and value category as the await-resume expression.
5 The await-expression evaluates the (possibly-converted) o expression and the await-ready expression, then:

—(5.1) If the result of await-ready is false, the coroutine is considered suspended. Then:
—(5.1.1) If the type of await-suspend is std::coroutine_handle<Z>, await-suspend.resume() is evaluated.

[Note 1 : This resumes the coroutine referred to by the result of await-suspend. Any number of coroutines
can be successively resumed in this fashion, eventually returning control flow to the current coroutine
caller or resumer (9.5.4). — end note ]

—(5.1.2) Otherwise, if the type of await-suspend is bool, await-suspend is evaluated, and the coroutine is
resumed if the result is false.

—(5.1.3) Otherwise, await-suspend is evaluated.
If the evaluation of await-suspend exits via an exception, the exception is caught, the coroutine is
resumed, and the exception is immediately rethrown (14.2). Otherwise, control flow returns to the
current coroutine caller or resumer (9.5.4) without exiting any scopes (8.7). The point in the coroutine
immediately prior to control returning to its caller or resumer is a coroutine suspend point.

—(5.2) If the result of await-ready is true, or when the coroutine is resumed other than by rethrowing an
exception from await-suspend, the await-resume expression is evaluated, and its result is the result of
the await-expression.

[Note 2 : With respect to sequencing, an await-expression is indivisible (6.9.1). — end note ]
6 [Example 1 :

template <typename T>
struct my_future {

/* ... */
bool await_ready();
void await_suspend(std::coroutine_handle<>);
T await_resume();

};

template <class Rep, class Period>
auto operator co_await(std::chrono::duration<Rep, Period> d) {

struct awaiter {
std::chrono::system_clock::duration duration;
/* ... */
awaiter(std::chrono::system_clock::duration d) : duration(d) {}
bool await_ready() const { return duration.count() <= 0; }
void await_resume() {}
void await_suspend(std::coroutine_handle<> h) { /* ... */ }

};
return awaiter{d};

}

using namespace std::chrono;

my_future<int> h();
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my_future<void> g() {
std::cout << "just about to go to sleep...\n";
co_await 10ms;
std::cout << "resumed\n";
co_await h();

}

auto f(int x = co_await h()); // error: await-expression outside of function suspension context
int a[] = { co_await h() }; // error: await-expression outside of function suspension context

— end example ]

7.6.2.5 Sizeof [expr.sizeof]
1 The sizeof operator yields the number of bytes occupied by a non-potentially-overlapping object of the

type of its operand. The operand is either an expression, which is an unevaluated operand (7.2.3), or a
parenthesized type-id . The sizeof operator shall not be applied to an expression that has function or
incomplete type, to the parenthesized name of such types, or to a glvalue that designates a bit-field. The
result of sizeof applied to any of the narrow character types is 1. The result of sizeof applied to any other
fundamental type (6.8.2) is implementation-defined.
[Note 1 : In particular, the values of sizeof(bool), sizeof(char16_t), sizeof(char32_t), and sizeof(wchar_t)
are implementation-defined.60 — end note ]
[Note 2 : See 6.7.1 for the definition of byte and 6.8.1 for the definition of object representation. — end note ]

2 When applied to a reference type, the result is the size of the referenced type. When applied to a class, the
result is the number of bytes in an object of that class including any padding required for placing objects of
that type in an array. The result of applying sizeof to a potentially-overlapping subobject is the size of the
type, not the size of the subobject.61 When applied to an array, the result is the total number of bytes in the
array. This implies that the size of an array of n elements is n times the size of an element.

3 The lvalue-to-rvalue (7.3.2), array-to-pointer (7.3.3), and function-to-pointer (7.3.4) standard conversions
are not applied to the operand of sizeof. If the operand is a prvalue, the temporary materialization
conversion (7.3.5) is applied.

4 The identifier in a sizeof... expression shall name a pack. The sizeof... operator yields the number of
elements in the pack (13.7.4). A sizeof... expression is a pack expansion (13.7.4).
[Example 1 :

template<class... Types>
struct count {

static const std::size_t value = sizeof...(Types);
};

— end example ]
5 The result of sizeof and sizeof... is a prvalue of type std::size_t.

[Note 3 : A sizeof expression is an integral constant expression (7.7). The type std::size_t is defined in the standard
header <cstddef> (17.2.1, 17.2.4). — end note ]

7.6.2.6 Alignof [expr.alignof]
1 An alignof expression yields the alignment requirement of its operand type. The operand shall be a type-id

representing a complete object type, or an array thereof, or a reference to one of those types.
2 The result is a prvalue of type std::size_t.

[Note 1 : An alignof expression is an integral constant expression (7.7). The type std::size_t is defined in the
standard header <cstddef> (17.2.1, 17.2.4). — end note ]

3 When alignof is applied to a reference type, the result is the alignment of the referenced type. When
alignof is applied to an array type, the result is the alignment of the element type.

60) sizeof(bool) is not required to be 1.
61) The actual size of a potentially-overlapping subobject can be less than the result of applying sizeof to the subobject, due

to virtual base classes and less strict padding requirements on potentially-overlapping subobjects.
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7.6.2.7 noexcept operator [expr.unary.noexcept]
1 The noexcept operator determines whether the evaluation of its operand, which is an unevaluated operand

(7.2.3), can throw an exception (14.2).
noexcept-expression :

noexcept ( expression )

2 The result of the noexcept operator is a prvalue of type bool.
[Note 1 : A noexcept-expression is an integral constant expression (7.7). — end note ]

3 The result of the noexcept operator is true unless the expression is potentially-throwing (14.5).

7.6.2.8 New [expr.new]
1 The new-expression attempts to create an object of the type-id (9.3.2) or new-type-id to which it is applied.

The type of that object is the allocated type. This type shall be a complete object type (6.8.1), but not an
abstract class type (11.7.4) or array thereof (6.7.2).
[Note 1 : Because references are not objects, references cannot be created by new-expressions. — end note ]
[Note 2 : The type-id can be a cv-qualified type, in which case the object created by the new-expression has a cv-qualified
type. — end note ]

new-expression :
::opt new new-placementopt new-type-id new-initializeropt
::opt new new-placementopt ( type-id ) new-initializeropt

new-placement :
( expression-list )

new-type-id :
type-specifier-seq new-declaratoropt

new-declarator :
ptr-operator new-declaratoropt
noptr-new-declarator

noptr-new-declarator :
[ expressionopt ] attribute-specifier-seqopt
noptr-new-declarator [ constant-expression ] attribute-specifier-seqopt

new-initializer :
( expression-listopt )
braced-init-list

2 If a placeholder type (9.2.9.6) appears in the type-specifier-seq of a new-type-id or type-id of a new-expression,
the allocated type is deduced as follows: Let init be the new-initializer , if any, and T be the new-type-id or
type-id of the new-expression, then the allocated type is the type deduced for the variable x in the invented
declaration (9.2.9.6):

T x init ;

[Example 1 :
new auto(1); // allocated type is int
auto x = new auto('a'); // allocated type is char, x is of type char*

template<class T> struct A { A(T, T); };
auto y = new A{1, 2}; // allocated type is A<int>

— end example ]
3 The new-type-id in a new-expression is the longest possible sequence of new-declarators.

[Note 3 : This prevents ambiguities between the declarator operators &, &&, *, and [] and their expression counterparts.
— end note ]
[Example 2 :

new int * i; // syntax error: parsed as (new int*) i, not as (new int)*i

The * is the pointer declarator and not the multiplication operator. — end example ]
4 [Note 4 : Parentheses in a new-type-id of a new-expression can have surprising effects.

[Example 3 :
new int(*[10])(); // error
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is ill-formed because the binding is
(new int) (*[10])(); // error

Instead, the explicitly parenthesized version of the new operator can be used to create objects of compound types (6.8.4):
new (int (*[10])());

allocates an array of 10 pointers to functions (taking no argument and returning int). — end example ]
— end note ]

5 The attribute-specifier-seq in a noptr-new-declarator appertains to the associated array type.
6 Every constant-expression in a noptr-new-declarator shall be a converted constant expression (7.7) of type

std::size_t and its value shall be greater than zero.
[Example 4 : Given the definition int n = 42, new float[n][5] is well-formed (because n is the expression of a
noptr-new-declarator), but new float[5][n] is ill-formed (because n is not a constant expression). — end example ]

7 If the type-id or new-type-id denotes an array type of unknown bound (9.3.4.5), the new-initializer shall not be
omitted; the allocated object is an array with n elements, where n is determined from the number of initial
elements supplied in the new-initializer (9.4.2, 9.4.3).

8 If the expression in a noptr-new-declarator is present, it is implicitly converted to std::size_t. The expression
is erroneous if:

—(8.1) the expression is of non-class type and its value before converting to std::size_t is less than zero;
—(8.2) the expression is of class type and its value before application of the second standard conversion

(12.2.4.2.3)62 is less than zero;
—(8.3) its value is such that the size of the allocated object would exceed the implementation-defined limit

(Annex B); or
—(8.4) the new-initializer is a braced-init-list and the number of array elements for which initializers are provided

(including the terminating ’\0’ in a string-literal (5.13.5)) exceeds the number of elements to initialize.
If the expression is erroneous after converting to std::size_t:

—(8.5) if the expression is a potentially-evaluated core constant expression, the program is ill-formed;
—(8.6) otherwise, an allocation function is not called; instead

—(8.6.1) if the allocation function that would have been called has a non-throwing exception specification
(14.5), the value of the new-expression is the null pointer value of the required result type;

—(8.6.2) otherwise, the new-expression terminates by throwing an exception of a type that would match a
handler (14.4) of type std::bad_array_new_length (17.6.4.2).

When the value of the expression is zero, the allocation function is called to allocate an array with no elements.
9 Objects created by a new-expression have dynamic storage duration (6.7.5.5).

[Note 5 : The lifetime of such an object is not necessarily restricted to the scope in which it is created. — end note ]
10 When the allocated type is “array of N T” (that is, the noptr-new-declarator syntax is used or the new-type-id

or type-id denotes an array type), the new-expression yields a prvalue of type “pointer to T” that points to the
initial element (if any) of the array. Otherwise, let T be the allocated type; the new-expression is a prvalue of
type “pointer to T” that points to the object created.
[Note 6 : Both new int and new int[10] have type int* and the type of new int[i][10] is int (*)[10]. — end
note ]

11 A new-expression may obtain storage for the object by calling an allocation function (6.7.5.5.2). If the
new-expression terminates by throwing an exception, it may release storage by calling a deallocation function
(6.7.5.5.3). If the allocated type is a non-array type, the allocation function’s name is operator new and
the deallocation function’s name is operator delete. If the allocated type is an array type, the allocation
function’s name is operator new[] and the deallocation function’s name is operator delete[].
[Note 7 : An implementation is required to provide default definitions for the global allocation functions (6.7.5.5,
17.6.3.2, 17.6.3.3). A C++ program can provide alternative definitions of these functions (16.4.5.6) and/or class-specific
versions (11.4.11). The set of allocation and deallocation functions that can be called by a new-expression can include
functions that do not perform allocation or deallocation; for example, see 17.6.3.4. — end note ]

62) If the conversion function returns a signed integer type, the second standard conversion converts to the unsigned type
std::size_t and thus thwarts any attempt to detect a negative value afterwards.
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12 If the new-expression does not begin with a unary :: operator and the allocated type is a class type T or
array thereof, a search is performed for the allocation function’s name in the scope of T (6.5.2). Otherwise,
or if nothing is found, the allocation function’s name is looked up by searching for it in the global scope.

13 An implementation is allowed to omit a call to a replaceable global allocation function (17.6.3.2, 17.6.3.3).
When it does so, the storage is instead provided by the implementation or provided by extending the allocation
of another new-expression.

14 During an evaluation of a constant expression, a call to an allocation function is always omitted.
[Note 8 : Only new-expressions that would otherwise result in a call to a replaceable global allocation function can be
evaluated in constant expressions (7.7). — end note ]

15 The implementation may extend the allocation of a new-expression e1 to provide storage for a new-expression
e2 if the following would be true were the allocation not extended:

—(15.1) the evaluation of e1 is sequenced before the evaluation of e2, and
—(15.2) e2 is evaluated whenever e1 obtains storage, and
—(15.3) both e1 and e2 invoke the same replaceable global allocation function, and
—(15.4) if the allocation function invoked by e1 and e2 is throwing, any exceptions thrown in the evaluation of

either e1 or e2 would be first caught in the same handler, and
—(15.5) the pointer values produced by e1 and e2 are operands to evaluated delete-expressions, and
—(15.6) the evaluation of e2 is sequenced before the evaluation of the delete-expression whose operand is the

pointer value produced by e1.
[Example 5 :

void can_merge(int x) {
// These allocations are safe for merging:
std::unique_ptr<char[]> a{new (std::nothrow) char[8]};
std::unique_ptr<char[]> b{new (std::nothrow) char[8]};
std::unique_ptr<char[]> c{new (std::nothrow) char[x]};

g(a.get(), b.get(), c.get());
}

void cannot_merge(int x) {
std::unique_ptr<char[]> a{new char[8]};
try {

// Merging this allocation would change its catch handler.
std::unique_ptr<char[]> b{new char[x]};

} catch (const std::bad_alloc& e) {
std::cerr << "Allocation failed: " << e.what() << std::endl;
throw;

}
}

— end example ]
16 When a new-expression calls an allocation function and that allocation has not been extended, the new-

expression passes the amount of space requested to the allocation function as the first argument of type
std::size_t. That argument shall be no less than the size of the object being created; it may be greater
than the size of the object being created only if the object is an array and the allocation function is not a
non-allocating form (17.6.3.4). For arrays of char, unsigned char, and std::byte, the difference between
the result of the new-expression and the address returned by the allocation function shall be an integral
multiple of the strictest fundamental alignment requirement (6.7.6) of any object type whose size is no greater
than the size of the array being created.
[Note 9 : Because allocation functions are assumed to return pointers to storage that is appropriately aligned for
objects of any type with fundamental alignment, this constraint on array allocation overhead permits the common
idiom of allocating character arrays into which objects of other types will later be placed. — end note ]

17 When a new-expression calls an allocation function and that allocation has been extended, the size argument
to the allocation call shall be no greater than the sum of the sizes for the omitted calls as specified above,
plus the size for the extended call had it not been extended, plus any padding necessary to align the allocated
objects within the allocated memory.
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18 The new-placement syntax is used to supply additional arguments to an allocation function; such an expression
is called a placement new-expression.

19 Overload resolution is performed on a function call created by assembling an argument list. The first
argument is the amount of space requested, and has type std::size_t. If the type of the allocated object
has new-extended alignment, the next argument is the type’s alignment, and has type std::align_val_t. If
the new-placement syntax is used, the initializer-clauses in its expression-list are the succeeding arguments. If
no matching function is found then

—(19.1) if the allocated object type has new-extended alignment, the alignment argument is removed from the
argument list;

—(19.2) otherwise, an argument that is the type’s alignment and has type std::align_val_t is added into the
argument list immediately after the first argument;

and then overload resolution is performed again.
20 [Example 6 :

—(20.1) new T results in one of the following calls:
operator new(sizeof(T))
operator new(sizeof(T), std::align_val_t(alignof(T)))

—(20.2) new(2,f) T results in one of the following calls:
operator new(sizeof(T), 2, f)
operator new(sizeof(T), std::align_val_t(alignof(T)), 2, f)

—(20.3) new T[5] results in one of the following calls:
operator new[](sizeof(T) * 5 + x)
operator new[](sizeof(T) * 5 + x, std::align_val_t(alignof(T)))

—(20.4) new(2,f) T[5] results in one of the following calls:
operator new[](sizeof(T) * 5 + x, 2, f)
operator new[](sizeof(T) * 5 + x, std::align_val_t(alignof(T)), 2, f)

Here, each instance of x is a non-negative unspecified value representing array allocation overhead; the result of
the new-expression will be offset by this amount from the value returned by operator new[]. This overhead may
be applied in all array new-expressions, including those referencing a placement allocation function, except when
referencing the library function operator new[](std::size_t, void*). The amount of overhead may vary from one
invocation of new to another. — end example ]

21 [Note 10 : Unless an allocation function has a non-throwing exception specification (14.5), it indicates failure to
allocate storage by throwing a std::bad_alloc exception (6.7.5.5.2, Clause 14, 17.6.4.1); it returns a non-null pointer
otherwise. If the allocation function has a non-throwing exception specification, it returns null to indicate failure to
allocate storage and a non-null pointer otherwise. — end note ]

If the allocation function is a non-allocating form (17.6.3.4) that returns null, the behavior is undefined.
Otherwise, if the allocation function returns null, initialization shall not be done, the deallocation function
shall not be called, and the value of the new-expression shall be null.

22 [Note 11 : When the allocation function returns a value other than null, it must be a pointer to a block of storage in
which space for the object has been reserved. The block of storage is assumed to be appropriately aligned and of the
requested size. The address of the created object will not necessarily be the same as that of the block if the object is
an array. — end note ]

23 A new-expression that creates an object of type T initializes that object as follows:
—(23.1) If the new-initializer is omitted, the object is default-initialized (9.4).

[Note 12 : If no initialization is performed, the object has an indeterminate value. — end note ]

—(23.2) Otherwise, the new-initializer is interpreted according to the initialization rules of 9.4 for direct-
initialization.

24 The invocation of the allocation function is sequenced before the evaluations of expressions in the new-initializer .
Initialization of the allocated object is sequenced before the value computation of the new-expression.

25 If the new-expression creates an object or an array of objects of class type, access and ambiguity control are
done for the allocation function, the deallocation function (6.7.5.5.3), and the constructor (11.4.5) selected
for the initialization (if any). If the new-expression creates an array of objects of class type, the destructor is
potentially invoked (11.4.7).
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26 If any part of the object initialization described above63 terminates by throwing an exception and a suitable
deallocation function can be found, the deallocation function is called to free the memory in which the object
was being constructed, after which the exception continues to propagate in the context of the new-expression.
If no unambiguous matching deallocation function can be found, propagating the exception does not cause
the object’s memory to be freed.
[Note 13 : This is appropriate when the called allocation function does not allocate memory; otherwise, it is likely to
result in a memory leak. — end note ]

27 If the new-expression does not begin with a unary :: operator and the allocated type is a class type T or an
array thereof, a search is performed for the deallocation function’s name in the scope of T. Otherwise, or if
nothing is found, the deallocation function’s name is looked up by searching for it in the global scope.

28 A declaration of a placement deallocation function matches the declaration of a placement allocation function
if it has the same number of parameters and, after parameter transformations (9.3.4.6), all parameter types
except the first are identical. If the lookup finds a single matching deallocation function, that function will
be called; otherwise, no deallocation function will be called. If the lookup finds a usual deallocation function
and that function, considered as a placement deallocation function, would have been selected as a match
for the allocation function, the program is ill-formed. For a non-placement allocation function, the normal
deallocation function lookup is used to find the matching deallocation function (7.6.2.9).
[Example 7 :

struct S {
// Placement allocation function:
static void* operator new(std::size_t, std::size_t);

// Usual (non-placement) deallocation function:
static void operator delete(void*, std::size_t);

};

S* p = new (0) S; // error: non-placement deallocation function matches
// placement allocation function

— end example ]
29 If a new-expression calls a deallocation function, it passes the value returned from the allocation function

call as the first argument of type void*. If a placement deallocation function is called, it is passed the same
additional arguments as were passed to the placement allocation function, that is, the same arguments as
those specified with the new-placement syntax. If the implementation is allowed to introduce a temporary
object or make a copy of any argument as part of the call to the allocation function, it is unspecified whether
the same object is used in the call to both the allocation and deallocation functions.

7.6.2.9 Delete [expr.delete]
1 The delete-expression operator destroys a most derived object (6.7.2) or array created by a new-expression.

delete-expression :
::opt delete cast-expression
::opt delete [ ] cast-expression

The first alternative is a single-object delete expression, and the second is an array delete expression. Whenever
the delete keyword is immediately followed by empty square brackets, it shall be interpreted as the second
alternative.64 The operand shall be of pointer to object type or of class type. If of class type, the operand is
contextually implicitly converted (7.3) to a pointer to object type.65 The delete-expression has type void.

2 If the operand has a class type, the operand is converted to a pointer type by calling the above-mentioned
conversion function, and the converted operand is used in place of the original operand for the remainder of
this subclause. In a single-object delete expression, the value of the operand of delete may be a null pointer
value, a pointer value that resulted from a previous non-array new-expression, or a pointer to a base class
subobject of an object created by such a new-expression. If not, the behavior is undefined. In an array delete
expression, the value of the operand of delete may be a null pointer value or a pointer value that resulted

63) This can include evaluating a new-initializer and/or calling a constructor.
64) A lambda-expression with a lambda-introducer that consists of empty square brackets can follow the delete keyword if the

lambda-expression is enclosed in parentheses.
65) This implies that an object cannot be deleted using a pointer of type void* because void is not an object type.
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from a previous array new-expression whose allocation function was not a non-allocating form (17.6.3.4).66 If
not, the behavior is undefined.
[Note 1 : This means that the syntax of the delete-expression must match the type of the object allocated by new, not
the syntax of the new-expression. — end note ]
[Note 2 : A pointer to a const type can be the operand of a delete-expression; it is not necessary to cast away the
constness (7.6.1.11) of the pointer expression before it is used as the operand of the delete-expression. — end note ]

3 In a single-object delete expression, if the static type of the object to be deleted is not similar (7.3.6) to its
dynamic type and the selected deallocation function (see below) is not a destroying operator delete, the static
type shall be a base class of the dynamic type of the object to be deleted and the static type shall have a
virtual destructor or the behavior is undefined. In an array delete expression, if the dynamic type of the
object to be deleted is not similar to its static type, the behavior is undefined.

4 The cast-expression in a delete-expression shall be evaluated exactly once.
5 If the object being deleted has incomplete class type at the point of deletion and the complete class has a

non-trivial destructor or a deallocation function, the behavior is undefined.
6 If the value of the operand of the delete-expression is not a null pointer value and the selected deallocation

function (see below) is not a destroying operator delete, the delete-expression will invoke the destructor (if
any) for the object or the elements of the array being deleted. In the case of an array, the elements will
be destroyed in order of decreasing address (that is, in reverse order of the completion of their constructor;
see 11.9.3).

7 If the value of the operand of the delete-expression is not a null pointer value, then:
—(7.1) If the allocation call for the new-expression for the object to be deleted was not omitted and the

allocation was not extended (7.6.2.8), the delete-expression shall call a deallocation function (6.7.5.5.3).
The value returned from the allocation call of the new-expression shall be passed as the first argument
to the deallocation function.

—(7.2) Otherwise, if the allocation was extended or was provided by extending the allocation of another
new-expression, and the delete-expression for every other pointer value produced by a new-expression that
had storage provided by the extended new-expression has been evaluated, the delete-expression shall call
a deallocation function. The value returned from the allocation call of the extended new-expression
shall be passed as the first argument to the deallocation function.

—(7.3) Otherwise, the delete-expression will not call a deallocation function.
[Note 3 : The deallocation function is called regardless of whether the destructor for the object or some element of the
array throws an exception. — end note ]

If the value of the operand of the delete-expression is a null pointer value, it is unspecified whether a
deallocation function will be called as described above.

8 If a deallocation function is called, it is operator delete for a single-object delete expression or operator
delete[] for an array delete expression.
[Note 4 : An implementation provides default definitions of the global deallocation functions (17.6.3.2, 17.6.3.3). A
C++ program can provide alternative definitions of these functions (16.4.5.6), and/or class-specific versions (11.4.11).

— end note ]
9 If the keyword delete in a delete-expression is not preceded by the unary :: operator and the type of the

operand is a pointer to a (possibly cv-qualified) class type T or (possibly multidimensional) array thereof:
—(9.1) For a single-object delete expression, if the operand is a pointer to cv T and T has a virtual destructor,

the deallocation function is the one selected at the point of definition of the dynamic type’s virtual
destructor (11.4.7).

—(9.2) Otherwise, a search is performed for the deallocation function’s name in the scope of T.
Otherwise, or if nothing is found, the deallocation function’s name is looked up by searching for it in the
global scope. In any case, any declarations other than of usual deallocation functions (6.7.5.5.3) are discarded.
[Note 5 : If only a placement deallocation function is found in a class, the program is ill-formed because the lookup set
is empty (6.5). — end note ]

66) For nonzero-length arrays, this is the same as a pointer to the first element of the array created by that new-expression.
Zero-length arrays do not have a first element.
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10 If more than one deallocation function is found, the function to be called is selected as follows:
—(10.1) If any of the deallocation functions is a destroying operator delete, all deallocation functions that are

not destroying operator deletes are eliminated from further consideration.
—(10.2) If the type has new-extended alignment, a function with a parameter of type std::align_val_t is

preferred; otherwise a function without such a parameter is preferred. If any preferred functions are
found, all non-preferred functions are eliminated from further consideration.

—(10.3) If exactly one function remains, that function is selected and the selection process terminates.
—(10.4) If the deallocation functions belong to a class scope, the one without a parameter of type std::size_t

is selected.
—(10.5) If the type is complete and if, for an array delete expression only, the operand is a pointer to a class

type with a non-trivial destructor or a (possibly multidimensional) array thereof, the function with a
parameter of type std::size_t is selected.

—(10.6) Otherwise, it is unspecified whether a deallocation function with a parameter of type std::size_t is
selected.

11 For a single-object delete expression, the deleted object is the object A pointed to by the operand if the static
type of A does not have a virtual destructor, and the most-derived object of A otherwise.
[Note 6 : If the deallocation function is not a destroying operator delete and the deleted object is not the most derived
object in the former case, the behavior is undefined, as stated above. — end note ]

For an array delete expression, the deleted object is the array object. When a delete-expression is executed, the
selected deallocation function shall be called with the address of the deleted object in a single-object delete
expression, or the address of the deleted object suitably adjusted for the array allocation overhead (7.6.2.8)
in an array delete expression, as its first argument.
[Note 7 : Any cv-qualifiers in the type of the deleted object are ignored when forming this argument. — end note ]

If a destroying operator delete is used, an unspecified value is passed as the argument corresponding to
the parameter of type std::destroying_delete_t. If a deallocation function with a parameter of type
std::align_val_t is used, the alignment of the type of the deleted object is passed as the corresponding
argument. If a deallocation function with a parameter of type std::size_t is used, the size of the deleted
object in a single-object delete expression, or of the array plus allocation overhead in an array delete expression,
is passed as the corresponding argument.
[Note 8 : If this results in a call to a replaceable deallocation function, and either the first argument was not the
result of a prior call to a replaceable allocation function or the second or third argument was not the corresponding
argument in said call, the behavior is undefined (17.6.3.2, 17.6.3.3). — end note ]

12 Access and ambiguity control are done for both the deallocation function and the destructor (11.4.7, 11.4.11).

7.6.3 Explicit type conversion (cast notation) [expr.cast]
1 The result of the expression (T) cast-expression is of type T. The result is an lvalue if T is an lvalue reference

type or an rvalue reference to function type and an xvalue if T is an rvalue reference to object type; otherwise
the result is a prvalue.
[Note 1 : If T is a non-class type that is cv-qualified, the cv-qualifiers are discarded when determining the type of the
resulting prvalue; see 7.2. — end note ]

2 An explicit type conversion can be expressed using functional notation (7.6.1.4), a type conversion operator
(dynamic_cast, static_cast, reinterpret_cast, const_cast), or the cast notation.

cast-expression :
unary-expression
( type-id ) cast-expression

3 Any type conversion not mentioned below and not explicitly defined by the user (11.4.8) is ill-formed.
4 The conversions performed by

—(4.1) a const_cast (7.6.1.11),
—(4.2) a static_cast (7.6.1.9),
—(4.3) a static_cast followed by a const_cast,
—(4.4) a reinterpret_cast (7.6.1.10), or
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—(4.5) a reinterpret_cast followed by a const_cast,
can be performed using the cast notation of explicit type conversion. The same semantic restrictions
and behaviors apply, with the exception that in performing a static_cast in the following situations the
conversion is valid even if the base class is inaccessible:

—(4.6) a pointer to an object of derived class type or an lvalue or rvalue of derived class type may be explicitly
converted to a pointer or reference to an unambiguous base class type, respectively;

—(4.7) a pointer to member of derived class type may be explicitly converted to a pointer to member of an
unambiguous non-virtual base class type;

—(4.8) a pointer to an object of an unambiguous non-virtual base class type, a glvalue of an unambiguous
non-virtual base class type, or a pointer to member of an unambiguous non-virtual base class type
may be explicitly converted to a pointer, a reference, or a pointer to member of a derived class type,
respectively.

If a conversion can be interpreted in more than one of the ways listed above, the interpretation that appears
first in the list is used, even if a cast resulting from that interpretation is ill-formed. If a conversion can be
interpreted in more than one way as a static_cast followed by a const_cast, the conversion is ill-formed.
[Example 1 :

struct A { };
struct I1 : A { };
struct I2 : A { };
struct D : I1, I2 { };
A* foo( D* p ) {

return (A*)( p ); // ill-formed static_cast interpretation
}

— end example ]
5 The operand of a cast using the cast notation can be a prvalue of type “pointer to incomplete class type”.

The destination type of a cast using the cast notation can be “pointer to incomplete class type”. If both the
operand and destination types are class types and one or both are incomplete, it is unspecified whether the
static_cast or the reinterpret_cast interpretation is used, even if there is an inheritance relationship
between the two classes.
[Note 2 : For example, if the classes were defined later in the translation unit, a multi-pass compiler would be permitted
to interpret a cast between pointers to the classes as if the class types were complete at the point of the cast. — end
note ]

7.6.4 Pointer-to-member operators [expr.mptr.oper]
1 The pointer-to-member operators ->* and .* group left-to-right.

pm-expression :
cast-expression
pm-expression .* cast-expression
pm-expression ->* cast-expression

2 The binary operator .* binds its second operand, which shall be of type “pointer to member of T” to its first
operand, which shall be a glvalue of class T or of a class of which T is an unambiguous and accessible base
class. The result is an object or a function of the type specified by the second operand.

3 The binary operator ->* binds its second operand, which shall be of type “pointer to member of T” to its first
operand, which shall be of type “pointer to U” where U is either T or a class of which T is an unambiguous
and accessible base class. The expression E1->*E2 is converted into the equivalent form (*(E1)).*E2.

4 Abbreviating pm-expression.*cast-expression as E1.*E2, E1 is called the object expression. If the result of E1
is an object whose type is not similar to the type of E1, or whose most derived object does not contain the
member to which E2 refers, the behavior is undefined. The expression E1 is sequenced before the expression
E2.

5 The restrictions on cv-qualification, and the manner in which the cv-qualifiers of the operands are combined
to produce the cv-qualifiers of the result, are the same as the rules for E1.E2 given in 7.6.1.5.
[Note 1 : It is not possible to use a pointer to member that refers to a mutable member to modify a const class object.
For example,
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struct S {
S() : i(0) { }
mutable int i;

};
void f()
{

const S cs;
int S::* pm = &S::i; // pm refers to mutable member S::i
cs.*pm = 88; // error: cs is a const object

}

— end note ]
6 If the result of .* or ->* is a function, then that result can be used only as the operand for the function call

operator ().
[Example 1 :

(ptr_to_obj->*ptr_to_mfct)(10);

calls the member function denoted by ptr_to_mfct for the object pointed to by ptr_to_obj. — end example ]

In a .* expression whose object expression is an rvalue, the program is ill-formed if the second operand is a
pointer to member function whose ref-qualifier is &, unless its cv-qualifier-seq is const. In a .* expression
whose object expression is an lvalue, the program is ill-formed if the second operand is a pointer to member
function whose ref-qualifier is &&. The result of a .* expression whose second operand is a pointer to a data
member is an lvalue if the first operand is an lvalue and an xvalue otherwise. The result of a .* expression
whose second operand is a pointer to a member function is a prvalue. If the second operand is the null
member pointer value (7.3.13), the behavior is undefined.

7.6.5 Multiplicative operators [expr.mul]
1 The multiplicative operators *, /, and % group left-to-right.

multiplicative-expression :
pm-expression
multiplicative-expression * pm-expression
multiplicative-expression / pm-expression
multiplicative-expression % pm-expression

2 The operands of * and / shall have arithmetic or unscoped enumeration type; the operands of % shall have
integral or unscoped enumeration type. The usual arithmetic conversions (7.4) are performed on the operands
and determine the type of the result.

3 The binary * operator indicates multiplication.
4 The binary / operator yields the quotient, and the binary % operator yields the remainder from the division

of the first expression by the second. If the second operand of / or % is zero the behavior is undefined. For
integral operands the / operator yields the algebraic quotient with any fractional part discarded;67 if the
quotient a/b is representable in the type of the result, (a/b)*b + a%b is equal to a; otherwise, the behavior
of both a/b and a%b is undefined.

7.6.6 Additive operators [expr.add]
1 The additive operators + and - group left-to-right. The usual arithmetic conversions (7.4) are performed for

operands of arithmetic or enumeration type.
additive-expression :

multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

For addition, either both operands shall have arithmetic or unscoped enumeration type, or one operand shall
be a pointer to a completely-defined object type and the other shall have integral or unscoped enumeration
type.

2 For subtraction, one of the following shall hold:
—(2.1) both operands have arithmetic or unscoped enumeration type; or

67) This is often called truncation towards zero.

§ 7.6.6 145



© ISO/IEC N4950

—(2.2) both operands are pointers to cv-qualified or cv-unqualified versions of the same completely-defined
object type; or

—(2.3) the left operand is a pointer to a completely-defined object type and the right operand has integral or
unscoped enumeration type.

3 The result of the binary + operator is the sum of the operands. The result of the binary - operator is the
difference resulting from the subtraction of the second operand from the first.

4 When an expression J that has integral type is added to or subtracted from an expression P of pointer type,
the result has the type of P.

—(4.1) If P evaluates to a null pointer value and J evaluates to 0, the result is a null pointer value.
—(4.2) Otherwise, if P points to an array element i of an array object x with n elements (9.3.4.5),68 the

expressions P + J and J + P (where J has the value j) point to the (possibly-hypothetical) array
element i + j of x if 0 ≤ i + j ≤ n and the expression P - J points to the (possibly-hypothetical) array
element i − j of x if 0 ≤ i − j ≤ n.

—(4.3) Otherwise, the behavior is undefined.
[Note 1 : Adding a value other than 0 or 1 to a pointer to a base class subobject, a member subobject, or a complete
object results in undefined behavior. — end note ]

5 When two pointer expressions P and Q are subtracted, the type of the result is an implementation-defined
signed integral type; this type shall be the same type that is defined as std::ptrdiff_t in the <cstddef>
header (17.2.4).

—(5.1) If P and Q both evaluate to null pointer values, the result is 0.
—(5.2) Otherwise, if P and Q point to, respectively, array elements i and j of the same array object x, the

expression P - Q has the value i − j.
—(5.3) Otherwise, the behavior is undefined.

[Note 2 : If the value i − j is not in the range of representable values of type std::ptrdiff_t, the behavior is
undefined. — end note ]

6 For addition or subtraction, if the expressions P or Q have type “pointer to cv T”, where T and the array
element type are not similar (7.3.6), the behavior is undefined.
[Example 1 :

int arr[5] = {1, 2, 3, 4, 5};
unsigned int *p = reinterpret_cast<unsigned int*>(arr + 1);
unsigned int k = *p; // OK, value of k is 2 (7.3.2)
unsigned int *q = p + 1; // undefined behavior: p points to an int, not an unsigned int object

— end example ]

7.6.7 Shift operators [expr.shift]
1 The shift operators << and >> group left-to-right.

shift-expression :
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

The operands shall be of integral or unscoped enumeration type and integral promotions are performed. The
type of the result is that of the promoted left operand. The behavior is undefined if the right operand is
negative, or greater than or equal to the width of the promoted left operand.

2 The value of E1 << E2 is the unique value congruent to E1 × 2E2 modulo 2N , where N is the width of the
type of the result.
[Note 1 : E1 is left-shifted E2 bit positions; vacated bits are zero-filled. — end note ]

3 The value of E1 >> E2 is E1/2E2, rounded down.
[Note 2 : E1 is right-shifted E2 bit positions. Right-shift on signed integral types is an arithmetic right shift, which
performs sign-extension. — end note ]

68) As specified in 6.8.4, an object that is not an array element is considered to belong to a single-element array for this purpose
and a pointer past the last element of an array of n elements is considered to be equivalent to a pointer to a hypothetical array
element n for this purpose.
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4 The expression E1 is sequenced before the expression E2.

7.6.8 Three-way comparison operator [expr.spaceship]
1 The three-way comparison operator groups left-to-right.

compare-expression :
shift-expression
compare-expression <=> shift-expression

2 The expression p <=> q is a prvalue indicating whether p is less than, equal to, greater than, or incomparable
with q.

3 If one of the operands is of type bool and the other is not, the program is ill-formed.
4 If both operands have arithmetic types, or one operand has integral type and the other operand has unscoped

enumeration type, the usual arithmetic conversions (7.4) are applied to the operands. Then:
—(4.1) If a narrowing conversion (9.4.5) is required, other than from an integral type to a floating-point type,

the program is ill-formed.
—(4.2) Otherwise, if the operands have integral type, the result is of type std::strong_ordering. The

result is std::strong_ordering::equal if both operands are arithmetically equal, std::strong_-
ordering::less if the first operand is arithmetically less than the second operand, and std::strong_-
ordering::greater otherwise.

—(4.3) Otherwise, the operands have floating-point type, and the result is of type std::partial_ordering.
The expression a <=> b yields std::partial_ordering::less if a is less than b, std::partial_-
ordering::greater if a is greater than b, std::partial_ordering::equivalent if a is equivalent
to b, and std::partial_ordering::unordered otherwise.

5 If both operands have the same enumeration type E, the operator yields the result of converting the operands
to the underlying type of E and applying <=> to the converted operands.

6 If at least one of the operands is of object pointer type and the other operand is of object pointer or array
type, array-to-pointer conversions (7.3.3), pointer conversions (7.3.12), and qualification conversions (7.3.6)
are performed on both operands to bring them to their composite pointer type (7.2.2). After the conversions,
the operands shall have the same type.
[Note 1 : If both of the operands are arrays, array-to-pointer conversions (7.3.3) are not applied. — end note ]

In this case, p <=> q is of type std::strong_ordering and the result is defined by the following rules:
—(6.1) If two pointer operands p and q compare equal (7.6.10), p <=> q yields std::strong_ordering::equal;
—(6.2) otherwise, if p and q compare unequal, p <=> q yields std::strong_ordering::less if q compares

greater than p and std::strong_ordering::greater if p compares greater than q (7.6.9);
—(6.3) otherwise, the result is unspecified.

7 Otherwise, the program is ill-formed.
8 The three comparison category types (17.11.2) (the types std::strong_ordering, std::weak_ordering,

and std::partial_ordering) are not predefined; if a standard library declaration (17.11.1, 16.4.2.4) of such
a class type does not precede (6.5.1) a use of that type — even an implicit use in which the type is not named
(e.g., via the auto specifier (9.2.9.6) in a defaulted three-way comparison (11.10.3) or use of the built-in
operator) — the program is ill-formed.

7.6.9 Relational operators [expr.rel]
1 The relational operators group left-to-right.

[Example 1 : a<b<c means (a<b)<c and not (a<b)&&(b<c). — end example ]
relational-expression :

compare-expression
relational-expression < compare-expression
relational-expression > compare-expression
relational-expression <= compare-expression
relational-expression >= compare-expression
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The lvalue-to-rvalue (7.3.2), array-to-pointer (7.3.3), and function-to-pointer (7.3.4) standard conversions are
performed on the operands. The comparison is deprecated if both operands were of array type prior to these
conversions (D.4).

2 The converted operands shall have arithmetic, enumeration, or pointer type. The operators < (less than), >
(greater than), <= (less than or equal to), and >= (greater than or equal to) all yield false or true. The
type of the result is bool.

3 The usual arithmetic conversions (7.4) are performed on operands of arithmetic or enumeration type. If both
operands are pointers, pointer conversions (7.3.12) and qualification conversions (7.3.6) are performed to
bring them to their composite pointer type (7.2.2). After conversions, the operands shall have the same type.

4 The result of comparing unequal pointers to objects69 is defined in terms of a partial order consistent with
the following rules:

—(4.1) If two pointers point to different elements of the same array, or to subobjects thereof, the pointer to
the element with the higher subscript is required to compare greater.

—(4.2) If two pointers point to different non-static data members of the same object, or to subobjects of such
members, recursively, the pointer to the later declared member is required to compare greater provided
neither member is a subobject of zero size and their class is not a union.

—(4.3) Otherwise, neither pointer is required to compare greater than the other.
5 If two operands p and q compare equal (7.6.10), p<=q and p>=q both yield true and p<q and p>q both yield

false. Otherwise, if a pointer to object p compares greater than a pointer q, p>=q, p>q, q<=p, and q<p all
yield true and p<=q, p<q, q>=p, and q>p all yield false. Otherwise, the result of each of the operators is
unspecified.
[Note 1 : A relational operator applied to unequal function pointers or to unequal pointers to void yields an unspecified
result. — end note ]

6 If both operands (after conversions) are of arithmetic or enumeration type, each of the operators shall yield
true if the specified relationship is true and false if it is false.

7.6.10 Equality operators [expr.eq]
equality-expression :

relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

1 The == (equal to) and the != (not equal to) operators group left-to-right. The lvalue-to-rvalue (7.3.2),
array-to-pointer (7.3.3), and function-to-pointer (7.3.4) standard conversions are performed on the operands.
The comparison is deprecated if both operands were of array type prior to these conversions (D.4).

2 The converted operands shall have arithmetic, enumeration, pointer, or pointer-to-member type, or type
std::nullptr_t. The operators == and != both yield true or false, i.e., a result of type bool. In each
case below, the operands shall have the same type after the specified conversions have been applied.

3 If at least one of the operands is a pointer, pointer conversions (7.3.12), function pointer conversions (7.3.14),
and qualification conversions (7.3.6) are performed on both operands to bring them to their composite pointer
type (7.2.2). Comparing pointers is defined as follows:

—(3.1) If one pointer represents the address of a complete object, and another pointer represents the address
one past the last element of a different complete object,70 the result of the comparison is unspecified.

—(3.2) Otherwise, if the pointers are both null, both point to the same function, or both represent the same
address (6.8.4), they compare equal.

—(3.3) Otherwise, the pointers compare unequal.
4 If at least one of the operands is a pointer to member, pointer-to-member conversions (7.3.13), function

pointer conversions (7.3.14), and qualification conversions (7.3.6) are performed on both operands to bring
them to their composite pointer type (7.2.2). Comparing pointers to members is defined as follows:

—(4.1) If two pointers to members are both the null member pointer value, they compare equal.

69) As specified in 6.8.4, an object that is not an array element is considered to belong to a single-element array for this purpose
and a pointer past the last element of an array of n elements is considered to be equivalent to a pointer to a hypothetical array
element n for this purpose.

70) As specified in 6.8.4, an object that is not an array element is considered to belong to a single-element array for this purpose.

§ 7.6.10 148



© ISO/IEC N4950

—(4.2) If only one of two pointers to members is the null member pointer value, they compare unequal.
—(4.3) If either is a pointer to a virtual member function, the result is unspecified.
—(4.4) If one refers to a member of class C1 and the other refers to a member of a different class C2, where

neither is a base class of the other, the result is unspecified.
[Example 1 :

struct A {};
struct B : A { int x; };
struct C : A { int x; };

int A::*bx = (int(A::*))&B::x;
int A::*cx = (int(A::*))&C::x;

bool b1 = (bx == cx); // unspecified
— end example ]

—(4.5) If both refer to (possibly different) members of the same union (11.5), they compare equal.
—(4.6) Otherwise, two pointers to members compare equal if they would refer to the same member of the

same most derived object (6.7.2) or the same subobject if indirection with a hypothetical object of the
associated class type were performed, otherwise they compare unequal.
[Example 2 :

struct B {
int f();

};
struct L : B { };
struct R : B { };
struct D : L, R { };

int (B::*pb)() = &B::f;
int (L::*pl)() = pb;
int (R::*pr)() = pb;
int (D::*pdl)() = pl;
int (D::*pdr)() = pr;
bool x = (pdl == pdr); // false
bool y = (pb == pl); // true

— end example ]
5 Two operands of type std::nullptr_t or one operand of type std::nullptr_t and the other a null pointer

constant compare equal.
6 If two operands compare equal, the result is true for the == operator and false for the != operator. If two

operands compare unequal, the result is false for the == operator and true for the != operator. Otherwise,
the result of each of the operators is unspecified.

7 If both operands are of arithmetic or enumeration type, the usual arithmetic conversions (7.4) are performed
on both operands; each of the operators shall yield true if the specified relationship is true and false if it is
false.

7.6.11 Bitwise AND operator [expr.bit.and]
and-expression :

equality-expression
and-expression & equality-expression

1 The & operator groups left-to-right. The operands shall be of integral or unscoped enumeration type. The usual
arithmetic conversions (7.4) are performed. Given the coefficients xi and yi of the base-2 representation (6.8.2)
of the converted operands x and y, the coefficient ri of the base-2 representation of the result r is 1 if both
xi and yi are 1, and 0 otherwise.
[Note 1 : The result is the bitwise and function of the operands. — end note ]

7.6.12 Bitwise exclusive OR operator [expr.xor]
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exclusive-or-expression :
and-expression
exclusive-or-expression ^ and-expression

1 The ^ operator groups left-to-right. The operands shall be of integral or unscoped enumeration type. The usual
arithmetic conversions (7.4) are performed. Given the coefficients xi and yi of the base-2 representation (6.8.2)
of the converted operands x and y, the coefficient ri of the base-2 representation of the result r is 1 if either
(but not both) of xi and yi is 1, and 0 otherwise.
[Note 1 : The result is the bitwise exclusive or function of the operands. — end note ]

7.6.13 Bitwise inclusive OR operator [expr.or]
inclusive-or-expression :

exclusive-or-expression
inclusive-or-expression | exclusive-or-expression

1 The | operator groups left-to-right. The operands shall be of integral or unscoped enumeration type. The usual
arithmetic conversions (7.4) are performed. Given the coefficients xi and yi of the base-2 representation (6.8.2)
of the converted operands x and y, the coefficient ri of the base-2 representation of the result r is 1 if at
least one of xi and yi is 1, and 0 otherwise.
[Note 1 : The result is the bitwise inclusive or function of the operands. — end note ]

7.6.14 Logical AND operator [expr.log.and]
logical-and-expression :

inclusive-or-expression
logical-and-expression && inclusive-or-expression

1 The && operator groups left-to-right. The operands are both contextually converted to bool (7.3). The result
is true if both operands are true and false otherwise. Unlike &, && guarantees left-to-right evaluation: the
second operand is not evaluated if the first operand is false.

2 The result is a bool. If the second expression is evaluated, the first expression is sequenced before the second
expression (6.9.1).

7.6.15 Logical OR operator [expr.log.or]
logical-or-expression :

logical-and-expression
logical-or-expression || logical-and-expression

1 The || operator groups left-to-right. The operands are both contextually converted to bool (7.3). The result
is true if either of its operands is true, and false otherwise. Unlike |, || guarantees left-to-right evaluation;
moreover, the second operand is not evaluated if the first operand evaluates to true.

2 The result is a bool. If the second expression is evaluated, the first expression is sequenced before the second
expression (6.9.1).

7.6.16 Conditional operator [expr.cond]
conditional-expression :

logical-or-expression
logical-or-expression ? expression : assignment-expression

1 Conditional expressions group right-to-left. The first expression is contextually converted to bool (7.3). It
is evaluated and if it is true, the result of the conditional expression is the value of the second expression,
otherwise that of the third expression. Only one of the second and third expressions is evaluated. The first
expression is sequenced before the second or third expression (6.9.1).

2 If either the second or the third operand has type void, one of the following shall hold:
—(2.1) The second or the third operand (but not both) is a (possibly parenthesized) throw-expression (7.6.18);

the result is of the type and value category of the other. The conditional-expression is a bit-field if that
operand is a bit-field.

—(2.2) Both the second and the third operands have type void; the result is of type void and is a prvalue.
[Note 1 : This includes the case where both operands are throw-expressions. — end note ]
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3 Otherwise, if the second and third operand are glvalue bit-fields of the same value category and of types cv1
T and cv2 T, respectively, the operands are considered to be of type cv T for the remainder of this subclause,
where cv is the union of cv1 and cv2.

4 Otherwise, if the second and third operand have different types and either has (possibly cv-qualified) class
type, or if both are glvalues of the same value category and the same type except for cv-qualification, an
attempt is made to form an implicit conversion sequence (12.2.4.2) from each of those operands to the type
of the other.
[Note 2 : Properties such as access, whether an operand is a bit-field, or whether a conversion function is deleted are
ignored for that determination. — end note ]

Attempts are made to form an implicit conversion sequence from an operand expression E1 of type T1 to a
target type related to the type T2 of the operand expression E2 as follows:

—(4.1) If E2 is an lvalue, the target type is “lvalue reference to T2”, but an implicit conversion sequence can
only be formed if the reference would bind directly (9.4.4) to a glvalue.

—(4.2) If E2 is an xvalue, the target type is “rvalue reference to T2”, but an implicit conversion sequence can
only be formed if the reference would bind directly.

—(4.3) If E2 is a prvalue or if neither of the conversion sequences above can be formed and at least one of the
operands has (possibly cv-qualified) class type:

—(4.3.1) if T1 and T2 are the same class type (ignoring cv-qualification) and T2 is at least as cv-qualified as
T1, the target type is T2,

—(4.3.2) otherwise, if T2 is a base class of T1, the target type is cv1 T2, where cv1 denotes the cv-qualifiers
of T1,

—(4.3.3) otherwise, the target type is the type that E2 would have after applying the lvalue-to-rvalue (7.3.2),
array-to-pointer (7.3.3), and function-to-pointer (7.3.4) standard conversions.

Using this process, it is determined whether an implicit conversion sequence can be formed from the second
operand to the target type determined for the third operand, and vice versa. If both sequences can be
formed, or one can be formed but it is the ambiguous conversion sequence, the program is ill-formed. If no
conversion sequence can be formed, the operands are left unchanged and further checking is performed as
described below. Otherwise, if exactly one conversion sequence can be formed, that conversion is applied to
the chosen operand and the converted operand is used in place of the original operand for the remainder of
this subclause.
[Note 3 : The conversion might be ill-formed even if an implicit conversion sequence could be formed. — end note ]

5 If the second and third operands are glvalues of the same value category and have the same type, the result
is of that type and value category and it is a bit-field if the second or the third operand is a bit-field, or if
both are bit-fields.

6 Otherwise, the result is a prvalue. If the second and third operands do not have the same type, and either
has (possibly cv-qualified) class type, overload resolution is used to determine the conversions (if any) to be
applied to the operands (12.2.2.3, 12.5). If the overload resolution fails, the program is ill-formed. Otherwise,
the conversions thus determined are applied, and the converted operands are used in place of the original
operands for the remainder of this subclause.

7 Lvalue-to-rvalue (7.3.2), array-to-pointer (7.3.3), and function-to-pointer (7.3.4) standard conversions are
performed on the second and third operands. After those conversions, one of the following shall hold:

—(7.1) The second and third operands have the same type; the result is of that type and the result object is
initialized using the selected operand.

—(7.2) The second and third operands have arithmetic or enumeration type; the usual arithmetic conversions
(7.4) are performed to bring them to a common type, and the result is of that type.

—(7.3) One or both of the second and third operands have pointer type; pointer conversions (7.3.12), function
pointer conversions (7.3.14), and qualification conversions (7.3.6) are performed to bring them to their
composite pointer type (7.2.2). The result is of the composite pointer type.

—(7.4) One or both of the second and third operands have pointer-to-member type; pointer to member
conversions (7.3.13), function pointer conversions (7.3.14), and qualification conversions (7.3.6) are
performed to bring them to their composite pointer type (7.2.2). The result is of the composite pointer
type.
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—(7.5) Both the second and third operands have type std::nullptr_t or one has that type and the other is
a null pointer constant. The result is of type std::nullptr_t.

7.6.17 Yielding a value [expr.yield]
yield-expression :

co_yield assignment-expression
co_yield braced-init-list

1 A yield-expression shall appear only within a suspension context of a function (7.6.2.4). Let e be the operand
of the yield-expression and p be an lvalue naming the promise object of the enclosing coroutine (9.5.4), then
the yield-expression is equivalent to the expression co_await p.yield_value(e ).
[Example 1 :

template <typename T>
struct my_generator {

struct promise_type {
T current_value;
/* ... */
auto yield_value(T v) {

current_value = std::move(v);
return std::suspend_always{};

}
};
struct iterator { /* ... */ };
iterator begin();
iterator end();

};

my_generator<pair<int,int>> g1() {
for (int i = 0; i < 10; ++i) co_yield {i,i};

}
my_generator<pair<int,int>> g2() {

for (int i = 0; i < 10; ++i) co_yield make_pair(i,i);
}

auto f(int x = co_yield 5); // error: yield-expression outside of function suspension context
int a[] = { co_yield 1 }; // error: yield-expression outside of function suspension context

int main() {
auto r1 = g1();
auto r2 = g2();
assert(std::equal(r1.begin(), r1.end(), r2.begin(), r2.end()));

}

— end example ]

7.6.18 Throwing an exception [expr.throw]
throw-expression :

throw assignment-expressionopt

1 A throw-expression is of type void.
2 Evaluating a throw-expression with an operand throws an exception (14.2); the type of the exception object is

determined by removing any top-level cv-qualifiers from the static type of the operand and adjusting the type
from “array of T” or function type T to “pointer to T”.

3 A throw-expression with no operand rethrows the currently handled exception (14.4). The exception is
reactivated with the existing exception object; no new exception object is created. The exception is no longer
considered to be caught.
[Example 1 : An exception handler that cannot completely handle the exception itself can be written like this:

try {
// ...

} catch (...) { // catch all exceptions
// respond (partially) to exception
throw; // pass the exception to some other handler
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}

— end example ]
4 If no exception is presently being handled, evaluating a throw-expression with no operand calls std::

terminate() (14.6.2).

7.6.19 Assignment and compound assignment operators [expr.ass]
1 The assignment operator (=) and the compound assignment operators all group right-to-left. All require a

modifiable lvalue as their left operand; their result is an lvalue of the type of the left operand, referring to the
left operand. The result in all cases is a bit-field if the left operand is a bit-field. In all cases, the assignment
is sequenced after the value computation of the right and left operands, and before the value computation
of the assignment expression. The right operand is sequenced before the left operand. With respect to an
indeterminately-sequenced function call, the operation of a compound assignment is a single evaluation.
[Note 1 : Therefore, a function call cannot intervene between the lvalue-to-rvalue conversion and the side effect
associated with any single compound assignment operator. — end note ]

assignment-expression :
conditional-expression
yield-expression
throw-expression
logical-or-expression assignment-operator initializer-clause

assignment-operator : one of
= *= /= %= += -= >>= <<= &= ^= |=

2 In simple assignment (=), the object referred to by the left operand is modified (3.1) by replacing its value
with the result of the right operand.

3 If the right operand is an expression, it is implicitly converted (7.3) to the cv-unqualified type of the left
operand.

4 When the left operand of an assignment operator is a bit-field that cannot represent the value of the expression,
the resulting value of the bit-field is implementation-defined.

5 An assignment whose left operand is of a volatile-qualified type is deprecated (D.5) unless the (possibly
parenthesized) assignment is a discarded-value expression or an unevaluated operand (7.2.3).

6 The behavior of an expression of the form E1 op = E2 is equivalent to E1 = E1 op E2 except that E1 is
evaluated only once.
[Note 2 : The object designated by E1 is accessed twice. — end note ]

For += and -=, E1 shall either have arithmetic type or be a pointer to a possibly cv-qualified completely-defined
object type. In all other cases, E1 shall have arithmetic type.

7 If the value being stored in an object is read via another object that overlaps in any way the storage of the
first object, then the overlap shall be exact and the two objects shall have the same type, otherwise the
behavior is undefined.
[Note 3 : This restriction applies to the relationship between the left and right sides of the assignment operation; it is
not a statement about how the target of the assignment can be aliased in general. See 7.2.1. — end note ]

8 A braced-init-list may appear on the right-hand side of
—(8.1) an assignment to a scalar, in which case the initializer list shall have at most a single element. The

meaning of x = {v}, where T is the scalar type of the expression x, is that of x = T{v}. The meaning
of x = {} is x = T{}.

—(8.2) an assignment to an object of class type, in which case the initializer list is passed as the argument to
the assignment operator function selected by overload resolution (12.4.3.2, 12.2).

[Example 1 :
complex<double> z;
z = { 1,2 }; // meaning z.operator=({1,2})
z += { 1, 2 }; // meaning z.operator+=({1,2})
int a, b;
a = b = { 1 }; // meaning a=b=1;
a = { 1 } = b; // syntax error

— end example ]
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7.6.20 Comma operator [expr.comma]
1 The comma operator groups left-to-right.

expression :
assignment-expression
expression , assignment-expression

A pair of expressions separated by a comma is evaluated left-to-right; the left expression is a discarded-value
expression (7.2). The left expression is sequenced before the right expression (6.9.1). The type and value of
the result are the type and value of the right operand; the result is of the same value category as its right
operand, and is a bit-field if its right operand is a bit-field.

2 [Note 1 : In contexts where the comma token is given special meaning (e.g., function calls (7.6.1.3), subscript
expressions (7.6.1.2), lists of initializers (9.4), or template-argument-lists (13.3)), the comma operator as described in
this subclause can appear only in parentheses.
[Example 1 :

f(a, (t=3, t+2), c);

has three arguments, the second of which has the value 5. — end example ]
— end note ]

7.7 Constant expressions [expr.const]
1 Certain contexts require expressions that satisfy additional requirements as detailed in this subclause; other

contexts have different semantics depending on whether or not an expression satisfies these requirements.
Expressions that satisfy these requirements, assuming that copy elision (11.9.6) is not performed, are called
constant expressions.
[Note 1 : Constant expressions can be evaluated during translation. — end note ]

constant-expression :
conditional-expression

2 A variable or temporary object o is constant-initialized if
—(2.1) either it has an initializer or its default-initialization results in some initialization being performed, and
—(2.2) the full-expression of its initialization is a constant expression when interpreted as a constant-expression,

except that if o is an object, that full-expression may also invoke constexpr constructors for o and its
subobjects even if those objects are of non-literal class types.
[Note 2 : Such a class can have a non-trivial destructor. Within this evaluation, std::is_constant_evaluated()
(21.3.11) returns true. — end note ]

3 A variable is potentially-constant if it is constexpr or it has reference or non-volatile const-qualified integral
or enumeration type.

4 A constant-initialized potentially-constant variable V is usable in constant expressions at a point P if V ’s
initializing declaration D is reachable from P and

—(4.1) V is constexpr,
—(4.2) V is not initialized to a TU-local value, or
—(4.3) P is in the same translation unit as D.

An object or reference is usable in constant expressions if it is
—(4.4) a variable that is usable in constant expressions, or
—(4.5) a template parameter object (13.2), or
—(4.6) a string literal object (5.13.5), or
—(4.7) a temporary object of non-volatile const-qualified literal type whose lifetime is extended (6.7.7) to that

of a variable that is usable in constant expressions, or
—(4.8) a non-mutable subobject or reference member of any of the above.

5 An expression E is a core constant expression unless the evaluation of E, following the rules of the abstract
machine (6.9.1), would evaluate one of the following:

—(5.1) this (7.5.2), except
—(5.1.1) in a constexpr function (9.2.6) that is being evaluated as part of E or
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—(5.1.2) when appearing as the postfix-expression of an implicit or explicit class member access expression
(7.6.1.5);

—(5.2) a control flow that passes through a declaration of a variable with static (6.7.5.2) or thread (6.7.5.3)
storage duration, unless that variable is usable in constant expressions;
[Example 1 :

constexpr char test() {
static const int x = 5;
static constexpr char c[] = "Hello World";
return *(c + x);

}
static_assert(' ' == test());

— end example ]

—(5.3) an invocation of a non-constexpr function;71

—(5.4) an invocation of an undefined constexpr function;
—(5.5) an invocation of an instantiated constexpr function that is not constexpr-suitable;
—(5.6) an invocation of a virtual function (11.7.3) for an object whose dynamic type is constexpr-unknown;
—(5.7) an expression that would exceed the implementation-defined limits (see Annex B);
—(5.8) an operation that would have undefined behavior as specified in Clause 4 through Clause 15, excluding

9.12.3;72

—(5.9) an lvalue-to-rvalue conversion (7.3.2) unless it is applied to
—(5.9.1) a non-volatile glvalue that refers to an object that is usable in constant expressions, or
—(5.9.2) a non-volatile glvalue of literal type that refers to a non-volatile object whose lifetime began within

the evaluation of E;
—(5.10) an lvalue-to-rvalue conversion that is applied to a glvalue that refers to a non-active member of a union

or a subobject thereof;
—(5.11) an lvalue-to-rvalue conversion that is applied to an object with an indeterminate value (6.7.4);
—(5.12) an invocation of an implicitly-defined copy/move constructor or copy/move assignment operator for a

union whose active member (if any) is mutable, unless the lifetime of the union object began within the
evaluation of E;

—(5.13) in a lambda-expression, a reference to this or to a variable with automatic storage duration defined
outside that lambda-expression, where the reference would be an odr-use (6.3, 7.5.5);
[Example 2 :

void g() {
const int n = 0;
[=] {

constexpr int i = n; // OK, n is not odr-used here
constexpr int j = *&n; // error: &n would be an odr-use of n

};
}

— end example ]
[Note 3 : If the odr-use occurs in an invocation of a function call operator of a closure type, it no longer refers
to this or to an enclosing automatic variable due to the transformation (7.5.5.3) of the id-expression into an
access of the corresponding data member.
[Example 3 :

auto monad = [](auto v) { return [=] { return v; }; };
auto bind = [](auto m) {

return [=](auto fvm) { return fvm(m()); };
};

71) Overload resolution (12.2) is applied as usual.
72) This includes, for example, signed integer overflow (7.1), certain pointer arithmetic (7.6.6), division by zero (7.6.5), or

certain shift operations (7.6.7).
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// OK to capture objects with automatic storage duration created during constant expression evaluation.
static_assert(bind(monad(2))(monad)() == monad(2)());

— end example ]
— end note ]

—(5.14) a conversion from type cv void* to a pointer-to-object type;
—(5.15) a reinterpret_cast (7.6.1.10);
—(5.16) a modification of an object (7.6.19, 7.6.1.6, 7.6.2.3) unless it is applied to a non-volatile lvalue of literal

type that refers to a non-volatile object whose lifetime began within the evaluation of E;
—(5.17) an invocation of a destructor (11.4.7) or a function call whose postfix-expression names a pseudo-

destructor (7.6.1.3), in either case for an object whose lifetime did not begin within the evaluation of
E;

—(5.18) a new-expression (7.6.2.8), unless the selected allocation function is a replaceable global allocation
function (17.6.3.2, 17.6.3.3) and the allocated storage is deallocated within the evaluation of E;

—(5.19) a delete-expression (7.6.2.9), unless it deallocates a region of storage allocated within the evaluation of
E;

—(5.20) a call to an instance of std::allocator<T>::allocate (20.2.10.2), unless the allocated storage is
deallocated within the evaluation of E;

—(5.21) a call to an instance of std::allocator<T>::deallocate (20.2.10.2), unless it deallocates a region of
storage allocated within the evaluation of E;

—(5.22) an await-expression (7.6.2.4);
—(5.23) a yield-expression (7.6.17);
—(5.24) a three-way comparison (7.6.8), relational (7.6.9), or equality (7.6.10) operator where the result is

unspecified;
—(5.25) a throw-expression (7.6.18);
—(5.26) a dynamic_cast (7.6.1.7) or typeid (7.6.1.8) expression on a glvalue that refers to an object whose

dynamic type is constexpr-unknown or that would throw an exception;
—(5.27) an asm-declaration (9.10);
—(5.28) an invocation of the va_arg macro (17.13.2);
—(5.29) a non-constant library call (3.33); or
—(5.30) a goto statement (8.7.6).

It is unspecified whether E is a core constant expression if E satisfies the constraints of a core constant
expression, but evaluation of E would evaluate

—(5.31) an operation that has undefined behavior as specified in Clause 16 through Clause 33,
—(5.32) an invocation of the va_start macro (17.13.2), or
—(5.33) a statement with an assumption (9.12.3) whose converted conditional-expression, if evaluated where

the assumption appears, would not disqualify E from being a core constant expression and would not
evaluate to true.
[Note 4 : E is not disqualified from being a core constant expression if the hypothetical evaluation of the
converted conditional-expression would disqualify E from being a core constant expression. — end note ]

[Example 4 :
int x; // not constant
struct A {

constexpr A(bool b) : m(b?42:x) { }
int m;

};
constexpr int v = A(true).m; // OK, constructor call initializes m with the value 42

constexpr int w = A(false).m; // error: initializer for m is x, which is non-constant

constexpr int f1(int k) {
constexpr int x = k; // error: x is not initialized by a constant expression
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// because lifetime of k began outside the initializer of x
return x;

}
constexpr int f2(int k) {

int x = k; // OK, not required to be a constant expression
// because x is not constexpr

return x;
}

constexpr int incr(int &n) {
return ++n;

}
constexpr int g(int k) {

constexpr int x = incr(k); // error: incr(k) is not a core constant expression
// because lifetime of k began outside the expression incr(k)

return x;
}
constexpr int h(int k) {

int x = incr(k); // OK, incr(k) is not required to be a core constant expression
return x;

}
constexpr int y = h(1); // OK, initializes y with the value 2

// h(1) is a core constant expression because
// the lifetime of k begins inside h(1)

— end example ]
6 For the purposes of determining whether an expression E is a core constant expression, the evaluation of

the body of a member function of std::allocator<T> as defined in 20.2.10.2, where T is a literal type, is
ignored. Similarly, the evaluation of the body of std::construct_at or std::ranges::construct_at is
considered to include only the underlying constructor call if the first argument (of type T*) points to storage
allocated with std::allocator<T> or to an object whose lifetime began within the evaluation of E.

7 For the purposes of determining whether E is a core constant expression, the evaluation of a call to a trivial
copy/move constructor or copy/move assignment operator of a union is considered to copy/move the active
member of the union, if any.
[Note 5 : The copy/move of the active member is trivial. — end note ]

8 During the evaluation of an expression E as a core constant expression, all id-expressions and uses of *this
that refer to an object or reference whose lifetime did not begin with the evaluation of E are treated as
referring to a specific instance of that object or reference whose lifetime and that of all subobjects (including
all union members) includes the entire constant evaluation. For such an object that is not usable in constant
expressions, the dynamic type of the object is constexpr-unknown. For such a reference that is not usable
in constant expressions, the reference is treated as binding to an unspecified object of the referenced type
whose lifetime and that of all subobjects includes the entire constant evaluation and whose dynamic type is
constexpr-unknown.
[Example 5 :

template <typename T, size_t N>
constexpr size_t array_size(T (&)[N]) {

return N;
}

void use_array(int const (&gold_medal_mel)[2]) {
constexpr auto gold = array_size(gold_medal_mel); // OK

}

constexpr auto olympic_mile() {
const int ledecky = 1500;
return []{ return ledecky; };

}
static_assert(olympic_mile()() == 1500); // OK

struct Swim {
constexpr int phelps() { return 28; }
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virtual constexpr int lochte() { return 12; }
int coughlin = 12;

};

constexpr int how_many(Swim& swam) {
Swim* p = &swam;
return (p + 1 - 1)->phelps();

}

void splash(Swim& swam) {
static_assert(swam.phelps() == 28); // OK
static_assert((&swam)->phelps() == 28); // OK

Swim* pswam = &swam;
static_assert(pswam->phelps() == 28); // error: lvalue-to-rvalue conversion on a pointer

// not usable in constant expressions

static_assert(how_many(swam) == 28); // OK
static_assert(Swim().lochte() == 12); // OK

static_assert(swam.lochte() == 12); // error: invoking virtual function on reference
// with constexpr-unknown dynamic type

static_assert(swam.coughlin == 12); // error: lvalue-to-rvalue conversion on an object
// not usable in constant expressions

}

extern Swim dc;
extern Swim& trident;

constexpr auto& sandeno = typeid(dc); // OK, can only be typeid(Swim)
constexpr auto& gallagher = typeid(trident); // error: constexpr-unknown dynamic type

— end example ]
9 An object a is said to have constant destruction if:

—(9.1) it is not of class type nor (possibly multidimensional) array thereof, or
—(9.2) it is of class type or (possibly multidimensional) array thereof, that class type has a constexpr destructor,

and for a hypothetical expression E whose only effect is to destroy a, E would be a core constant
expression if the lifetime of a and its non-mutable subobjects (but not its mutable subobjects) were
considered to start within E.

10 An integral constant expression is an expression of integral or unscoped enumeration type, implicitly converted
to a prvalue, where the converted expression is a core constant expression.
[Note 6 : Such expressions can be used as bit-field lengths (11.4.10), as enumerator initializers if the underlying type is
not fixed (9.7.1), and as alignments (9.12.2). — end note ]

11 If an expression of literal class type is used in a context where an integral constant expression is required,
then that expression is contextually implicitly converted (7.3) to an integral or unscoped enumeration type
and the selected conversion function shall be constexpr.
[Example 6 :

struct A {
constexpr A(int i) : val(i) { }
constexpr operator int() const { return val; }
constexpr operator long() const { return 42; }

private:
int val;

};
constexpr A a = alignof(int);
alignas(a) int n; // error: ambiguous conversion
struct B { int n : a; }; // error: ambiguous conversion

— end example ]
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12 A converted constant expression of type T is an expression, implicitly converted to type T, where the converted
expression is a constant expression and the implicit conversion sequence contains only

—(12.1) user-defined conversions,
—(12.2) lvalue-to-rvalue conversions (7.3.2),
—(12.3) array-to-pointer conversions (7.3.3),
—(12.4) function-to-pointer conversions (7.3.4),
—(12.5) qualification conversions (7.3.6),
—(12.6) integral promotions (7.3.7),
—(12.7) integral conversions (7.3.9) other than narrowing conversions (9.4.5),
—(12.8) null pointer conversions (7.3.12) from std::nullptr_t,
—(12.9) null member pointer conversions (7.3.13) from std::nullptr_t, and
—(12.10) function pointer conversions (7.3.14),

and where the reference binding (if any) binds directly.
[Note 7 : Such expressions can be used in new expressions (7.6.2.8), as case expressions (8.5.3), as enumerator initializers
if the underlying type is fixed (9.7.1), as array bounds (9.3.4.5), and as non-type template arguments (13.4). — end
note ]

A contextually converted constant expression of type bool is an expression, contextually converted to
bool (7.3), where the converted expression is a constant expression and the conversion sequence contains
only the conversions above.

13 A constant expression is either a glvalue core constant expression that refers to an entity that is a permitted
result of a constant expression (as defined below), or a prvalue core constant expression whose value satisfies
the following constraints:

—(13.1) if the value is an object of class type, each non-static data member of reference type refers to an entity
that is a permitted result of a constant expression,

—(13.2) if the value is an object of scalar type, it does not have an indeterminate value (6.7.4),
—(13.3) if the value is of pointer type, it contains the address of an object with static storage duration, the

address past the end of such an object (7.6.6), the address of a non-immediate function, or a null
pointer value,

—(13.4) if the value is of pointer-to-member-function type, it does not designate an immediate function, and
—(13.5) if the value is an object of class or array type, each subobject satisfies these constraints for the value.

An entity is a permitted result of a constant expression if it is an object with static storage duration that
either is not a temporary object or is a temporary object whose value satisfies the above constraints, or if it
is a non-immediate function.
[Note 8 : A glvalue core constant expression that either refers to or points to an unspecified object is not a constant
expression. — end note ]
[Example 7 :

consteval int f() { return 42; }
consteval auto g() { return f; }
consteval int h(int (*p)() = g()) { return p(); }
constexpr int r = h(); // OK
constexpr auto e = g(); // error: a pointer to an immediate function is

// not a permitted result of a constant expression
— end example ]

14 Recommended practice: Implementations should provide consistent results of floating-point evaluations,
irrespective of whether the evaluation is performed during translation or during program execution.
[Note 9 : Since this document imposes no restrictions on the accuracy of floating-point operations, it is unspecified
whether the evaluation of a floating-point expression during translation yields the same result as the evaluation of the
same expression (or the same operations on the same values) during program execution.
[Example 8 :
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bool f() {
char array[1 + int(1 + 0.2 - 0.1 - 0.1)]; // Must be evaluated during translation
int size = 1 + int(1 + 0.2 - 0.1 - 0.1); // May be evaluated at runtime
return sizeof(array) == size;

}

It is unspecified whether the value of f() will be true or false. — end example ]
— end note ]

15 An expression or conversion is in an immediate function context if it is potentially evaluated and either:
—(15.1) its innermost enclosing non-block scope is a function parameter scope of an immediate function,
—(15.2) it is a subexpression of a manifestly constant-evaluated expression or conversion, or
—(15.3) its enclosing statement is enclosed (8.1) by the compound-statement of a consteval if statement (8.5.2).

An invocation is an immediate invocation if it is a potentially-evaluated explicit or implicit invocation of an
immediate function and is not in an immediate function context. An aggregate initialization is an immediate
invocation if it evaluates a default member initializer that has a subexpression that is an immediate-escalating
expression.

16 An expression or conversion is immediate-escalating if it is not initially in an immediate function context and
it is either

—(16.1) a potentially-evaluated id-expression that denotes an immediate function that is not a subexpression of
an immediate invocation, or

—(16.2) an immediate invocation that is not a constant expression and is not a subexpression of an immediate
invocation.

17 An immediate-escalating function is
—(17.1) the call operator of a lambda that is not declared with the consteval specifier,
—(17.2) a defaulted special member function that is not declared with the consteval specifier, or
—(17.3) a function that results from the instantiation of a templated entity defined with the constexpr specifier.

An immediate-escalating expression shall appear only in an immediate-escalating function.
18 An immediate function is a function or constructor that is

—(18.1) declared with the consteval specifier, or
—(18.2) an immediate-escalating function F whose function body contains an immediate-escalating expression E

such that E ’s innermost enclosing non-block scope is F ’s function parameter scope.
[Example 9 :

consteval int id(int i) { return i; }
constexpr char id(char c) { return c; }

template<class T>
constexpr int f(T t) {

return t + id(t);
}

auto a = &f<char>; // OK, f<char> is not an immediate function
auto b = &f<int>; // error: f<int> is an immediate function

static_assert(f(3) == 6); // OK

template<class T>
constexpr int g(T t) { // g<int> is not an immediate function

return t + id(42); // because id(42) is already a constant
}

template<class T, class F>
constexpr bool is_not(T t, F f) {

return not f(t);
}
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consteval bool is_even(int i) { return i % 2 == 0; }

static_assert(is_not(5, is_even)); // OK

int x = 0;

template<class T>
constexpr T h(T t = id(x)) { // h<int> is not an immediate function

// id(x) is not evaluated when parsing the default argument (9.3.4.7, 13.9.2)
return t;

}

template<class T>
constexpr T hh() { // hh<int> is an immediate function because of the invocation

return h<T>(); // of the immediate function id in the default argument of h<int>
}

int i = hh<int>(); // error: hh<int>() is an immediate-escalating expression
// outside of an immediate-escalating function

struct A {
int x;
int y = id(x);

};

template<class T>
constexpr int k(int) { // k<int> is not an immediate function because A(42) is a

return A(42).y; // constant expression and thus not immediate-escalating
}

— end example ]
19 An expression or conversion is manifestly constant-evaluated if it is:

—(19.1) a constant-expression, or
—(19.2) the condition of a constexpr if statement (8.5.2), or
—(19.3) an immediate invocation, or
—(19.4) the result of substitution into an atomic constraint expression to determine whether it is satisfied

(13.5.2.3), or
—(19.5) the initializer of a variable that is usable in constant expressions or has constant initialization (6.9.3.2).73

[Example 10 :
template<bool> struct X {};
X<std::is_constant_evaluated()> x; // type X<true>
int y;
const int a = std::is_constant_evaluated() ? y : 1; // dynamic initialization to 1
double z[a]; // error: a is not usable

// in constant expressions
const int b = std::is_constant_evaluated() ? 2 : y; // static initialization to 2
int c = y + (std::is_constant_evaluated() ? 2 : y); // dynamic initialization to y+y

constexpr int f() {
const int n = std::is_constant_evaluated() ? 13 : 17; // n is 13
int m = std::is_constant_evaluated() ? 13 : 17; // m can be 13 or 17 (see below)
char arr[n] = {}; // char[13]
return m + sizeof(arr);

}
int p = f(); // m is 13; initialized to 26
int q = p + f(); // m is 17 for this call; initialized to 56

— end example ]

73) Testing this condition can involve a trial evaluation of its initializer as described above.
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[Note 10 : A manifestly constant-evaluated expression is evaluated even in an unevaluated operand (7.2.3). — end
note ]

20 An expression or conversion is potentially constant evaluated if it is:
—(20.1) a manifestly constant-evaluated expression,
—(20.2) a potentially-evaluated expression (6.3),
—(20.3) an immediate subexpression of a braced-init-list,74

—(20.4) an expression of the form & cast-expression that occurs within a templated entity,75 or
—(20.5) a potentially-evaluated subexpression (6.9.1) of one of the above.

A function or variable is needed for constant evaluation if it is:
—(20.6) a constexpr function that is named by an expression (6.3) that is potentially constant evaluated, or
—(20.7) a potentially-constant variable named by a potentially constant evaluated expression.

74) In some cases, constant evaluation is needed to determine whether a narrowing conversion is performed (9.4.5).
75) In some cases, constant evaluation is needed to determine whether such an expression is value-dependent (13.8.3.4).
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8 Statements [stmt.stmt]
8.1 Preamble [stmt.pre]

1 Except as indicated, statements are executed in sequence.
statement :

labeled-statement
attribute-specifier-seqopt expression-statement
attribute-specifier-seqopt compound-statement
attribute-specifier-seqopt selection-statement
attribute-specifier-seqopt iteration-statement
attribute-specifier-seqopt jump-statement
declaration-statement
attribute-specifier-seqopt try-block

init-statement :
expression-statement
simple-declaration
alias-declaration

condition :
expression
attribute-specifier-seqopt decl-specifier-seq declarator brace-or-equal-initializer

The optional attribute-specifier-seq appertains to the respective statement.
2 A substatement of a statement is one of the following:

—(2.1) for a labeled-statement, its statement,
—(2.2) for a compound-statement, any statement of its statement-seq,
—(2.3) for a selection-statement, any of its statements or compound-statements (but not its init-statement), or
—(2.4) for an iteration-statement, its statement (but not an init-statement).

[Note 1 : The compound-statement of a lambda-expression is not a substatement of the statement (if any) in which the
lambda-expression lexically appears. — end note ]

3 A statement S1 encloses a statement S2 if
—(3.1) S2 is a substatement of S1,
—(3.2) S1 is a selection-statement or iteration-statement and S2 is the init-statement of S1,
—(3.3) S1 is a try-block and S2 is its compound-statement or any of the compound-statements of its handlers, or
—(3.4) S1 encloses a statement S3 and S3 encloses S2.

A statement S1 is enclosed by a statement S2 if S2 encloses S1.
4 The rules for conditions apply both to selection-statements (8.5) and to the for and while statements (8.6).

A condition that is not an expression is a declaration (Clause 9). The declarator shall not specify a function or
an array. The decl-specifier-seq shall not define a class or enumeration. If the auto type-specifier appears in
the decl-specifier-seq, the type of the identifier being declared is deduced from the initializer as described
in 9.2.9.6.

5 The value of a condition that is an initialized declaration in a statement other than a switch statement is
the value of the declared variable contextually converted to bool (7.3). If that conversion is ill-formed, the
program is ill-formed. The value of a condition that is an expression is the value of the expression, contextually
converted to bool for statements other than switch; if that conversion is ill-formed, the program is ill-formed.
The value of the condition will be referred to as simply “the condition” where the usage is unambiguous.

6 If a condition can be syntactically resolved as either an expression or a declaration, it is interpreted as the
latter.

7 In the decl-specifier-seq of a condition, each decl-specifier shall be either a type-specifier or constexpr.
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8.2 Label [stmt.label]
1 A label can be added to a statement or used anywhere in a compound-statement.

label :
attribute-specifier-seqopt identifier :
attribute-specifier-seqopt case constant-expression :
attribute-specifier-seqopt default :

labeled-statement :
label statement

The optional attribute-specifier-seq appertains to the label. The only use of a label with an identifier is as the
target of a goto. No two labels in a function shall have the same identifier . A label can be used in a goto
statement before its introduction.

2 A labeled-statement whose label is a case or default label shall be enclosed by (8.1) a switch statement
(8.5.3).

3 A control-flow-limited statement is a statement S for which:
—(3.1) a case or default label appearing within S shall be associated with a switch statement (8.5.3) within

S, and
—(3.2) a label declared in S shall only be referred to by a statement (8.7.6) in S.

8.3 Expression statement [stmt.expr]
1 Expression statements have the form

expression-statement :
expressionopt ;

The expression is a discarded-value expression (7.2.3). All side effects from an expression statement are
completed before the next statement is executed. An expression statement with the expression missing is
called a null statement.
[Note 1 : Most statements are expression statements — usually assignments or function calls. A null statement is
useful to supply a null body to an iteration statement such as a while statement (8.6.2). — end note ]

8.4 Compound statement or block [stmt.block]
1 A compound statement (also known as a block) groups a sequence of statements into a single statement.

compound-statement :
{ statement-seqopt label-seqopt }

statement-seq :
statement
statement-seq statement

label-seq :
label
label-seq label

A label at the end of a compound-statement is treated as if it were followed by a null statement.
2 [Note 1 : A compound statement defines a block scope (6.4). A declaration is a statement (8.8). — end note ]

8.5 Selection statements [stmt.select]
8.5.1 General [stmt.select.general]

1 Selection statements choose one of several flows of control.
selection-statement :

if constexpropt ( init-statementopt condition ) statement
if constexpropt ( init-statementopt condition ) statement else statement
if !opt consteval compound-statement
if !opt consteval compound-statement else statement
switch ( init-statementopt condition ) statement

See 9.3.4 for the optional attribute-specifier-seq in a condition.
[Note 1 : An init-statement ends with a semicolon. — end note ]
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2 [Note 2 : Each selection-statement and each substatement of a selection-statement has a block scope (6.4.3). — end
note ]

8.5.2 The if statement [stmt.if]
1 If the condition (8.1) yields true the first substatement is executed. If the else part of the selection statement

is present and the condition yields false, the second substatement is executed. If the first substatement
is reached via a label, the condition is not evaluated and the second substatement is not executed. In the
second form of if statement (the one including else), if the first substatement is also an if statement then
that inner if statement shall contain an else part.76

2 If the if statement is of the form if constexpr, the value of the condition is contextually converted to bool
and the converted expression shall be a constant expression (7.7); this form is called a constexpr if statement.
If the value of the converted condition is false, the first substatement is a discarded statement, otherwise the
second substatement, if present, is a discarded statement. During the instantiation of an enclosing templated
entity (13.1), if the condition is not value-dependent after its instantiation, the discarded substatement (if any)
is not instantiated. Each substatement of a constexpr if statement is a control-flow-limited statement (8.2).
[Example 1 :

if constexpr (sizeof(int[2])) {} // OK, narrowing allowed
— end example ]
[Note 1 : Odr-uses (6.3) in a discarded statement do not require an entity to be defined. — end note ]
[Example 2 :

template<typename T, typename ... Rest> void g(T&& p, Rest&& ...rs) {
// ... handle p

if constexpr (sizeof...(rs) > 0)
g(rs...); // never instantiated with an empty argument list

}

extern int x; // no definition of x required

int f() {
if constexpr (true)

return 0;
else if (x)

return x;
else

return -x;
}

— end example ]
3 An if statement of the form

if constexpropt ( init-statement condition ) statement
is equivalent to

{
init-statement
if constexpropt ( condition ) statement

}

and an if statement of the form
if constexpropt ( init-statement condition ) statement else statement

is equivalent to
{

init-statement
if constexpropt ( condition ) statement else statement

}

except that the init-statement is in the same scope as the condition.

76) In other words, the else is associated with the nearest un-elsed if.
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4 An if statement of the form if consteval is called a consteval if statement. The statement, if any, in a
consteval if statement shall be a compound-statement.
[Example 3 :

constexpr void f(bool b) {
if (true)

if consteval { }
else ; // error: not a compound-statement; else not associated with outer if

}

— end example ]
5 If a consteval if statement is evaluated in a context that is manifestly constant-evaluated (7.7), the first

substatement is executed.
[Note 2 : The first substatement is an immediate function context. — end note ]

Otherwise, if the else part of the selection statement is present, then the second substatement is executed.
Each substatement of a consteval if statement is a control-flow-limited statement (8.2).

6 An if statement of the form
if ! consteval compound-statement

is not itself a consteval if statement, but is equivalent to the consteval if statement
if consteval { } else compound-statement

An if statement of the form
if ! consteval compound-statement1 else statement2

is not itself a consteval if statement, but is equivalent to the consteval if statement
if consteval statement2 else compound-statement1

8.5.3 The switch statement [stmt.switch]
1 The switch statement causes control to be transferred to one of several statements depending on the value

of a condition.
2 The value of a condition that is an initialized declaration is the value of the declared variable, or the value of

the expression otherwise. The value of the condition shall be of integral type, enumeration type, or class type.
If of class type, the condition is contextually implicitly converted (7.3) to an integral or enumeration type.
If the (possibly converted) type is subject to integral promotions (7.3.7), the condition is converted to the
promoted type. Any statement within the switch statement can be labeled with one or more case labels as
follows:

case constant-expression :

where the constant-expression shall be a converted constant expression (7.7) of the adjusted type of the switch
condition. No two of the case constants in the same switch shall have the same value after conversion.

3 There shall be at most one label of the form
default :

within a switch statement.
4 Switch statements can be nested; a case or default label is associated with the smallest switch enclosing it.
5 When the switch statement is executed, its condition is evaluated. If one of the case constants has the same

value as the condition, control is passed to the statement following the matched case label. If no case constant
matches the condition, and if there is a default label, control passes to the statement labeled by the default
label. If no case matches and if there is no default then none of the statements in the switch is executed.

6 case and default labels in themselves do not alter the flow of control, which continues unimpeded across
such labels. To exit from a switch, see break, 8.7.2.
[Note 1 : Usually, the substatement that is the subject of a switch is compound and case and default labels appear
on the top-level statements contained within the (compound) substatement, but this is not required. Declarations can
appear in the substatement of a switch statement. — end note ]

7 A switch statement of the form
switch ( init-statement condition ) statement

is equivalent to
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{
init-statement
switch ( condition ) statement

}

except that the init-statement is in the same scope as the condition.

8.6 Iteration statements [stmt.iter]
8.6.1 General [stmt.iter.general]

1 Iteration statements specify looping.
iteration-statement :

while ( condition ) statement
do statement while ( expression ) ;
for ( init-statement conditionopt ; expressionopt ) statement
for ( init-statementopt for-range-declaration : for-range-initializer ) statement

for-range-declaration :
attribute-specifier-seqopt decl-specifier-seq declarator
attribute-specifier-seqopt decl-specifier-seq ref-qualifieropt [ identifier-list ]

for-range-initializer :
expr-or-braced-init-list

See 9.3.4 for the optional attribute-specifier-seq in a for-range-declaration.
[Note 1 : An init-statement ends with a semicolon. — end note ]

2 The substatement in an iteration-statement implicitly defines a block scope (6.4) which is entered and exited
each time through the loop. If the substatement in an iteration-statement is a single statement and not a
compound-statement, it is as if it was rewritten to be a compound-statement containing the original statement.
[Example 1 :

while (--x >= 0)
int i;

can be equivalently rewritten as
while (--x >= 0) {

int i;
}

Thus after the while statement, i is no longer in scope. — end example ]

8.6.2 The while statement [stmt.while]
1 In the while statement the substatement is executed repeatedly until the value of the condition (8.1) becomes

false. The test takes place before each execution of the substatement.
2 A while statement is equivalent to

label :
{

if ( condition ) {
statement
goto label ;

}
}

[Note 1 : The variable created in the condition is destroyed and created with each iteration of the loop.
[Example 1 :

struct A {
int val;
A(int i) : val(i) { }
~A() { }
operator bool() { return val != 0; }

};
int i = 1;
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while (A a = i) {
// ...
i = 0;

}

In the while-loop, the constructor and destructor are each called twice, once for the condition that succeeds and once
for the condition that fails. — end example ]
— end note ]

8.6.3 The do statement [stmt.do]
1 The expression is contextually converted to bool (7.3); if that conversion is ill-formed, the program is

ill-formed.
2 In the do statement the substatement is executed repeatedly until the value of the expression becomes false.

The test takes place after each execution of the statement.

8.6.4 The for statement [stmt.for]
1 The for statement

for ( init-statement conditionopt ; expressionopt ) statement
is equivalent to

{
init-statement
while ( condition ) {

statement
expression ;

}
}

except that the init-statement is in the same scope as the condition, and except that a continue in statement
(not enclosed in another iteration statement) will execute expression before re-evaluating condition.
[Note 1 : Thus the first statement specifies initialization for the loop; the condition (8.1) specifies a test, sequenced
before each iteration, such that the loop is exited when the condition becomes false; the expression often specifies
incrementing that is sequenced after each iteration. — end note ]

2 Either or both of the condition and the expression can be omitted. A missing condition makes the implied
while clause equivalent to while(true).

8.6.5 The range-based for statement [stmt.ranged]
1 The range-based for statement

for ( init-statementopt for-range-declaration : for-range-initializer ) statement
is equivalent to

{
init-statementopt
auto &&range = for-range-initializer ;
auto begin = begin-expr ;
auto end = end-expr ;
for ( ; begin != end ; ++begin ) {

for-range-declaration = * begin ;
statement

}
}

where
—(1.1) if the for-range-initializer is an expression, it is regarded as if it were surrounded by parentheses (so that

a comma operator cannot be reinterpreted as delimiting two init-declarators);
—(1.2) range , begin , and end are variables defined for exposition only; and
—(1.3) begin-expr and end-expr are determined as follows:

—(1.3.1) if the for-range-initializer is an expression of array type R, begin-expr and end-expr are range
and range + N, respectively, where N is the array bound. If R is an array of unknown bound or an
array of incomplete type, the program is ill-formed;
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—(1.3.2) if the for-range-initializer is an expression of class type C, and searches in the scope of C (6.5.2)
for the names begin and end each find at least one declaration, begin-expr and end-expr are
range .begin() and range .end(), respectively;

—(1.3.3) otherwise, begin-expr and end-expr are begin(range ) and end(range ), respectively, where
begin and end undergo argument-dependent lookup (6.5.4).
[Note 1 : Ordinary unqualified lookup (6.5.3) is not performed. — end note ]

[Example 1 :
int array[5] = { 1, 2, 3, 4, 5 };
for (int& x : array)

x *= 2;

— end example ]
[Note 2 : The lifetime of some temporaries in the for-range-initializer is extended to cover the entire loop (6.7.7). — end
note ]
[Example 2 :

using T = std::list<int>;
const T& f1(const T& t) { return t; }
const T& f2(T t) { return t; }
T g();

void foo() {
for (auto e : f1(g())) {} // OK, lifetime of return value of g() extended
for (auto e : f2(g())) {} // undefined behavior

}

— end example ]
2 In the decl-specifier-seq of a for-range-declaration, each decl-specifier shall be either a type-specifier or constexpr.

The decl-specifier-seq shall not define a class or enumeration.

8.7 Jump statements [stmt.jump]
8.7.1 General [stmt.jump.general]

1 Jump statements unconditionally transfer control.
jump-statement :

break ;
continue ;
return expr-or-braced-init-listopt ;
coroutine-return-statement
goto identifier ;

2 [Note 1 : On exit from a scope (however accomplished), objects with automatic storage duration (6.7.5.4) that have
been constructed in that scope are destroyed in the reverse order of their construction. For temporaries, see 6.7.7.
However, the program can be terminated (by calling std::exit() or std::abort() (17.5), for example) without
destroying objects with automatic storage duration. — end note ]
[Note 2 : A suspension of a coroutine (7.6.2.4) is not considered to be an exit from a scope. — end note ]

8.7.2 The break statement [stmt.break]
1 A break statement shall be enclosed by (8.1) an iteration-statement (8.6) or a switch statement (8.5.3). The

break statement causes termination of the smallest such enclosing statement; control passes to the statement
following the terminated statement, if any.

8.7.3 The continue statement [stmt.cont]
1 A continue statement shall be enclosed by (8.1) an iteration-statement (8.6). The continue statement causes

control to pass to the loop-continuation portion of the smallest such enclosing statement, that is, to the end
of the loop. More precisely, in each of the statements

§ 8.7.3 169



© ISO/IEC N4950

while (foo) {
{

// ...
}

contin : ;
}

do {
{

// ...
}

contin : ;
} while (foo);

for (;;) {
{

// ...
}

contin : ;
}

a continue not contained in an enclosed iteration statement is equivalent to goto contin .

8.7.4 The return statement [stmt.return]
1 A function returns to its caller by the return statement.
2 The expr-or-braced-init-list of a return statement is called its operand. A return statement with no operand

shall be used only in a function whose return type is cv void, a constructor (11.4.5), or a destructor (11.4.7).
A return statement with an operand of type void shall be used only in a function that has a cv void return
type. A return statement with any other operand shall be used only in a function that has a return type
other than cv void; the return statement initializes the returned reference or prvalue result object of the
(explicit or implicit) function call by copy-initialization (9.4) from the operand.
[Note 1 : A constructor or destructor does not have a return type. — end note ]
[Note 2 : A return statement can involve an invocation of a constructor to perform a copy or move of the operand if it
is not a prvalue or if its type differs from the return type of the function. A copy operation associated with a return
statement can be elided or converted to a move operation if an automatic storage duration variable is returned (11.9.6).

— end note ]
3 The destructor for the result object is potentially invoked (11.4.7, 14.3).

[Example 1 :
class A {

~A() {}
};
A f() { return A(); } // error: destructor of A is private (even though it is never invoked)

— end example ]
4 Flowing off the end of a constructor, a destructor, or a non-coroutine function with a cv void return type

is equivalent to a return with no operand. Otherwise, flowing off the end of a function that is neither
main (6.9.3.1) nor a coroutine (9.5.4) results in undefined behavior.

5 The copy-initialization of the result of the call is sequenced before the destruction of temporaries at the end
of the full-expression established by the operand of the return statement, which, in turn, is sequenced before
the destruction of local variables (8.7) of the block enclosing the return statement.

8.7.5 The co_return statement [stmt.return.coroutine]
coroutine-return-statement :

co_return expr-or-braced-init-listopt ;

1 A coroutine returns to its caller or resumer (9.5.4) by the co_return statement or when suspended (7.6.2.4).
A coroutine shall not enclose a return statement (8.7.4).
[Note 1 : For this determination, it is irrelevant whether the return statement is enclosed by a discarded statement
(8.5.2). — end note ]

2 The expr-or-braced-init-list of a co_return statement is called its operand. Let p be an lvalue naming the
coroutine promise object (9.5.4). A co_return statement is equivalent to:

{ S; goto final-suspend ; }

where final-suspend is the exposition-only label defined in 9.5.4 and S is defined as follows:
—(2.1) If the operand is a braced-init-list or an expression of non-void type, S is p.return_value(expr-or-

braced-init-list). The expression S shall be a prvalue of type void.
—(2.2) Otherwise, S is the compound-statement { expressionopt ; p.return_void(); }. The expression

p.return_void() shall be a prvalue of type void.
3 If p.return_void() is a valid expression, flowing off the end of a coroutine’s function-body is equivalent to a

co_return with no operand; otherwise flowing off the end of a coroutine’s function-body results in undefined
behavior.
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8.7.6 The goto statement [stmt.goto]
1 The goto statement unconditionally transfers control to the statement labeled by the identifier. The identifier

shall be a label (8.2) located in the current function.

8.8 Declaration statement [stmt.dcl]
1 A declaration statement introduces one or more new names into a block; it has the form

declaration-statement :
block-declaration

[Note 1 : If an identifier introduced by a declaration was previously declared in an outer block, the outer declaration is
hidden for the remainder of the block (6.5.3), after which it resumes its force. — end note ]

2 A variable with automatic storage duration (6.7.5.4) is active everywhere in the scope to which it belongs
after its init-declarator . Upon each transfer of control (including sequential execution of statements) within a
function from point P to point Q, all variables with automatic storage duration that are active at P and
not at Q are destroyed in the reverse order of their construction. Then, all variables with automatic storage
duration that are active at Q but not at P are initialized in declaration order; unless all such variables have
vacuous initialization (6.7.3), the transfer of control shall not be a jump.77 When a declaration-statement is
executed, P and Q are the points immediately before and after it; when a function returns, Q is after its
body.
[Example 1 :

void f() {
// ...
goto lx; // error: jump into scope of a
// ...

ly:
X a = 1;
// ...

lx:
goto ly; // OK, jump implies destructor call for a followed by

// construction again immediately following label ly
}

— end example ]
3 Dynamic initialization of a block variable with static storage duration (6.7.5.2) or thread storage duration

(6.7.5.3) is performed the first time control passes through its declaration; such a variable is considered
initialized upon the completion of its initialization. If the initialization exits by throwing an exception, the
initialization is not complete, so it will be tried again the next time control enters the declaration. If control
enters the declaration concurrently while the variable is being initialized, the concurrent execution shall wait
for completion of the initialization.
[Note 2 : A conforming implementation cannot introduce any deadlock around execution of the initializer. Deadlocks
might still be caused by the program logic; the implementation need only avoid deadlocks due to its own synchronization
operations. — end note ]

If control re-enters the declaration recursively while the variable is being initialized, the behavior is undefined.
[Example 2 :

int foo(int i) {
static int s = foo(2*i); // undefined behavior: recursive call
return i+1;

}

— end example ]
4 An object associated with a block variable with static or thread storage duration will be destroyed if and

only if it was constructed.
[Note 3 : 6.9.3.4 describes the order in which such objects are destroyed. — end note ]

77) The transfer from the condition of a switch statement to a case label is considered a jump in this respect.
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8.9 Ambiguity resolution [stmt.ambig]
1 There is an ambiguity in the grammar involving expression-statements and declarations: An expression-statement

with a function-style explicit type conversion (7.6.1.4) as its leftmost subexpression can be indistinguishable
from a declaration where the first declarator starts with a (. In those cases the statement is a declaration.

2 [Note 1 : If the statement cannot syntactically be a declaration, there is no ambiguity, so this rule does not apply.
In some cases, the whole statement needs to be examined to determine whether this is the case. This resolves the
meaning of many examples.
[Example 1 : Assuming T is a simple-type-specifier (9.2.9),

T(a)->m = 7; // expression-statement
T(a)++; // expression-statement
T(a,5)<<c; // expression-statement

T(*d)(int); // declaration
T(e)[5]; // declaration
T(f) = { 1, 2 }; // declaration
T(*g)(double(3)); // declaration

In the last example above, g, which is a pointer to T, is initialized to double(3). This is of course ill-formed for
semantic reasons, but that does not affect the syntactic analysis. — end example ]
The remaining cases are declarations.
[Example 2 :

class T {
// ...

public:
T();
T(int);
T(int, int);

};
T(a); // declaration
T(*b)(); // declaration
T(c)=7; // declaration
T(d),e,f=3; // declaration
extern int h;
T(g)(h,2); // declaration

— end example ]
— end note ]

3 The disambiguation is purely syntactic; that is, the meaning of the names occurring in such a statement,
beyond whether they are type-names or not, is not generally used in or changed by the disambiguation. Class
templates are instantiated as necessary to determine if a qualified name is a type-name. Disambiguation
precedes parsing, and a statement disambiguated as a declaration may be an ill-formed declaration. If, during
parsing, lookup finds that a name in a template argument is bound to (part of) the declaration being parsed,
the program is ill-formed. No diagnostic is required.
[Example 3 :

struct T1 {
T1 operator()(int x) { return T1(x); }
int operator=(int x) { return x; }
T1(int) { }

};
struct T2 { T2(int) { } };
int a, (*(*b)(T2))(int), c, d;

void f() {
// disambiguation requires this to be parsed as a declaration:
T1(a) = 3,
T2(4), // T2 will be declared as a variable of type T1, but this will not
(*(*b)(T2(c)))(int(d)); // allow the last part of the declaration to parse properly,

// since it depends on T2 being a type-name
}

— end example ]
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9 Declarations [dcl.dcl]
9.1 Preamble [dcl.pre]

1 Declarations generally specify how names are to be interpreted. Declarations have the form
declaration-seq :

declaration
declaration-seq declaration

declaration :
name-declaration
special-declaration

name-declaration :
block-declaration
nodeclspec-function-declaration
function-definition
template-declaration
deduction-guide
linkage-specification
namespace-definition
empty-declaration
attribute-declaration
module-import-declaration

special-declaration :
explicit-instantiation
explicit-specialization
export-declaration

block-declaration :
simple-declaration
asm-declaration
namespace-alias-definition
using-declaration
using-enum-declaration
using-directive
static_assert-declaration
alias-declaration
opaque-enum-declaration

nodeclspec-function-declaration :
attribute-specifier-seqopt declarator ;

alias-declaration :
using identifier attribute-specifier-seqopt = defining-type-id ;

simple-declaration :
decl-specifier-seq init-declarator-listopt ;
attribute-specifier-seq decl-specifier-seq init-declarator-list ;
attribute-specifier-seqopt decl-specifier-seq ref-qualifieropt [ identifier-list ] initializer ;

static_assert-declaration :
static_assert ( constant-expression ) ;
static_assert ( constant-expression , string-literal ) ;

empty-declaration :
;

attribute-declaration :
attribute-specifier-seq ;

[Note 1 : asm-declarations are described in 9.10, and linkage-specifications are described in 9.11; function-definitions are
described in 9.5 and template-declarations and deduction-guides are described in 13.7.2.3; namespace-definitions are
described in 9.8.2, using-declarations are described in 9.9 and using-directives are described in 9.8.4. — end note ]
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2 Certain declarations contain one or more scopes (6.4.1). Unless otherwise stated, utterances in Clause 9 about
components in, of, or contained by a declaration or subcomponent thereof refer only to those components of
the declaration that are not nested within scopes nested within the declaration.

3 A simple-declaration or nodeclspec-function-declaration of the form
attribute-specifier-seqopt decl-specifier-seqopt init-declarator-listopt ;

is divided into three parts. Attributes are described in 9.12. decl-specifiers, the principal components of a
decl-specifier-seq, are described in 9.2. declarators, the components of an init-declarator-list, are described in 9.3.
The attribute-specifier-seq appertains to each of the entities declared by the declarators of the init-declarator-list.
[Note 2 : In the declaration for an entity, attributes appertaining to that entity can appear at the start of the
declaration and after the declarator-id for that declaration. — end note ]
[Example 1 :

[[noreturn]] void f [[noreturn]] (); // OK
— end example ]

4 If a declarator-id is a name, the init-declarator and (hence) the declaration introduce that name.
[Note 3 : Otherwise, the declarator-id is a qualified-id or names a destructor or its unqualified-id is a template-id and no
name is introduced. — end note ]

The defining-type-specifiers (9.2.9) in the decl-specifier-seq and the recursive declarator structure describe a
type (9.3.4), which is then associated with the declarator-id .

5 In a simple-declaration, the optional init-declarator-list can be omitted only when declaring a class (11.1)
or enumeration (9.7.1), that is, when the decl-specifier-seq contains either a class-specifier , an elaborated-
type-specifier with a class-key (11.3), or an enum-specifier . In these cases and whenever a class-specifier
or enum-specifier is present in the decl-specifier-seq, the identifiers in these specifiers are also declared (as
class-names, enum-names, or enumerators, depending on the syntax). In such cases, the decl-specifier-seq shall
(re)introduce one or more names into the program.
[Example 2 :

enum { }; // error
typedef class { }; // error

— end example ]
6 A simple-declaration with an identifier-list is called a structured binding declaration (9.6). Each decl-specifier

in the decl-specifier-seq shall be static, thread_local, auto (9.2.9.6), or a cv-qualifier .
[Example 3 :

template<class T> concept C = true;
C auto [x, y] = std::pair{1, 2}; // error: constrained placeholder-type-specifier

// not permitted for structured bindings
— end example ]

The initializer shall be of the form “= assignment-expression”, of the form “{ assignment-expression }”, or of
the form “( assignment-expression )”, where the assignment-expression is of array or non-union class type.

7 If the decl-specifier-seq contains the typedef specifier, the declaration is a typedef declaration and each
declarator-id is declared to be a typedef-name, synonymous with its associated type (9.2.4).
[Note 4 : Such a declarator-id is an identifier (11.4.8.3). — end note ]

Otherwise, if the type associated with a declarator-id is a function type (9.3.4.6), the declaration is a function
declaration. Otherwise, if the type associated with a declarator-id is an object or reference type, the declaration
is an object declaration. Otherwise, the program is ill-formed.
[Example 4 :

int f(), x; // OK, function declaration for f and object declaration for x
extern void g(), // OK, function declaration for g

y; // error: void is not an object type
— end example ]

8 Syntactic components beyond those found in the general form of simple-declaration are added to a function
declaration to make a function-definition. An object declaration, however, is also a definition unless it contains
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the extern specifier and has no initializer (6.2). An object definition causes storage of appropriate size and
alignment to be reserved and any appropriate initialization (9.4) to be done.

9 A nodeclspec-function-declaration shall declare a constructor, destructor, or conversion function.
[Note 5 : Because a member function cannot be subject to a non-defining declaration outside of a class definition (11.4.2),
a nodeclspec-function-declaration can only be used in a template-declaration (13.1), explicit-instantiation (13.9.3), or
explicit-specialization (13.9.4). — end note ]

10 In a static_assert-declaration, the constant-expression is contextually converted to bool and the converted
expression shall be a constant expression (7.7). If the value of the expression when so converted is true or
the expression is evaluated in the context of a template definition, the declaration has no effect. Otherwise,
the static_assert-declaration fails, the program is ill-formed, and the resulting diagnostic message (4.1) should
include the text of the string-literal , if one is supplied.
[Example 5 :

static_assert(sizeof(int) == sizeof(void*), "wrong pointer size");
static_assert(sizeof(int[2])); // OK, narrowing allowed

template <class T>
void f(T t) {

if constexpr (sizeof(T) == sizeof(int)) {
use(t);

} else {
static_assert(false, "must be int-sized");

}
}

void g(char c) {
f(0); // OK
f(c); // error on implementations where sizeof(int) > 1: must be int-

sized
}

— end example ]
11 An empty-declaration has no effect.
12 Except where otherwise specified, the meaning of an attribute-declaration is implementation-defined.

9.2 Specifiers [dcl.spec]
9.2.1 General [dcl.spec.general]

1 The specifiers that can be used in a declaration are
decl-specifier :

storage-class-specifier
defining-type-specifier
function-specifier
friend
typedef
constexpr
consteval
constinit
inline

decl-specifier-seq :
decl-specifier attribute-specifier-seqopt
decl-specifier decl-specifier-seq

The optional attribute-specifier-seq in a decl-specifier-seq appertains to the type determined by the preceding
decl-specifiers (9.3.4). The attribute-specifier-seq affects the type only for the declaration it appears in, not
other declarations involving the same type.

2 Each decl-specifier shall appear at most once in a complete decl-specifier-seq, except that long may appear
twice. At most one of the constexpr, consteval, and constinit keywords shall appear in a decl-specifier-seq.
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3 If a type-name is encountered while parsing a decl-specifier-seq, it is interpreted as part of the decl-specifier-seq
if and only if there is no previous defining-type-specifier other than a cv-qualifier in the decl-specifier-seq. The
sequence shall be self-consistent as described below.
[Example 1 :

typedef char* Pc;
static Pc; // error: name missing

Here, the declaration static Pc is ill-formed because no name was specified for the static variable of type Pc. To get a
variable called Pc, a type-specifier (other than const or volatile) has to be present to indicate that the typedef-name
Pc is the name being (re)declared, rather than being part of the decl-specifier sequence. For another example,

void f(const Pc); // void f(char* const) (not const char*)
void g(const int Pc); // void g(const int)

— end example ]
4 [Note 1 : Since signed, unsigned, long, and short by default imply int, a type-name appearing after one of those

specifiers is treated as the name being (re)declared.
[Example 2 :

void h(unsigned Pc); // void h(unsigned int)
void k(unsigned int Pc); // void k(unsigned int)

— end example ]
— end note ]

9.2.2 Storage class specifiers [dcl.stc]
1 The storage class specifiers are

storage-class-specifier :
static
thread_local
extern
mutable

At most one storage-class-specifier shall appear in a given decl-specifier-seq, except that thread_local may
appear with static or extern. If thread_local appears in any declaration of a variable it shall be present
in all declarations of that entity. If a storage-class-specifier appears in a decl-specifier-seq, there can be no
typedef specifier in the same decl-specifier-seq and the init-declarator-list or member-declarator-list of the
declaration shall not be empty (except for an anonymous union declared in a namespace scope (11.5.2)). The
storage-class-specifier applies to the name declared by each init-declarator in the list and not to any names
declared by other specifiers.
[Note 1 : See 13.9.4 and 13.9.3 for restrictions in explicit specializations and explicit instantiations, respectively. — end
note ]

2 [Note 2 : A variable declared without a storage-class-specifier at block scope or declared as a function parameter has
automatic storage duration by default (6.7.5.4). — end note ]

3 The thread_local specifier indicates that the named entity has thread storage duration (6.7.5.3). It shall
be applied only to the declaration of a variable of namespace or block scope, to a structured binding
declaration (9.6), or to the declaration of a static data member. When thread_local is applied to a variable
of block scope the storage-class-specifier static is implied if no other storage-class-specifier appears in the
decl-specifier-seq.

4 The static specifier shall be applied only to the declaration of a variable or function, to a structured
binding declaration (9.6), or to the declaration of an anonymous union (11.5.2). There can be no static
function declarations within a block, nor any static function parameters. A static specifier used in the
declaration of a variable declares the variable to have static storage duration (6.7.5.2), unless accompanied by
the thread_local specifier, which declares the variable to have thread storage duration (6.7.5.3). A static
specifier can be used in declarations of class members; 11.4.9 describes its effect. For the linkage of a name
declared with a static specifier, see 6.6.

5 The extern specifier shall be applied only to the declaration of a variable or function. The extern specifier
shall not be used in the declaration of a class member or function parameter. For the linkage of a name
declared with an extern specifier, see 6.6.
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[Note 3 : The extern keyword can also be used in explicit-instantiations and linkage-specifications, but it is not a
storage-class-specifier in such contexts. — end note ]

6 All declarations for a given entity shall give its name the same linkage.
[Note 4 : The linkage given by some declarations is affected by previous declarations. Overloads are distinct entities.

— end note ]
[Example 1 :

static char* f(); // f() has internal linkage
char* f() // f() still has internal linkage

{ /* ... */ }

char* g(); // g() has external linkage
static char* g() // error: inconsistent linkage

{ /* ... */ }

void h();
inline void h(); // external linkage

inline void l();
void l(); // external linkage

inline void m();
extern void m(); // external linkage

static void n();
inline void n(); // internal linkage

static int a; // a has internal linkage
int a; // error: two definitions

static int b; // b has internal linkage
extern int b; // b still has internal linkage

int c; // c has external linkage
static int c; // error: inconsistent linkage

extern int d; // d has external linkage
static int d; // error: inconsistent linkage

— end example ]
7 The name of a declared but undefined class can be used in an extern declaration. Such a declaration can

only be used in ways that do not require a complete class type.
[Example 2 :

struct S;
extern S a;
extern S f();
extern void g(S);

void h() {
g(a); // error: S is incomplete
f(); // error: S is incomplete

}

— end example ]
8 The mutable specifier shall appear only in the declaration of a non-static data member (11.4) whose type is

neither const-qualified nor a reference type.
[Example 3 :

class X {
mutable const int* p; // OK
mutable int* const q; // error

};
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— end example ]
9 [Note 5 : The mutable specifier on a class data member nullifies a const specifier applied to the containing class object

and permits modification of the mutable class member even though the rest of the object is const (6.8.5, 9.2.9.2).
— end note ]

9.2.3 Function specifiers [dcl.fct.spec]
1 A function-specifier can be used only in a function declaration.

function-specifier :
virtual
explicit-specifier

explicit-specifier :
explicit ( constant-expression )
explicit

2 The virtual specifier shall be used only in the initial declaration of a non-static member function; see 11.7.3.
3 An explicit-specifier shall be used only in the declaration of a constructor or conversion function within its

class definition; see 11.4.8.2 and 11.4.8.3.
4 In an explicit-specifier , the constant-expression, if supplied, shall be a contextually converted constant expression

of type bool (7.7). The explicit-specifier explicit without a constant-expression is equivalent to the explicit-
specifier explicit(true). If the constant expression evaluates to true, the function is explicit. Otherwise,
the function is not explicit. A ( token that follows explicit is parsed as part of the explicit-specifier .
[Example 1 :

struct S {
explicit(sizeof(char[2])) S(char); // error: narrowing conversion of value 2 to type bool
explicit(sizeof(char)) S(bool); // OK, conversion of value 1 to type bool is non-narrowing

};

— end example ]

9.2.4 The typedef specifier [dcl.typedef]
1 Declarations containing the decl-specifier typedef declare identifiers that can be used later for naming

fundamental (6.8.2) or compound (6.8.4) types. The typedef specifier shall not be combined in a decl-
specifier-seq with any other kind of specifier except a defining-type-specifier , and it shall not be used in the
decl-specifier-seq of a parameter-declaration (9.3.4.6) nor in the decl-specifier-seq of a function-definition (9.5).
If a typedef specifier appears in a declaration without a declarator , the program is ill-formed.

typedef-name :
identifier
simple-template-id

A name declared with the typedef specifier becomes a typedef-name. A typedef-name names the type
associated with the identifier (9.3) or simple-template-id (13.1); a typedef-name is thus a synonym for
another type. A typedef-name does not introduce a new type the way a class declaration (11.3) or enum
declaration (9.7.1) does.
[Example 1 : After

typedef int MILES, *KLICKSP;

the constructions
MILES distance;
extern KLICKSP metricp;

are all correct declarations; the type of distance is int and that of metricp is “pointer to int”. — end example ]
2 A typedef-name can also be introduced by an alias-declaration. The identifier following the using keyword

is not looked up; it becomes a typedef-name and the optional attribute-specifier-seq following the identifier
appertains to that typedef-name. Such a typedef-name has the same semantics as if it were introduced by the
typedef specifier. In particular, it does not define a new type.
[Example 2 :

using handler_t = void (*)(int);
extern handler_t ignore;
extern void (*ignore)(int); // redeclare ignore
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template<class T> struct P { };
using cell = P<cell*>; // error: cell not found (6.4.2)

— end example ]

The defining-type-specifier-seq of the defining-type-id shall not define a class or enumeration if the alias-
declaration is the declaration of a template-declaration.

3 A simple-template-id is only a typedef-name if its template-name names an alias template or a template
template-parameter .
[Note 1 : A simple-template-id that names a class template specialization is a class-name (11.3). If a typedef-name
is used to identify the subject of an elaborated-type-specifier (9.2.9.4), a class definition (Clause 11), a constructor
declaration (11.4.5), or a destructor declaration (11.4.7), the program is ill-formed. — end note ]
[Example 3 :

struct S {
S();
~S();

};

typedef struct S T;

S a = T(); // OK
struct T * p; // error

— end example ]
4 An unnamed class or enumeration C defined in a typedef declaration has the first typedef-name declared by

the declaration to be of type C as its typedef name for linkage purposes (6.6).
[Note 2 : A typedef declaration involving a lambda-expression does not itself define the associated closure type, and so
the closure type is not given a typedef name for linkage purposes. — end note ]
[Example 4 :

typedef struct { } *ps, S; // S is the typedef name for linkage purposes
typedef decltype([]{}) C; // the closure type has no typedef name for linkage purposes

— end example ]
5 An unnamed class with a typedef name for linkage purposes shall not

—(5.1) declare any members other than non-static data members, member enumerations, or member classes,
—(5.2) have any base classes or default member initializers, or
—(5.3) contain a lambda-expression,

and all member classes shall also satisfy these requirements (recursively).
[Example 5 :

typedef struct {
int f() {}

} X; // error: struct with typedef name for linkage has member functions
— end example ]

9.2.5 The friend specifier [dcl.friend]
1 The friend specifier is used to specify access to class members; see 11.8.4.

9.2.6 The constexpr and consteval specifiers [dcl.constexpr]
1 The constexpr specifier shall be applied only to the definition of a variable or variable template or the

declaration of a function or function template. The consteval specifier shall be applied only to the
declaration of a function or function template. A function or static data member declared with the constexpr
or consteval specifier is implicitly an inline function or variable (9.2.8). If any declaration of a function or
function template has a constexpr or consteval specifier, then all its declarations shall contain the same
specifier.
[Note 1 : An explicit specialization can differ from the template declaration with respect to the constexpr or consteval
specifier. — end note ]
[Note 2 : Function parameters cannot be declared constexpr. — end note ]
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[Example 1 :
constexpr void square(int &x); // OK, declaration
constexpr int bufsz = 1024; // OK, definition
constexpr struct pixel { // error: pixel is a type

int x;
int y;
constexpr pixel(int); // OK, declaration

};
constexpr pixel::pixel(int a)

: x(a), y(x) // OK, definition
{ square(x); }

constexpr pixel small(2); // error: square not defined, so small(2)
// not constant (7.7) so constexpr not satisfied

constexpr void square(int &x) { // OK, definition
x *= x;

}
constexpr pixel large(4); // OK, square defined
int next(constexpr int x) { // error: not for parameters

return x + 1;
}
extern constexpr int memsz; // error: not a definition

— end example ]
2 A constexpr or consteval specifier used in the declaration of a function declares that function to be a

constexpr function.
[Note 3 : A function or constructor declared with the consteval specifier is an immediate function (7.7). — end note ]

A destructor, an allocation function, or a deallocation function shall not be declared with the consteval
specifier.

3 A function is constexpr-suitable if:
—(3.1) it is not a coroutine (9.5.4), and
—(3.2) if the function is a constructor or destructor, its class does not have any virtual base classes.

Except for instantiated constexpr functions, non-templated constexpr functions shall be constexpr-suitable.
[Example 2 :

constexpr int square(int x)
{ return x * x; } // OK

constexpr long long_max()
{ return 2147483647; } // OK

constexpr int abs(int x) {
if (x < 0)

x = -x;
return x; // OK

}
constexpr int constant_non_42(int n) { // OK

if (n == 42) {
static int value = n;
return value;

}
return n;

}
constexpr int uninit() {

struct { int a; } s;
return s.a; // error: uninitialized read of s.a

}
constexpr int prev(int x)

{ return --x; } // OK
constexpr int g(int x, int n) { // OK

int r = 1;
while (--n > 0) r *= x;
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return r;
}

— end example ]
4 An invocation of a constexpr function in a given context produces the same result as an invocation of an

equivalent non-constexpr function in the same context in all respects except that
—(4.1) an invocation of a constexpr function can appear in a constant expression (7.7) and
—(4.2) copy elision is not performed in a constant expression (11.9.6).

[Note 4 : Declaring a function constexpr can change whether an expression is a constant expression. This can indirectly
cause calls to std::is_constant_evaluated within an invocation of the function to produce a different value. — end
note ]
[Note 5 : It is possible to write a constexpr function for which no invocation satisfies the requirements of a core
constant expression. — end note ]

5 The constexpr and consteval specifiers have no effect on the type of a constexpr function.
[Example 3 :

constexpr int bar(int x, int y) // OK
{ return x + y + x*y; }

// ...
int bar(int x, int y) // error: redefinition of bar

{ return x * 2 + 3 * y; }

— end example ]
6 A constexpr specifier used in an object declaration declares the object as const. Such an object shall

have literal type and shall be initialized. In any constexpr variable declaration, the full-expression of the
initialization shall be a constant expression (7.7). A constexpr variable that is an object, as well as any
temporary to which a constexpr reference is bound, shall have constant destruction.
[Example 4 :

struct pixel {
int x, y;

};
constexpr pixel ur = { 1294, 1024 }; // OK
constexpr pixel origin; // error: initializer missing

— end example ]

9.2.7 The constinit specifier [dcl.constinit]
1 The constinit specifier shall be applied only to a declaration of a variable with static or thread storage

duration. If the specifier is applied to any declaration of a variable, it shall be applied to the initializing
declaration. No diagnostic is required if no constinit declaration is reachable at the point of the initializing
declaration.

2 If a variable declared with the constinit specifier has dynamic initialization (6.9.3.3), the program is
ill-formed, even if the implementation would perform that initialization as a static initialization (6.9.3.2).
[Note 1 : The constinit specifier ensures that the variable is initialized during static initialization. — end note ]

3 [Example 1 :
const char * g() { return "dynamic initialization"; }
constexpr const char * f(bool p) { return p ? "constant initializer" : g(); }
constinit const char * c = f(true); // OK
constinit const char * d = f(false); // error

— end example ]

9.2.8 The inline specifier [dcl.inline]
1 The inline specifier shall be applied only to the declaration of a variable or function.
2 A function declaration (9.3.4.6, 11.4.2, 11.8.4) with an inline specifier declares an inline function. The

inline specifier indicates to the implementation that inline substitution of the function body at the point of
call is to be preferred to the usual function call mechanism. An implementation is not required to perform
this inline substitution at the point of call; however, even if this inline substitution is omitted, the other rules
for inline functions specified in this subclause shall still be respected.
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[Note 1 : The inline keyword has no effect on the linkage of a function. In certain cases, an inline function cannot
use names with internal linkage; see 6.6. — end note ]

3 A variable declaration with an inline specifier declares an inline variable.
4 The inline specifier shall not appear on a block scope declaration or on the declaration of a function

parameter. If the inline specifier is used in a friend function declaration, that declaration shall be a
definition or the function shall have previously been declared inline.

5 If a definition of a function or variable is reachable at the point of its first declaration as inline, the program
is ill-formed. If a function or variable with external or module linkage is declared inline in one definition
domain, an inline declaration of it shall be reachable from the end of every definition domain in which it is
declared; no diagnostic is required.
[Note 2 : A call to an inline function or a use of an inline variable can be encountered before its definition becomes
reachable in a translation unit. — end note ]

6 [Note 3 : An inline function or variable with external or module linkage can be defined in multiple translation
units (6.3), but is one entity with one address. A type or static variable defined in the body of such a function is
therefore a single entity. — end note ]

7 If an inline function or variable that is attached to a named module is declared in a definition domain, it
shall be defined in that domain.
[Note 4 : A constexpr function (9.2.6) is implicitly inline. In the global module, a function defined within a class
definition is implicitly inline (11.4.2, 11.8.4). — end note ]

9.2.9 Type specifiers [dcl.type]
9.2.9.1 General [dcl.type.general]

1 The type-specifiers are
type-specifier :

simple-type-specifier
elaborated-type-specifier
typename-specifier
cv-qualifier

type-specifier-seq :
type-specifier attribute-specifier-seqopt
type-specifier type-specifier-seq

defining-type-specifier :
type-specifier
class-specifier
enum-specifier

defining-type-specifier-seq :
defining-type-specifier attribute-specifier-seqopt
defining-type-specifier defining-type-specifier-seq

The optional attribute-specifier-seq in a type-specifier-seq or a defining-type-specifier-seq appertains to the type
denoted by the preceding type-specifiers or defining-type-specifiers (9.3.4). The attribute-specifier-seq affects
the type only for the declaration it appears in, not other declarations involving the same type.

2 As a general rule, at most one defining-type-specifier is allowed in the complete decl-specifier-seq of a declaration
or in a defining-type-specifier-seq, and at most one type-specifier is allowed in a type-specifier-seq. The only
exceptions to this rule are the following:

—(2.1) const can be combined with any type specifier except itself.
—(2.2) volatile can be combined with any type specifier except itself.
—(2.3) signed or unsigned can be combined with char, long, short, or int.
—(2.4) short or long can be combined with int.
—(2.5) long can be combined with double.
—(2.6) long can be combined with long.
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3 Except in a declaration of a constructor, destructor, or conversion function, at least one defining-type-specifier
that is not a cv-qualifier shall appear in a complete type-specifier-seq or a complete decl-specifier-seq.78

4 [Note 1 : enum-specifiers, class-specifiers, and typename-specifiers are discussed in 9.7.1, Clause 11, and 13.8, respectively.
The remaining type-specifiers are discussed in the rest of 9.2.9. — end note ]

9.2.9.2 The cv-qualifiers [dcl.type.cv]
1 There are two cv-qualifiers, const and volatile. Each cv-qualifier shall appear at most once in a cv-qualifier-

seq. If a cv-qualifier appears in a decl-specifier-seq, the init-declarator-list or member-declarator-list of the
declaration shall not be empty.
[Note 1 : 6.8.5 and 9.3.4.6 describe how cv-qualifiers affect object and function types. — end note ]

Redundant cv-qualifications are ignored.
[Note 2 : For example, these could be introduced by typedefs. — end note ]

2 [Note 3 : Declaring a variable const can affect its linkage (9.2.2) and its usability in constant expressions (7.7). As
described in 9.4, the definition of an object or subobject of const-qualified type must specify an initializer or be subject
to default-initialization. — end note ]

3 A pointer or reference to a cv-qualified type need not actually point or refer to a cv-qualified object, but it
is treated as if it does; a const-qualified access path cannot be used to modify an object even if the object
referenced is a non-const object and can be modified through some other access path.
[Note 4 : Cv-qualifiers are supported by the type system so that they cannot be subverted without casting (7.6.1.11).

— end note ]
4 Any attempt to modify (7.6.19, 7.6.1.6, 7.6.2.3) a const object (6.8.5) during its lifetime (6.7.3) results in

undefined behavior.
[Example 1 :

const int ci = 3; // cv-qualified (initialized as required)
ci = 4; // error: attempt to modify const

int i = 2; // not cv-qualified
const int* cip; // pointer to const int
cip = &i; // OK, cv-qualified access path to unqualified
*cip = 4; // error: attempt to modify through ptr to const

int* ip;
ip = const_cast<int*>(cip); // cast needed to convert const int* to int*
*ip = 4; // defined: *ip points to i, a non-const object

const int* ciq = new const int (3); // initialized as required
int* iq = const_cast<int*>(ciq); // cast required
*iq = 4; // undefined behavior: modifies a const object

For another example,
struct X {

mutable int i;
int j;

};
struct Y {

X x;
Y();

};

const Y y;
y.x.i++; // well-formed: mutable member can be modified
y.x.j++; // error: const-qualified member modified
Y* p = const_cast<Y*>(&y); // cast away const-ness of y
p->x.i = 99; // well-formed: mutable member can be modified
p->x.j = 99; // undefined behavior: modifies a const subobject

— end example ]

78) There is no special provision for a decl-specifier-seq that lacks a type-specifier or that has a type-specifier that only specifies
cv-qualifiers. The “implicit int” rule of C is no longer supported.
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5 The semantics of an access through a volatile glvalue are implementation-defined. If an attempt is made to
access an object defined with a volatile-qualified type through the use of a non-volatile glvalue, the behavior
is undefined.

6 [Note 5 : volatile is a hint to the implementation to avoid aggressive optimization involving the object because
the value of the object might be changed by means undetectable by an implementation. Furthermore, for some
implementations, volatile might indicate that special hardware instructions are required to access the object.
See 6.9.1 for detailed semantics. In general, the semantics of volatile are intended to be the same in C++ as they
are in C. — end note ]

9.2.9.3 Simple type specifiers [dcl.type.simple]
1 The simple type specifiers are

simple-type-specifier :
nested-name-specifieropt type-name
nested-name-specifier template simple-template-id
decltype-specifier
placeholder-type-specifier
nested-name-specifieropt template-name
char
char8_t
char16_t
char32_t
wchar_t
bool
short
int
long
signed
unsigned
float
double
void

type-name :
class-name
enum-name
typedef-name

2 The component names of a simple-type-specifier are those of its nested-name-specifier , type-name, simple-
template-id , template-name, and/or type-constraint (if it is a placeholder-type-specifier). The component name
of a type-name is the first name in it.

3 A placeholder-type-specifier is a placeholder for a type to be deduced (9.2.9.6). A type-specifier of the form
typenameopt nested-name-specifieropt template-name is a placeholder for a deduced class type (9.2.9.7). The
nested-name-specifier , if any, shall be non-dependent and the template-name shall name a deducible template.
A deducible template is either a class template or is an alias template whose defining-type-id is of the form

typenameopt nested-name-specifieropt templateopt simple-template-id

where the nested-name-specifier (if any) is non-dependent and the template-name of the simple-template-id
names a deducible template.
[Note 1 : An injected-class-name is never interpreted as a template-name in contexts where class template argument
deduction would be performed (13.8.2). — end note ]

The other simple-type-specifiers specify either a previously-declared type, a type determined from an expression,
or one of the fundamental types (6.8.2). Table 17 summarizes the valid combinations of simple-type-specifiers
and the types they specify.

4 When multiple simple-type-specifiers are allowed, they can be freely intermixed with other decl-specifiers in
any order.
[Note 2 : It is implementation-defined whether objects of char type are represented as signed or unsigned quantities.
The signed specifier forces char objects to be signed; it is redundant in other contexts. — end note ]

9.2.9.4 Elaborated type specifiers [dcl.type.elab]
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Table 17: simple-type-specifiers and the types they specify [tab:dcl.type.simple]

Specifier(s) Type
type-name the type named
simple-template-id the type as defined in 13.3
decltype-specifier the type as defined in 9.2.9.5
placeholder-type-specifier the type as defined in 9.2.9.6
template-name the type as defined in 9.2.9.7
char “char”
unsigned char “unsigned char”
signed char “signed char”
char8_t “char8_t”
char16_t “char16_t”
char32_t “char32_t”
bool “bool”
unsigned “unsigned int”
unsigned int “unsigned int”
signed “int”
signed int “int”
int “int”
unsigned short int “unsigned short int”
unsigned short “unsigned short int”
unsigned long int “unsigned long int”
unsigned long “unsigned long int”
unsigned long long int “unsigned long long int”
unsigned long long “unsigned long long int”
signed long int “long int”
signed long “long int”
signed long long int “long long int”
signed long long “long long int”
long long int “long long int”
long long “long long int”
long int “long int”
long “long int”
signed short int “short int”
signed short “short int”
short int “short int”
short “short int”
wchar_t “wchar_t”
float “float”
double “double”
long double “long double”
void “void”

elaborated-type-specifier :
class-key attribute-specifier-seqopt nested-name-specifieropt identifier
class-key simple-template-id
class-key nested-name-specifier templateopt simple-template-id
enum nested-name-specifieropt identifier

1 The component names of an elaborated-type-specifier are its identifier (if any) and those of its nested-name-
specifier and simple-template-id (if any).

2 If an elaborated-type-specifier is the sole constituent of a declaration, the declaration is ill-formed unless it is
an explicit specialization (13.9.4), an explicit instantiation (13.9.3) or it has one of the following forms:

class-key attribute-specifier-seqopt identifier ;
class-key attribute-specifier-seqopt simple-template-id ;
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In the first case, the elaborated-type-specifier declares the identifier as a class-name. The second case shall
appear only in an explicit-specialization (13.9.4) or in a template-declaration (where it declares a partial
specialization (13.7)). The attribute-specifier-seq, if any, appertains to the class or template being declared.

3 Otherwise, an elaborated-type-specifier E shall not have an attribute-specifier-seq. If E contains an identifier
but no nested-name-specifier and (unqualified) lookup for the identifier finds nothing, E shall not be introduced
by the enum keyword and declares the identifier as a class-name. The target scope of E is the nearest enclosing
namespace or block scope.

4 If an elaborated-type-specifier appears with the friend specifier as an entire member-declaration, the member-
declaration shall have one of the following forms:

friend class-key nested-name-specifieropt identifier ;
friend class-key simple-template-id ;
friend class-key nested-name-specifier templateopt simple-template-id ;

Any unqualified lookup for the identifier (in the first case) does not consider scopes that contain the target
scope; no name is bound.
[Note 1 : A using-directive in the target scope is ignored if it refers to a namespace not contained by that scope. 6.5.6
describes how name lookup proceeds in an elaborated-type-specifier . — end note ]

5 [Note 2 : An elaborated-type-specifier can be used to refer to a previously declared class-name or enum-name even if
the name has been hidden by a non-type declaration. — end note ]

If the identifier or simple-template-id resolves to a class-name or enum-name, the elaborated-type-specifier
introduces it into the declaration the same way a simple-type-specifier introduces its type-name (9.2.9.3). If
the identifier or simple-template-id resolves to a typedef-name (9.2.4, 13.3), the elaborated-type-specifier is
ill-formed.
[Note 3 : This implies that, within a class template with a template type-parameter T, the declaration

friend class T;

is ill-formed. However, the similar declaration friend T; is allowed (11.8.4). — end note ]
6 The class-key or enum keyword present in the elaborated-type-specifier shall agree in kind with the declaration

to which the name in the elaborated-type-specifier refers. This rule also applies to the form of elaborated-type-
specifier that declares a class-name or friend class since it can be construed as referring to the definition of the
class. Thus, in any elaborated-type-specifier , the enum keyword shall be used to refer to an enumeration (9.7.1),
the union class-key shall be used to refer to a union (11.5), and either the class or struct class-key shall be
used to refer to a non-union class (11.1).
[Example 1 :

enum class E { a, b };
enum E x = E::a; // OK
struct S { } s;
class S* p = &s; // OK

— end example ]

9.2.9.5 Decltype specifiers [dcl.type.decltype]
decltype-specifier :

decltype ( expression )

1 For an expression E, the type denoted by decltype(E) is defined as follows:
—(1.1) if E is an unparenthesized id-expression naming a structured binding (9.6), decltype(E) is the referenced

type as given in the specification of the structured binding declaration;
—(1.2) otherwise, if E is an unparenthesized id-expression naming a non-type template-parameter (13.2),

decltype(E) is the type of the template-parameter after performing any necessary type deduction
(9.2.9.6, 9.2.9.7);

—(1.3) otherwise, if E is an unparenthesized id-expression or an unparenthesized class member access (7.6.1.5),
decltype(E) is the type of the entity named by E. If there is no such entity, the program is ill-formed;

—(1.4) otherwise, if E is an xvalue, decltype(E) is T&&, where T is the type of E;
—(1.5) otherwise, if E is an lvalue, decltype(E) is T&, where T is the type of E;
—(1.6) otherwise, decltype(E) is the type of E.
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The operand of the decltype specifier is an unevaluated operand (7.2.3).
[Example 1 :

const int&& foo();
int i;
struct A { double x; };
const A* a = new A();
decltype(foo()) x1 = 17; // type is const int&&
decltype(i) x2; // type is int
decltype(a->x) x3; // type is double
decltype((a->x)) x4 = x3; // type is const double&

— end example ]
[Note 1 : The rules for determining types involving decltype(auto) are specified in 9.2.9.6. — end note ]

2 If the operand of a decltype-specifier is a prvalue and is not a (possibly parenthesized) immediate invocation
(7.7), the temporary materialization conversion is not applied (7.3.5) and no result object is provided for the
prvalue. The type of the prvalue may be incomplete or an abstract class type.
[Note 2 : As a result, storage is not allocated for the prvalue and it is not destroyed. Thus, a class type is not
instantiated as a result of being the type of a function call in this context. In this context, the common purpose
of writing the expression is merely to refer to its type. In that sense, a decltype-specifier is analogous to a use of a
typedef-name, so the usual reasons for requiring a complete type do not apply. In particular, it is not necessary to
allocate storage for a temporary object or to enforce the semantic constraints associated with invoking the type’s
destructor. — end note ]
[Note 3 : Unlike the preceding rule, parentheses have no special meaning in this context. — end note ]
[Example 2 :

template<class T> struct A { ~A() = delete; };
template<class T> auto h()

-> A<T>;
template<class T> auto i(T) // identity

-> T;
template<class T> auto f(T) // #1

-> decltype(i(h<T>())); // forces completion of A<T> and implicitly uses A<T>::~A()
// for the temporary introduced by the use of h().
// (A temporary is not introduced as a result of the use of i().)

template<class T> auto f(T) // #2
-> void;

auto g() -> void {
f(42); // OK, calls #2. (#1 is not a viable candidate: type deduction

// fails (13.10.3) because A<int>::~A() is implicitly used in its
// decltype-specifier)

}
template<class T> auto q(T)

-> decltype((h<T>())); // does not force completion of A<T>; A<T>::~A() is not implicitly
// used within the context of this decltype-specifier

void r() {
q(42); // error: deduction against q succeeds, so overload resolution selects

// the specialization “q(T) -> decltype((h<T>()))” with T=int;
// the return type is A<int>, so a temporary is introduced and its
// destructor is used, so the program is ill-formed

}

— end example ]

9.2.9.6 Placeholder type specifiers [dcl.spec.auto]
9.2.9.6.1 General [dcl.spec.auto.general]

placeholder-type-specifier :
type-constraintopt auto
type-constraintopt decltype ( auto )

1 A placeholder-type-specifier designates a placeholder type that will be replaced later by deduction from an
initializer.
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2 A placeholder-type-specifier of the form type-constraintopt auto can be used as a decl-specifier of the decl-
specifier-seq of a parameter-declaration of a function declaration or lambda-expression and, if it is not the auto
type-specifier introducing a trailing-return-type (see below), is a generic parameter type placeholder of the
function declaration or lambda-expression.
[Note 1 : Having a generic parameter type placeholder signifies that the function is an abbreviated function template
(9.3.4.6) or the lambda is a generic lambda (7.5.5). — end note ]

3 A placeholder type can appear with a function declarator in the decl-specifier-seq, type-specifier-seq, conversion-
function-id , or trailing-return-type, in any context where such a declarator is valid. If the function declarator
includes a trailing-return-type (9.3.4.6), that trailing-return-type specifies the declared return type of the
function. Otherwise, the function declarator shall declare a function. If the declared return type of the
function contains a placeholder type, the return type of the function is deduced from non-discarded return
statements, if any, in the body of the function (8.5.2).

4 The type of a variable declared using a placeholder type is deduced from its initializer. This use is allowed in
an initializing declaration (9.4) of a variable. The placeholder type shall appear as one of the decl-specifiers
in the decl-specifier-seq and the decl-specifier-seq shall be followed by one or more declarators, each of which
shall be followed by a non-empty initializer .
[Example 1 :

auto x = 5; // OK, x has type int
const auto *v = &x, u = 6; // OK, v has type const int*, u has type const int
static auto y = 0.0; // OK, y has type double
auto int r; // error: auto is not a storage-class-specifier
auto f() -> int; // OK, f returns int
auto g() { return 0.0; } // OK, g returns double
auto h(); // OK, h’s return type will be deduced when it is defined

— end example ]

The auto type-specifier can also be used to introduce a structured binding declaration (9.6).
5 A placeholder type can also be used in the type-specifier-seq in the new-type-id or type-id of a new-expression

(7.6.2.8) and as a decl-specifier of the parameter-declaration’s decl-specifier-seq in a template-parameter (13.2).
The auto type-specifier can also be used as the simple-type-specifier in an explicit type conversion (functional
notation) (7.6.1.4).

6 A program that uses a placeholder type in a context not explicitly allowed in 9.2.9.6 is ill-formed.
7 If the init-declarator-list contains more than one init-declarator , they shall all form declarations of variables.

The type of each declared variable is determined by placeholder type deduction (9.2.9.6.2), and if the type
that replaces the placeholder type is not the same in each deduction, the program is ill-formed.
[Example 2 :

auto x = 5, *y = &x; // OK, auto is int
auto a = 5, b = { 1, 2 }; // error: different types for auto

— end example ]
8 If a function with a declared return type that contains a placeholder type has multiple non-discarded return

statements, the return type is deduced for each such return statement. If the type deduced is not the same
in each deduction, the program is ill-formed.

9 If a function with a declared return type that uses a placeholder type has no non-discarded return statements,
the return type is deduced as though from a return statement with no operand at the closing brace of the
function body.
[Example 3 :

auto f() { } // OK, return type is void
auto* g() { } // error: cannot deduce auto* from void()

— end example ]
10 An exported function with a declared return type that uses a placeholder type shall be defined in the

translation unit containing its exported declaration, outside the private-module-fragment (if any).
[Note 2 : The deduced return type cannot have a name with internal linkage (6.6). — end note ]
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11 If a variable or function with an undeduced placeholder type is named by an expression (6.3), the program is
ill-formed. Once a non-discarded return statement has been seen in a function, however, the return type
deduced from that statement can be used in the rest of the function, including in other return statements.
[Example 4 :

auto n = n; // error: n’s initializer refers to n
auto f();
void g() { &f; } // error: f’s return type is unknown
auto sum(int i) {

if (i == 1)
return i; // sum’s return type is int

else
return sum(i-1)+i; // OK, sum’s return type has been deduced

}

— end example ]
12 Return type deduction for a templated function with a placeholder in its declared type occurs when the

definition is instantiated even if the function body contains a return statement with a non-type-dependent
operand.
[Note 3 : Therefore, any use of a specialization of the function template will cause an implicit instantiation. Any
errors that arise from this instantiation are not in the immediate context of the function type and can result in the
program being ill-formed (13.10.3). — end note ]
[Example 5 :

template <class T> auto f(T t) { return t; } // return type deduced at instantiation time
typedef decltype(f(1)) fint_t; // instantiates f<int> to deduce return type
template<class T> auto f(T* t) { return *t; }
void g() { int (*p)(int*) = &f; } // instantiates both fs to determine return types,

// chooses second
— end example ]

13 If a function or function template F has a declared return type that uses a placeholder type, redeclarations
or specializations of F shall use that placeholder type, not a deduced type; otherwise, they shall not use a
placeholder type.
[Example 6 :

auto f();
auto f() { return 42; } // return type is int
auto f(); // OK
int f(); // error: auto and int don’t match
decltype(auto) f(); // error: auto and decltype(auto) don’t match

template <typename T> auto g(T t) { return t; } // #1
template auto g(int); // OK, return type is int
template char g(char); // error: no matching template
template<> auto g(double); // OK, forward declaration with unknown return type

template <class T> T g(T t) { return t; } // OK, not functionally equivalent to #1
template char g(char); // OK, now there is a matching template
template auto g(float); // still matches #1

void h() { return g(42); } // error: ambiguous

template <typename T> struct A {
friend T frf(T);

};
auto frf(int i) { return i; } // not a friend of A<int>
extern int v;
auto v = 17; // OK, redeclares v
struct S {

static int i;
};
auto S::i = 23; // OK
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— end example ]
14 A function declared with a return type that uses a placeholder type shall not be virtual (11.7.3).
15 A function declared with a return type that uses a placeholder type shall not be a coroutine (9.5.4).
16 An explicit instantiation declaration (13.9.3) does not cause the instantiation of an entity declared using a

placeholder type, but it also does not prevent that entity from being instantiated as needed to determine its
type.
[Example 7 :

template <typename T> auto f(T t) { return t; }
extern template auto f(int); // does not instantiate f<int>
int (*p)(int) = f; // instantiates f<int> to determine its return type, but an explicit

// instantiation definition is still required somewhere in the program
— end example ]

9.2.9.6.2 Placeholder type deduction [dcl.type.auto.deduct]
1 Placeholder type deduction is the process by which a type containing a placeholder type is replaced by a

deduced type.
2 A type T containing a placeholder type, and a corresponding initializer-clause E, are determined as follows:

—(2.1) For a non-discarded return statement that occurs in a function declared with a return type that
contains a placeholder type, T is the declared return type.

—(2.1.1) If the return statement has no operand, then E is void().
—(2.1.2) If the operand is a braced-init-list (9.4.5), the program is ill-formed.
—(2.1.3) If the operand is an expression X that is not an assignment-expression, E is (X).

[Note 1 : A comma expression (7.6.20) is not an assignment-expression. — end note ]

—(2.1.4) Otherwise, E is the operand of the return statement.
If E has type void, T shall be either type-constraintopt decltype(auto) or cv type-constraintopt auto.

—(2.2) For a variable declared with a type that contains a placeholder type, T is the declared type of the
variable.

—(2.2.1) If the initializer of the variable is a brace-or-equal-initializer of the form = initializer-clause, E is the
initializer-clause.

—(2.2.2) If the initializer is a braced-init-list, it shall consist of a single brace-enclosed assignment-expression
and E is the assignment-expression.

—(2.2.3) If the initializer is a parenthesized expression-list, the expression-list shall be a single assignment-
expression and E is the assignment-expression.

—(2.3) For an explicit type conversion (7.6.1.4), T is the specified type, which shall be auto.
—(2.3.1) If the initializer is a braced-init-list, it shall consist of a single brace-enclosed assignment-expression

and E is the assignment-expression.
—(2.3.2) If the initializer is a parenthesized expression-list, the expression-list shall be a single assignment-

expression and E is the assignment-expression.
—(2.4) For a non-type template parameter declared with a type that contains a placeholder type, T is the

declared type of the non-type template parameter and E is the corresponding template argument.
T shall not be an array type.

3 If the placeholder-type-specifier is of the form type-constraintopt auto, the deduced type T′ replacing T is
determined using the rules for template argument deduction. If the initialization is copy-list-initialization, a
declaration of std::initializer_list shall precede (6.5.1) the placeholder-type-specifier . Obtain P from T
by replacing the occurrences of type-constraintopt auto either with a new invented type template parameter
U or, if the initialization is copy-list-initialization, with std::initializer_list<U>. Deduce a value for
U using the rules of template argument deduction from a function call (13.10.3.2), where P is a function
template parameter type and the corresponding argument is E. If the deduction fails, the declaration is
ill-formed. Otherwise, T′ is obtained by substituting the deduced U into P.
[Example 1 :
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auto x1 = { 1, 2 }; // decltype(x1) is std::initializer_list<int>
auto x2 = { 1, 2.0 }; // error: cannot deduce element type
auto x3{ 1, 2 }; // error: not a single element
auto x4 = { 3 }; // decltype(x4) is std::initializer_list<int>
auto x5{ 3 }; // decltype(x5) is int

— end example ]
[Example 2 :

const auto &i = expr;

The type of i is the deduced type of the parameter u in the call f(expr) of the following invented function template:
template <class U> void f(const U& u);

— end example ]
4 If the placeholder-type-specifier is of the form type-constraintopt decltype(auto), T shall be the placeholder

alone. The type deduced for T is determined as described in 9.2.9.5, as though E had been the operand of
the decltype.
[Example 3 :

int i;
int&& f();
auto x2a(i); // decltype(x2a) is int
decltype(auto) x2d(i); // decltype(x2d) is int
auto x3a = i; // decltype(x3a) is int
decltype(auto) x3d = i; // decltype(x3d) is int
auto x4a = (i); // decltype(x4a) is int
decltype(auto) x4d = (i); // decltype(x4d) is int&
auto x5a = f(); // decltype(x5a) is int
decltype(auto) x5d = f(); // decltype(x5d) is int&&
auto x6a = { 1, 2 }; // decltype(x6a) is std::initializer_list<int>
decltype(auto) x6d = { 1, 2 }; // error: { 1, 2 } is not an expression
auto *x7a = &i; // decltype(x7a) is int*
decltype(auto)*x7d = &i; // error: declared type is not plain decltype(auto)
auto f1(int x) -> decltype((x)) { return (x); } // return type is int&
auto f2(int x) -> decltype(auto) { return (x); } // return type is int&&

— end example ]
5 For a placeholder-type-specifier with a type-constraint, the immediately-declared constraint (13.2) of the

type-constraint for the type deduced for the placeholder shall be satisfied.

9.2.9.7 Deduced class template specialization types [dcl.type.class.deduct]
1 If a placeholder for a deduced class type appears as a decl-specifier in the decl-specifier-seq of an initializing

declaration (9.4) of a variable, the declared type of the variable shall be cv T, where T is the placeholder.
[Example 1 :

template <class ...T> struct A {
A(T...) {}

};
A x[29]{}; // error: no declarator operators allowed
const A& y{}; // error: no declarator operators allowed

— end example ]

The placeholder is replaced by the return type of the function selected by overload resolution for class template
deduction (12.2.2.9). If the decl-specifier-seq is followed by an init-declarator-list or member-declarator-list
containing more than one declarator , the type that replaces the placeholder shall be the same in each
deduction.

2 A placeholder for a deduced class type can also be used in the type-specifier-seq in the new-type-id or
type-id of a new-expression (7.6.2.8), as the simple-type-specifier in an explicit type conversion (functional
notation) (7.6.1.4), or as the type-specifier in the parameter-declaration of a template-parameter (13.2). A
placeholder for a deduced class type shall not appear in any other context.

3 [Example 2 :
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template<class T> struct container {
container(T t) {}
template<class Iter> container(Iter beg, Iter end);

};
template<class Iter>
container(Iter b, Iter e) -> container<typename std::iterator_traits<Iter>::value_type>;
std::vector<double> v = { /* ... */ };

container c(7); // OK, deduces int for T
auto d = container(v.begin(), v.end()); // OK, deduces double for T
container e{5, 6}; // error: int is not an iterator

— end example ]

9.3 Declarators [dcl.decl]
9.3.1 General [dcl.decl.general]

1 A declarator declares a single variable, function, or type, within a declaration. The init-declarator-list appearing
in a simple-declaration is a comma-separated sequence of declarators, each of which can have an initializer.

init-declarator-list :
init-declarator
init-declarator-list , init-declarator

init-declarator :
declarator initializeropt
declarator requires-clause

2 In all contexts, a declarator is interpreted as given below. Where an abstract-declarator can be used (or
omitted) in place of a declarator (9.3.4.6, 14.1), it is as if a unique identifier were included in the appropriate
place (9.3.2). The preceding specifiers indicate the type, storage class or other properties of the entity or
entities being declared. Each declarator specifies one entity and (optionally) names it and/or modifies the
type of the specifiers with operators such as * (pointer to) and () (function returning).
[Note 1 : An init-declarator can also specify an initializer (9.4). — end note ]

3 Each init-declarator or member-declarator in a declaration is analyzed separately as if it were in a declaration
by itself.
[Note 2 : A declaration with several declarators is usually equivalent to the corresponding sequence of declarations
each with a single declarator. That is,

T D1, D2, ... Dn;

is usually equivalent to
T D1; T D2; ... T Dn;

where T is a decl-specifier-seq and each Di is an init-declarator or member-declarator . One exception is when a name
introduced by one of the declarators hides a type name used by the decl-specifiers, so that when the same decl-specifiers
are used in a subsequent declaration, they do not have the same meaning, as in

struct S { /* ... */ };
S S, T; // declare two instances of struct S

which is not equivalent to
struct S { /* ... */ };
S S;
S T; // error

Another exception is when T is auto (9.2.9.6), for example:
auto i = 1, j = 2.0; // error: deduced types for i and j do not match

as opposed to
auto i = 1; // OK, i deduced to have type int
auto j = 2.0; // OK, j deduced to have type double

— end note ]
4 The optional requires-clause in an init-declarator or member-declarator shall be present only if the declarator

declares a templated function (13.1). When present after a declarator, the requires-clause is called the trailing
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requires-clause. The trailing requires-clause introduces the constraint-expression that results from interpreting
its constraint-logical-or-expression as a constraint-expression.
[Example 1 :

void f1(int a) requires true; // error: non-templated function
template<typename T>

auto f2(T a) -> bool requires true; // OK
template<typename T>

auto f3(T a) requires true -> bool; // error: requires-clause precedes trailing-return-type
void (*pf)() requires true; // error: constraint on a variable
void g(int (*)() requires true); // error: constraint on a parameter-declaration

auto* p = new void(*)(char) requires true; // error: not a function declaration
— end example ]

5 Declarators have the syntax
declarator :

ptr-declarator
noptr-declarator parameters-and-qualifiers trailing-return-type

ptr-declarator :
noptr-declarator
ptr-operator ptr-declarator

noptr-declarator :
declarator-id attribute-specifier-seqopt
noptr-declarator parameters-and-qualifiers
noptr-declarator [ constant-expressionopt ] attribute-specifier-seqopt
( ptr-declarator )

parameters-and-qualifiers :
( parameter-declaration-clause ) cv-qualifier-seqopt

ref-qualifieropt noexcept-specifieropt attribute-specifier-seqopt

trailing-return-type :
-> type-id

ptr-operator :
* attribute-specifier-seqopt cv-qualifier-seqopt
& attribute-specifier-seqopt
&& attribute-specifier-seqopt
nested-name-specifier * attribute-specifier-seqopt cv-qualifier-seqopt

cv-qualifier-seq :
cv-qualifier cv-qualifier-seqopt

cv-qualifier :
const
volatile

ref-qualifier :
&
&&

declarator-id :
...opt id-expression

9.3.2 Type names [dcl.name]
1 To specify type conversions explicitly, and as an argument of sizeof, alignof, new, or typeid, the name of

a type shall be specified. This can be done with a type-id , which is syntactically a declaration for a variable
or function of that type that omits the name of the entity.

type-id :
type-specifier-seq abstract-declaratoropt

defining-type-id :
defining-type-specifier-seq abstract-declaratoropt
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abstract-declarator :
ptr-abstract-declarator
noptr-abstract-declaratoropt parameters-and-qualifiers trailing-return-type
abstract-pack-declarator

ptr-abstract-declarator :
noptr-abstract-declarator
ptr-operator ptr-abstract-declaratoropt

noptr-abstract-declarator :
noptr-abstract-declaratoropt parameters-and-qualifiers
noptr-abstract-declaratoropt [ constant-expressionopt ] attribute-specifier-seqopt
( ptr-abstract-declarator )

abstract-pack-declarator :
noptr-abstract-pack-declarator
ptr-operator abstract-pack-declarator

noptr-abstract-pack-declarator :
noptr-abstract-pack-declarator parameters-and-qualifiers
noptr-abstract-pack-declarator [ constant-expressionopt ] attribute-specifier-seqopt
...

It is possible to identify uniquely the location in the abstract-declarator where the identifier would appear if
the construction were a declarator in a declaration. The named type is then the same as the type of the
hypothetical identifier.
[Example 1 :

int // int i
int * // int *pi
int *[3] // int *p[3]
int (*)[3] // int (*p3i)[3]
int *() // int *f()
int (*)(double) // int (*pf)(double)

name respectively the types “int”, “pointer to int”, “array of 3 pointers to int”, “pointer to array of 3 int”, “function
of (no parameters) returning pointer to int”, and “pointer to a function of (double) returning int”. — end example ]

2 A type can also be named (often more easily) by using a typedef (9.2.4).

9.3.3 Ambiguity resolution [dcl.ambig.res]
1 The ambiguity arising from the similarity between a function-style cast and a declaration mentioned in 8.9

can also occur in the context of a declaration. In that context, the choice is between an object declaration
with a function-style cast as the initializer and a declaration involving a function declarator with a redundant
set of parentheses around a parameter name. Just as for the ambiguities mentioned in 8.9, the resolution is
to consider any construct, such as the potential parameter declaration, that could possibly be a declaration
to be a declaration.
[Note 1 : A declaration can be explicitly disambiguated by adding parentheses around the argument. The ambiguity
can be avoided by use of copy-initialization or list-initialization syntax, or by use of a non-function-style cast. — end
note ]
[Example 1 :

struct S {
S(int);

};

void foo(double a) {
S w(int(a)); // function declaration
S x(int()); // function declaration
S y((int(a))); // object declaration
S y((int)a); // object declaration
S z = int(a); // object declaration

}

— end example ]
2 An ambiguity can arise from the similarity between a function-style cast and a type-id . The resolution is that

any construct that could possibly be a type-id in its syntactic context shall be considered a type-id .
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[Example 2 :
template <class T> struct X {};
template <int N> struct Y {};
X<int()> a; // type-id
X<int(1)> b; // expression (ill-formed)
Y<int()> c; // type-id (ill-formed)
Y<int(1)> d; // expression

void foo(signed char a) {
sizeof(int()); // type-id (ill-formed)
sizeof(int(a)); // expression
sizeof(int(unsigned(a))); // type-id (ill-formed)

(int())+1; // type-id (ill-formed)
(int(a))+1; // expression
(int(unsigned(a)))+1; // type-id (ill-formed)

}

— end example ]
3 Another ambiguity arises in a parameter-declaration-clause when a type-name is nested in parentheses. In this

case, the choice is between the declaration of a parameter of type pointer to function and the declaration of a
parameter with redundant parentheses around the declarator-id . The resolution is to consider the type-name
as a simple-type-specifier rather than a declarator-id .
[Example 3 :

class C { };
void f(int(C)) { } // void f(int(*fp)(C c)) { }

// not: void f(int C) { }

int g(C);

void foo() {
f(1); // error: cannot convert 1 to function pointer
f(g); // OK

}

For another example,
class C { };
void h(int *(C[10])); // void h(int *(*_fp)(C _parm[10]));

// not: void h(int *C[10]);

— end example ]

9.3.4 Meaning of declarators [dcl.meaning]
9.3.4.1 General [dcl.meaning.general]

1 A declarator contains exactly one declarator-id ; it names the entity that is declared. If the unqualified-id
occurring in a declarator-id is a template-id , the declarator shall appear in the declaration of a template-
declaration (13.7), explicit-specialization (13.9.4), or explicit-instantiation (13.9.3).
[Note 1 : An unqualified-id that is not an identifier is used to declare certain functions (11.4.8.3, 11.4.7, 12.4, 12.6).

— end note ]

The optional attribute-specifier-seq following a declarator-id appertains to the entity that is declared.
2 If the declaration is a friend declaration:

—(2.1) The declarator does not bind a name.
—(2.2) If the id-expression E in the declarator-id of the declarator is a qualified-id or a template-id :

—(2.2.1) If the friend declaration is not a template declaration, then in the lookup for the terminal name of
E:
—(2.2.1.1) if the unqualified-id in E is a template-id , all function declarations are discarded;
—(2.2.1.2) otherwise, if the declarator corresponds (6.4.1) to any declaration found of a non-template

function, all function template declarations are discarded;
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—(2.2.1.3) each remaining function template is replaced with the specialization chosen by deduction from
the friend declaration (13.10.3.7) or discarded if deduction fails.

—(2.2.2) The declarator shall correspond to one or more declarations found by the lookup; they shall all
have the same target scope, and the target scope of the declarator is that scope.

—(2.3) Otherwise, the terminal name of E is not looked up. The declaration’s target scope is the innermost
enclosing namespace scope; if the declaration is contained by a block scope, the declaration shall
correspond to a reachable (10.7) declaration that inhabits the innermost block scope.

3 Otherwise:
—(3.1) If the id-expression in the declarator-id of the declarator is a qualified-id Q, let S be its lookup context

(6.5.5); the declaration shall inhabit a namespace scope.
—(3.2) Otherwise, let S be the entity associated with the scope inhabited by the declarator .
—(3.3) If the declarator declares an explicit instantiation or a partial or explicit specialization, the declarator

does not bind a name. If it declares a class member, the terminal name of the declarator-id is not looked
up; otherwise, only those lookup results that are nominable in S are considered when identifying any
function template specialization being declared (13.10.3.7).
[Example 1 :

namespace N {
inline namespace O {

template<class T> void f(T); // #1
template<class T> void g(T) {}

}
namespace P {

template<class T> void f(T*); // #2, more specialized than #1
template<class> int g;

}
using P::f,P::g;

}
template<> void N::f(int*) {} // OK, #2 is not nominable
template void N::g(int); // error: lookup is ambiguous

— end example ]

—(3.4) Otherwise, the terminal name of the declarator-id is not looked up. If it is a qualified name, the
declarator shall correspond to one or more declarations nominable in S; all the declarations shall have
the same target scope and the target scope of the declarator is that scope.
[Example 2 :

namespace Q {
namespace V {

void f();
}
void V::f() { /* ... */ } // OK
void V::g() { /* ... */ } // error: g() is not yet a member of V
namespace V {

void g();
}

}

namespace R {
void Q::V::g() { /* ... */ } // error: R doesn’t enclose Q

}

— end example ]

—(3.5) If the declaration inhabits a block scope S and declares a function (9.3.4.6) or uses the extern specifier,
the declaration shall not be attached to a named module (10.1); its target scope is the innermost
enclosing namespace scope, but the name is bound in S.
[Example 3 :

namespace X {
void p() {

q(); // error: q not yet declared
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extern void q(); // q is a member of namespace X
extern void r(); // r is a member of namespace X

}

void middle() {
q(); // error: q not found

}

void q() { /* ... */ } // definition of X::q
}

void q() { /* ... */ } // some other, unrelated q
void X::r() { /* ... */ } // error: r cannot be declared by qualified-id

— end example ]
4 A static, thread_local, extern, mutable, friend, inline, virtual, constexpr, consteval, constinit,

or typedef specifier or an explicit-specifier applies directly to each declarator-id in a declaration; the type
specified for each declarator-id depends on both the decl-specifier-seq and its declarator .

5 Thus, (for each declarator) a declaration has the form
T D

where T is of the form attribute-specifier-seqopt decl-specifier-seq and D is a declarator. Following is a recursive
procedure for determining the type specified for the contained declarator-id by such a declaration.

6 First, the decl-specifier-seq determines a type. In a declaration
T D

the decl-specifier-seq T determines the type T.
[Example 4 : In the declaration

int unsigned i;

the type specifiers int unsigned determine the type “unsigned int” (9.2.9.3). — end example ]
7 In a declaration attribute-specifier-seqopt T D where D is an unadorned name, the type of the declared entity is

“T”.
8 In a declaration T D where D has the form

( D1 )

the type of the contained declarator-id is the same as that of the contained declarator-id in the declaration
T D1

Parentheses do not alter the type of the embedded declarator-id , but they can alter the binding of complex
declarators.

9.3.4.2 Pointers [dcl.ptr]
1 In a declaration T D where D has the form

* attribute-specifier-seqopt cv-qualifier-seqopt D1

and the type of the contained declarator-id in the declaration T D1 is “derived-declarator-type-list T”, the type
of the declarator-id in D is “derived-declarator-type-list cv-qualifier-seq pointer to T”. The cv-qualifiers apply to
the pointer and not to the object pointed to. Similarly, the optional attribute-specifier-seq (9.12.1) appertains
to the pointer and not to the object pointed to.

2 [Example 1 : The declarations
const int ci = 10, *pc = &ci, *const cpc = pc, **ppc;
int i, *p, *const cp = &i;

declare ci, a constant integer; pc, a pointer to a constant integer; cpc, a constant pointer to a constant integer; ppc, a
pointer to a pointer to a constant integer; i, an integer; p, a pointer to integer; and cp, a constant pointer to integer.
The value of ci, cpc, and cp cannot be changed after initialization. The value of pc can be changed, and so can the
object pointed to by cp. Examples of some correct operations are

i = ci;
*cp = ci;
pc++;
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pc = cpc;
pc = p;
ppc = &pc;

Examples of ill-formed operations are
ci = 1; // error
ci++; // error
*pc = 2; // error
cp = &ci; // error
cpc++; // error
p = pc; // error
ppc = &p; // error

Each is unacceptable because it would either change the value of an object declared const or allow it to be changed
through a cv-unqualified pointer later, for example:

*ppc = &ci; // OK, but would make p point to ci because of previous error
*p = 5; // clobber ci

— end example ]
3 See also 7.6.19 and 9.4.
4 [Note 1 : Forming a pointer to reference type is ill-formed; see 9.3.4.3. Forming a function pointer type is ill-formed if

the function type has cv-qualifiers or a ref-qualifier ; see 9.3.4.6. Since the address of a bit-field (11.4.10) cannot be
taken, a pointer can never point to a bit-field. — end note ]

9.3.4.3 References [dcl.ref]
1 In a declaration T D where D has either of the forms

& attribute-specifier-seqopt D1
&& attribute-specifier-seqopt D1

and the type of the contained declarator-id in the declaration T D1 is “derived-declarator-type-list T”, the type
of the declarator-id in D is “derived-declarator-type-list reference to T”. The optional attribute-specifier-seq
appertains to the reference type. Cv-qualified references are ill-formed except when the cv-qualifiers are
introduced through the use of a typedef-name (9.2.4, 13.2) or decltype-specifier (9.2.9.5), in which case the
cv-qualifiers are ignored.
[Example 1 :

typedef int& A;
const A aref = 3; // error: lvalue reference to non-const initialized with rvalue

The type of aref is “lvalue reference to int”, not “lvalue reference to const int”. — end example ]
[Note 1 : A reference can be thought of as a name of an object. — end note ]

A declarator that specifies the type “reference to cv void” is ill-formed.
2 A reference type that is declared using & is called an lvalue reference, and a reference type that is declared

using && is called an rvalue reference. Lvalue references and rvalue references are distinct types. Except
where explicitly noted, they are semantically equivalent and commonly referred to as references.

3 [Example 2 :
void f(double& a) { a += 3.14; }
// ...
double d = 0;
f(d);

declares a to be a reference parameter of f so the call f(d) will add 3.14 to d.
int v[20];
// ...
int& g(int i) { return v[i]; }
// ...
g(3) = 7;

declares the function g() to return a reference to an integer so g(3)=7 will assign 7 to the fourth element of the array
v. For another example,

struct link {
link* next;

};
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link* first;

void h(link*& p) { // p is a reference to pointer
p->next = first;
first = p;
p = 0;

}

void k() {
link* q = new link;
h(q);

}

declares p to be a reference to a pointer to link so h(q) will leave q with the value zero. See also 9.4.4. — end
example ]

4 It is unspecified whether or not a reference requires storage (6.7.5).
5 There shall be no references to references, no arrays of references, and no pointers to references. The

declaration of a reference shall contain an initializer (9.4.4) except when the declaration contains an explicit
extern specifier (9.2.2), is a class member (11.4) declaration within a class definition, or is the declaration of
a parameter or a return type (9.3.4.6); see 6.2. A reference shall be initialized to refer to a valid object or
function.
[Note 2 : In particular, a null reference cannot exist in a well-defined program, because the only way to create such a
reference would be to bind it to the “object” obtained by indirection through a null pointer, which causes undefined
behavior. As described in 11.4.10, a reference cannot be bound directly to a bit-field. — end note ]

6 If a typedef-name (9.2.4, 13.2) or a decltype-specifier (9.2.9.5) denotes a type TR that is a reference to a type
T, an attempt to create the type “lvalue reference to cv TR” creates the type “lvalue reference to T”, while an
attempt to create the type “rvalue reference to cv TR” creates the type TR.
[Note 3 : This rule is known as reference collapsing. — end note ]
[Example 3 :

int i;
typedef int& LRI;
typedef int&& RRI;

LRI& r1 = i; // r1 has the type int&
const LRI& r2 = i; // r2 has the type int&
const LRI&& r3 = i; // r3 has the type int&

RRI& r4 = i; // r4 has the type int&
RRI&& r5 = 5; // r5 has the type int&&

decltype(r2)& r6 = i; // r6 has the type int&
decltype(r2)&& r7 = i; // r7 has the type int&

— end example ]
7 [Note 4 : Forming a reference to function type is ill-formed if the function type has cv-qualifiers or a ref-qualifier ;

see 9.3.4.6. — end note ]

9.3.4.4 Pointers to members [dcl.mptr]
1 The component names of a ptr-operator are those of its nested-name-specifier , if any.
2 In a declaration T D where D has the form

nested-name-specifier * attribute-specifier-seqopt cv-qualifier-seqopt D1

and the nested-name-specifier denotes a class, and the type of the contained declarator-id in the declaration T D1
is “derived-declarator-type-list T”, the type of the declarator-id in D is “derived-declarator-type-list cv-qualifier-
seq pointer to member of class nested-name-specifier of type T”. The optional attribute-specifier-seq (9.12.1)
appertains to the pointer-to-member.

3 [Example 1 :
struct X {

void f(int);
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int a;
};
struct Y;

int X::* pmi = &X::a;
void (X::* pmf)(int) = &X::f;
double X::* pmd;
char Y::* pmc;

declares pmi, pmf, pmd and pmc to be a pointer to a member of X of type int, a pointer to a member of X of type
void(int), a pointer to a member of X of type double and a pointer to a member of Y of type char respectively. The
declaration of pmd is well-formed even though X has no members of type double. Similarly, the declaration of pmc is
well-formed even though Y is an incomplete type. pmi and pmf can be used like this:

X obj;
// ...
obj.*pmi = 7; // assign 7 to an integer member of obj
(obj.*pmf)(7); // call a function member of obj with the argument 7

— end example ]
4 A pointer to member shall not point to a static member of a class (11.4.9), a member with reference type, or

“cv void”.
5 [Note 1 : See also 7.6.2 and 7.6.4. The type “pointer to member” is distinct from the type “pointer”, that is, a pointer

to member is declared only by the pointer-to-member declarator syntax, and never by the pointer declarator syntax.
There is no “reference-to-member” type in C++. — end note ]

9.3.4.5 Arrays [dcl.array]
1 In a declaration T D where D has the form

D1 [ constant-expressionopt ] attribute-specifier-seqopt

and the type of the contained declarator-id in the declaration T D1 is “derived-declarator-type-list T”, the
type of the declarator-id in D is “derived-declarator-type-list array of N T”. The constant-expression shall be
a converted constant expression of type std::size_t (7.7). Its value N specifies the array bound, i.e., the
number of elements in the array; N shall be greater than zero.

2 In a declaration T D where D has the form
D1 [ ] attribute-specifier-seqopt

and the type of the contained declarator-id in the declaration T D1 is “derived-declarator-type-list T”, the type
of the declarator-id in D is “derived-declarator-type-list array of unknown bound of T”, except as specified
below.

3 A type of the form “array of N U” or “array of unknown bound of U” is an array type. The optional
attribute-specifier-seq appertains to the array type.

4 U is called the array element type; this type shall not be a reference type, a function type, an array of unknown
bound, or cv void.
[Note 1 : An array can be constructed from one of the fundamental types (except void), from a pointer, from a pointer
to member, from a class, from an enumeration type, or from an array of known bound. — end note ]
[Example 1 :

float fa[17], *afp[17];

declares an array of float numbers and an array of pointers to float numbers. — end example ]
5 Any type of the form “cv-qualifier-seq array of N U” is adjusted to “array of N cv-qualifier-seq U”, and similarly

for “array of unknown bound of U”.
[Example 2 :

typedef int A[5], AA[2][3];
typedef const A CA; // type is “array of 5 const int”
typedef const AA CAA; // type is “array of 2 array of 3 const int”

— end example ]
[Note 2 : An “array of N cv-qualifier-seq U” has cv-qualified type; see 6.8.5. — end note ]
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6 An object of type “array of N U” consists of a contiguously allocated non-empty set of N subobjects of type U,
known as the elements of the array, and numbered 0 to N-1.

7 In addition to declarations in which an incomplete object type is allowed, an array bound may be omitted in
some cases in the declaration of a function parameter (9.3.4.6). An array bound may also be omitted when
an object (but not a non-static data member) of array type is initialized and the declarator is followed by an
initializer (9.4, 11.4, 7.6.1.4, 7.6.2.8). In these cases, the array bound is calculated from the number of initial
elements (say, N) supplied (9.4.2), and the type of the array is “array of N U”.

8 Furthermore, if there is a reachable declaration of the entity that inhabits the same scope in which the bound
was specified, an omitted array bound is taken to be the same as in that earlier declaration, and similarly for
the definition of a static data member of a class.
[Example 3 :

extern int x[10];
struct S {

static int y[10];
};

int x[]; // OK, bound is 10
int S::y[]; // OK, bound is 10

void f() {
extern int x[];
int i = sizeof(x); // error: incomplete object type

}

— end example ]
9 [Note 3 : When several “array of” specifications are adjacent, a multidimensional array type is created; only the first

of the constant expressions that specify the bounds of the arrays can be omitted.
[Example 4 :

int x3d[3][5][7];

declares an array of three elements, each of which is an array of five elements, each of which is an array of seven
integers. The overall array can be viewed as a three-dimensional array of integers, with rank 3 × 5 × 7. Any of the
expressions x3d, x3d[i], x3d[i][j], x3d[i][j][k] can reasonably appear in an expression. The expression x3d[i]
is equivalent to *(x3d + i); in that expression, x3d is subject to the array-to-pointer conversion (7.3.3) and is first
converted to a pointer to a 2-dimensional array with rank 5 × 7 that points to the first element of x3d. Then i is
added, which on typical implementations involves multiplying i by the length of the object to which the pointer
points, which is sizeof(int)×5 × 7. The result of the addition and indirection is an lvalue denoting the ith array
element of x3d (an array of five arrays of seven integers). If there is another subscript, the same argument applies
again, so x3d[i][j] is an lvalue denoting the jth array element of the ith array element of x3d (an array of seven
integers), and x3d[i][j][k] is an lvalue denoting the kth array element of the jth array element of the ith array
element of x3d (an integer). — end example ]
The first subscript in the declaration helps determine the amount of storage consumed by an array but plays no other
part in subscript calculations. — end note ]

10 [Note 4 : Conversions affecting expressions of array type are described in 7.3.3. — end note ]
11 [Note 5 : The subscript operator can be overloaded for a class (12.4.5). For the operator’s built-in meaning, see 7.6.1.2.

— end note ]

9.3.4.6 Functions [dcl.fct]
1 In a declaration T D where D has the form

D1 ( parameter-declaration-clause ) cv-qualifier-seqopt
ref-qualifieropt noexcept-specifieropt attribute-specifier-seqopt

and the type of the contained declarator-id in the declaration T D1 is “derived-declarator-type-list T”, the
type of the declarator-id in D is “derived-declarator-type-list noexceptopt function of parameter-type-list
cv-qualifier-seqopt ref-qualifieropt returning T”, where

—(1.1) the parameter-type-list is derived from the parameter-declaration-clause as described below and
—(1.2) the optional noexcept is present if and only if the exception specification (14.5) is non-throwing.

The optional attribute-specifier-seq appertains to the function type.
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2 In a declaration T D where D has the form
D1 ( parameter-declaration-clause ) cv-qualifier-seqopt

ref-qualifieropt noexcept-specifieropt attribute-specifier-seqopt trailing-return-type

and the type of the contained declarator-id in the declaration T D1 is “derived-declarator-type-list T”, T shall be
the single type-specifier auto. The type of the declarator-id in D is “derived-declarator-type-list noexceptopt
function of parameter-type-list cv-qualifier-seqopt ref-qualifieropt returning U”, where

—(2.1) the parameter-type-list is derived from the parameter-declaration-clause as described below,
—(2.2) U is the type specified by the trailing-return-type, and
—(2.3) the optional noexcept is present if and only if the exception specification is non-throwing.

The optional attribute-specifier-seq appertains to the function type.
3 A type of either form is a function type.79

parameter-declaration-clause :
parameter-declaration-listopt ...opt
parameter-declaration-list , ...

parameter-declaration-list :
parameter-declaration
parameter-declaration-list , parameter-declaration

parameter-declaration :
attribute-specifier-seqopt thisopt decl-specifier-seq declarator
attribute-specifier-seqopt decl-specifier-seq declarator = initializer-clause
attribute-specifier-seqopt thisopt decl-specifier-seq abstract-declaratoropt
attribute-specifier-seqopt decl-specifier-seq abstract-declaratoropt = initializer-clause

The optional attribute-specifier-seq in a parameter-declaration appertains to the parameter.
4 The parameter-declaration-clause determines the arguments that can be specified, and their processing, when

the function is called.
[Note 1 : The parameter-declaration-clause is used to convert the arguments specified on the function call; see 7.6.1.3.

— end note ]

If the parameter-declaration-clause is empty, the function takes no arguments. A parameter list consisting of a
single unnamed parameter of non-dependent type void is equivalent to an empty parameter list. Except
for this special case, a parameter shall not have type cv void. A parameter with volatile-qualified type is
deprecated; see D.5. If the parameter-declaration-clause terminates with an ellipsis or a function parameter
pack (13.7.4), the number of arguments shall be equal to or greater than the number of parameters that do
not have a default argument and are not function parameter packs. Where syntactically correct and where
“...” is not part of an abstract-declarator , “, ...” is synonymous with “...”.
[Example 1 : The declaration

int printf(const char*, ...);

declares a function that can be called with varying numbers and types of arguments.
printf("hello world");
printf("a=%d b=%d", a, b);

However, the first argument must be of a type that can be converted to a const char*. — end example ]
[Note 2 : The standard header <cstdarg> (17.13.2) contains a mechanism for accessing arguments passed using the
ellipsis (see 7.6.1.3 and 17.13). — end note ]

5 The type of a function is determined using the following rules. The type of each parameter (including function
parameter packs) is determined from its own parameter-declaration (9.3). After determining the type of each
parameter, any parameter of type “array of T” or of function type T is adjusted to be “pointer to T”. After
producing the list of parameter types, any top-level cv-qualifiers modifying a parameter type are deleted when
forming the function type. The resulting list of transformed parameter types and the presence or absence of
the ellipsis or a function parameter pack is the function’s parameter-type-list.
[Note 3 : This transformation does not affect the types of the parameters. For example, int(*)(const int p,
decltype(p)*) and int(*)(int, const int*) are identical types. — end note ]

79) As indicated by syntax, cv-qualifiers are a significant component in function return types.
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[Example 2 :
void f(char*); // #1
void f(char[]) {} // defines #1
void f(const char*) {} // OK, another overload
void f(char *const) {} // error: redefines #1

void g(char(*)[2]); // #2
void g(char[3][2]) {} // defines #2
void g(char[3][3]) {} // OK, another overload

void h(int x(const int)); // #3
void h(int (*)(int)) {} // defines #3

— end example ]
6 An explicit-object-parameter-declaration is a parameter-declaration with a this specifier. An explicit-object-

parameter-declaration shall appear only as the first parameter-declaration of a parameter-declaration-list of
either:

—(6.1) a member-declarator that declares a member function (11.4), or
—(6.2) a lambda-declarator (7.5.5).

A member-declarator with an explicit-object-parameter-declaration shall not include a ref-qualifier or a
cv-qualifier-seq and shall not be declared static or virtual.
[Example 3 :

struct C {
void f(this C& self);
template <typename Self> void g(this Self&& self, int);

void h(this C) const; // error: const not allowed here
};

void test(C c) {
c.f(); // OK, calls C::f
c.g(42); // OK, calls C::g<C&>
std::move(c).g(42); // OK, calls C::g<C>

}

— end example ]
7 A function parameter declared with an explicit-object-parameter-declaration is an explicit object parameter.

An explicit object parameter shall not be a function parameter pack (13.7.4). An explicit object member
function is a non-static member function with an explicit object parameter. An implicit object member
function is a non-static member function without an explicit object parameter.

8 The object parameter of a non-static member function is either the explicit object parameter or the implicit
object parameter (12.2.2).

9 A non-object parameter is a function parameter that is not the explicit object parameter. The non-object-
parameter-type-list of a member function is the parameter-type-list of that function with the explicit object
parameter, if any, omitted.
[Note 4 : The non-object-parameter-type-list consists of the adjusted types of all the non-object parameters. — end
note ]

10 A function type with a cv-qualifier-seq or a ref-qualifier (including a type named by typedef-name (9.2.4, 13.2))
shall appear only as:

—(10.1) the function type for a non-static member function,
—(10.2) the function type to which a pointer to member refers,
—(10.3) the top-level function type of a function typedef declaration or alias-declaration,
—(10.4) the type-id in the default argument of a type-parameter (13.2), or
—(10.5) the type-id of a template-argument for a type-parameter (13.4.2).

[Example 4 :

§ 9.3.4.6 203



© ISO/IEC N4950

typedef int FIC(int) const;
FIC f; // error: does not declare a member function
struct S {

FIC f; // OK
};
FIC S::*pm = &S::f; // OK

— end example ]
11 The effect of a cv-qualifier-seq in a function declarator is not the same as adding cv-qualification on top of

the function type. In the latter case, the cv-qualifiers are ignored.
[Note 5 : A function type that has a cv-qualifier-seq is not a cv-qualified type; there are no cv-qualified function types.

— end note ]
[Example 5 :

typedef void F();
struct S {

const F f; // OK, equivalent to: void f();
};

— end example ]
12 The return type, the parameter-type-list, the ref-qualifier , the cv-qualifier-seq, and the exception specification,

but not the default arguments (9.3.4.7) or the trailing requires-clause (9.3), are part of the function type.
[Note 6 : Function types are checked during the assignments and initializations of pointers to functions, references to
functions, and pointers to member functions. — end note ]

13 [Example 6 : The declaration
int fseek(FILE*, long, int);

declares a function taking three arguments of the specified types, and returning int (9.2.9). — end example ]
14 [Note 7 : A single name can be used for several different functions in a single scope; this is function overloading (Clause

12). — end note ]
15 The return type shall be a non-array object type, a reference type, or cv void.

[Note 8 : An array of placeholder type is considered an array type. — end note ]
16 A volatile-qualified return type is deprecated; see D.5.
17 Types shall not be defined in return or parameter types.
18 A typedef of function type may be used to declare a function but shall not be used to define a function (9.5).

[Example 7 :
typedef void F();
F fv; // OK, equivalent to void fv();
F fv { } // error
void fv() { } // OK, definition of fv

— end example ]
19 An identifier can optionally be provided as a parameter name; if present in a function definition (9.5), it

names a parameter.
[Note 9 : In particular, parameter names are also optional in function definitions and names used for a parameter in
different declarations and the definition of a function need not be the same. — end note ]

20 [Example 8 : The declaration
int i,

*pi,
f(),
*fpi(int),
(*pif)(const char*, const char*),
(*fpif(int))(int);

declares an integer i, a pointer pi to an integer, a function f taking no arguments and returning an integer, a function
fpi taking an integer argument and returning a pointer to an integer, a pointer pif to a function which takes two
pointers to constant characters and returns an integer, a function fpif taking an integer argument and returning a
pointer to a function that takes an integer argument and returns an integer. It is especially useful to compare fpi
and pif. The binding of *fpi(int) is *(fpi(int)), so the declaration suggests, and the same construction in an
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expression requires, the calling of a function fpi, and then using indirection through the (pointer) result to yield an
integer. In the declarator (*pif)(const char*, const char*), the extra parentheses are necessary to indicate that
indirection through a pointer to a function yields a function, which is then called. — end example ]
[Note 10 : Typedefs and trailing-return-types are sometimes convenient when the return type of a function is complex.
For example, the function fpif above can be declared

typedef int IFUNC(int);
IFUNC* fpif(int);

or
auto fpif(int)->int(*)(int);

A trailing-return-type is most useful for a type that would be more complicated to specify before the declarator-id :
template <class T, class U> auto add(T t, U u) -> decltype(t + u);

rather than
template <class T, class U> decltype((*(T*)0) + (*(U*)0)) add(T t, U u);

— end note ]
21 A non-template function is a function that is not a function template specialization.

[Note 11 : A function template is not a function. — end note ]
22 An abbreviated function template is a function declaration that has one or more generic parameter type

placeholders (9.2.9.6). An abbreviated function template is equivalent to a function template (13.7.7)
whose template-parameter-list includes one invented type template-parameter for each generic parameter type
placeholder of the function declaration, in order of appearance. For a placeholder-type-specifier of the form
auto, the invented parameter is an unconstrained type-parameter . For a placeholder-type-specifier of the form
type-constraint auto, the invented parameter is a type-parameter with that type-constraint. The invented type
template-parameter is a template parameter pack if the corresponding parameter-declaration declares a function
parameter pack. If the placeholder contains decltype(auto), the program is ill-formed. The adjusted
function parameters of an abbreviated function template are derived from the parameter-declaration-clause by
replacing each occurrence of a placeholder with the name of the corresponding invented template-parameter .
[Example 9 :

template<typename T> concept C1 = /∗ ... ∗/;
template<typename T> concept C2 = /∗ ... ∗/;
template<typename... Ts> concept C3 = /∗ ... ∗/;

void g1(const C1 auto*, C2 auto&);
void g2(C1 auto&...);
void g3(C3 auto...);
void g4(C3 auto);

The declarations above are functionally equivalent (but not equivalent) to their respective declarations below:
template<C1 T, C2 U> void g1(const T*, U&);
template<C1... Ts> void g2(Ts&...);
template<C3... Ts> void g3(Ts...);
template<C3 T> void g4(T);

Abbreviated function templates can be specialized like all function templates.
template<> void g1<int>(const int*, const double&); // OK, specialization of g1<int, const double>

— end example ]
23 An abbreviated function template can have a template-head . The invented template-parameters are appended

to the template-parameter-list after the explicitly declared template-parameters.
[Example 10 :

template<typename> concept C = /∗ ... ∗/;

template <typename T, C U>
void g(T x, U y, C auto z);

This is functionally equivalent to each of the following two declarations.
template<typename T, C U, C W>

void g(T x, U y, W z);
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template<typename T, typename U, typename W>
requires C<U> && C<W>
void g(T x, U y, W z);

— end example ]
24 A function declaration at block scope shall not declare an abbreviated function template.
25 A declarator-id or abstract-declarator containing an ellipsis shall only be used in a parameter-declaration.

When it is part of a parameter-declaration-clause, the parameter-declaration declares a function parameter
pack (13.7.4). Otherwise, the parameter-declaration is part of a template-parameter-list and declares a template
parameter pack; see 13.2. A function parameter pack is a pack expansion (13.7.4).
[Example 11 :

template<typename... T> void f(T (* ...t)(int, int));

int add(int, int);
float subtract(int, int);

void g() {
f(add, subtract);

}

— end example ]
26 There is a syntactic ambiguity when an ellipsis occurs at the end of a parameter-declaration-clause without

a preceding comma. In this case, the ellipsis is parsed as part of the abstract-declarator if the type of the
parameter either names a template parameter pack that has not been expanded or contains auto; otherwise,
it is parsed as part of the parameter-declaration-clause.80

9.3.4.7 Default arguments [dcl.fct.default]
1 If an initializer-clause is specified in a parameter-declaration this initializer-clause is used as a default argument.

[Note 1 : Default arguments will be used in calls where trailing arguments are missing (7.6.1.3). — end note ]
2 [Example 1 : The declaration

void point(int = 3, int = 4);

declares a function that can be called with zero, one, or two arguments of type int. It can be called in any of these
ways:

point(1,2); point(1); point();

The last two calls are equivalent to point(1,4) and point(3,4), respectively. — end example ]
3 A default argument shall be specified only in the parameter-declaration-clause of a function declaration

or lambda-declarator or in a template-parameter (13.2); in the latter case, the initializer-clause shall be an
assignment-expression. A default argument shall not be specified for a template parameter pack or a function
parameter pack. If it is specified in a parameter-declaration-clause, it shall not occur within a declarator or
abstract-declarator of a parameter-declaration.81

4 For non-template functions, default arguments can be added in later declarations of a function that inhabit
the same scope. Declarations that inhabit different scopes have completely distinct sets of default arguments.
That is, declarations in inner scopes do not acquire default arguments from declarations in outer scopes,
and vice versa. In a given function declaration, each parameter subsequent to a parameter with a default
argument shall have a default argument supplied in this or a previous declaration, unless the parameter was
expanded from a parameter pack, or shall be a function parameter pack.
[Note 2 : A default argument cannot be redefined by a later declaration (not even to the same value) (6.3). — end
note ]
[Example 2 :

void g(int = 0, ...); // OK, ellipsis is not a parameter so it can follow
// a parameter with a default argument

void f(int, int);

80) One can explicitly disambiguate the parse either by introducing a comma (so the ellipsis will be parsed as part of the
parameter-declaration-clause) or by introducing a name for the parameter (so the ellipsis will be parsed as part of the declarator-id).

81) This means that default arguments cannot appear, for example, in declarations of pointers to functions, references to
functions, or typedef declarations.
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void f(int, int = 7);
void h() {

f(3); // OK, calls f(3, 7)
void f(int = 1, int); // error: does not use default from surrounding scope

}
void m() {

void f(int, int); // has no defaults
f(4); // error: wrong number of arguments
void f(int, int = 5); // OK
f(4); // OK, calls f(4, 5);
void f(int, int = 5); // error: cannot redefine, even to same value

}
void n() {

f(6); // OK, calls f(6, 7)
}
template<class ... T> struct C {

void f(int n = 0, T...);
};
C<int> c; // OK, instantiates declaration void C::f(int n = 0, int)

— end example ]

For a given inline function defined in different translation units, the accumulated sets of default arguments
at the end of the translation units shall be the same; no diagnostic is required. If a friend declaration D
specifies a default argument expression, that declaration shall be a definition and there shall be no other
declaration of the function or function template which is reachable from D or from which D is reachable.

5 The default argument has the same semantic constraints as the initializer in a declaration of a variable of the
parameter type, using the copy-initialization semantics (9.4). The names in the default argument are looked
up, and the semantic constraints are checked, at the point where the default argument appears, except that
an immediate invocation (7.7) that is a potentially-evaluated subexpression (6.9.1) of the initializer-clause
in a parameter-declaration is neither evaluated nor checked for whether it is a constant expression at that
point. Name lookup and checking of semantic constraints for default arguments of templated functions are
performed as described in 13.9.2.
[Example 3 : In the following code, g will be called with the value f(2):

int a = 1;
int f(int);
int g(int x = f(a)); // default argument: f(::a)

void h() {
a = 2;
{

int a = 3;
g(); // g(f(::a))

}
}

— end example ]
[Note 3 : A default argument is a complete-class context (11.4). Access checking applies to names in default arguments
as described in 11.8. — end note ]

6 Except for member functions of class templates, the default arguments in a member function definition that
appears outside of the class definition are added to the set of default arguments provided by the member
function declaration in the class definition; the program is ill-formed if a default constructor (11.4.5.2), copy or
move constructor (11.4.5.3), or copy or move assignment operator (11.4.6) is so declared. Default arguments
for a member function of a class template shall be specified on the initial declaration of the member function
within the class template.
[Example 4 :

class C {
void f(int i = 3);
void g(int i, int j = 99);

};

§ 9.3.4.7 207



© ISO/IEC N4950

void C::f(int i = 3) {} // error: default argument already specified in class scope
void C::g(int i = 88, int j) {} // in this translation unit, C::g can be called with no arguments

— end example ]
7 [Note 4 : A local variable cannot be odr-used (6.3) in a default argument. — end note ]

[Example 5 :
void f() {

int i;
extern void g(int x = i); // error
extern void h(int x = sizeof(i)); // OK
// ...

}

— end example ]
8 [Note 5 : The keyword this cannot appear in a default argument of a member function; see 7.5.2.

[Example 6 :
class A {

void f(A* p = this) { } // error
};

— end example ]
— end note ]

9 A default argument is evaluated each time the function is called with no argument for the corresponding
parameter. A parameter shall not appear as a potentially-evaluated expression in a default argument.
[Note 6 : Parameters of a function declared before a default argument are in scope and can hide namespace and class
member names. — end note ]
[Example 7 :

int a;
int f(int a, int b = a); // error: parameter a used as default argument
typedef int I;
int g(float I, int b = I(2)); // error: parameter I found
int h(int a, int b = sizeof(a)); // OK, unevaluated operand (7.2.3)

— end example ]

A non-static member shall not appear in a default argument unless it appears as the id-expression of a class
member access expression (7.6.1.5) or unless it is used to form a pointer to member (7.6.2.2).
[Example 8 : The declaration of X::mem1() in the following example is ill-formed because no object is supplied for the
non-static member X::a used as an initializer.

int b;
class X {

int a;
int mem1(int i = a); // error: non-static member a used as default argument
int mem2(int i = b); // OK; use X::b
static int b;

};

The declaration of X::mem2() is meaningful, however, since no object is needed to access the static member X::b.
Classes, objects, and members are described in Clause 11. — end example ]

A default argument is not part of the type of a function.
[Example 9 :

int f(int = 0);

void h() {
int j = f(1);
int k = f(); // OK, means f(0)

}

int (*p1)(int) = &f;
int (*p2)() = &f; // error: type mismatch
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— end example ]

When an overload set contains a declaration of a function that inhabits a scope S, any default argument
associated with any reachable declaration that inhabits S is available to the call.
[Note 7 : The candidate might have been found through a using-declarator from which the declaration that provides
the default argument is not reachable. — end note ]

10 A virtual function call (11.7.3) uses the default arguments in the declaration of the virtual function determined
by the static type of the pointer or reference denoting the object. An overriding function in a derived class
does not acquire default arguments from the function it overrides.
[Example 10 :

struct A {
virtual void f(int a = 7);

};
struct B : public A {

void f(int a);
};
void m() {

B* pb = new B;
A* pa = pb;
pa->f(); // OK, calls pa->B::f(7)
pb->f(); // error: wrong number of arguments for B::f()

}

— end example ]

9.4 Initializers [dcl.init]
9.4.1 General [dcl.init.general]

1 The process of initialization described in 9.4 applies to all initializations regardless of syntactic context,
including the initialization of a function parameter (7.6.1.3), the initialization of a return value (8.7.4), or
when an initializer follows a declarator.

initializer :
brace-or-equal-initializer
( expression-list )

brace-or-equal-initializer :
= initializer-clause
braced-init-list

initializer-clause :
assignment-expression
braced-init-list

braced-init-list :
{ initializer-list ,opt }
{ designated-initializer-list ,opt }
{ }

initializer-list :
initializer-clause ...opt
initializer-list , initializer-clause ...opt

designated-initializer-list :
designated-initializer-clause
designated-initializer-list , designated-initializer-clause

designated-initializer-clause :
designator brace-or-equal-initializer

designator :
. identifier

expr-or-braced-init-list :
expression
braced-init-list

[Note 1 : The rules in 9.4 apply even if the grammar permits only the brace-or-equal-initializer form of initializer in a
given context. — end note ]
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2 Except for objects declared with the constexpr specifier, for which see 9.2.6, an initializer in the definition
of a variable can consist of arbitrary expressions involving literals and previously declared variables and
functions, regardless of the variable’s storage duration.
[Example 1 :

int f(int);
int a = 2;
int b = f(a);
int c(b);

— end example ]
3 [Note 2 : Default arguments are more restricted; see 9.3.4.7. — end note ]
4 [Note 3 : The order of initialization of variables with static storage duration is described in 6.9.3 and 8.8. — end note ]
5 A declaration D of a variable with linkage shall not have an initializer if D inhabits a block scope.
6 To zero-initialize an object or reference of type T means:

—(6.1) if T is a scalar type (6.8.1), the object is initialized to the value obtained by converting the integer
literal 0 (zero) to T;82

—(6.2) if T is a (possibly cv-qualified) non-union class type, its padding bits (6.8.1) are initialized to zero bits
and each non-static data member, each non-virtual base class subobject, and, if the object is not a base
class subobject, each virtual base class subobject is zero-initialized;

—(6.3) if T is a (possibly cv-qualified) union type, its padding bits (6.8.1) are initialized to zero bits and the
object’s first non-static named data member is zero-initialized;

—(6.4) if T is an array type, each element is zero-initialized;
—(6.5) if T is a reference type, no initialization is performed.

7 To default-initialize an object of type T means:
—(7.1) If T is a (possibly cv-qualified) class type (Clause 11), constructors are considered. The applicable

constructors are enumerated (12.2.2.4), and the best one for the initializer () is chosen through overload
resolution (12.2). The constructor thus selected is called, with an empty argument list, to initialize the
object.

—(7.2) If T is an array type, each element is default-initialized.
—(7.3) Otherwise, no initialization is performed.

8 A class type T is const-default-constructible if default-initialization of T would invoke a user-provided
constructor of T (not inherited from a base class) or if

—(8.1) each direct non-variant non-static data member M of T has a default member initializer or, if M is of
class type X (or array thereof), X is const-default-constructible,

—(8.2) if T is a union with at least one non-static data member, exactly one variant member has a default
member initializer,

—(8.3) if T is not a union, for each anonymous union member with at least one non-static data member (if
any), exactly one non-static data member has a default member initializer, and

—(8.4) each potentially constructed base class of T is const-default-constructible.
If a program calls for the default-initialization of an object of a const-qualified type T, T shall be a const-
default-constructible class type or array thereof.

9 To value-initialize an object of type T means:
—(9.1) if T is a (possibly cv-qualified) class type (Clause 11), then

—(9.1.1) if T has either no default constructor (11.4.5.2) or a default constructor that is user-provided or
deleted, then the object is default-initialized;

—(9.1.2) otherwise, the object is zero-initialized and the semantic constraints for default-initialization are
checked, and if T has a non-trivial default constructor, the object is default-initialized;

—(9.2) if T is an array type, then each element is value-initialized;
—(9.3) otherwise, the object is zero-initialized.

82) As specified in 7.3.12, converting an integer literal whose value is 0 to a pointer type results in a null pointer value.
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10 A program that calls for default-initialization or value-initialization of an entity of reference type is ill-formed.
11 [Note 4 : For every object of static storage duration, static initialization (6.9.3.2) is performed at program startup

before any other initialization takes place. In some cases, additional initialization is done later. — end note ]
12 If no initializer is specified for an object, the object is default-initialized.
13 If the entity being initialized does not have class type, the expression-list in a parenthesized initializer shall be

a single expression.
14 The initialization that occurs in the = form of a brace-or-equal-initializer or condition (8.5), as well as in

argument passing, function return, throwing an exception (14.2), handling an exception (14.4), and aggregate
member initialization other than by a designated-initializer-clause (9.4.2), is called copy-initialization.
[Note 5 : Copy-initialization can invoke a move (11.4.5.3). — end note ]

15 The initialization that occurs
—(15.1) for an initializer that is a parenthesized expression-list or a braced-init-list,
—(15.2) for a new-initializer (7.6.2.8),
—(15.3) in a static_cast expression (7.6.1.9),
—(15.4) in a functional notation type conversion (7.6.1.4), and
—(15.5) in the braced-init-list form of a condition

is called direct-initialization.
16 The semantics of initializers are as follows. The destination type is the type of the object or reference being

initialized and the source type is the type of the initializer expression. If the initializer is not a single (possibly
parenthesized) expression, the source type is not defined.

—(16.1) If the initializer is a (non-parenthesized) braced-init-list or is = braced-init-list, the object or reference is
list-initialized (9.4.5).

—(16.2) If the destination type is a reference type, see 9.4.4.
—(16.3) If the destination type is an array of characters, an array of char8_t, an array of char16_t, an array

of char32_t, or an array of wchar_t, and the initializer is a string-literal , see 9.4.3.
—(16.4) If the initializer is (), the object is value-initialized.

[Note 6 : Since () is not permitted by the syntax for initializer ,
X a();

is not the declaration of an object of class X, but the declaration of a function taking no arguments and returning
an X. The form () is permitted in certain other initialization contexts (7.6.2.8, 7.6.1.4, 11.9.3). — end note ]

—(16.5) Otherwise, if the destination type is an array, the object is initialized as follows. Let x1, . . . , xk be
the elements of the expression-list. If the destination type is an array of unknown bound, it is defined
as having k elements. Let n denote the array size after this potential adjustment. If k is greater
than n, the program is ill-formed. Otherwise, the ith array element is copy-initialized with xi for each
1 ≤ i ≤ k, and value-initialized for each k < i ≤ n. For each 1 ≤ i < j ≤ n, every value computation
and side effect associated with the initialization of the ith element of the array is sequenced before
those associated with the initialization of the jth element.

—(16.6) Otherwise, if the destination type is a (possibly cv-qualified) class type:
—(16.6.1) If the initializer expression is a prvalue and the cv-unqualified version of the source type is the same

class as the class of the destination, the initializer expression is used to initialize the destination
object.
[Example 2 : T x = T(T(T())); value-initializes x. — end example ]

—(16.6.2) Otherwise, if the initialization is direct-initialization, or if it is copy-initialization where the
cv-unqualified version of the source type is the same class as, or a derived class of, the class of the
destination, constructors are considered. The applicable constructors are enumerated (12.2.2.4),
and the best one is chosen through overload resolution (12.2). Then:
—(16.6.2.1) If overload resolution is successful, the selected constructor is called to initialize the object,

with the initializer expression or expression-list as its argument(s).
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—(16.6.2.2) Otherwise, if no constructor is viable, the destination type is an aggregate class, and the
initializer is a parenthesized expression-list, the object is initialized as follows. Let e1, . . . , en

be the elements of the aggregate (9.4.2). Let x1, . . . , xk be the elements of the expression-list.
If k is greater than n, the program is ill-formed. The element ei is copy-initialized with xi for
1 ≤ i ≤ k. The remaining elements are initialized with their default member initializers, if
any, and otherwise are value-initialized. For each 1 ≤ i < j ≤ n, every value computation and
side effect associated with the initialization of ei is sequenced before those associated with the
initialization of ej .
[Note 7 : By contrast with direct-list-initialization, narrowing conversions (9.4.5) are permitted,
designators are not permitted, a temporary object bound to a reference does not have its lifetime
extended (6.7.7), and there is no brace elision.
[Example 3 :

struct A {
int a;
int&& r;

};

int f();
int n = 10;

A a1{1, f()}; // OK, lifetime is extended
A a2(1, f()); // well-formed, but dangling reference
A a3{1.0, 1}; // error: narrowing conversion
A a4(1.0, 1); // well-formed, but dangling reference
A a5(1.0, std::move(n)); // OK

— end example ]
— end note ]

—(16.6.2.3) Otherwise, the initialization is ill-formed.
—(16.6.3) Otherwise (i.e., for the remaining copy-initialization cases), user-defined conversions that can

convert from the source type to the destination type or (when a conversion function is used) to a
derived class thereof are enumerated as described in 12.2.2.5, and the best one is chosen through
overload resolution (12.2). If the conversion cannot be done or is ambiguous, the initialization is
ill-formed. The function selected is called with the initializer expression as its argument; if the
function is a constructor, the call is a prvalue of the cv-unqualified version of the destination type
whose result object is initialized by the constructor. The call is used to direct-initialize, according
to the rules above, the object that is the destination of the copy-initialization.

—(16.7) Otherwise, if the source type is a (possibly cv-qualified) class type, conversion functions are considered.
The applicable conversion functions are enumerated (12.2.2.6), and the best one is chosen through
overload resolution (12.2). The user-defined conversion so selected is called to convert the initializer
expression into the object being initialized. If the conversion cannot be done or is ambiguous, the
initialization is ill-formed.

—(16.8) Otherwise, if the initialization is direct-initialization, the source type is std::nullptr_t, and the
destination type is bool, the initial value of the object being initialized is false.

—(16.9) Otherwise, the initial value of the object being initialized is the (possibly converted) value of the
initializer expression. A standard conversion sequence (7.3) will be used, if necessary, to convert the
initializer expression to the cv-unqualified version of the destination type; no user-defined conversions are
considered. If the conversion cannot be done, the initialization is ill-formed. When initializing a bit-field
with a value that it cannot represent, the resulting value of the bit-field is implementation-defined.
[Note 8 : An expression of type “cv1 T” can initialize an object of type “cv2 T” independently of the cv-qualifiers
cv1 and cv2.

int a;
const int b = a;
int c = b;

— end note ]
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17 An immediate invocation (7.7) that is not evaluated where it appears (9.3.4.7, 11.4.1) is evaluated and
checked for whether it is a constant expression at the point where the enclosing initializer is used in a function
call, a constructor definition, or an aggregate initialization.

18 An initializer-clause followed by an ellipsis is a pack expansion (13.7.4).
19 Initialization includes the evaluation of all subexpressions of each initializer-clause of the initializer (possibly

nested within braced-init-lists) and the creation of any temporary objects for function arguments or return
values (6.7.7).

20 If the initializer is a parenthesized expression-list, the expressions are evaluated in the order specified for
function calls (7.6.1.3).

21 The same identifier shall not appear in multiple designators of a designated-initializer-list.
22 An object whose initialization has completed is deemed to be constructed, even if the object is of non-class

type or no constructor of the object’s class is invoked for the initialization.
[Note 9 : Such an object might have been value-initialized or initialized by aggregate initialization (9.4.2) or by an
inherited constructor (11.9.4). — end note ]

Destroying an object of class type invokes the destructor of the class. Destroying a scalar type has no effect
other than ending the lifetime of the object (6.7.3). Destroying an array destroys each element in reverse
subscript order.

23 A declaration that specifies the initialization of a variable, whether from an explicit initializer or by default-
initialization, is called the initializing declaration of that variable.
[Note 10 : In most cases this is the defining declaration (6.2) of the variable, but the initializing declaration of a
non-inline static data member (11.4.9.3) can be the declaration within the class definition and not the definition (if
any) outside it. — end note ]

9.4.2 Aggregates [dcl.init.aggr]
1 An aggregate is an array or a class (Clause 11) with

—(1.1) no user-declared or inherited constructors (11.4.5),
—(1.2) no private or protected direct non-static data members (11.8),
—(1.3) no private or protected direct base classes (11.8.3), and
—(1.4) no virtual functions (11.7.3) or virtual base classes (11.7.2).

[Note 1 : Aggregate initialization does not allow accessing protected and private base class’ members or constructors.
— end note ]

2 The elements of an aggregate are:
—(2.1) for an array, the array elements in increasing subscript order, or
—(2.2) for a class, the direct base classes in declaration order, followed by the direct non-static data members

(11.4) that are not members of an anonymous union, in declaration order.
3 When an aggregate is initialized by an initializer list as specified in 9.4.5, the elements of the initializer list

are taken as initializers for the elements of the aggregate. The explicitly initialized elements of the aggregate
are determined as follows:

—(3.1) If the initializer list is a brace-enclosed designated-initializer-list, the aggregate shall be of class type, the
identifier in each designator shall name a direct non-static data member of the class, and the explicitly
initialized elements of the aggregate are the elements that are, or contain, those members.

—(3.2) If the initializer list is a brace-enclosed initializer-list, the explicitly initialized elements of the aggregate
are the first n elements of the aggregate, where n is the number of elements in the initializer list.

—(3.3) Otherwise, the initializer list must be {}, and there are no explicitly initialized elements.
4 For each explicitly initialized element:

—(4.1) If the element is an anonymous union member and the initializer list is a brace-enclosed designated-
initializer-list, the element is initialized by the braced-init-list { D }, where D is the designated-initializer-
clause naming a member of the anonymous union member. There shall be only one such designated-
initializer-clause.
[Example 1 :
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struct C {
union {

int a;
const char* p;

};
int x;

} c = { .a = 1, .x = 3 };

initializes c.a with 1 and c.x with 3. — end example ]

—(4.2) Otherwise, the element is copy-initialized from the corresponding initializer-clause or is initialized with
the brace-or-equal-initializer of the corresponding designated-initializer-clause. If that initializer is of the
form assignment-expression or = assignment-expression and a narrowing conversion (9.4.5) is required to
convert the expression, the program is ill-formed.
[Note 2 : If the initialization is by designated-initializer-clause, its form determines whether copy-initialization or
direct-initialization is performed. — end note ]
[Note 3 : If an initializer is itself an initializer list, the element is list-initialized, which will result in a recursive
application of the rules in this subclause if the element is an aggregate. — end note ]
[Example 2 :

struct A {
int x;
struct B {

int i;
int j;

} b;
} a = { 1, { 2, 3 } };

initializes a.x with 1, a.b.i with 2, a.b.j with 3.
struct base1 { int b1, b2 = 42; };
struct base2 {

base2() {
b3 = 42;

}
int b3;

};
struct derived : base1, base2 {

int d;
};

derived d1{{1, 2}, {}, 4};
derived d2{{}, {}, 4};

initializes d1.b1 with 1, d1.b2 with 2, d1.b3 with 42, d1.d with 4, and d2.b1 with 0, d2.b2 with 42, d2.b3
with 42, d2.d with 4. — end example ]

5 For a non-union aggregate, each element that is not an explicitly initialized element is initialized as follows:
—(5.1) If the element has a default member initializer (11.4), the element is initialized from that initializer.
—(5.2) Otherwise, if the element is not a reference, the element is copy-initialized from an empty initializer

list (9.4.5).
—(5.3) Otherwise, the program is ill-formed.

If the aggregate is a union and the initializer list is empty, then
—(5.4) if any variant member has a default member initializer, that member is initialized from its default

member initializer;
—(5.5) otherwise, the first member of the union (if any) is copy-initialized from an empty initializer list.

6 [Example 3 :
struct S { int a; const char* b; int c; int d = b[a]; };
S ss = { 1, "asdf" };

initializes ss.a with 1, ss.b with "asdf", ss.c with the value of an expression of the form int{} (that is, 0), and
ss.d with the value of ss.b[ss.a] (that is, ’s’), and in

struct X { int i, j, k = 42; };
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X a[] = { 1, 2, 3, 4, 5, 6 };
X b[2] = { { 1, 2, 3 }, { 4, 5, 6 } };

a and b have the same value
struct A {

string a;
int b = 42;
int c = -1;

};

A{.c=21} has the following steps:
—(6.1) Initialize a with {}

—(6.2) Initialize b with = 42

—(6.3) Initialize c with = 21

— end example ]
7 The initializations of the elements of the aggregate are evaluated in the element order. That is, all value

computations and side effects associated with a given element are sequenced before those of any element that
follows it in order.

8 An aggregate that is a class can also be initialized with a single expression not enclosed in braces, as described
in 9.4.

9 The destructor for each element of class type is potentially invoked (11.4.7) from the context where the
aggregate initialization occurs.
[Note 4 : This provision ensures that destructors can be called for fully-constructed subobjects in case an exception is
thrown (14.3). — end note ]

10 An array of unknown bound initialized with a brace-enclosed initializer-list containing n initializer-clauses is
defined as having n elements (9.3.4.5).
[Example 4 :

int x[] = { 1, 3, 5 };

declares and initializes x as a one-dimensional array that has three elements since no size was specified and there are
three initializers. — end example ]

An array of unknown bound shall not be initialized with an empty braced-init-list {}.83

[Note 5 : A default member initializer does not determine the bound for a member array of unknown bound. Since
the default member initializer is ignored if a suitable mem-initializer is present (11.9.3), the default member initializer
is not considered to initialize the array of unknown bound.
[Example 5 :

struct S {
int y[] = { 0 }; // error: non-static data member of incomplete type

};

— end example ]
— end note ]

11 [Note 6 : Static data members, non-static data members of anonymous union members, and unnamed bit-fields are
not considered elements of the aggregate.
[Example 6 :

struct A {
int i;
static int s;
int j;
int :17;
int k;

} a = { 1, 2, 3 };

Here, the second initializer 2 initializes a.j and not the static data member A::s, and the third initializer 3 initializes
a.k and not the unnamed bit-field before it. — end example ]
— end note ]

83) The syntax provides for empty braced-init-lists, but nonetheless C++ does not have zero length arrays.
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12 An initializer-list is ill-formed if the number of initializer-clauses exceeds the number of elements of the
aggregate.
[Example 7 :

char cv[4] = { 'a', 's', 'd', 'f', 0 }; // error
is ill-formed. — end example ]

13 If a member has a default member initializer and a potentially-evaluated subexpression thereof is an aggregate
initialization that would use that default member initializer, the program is ill-formed.
[Example 8 :

struct A;
extern A a;
struct A {

const A& a1 { A{a,a} }; // OK
const A& a2 { A{} }; // error

};
A a{a,a}; // OK

struct B {
int n = B{}.n; // error

};

— end example ]
14 If an aggregate class C contains a subaggregate element e with no elements, the initializer-clause for e shall

not be omitted from an initializer-list for an object of type C unless the initializer-clauses for all elements of C
following e are also omitted.
[Example 9 :

struct S { } s;
struct A {

S s1;
int i1;
S s2;
int i2;
S s3;
int i3;

} a = {
{ }, // Required initialization
0,
s, // Required initialization
0

}; // Initialization not required for A::s3 because A::i3 is also not initialized
— end example ]

15 When initializing a multidimensional array, the initializer-clauses initialize the elements with the last (rightmost)
index of the array varying the fastest (9.3.4.5).
[Example 10 :

int x[2][2] = { 3, 1, 4, 2 };

initializes x[0][0] to 3, x[0][1] to 1, x[1][0] to 4, and x[1][1] to 2. On the other hand,
float y[4][3] = {

{ 1 }, { 2 }, { 3 }, { 4 }
};

initializes the first column of y (regarded as a two-dimensional array) and leaves the rest zero. — end example ]
16 Braces can be elided in an initializer-list as follows. If the initializer-list begins with a left brace, then the

succeeding comma-separated list of initializer-clauses initializes the elements of a subaggregate; it is erroneous
for there to be more initializer-clauses than elements. If, however, the initializer-list for a subaggregate does not
begin with a left brace, then only enough initializer-clauses from the list are taken to initialize the elements of
the subaggregate; any remaining initializer-clauses are left to initialize the next element of the aggregate of
which the current subaggregate is an element.
[Example 11 :
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float y[4][3] = {
{ 1, 3, 5 },
{ 2, 4, 6 },
{ 3, 5, 7 },

};

is a completely-braced initialization: 1, 3, and 5 initialize the first row of the array y[0], namely y[0][0], y[0][1],
and y[0][2]. Likewise the next two lines initialize y[1] and y[2]. The initializer ends early and therefore y[3]s
elements are initialized as if explicitly initialized with an expression of the form float(), that is, are initialized with
0.0. In the following example, braces in the initializer-list are elided; however the initializer-list has the same effect as
the completely-braced initializer-list of the above example,

float y[4][3] = {
1, 3, 5, 2, 4, 6, 3, 5, 7

};

The initializer for y begins with a left brace, but the one for y[0] does not, therefore three elements from the list are
used. Likewise the next three are taken successively for y[1] and y[2]. — end example ]

17 All implicit type conversions (7.3) are considered when initializing the element with an assignment-expression.
If the assignment-expression can initialize an element, the element is initialized. Otherwise, if the element is
itself a subaggregate, brace elision is assumed and the assignment-expression is considered for the initialization
of the first element of the subaggregate.
[Note 7 : As specified above, brace elision cannot apply to subaggregates with no elements; an initializer-clause for the
entire subobject is required. — end note ]
[Example 12 :

struct A {
int i;
operator int();

};
struct B {

A a1, a2;
int z;

};
A a;
B b = { 4, a, a };

Braces are elided around the initializer-clause for b.a1.i. b.a1.i is initialized with 4, b.a2 is initialized with a, b.z is
initialized with whatever a.operator int() returns. — end example ]

18 [Note 8 : An aggregate array or an aggregate class can contain elements of a class type with a user-declared
constructor (11.4.5). Initialization of these aggregate objects is described in 11.9.2. — end note ]

19 [Note 9 : Whether the initialization of aggregates with static storage duration is static or dynamic is specified in 6.9.3.2,
6.9.3.3, and 8.8. — end note ]

20 When a union is initialized with an initializer list, there shall not be more than one explicitly initialized
element.
[Example 13 :

union u { int a; const char* b; };
u a = { 1 };
u b = a;
u c = 1; // error
u d = { 0, "asdf" }; // error
u e = { "asdf" }; // error
u f = { .b = "asdf" };
u g = { .a = 1, .b = "asdf" }; // error

— end example ]
21 [Note 10 : As described above, the braces around the initializer-clause for a union member can be omitted if the union

is a member of another aggregate. — end note ]

9.4.3 Character arrays [dcl.init.string]
1 An array of ordinary character type (6.8.2), char8_t array, char16_t array, char32_t array, or wchar_t array

may be initialized by an ordinary string literal, UTF-8 string literal, UTF-16 string literal, UTF-32 string
literal, or wide string literal, respectively, or by an appropriately-typed string-literal enclosed in braces (5.13.5).
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Additionally, an array of char or unsigned char may be initialized by a UTF-8 string literal, or by such a
string literal enclosed in braces. Successive characters of the value of the string-literal initialize the elements
of the array, with an integral conversion (7.3.9) if necessary for the source and destination value.
[Example 1 :

char msg[] = "Syntax error on line %s\n";

shows a character array whose members are initialized with a string-literal . Note that because ’\n’ is a single character
and because a trailing ’\0’ is appended, sizeof(msg) is 25. — end example ]

2 There shall not be more initializers than there are array elements.
[Example 2 :

char cv[4] = "asdf"; // error
is ill-formed since there is no space for the implied trailing ’\0’. — end example ]

3 If there are fewer initializers than there are array elements, each element not explicitly initialized shall be
zero-initialized (9.4).

9.4.4 References [dcl.init.ref]
1 A variable whose declared type is “reference to T” (9.3.4.3) shall be initialized.

[Example 1 :
int g(int) noexcept;
void f() {

int i;
int& r = i; // r refers to i
r = 1; // the value of i becomes 1
int* p = &r; // p points to i
int& rr = r; // rr refers to what r refers to, that is, to i
int (&rg)(int) = g; // rg refers to the function g
rg(i); // calls function g
int a[3];
int (&ra)[3] = a; // ra refers to the array a
ra[1] = i; // modifies a[1]

}

— end example ]
2 A reference cannot be changed to refer to another object after initialization.

[Note 1 : Assignment to a reference assigns to the object referred to by the reference (7.6.19). — end note ]

Argument passing (7.6.1.3) and function value return (8.7.4) are initializations.
3 The initializer can be omitted for a reference only in a parameter declaration (9.3.4.6), in the declaration of a

function return type, in the declaration of a class member within its class definition (11.4), and where the
extern specifier is explicitly used.
[Example 2 :

int& r1; // error: initializer missing
extern int& r2; // OK

— end example ]
4 Given types “cv1 T1” and “cv2 T2”, “cv1 T1” is reference-related to “cv2 T2” if T1 is similar (7.3.6) to T2,

or T1 is a base class of T2. “cv1 T1” is reference-compatible with “cv2 T2” if a prvalue of type “pointer to
cv2 T2” can be converted to the type “pointer to cv1 T1” via a standard conversion sequence (7.3). In all
cases where the reference-compatible relationship of two types is used to establish the validity of a reference
binding and the standard conversion sequence would be ill-formed, a program that necessitates such a binding
is ill-formed.

5 A reference to type “cv1 T1” is initialized by an expression of type “cv2 T2” as follows:
—(5.1) If the reference is an lvalue reference and the initializer expression

—(5.1.1) is an lvalue (but is not a bit-field), and “cv1 T1” is reference-compatible with “cv2 T2”, or

§ 9.4.4 218



© ISO/IEC N4950

—(5.1.2) has a class type (i.e., T2 is a class type), where T1 is not reference-related to T2, and can be
converted to an lvalue of type “cv3 T3”, where “cv1 T1” is reference-compatible with “cv3 T3”84

(this conversion is selected by enumerating the applicable conversion functions (12.2.2.7) and
choosing the best one through overload resolution (12.2)),

then the reference binds to the initializer expression lvalue in the first case and to the lvalue result
of the conversion in the second case (or, in either case, to the appropriate base class subobject of the
object).
[Note 2 : The usual lvalue-to-rvalue (7.3.2), array-to-pointer (7.3.3), and function-to-pointer (7.3.4) standard
conversions are not needed, and therefore are suppressed, when such direct bindings to lvalues are done. — end
note ]
[Example 3 :

double d = 2.0;
double& rd = d; // rd refers to d
const double& rcd = d; // rcd refers to d

struct A { };
struct B : A { operator int&(); } b;
A& ra = b; // ra refers to A subobject in b
const A& rca = b; // rca refers to A subobject in b
int& ir = B(); // ir refers to the result of B::operator int&

— end example ]

—(5.2) Otherwise, if the reference is an lvalue reference to a type that is not const-qualified or is volatile-qualified,
the program is ill-formed.
[Example 4 :

double& rd2 = 2.0; // error: not an lvalue and reference not const
int i = 2;
double& rd3 = i; // error: type mismatch and reference not const

— end example ]

—(5.3) Otherwise, if the initializer expression
—(5.3.1) is an rvalue (but not a bit-field) or function lvalue and “cv1 T1” is reference-compatible with “cv2

T2”, or
—(5.3.2) has a class type (i.e., T2 is a class type), where T1 is not reference-related to T2, and can be

converted to an rvalue or function lvalue of type “cv3 T3”, where “cv1 T1” is reference-compatible
with “cv3 T3” (see 12.2.2.7),

then the initializer expression in the first case and the converted expression in the second case is called
the converted initializer. If the converted initializer is a prvalue, its type T4 is adjusted to type “cv1
T4” (7.3.6) and the temporary materialization conversion (7.3.5) is applied. In any case, the reference
binds to the resulting glvalue (or to an appropriate base class subobject).
[Example 5 :

struct A { };
struct B : A { } b;
extern B f();
const A& rca2 = f(); // binds to the A subobject of the B rvalue.
A&& rra = f(); // same as above
struct X {

operator B();
operator int&();

} x;
const A& r = x; // binds to the A subobject of the result of the conversion
int i2 = 42;
int&& rri = static_cast<int&&>(i2); // binds directly to i2
B&& rrb = x; // binds directly to the result of operator B

— end example ]

84) This requires a conversion function (11.4.8.3) returning a reference type.
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—(5.4) Otherwise:
—(5.4.1) If T1 or T2 is a class type and T1 is not reference-related to T2, user-defined conversions are

considered using the rules for copy-initialization of an object of type “cv1 T1” by user-defined
conversion (9.4, 12.2.2.5, 12.2.2.6); the program is ill-formed if the corresponding non-reference
copy-initialization would be ill-formed. The result of the call to the conversion function, as
described for the non-reference copy-initialization, is then used to direct-initialize the reference.
For this direct-initialization, user-defined conversions are not considered.

—(5.4.2) Otherwise, the initializer expression is implicitly converted to a prvalue of type “T1”. The temporary
materialization conversion is applied, considering the type of the prvalue to be “cv1 T1”, and the
reference is bound to the result.

If T1 is reference-related to T2:
—(5.4.3) cv1 shall be the same cv-qualification as, or greater cv-qualification than, cv2 ; and
—(5.4.4) if the reference is an rvalue reference, the initializer expression shall not be an lvalue.

[Note 3 : This can be affected by whether the initializer expression is move-eligible (7.5.4.2). — end note ]
[Example 6 :

struct Banana { };
struct Enigma { operator const Banana(); };
struct Alaska { operator Banana&(); };
void enigmatic() {

typedef const Banana ConstBanana;
Banana &&banana1 = ConstBanana(); // error
Banana &&banana2 = Enigma(); // error
Banana &&banana3 = Alaska(); // error

}

const double& rcd2 = 2; // rcd2 refers to temporary with value 2.0
double&& rrd = 2; // rrd refers to temporary with value 2.0
const volatile int cvi = 1;
const int& r2 = cvi; // error: cv-qualifier dropped
struct A { operator volatile int&(); } a;
const int& r3 = a; // error: cv-qualifier dropped

// from result of conversion function
double d2 = 1.0;
double&& rrd2 = d2; // error: initializer is lvalue of related type
struct X { operator int&(); };
int&& rri2 = X(); // error: result of conversion function is lvalue of related type
int i3 = 2;
double&& rrd3 = i3; // rrd3 refers to temporary with value 2.0

— end example ]

In all cases except the last (i.e., implicitly converting the initializer expression to the referenced type), the
reference is said to bind directly to the initializer expression.

6 [Note 4 : 6.7.7 describes the lifetime of temporaries bound to references. — end note ]

9.4.5 List-initialization [dcl.init.list]
1 List-initialization is initialization of an object or reference from a braced-init-list. Such an initializer is called

an initializer list, and the comma-separated initializer-clauses of the initializer-list or designated-initializer-clauses
of the designated-initializer-list are called the elements of the initializer list. An initializer list may be empty.
List-initialization can occur in direct-initialization or copy-initialization contexts; list-initialization in a
direct-initialization context is called direct-list-initialization and list-initialization in a copy-initialization
context is called copy-list-initialization. Direct-initialization that is not list-initialization is called direct-non-
list-initialization.
[Note 1 : List-initialization can be used

—(1.1) as the initializer in a variable definition (9.4)
—(1.2) as the initializer in a new-expression (7.6.2.8)
—(1.3) in a return statement (8.7.4)
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—(1.4) as a for-range-initializer (8.6)
—(1.5) as a function argument (7.6.1.3)
—(1.6) as a subscript (7.6.1.2)
—(1.7) as an argument to a constructor invocation (9.4, 7.6.1.4)
—(1.8) as an initializer for a non-static data member (11.4)
—(1.9) in a mem-initializer (11.9.3)
—(1.10) on the right-hand side of an assignment (7.6.19)

[Example 1 :
int a = {1};
std::complex<double> z{1,2};
new std::vector<std::string>{"once", "upon", "a", "time"}; // 4 string elements
f( {"Nicholas","Annemarie"} ); // pass list of two elements
return { "Norah" }; // return list of one element
int* e {}; // initialization to zero / null pointer
x = double{1}; // explicitly construct a double
std::map<std::string,int> anim = { {"bear",4}, {"cassowary",2}, {"tiger",7} };

— end example ]
— end note ]

2 A constructor is an initializer-list constructor if its first parameter is of type std::initializer_list<E> or
reference to cv std::initializer_list<E> for some type E, and either there are no other parameters or
else all other parameters have default arguments (9.3.4.7).
[Note 2 : Initializer-list constructors are favored over other constructors in list-initialization (12.2.2.8). Passing an
initializer list as the argument to the constructor template template<class T> C(T) of a class C does not create an
initializer-list constructor, because an initializer list argument causes the corresponding parameter to be a non-deduced
context (13.10.3.2). — end note ]

The template std::initializer_list is not predefined; if a standard library declaration (17.10.2, 16.4.2.4)
of std::initializer_list is not reachable from (10.7) a use of std::initializer_list — even an implicit
use in which the type is not named (9.2.9.6) — the program is ill-formed.

3 List-initialization of an object or reference of type T is defined as follows:
—(3.1) If the braced-init-list contains a designated-initializer-list, T shall be an aggregate class. The ordered

identifiers in the designators of the designated-initializer-list shall form a subsequence of the ordered
identifiers in the direct non-static data members of T. Aggregate initialization is performed (9.4.2).
[Example 2 :

struct A { int x; int y; int z; };
A a{.y = 2, .x = 1}; // error: designator order does not match declaration order
A b{.x = 1, .z = 2}; // OK, b.y initialized to 0

— end example ]

—(3.2) If T is an aggregate class and the initializer list has a single element of type cv U, where U is T or a
class derived from T, the object is initialized from that element (by copy-initialization for copy-list-
initialization, or by direct-initialization for direct-list-initialization).

—(3.3) Otherwise, if T is a character array and the initializer list has a single element that is an appropriately-
typed string-literal (9.4.3), initialization is performed as described in that subclause.

—(3.4) Otherwise, if T is an aggregate, aggregate initialization is performed (9.4.2).
[Example 3 :

double ad[] = { 1, 2.0 }; // OK
int ai[] = { 1, 2.0 }; // error: narrowing

struct S2 {
int m1;
double m2, m3;

};
S2 s21 = { 1, 2, 3.0 }; // OK
S2 s22 { 1.0, 2, 3 }; // error: narrowing
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S2 s23 { }; // OK, default to 0,0,0
— end example ]

—(3.5) Otherwise, if the initializer list has no elements and T is a class type with a default constructor, the
object is value-initialized.

—(3.6) Otherwise, if T is a specialization of std::initializer_list<E>, the object is constructed as described
below.

—(3.7) Otherwise, if T is a class type, constructors are considered. The applicable constructors are enumerated
and the best one is chosen through overload resolution (12.2, 12.2.2.8). If a narrowing conversion (see
below) is required to convert any of the arguments, the program is ill-formed.
[Example 4 :

struct S {
S(std::initializer_list<double>); // #1
S(std::initializer_list<int>); // #2
S(); // #3
// ...

};
S s1 = { 1.0, 2.0, 3.0 }; // invoke #1
S s2 = { 1, 2, 3 }; // invoke #2
S s3 = { }; // invoke #3

— end example ]
[Example 5 :

struct Map {
Map(std::initializer_list<std::pair<std::string,int>>);

};
Map ship = {{"Sophie",14}, {"Surprise",28}};

— end example ]
[Example 6 :

struct S {
// no initializer-list constructors
S(int, double, double); // #1
S(); // #2
// ...

};
S s1 = { 1, 2, 3.0 }; // OK, invoke #1
S s2 { 1.0, 2, 3 }; // error: narrowing
S s3 { }; // OK, invoke #2

— end example ]

—(3.8) Otherwise, if T is an enumeration with a fixed underlying type (9.7.1) U, the initializer-list has a single
element v, v can be implicitly converted to U, and the initialization is direct-list-initialization, the object
is initialized with the value T(v) (7.6.1.4); if a narrowing conversion is required to convert v to U, the
program is ill-formed.
[Example 7 :

enum byte : unsigned char { };
byte b { 42 }; // OK
byte c = { 42 }; // error
byte d = byte{ 42 }; // OK; same value as b
byte e { -1 }; // error

struct A { byte b; };
A a1 = { { 42 } }; // error
A a2 = { byte{ 42 } }; // OK

void f(byte);
f({ 42 }); // error

enum class Handle : uint32_t { Invalid = 0 };
Handle h { 42 }; // OK
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— end example ]

—(3.9) Otherwise, if the initializer list has a single element of type E and either T is not a reference type or its
referenced type is reference-related to E, the object or reference is initialized from that element (by
copy-initialization for copy-list-initialization, or by direct-initialization for direct-list-initialization); if a
narrowing conversion (see below) is required to convert the element to T, the program is ill-formed.
[Example 8 :

int x1 {2}; // OK
int x2 {2.0}; // error: narrowing

— end example ]

—(3.10) Otherwise, if T is a reference type, a prvalue is generated. The prvalue initializes its result object by
copy-list-initialization from the initializer list. The prvalue is then used to direct-initialize the reference.
The type of the prvalue is the type referenced by T, unless T is “reference to array of unknown bound
of U”, in which case the type of the prvalue is the type of x in the declaration U x[] H, where H is
the initializer list.
[Note 3 : As usual, the binding will fail and the program is ill-formed if the reference type is an lvalue reference
to a non-const type. — end note ]
[Example 9 :

struct S {
S(std::initializer_list<double>); // #1
S(const std::string&); // #2
// ...

};
const S& r1 = { 1, 2, 3.0 }; // OK, invoke #1
const S& r2 { "Spinach" }; // OK, invoke #2
S& r3 = { 1, 2, 3 }; // error: initializer is not an lvalue
const int& i1 = { 1 }; // OK
const int& i2 = { 1.1 }; // error: narrowing
const int (&iar)[2] = { 1, 2 }; // OK, iar is bound to temporary array

struct A { } a;
struct B { explicit B(const A&); };
const B& b2{a}; // error: cannot copy-list-initialize B temporary from A

— end example ]

—(3.11) Otherwise, if the initializer list has no elements, the object is value-initialized.
[Example 10 :

int** pp {}; // initialized to null pointer
— end example ]

—(3.12) Otherwise, the program is ill-formed.
[Example 11 :

struct A { int i; int j; };
A a1 { 1, 2 }; // aggregate initialization
A a2 { 1.2 }; // error: narrowing
struct B {

B(std::initializer_list<int>);
};
B b1 { 1, 2 }; // creates initializer_list<int> and calls constructor
B b2 { 1, 2.0 }; // error: narrowing
struct C {

C(int i, double j);
};
C c1 = { 1, 2.2 }; // calls constructor with arguments (1, 2.2)
C c2 = { 1.1, 2 }; // error: narrowing

int j { 1 }; // initialize to 1
int k { }; // initialize to 0

— end example ]
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4 Within the initializer-list of a braced-init-list, the initializer-clauses, including any that result from pack
expansions (13.7.4), are evaluated in the order in which they appear. That is, every value computation and
side effect associated with a given initializer-clause is sequenced before every value computation and side effect
associated with any initializer-clause that follows it in the comma-separated list of the initializer-list.
[Note 4 : This evaluation ordering holds regardless of the semantics of the initialization; for example, it applies when
the elements of the initializer-list are interpreted as arguments of a constructor call, even though ordinarily there are
no sequencing constraints on the arguments of a call. — end note ]

5 An object of type std::initializer_list<E> is constructed from an initializer list as if the implementation
generated and materialized (7.3.5) a prvalue of type “array of N const E”, where N is the number of elements
in the initializer list. Each element of that array is copy-initialized with the corresponding element of the
initializer list, and the std::initializer_list<E> object is constructed to refer to that array.
[Note 5 : A constructor or conversion function selected for the copy is required to be accessible (11.8) in the context of
the initializer list. — end note ]

If a narrowing conversion is required to initialize any of the elements, the program is ill-formed.
[Example 12 :

struct X {
X(std::initializer_list<double> v);

};
X x{ 1,2,3 };

The initialization will be implemented in a way roughly equivalent to this:
const double __a[3] = {double{1}, double{2}, double{3}};
X x(std::initializer_list<double>(__a, __a+3));

assuming that the implementation can construct an initializer_list object with a pair of pointers. — end example ]
6 The array has the same lifetime as any other temporary object (6.7.7), except that initializing an initiali-

zer_list object from the array extends the lifetime of the array exactly like binding a reference to a
temporary.
[Example 13 :

typedef std::complex<double> cmplx;
std::vector<cmplx> v1 = { 1, 2, 3 };

void f() {
std::vector<cmplx> v2{ 1, 2, 3 };
std::initializer_list<int> i3 = { 1, 2, 3 };

}

struct A {
std::initializer_list<int> i4;
A() : i4{ 1, 2, 3 } {} // ill-formed, would create a dangling reference

};

For v1 and v2, the initializer_list object is a parameter in a function call, so the array created for { 1, 2, 3 }
has full-expression lifetime. For i3, the initializer_list object is a variable, so the array persists for the lifetime of
the variable. For i4, the initializer_list object is initialized in the constructor’s ctor-initializer as if by binding a
temporary array to a reference member, so the program is ill-formed (11.9.3). — end example ]
[Note 6 : The implementation is free to allocate the array in read-only memory if an explicit array with the same
initializer can be so allocated. — end note ]

7 A narrowing conversion is an implicit conversion
—(7.1) from a floating-point type to an integer type, or
—(7.2) from a floating-point type T to another floating-point type whose floating-point conversion rank is

neither greater than nor equal to that of T, except where the source is a constant expression and the
actual value after conversion is within the range of values that can be represented (even if it cannot be
represented exactly), or

—(7.3) from an integer type or unscoped enumeration type to a floating-point type, except where the source is
a constant expression and the actual value after conversion will fit into the target type and will produce
the original value when converted back to the original type, or
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—(7.4) from an integer type or unscoped enumeration type to an integer type that cannot represent all the
values of the original type, except where

—(7.4.1) the source is a bit-field whose width w is less than that of its type (or, for an enumeration type,
its underlying type) and the target type can represent all the values of a hypothetical extended
integer type with width w and with the same signedness as the original type or

—(7.4.2) the source is a constant expression whose value after integral promotions will fit into the target
type, or

—(7.5) from a pointer type or a pointer-to-member type to bool.
[Note 7 : As indicated above, such conversions are not allowed at the top level in list-initializations. — end note ]
[Example 14 :

int x = 999; // x is not a constant expression
const int y = 999;
const int z = 99;
char c1 = x; // OK, though it potentially narrows (in this case, it does narrow)
char c2{x}; // error: potentially narrows
char c3{y}; // error: narrows (assuming char is 8 bits)
char c4{z}; // OK, no narrowing needed
unsigned char uc1 = {5}; // OK, no narrowing needed
unsigned char uc2 = {-1}; // error: narrows
unsigned int ui1 = {-1}; // error: narrows
signed int si1 =

{ (unsigned int)-1 }; // error: narrows
int ii = {2.0}; // error: narrows
float f1 { x }; // error: potentially narrows
float f2 { 7 }; // OK, 7 can be exactly represented as a float
bool b = {"meow"}; // error: narrows
int f(int);
int a[] = { 2, f(2), f(2.0) }; // OK, the double-to-int conversion is not at the top level

— end example ]

9.5 Function definitions [dcl.fct.def]
9.5.1 In general [dcl.fct.def.general]

1 Function definitions have the form
function-definition :

attribute-specifier-seqopt decl-specifier-seqopt declarator virt-specifier-seqopt function-body
attribute-specifier-seqopt decl-specifier-seqopt declarator requires-clause function-body

function-body :
ctor-initializeropt compound-statement
function-try-block
= default ;
= delete ;

Any informal reference to the body of a function should be interpreted as a reference to the non-terminal
function-body . The optional attribute-specifier-seq in a function-definition appertains to the function. A
virt-specifier-seq can be part of a function-definition only if it is a member-declaration (11.4).

2 In a function-definition, either void declarator ; or declarator ; shall be a well-formed function declaration as
described in 9.3.4.6. A function shall be defined only in namespace or class scope. The type of a parameter
or the return type for a function definition shall not be a (possibly cv-qualified) class type that is incomplete
or abstract within the function body unless the function is deleted (9.5.3).

3 [Example 1 : A simple example of a complete function definition is
int max(int a, int b, int c) {

int m = (a > b) ? a : b;
return (m > c) ? m : c;

}

Here int is the decl-specifier-seq; max(int a, int b, int c) is the declarator ; { /* ... */ } is the function-body .
— end example ]
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4 A ctor-initializer is used only in a constructor; see 11.4.5 and 11.9.
5 [Note 1 : A cv-qualifier-seq affects the type of this in the body of a member function; see 7.5.2. — end note ]
6 [Note 2 : Unused parameters need not be named. For example,

void print(int a, int) {
std::printf("a = %d\n",a);

}

— end note ]
7 A function-local predefined variable is a variable with static storage duration that is implicitly defined in a

function parameter scope.
8 The function-local predefined variable __func__ is defined as if a definition of the form

static const char __func__[] = "function-name ";

had been provided, where function-name is an implementation-defined string. It is unspecified whether
such a variable has an address distinct from that of any other object in the program.85

[Example 2 :
struct S {

S() : s(__func__) { } // OK
const char* s;

};
void f(const char* s = __func__); // error: __func__ is undeclared

— end example ]

9.5.2 Explicitly-defaulted functions [dcl.fct.def.default]
1 A function definition whose function-body is of the form = default ; is called an explicitly-defaulted definition.

A function that is explicitly defaulted shall
—(1.1) be a special member function or a comparison operator function (12.4.3), and
—(1.2) not have default arguments.

2 An explicitly defaulted special member function F1 is allowed to differ from the corresponding special member
function F2 that would have been implicitly declared, as follows:

—(2.1) F1 and F2 may have differing ref-qualifiers;
—(2.2) if F2 has an implicit object parameter of type “reference to C”, F1 may be an explicit object member

function whose explicit object parameter is of type “reference to C”, in which case the type of F1 would
differ from the type of F2 in that the type of F1 has an additional parameter;

—(2.3) F1 and F2 may have differing exception specifications; and
—(2.4) if F2 has a non-object parameter of type const C&, the corresponding non-object parameter of F1 may

be of type C&.
If the type of F1 differs from the type of F2 in a way other than as allowed by the preceding rules, then:

—(2.5) if F1 is an assignment operator, and the return type of F1 differs from the return type of F2 or F1’s
non-object parameter type is not a reference, the program is ill-formed;

—(2.6) otherwise, if F1 is explicitly defaulted on its first declaration, it is defined as deleted;
—(2.7) otherwise, the program is ill-formed.

3 A function explicitly defaulted on its first declaration is implicitly inline (9.2.8), and is implicitly constexpr
(9.2.6) if it is constexpr-suitable.

4 [Example 1 :
struct S {

S(int a = 0) = default; // error: default argument
void operator=(const S&) = default; // error: non-matching return type
~S() noexcept(false) = default; // OK, despite mismatched exception specification

private:
int i;

85) Implementations are permitted to provide additional predefined variables with names that are reserved to the implementation
(5.10). If a predefined variable is not odr-used (6.3), its string value need not be present in the program image.
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S(S&); // OK, private copy constructor
};
S::S(S&) = default; // OK, defines copy constructor

struct T {
T();
T(T &&) noexcept(false);

};
struct U {

T t;
U();
U(U &&) noexcept = default;

};
U u1;
U u2 = static_cast<U&&>(u1); // OK, calls std::terminate if T::T(T&&) throws

— end example ]
5 Explicitly-defaulted functions and implicitly-declared functions are collectively called defaulted functions, and

the implementation shall provide implicit definitions for them (11.4.5, 11.4.7, 11.4.5.3, 11.4.6) as described
below, including possibly defining them as deleted. A defaulted prospective destructor (11.4.7) that is not a
destructor is defined as deleted. A defaulted special member function that is neither a prospective destructor
nor an eligible special member function (11.4.4) is defined as deleted. A function is user-provided if it is
user-declared and not explicitly defaulted or deleted on its first declaration. A user-provided explicitly-
defaulted function (i.e., explicitly defaulted after its first declaration) is implicitly defined at the point where
it is explicitly defaulted; if such a function is implicitly defined as deleted, the program is ill-formed. A
non-user-provided defaulted function (i.e., implicitly declared or explicitly defaulted in the class) that is not
defined as deleted is implicitly defined when it is odr-used (6.3) or needed for constant evaluation (7.7).
[Note 1 : Declaring a function as defaulted after its first declaration can provide efficient execution and concise
definition while enabling a stable binary interface to an evolving code base. — end note ]

6 [Example 2 :
struct trivial {

trivial() = default;
trivial(const trivial&) = default;
trivial(trivial&&) = default;
trivial& operator=(const trivial&) = default;
trivial& operator=(trivial&&) = default;
~trivial() = default;

};

struct nontrivial1 {
nontrivial1();

};
nontrivial1::nontrivial1() = default; // not first declaration

— end example ]

9.5.3 Deleted definitions [dcl.fct.def.delete]
1 A deleted definition of a function is a function definition whose function-body is of the form = delete ; or

an explicitly-defaulted definition of the function where the function is defined as deleted. A deleted function
is a function with a deleted definition or a function that is implicitly defined as deleted.

2 A program that refers to a deleted function implicitly or explicitly, other than to declare it, is ill-formed.
[Note 1 : This includes calling the function implicitly or explicitly and forming a pointer or pointer-to-member to the
function. It applies even for references in expressions that are not potentially-evaluated. For an overload set, only the
function selected by overload resolution is referenced. The implicit odr-use (6.3) of a virtual function does not, by
itself, constitute a reference. — end note ]

3 [Example 1 : One can prevent default initialization and initialization by non-doubles with
struct onlydouble {

onlydouble() = delete; // OK, but redundant
template<class T>

onlydouble(T) = delete;
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onlydouble(double);
};

— end example ]
[Example 2 : One can prevent use of a class in certain new-expressions by using deleted definitions of a user-declared
operator new for that class.

struct sometype {
void* operator new(std::size_t) = delete;
void* operator new[](std::size_t) = delete;

};
sometype* p = new sometype; // error: deleted class operator new
sometype* q = new sometype[3]; // error: deleted class operator new[]

— end example ]
[Example 3 : One can make a class uncopyable, i.e., move-only, by using deleted definitions of the copy constructor
and copy assignment operator, and then providing defaulted definitions of the move constructor and move assignment
operator.

struct moveonly {
moveonly() = default;
moveonly(const moveonly&) = delete;
moveonly(moveonly&&) = default;
moveonly& operator=(const moveonly&) = delete;
moveonly& operator=(moveonly&&) = default;
~moveonly() = default;

};
moveonly* p;
moveonly q(*p); // error: deleted copy constructor

— end example ]
4 A deleted function is implicitly an inline function (9.2.8).

[Note 2 : The one-definition rule (6.3) applies to deleted definitions. — end note ]

A deleted definition of a function shall be the first declaration of the function or, for an explicit specialization
of a function template, the first declaration of that specialization. An implicitly declared allocation or
deallocation function (6.7.5.5) shall not be defined as deleted.
[Example 4 :

struct sometype {
sometype();

};
sometype::sometype() = delete; // error: not first declaration

— end example ]

9.5.4 Coroutine definitions [dcl.fct.def.coroutine]
1 A function is a coroutine if its function-body encloses a coroutine-return-statement (8.7.5), an await-expression

(7.6.2.4), or a yield-expression (7.6.17). The parameter-declaration-clause of the coroutine shall not terminate
with an ellipsis that is not part of a parameter-declaration.

2 [Example 1 :
task<int> f();

task<void> g1() {
int i = co_await f();
std::cout << "f() => " << i << std::endl;

}

template <typename... Args>
task<void> g2(Args&&...) { // OK, ellipsis is a pack expansion

int i = co_await f();
std::cout << "f() => " << i << std::endl;

}
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task<void> g3(int a, ...) { // error: variable parameter list not allowed
int i = co_await f();
std::cout << "f() => " << i << std::endl;

}

— end example ]
3 The promise type of a coroutine is std::coroutine_traits<R, P1, . . . , Pn>::promise_type, where R is

the return type of the function, and P1 . . . Pn is the sequence of types of the non-object function parameters,
preceded by the type of the object parameter (9.3.4.6) if the coroutine is a non-static member function. The
promise type shall be a class type.

4 In the following, pi is an lvalue of type Pi, where p1 denotes the object parameter and pi+1 denotes the ith

non-object function parameter for a non-static member function, and pi denotes the ith function parameter
otherwise. For a non-static member function, q1 is an lvalue that denotes *this; any other qi is an lvalue
that denotes the parameter copy corresponding to pi, as described below.

5 A coroutine behaves as if its function-body were replaced by:
{

promise-type promise promise-constructor-arguments ;
try {

co_await promise .initial_suspend() ;
function-body

} catch ( ... ) {
if (!initial-await-resume-called )

throw ;
promise .unhandled_exception() ;

}
final-suspend :

co_await promise .final_suspend() ;
}

where
—(5.1) the await-expression containing the call to initial_suspend is the initial await expression, and
—(5.2) the await-expression containing the call to final_suspend is the final await expression, and
—(5.3) initial-await-resume-called is initially false and is set to true immediately before the evaluation of

the await-resume expression (7.6.2.4) of the initial await expression, and
—(5.4) promise-type denotes the promise type, and
—(5.5) the object denoted by the exposition-only name promise is the promise object of the coroutine, and
—(5.6) the label denoted by the name final-suspend is defined for exposition only (8.7.5), and
—(5.7) promise-constructor-arguments is determined as follows: overload resolution is performed on a promise

constructor call created by assembling an argument list q1 . . . qn. If a viable constructor is found (12.2.3),
then promise-constructor-arguments is (q1, . . . , qn), otherwise promise-constructor-arguments is
empty, and

—(5.8) a coroutine is suspended at the initial suspend point if it is suspended at the initial await expression,
and

—(5.9) a coroutine is suspended at a final suspend point if it is suspended
—(5.9.1) at a final await expression or
—(5.9.2) due to an exception exiting from unhandled_exception().

6 If searches for the names return_void and return_value in the scope of the promise type each find any
declarations, the program is ill-formed.
[Note 1 : If return_void is found, flowing off the end of a coroutine is equivalent to a co_return with no operand.
Otherwise, flowing off the end of a coroutine results in undefined behavior (8.7.5). — end note ]

7 The expression promise .get_return_object() is used to initialize the returned reference or prvalue result
object of a call to a coroutine. The call to get_return_object is sequenced before the call to initial_-
suspend and is invoked at most once.

8 A suspended coroutine can be resumed to continue execution by invoking a resumption member function
(17.12.4.6) of a coroutine handle (17.12.4) that refers to the coroutine. The evaluation that invoked a
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resumption member function is called the resumer. Invoking a resumption member function for a coroutine
that is not suspended results in undefined behavior.

9 An implementation may need to allocate additional storage for a coroutine. This storage is known as the
coroutine state and is obtained by calling a non-array allocation function (6.7.5.5.2). The allocation function’s
name is looked up by searching for it in the scope of the promise type.

—(9.1) If the search finds any declarations, overload resolution is performed on a function call created by
assembling an argument list. The first argument is the amount of space requested, and is a prvalue
of type std::size_t. The lvalues p1 . . . pn are the successive arguments. If no viable function is
found (12.2.3), overload resolution is performed again on a function call created by passing just the
amount of space required as a prvalue of type std::size_t.

—(9.2) If the search finds no declarations, a search is performed in the global scope. Overload resolution is
performed on a function call created by passing the amount of space required as a prvalue of type
std::size_t.

10 If a search for the name get_return_object_on_allocation_failure in the scope of the promise type (6.5.2)
finds any declarations, then the result of a call to an allocation function used to obtain storage for the
coroutine state is assumed to return nullptr if it fails to obtain storage, and if a global allocation function
is selected, the ::operator new(size_t, nothrow_t) form is used. The allocation function used in this
case shall have a non-throwing noexcept-specifier . If the allocation function returns nullptr, the coroutine
returns control to the caller of the coroutine and the return value is obtained by a call to T::get_return_-
object_on_allocation_failure(), where T is the promise type.
[Example 2 :

#include <iostream>
#include <coroutine>

// ::operator new(size_t, nothrow_t) will be used if allocation is needed
struct generator {

struct promise_type;
using handle = std::coroutine_handle<promise_type>;
struct promise_type {

int current_value;
static auto get_return_object_on_allocation_failure() { return generator{nullptr}; }
auto get_return_object() { return generator{handle::from_promise(*this)}; }
auto initial_suspend() { return std::suspend_always{}; }
auto final_suspend() noexcept { return std::suspend_always{}; }
void unhandled_exception() { std::terminate(); }
void return_void() {}
auto yield_value(int value) {

current_value = value;
return std::suspend_always{};

}
};
bool move_next() { return coro ? (coro.resume(), !coro.done()) : false; }
int current_value() { return coro.promise().current_value; }
generator(generator const&) = delete;
generator(generator && rhs) : coro(rhs.coro) { rhs.coro = nullptr; }
~generator() { if (coro) coro.destroy(); }

private:
generator(handle h) : coro(h) {}
handle coro;

};
generator f() { co_yield 1; co_yield 2; }
int main() {

auto g = f();
while (g.move_next()) std::cout << g.current_value() << std::endl;

}

— end example ]
11 The coroutine state is destroyed when control flows off the end of the coroutine or the destroy member

function (17.12.4.6) of a coroutine handle (17.12.4) that refers to the coroutine is invoked. In the latter case,
control in the coroutine is considered to be transferred out of the function (8.8). The storage for the coroutine
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state is released by calling a non-array deallocation function (6.7.5.5.3). If destroy is called for a coroutine
that is not suspended, the program has undefined behavior.

12 The deallocation function’s name is looked up by searching for it in the scope of the promise type. If
nothing is found, a search is performed in the global scope. If both a usual deallocation function with only a
pointer parameter and a usual deallocation function with both a pointer parameter and a size parameter
are found, then the selected deallocation function shall be the one with two parameters. Otherwise, the
selected deallocation function shall be the function with one parameter. If no usual deallocation function is
found, the program is ill-formed. The selected deallocation function shall be called with the address of the
block of storage to be reclaimed as its first argument. If a deallocation function with a parameter of type
std::size_t is used, the size of the block is passed as the corresponding argument.

13 When a coroutine is invoked, after initializing its parameters (7.6.1.3), a copy is created for each coroutine
parameter. For a parameter of type cv T, the copy is a variable of type cv T with automatic storage duration
that is direct-initialized from an xvalue of type T referring to the parameter.
[Note 2 : An original parameter object is never a const or volatile object (6.8.5). — end note ]

The initialization and destruction of each parameter copy occurs in the context of the called coroutine.
Initializations of parameter copies are sequenced before the call to the coroutine promise constructor and
indeterminately sequenced with respect to each other. The lifetime of parameter copies ends immediately
after the lifetime of the coroutine promise object ends.
[Note 3 : If a coroutine has a parameter passed by reference, resuming the coroutine after the lifetime of the entity
referred to by that parameter has ended is likely to result in undefined behavior. — end note ]

14 If the evaluation of the expression promise .unhandled_exception() exits via an exception, the coroutine
is considered suspended at the final suspend point and the exception propagates to the caller or resumer.

15 The expression co_await promise .final_suspend() shall not be potentially-throwing (14.5).

9.6 Structured binding declarations [dcl.struct.bind]
1 A structured binding declaration introduces the identifiers v0, v1, v2, . . . of the identifier-list as names of

structured bindings. Let cv denote the cv-qualifiers in the decl-specifier-seq and S consist of the storage-class-
specifiers of the decl-specifier-seq (if any). A cv that includes volatile is deprecated; see D.5. First, a
variable with a unique name e is introduced. If the assignment-expression in the initializer has array type cv1
A and no ref-qualifier is present, e is defined by

attribute-specifier-seqopt S cv A e ;

and each element is copy-initialized or direct-initialized from the corresponding element of the assignment-
expression as specified by the form of the initializer . Otherwise, e is defined as-if by

attribute-specifier-seqopt decl-specifier-seq ref-qualifieropt e initializer ;

where the declaration is never interpreted as a function declaration and the parts of the declaration other
than the declarator-id are taken from the corresponding structured binding declaration. The type of the
id-expression e is called E.
[Note 1 : E is never a reference type (7.2). — end note ]

2 If the initializer refers to one of the names introduced by the structured binding declaration, the program is
ill-formed.

3 If E is an array type with element type T, the number of elements in the identifier-list shall be equal to the
number of elements of E. Each vi is the name of an lvalue that refers to the element i of the array and whose
type is T; the referenced type is T.
[Note 2 : The top-level cv-qualifiers of T are cv. — end note ]
[Example 1 :

auto f() -> int(&)[2];
auto [ x, y ] = f(); // x and y refer to elements in a copy of the array return value
auto& [ xr, yr ] = f(); // xr and yr refer to elements in the array referred to by f’s return value

— end example ]
4 Otherwise, if the qualified-id std::tuple_size<E> names a complete class type with a member named value,

the expression std::tuple_size<E>::value shall be a well-formed integral constant expression and the
number of elements in the identifier-list shall be equal to the value of that expression. Let i be an index prvalue
of type std::size_t corresponding to vi. If a search for the name get in the scope of E (6.5.2) finds at least
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one declaration that is a function template whose first template parameter is a non-type parameter, the
initializer is e.get<i>(). Otherwise, the initializer is get<i>(e ), where get undergoes argument-dependent
lookup (6.5.4). In either case, get<i> is interpreted as a template-id .
[Note 3 : Ordinary unqualified lookup (6.5.3) is not performed. — end note ]

In either case, e is an lvalue if the type of the entity e is an lvalue reference and an xvalue otherwise. Given
the type Ti designated by std::tuple_element<i, E>::type and the type Ui designated by either Ti& or
Ti&&, where Ui is an lvalue reference if the initializer is an lvalue and an rvalue reference otherwise, variables
are introduced with unique names ri as follows:

S Ui ri = initializer ;

Each vi is the name of an lvalue of type Ti that refers to the object bound to ri; the referenced type is Ti.
5 Otherwise, all of E’s non-static data members shall be direct members of E or of the same base class of E,

well-formed when named as e.name in the context of the structured binding, E shall not have an anonymous
union member, and the number of elements in the identifier-list shall be equal to the number of non-static
data members of E. Designating the non-static data members of E as m0, m1, m2, . . . (in declaration order),
each vi is the name of an lvalue that refers to the member mi of e and whose type is that of e.mi (7.6.1.5);
the referenced type is the declared type of mi if that type is a reference type, or the type of e.mi otherwise.
The lvalue is a bit-field if that member is a bit-field.
[Example 2 :

struct S { mutable int x1 : 2; volatile double y1; };
S f();
const auto [ x, y ] = f();

The type of the id-expression x is “int”, the type of the id-expression y is “const volatile double”. — end example ]

9.7 Enumerations [enum]
9.7.1 Enumeration declarations [dcl.enum]

1 An enumeration is a distinct type (6.8.4) with named constants. Its name becomes an enum-name within its
scope.

enum-name :
identifier

enum-specifier :
enum-head { enumerator-listopt }
enum-head { enumerator-list , }

enum-head :
enum-key attribute-specifier-seqopt enum-head-nameopt enum-baseopt

enum-head-name :
nested-name-specifieropt identifier

opaque-enum-declaration :
enum-key attribute-specifier-seqopt enum-head-name enum-baseopt ;

enum-key :
enum
enum class
enum struct

enum-base :
: type-specifier-seq

enumerator-list :
enumerator-definition
enumerator-list , enumerator-definition

enumerator-definition :
enumerator
enumerator = constant-expression

enumerator :
identifier attribute-specifier-seqopt

The optional attribute-specifier-seq in the enum-head and the opaque-enum-declaration appertains to the enu-
meration; the attributes in that attribute-specifier-seq are thereafter considered attributes of the enumeration
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whenever it is named. A : following “enum nested-name-specifieropt identifier” within the decl-specifier-seq of
a member-declaration is parsed as part of an enum-base.
[Note 1 : This resolves a potential ambiguity between the declaration of an enumeration with an enum-base and the
declaration of an unnamed bit-field of enumeration type.
[Example 1 :

struct S {
enum E : int {};
enum E : int {}; // error: redeclaration of enumeration

};

— end example ]
— end note ]

The identifier in an enum-head-name is not looked up and is introduced by the enum-specifier or opaque-
enum-declaration. If the enum-head-name of an opaque-enum-declaration contains a nested-name-specifier , the
declaration shall be an explicit specialization (13.9.4).

2 The enumeration type declared with an enum-key of only enum is an unscoped enumeration, and its enumerators
are unscoped enumerators. The enum-keys enum class and enum struct are semantically equivalent; an
enumeration type declared with one of these is a scoped enumeration, and its enumerators are scoped
enumerators. The optional enum-head-name shall not be omitted in the declaration of a scoped enumeration.
The type-specifier-seq of an enum-base shall name an integral type; any cv-qualification is ignored. An
opaque-enum-declaration declaring an unscoped enumeration shall not omit the enum-base. The identifiers
in an enumerator-list are declared as constants, and can appear wherever constants are required. The same
identifier shall not appear as the name of multiple enumerators in an enumerator-list. An enumerator-definition
with = gives the associated enumerator the value indicated by the constant-expression. If the first enumerator
has no initializer , the value of the corresponding constant is zero. An enumerator-definition without an initializer
gives the enumerator the value obtained by increasing the value of the previous enumerator by one.
[Example 2 :

enum { a, b, c=0 };
enum { d, e, f=e+2 };

defines a, c, and d to be zero, b and e to be 1, and f to be 3. — end example ]

The optional attribute-specifier-seq in an enumerator appertains to that enumerator.
3 An opaque-enum-declaration is either a redeclaration of an enumeration in the current scope or a declaration

of a new enumeration.
[Note 2 : An enumeration declared by an opaque-enum-declaration has a fixed underlying type and is a complete type.
The list of enumerators can be provided in a later redeclaration with an enum-specifier . — end note ]

A scoped enumeration shall not be later redeclared as unscoped or with a different underlying type. An
unscoped enumeration shall not be later redeclared as scoped and each redeclaration shall include an enum-base
specifying the same underlying type as in the original declaration.

4 If an enum-head-name contains a nested-name-specifier , the enclosing enum-specifier or opaque-enum-declaration
D shall not inhabit a class scope and shall correspond to one or more declarations nominable in the class,
class template, or namespace to which the nested-name-specifier refers (6.4.1). All those declarations shall
have the same target scope; the target scope of D is that scope.

5 Each enumeration defines a type that is different from all other types. Each enumeration also has an underlying
type. The underlying type can be explicitly specified using an enum-base. For a scoped enumeration type, the
underlying type is int if it is not explicitly specified. In both of these cases, the underlying type is said to be
fixed. Following the closing brace of an enum-specifier , each enumerator has the type of its enumeration. If
the underlying type is fixed, the type of each enumerator prior to the closing brace is the underlying type and
the constant-expression in the enumerator-definition shall be a converted constant expression of the underlying
type (7.7). If the underlying type is not fixed, the type of each enumerator prior to the closing brace is
determined as follows:

—(5.1) If an initializer is specified for an enumerator, the constant-expression shall be an integral constant
expression (7.7). If the expression has unscoped enumeration type, the enumerator has the underlying
type of that enumeration type, otherwise it has the same type as the expression.

—(5.2) If no initializer is specified for the first enumerator, its type is an unspecified signed integral type.
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—(5.3) Otherwise the type of the enumerator is the same as that of the preceding enumerator unless the
incremented value is not representable in that type, in which case the type is an unspecified integral
type sufficient to contain the incremented value. If no such type exists, the program is ill-formed.

6 An enumeration whose underlying type is fixed is an incomplete type until immediately after its enum-base
(if any), at which point it becomes a complete type. An enumeration whose underlying type is not fixed is an
incomplete type until the closing } of its enum-specifier , at which point it becomes a complete type.

7 For an enumeration whose underlying type is not fixed, the underlying type is an integral type that can
represent all the enumerator values defined in the enumeration. If no integral type can represent all the
enumerator values, the enumeration is ill-formed. It is implementation-defined which integral type is used
as the underlying type except that the underlying type shall not be larger than int unless the value of an
enumerator cannot fit in an int or unsigned int. If the enumerator-list is empty, the underlying type is as
if the enumeration had a single enumerator with value 0.

8 For an enumeration whose underlying type is fixed, the values of the enumeration are the values of the
underlying type. Otherwise, the values of the enumeration are the values representable by a hypothetical
integer type with minimal width M such that all enumerators can be represented. The width of the smallest
bit-field large enough to hold all the values of the enumeration type is M . It is possible to define an
enumeration that has values not defined by any of its enumerators. If the enumerator-list is empty, the values
of the enumeration are as if the enumeration had a single enumerator with value 0.86

9 An enumeration has the same size, value representation, and alignment requirements (6.7.6) as its underlying
type. Furthermore, each value of an enumeration has the same representation as the corresponding value of
the underlying type.

10 Two enumeration types are layout-compatible enumerations if they have the same underlying type.
11 The value of an enumerator or an object of an unscoped enumeration type is converted to an integer by

integral promotion (7.3.7).
[Example 3 :

enum color { red, yellow, green=20, blue };
color col = red;
color* cp = &col;
if (*cp == blue) // ...

makes color a type describing various colors, and then declares col as an object of that type, and cp as a pointer to
an object of that type. The possible values of an object of type color are red, yellow, green, blue; these values can
be converted to the integral values 0, 1, 20, and 21. Since enumerations are distinct types, objects of type color can
be assigned only values of type color.

color c = 1; // error: type mismatch, no conversion from int to color
int i = yellow; // OK, yellow converted to integral value 1, integral promotion

Note that this implicit enum to int conversion is not provided for a scoped enumeration:
enum class Col { red, yellow, green };
int x = Col::red; // error: no Col to int conversion
Col y = Col::red;
if (y) { } // error: no Col to bool conversion

— end example ]
12 The name of each unscoped enumerator is also bound in the scope that immediately contains the enum-

specifier . An unnamed enumeration that does not have a typedef name for linkage purposes (9.2.4) and that
has a first enumerator is denoted, for linkage purposes (6.6), by its underlying type and its first enumerator;
such an enumeration is said to have an enumerator as a name for linkage purposes.
[Note 3 : Each unnamed enumeration with no enumerators is a distinct type. — end note ]
[Example 4 :

enum direction { left='l', right='r' };

void g() {
direction d; // OK
d = left; // OK

86) This set of values is used to define promotion and conversion semantics for the enumeration type. It does not preclude an
expression of enumeration type from having a value that falls outside this range.
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d = direction::right; // OK
}

enum class altitude { high='h', low='l' };

void h() {
altitude a; // OK
a = high; // error: high not in scope
a = altitude::low; // OK

}

— end example ]

9.7.2 The using enum declaration [enum.udecl]
using-enum-declaration :

using enum using-enum-declarator ;

using-enum-declarator :
nested-name-specifieropt identifier
nested-name-specifieropt simple-template-id

1 A using-enum-declarator names the set of declarations found by lookup (6.5.3, 6.5.5) for the using-enum-
declarator . The using-enum-declarator shall designate a non-dependent type with a reachable enum-specifier .

2 A using-enum-declaration is equivalent to a using-declaration for each enumerator.
3 [Note 1 : A using-enum-declaration in class scope makes the enumerators of the named enumeration available via

member lookup.
[Example 1 :

enum class fruit { orange, apple };
struct S {

using enum fruit; // OK, introduces orange and apple into S
};
void f() {

S s;
s.orange; // OK, names fruit::orange
S::orange; // OK, names fruit::orange

}

— end example ]
— end note ]

4 [Note 2 : Two using-enum-declarations that introduce two enumerators of the same name conflict.
[Example 2 :

enum class fruit { orange, apple };
enum class color { red, orange };
void f() {

using enum fruit; // OK
using enum color; // error: color::orange and fruit::orange conflict

}

— end example ]
— end note ]

9.8 Namespaces [basic.namespace]
9.8.1 General [basic.namespace.general]

1 A namespace is an optionally-named entity whose scope can contain declarations of any kind of entity. The
name of a namespace can be used to access entities that belong to that namespace; that is, the members of
the namespace. Unlike other entities, the definition of a namespace can be split over several parts of one or
more translation units and modules.

2 [Note 1 : A namespace-definition is exported if it contains any export-declarations (10.2). A namespace is never attached
to a named module and never has a name with module linkage. — end note ]
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[Example 1 :
export module M;
namespace N1 {} // N1 is not exported
export namespace N2 {} // N2 is exported
namespace N3 { export int n; } // N3 is exported

— end example ]
3 There is a global namespace with no declaration; see 6.4.6. The global namespace belongs to the global scope;

it is not an unnamed namespace (9.8.2.2).
[Note 2 : Lacking a declaration, it cannot be found by name lookup. — end note ]

9.8.2 Namespace definition [namespace.def]
9.8.2.1 General [namespace.def.general]

namespace-name :
identifier
namespace-alias

namespace-definition :
named-namespace-definition
unnamed-namespace-definition
nested-namespace-definition

named-namespace-definition :
inlineopt namespace attribute-specifier-seqopt identifier { namespace-body }

unnamed-namespace-definition :
inlineopt namespace attribute-specifier-seqopt { namespace-body }

nested-namespace-definition :
namespace enclosing-namespace-specifier :: inlineopt identifier { namespace-body }

enclosing-namespace-specifier :
identifier
enclosing-namespace-specifier :: inlineopt identifier

namespace-body :
declaration-seqopt

1 Every namespace-definition shall inhabit a namespace scope (6.4.6).
2 In a named-namespace-definition D, the identifier is the name of the namespace. The identifier is looked up

by searching for it in the scopes of the namespace A in which D appears and of every element of the inline
namespace set of A. If the lookup finds a namespace-definition for a namespace N , D extends N , and the
target scope of D is the scope to which N belongs. If the lookup finds nothing, the identifier is introduced as
a namespace-name into A.

3 Because a namespace-definition contains declarations in its namespace-body and a namespace-definition is itself
a declaration, it follows that namespace-definitions can be nested.
[Example 1 :

namespace Outer {
int i;
namespace Inner {

void f() { i++; } // Outer::i
int i;
void g() { i++; } // Inner::i

}
}

— end example ]
4 If the optional initial inline keyword appears in a namespace-definition for a particular namespace, that

namespace is declared to be an inline namespace. The inline keyword may be used on a namespace-definition
that extends a namespace only if it was previously used on the namespace-definition that initially declared
the namespace-name for that namespace.

5 The optional attribute-specifier-seq in a named-namespace-definition appertains to the namespace being defined
or extended.
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6 Members of an inline namespace can be used in most respects as though they were members of the innermost
enclosing namespace. Specifically, the inline namespace and its enclosing namespace are both added to the
set of associated namespaces used in argument-dependent lookup (6.5.4) whenever one of them is, and a
using-directive (9.8.4) that names the inline namespace is implicitly inserted into the enclosing namespace as
for an unnamed namespace (9.8.2.2). Furthermore, each member of the inline namespace can subsequently
be partially specialized (13.7.6), explicitly instantiated (13.9.3), or explicitly specialized (13.9.4) as though
it were a member of the enclosing namespace. Finally, looking up a name in the enclosing namespace via
explicit qualification (6.5.5.3) will include members of the inline namespace even if there are declarations of
that name in the enclosing namespace.

7 These properties are transitive: if a namespace N contains an inline namespace M, which in turn contains an
inline namespace O, then the members of O can be used as though they were members of M or N. The inline
namespace set of N is the transitive closure of all inline namespaces in N.

8 A nested-namespace-definition with an enclosing-namespace-specifier E, identifier I and namespace-body B is
equivalent to

namespace E { inlineopt namespace I { B } }

where the optional inline is present if and only if the identifier I is preceded by inline.
[Example 2 :

namespace A::inline B::C {
int i;

}

The above has the same effect as:
namespace A {

inline namespace B {
namespace C {

int i;
}

}
}

— end example ]

9.8.2.2 Unnamed namespaces [namespace.unnamed]
1 An unnamed-namespace-definition behaves as if it were replaced by

inlineopt namespace unique { /* empty body */ }
using namespace unique ;
namespace unique { namespace-body }

where inline appears if and only if it appears in the unnamed-namespace-definition and all occurrences of
unique in a translation unit are replaced by the same identifier, and this identifier differs from all other
identifiers in the translation unit. The optional attribute-specifier-seq in the unnamed-namespace-definition
appertains to unique .
[Example 1 :

namespace { int i; } // unique ::i
void f() { i++; } // unique ::i++

namespace A {
namespace {

int i; // A::unique ::i
int j; // A::unique ::j

}
void g() { i++; } // A::unique ::i++

}

using namespace A;
void h() {

i++; // error: unique ::i or A::unique ::i
A::i++; // A::unique ::i
j++; // A::unique ::j

}
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— end example ]

9.8.3 Namespace alias [namespace.alias]
1 A namespace-alias-definition declares an alternate name for a namespace according to the following grammar:

namespace-alias :
identifier

namespace-alias-definition :
namespace identifier = qualified-namespace-specifier ;

qualified-namespace-specifier :
nested-name-specifieropt namespace-name

2 The identifier in a namespace-alias-definition becomes a namespace-alias and denotes the namespace denoted
by the qualified-namespace-specifier .
[Note 1 : When looking up a namespace-name in a namespace-alias-definition, only namespace names are considered,
see 6.5.7. — end note ]

9.8.4 Using namespace directive [namespace.udir]
using-directive :

attribute-specifier-seqopt using namespace nested-name-specifieropt namespace-name ;

1 A using-directive shall not appear in class scope, but may appear in namespace scope or in block scope.
[Note 1 : When looking up a namespace-name in a using-directive, only namespace names are considered, see 6.5.7.

— end note ]

The optional attribute-specifier-seq appertains to the using-directive.
2 [Note 2 : A using-directive makes the names in the nominated namespace usable in the scope in which the using-directive

appears after the using-directive (6.5.3, 6.5.5.3). During unqualified name lookup, the names appear as if they were
declared in the nearest enclosing namespace which contains both the using-directive and the nominated namespace.

— end note ]
3 [Note 3 : A using-directive does not introduce any names. — end note ]

[Example 1 :
namespace A {

int i;
namespace B {

namespace C {
int i;

}
using namespace A::B::C;
void f1() {

i = 5; // OK, C::i visible in B and hides A::i
}

}
namespace D {

using namespace B;
using namespace C;
void f2() {

i = 5; // ambiguous, B::C::i or A::i?
}

}
void f3() {

i = 5; // uses A::i
}

}
void f4() {

i = 5; // error: neither i is visible
}

— end example ]
4 [Note 4 : A using-directive is transitive: if a scope contains a using-directive that nominates a namespace that itself

contains using-directives, the namespaces nominated by those using-directives are also eligible to be considered. — end
note ]
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[Example 2 :
namespace M {

int i;
}

namespace N {
int i;
using namespace M;

}

void f() {
using namespace N;
i = 7; // error: both M::i and N::i are visible

}

For another example,
namespace A {

int i;
}
namespace B {

int i;
int j;
namespace C {

namespace D {
using namespace A;
int j;
int k;
int a = i; // B::i hides A::i

}
using namespace D;
int k = 89; // no problem yet
int l = k; // ambiguous: C::k or D::k
int m = i; // B::i hides A::i
int n = j; // D::j hides B::j

}
}

— end example ]
5 [Note 5 : Declarations in a namespace that appear after a using-directive for that namespace can be found through

that using-directive after they appear. — end note ]
6 [Note 6 : If name lookup finds a declaration for a name in two different namespaces, and the declarations do not

declare the same entity and do not declare functions or function templates, the use of the name is ill-formed (6.5). In
particular, the name of a variable, function or enumerator does not hide the name of a class or enumeration declared
in a different namespace. For example,

namespace A {
class X { };
extern "C" int g();
extern "C++" int h();

}
namespace B {

void X(int);
extern "C" int g();
extern "C++" int h(int);

}
using namespace A;
using namespace B;

void f() {
X(1); // error: name X found in two namespaces
g(); // OK, name g refers to the same entity
h(); // OK, overload resolution selects A::h

}

— end note ]
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7 [Note 7 : The order in which namespaces are considered and the relationships among the namespaces implied by the
using-directives do not affect overload resolution. Neither is any function excluded because another has the same
signature, even if one is in a namespace reachable through using-directives in the namespace of the other.87 — end
note ]
[Example 3 :

namespace D {
int d1;
void f(char);

}
using namespace D;

int d1; // OK, no conflict with D::d1

namespace E {
int e;
void f(int);

}

namespace D { // namespace extension
int d2;
using namespace E;
void f(int);

}

void f() {
d1++; // error: ambiguous ::d1 or D::d1?
::d1++; // OK
D::d1++; // OK
d2++; // OK, D::d2
e++; // OK, E::e
f(1); // error: ambiguous: D::f(int) or E::f(int)?
f('a'); // OK, D::f(char)

}

— end example ]

9.9 The using declaration [namespace.udecl]
using-declaration :

using using-declarator-list ;

using-declarator-list :
using-declarator ...opt
using-declarator-list , using-declarator ...opt

using-declarator :
typenameopt nested-name-specifier unqualified-id

1 The component names of a using-declarator are those of its nested-name-specifier and unqualified-id . Each using-
declarator in a using-declaration88 names the set of declarations found by lookup (6.5.5) for the using-declarator ,
except that class and enumeration declarations that would be discarded are merely ignored when checking
for ambiguity (6.5), conversion function templates with a dependent return type are ignored, and certain
functions are hidden as described below. If the terminal name of the using-declarator is dependent (13.8.3.2),
the using-declarator is considered to name a constructor if and only if the nested-name-specifier has a terminal
name that is the same as the unqualified-id . If the lookup in any instantiation finds that a using-declarator
that is not considered to name a constructor does do so, or that a using-declarator that is considered to name
a constructor does not, the program is ill-formed.

2 If the using-declarator names a constructor, it declares that the class inherits the named set of constructor
declarations from the nominated base class.

87) During name lookup in a class hierarchy, some ambiguities can be resolved by considering whether one member hides the
other along some paths (6.5.2). There is no such disambiguation when considering the set of names found as a result of following
using-directives.

88) A using-declaration with more than one using-declarator is equivalent to a corresponding sequence of using-declarations with
one using-declarator each.
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[Note 1 : Otherwise, the unqualified-id in the using-declarator is bound to the using-declarator , which is replaced during
name lookup with the declarations it names (6.5). If such a declaration is of an enumeration, the names of its
enumerators are not bound. For the keyword typename, see 13.8. — end note ]

3 In a using-declaration used as a member-declaration, each using-declarator shall either name an enumerator or
have a nested-name-specifier naming a base class of the current class (7.5.2).
[Example 1 :

enum class button { up, down };
struct S {

using button::up;
button b = up; // OK

};

— end example ]

If a using-declarator names a constructor, its nested-name-specifier shall name a direct base class of the current
class. If the immediate (class) scope is associated with a class template, it shall derive from the specified
base class or have at least one dependent base class.
[Example 2 :

struct B {
void f(char);
enum E { e };
union { int x; };

};

struct C {
int f();

};

struct D : B {
using B::f; // OK, B is a base of D
using B::e; // OK, e is an enumerator of base B
using B::x; // OK, x is a union member of base B
using C::f; // error: C isn’t a base of D
void f(int) { f('c'); } // calls B::f(char)
void g(int) { g('c'); } // recursively calls D::g(int)

};
template <typename... bases>
struct X : bases... {

using bases::f...;
};
X<B, C> x; // OK, B::f and C::f named

— end example ]
4 [Note 2 : Since destructors do not have names, a using-declaration cannot refer to a destructor for a base class. — end

note ]

If a constructor or assignment operator brought from a base class into a derived class has the signature of a
copy/move constructor or assignment operator for the derived class (11.4.5.3, 11.4.6), the using-declaration
does not by itself suppress the implicit declaration of the derived class member; the member from the base
class is hidden or overridden by the implicitly-declared copy/move constructor or assignment operator of the
derived class, as described below.

5 A using-declaration shall not name a template-id .
[Example 3 :

struct A {
template <class T> void f(T);
template <class T> struct X { };

};
struct B : A {

using A::f<double>; // error
using A::X<int>; // error

};
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— end example ]
6 A using-declaration shall not name a namespace.
7 A using-declaration that names a class member other than an enumerator shall be a member-declaration.

[Example 4 :
struct X {

int i;
static int s;

};

void f() {
using X::i; // error: X::i is a class member and this is not a member declaration.
using X::s; // error: X::s is a class member and this is not a member declaration.

}

— end example ]
8 If a declaration is named by two using-declarators that inhabit the same class scope, the program is ill-formed.
9 [Note 3 : A using-declarator whose nested-name-specifier names a namespace does not name declarations added to the

namespace after it. Thus, additional overloads added after the using-declaration are ignored, but default function
arguments (9.3.4.7), default template arguments (13.2), and template specializations (13.7.6, 13.9.4) are considered.

— end note ]
[Example 5 :

namespace A {
void f(int);

}

using A::f; // f is a synonym for A::f; that is, for A::f(int).
namespace A {

void f(char);
}

void foo() {
f('a'); // calls f(int), even though f(char) exists.

}

void bar() {
using A::f; // f is a synonym for A::f; that is, for A::f(int) and A::f(char).
f('a'); // calls f(char)

}

— end example ]
10 If a declaration named by a using-declaration that inhabits the target scope of another declaration potentially

conflicts with it (6.4.1), and either is reachable from the other, the program is ill-formed. If two declarations
named by using-declarations that inhabit the same scope potentially conflict, either is reachable from the
other, and they do not both declare functions or function templates, the program is ill-formed.
[Note 4 : Overload resolution possibly cannot distinguish between conflicting function declarations. — end note ]
[Example 6 :

namespace A {
int x;
int f(int);
int g;
void h();

}

namespace B {
int i;
struct g { };
struct x { };
void f(int);
void f(double);
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void g(char); // OK, hides struct g
}

void func() {
int i;
using B::i; // error: conflicts
void f(char);
using B::f; // OK, each f is a function
using A::f; // OK, but interferes with B::f(int)
f(1); // error: ambiguous
static_cast<int(*)(int)>(f)(1); // OK, calls A::f
f(3.5); // calls B::f(double)
using B::g;
g('a'); // calls B::g(char)
struct g g1; // g1 has class type B::g
using A::g; // error: conflicts with B::g
void h();
using A::h; // error: conflicts
using B::x;
using A::x; // OK, hides struct B::x
x = 99; // assigns to A::x
struct x x1; // x1 has class type B::x

}

— end example ]
11 The set of declarations named by a using-declarator that inhabits a class C does not include member functions

and member function templates of a base class that correspond to (and thus would conflict with) a declaration
of a function or function template in C.
[Example 7 :

struct B {
virtual void f(int);
virtual void f(char);
void g(int);
void h(int);

};

struct D : B {
using B::f;
void f(int); // OK, D::f(int) overrides B::f(int);

using B::g;
void g(char); // OK

using B::h;
void h(int); // OK, D::h(int) hides B::h(int)

};

void k(D* p)
{

p->f(1); // calls D::f(int)
p->f('a'); // calls B::f(char)
p->g(1); // calls B::g(int)
p->g('a'); // calls D::g(char)

}

struct B1 {
B1(int);

};

struct B2 {
B2(int);

};
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struct D1 : B1, B2 {
using B1::B1;
using B2::B2;

};
D1 d1(0); // error: ambiguous

struct D2 : B1, B2 {
using B1::B1;
using B2::B2;
D2(int); // OK, D2::D2(int) hides B1::B1(int) and B2::B2(int)

};
D2 d2(0); // calls D2::D2(int)

— end example ]
12 [Note 5 : For the purpose of forming a set of candidates during overload resolution, the functions named by a

using-declaration in a derived class are treated as though they were direct members of the derived class. In particular,
the implicit object parameter is treated as if it were a reference to the derived class rather than to the base class (12.2.2).
This has no effect on the type of the function, and in all other respects the function remains part of the base class.

— end note ]
13 Constructors that are named by a using-declaration are treated as though they were constructors of the

derived class when looking up the constructors of the derived class (6.5.5.2) or forming a set of overload
candidates (12.2.2.4, 12.2.2.5, 12.2.2.8).
[Note 6 : If such a constructor is selected to perform the initialization of an object of class type, all subobjects other
than the base class from which the constructor originated are implicitly initialized (11.9.4). A constructor of a derived
class is sometimes preferred to a constructor of a base class if they would otherwise be ambiguous (12.2.4). — end
note ]

14 In a using-declarator that does not name a constructor, every declaration named shall be accessible. In a
using-declarator that names a constructor, no access check is performed.

15 [Note 7 : Because a using-declarator designates a base class member (and not a member subobject or a member
function of a base class subobject), a using-declarator cannot be used to resolve inherited member ambiguities.
[Example 8 :

struct A { int x(); };
struct B : A { };
struct C : A {

using A::x;
int x(int);

};

struct D : B, C {
using C::x;
int x(double);

};
int f(D* d) {

return d->x(); // error: overload resolution selects A::x, but A is an ambiguous base class
}

— end example ]
— end note ]

16 A using-declaration has the usual accessibility for a member-declaration. Base-class constructors considered
because of a using-declarator are accessible if they would be accessible when used to construct an object of
the base class; the accessibility of the using-declaration is ignored.
[Example 9 :

class A {
private:

void f(char);
public:

void f(int);
protected:

void g();
};
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class B : public A {
using A::f; // error: A::f(char) is inaccessible

public:
using A::g; // B::g is a public synonym for A::g

};

— end example ]

9.10 The asm declaration [dcl.asm]
1 An asm declaration has the form

asm-declaration :
attribute-specifier-seqopt asm ( string-literal ) ;

The asm declaration is conditionally-supported; its meaning is implementation-defined. The optional attribute-
specifier-seq in an asm-declaration appertains to the asm declaration.
[Note 1 : Typically it is used to pass information through the implementation to an assembler. — end note ]

9.11 Linkage specifications [dcl.link]
1 All functions and variables whose names have external linkage and all function types have a language linkage.

[Note 1 : Some of the properties associated with an entity with language linkage are specific to each implementation
and are not described here. For example, a particular language linkage might be associated with a particular form of
representing names of objects and functions with external linkage, or with a particular calling convention, etc. — end
note ]

The default language linkage of all function types, functions, and variables is C++ language linkage. Two
function types with different language linkages are distinct types even if they are otherwise identical.

2 Linkage (6.6) between C++ and non-C++ code fragments can be achieved using a linkage-specification:
linkage-specification :

extern string-literal { declaration-seqopt }
extern string-literal name-declaration

The string-literal indicates the required language linkage. This document specifies the semantics for the
string-literals "C" and "C++". Use of a string-literal other than "C" or "C++" is conditionally-supported, with
implementation-defined semantics.
[Note 2 : Therefore, a linkage-specification with a string-literal that is unknown to the implementation requires a
diagnostic. — end note ]

Recommended practice: The spelling of the string-literal should be taken from the document defining that
language. For example, Ada (not ADA) and Fortran or FORTRAN, depending on the vintage.

3 Every implementation shall provide for linkage to the C programming language, "C", and C++, "C++".
[Example 1 :

complex sqrt(complex); // C++ language linkage by default
extern "C" {

double sqrt(double); // C language linkage
}

— end example ]
4 A module-import-declaration appearing in a linkage specification with other than C++ language linkage is

conditionally-supported with implementation-defined semantics.
5 Linkage specifications nest. When linkage specifications nest, the innermost one determines the language

linkage.
[Note 3 : A linkage specification does not establish a scope. — end note ]

A linkage-specification shall inhabit a namespace scope. In a linkage-specification, the specified language
linkage applies to the function types of all function declarators and to all functions and variables whose
names have external linkage.
[Example 2 :

extern "C" // f1 and its function type have C language linkage;
void f1(void(*pf)(int)); // pf is a pointer to a C function
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extern "C" typedef void FUNC();
FUNC f2; // f2 has C++ language linkage and

// its type has C language linkage

extern "C" FUNC f3; // f3 and its type have C language linkage

void (*pf2)(FUNC*); // the variable pf2 has C++ language linkage; its type
// is “pointer to C++ function that takes one parameter of type
// pointer to C function”

extern "C" {
static void f4(); // the name of the function f4 has internal linkage,

// so f4 has no language linkage; its type has C language linkage
}

extern "C" void f5() {
extern void f4(); // OK, name linkage (internal) and function type linkage (C language linkage)

// obtained from previous declaration.
}

extern void f4(); // OK, name linkage (internal) and function type linkage (C language linkage)
// obtained from previous declaration.

void f6() {
extern void f4(); // OK, name linkage (internal) and function type linkage (C language linkage)

// obtained from previous declaration.
}

— end example ]

A C language linkage is ignored in determining the language linkage of class members, friend functions with
a trailing requires-clause, and the function type of non-static class member functions.
[Example 3 :

extern "C" typedef void FUNC_c();

class C {
void mf1(FUNC_c*); // the function mf1 and its type have C++ language linkage;

// the parameter has type “pointer to C function”

FUNC_c mf2; // the function mf2 and its type have C++ language linkage

static FUNC_c* q; // the data member q has C++ language linkage;
// its type is “pointer to C function”

};

extern "C" {
class X {

void mf(); // the function mf and its type have C++ language linkage
void mf2(void(*)()); // the function mf2 has C++ language linkage;

// the parameter has type “pointer to C function”
};

}

— end example ]
6 If two declarations of an entity give it different language linkages, the program is ill-formed; no diagnostic is

required if neither declaration is reachable from the other. A redeclaration of an entity without a linkage
specification inherits the language linkage of the entity and (if applicable) its type.

7 Two declarations declare the same entity if they (re)introduce the same name, one declares a function or
variable with C language linkage, and the other declares such an entity or declares a variable that belongs to
the global scope.
[Example 4 :

int x;
namespace A {

extern "C" int f();
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extern "C" int g() { return 1; }
extern "C" int h();
extern "C" int x(); // error: same name as global-space object x

}

namespace B {
extern "C" int f(); // A::f and B::f refer to the same function
extern "C" int g() { return 1; } // error: the function g with C language linkage has two definitions

}

int A::f() { return 98; } // definition for the function f with C language linkage
extern "C" int h() { return 97; } // definition for the function h with C language linkage

// A::h and ::h refer to the same function
— end example ]

8 A declaration directly contained in a linkage-specification is treated as if it contains the extern specifier (9.2.2)
for the purpose of determining the linkage of the declared name and whether it is a definition. Such a
declaration shall not specify a storage class.
[Example 5 :

extern "C" double f();
static double f(); // error
extern "C" int i; // declaration
extern "C" {

int i; // definition
}
extern "C" static void g(); // error

— end example ]
9 [Note 4 : Because the language linkage is part of a function type, when indirecting through a pointer to C function,

the function to which the resulting lvalue refers is considered a C function. — end note ]
10 Linkage from C++ to objects defined in other languages and to objects defined in C++ from other languages

is implementation-defined and language-dependent. Only where the object layout strategies of two language
implementations are similar enough can such linkage be achieved.

9.12 Attributes [dcl.attr]
9.12.1 Attribute syntax and semantics [dcl.attr.grammar]

1 Attributes specify additional information for various source constructs such as types, variables, names, blocks,
or translation units.

attribute-specifier-seq :
attribute-specifier-seqopt attribute-specifier

attribute-specifier :
[ [ attribute-using-prefixopt attribute-list ] ]
alignment-specifier

alignment-specifier :
alignas ( type-id ...opt )
alignas ( constant-expression ...opt )

attribute-using-prefix :
using attribute-namespace :

attribute-list :
attributeopt
attribute-list , attributeopt
attribute ...
attribute-list , attribute ...

attribute :
attribute-token attribute-argument-clauseopt

attribute-token :
identifier
attribute-scoped-token
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attribute-scoped-token :
attribute-namespace :: identifier

attribute-namespace :
identifier

attribute-argument-clause :
( balanced-token-seqopt )

balanced-token-seq :
balanced-token
balanced-token-seq balanced-token

balanced-token :
( balanced-token-seqopt )
[ balanced-token-seqopt ]
{ balanced-token-seqopt }
any token other than a parenthesis, a bracket, or a brace

2 If an attribute-specifier contains an attribute-using-prefix , the attribute-list following that attribute-using-prefix
shall not contain an attribute-scoped-token and every attribute-token in that attribute-list is treated as if its
identifier were prefixed with N::, where N is the attribute-namespace specified in the attribute-using-prefix .
[Note 1 : This rule imposes no constraints on how an attribute-using-prefix affects the tokens in an attribute-argument-
clause. — end note ]
[Example 1 :

[[using CC: opt(1), debug]] // same as [[CC::opt(1), CC::debug]]
void f() {}

[[using CC: opt(1)]] [[CC::debug]] // same as [[CC::opt(1)]] [[CC::debug]]
void g() {}

[[using CC: CC::opt(1)]] // error: cannot combine using and scoped attribute token
void h() {}

— end example ]
3 [Note 2 : For each individual attribute, the form of the balanced-token-seq will be specified. — end note ]
4 In an attribute-list, an ellipsis may appear only if that attribute’s specification permits it. An attribute followed

by an ellipsis is a pack expansion (13.7.4). An attribute-specifier that contains no attributes has no effect.
The order in which the attribute-tokens appear in an attribute-list is not significant. If a keyword (5.11)
or an alternative token (5.5) that satisfies the syntactic requirements of an identifier (5.10) is contained
in an attribute-token, it is considered an identifier. No name lookup (6.5) is performed on any of the
identifiers contained in an attribute-token. The attribute-token determines additional requirements on the
attribute-argument-clause (if any).

5 Each attribute-specifier-seq is said to appertain to some entity or statement, identified by the syntactic
context where it appears (Clause 8, Clause 9, 9.3). If an attribute-specifier-seq that appertains to some
entity or statement contains an attribute or alignment-specifier that is not allowed to apply to that entity or
statement, the program is ill-formed. If an attribute-specifier-seq appertains to a friend declaration (11.8.4),
that declaration shall be a definition.
[Note 3 : An attribute-specifier-seq cannot appeartain to an explicit instantiation (13.9.3). — end note ]

6 For an attribute-token (including an attribute-scoped-token) not specified in this document, the behavior is
implementation-defined; any such attribute-token that is not recognized by the implementation is ignored.
[Note 4 : A program is ill-formed if it contains an attribute specified in 9.12 that violates the rules specifying to which
entity or statement the attribute can apply or the syntax rules for the attribute’s attribute-argument-clause, if any.

— end note ]
[Note 5 : The attributes specified in 9.12 have optional semantics: given a well-formed program, removing all instances
of any one of those attributes results in a program whose set of possible executions (4.1.2) for a given input is a subset
of those of the original program for the same input, absent implementation-defined guarantees with respect to that
attribute. — end note ]

An attribute-token is reserved for future standardization if
—(6.1) it is not an attribute-scoped-token and is not specified in this document, or
—(6.2) it is an attribute-scoped-token and its attribute-namespace is std followed by zero or more digits.

Each implementation should choose a distinctive name for the attribute-namespace in an attribute-scoped-token.
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7 Two consecutive left square bracket tokens shall appear only when introducing an attribute-specifier or within
the balanced-token-seq of an attribute-argument-clause.
[Note 6 : If two consecutive left square brackets appear where an attribute-specifier is not allowed, the program is
ill-formed even if the brackets match an alternative grammar production. — end note ]
[Example 2 :

int p[10];
void f() {

int x = 42, y[5];
int(p[[x] { return x; }()]); // error: invalid attribute on a nested declarator-id and

// not a function-style cast of an element of p.
y[[] { return 2; }()] = 2; // error even though attributes are not allowed in this context.
int i [[vendor::attr([[]])]]; // well-formed implementation-defined attribute.

}

— end example ]

9.12.2 Alignment specifier [dcl.align]
1 An alignment-specifier may be applied to a variable or to a class data member, but it shall not be applied to a

bit-field, a function parameter, or an exception-declaration (14.4). An alignment-specifier may also be applied
to the declaration of a class (in an elaborated-type-specifier (9.2.9.4) or class-head (Clause 11), respectively).
An alignment-specifier with an ellipsis is a pack expansion (13.7.4).

2 When the alignment-specifier is of the form alignas( constant-expression ):
—(2.1) the constant-expression shall be an integral constant expression
—(2.2) if the constant expression does not evaluate to an alignment value (6.7.6), or evaluates to an extended

alignment and the implementation does not support that alignment in the context of the declaration,
the program is ill-formed.

3 An alignment-specifier of the form alignas( type-id ) has the same effect as alignas(alignof( type-
id )) (7.6.2.6).

4 The alignment requirement of an entity is the strictest nonzero alignment specified by its alignment-specifiers,
if any; otherwise, the alignment-specifiers have no effect.

5 The combined effect of all alignment-specifiers in a declaration shall not specify an alignment that is less strict
than the alignment that would be required for the entity being declared if all alignment-specifiers appertaining
to that entity were omitted.
[Example 1 :

struct alignas(8) S {};
struct alignas(1) U {

S s;
}; // error: U specifies an alignment that is less strict than if the alignas(1) were omitted.

— end example ]
6 If the defining declaration of an entity has an alignment-specifier , any non-defining declaration of that entity

shall either specify equivalent alignment or have no alignment-specifier . Conversely, if any declaration of
an entity has an alignment-specifier , every defining declaration of that entity shall specify an equivalent
alignment. No diagnostic is required if declarations of an entity have different alignment-specifiers in different
translation units.
[Example 2 :

// Translation unit #1:
struct S { int x; } s, *p = &s;

// Translation unit #2:
struct alignas(16) S; // ill-formed, no diagnostic required: definition of S lacks alignment
extern S* p;

— end example ]
7 [Example 3 : An aligned buffer with an alignment requirement of A and holding N elements of type T can be declared

as:
alignas(T) alignas(A) T buffer[N];
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Specifying alignas(T) ensures that the final requested alignment will not be weaker than alignof(T), and therefore
the program will not be ill-formed. — end example ]

8 [Example 4 :
alignas(double) void f(); // error: alignment applied to function
alignas(double) unsigned char c[sizeof(double)]; // array of characters, suitably aligned for a double
extern unsigned char c[sizeof(double)]; // no alignas necessary
alignas(float)

extern unsigned char c[sizeof(double)]; // error: different alignment in declaration
— end example ]

9.12.3 Assumption attribute [dcl.attr.assume]
The attribute-token assume may be applied to a null statement; such a statement is an assumption. An
attribute-argument-clause shall be present and shall have the form:

( conditional-expression )

The expression is contextually converted to bool (7.3.1). The expression is not evaluated. If the converted
expression would evaluate to true at the point where the assumption appears, the assumption has no effect.
Otherwise, the behavior is undefined.
[Note 1 : The expression is potentially evaluated (6.3). The use of assumptions is intended to allow implementations
to analyze the form of the expression and deduce information used to optimize the program. Implementations are not
required to deduce any information from any particular assumption. — end note ]
[Example 1 :

int divide_by_32(int x) {
[[assume(x >= 0)]];
return x/32; // The instructions produced for the division

// may omit handling of negative values.
}
int f(int y) {

[[assume(++y == 43)]]; // y is not incremented
return y; // statement may be replaced with return 42;

}

— end example ]

9.12.4 Carries dependency attribute [dcl.attr.depend]
1 The attribute-token carries_dependency specifies dependency propagation into and out of functions. No

attribute-argument-clause shall be present. The attribute may be applied to a parameter of a function or
lambda, in which case it specifies that the initialization of the parameter carries a dependency to (6.9.2)
each lvalue-to-rvalue conversion (7.3.2) of that object. The attribute may also be applied to a function or a
lambda call operator, in which case it specifies that the return value, if any, carries a dependency to the
evaluation of the function call expression.

2 The first declaration of a function shall specify the carries_dependency attribute for its declarator-id if any
declaration of the function specifies the carries_dependency attribute. Furthermore, the first declaration of
a function shall specify the carries_dependency attribute for a parameter if any declaration of that function
specifies the carries_dependency attribute for that parameter. If a function or one of its parameters is
declared with the carries_dependency attribute in its first declaration in one translation unit and the
same function or one of its parameters is declared without the carries_dependency attribute in its first
declaration in another translation unit, the program is ill-formed, no diagnostic required.

3 [Note 1 : The carries_dependency attribute does not change the meaning of the program, but might result in
generation of more efficient code. — end note ]

4 [Example 1 :
/∗ Translation unit A. ∗/

struct foo { int* a; int* b; };
std::atomic<struct foo *> foo_head[10];
int foo_array[10][10];
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[[carries_dependency]] struct foo* f(int i) {
return foo_head[i].load(memory_order::consume);

}

int g(int* x, int* y [[carries_dependency]]) {
return kill_dependency(foo_array[*x][*y]);

}

/∗ Translation unit B. ∗/

[[carries_dependency]] struct foo* f(int i);
int g(int* x, int* y [[carries_dependency]]);

int c = 3;

void h(int i) {
struct foo* p;

p = f(i);
do_something_with(g(&c, p->a));
do_something_with(g(p->a, &c));

}

The carries_dependency attribute on function f means that the return value carries a dependency out of f, so that
the implementation need not constrain ordering upon return from f. Implementations of f and its caller may choose
to preserve dependencies instead of emitting hardware memory ordering instructions (a.k.a. fences). Function g’s
second parameter has a carries_dependency attribute, but its first parameter does not. Therefore, function h’s first
call to g carries a dependency into g, but its second call does not. The implementation might need to insert a fence
prior to the second call to g. — end example ]

9.12.5 Deprecated attribute [dcl.attr.deprecated]
1 The attribute-token deprecated can be used to mark names and entities whose use is still allowed, but is

discouraged for some reason.
[Note 1 : In particular, deprecated is appropriate for names and entities that are deemed obsolescent or unsafe.

— end note ]

An attribute-argument-clause may be present and, if present, it shall have the form:
( string-literal )

[Note 2 : The string-literal in the attribute-argument-clause can be used to explain the rationale for deprecation and/or
to suggest a replacing entity. — end note ]

2 The attribute may be applied to the declaration of a class, a typedef-name, a variable, a non-static data
member, a function, a namespace, an enumeration, an enumerator, a concept, or a template specialization.

3 An entity declared without the deprecated attribute can later be redeclared with the attribute and vice-versa.
[Note 3 : Thus, an entity initially declared without the attribute can be marked as deprecated by a subsequent
redeclaration. However, after an entity is marked as deprecated, later redeclarations do not un-deprecate the entity.

— end note ]

Redeclarations using different forms of the attribute (with or without the attribute-argument-clause or with
different attribute-argument-clauses) are allowed.

4 Recommended practice: Implementations should use the deprecated attribute to produce a diagnostic message
in case the program refers to a name or entity other than to declare it, after a declaration that specifies the
attribute. The diagnostic message should include the text provided within the attribute-argument-clause of
any deprecated attribute applied to the name or entity.

9.12.6 Fallthrough attribute [dcl.attr.fallthrough]
1 The attribute-token fallthrough may be applied to a null statement (8.3); such a statement is a fallthrough

statement. No attribute-argument-clause shall be present. A fallthrough statement may only appear within an
enclosing switch statement (8.5.3). The next statement that would be executed after a fallthrough statement
shall be a labeled statement whose label is a case label or default label for the same switch statement and, if
the fallthrough statement is contained in an iteration statement, the next statement shall be part of the same

§ 9.12.6 251



© ISO/IEC N4950

execution of the substatement of the innermost enclosing iteration statement. The program is ill-formed if
there is no such statement.

2 Recommended practice: The use of a fallthrough statement should suppress a warning that an implementation
might otherwise issue for a case or default label that is reachable from another case or default label along
some path of execution. Implementations should issue a warning if a fallthrough statement is not dynamically
reachable.

3 [Example 1 :
void f(int n) {

void g(), h(), i();
switch (n) {
case 1:
case 2:

g();
[[fallthrough]];

case 3: // warning on fallthrough discouraged
do {

[[fallthrough]]; // error: next statement is not part of the same substatement execution
} while (false);

case 6:
do {

[[fallthrough]]; // error: next statement is not part of the same substatement execution
} while (n--);

case 7:
while (false) {

[[fallthrough]]; // error: next statement is not part of the same substatement execution
}

case 5:
h();

case 4: // implementation may warn on fallthrough
i();
[[fallthrough]]; // error

}
}

— end example ]

9.12.7 Likelihood attributes [dcl.attr.likelihood]
1 The attribute-tokens likely and unlikely may be applied to labels or statements. No attribute-argument-

clause shall be present. The attribute-token likely shall not appear in an attribute-specifier-seq that contains
the attribute-token unlikely.

2 Recommended practice: The use of the likely attribute is intended to allow implementations to optimize
for the case where paths of execution including it are arbitrarily more likely than any alternative path of
execution that does not include such an attribute on a statement or label. The use of the unlikely attribute
is intended to allow implementations to optimize for the case where paths of execution including it are
arbitrarily more unlikely than any alternative path of execution that does not include such an attribute on a
statement or label. A path of execution includes a label if and only if it contains a jump to that label.
[Note 1 : Excessive usage of either of these attributes is liable to result in performance degradation. — end note ]

3 [Example 1 :
void g(int);
int f(int n) {

if (n > 5) [[unlikely]] { // n > 5 is considered to be arbitrarily unlikely
g(0);
return n * 2 + 1;

}

switch (n) {
case 1:

g(1);
[[fallthrough]];
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[[likely]] case 2: // n == 2 is considered to be arbitrarily more
g(2); // likely than any other value of n
break;

}
return 3;

}

— end example ]

9.12.8 Maybe unused attribute [dcl.attr.unused]
1 The attribute-token maybe_unused indicates that a name or entity is possibly intentionally unused. No

attribute-argument-clause shall be present.
2 The attribute may be applied to the declaration of a class, a typedef-name, a variable (including a structured

binding declaration), a non-static data member, a function, an enumeration, or an enumerator.
3 A name or entity declared without the maybe_unused attribute can later be redeclared with the attribute

and vice versa. An entity is considered marked after the first declaration that marks it.
4 Recommended practice: For an entity marked maybe_unused, implementations should not emit a warning

that the entity or its structured bindings (if any) are used or unused. For a structured binding declaration not
marked maybe_unused, implementations should not emit such a warning unless all of its structured bindings
are unused.

5 [Example 1 :
[[maybe_unused]] void f([[maybe_unused]] bool thing1,

[[maybe_unused]] bool thing2) {
[[maybe_unused]] bool b = thing1 && thing2;
assert(b);

}

Implementations should not warn that b is unused, whether or not NDEBUG is defined. — end example ]

9.12.9 Nodiscard attribute [dcl.attr.nodiscard]
1 The attribute-token nodiscard may be applied to a function or a lambda call operator or to the declaration

of a class or enumeration. An attribute-argument-clause may be present and, if present, shall have the form:
( string-literal )

2 A name or entity declared without the nodiscard attribute can later be redeclared with the attribute and
vice-versa.
[Note 1 : Thus, an entity initially declared without the attribute can be marked as nodiscard by a subsequent
redeclaration. However, after an entity is marked as nodiscard, later redeclarations do not remove the nodiscard
from the entity. — end note ]

Redeclarations using different forms of the attribute (with or without the attribute-argument-clause or with
different attribute-argument-clauses) are allowed.

3 A nodiscard type is a (possibly cv-qualified) class or enumeration type marked nodiscard in a reachable
declaration. A nodiscard call is either

—(3.1) a function call expression (7.6.1.3) that calls a function declared nodiscard in a reachable declaration
or whose return type is a nodiscard type, or

—(3.2) an explicit type conversion (7.6.1.4, 7.6.1.9, 7.6.3) that constructs an object through a constructor
declared nodiscard in a reachable declaration, or that initializes an object of a nodiscard type.

4 Recommended practice: Appearance of a nodiscard call as a potentially-evaluated discarded-value expression
(7.2) is discouraged unless explicitly cast to void. Implementations should issue a warning in such cases.
[Note 2 : This is typically because discarding the return value of a nodiscard call has surprising consequences. — end
note ]

The string-literal in a nodiscard attribute-argument-clause should be used in the message of the warning as
the rationale for why the result should not be discarded.

5 [Example 1 :
struct [[nodiscard]] my_scopeguard { /* ... */ };
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struct my_unique {
my_unique() = default; // does not acquire resource
[[nodiscard]] my_unique(int fd) { /* ... */ } // acquires resource
~my_unique() noexcept { /* ... */ } // releases resource, if any
/* ... */

};
struct [[nodiscard]] error_info { /* ... */ };
error_info enable_missile_safety_mode();
void launch_missiles();
void test_missiles() {

my_scopeguard(); // warning encouraged
(void)my_scopeguard(), // warning not encouraged, cast to void

launch_missiles(); // comma operator, statement continues
my_unique(42); // warning encouraged
my_unique(); // warning not encouraged
enable_missile_safety_mode(); // warning encouraged
launch_missiles();

}
error_info &foo();
void f() { foo(); } // warning not encouraged: not a nodiscard call, because neither

// the (reference) return type nor the function is declared nodiscard
— end example ]

9.12.10 Noreturn attribute [dcl.attr.noreturn]
1 The attribute-token noreturn specifies that a function does not return. No attribute-argument-clause shall

be present. The attribute may be applied to a function or a lambda call operator. The first declaration of
a function shall specify the noreturn attribute if any declaration of that function specifies the noreturn
attribute. If a function is declared with the noreturn attribute in one translation unit and the same function
is declared without the noreturn attribute in another translation unit, the program is ill-formed, no diagnostic
required.

2 If a function f is called where f was previously declared with the noreturn attribute and f eventually returns,
the behavior is undefined.
[Note 1 : The function may terminate by throwing an exception. — end note ]

3 Recommended practice: Implementations should issue a warning if a function marked [[noreturn]] might
return.

4 [Example 1 :
[[ noreturn ]] void f() {

throw "error"; // OK
}

[[ noreturn ]] void q(int i) { // behavior is undefined if called with an argument <= 0
if (i > 0)

throw "positive";
}

— end example ]

9.12.11 No unique address attribute [dcl.attr.nouniqueaddr]
1 The attribute-token no_unique_address specifies that a non-static data member is a potentially-overlapping

subobject (6.7.2). No attribute-argument-clause shall be present. The attribute may appertain to a non-static
data member other than a bit-field.

2 [Note 1 : The non-static data member can share the address of another non-static data member or that of a base class,
and any padding that would normally be inserted at the end of the object can be reused as storage for other members.

— end note ]
[Example 1 :

template<typename Key, typename Value,
typename Hash, typename Pred, typename Allocator>

class hash_map {
[[no_unique_address]] Hash hasher;
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[[no_unique_address]] Pred pred;
[[no_unique_address]] Allocator alloc;
Bucket *buckets;
// ...

public:
// ...

};

Here, hasher, pred, and alloc could have the same address as buckets if their respective types are all empty. — end
example ]

§ 9.12.11 255



© ISO/IEC N4950

10 Modules [module]
10.1 Module units and purviews [module.unit]

module-declaration :
export-keywordopt module-keyword module-name module-partitionopt attribute-specifier-seqopt ;

module-name :
module-name-qualifieropt identifier

module-partition :
: module-name-qualifieropt identifier

module-name-qualifier :
identifier .
module-name-qualifier identifier .

1 A module unit is a translation unit that contains a module-declaration. A named module is the collection of
module units with the same module-name. The identifiers module and import shall not appear as identifiers
in a module-name or module-partition. All module-names either beginning with an identifier consisting of
std followed by zero or more digits or containing a reserved identifier (5.10) are reserved and shall not be
specified in a module-declaration; no diagnostic is required. If any identifier in a reserved module-name is a
reserved identifier, the module name is reserved for use by C++ implementations; otherwise it is reserved for
future standardization. The optional attribute-specifier-seq appertains to the module-declaration.

2 A module interface unit is a module unit whose module-declaration starts with export-keyword ; any other
module unit is a module implementation unit. A named module shall contain exactly one module interface
unit with no module-partition, known as the primary module interface unit of the module; no diagnostic is
required.

3 A module partition is a module unit whose module-declaration contains a module-partition. A named module
shall not contain multiple module partitions with the same module-partition. All module partitions of a
module that are module interface units shall be directly or indirectly exported by the primary module
interface unit (10.3). No diagnostic is required for a violation of these rules.
[Note 1 : Module partitions can be imported only by other module units in the same module. The division of a module
into module units is not visible outside the module. — end note ]

4 [Example 1 :

Translation unit #1:
export module A;
export import :Foo;
export int baz();

Translation unit #2:
export module A:Foo;
import :Internals;
export int foo() { return 2 * (bar() + 1); }

Translation unit #3:
module A:Internals;
int bar();

Translation unit #4:
module A;
import :Internals;
int bar() { return baz() - 10; }
int baz() { return 30; }

Module A contains four translation units:
—(4.1) a primary module interface unit,
—(4.2) a module partition A:Foo, which is a module interface unit forming part of the interface of module A,
—(4.3) a module partition A:Internals, which does not contribute to the external interface of module A, and
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—(4.4) a module implementation unit providing a definition of bar and baz, which cannot be imported because it does
not have a partition name.

— end example ]
5 A module unit purview is the sequence of tokens starting at the module-declaration and extending to the end

of the translation unit. The purview of a named module M is the set of module unit purviews of M’s module
units.

6 The global module is the collection of all global-module-fragments and all translation units that are not module
units. Declarations appearing in such a context are said to be in the purview of the global module.
[Note 2 : The global module has no name, no module interface unit, and is not introduced by any module-declaration.

— end note ]
7 A module is either a named module or the global module. A declaration is attached to a module as follows:

—(7.1) If the declaration is a non-dependent friend declaration that nominates a function with a declarator-id
that is a qualified-id or template-id or that nominates a class other than with an elaborated-type-specifier
with neither a nested-name-specifier nor a simple-template-id , it is attached to the module to which the
friend is attached (6.6).

—(7.2) Otherwise, if the declaration
—(7.2.1) is a namespace-definition with external linkage or
—(7.2.2) appears within a linkage-specification (9.11)

it is attached to the global module.
—(7.3) Otherwise, the declaration is attached to the module in whose purview it appears.

8 A module-declaration that contains neither an export-keyword nor a module-partition implicitly imports the
primary module interface unit of the module as if by a module-import-declaration.
[Example 2 :

Translation unit #1:
module B:Y; // does not implicitly import B
int y();

Translation unit #2:
export module B;
import :Y; // OK, does not create interface dependency cycle
int n = y();

Translation unit #3:
module B:X1; // does not implicitly import B
int &a = n; // error: n not visible here

Translation unit #4:
module B:X2; // does not implicitly import B
import B;
int &b = n; // OK

Translation unit #5:
module B; // implicitly imports B
int &c = n; // OK

— end example ]

10.2 Export declaration [module.interface]
export-declaration :

export name-declaration
export { declaration-seqopt }
export-keyword module-import-declaration

1 An export-declaration shall inhabit a namespace scope and appear in the purview of a module interface unit.
An export-declaration shall not appear directly or indirectly within an unnamed namespace or a private-
module-fragment. An export-declaration has the declarative effects of its name-declaration, declaration-seq (if
any), or module-import-declaration. The name-declaration of an export-declaration shall not declare a partial
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specialization (13.7.1). The declaration-seq of an export-declaration shall not contain an export-declaration or
module-import-declaration.
[Note 1 : An export-declaration does not establish a scope. — end note ]

2 A declaration is exported if it is declared within an export-declaration and inhabits a namespace scope or it is
—(2.1) a namespace-definition that contains an exported declaration, or
—(2.2) a declaration within a header unit (10.3) that introduces at least one name.

3 If an exported declaration is not within a header unit, it shall not declare a name with internal linkage.
4 [Example 1 :

Source file "a.h":
export int x;

Translation unit #1:
module;
#include "a.h" // error: declaration of x is not in the

// purview of a module interface unit
export module M;
export namespace {} // error: namespace has internal linkage
namespace {

export int a2; // error: export of name with internal linkage
}
export static int b; // error: b explicitly declared static
export int f(); // OK
export namespace N { } // OK
export using namespace N; // OK

— end example ]
5 If an exported declaration is a using-declaration (9.9) and is not within a header unit, all entities to which

all of the using-declarators ultimately refer (if any) shall have been introduced with a name having external
linkage.
[Example 2 :

Source file "b.h":
int f();

Importable header "c.h":
int g();

Translation unit #1:
export module X;
export int h();

Translation unit #2:
module;
#include "b.h"
export module M;
import "c.h";
import X;
export using ::f, ::g, ::h; // OK
struct S;
export using ::S; // error: S has module linkage
namespace N {

export int h();
static int h(int); // #1

}
export using N::h; // error: #1 has internal linkage

— end example ]
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[Note 2 : These constraints do not apply to type names introduced by typedef declarations and alias-declarations.
[Example 3 :

export module M;
struct S;
export using T = S; // OK, exports name T denoting type S

— end example ]
— end note ]

6 A redeclaration of an entity X is implicitly exported if X was introduced by an exported declaration; otherwise
it shall not be exported.
[Example 4 :

export module M;
struct S { int n; };
typedef S S;
export typedef S S; // OK, does not redeclare an entity
export struct S; // error: exported declaration follows non-exported declaration

— end example ]
7 [Note 3 : Names introduced by exported declarations have either external linkage or no linkage; see 6.6. Namespace-

scope declarations exported by a module can be found by name lookup in any translation unit importing that
module (6.5). Class and enumeration member names can be found by name lookup in any context in which a definition
of the type is reachable. — end note ]
[Example 5 :

Interface unit of M:
export module M;
export struct X {

static void f();
struct Y { };

};

namespace {
struct S { };

}
export void f(S); // OK
struct T { };
export T id(T); // OK

export struct A; // A exported as incomplete

export auto rootFinder(double a) {
return [=](double x) { return (x + a/x)/2; };

}

export const int n = 5; // OK, n has external linkage

Implementation unit of M:
module M;
struct A {

int value;
};

Main program:
import M;
int main() {

X::f(); // OK, X is exported and definition of X is reachable
X::Y y; // OK, X::Y is exported as a complete type
auto f = rootFinder(2); // OK
return A{45}.value; // error: A is incomplete

}

— end example ]

§ 10.2 259



© ISO/IEC N4950

8 [Note 4 : Declarations in an exported namespace-definition or in an exported linkage-specification (9.11) are exported
and subject to the rules of exported declarations.
[Example 6 :

export module M;
int g;
export namespace N {

int x; // OK
using ::g; // error: ::g has module linkage

}

— end example ]
— end note ]

10.3 Import declaration [module.import]
module-import-declaration :

import-keyword module-name attribute-specifier-seqopt ;
import-keyword module-partition attribute-specifier-seqopt ;
import-keyword header-name attribute-specifier-seqopt ;

1 A module-import-declaration shall inhabit the global namespace scope. In a module unit, all module-
import-declarations and export-declarations exporting module-import-declarations shall appear before all other
declarations in the declaration-seq of the translation-unit and of the private-module-fragment (if any). The
optional attribute-specifier-seq appertains to the module-import-declaration.

2 A module-import-declaration imports a set of translation units determined as described below.
[Note 1 : Namespace-scope declarations exported by the imported translation units can be found by name lookup (6.5)
in the importing translation unit and declarations within the imported translation units become reachable (10.7) in
the importing translation unit after the import declaration. — end note ]

3 A module-import-declaration that specifies a module-name M imports all module interface units of M.
4 A module-import-declaration that specifies a module-partition shall only appear after the module-declaration in

a module unit of some module M. Such a declaration imports the so-named module partition of M.
5 A module-import-declaration that specifies a header-name H imports a synthesized header unit, which is a

translation unit formed by applying phases 1 to 7 of translation (5.2) to the source file or header nominated
by H, which shall not contain a module-declaration.
[Note 2 : All declarations within a header unit are implicitly exported (10.2), and are attached to the global
module (10.1). — end note ]

An importable header is a member of an implementation-defined set of headers that includes all importable C++

library headers (16.4.2.3). H shall identify an importable header. Given two such module-import-declarations:
—(5.1) if their header-names identify different headers or source files (15.3), they import distinct header units;
—(5.2) otherwise, if they appear in the same translation unit, they import the same header unit;
—(5.3) otherwise, it is unspecified whether they import the same header unit.

[Note 3 : It is therefore possible that multiple copies exist of entities declared with internal linkage in an
importable header. — end note ]

[Note 4 : A module-import-declaration nominating a header-name is also recognized by the preprocessor, and results in
macros defined at the end of phase 4 of translation of the header unit being made visible as described in 15.5. Any
other module-import-declaration does not make macros visible. — end note ]

6 A declaration of a name with internal linkage is permitted within a header unit despite all declarations being
implicitly exported (10.2).
[Note 5 : A definition that appears in multiple translation units cannot in general refer to such names (6.3). — end
note ]

A header unit shall not contain a definition of a non-inline function or variable whose name has external
linkage.

7 When a module-import-declaration imports a translation unit T , it also imports all translation units imported
by exported module-import-declarations in T ; such translation units are said to be exported by T . Additionally,
when a module-import-declaration in a module unit of some module M imports another module unit U of M ,
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it also imports all translation units imported by non-exported module-import-declarations in the module unit
purview of U .89 These rules can in turn lead to the importation of yet more translation units.
[Note 6 : Such indirect importation does not make macros available, because a translation unit is a sequence of tokens
in translation phase 7 (5.2). Macros can be made available by directly importing header units as described in 15.5.

— end note ]
8 A module implementation unit shall not be exported.

[Example 1 :

Translation unit #1:
module M:Part;

Translation unit #2:
export module M;
export import :Part; // error: exported partition :Part is an implementation unit

— end example ]
9 A module implementation unit of a module M that is not a module partition shall not contain a module-

import-declaration nominating M.
[Example 2 :

module M;
import M; // error: cannot import M in its own unit

— end example ]
10 A translation unit has an interface dependency on a translation unit U if it contains a declaration (possibly

a module-declaration) that imports U or if it has an interface dependency on a translation unit that has an
interface dependency on U. A translation unit shall not have an interface dependency on itself.
[Example 3 :

Interface unit of M1:
export module M1;
import M2;

Interface unit of M2:
export module M2;
import M3;

Interface unit of M3:
export module M3;
import M1; // error: cyclic interface dependency M3 → M1 → M2 → M3

— end example ]

10.4 Global module fragment [module.global.frag]
global-module-fragment :

module-keyword ; declaration-seqopt

1 [Note 1 : Prior to phase 4 of translation, only preprocessing directives can appear in the declaration-seq (15.1). — end
note ]

2 A global-module-fragment specifies the contents of the global module fragment for a module unit. The global
module fragment can be used to provide declarations that are attached to the global module and usable
within the module unit.

3 A declaration D is decl-reachable from a declaration S in the same translation unit if:
—(3.1) D does not declare a function or function template and S contains an id-expression, namespace-name,

type-name, template-name, or concept-name naming D, or
—(3.2) D declares a function or function template that is named by an expression (6.3) appearing in S, or
—(3.3) S contains a dependent call E (13.8.3) and D is found by any name lookup performed for an expression

synthesized from E by replacing each type-dependent argument or operand with a value of a placeholder
type with no associated namespaces or entities, or

89) This is consistent with the lookup rules for imported names (6.5).
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[Note 2 : This includes the lookup for operator== performed when considering rewriting an != expression, the
lookup for operator<=> performed when considering rewriting a relational comparison, and the lookup for
operator!= when considering whether an operator== is a rewrite target. — end note ]

—(3.4) S contains an expression that takes the address of an overload set (12.3) that contains D and for which
the target type is dependent, or

—(3.5) there exists a declaration M that is not a namespace-definition for which M is decl-reachable from S
and either

—(3.5.1) D is decl-reachable from M , or
—(3.5.2) D redeclares the entity declared by M or M redeclares the entity declared by D, and D neither is

a friend declaration nor inhabits a block scope, or
—(3.5.3) D declares a namespace N and M is a member of N , or
—(3.5.4) one of M and D declares a class or class template C and the other declares a member or friend of

C, or
—(3.5.5) one of D and M declares an enumeration E and the other declares an enumerator of E, or
—(3.5.6) D declares a function or variable and M is declared in D,90 or
—(3.5.7) one of M and D declares a template and the other declares a partial or explicit specialization or

an implicit or explicit instantiation of that template, or
—(3.5.8) one of M and D declares a class or enumeration type and the other introduces a typedef name for

linkage purposes for that type.
In this determination, it is unspecified

—(3.6) whether a reference to an alias-declaration, typedef declaration, using-declaration, or namespace-alias-
definition is replaced by the declarations they name prior to this determination,

—(3.7) whether a simple-template-id that does not denote a dependent type and whose template-name names
an alias template is replaced by its denoted type prior to this determination,

—(3.8) whether a decltype-specifier that does not denote a dependent type is replaced by its denoted type prior
to this determination, and

—(3.9) whether a non-value-dependent constant expression is replaced by the result of constant evaluation
prior to this determination.

4 A declaration D in a global module fragment of a module unit is discarded if D is not decl-reachable from any
declaration in the declaration-seq of the translation-unit.
[Note 3 : A discarded declaration is neither reachable nor visible to name lookup outside the module unit, nor in
template instantiations whose points of instantiation (13.8.4.1) are outside the module unit, even when the instantiation
context (10.6) includes the module unit. — end note ]

5 [Example 1 :
const int size = 2;
int ary1[size]; // unspecified whether size is decl-reachable from ary1
constexpr int identity(int x) { return x; }
int ary2[identity(2)]; // unspecified whether identity is decl-reachable from ary2

template<typename> struct S;
template<typename, int> struct S2;
constexpr int g(int);

template<typename T, int N>
S<S2<T, g(N)>> f(); // S, S2, g, and :: are decl-reachable from f

template<int N>
void h() noexcept(g(N) == N); // g and :: are decl-reachable from h

— end example ]
6 [Example 2 :

90) A declaration can appear within a lambda-expression in the initializer of a variable.
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Source file "foo.h":
namespace N {

struct X {};
int d();
int e();
inline int f(X, int = d()) { return e(); }
int g(X);
int h(X);

}

Module M interface:
module;
#include "foo.h"
export module M;
template<typename T> int use_f() {

N::X x; // N::X, N, and :: are decl-reachable from use_f
return f(x, 123); // N::f is decl-reachable from use_f,

// N::e is indirectly decl-reachable from use_f
// because it is decl-reachable from N::f, and
// N::d is decl-reachable from use_f
// because it is decl-reachable from N::f
// even though it is not used in this call

}
template<typename T> int use_g() {

N::X x; // N::X, N, and :: are decl-reachable from use_g
return g((T(), x)); // N::g is not decl-reachable from use_g

}
template<typename T> int use_h() {

N::X x; // N::X, N, and :: are decl-reachable from use_h
return h((T(), x)); // N::h is not decl-reachable from use_h, but

// N::h is decl-reachable from use_h<int>
}
int k = use_h<int>();

// use_h<int> is decl-reachable from k, so
// N::h is decl-reachable from k

Module M implementation:
module M;
int a = use_f<int>(); // OK
int b = use_g<int>(); // error: no viable function for call to g;

// g is not decl-reachable from purview of
// module M’s interface, so is discarded

int c = use_h<int>(); // OK
— end example ]

10.5 Private module fragment [module.private.frag]
private-module-fragment :

module-keyword : private ; declaration-seqopt

1 A private-module-fragment shall appear only in a primary module interface unit (10.1). A module unit with a
private-module-fragment shall be the only module unit of its module; no diagnostic is required.

2 [Note 1 : A private-module-fragment ends the portion of the module interface unit that can affect the behavior of other
translation units. A private-module-fragment allows a module to be represented as a single translation unit without
making all of the contents of the module reachable to importers. The presence of a private-module-fragment affects:

—(2.1) the point by which the definition of an inline function or variable is required (9.2.8),
—(2.2) the point by which the definition of an exported function with a placeholder return type is required (9.2.9.6),
—(2.3) whether a declaration is required not to be an exposure (6.6),
—(2.4) where definitions for inline functions and templates must appear (6.3, 9.2.8, 13.1),
—(2.5) the instantiation contexts of templates instantiated before it (10.6), and
—(2.6) the reachability of declarations within it (10.7).

— end note ]
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3 [Example 1 :
export module A;
export inline void fn_e(); // error: exported inline function fn_e not defined

// before private module fragment
inline void fn_m(); // error: non-exported inline function fn_m not defined
static void fn_s();
export struct X;
export void g(X *x) {

fn_s(); // OK, call to static function in same translation unit
}
export X *factory(); // OK

module :private;
struct X {}; // definition not reachable from importers of A
X *factory() {

return new X ();
}
void fn_e() {}
void fn_m() {}
void fn_s() {}

— end example ]

10.6 Instantiation context [module.context]
1 The instantiation context is a set of points within the program that determines which declarations are found

by argument-dependent name lookup (6.5.4) and which are reachable (10.7) in the context of a particular
declaration or template instantiation.

2 During the implicit definition of a defaulted function (11.4.4, 11.10.1), the instantiation context is the union
of the instantiation context from the definition of the class and the instantiation context of the program
construct that resulted in the implicit definition of the defaulted function.

3 During the implicit instantiation of a template whose point of instantiation is specified as that of an enclosing
specialization (13.8.4.1), the instantiation context is the union of the instantiation context of the enclosing
specialization and, if the template is defined in a module interface unit of a module M and the point of
instantiation is not in a module interface unit of M , the point at the end of the declaration-seq of the primary
module interface unit of M (prior to the private-module-fragment, if any).

4 During the implicit instantiation of a template that is implicitly instantiated because it is referenced from
within the implicit definition of a defaulted function, the instantiation context is the instantiation context of
the defaulted function.

5 During the instantiation of any other template specialization, the instantiation context comprises the point
of instantiation of the template.

6 In any other case, the instantiation context at a point within the program comprises that point.
7 [Example 1 :

Translation unit #1:
export module stuff;
export template<typename T, typename U> void foo(T, U u) { auto v = u; }
export template<typename T, typename U> void bar(T, U u) { auto v = *u; }

Translation unit #2:
export module M1;
import "defn.h"; // provides struct X {};
import stuff;
export template<typename T> void f(T t) {

X x;
foo(t, x);

}

Translation unit #3:
export module M2;
import "decl.h"; // provides struct X; (not a definition)
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import stuff;
export template<typename T> void g(T t) {

X *x;
bar(t, x);

}

Translation unit #4:
import M1;
import M2;
void test() {

f(0);
g(0);

}

The call to f(0) is valid; the instantiation context of foo<int, X> comprises
—(7.1) the point at the end of translation unit #1,
—(7.2) the point at the end of translation unit #2, and
—(7.3) the point of the call to f(0),

so the definition of X is reachable (10.7).
It is unspecified whether the call to g(0) is valid: the instantiation context of bar<int, X> comprises

—(7.4) the point at the end of translation unit #1,
—(7.5) the point at the end of translation unit #3, and
—(7.6) the point of the call to g(0),

so the definition of X need not be reachable, as described in 10.7. — end example ]

10.7 Reachability [module.reach]
1 A translation unit U is necessarily reachable from a point P if U is a module interface unit on which the

translation unit containing P has an interface dependency, or the translation unit containing P imports U ,
in either case prior to P (10.3).
[Note 1 : While module interface units are reachable even when they are only transitively imported via a non-exported
import declaration, namespace-scope names from such module interface units are not found by name lookup (6.5).

— end note ]
2 All translation units that are necessarily reachable are reachable. Additional translation units on which the

point within the program has an interface dependency may be considered reachable, but it is unspecified
which are and under what circumstances.91

[Note 2 : It is advisable to avoid depending on the reachability of any additional translation units in programs intending
to be portable. — end note ]

3 A declaration D is reachable from a point P if
—(3.1) D appears prior to P in the same translation unit, or
—(3.2) D is not discarded (10.4), appears in a translation unit that is reachable from P , and does not appear

within a private-module-fragment.
A declaration is reachable if it is reachable from any point in the instantiation context (10.6).
[Note 3 : Whether a declaration is exported has no bearing on whether it is reachable. — end note ]

4 The accumulated properties of all reachable declarations of an entity within a context determine the behavior
of the entity within that context.
[Note 4 : These reachable semantic properties include type completeness, type definitions, initializers, default arguments
of functions or template declarations, attributes, names bound, etc. Since default arguments are evaluated in the
context of the call expression, the reachable semantic properties of the corresponding parameter types apply in that
context.
[Example 1 :

Translation unit #1:
export module M:A;

91) Implementations are therefore not required to prevent the semantic effects of additional translation units involved in the
compilation from being observed.
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export struct B;

Translation unit #2:
module M:B;
struct B {

operator int();
};

Translation unit #3:
module M:C;
import :A;
B b1; // error: no reachable definition of struct B

Translation unit #4:
export module M;
export import :A;
import :B;
B b2;
export void f(B b = B());

Translation unit #5:
import M;
B b3; // error: no reachable definition of struct B
void g() { f(); } // error: no reachable definition of struct B

— end example ]
— end note ]

5 [Note 5 : Declarations of an entity can be reachable even where they cannot be found by name lookup. — end note ]
[Example 2 :

Translation unit #1:
export module A;
struct X {};
export using Y = X;

Translation unit #2:
import A;
Y y; // OK, definition of X is reachable
X x; // error: X not visible to unqualified lookup

— end example ]
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11 Classes [class]
11.1 Preamble [class.pre]

1 A class is a type. Its name becomes a class-name (11.3) within its scope.
class-name :

identifier
simple-template-id

A class-specifier or an elaborated-type-specifier (9.2.9.4) is used to make a class-name. An object of a class
consists of a (possibly empty) sequence of members and base class objects.

class-specifier :
class-head { member-specificationopt }

class-head :
class-key attribute-specifier-seqopt class-head-name class-virt-specifieropt base-clauseopt
class-key attribute-specifier-seqopt base-clauseopt

class-head-name :
nested-name-specifieropt class-name

class-virt-specifier :
final

class-key :
class
struct
union

A class declaration where the class-name in the class-head-name is a simple-template-id shall be an explicit
specialization (13.9.4) or a partial specialization (13.7.6). A class-specifier whose class-head omits the
class-head-name defines an unnamed class.
[Note 1 : An unnamed class thus can’t be final. — end note ]

Otherwise, the class-name is an identifier ; it is not looked up, and the class-specifier introduces it.
2 The class-name is also bound in the scope of the class (template) itself; this is known as the injected-class-name.

For purposes of access checking, the injected-class-name is treated as if it were a public member name. A
class-specifier is commonly referred to as a class definition. A class is considered defined after the closing
brace of its class-specifier has been seen even though its member functions are in general not yet defined.
The optional attribute-specifier-seq appertains to the class; the attributes in the attribute-specifier-seq are
thereafter considered attributes of the class whenever it is named.

3 If a class-head-name contains a nested-name-specifier , the class-specifier shall not inhabit a class scope. If its
class-name is an identifier , the class-specifier shall correspond to one or more declarations nominable in the
class, class template, or namespace to which the nested-name-specifier refers; they shall all have the same
target scope, and the target scope of the class-specifier is that scope.
[Example 1 :

namespace N {
template<class>
struct A {

struct B;
};

}
using N::A;
template<class T> struct A<T>::B {}; // OK
template<> struct A<void> {}; // OK

— end example ]
4 [Note 2 : The class-key determines whether the class is a union (11.5) and whether access is public or private by

default (11.8). A union holds the value of at most one data member at a time. — end note ]
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5 If a class is marked with the class-virt-specifier final and it appears as a class-or-decltype in a base-clause (11.7),
the program is ill-formed. Whenever a class-key is followed by a class-head-name, the identifier final, and a
colon or left brace, final is interpreted as a class-virt-specifier .
[Example 2 :

struct A;
struct A final {}; // OK, definition of struct A,

// not value-initialization of variable final

struct X {
struct C { constexpr operator int() { return 5; } };
struct B final : C{}; // OK, definition of nested class B,

// not declaration of a bit-field member final
};

— end example ]
6 [Note 3 : Complete objects of class type have nonzero size. Base class subobjects and members declared with the

no_unique_address attribute (9.12.11) are not so constrained. — end note ]
7 [Note 4 : Class objects can be assigned (12.4.3.2, 11.4.6), passed as arguments to functions (9.4, 11.4.5.3), and returned

by functions (except objects of classes for which copying or moving has been restricted; see 9.5.3 and 11.8). Other
plausible operators, such as equality comparison, can be defined by the user; see 12.4. — end note ]

11.2 Properties of classes [class.prop]
1 A trivially copyable class is a class:

—(1.1) that has at least one eligible copy constructor, move constructor, copy assignment operator, or move
assignment operator (11.4.4, 11.4.5.3, 11.4.6),

—(1.2) where each eligible copy constructor, move constructor, copy assignment operator, and move assignment
operator is trivial, and

—(1.3) that has a trivial, non-deleted destructor (11.4.7).
2 A trivial class is a class that is trivially copyable and has one or more eligible default constructors (11.4.5.2),

all of which are trivial.
[Note 1 : In particular, a trivially copyable or trivial class does not have virtual functions or virtual base classes.

— end note ]
3 A class S is a standard-layout class if it:

—(3.1) has no non-static data members of type non-standard-layout class (or array of such types) or reference,
—(3.2) has no virtual functions (11.7.3) and no virtual base classes (11.7.2),
—(3.3) has the same access control (11.8) for all non-static data members,
—(3.4) has no non-standard-layout base classes,
—(3.5) has at most one base class subobject of any given type,
—(3.6) has all non-static data members and bit-fields in the class and its base classes first declared in the same

class, and
—(3.7) has no element of the set M(S) of types as a base class, where for any type X, M(X) is defined as

follows.92

[Note 2 : M(X) is the set of the types of all non-base-class subobjects that can be at a zero offset in X. — end
note ]

—(3.7.1) If X is a non-union class type with no non-static data members, the set M(X) is empty.
—(3.7.2) If X is a non-union class type with a non-static data member of type X0 that is either of zero size

or is the first non-static data member of X (where said member may be an anonymous union), the
set M(X) consists of X0 and the elements of M(X0).

—(3.7.3) If X is a union type, the set M(X) is the union of all M(Ui) and the set containing all Ui, where
each Ui is the type of the ith non-static data member of X.

92) This ensures that two subobjects that have the same class type and that belong to the same most derived object are not
allocated at the same address (7.6.10).
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—(3.7.4) If X is an array type with element type Xe, the set M(X) consists of Xe and the elements of M(Xe).
—(3.7.5) If X is a non-class, non-array type, the set M(X) is empty.

4 [Example 1 :
struct B { int i; }; // standard-layout class
struct C : B { }; // standard-layout class
struct D : C { }; // standard-layout class
struct E : D { char : 4; }; // not a standard-layout class

struct Q {};
struct S : Q { };
struct T : Q { };
struct U : S, T { }; // not a standard-layout class

— end example ]
5 A standard-layout struct is a standard-layout class defined with the class-key struct or the class-key class.

A standard-layout union is a standard-layout class defined with the class-key union.
6 [Note 3 : Standard-layout classes are useful for communicating with code written in other programming languages.

Their layout is specified in 11.4. — end note ]
7 [Example 2 :

struct N { // neither trivial nor standard-layout
int i;
int j;
virtual ~N();

};

struct T { // trivial but not standard-layout
int i;

private:
int j;

};

struct SL { // standard-layout but not trivial
int i;
int j;
~SL();

};

struct POD { // both trivial and standard-layout
int i;
int j;

};

— end example ]
8 [Note 4 : Aggregates of class type are described in 9.4.2. — end note ]
9 A class S is an implicit-lifetime class if

—(9.1) it is an aggregate whose destructor is not user-provided or
—(9.2) it has at least one trivial eligible constructor and a trivial, non-deleted destructor.

11.3 Class names [class.name]
1 A class definition introduces a new type.

[Example 1 :
struct X { int a; };
struct Y { int a; };
X a1;
Y a2;
int a3;

declares three variables of three different types. This implies that
a1 = a2; // error: Y assigned to X
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a1 = a3; // error: int assigned to X

are type mismatches, and that
int f(X);
int f(Y);

declare overloads (Clause 12) named f and not simply a single function f twice. For the same reason,
struct S { int a; };
struct S { int a; }; // error: double definition

is ill-formed because it defines S twice. — end example ]
2 [Note 1 : It can be necessary to use an elaborated-type-specifier to refer to a class that belongs to a scope in which its

name is also bound to a variable, function, or enumerator (6.5.6).
[Example 2 :

struct stat {
// ...

};

stat gstat; // use plain stat to define variable

int stat(struct stat*); // stat now also names a function

void f() {
struct stat* ps; // struct prefix needed to name struct stat
stat(ps); // call stat function

}

— end example ]
An elaborated-type-specifier can also be used to declare an identifier as a class-name.
[Example 3 :

struct s { int a; };

void g() {
struct s; // hide global struct s with a block-scope declaration
s* p; // refer to local struct s
struct s { char* p; }; // define local struct s
struct s; // redeclaration, has no effect

}

— end example ]
Such declarations allow definition of classes that refer to each other.
[Example 4 :

class Vector;

class Matrix {
// ...
friend Vector operator*(const Matrix&, const Vector&);

};

class Vector {
// ...
friend Vector operator*(const Matrix&, const Vector&);

};

Declaration of friends is described in 11.8.4, operator functions in 12.4. — end example ]
— end note ]

3 [Note 2 : An elaborated-type-specifier (9.2.9.4) can also be used as a type-specifier as part of a declaration. It differs
from a class declaration in that it can refer to an existing class of the given name. — end note ]
[Example 5 :

struct s { int a; };

§ 11.3 270



© ISO/IEC N4950

void g(int s) {
struct s* p = new struct s; // global s
p->a = s; // parameter s

}

— end example ]
4 [Note 3 : The declaration of a class name takes effect immediately after the identifier is seen in the class definition or

elaborated-type-specifier . For example,
class A * A;

first specifies A to be the name of a class and then redefines it as the name of a pointer to an object of that class.
This means that the elaborated form class A must be used to refer to the class. Such artistry with names can be
confusing and is best avoided. — end note ]

5 A simple-template-id is only a class-name if its template-name names a class template.

11.4 Class members [class.mem]
11.4.1 General [class.mem.general]

member-specification :
member-declaration member-specificationopt
access-specifier : member-specificationopt

member-declaration :
attribute-specifier-seqopt decl-specifier-seqopt member-declarator-listopt ;
function-definition
using-declaration
using-enum-declaration
static_assert-declaration
template-declaration
explicit-specialization
deduction-guide
alias-declaration
opaque-enum-declaration
empty-declaration

member-declarator-list :
member-declarator
member-declarator-list , member-declarator

member-declarator :
declarator virt-specifier-seqopt pure-specifieropt
declarator requires-clause
declarator brace-or-equal-initializeropt
identifieropt attribute-specifier-seqopt : constant-expression brace-or-equal-initializeropt

virt-specifier-seq :
virt-specifier
virt-specifier-seq virt-specifier

virt-specifier :
override
final

pure-specifier :
= 0

1 The member-specification in a class definition declares the full set of members of the class; no member
can be added elsewhere. A direct member of a class X is a member of X that was first declared within
the member-specification of X, including anonymous union members (11.5.2) and direct members thereof.
Members of a class are data members, member functions (11.4.2), nested types, enumerators, and member
templates (13.7.3) and specializations thereof.
[Note 1 : A specialization of a static data member template is a static data member. A specialization of a member
function template is a member function. A specialization of a member class template is a nested class. — end note ]

2 A member-declaration does not declare new members of the class if it is
—(2.1) a friend declaration (11.8.4),
—(2.2) a deduction-guide (13.7.2.3),
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—(2.3) a template-declaration whose declaration is one of the above,
—(2.4) a static_assert-declaration,
—(2.5) a using-declaration (9.9), or
—(2.6) an empty-declaration.

For any other member-declaration, each declared entity that is not an unnamed bit-field (11.4.10) is a member
of the class, and each such member-declaration shall either declare at least one member name of the class or
declare at least one unnamed bit-field.

3 A data member is a non-function member introduced by a member-declarator . A member function is a
member that is a function. Nested types are classes (11.3, 11.4.12) and enumerations (9.7.1) declared in the
class and arbitrary types declared as members by use of a typedef declaration (9.2.4) or alias-declaration. The
enumerators of an unscoped enumeration (9.7.1) defined in the class are members of the class.

4 A data member or member function may be declared static in its member-declaration, in which case it is a
static member (see 11.4.9) (a static data member (11.4.9.3) or static member function (11.4.9.2), respectively)
of the class. Any other data member or member function is a non-static member (a non-static data member
or non-static member function (11.4.3), respectively).
[Note 2 : A non-static data member of non-reference type is a member subobject of a class object (6.7.2). — end note ]

5 A member shall not be declared twice in the member-specification, except that
—(5.1) a nested class or member class template can be declared and then later defined, and
—(5.2) an enumeration can be introduced with an opaque-enum-declaration and later redeclared with an

enum-specifier .
[Note 3 : A single name can denote several member functions provided their types are sufficiently different (6.4.1).

— end note ]
6 A redeclaration of a class member outside its class definition shall be a definition, an explicit specialization,

or an explicit instantiation (13.9.4, 13.9.3). The member shall not be a non-static data member.
7 A complete-class context of a class (template) is a

—(7.1) function body (9.5.1),
—(7.2) default argument (9.3.4.7),
—(7.3) default template argument (13.2),
—(7.4) noexcept-specifier (14.5), or
—(7.5) default member initializer

within the member-specification of the class or class template.
[Note 4 : A complete-class context of a nested class is also a complete-class context of any enclosing class, if the nested
class is defined within the member-specification of the enclosing class. — end note ]

8 A class is regarded as complete where its definition is reachable and within its complete-class contexts;
otherwise it is regarded as incomplete within its own class member-specification.

9 In a member-declarator , an = immediately following the declarator is interpreted as introducing a pure-specifier
if the declarator-id has function type, otherwise it is interpreted as introducing a brace-or-equal-initializer .
[Example 1 :

struct S {
using T = void();
T * p = 0; // OK, brace-or-equal-initializer
virtual T f = 0; // OK, pure-specifier

};

— end example ]
10 In a member-declarator for a bit-field, the constant-expression is parsed as the longest sequence of tokens that

could syntactically form a constant-expression.
[Example 2 :

int a;
const int b = 0;
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struct S {
int x1 : 8 = 42; // OK, "= 42" is brace-or-equal-initializer
int x2 : 8 { 42 }; // OK, "{ 42 }" is brace-or-equal-initializer
int y1 : true ? 8 : a = 42; // OK, brace-or-equal-initializer is absent
int y2 : true ? 8 : b = 42; // error: cannot assign to const int
int y3 : (true ? 8 : b) = 42; // OK, "= 42" is brace-or-equal-initializer
int z : 1 || new int { 0 }; // OK, brace-or-equal-initializer is absent

};

— end example ]
11 A brace-or-equal-initializer shall appear only in the declaration of a data member. (For static data members,

see 11.4.9.3; for non-static data members, see 11.9.3 and 9.4.2). A brace-or-equal-initializer for a non-static
data member specifies a default member initializer for the member, and shall not directly or indirectly cause
the implicit definition of a defaulted default constructor for the enclosing class or the exception specification
of that constructor. An immediate invocation (7.7) that is a potentially-evaluated subexpression (6.9.1) of
a default member initializer is neither evaluated nor checked for whether it is a constant expression at the
point where the subexpression appears.

12 A member shall not be declared with the extern storage-class-specifier . Within a class definition, a member
shall not be declared with the thread_local storage-class-specifier unless also declared static.

13 The decl-specifier-seq may be omitted in constructor, destructor, and conversion function declarations only;
when declaring another kind of member the decl-specifier-seq shall contain a type-specifier that is not a
cv-qualifier . The member-declarator-list can be omitted only after a class-specifier or an enum-specifier or in a
friend declaration (11.8.4). A pure-specifier shall be used only in the declaration of a virtual function (11.7.3)
that is not a friend declaration.

14 The optional attribute-specifier-seq in a member-declaration appertains to each of the entities declared by the
member-declarators; it shall not appear if the optional member-declarator-list is omitted.

15 A virt-specifier-seq shall contain at most one of each virt-specifier . A virt-specifier-seq shall appear only in the
first declaration of a virtual member function (11.7.3).

16 The type of a non-static data member shall not be an incomplete type (6.8.1), an abstract class type (11.7.4),
or a (possibly multidimensional) array thereof.
[Note 5 : In particular, a class C cannot contain a non-static member of class C, but it can contain a pointer or reference
to an object of class C. — end note ]

17 [Note 6 : See 7.5.4 for restrictions on the use of non-static data members and non-static member functions. — end
note ]

18 [Note 7 : The type of a non-static member function is an ordinary function type, and the type of a non-static data
member is an ordinary object type. There are no special member function types or data member types. — end note ]

19 [Example 3 : A simple example of a class definition is
struct tnode {

char tword[20];
int count;
tnode* left;
tnode* right;

};

which contains an array of twenty characters, an integer, and two pointers to objects of the same type. Once this
definition has been given, the declaration

tnode s, *sp;

declares s to be a tnode and sp to be a pointer to a tnode. With these declarations, sp->count refers to the
count member of the object to which sp points; s.left refers to the left subtree pointer of the object s; and
s.right->tword[0] refers to the initial character of the tword member of the right subtree of s. — end example ]

20 [Note 8 : Non-variant non-static data members of non-zero size (6.7.2) are allocated so that later members have higher
addresses within a class object (7.6.9). Implementation alignment requirements can cause two adjacent members not
to be allocated immediately after each other; so can requirements for space for managing virtual functions (11.7.3)
and virtual base classes (11.7.2). — end note ]

21 If T is the name of a class, then each of the following shall have a name different from T:
—(21.1) every static data member of class T;
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—(21.2) every member function of class T;
[Note 9 : This restriction does not apply to constructors, which do not have names (11.4.5) — end note ]

—(21.3) every member of class T that is itself a type;
—(21.4) every member template of class T;
—(21.5) every enumerator of every member of class T that is an unscoped enumeration type; and
—(21.6) every member of every anonymous union that is a member of class T.

22 In addition, if class T has a user-declared constructor (11.4.5), every non-static data member of class T shall
have a name different from T.

23 The common initial sequence of two standard-layout struct (11.2) types is the longest sequence of non-static
data members and bit-fields in declaration order, starting with the first such entity in each of the structs,
such that

—(23.1) corresponding entities have layout-compatible types (6.8),
—(23.2) corresponding entities have the same alignment requirements (6.7.6),
—(23.3) either both entities are declared with the no_unique_address attribute (9.12.11) or neither is, and
—(23.4) either both entities are bit-fields with the same width or neither is a bit-field.

[Example 4 :
struct A { int a; char b; };
struct B { const int b1; volatile char b2; };
struct C { int c; unsigned : 0; char b; };
struct D { int d; char b : 4; };
struct E { unsigned int e; char b; };

The common initial sequence of A and B comprises all members of either class. The common initial sequence of A and
C and of A and D comprises the first member in each case. The common initial sequence of A and E is empty. — end
example ]

24 Two standard-layout struct (11.2) types are layout-compatible classes if their common initial sequence
comprises all members and bit-fields of both classes (6.8).

25 Two standard-layout unions are layout-compatible if they have the same number of non-static data members
and corresponding non-static data members (in any order) have layout-compatible types (6.8.1).

26 In a standard-layout union with an active member (11.5) of struct type T1, it is permitted to read a non-static
data member m of another union member of struct type T2 provided m is part of the common initial sequence
of T1 and T2; the behavior is as if the corresponding member of T1 were nominated.
[Example 5 :

struct T1 { int a, b; };
struct T2 { int c; double d; };
union U { T1 t1; T2 t2; };
int f() {

U u = { { 1, 2 } }; // active member is t1
return u.t2.c; // OK, as if u.t1.a were nominated

}

— end example ]
[Note 10 : Reading a volatile object through a glvalue of non-volatile type has undefined behavior (9.2.9.2). — end
note ]

27 If a standard-layout class object has any non-static data members, its address is the same as the address of
its first non-static data member if that member is not a bit-field. Its address is also the same as the address
of each of its base class subobjects.
[Note 11 : There can therefore be unnamed padding within a standard-layout struct object inserted by an implementa-
tion, but not at its beginning, as necessary to achieve appropriate alignment. — end note ]
[Note 12 : The object and its first subobject are pointer-interconvertible (6.8.4, 7.6.1.9). — end note ]

11.4.2 Member functions [class.mfct]
1 If a member function is attached to the global module and is defined (9.5) in its class definition, it is

inline (9.2.8).
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[Note 1 : A member function is also inline if it is declared inline, constexpr, or consteval. — end note ]
2 [Example 1 :

struct X {
typedef int T;
static T count;
void f(T);

};
void X::f(T t = count) { }

The definition of the member function f of class X inhabits the global scope; the notation X::f indicates that the
function f is a member of class X and in the scope of class X. In the function definition, the parameter type T refers to
the typedef member T declared in class X and the default argument count refers to the static data member count
declared in class X. — end example ]

3 Member functions of a local class shall be defined inline in their class definition, if they are defined at all.
4 [Note 2 : A member function can be declared (but not defined) using a typedef for a function type. The resulting

member function has exactly the same type as it would have if the function declarator were provided explicitly,
see 9.3.4.6. For example,

typedef void fv();
typedef void fvc() const;
struct S {

fv memfunc1; // equivalent to: void memfunc1();
void memfunc2();
fvc memfunc3; // equivalent to: void memfunc3() const;

};
fv S::* pmfv1 = &S::memfunc1;
fv S::* pmfv2 = &S::memfunc2;
fvc S::* pmfv3 = &S::memfunc3;

Also see 13.4. — end note ]

11.4.3 Non-static member functions [class.mfct.non.static]
1 A non-static member function may be called for an object of its class type, or for an object of a class

derived (11.7) from its class type, using the class member access syntax (7.6.1.5, 12.2.2.2). A non-static
member function may also be called directly using the function call syntax (7.6.1.3, 12.2.2.2) from within its
class or a class derived from its class, or a member thereof, as described below.

2 When an id-expression (7.5.4) that is neither part of a class member access syntax (7.6.1.5) nor the un-
parenthesized operand of the unary & operator (7.6.2.2) is used where the current class is X (7.5.2), if name
lookup (6.5) resolves the name in the id-expression to a non-static non-type member of some class C, and if
either the id-expression is potentially evaluated or C is X or a base class of X, the id-expression is transformed
into a class member access expression (7.6.1.5) using (*this) as the postfix-expression to the left of the .
operator.
[Note 1 : If C is not X or a base class of X, the class member access expression is ill-formed. — end note ]

This transformation does not apply in the template definition context (13.8.3.2).
[Example 1 :

struct tnode {
char tword[20];
int count;
tnode* left;
tnode* right;
void set(const char*, tnode* l, tnode* r);

};

void tnode::set(const char* w, tnode* l, tnode* r) {
count = strlen(w)+1;
if (sizeof(tword)<=count)

perror("tnode string too long");
strcpy(tword,w);
left = l;
right = r;

}
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void f(tnode n1, tnode n2) {
n1.set("abc",&n2,0);
n2.set("def",0,0);

}

In the body of the member function tnode::set, the member names tword, count, left, and right refer to members
of the object for which the function is called. Thus, in the call n1.set("abc",&n2,0), tword refers to n1.tword, and
in the call n2.set("def",0,0), it refers to n2.tword. The functions strlen, perror, and strcpy are not members of
the class tnode and should be declared elsewhere.93 — end example ]

3 [Note 2 : An implicit object member function can be declared with cv-qualifiers, which affect the type of the this
pointer (7.5.2), and/or a ref-qualifier (9.3.4.6); both affect overload resolution (12.2.2) — end note ]

4 An implicit object member function may be declared virtual (11.7.3) or pure virtual (11.7.4).

11.4.4 Special member functions [special]
1 Default constructors (11.4.5.2), copy constructors, move constructors (11.4.5.3), copy assignment operators,

move assignment operators (11.4.6), and prospective destructors (11.4.7) are special member functions.
[Note 1 : The implementation will implicitly declare these member functions for some class types when the program
does not explicitly declare them. The implementation will implicitly define them as needed (9.5.2). — end note ]

An implicitly-declared special member function is declared at the closing } of the class-specifier . Programs
shall not define implicitly-declared special member functions.

2 Programs may explicitly refer to implicitly-declared special member functions.
[Example 1 : A program may explicitly call or form a pointer to member to an implicitly-declared special member
function.

struct A { }; // implicitly declared A::operator=
struct B : A {

B& operator=(const B &);
};
B& B::operator=(const B& s) {

this->A::operator=(s); // well-formed
return *this;

}

— end example ]
3 [Note 2 : The special member functions affect the way objects of class type are created, copied, moved, and destroyed,

and how values can be converted to values of other types. Often such special member functions are called implicitly.
— end note ]

4 Special member functions obey the usual access rules (11.8).
[Example 2 : Declaring a constructor protected ensures that only derived classes and friends can create objects using
it. — end example ]

5 Two special member functions are of the same kind if:
—(5.1) they are both default constructors,
—(5.2) they are both copy or move constructors with the same first parameter type, or
—(5.3) they are both copy or move assignment operators with the same first parameter type and the same

cv-qualifiers and ref-qualifier , if any.
6 An eligible special member function is a special member function for which:

—(6.1) the function is not deleted,
—(6.2) the associated constraints (13.5), if any, are satisfied, and
—(6.3) no special member function of the same kind is more constrained (13.5.5).

7 For a class, its non-static data members, its non-virtual direct base classes, and, if the class is not abstract
(11.7.4), its virtual base classes are called its potentially constructed subobjects.

93) See, for example, <cstring> (23.5.3).
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11.4.5 Constructors [class.ctor]
11.4.5.1 General [class.ctor.general]

1 A declarator declares a constructor if it is a function declarator (9.3.4.6) of the form
ptr-declarator ( parameter-declaration-clause ) noexcept-specifieropt attribute-specifier-seqopt

where the ptr-declarator consists solely of an id-expression, an optional attribute-specifier-seq, and optional
surrounding parentheses, and the id-expression has one of the following forms:

—(1.1) in a friend declaration (11.8.4), the id-expression is a qualified-id that names a constructor (6.5.5.2);
—(1.2) otherwise, in a member-declaration that belongs to the member-specification of a class or class template,

the id-expression is the injected-class-name (11.1) of the immediately-enclosing entity;
—(1.3) otherwise, the id-expression is a qualified-id whose unqualified-id is the injected-class-name of its lookup

context.
Constructors do not have names. In a constructor declaration, each decl-specifier in the optional decl-specifier-
seq shall be friend, inline, constexpr, consteval, or an explicit-specifier .
[Example 1 :

struct S {
S(); // declares the constructor

};

S::S() { } // defines the constructor
— end example ]

2 A constructor is used to initialize objects of its class type.
[Note 1 : Because constructors do not have names, they are never found during unqualified name lookup; however an
explicit type conversion using the functional notation (7.6.1.4) will cause a constructor to be called to initialize an
object. The syntax looks like an explicit call of the constructor. — end note ]
[Example 2 :

complex zz = complex(1,2.3);
cprint( complex(7.8,1.2) );

— end example ]
[Note 2 : For initialization of objects of class type see 11.9. — end note ]

3 An object created in this way is unnamed.
[Note 3 : 6.7.7 describes the lifetime of temporary objects. — end note ]
[Note 4 : Explicit constructor calls do not yield lvalues, see 7.2.1. — end note ]

4 [Note 5 : Some language constructs have special semantics when used during construction; see 11.9.3 and 11.9.5.
— end note ]

5 A constructor can be invoked for a const, volatile or const volatile object. const and volatile
semantics (9.2.9.2) are not applied on an object under construction. They come into effect when the
constructor for the most derived object (6.7.2) ends.

6 The address of a constructor shall not be taken.
[Note 6 : A return statement in the body of a constructor cannot specify a return value (8.7.4). — end note ]

7 A constructor shall not be a coroutine.
8 A constructor shall not have an explicit object parameter (9.3.4.6).

11.4.5.2 Default constructors [class.default.ctor]
1 A default constructor for a class X is a constructor of class X for which each parameter that is not a function

parameter pack has a default argument (including the case of a constructor with no parameters). If there is
no user-declared constructor for class X, a non-explicit constructor having no parameters is implicitly declared
as defaulted (9.5). An implicitly-declared default constructor is an inline public member of its class.

2 A defaulted default constructor for class X is defined as deleted if:
—(2.1) X is a union that has a variant member with a non-trivial default constructor and no variant member

of X has a default member initializer,
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—(2.2) X is a non-union class that has a variant member M with a non-trivial default constructor and no variant
member of the anonymous union containing M has a default member initializer,

—(2.3) any non-static data member with no default member initializer (11.4) is of reference type,
—(2.4) any non-variant non-static data member of const-qualified type (or array thereof) with no brace-or-

equal-initializer is not const-default-constructible (9.4),
—(2.5) X is a union and all of its variant members are of const-qualified type (or array thereof),
—(2.6) X is a non-union class and all members of any anonymous union member are of const-qualified type (or

array thereof),
—(2.7) any potentially constructed subobject, except for a non-static data member with a brace-or-equal-

initializer , has class type M (or array thereof) and either M has no default constructor or overload
resolution (12.2) as applied to find M’s corresponding constructor results in an ambiguity or in a function
that is deleted or inaccessible from the defaulted default constructor, or

—(2.8) any potentially constructed subobject has a type with a destructor that is deleted or inaccessible from
the defaulted default constructor.

3 A default constructor is trivial if it is not user-provided and if:
—(3.1) its class has no virtual functions (11.7.3) and no virtual base classes (11.7.2), and
—(3.2) no non-static data member of its class has a default member initializer (11.4), and
—(3.3) all the direct base classes of its class have trivial default constructors, and
—(3.4) for all the non-static data members of its class that are of class type (or array thereof), each such class

has a trivial default constructor.
Otherwise, the default constructor is non-trivial.

4 An implicitly-defined (9.5.2) default constructor performs the set of initializations of the class that would be
performed by a user-written default constructor for that class with no ctor-initializer (11.9.3) and an empty
compound-statement. If that user-written default constructor would be ill-formed, the program is ill-formed.
If that user-written default constructor would be constexpr-suitable (9.2.6), the implicitly-defined default
constructor is constexpr. Before the defaulted default constructor for a class is implicitly defined, all the
non-user-provided default constructors for its base classes and its non-static data members are implicitly
defined.
[Note 1 : An implicitly-declared default constructor has an exception specification (14.5). An explicitly-defaulted
definition might have an implicit exception specification, see 9.5. — end note ]

5 [Note 2 : A default constructor is implicitly invoked to initialize a class object when no initializer is specified (9.4.1).
Such a default constructor is required to be accessible (11.8). — end note ]

6 [Note 3 : 11.9.3 describes the order in which constructors for base classes and non-static data members are called and
describes how arguments can be specified for the calls to these constructors. — end note ]

11.4.5.3 Copy/move constructors [class.copy.ctor]
1 A non-template constructor for class X is a copy constructor if its first parameter is of type X&, const X&,

volatile X& or const volatile X&, and either there are no other parameters or else all other parameters
have default arguments (9.3.4.7).
[Example 1 : X::X(const X&) and X::X(X&,int=1) are copy constructors.

struct X {
X(int);
X(const X&, int = 1);

};
X a(1); // calls X(int);
X b(a, 0); // calls X(const X&, int);
X c = b; // calls X(const X&, int);

— end example ]
2 A non-template constructor for class X is a move constructor if its first parameter is of type X&&, const

X&&, volatile X&&, or const volatile X&&, and either there are no other parameters or else all other
parameters have default arguments (9.3.4.7).
[Example 2 : Y::Y(Y&&) is a move constructor.
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struct Y {
Y(const Y&);
Y(Y&&);

};
extern Y f(int);
Y d(f(1)); // calls Y(Y&&)
Y e = d; // calls Y(const Y&)

— end example ]
3 [Note 1 : All forms of copy/move constructor can be declared for a class.

[Example 3 :
struct X {

X(const X&);
X(X&); // OK
X(X&&);
X(const X&&); // OK, but possibly not sensible

};

— end example ]
— end note ]

4 [Note 2 : If a class X only has a copy constructor with a parameter of type X&, an initializer of type const X or
volatile X cannot initialize an object of type cv X.
[Example 4 :

struct X {
X(); // default constructor
X(X&); // copy constructor with a non-const parameter

};
const X cx;
X x = cx; // error: X::X(X&) cannot copy cx into x

— end example ]
— end note ]

5 A declaration of a constructor for a class X is ill-formed if its first parameter is of type cv X and either there
are no other parameters or else all other parameters have default arguments. A member function template is
never instantiated to produce such a constructor signature.
[Example 5 :

struct S {
template<typename T> S(T);
S();

};

S g;

void h() {
S a(g); // does not instantiate the member template to produce S::S<S>(S);

// uses the implicitly declared copy constructor
}

— end example ]
6 If the class definition does not explicitly declare a copy constructor, a non-explicit one is declared implicitly.

If the class definition declares a move constructor or move assignment operator, the implicitly declared copy
constructor is defined as deleted; otherwise, it is defaulted (9.5). The latter case is deprecated if the class has
a user-declared copy assignment operator or a user-declared destructor (D.8).

7 The implicitly-declared copy constructor for a class X will have the form
X::X(const X&)

if each potentially constructed subobject of a class type M (or array thereof) has a copy constructor whose first
parameter is of type const M& or const volatile M&.94 Otherwise, the implicitly-declared copy constructor

94) This implies that the reference parameter of the implicitly-declared copy constructor cannot bind to a volatile lvalue;
see C.6.7.
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will have the form
X::X(X&)

8 If the definition of a class X does not explicitly declare a move constructor, a non-explicit one will be implicitly
declared as defaulted if and only if

—(8.1) X does not have a user-declared copy constructor,
—(8.2) X does not have a user-declared copy assignment operator,
—(8.3) X does not have a user-declared move assignment operator, and
—(8.4) X does not have a user-declared destructor.

[Note 3 : When the move constructor is not implicitly declared or explicitly supplied, expressions that otherwise would
have invoked the move constructor might instead invoke a copy constructor. — end note ]

9 The implicitly-declared move constructor for class X will have the form
X::X(X&&)

10 An implicitly-declared copy/move constructor is an inline public member of its class. A defaulted copy/move
constructor for a class X is defined as deleted (9.5.3) if X has:

—(10.1) a potentially constructed subobject of type M (or array thereof) that cannot be copied/moved because
overload resolution (12.2), as applied to find M’s corresponding constructor, results in an ambiguity or a
function that is deleted or inaccessible from the defaulted constructor,

—(10.2) a variant member whose corresponding constructor as selected by overload resolution is non-trivial,
—(10.3) any potentially constructed subobject of a type with a destructor that is deleted or inaccessible from

the defaulted constructor, or,
—(10.4) for the copy constructor, a non-static data member of rvalue reference type.

[Note 4 : A defaulted move constructor that is defined as deleted is ignored by overload resolution (12.2, 12.3). Such a
constructor would otherwise interfere with initialization from an rvalue which can use the copy constructor instead.

— end note ]
11 A copy/move constructor for class X is trivial if it is not user-provided and if:

—(11.1) class X has no virtual functions (11.7.3) and no virtual base classes (11.7.2), and
—(11.2) the constructor selected to copy/move each direct base class subobject is trivial, and
—(11.3) for each non-static data member of X that is of class type (or array thereof), the constructor selected to

copy/move that member is trivial;
otherwise the copy/move constructor is non-trivial.

12 [Note 5 : The copy/move constructor is implicitly defined even if the implementation elided its odr-use (6.3, 6.7.7).
— end note ]

If an implicitly-defined (9.5.2) constructor would be constexpr-suitable (9.2.6), the implicitly-defined con-
structor is constexpr.

13 Before the defaulted copy/move constructor for a class is implicitly defined, all non-user-provided copy/move
constructors for its potentially constructed subobjects are implicitly defined.
[Note 6 : An implicitly-declared copy/move constructor has an implied exception specification (14.5). — end note ]

14 The implicitly-defined copy/move constructor for a non-union class X performs a memberwise copy/move of
its bases and members.
[Note 7 : Default member initializers of non-static data members are ignored. See also the example in 11.9.3. — end
note ]

The order of initialization is the same as the order of initialization of bases and members in a user-defined
constructor (see 11.9.3). Let x be either the parameter of the constructor or, for the move constructor, an
xvalue referring to the parameter. Each base or non-static data member is copied/moved in the manner
appropriate to its type:

—(14.1) if the member is an array, each element is direct-initialized with the corresponding subobject of x;
—(14.2) if a member m has rvalue reference type T&&, it is direct-initialized with static_cast<T&&>(x.m);
—(14.3) otherwise, the base or member is direct-initialized with the corresponding base or member of x.
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Virtual base class subobjects shall be initialized only once by the implicitly-defined copy/move constructor
(see 11.9.3).

15 The implicitly-defined copy/move constructor for a union X copies the object representation (6.8.1) of X. For
each object nested within (6.7.2) the object that is the source of the copy, a corresponding object o nested
within the destination is identified (if the object is a subobject) or created (otherwise), and the lifetime of o
begins before the copy is performed.

11.4.6 Copy/move assignment operator [class.copy.assign]
1 A user-declared copy assignment operator X::operator= is a non-static non-template member function of

class X with exactly one non-object parameter of type X, X&, const X&, volatile X&, or const volatile
X&.95

[Note 1 : An overloaded assignment operator must be declared to have only one parameter; see 12.4.3.2. — end note ]
[Note 2 : More than one form of copy assignment operator can be declared for a class. — end note ]
[Note 3 : If a class X only has a copy assignment operator with a parameter of type X&, an expression of type const X
cannot be assigned to an object of type X.
[Example 1 :

struct X {
X();
X& operator=(X&);

};
const X cx;
X x;
void f() {

x = cx; // error: X::operator=(X&) cannot assign cx into x
}

— end example ]
— end note ]

2 If the class definition does not explicitly declare a copy assignment operator, one is declared implicitly. If
the class definition declares a move constructor or move assignment operator, the implicitly declared copy
assignment operator is defined as deleted; otherwise, it is defaulted (9.5). The latter case is deprecated if the
class has a user-declared copy constructor or a user-declared destructor (D.8). The implicitly-declared copy
assignment operator for a class X will have the form

X& X::operator=(const X&)

if
—(2.1) each direct base class B of X has a copy assignment operator whose parameter is of type const B&,

const volatile B&, or B, and
—(2.2) for all the non-static data members of X that are of a class type M (or array thereof), each such class

type has a copy assignment operator whose parameter is of type const M&, const volatile M&, or
M.96

Otherwise, the implicitly-declared copy assignment operator will have the form
X& X::operator=(X&)

3 A user-declared move assignment operator X::operator= is a non-static non-template member function of
class X with exactly one non-object parameter of type X&&, const X&&, volatile X&&, or const volatile
X&&.
[Note 4 : An overloaded assignment operator must be declared to have only one parameter; see 12.4.3.2. — end note ]
[Note 5 : More than one form of move assignment operator can be declared for a class. — end note ]

95) Because a template assignment operator or an assignment operator taking an rvalue reference parameter is never a
copy assignment operator, the presence of such an assignment operator does not suppress the implicit declaration of a copy
assignment operator. Such assignment operators participate in overload resolution with other assignment operators, including
copy assignment operators, and, if selected, will be used to assign an object.

96) This implies that the reference parameter of the implicitly-declared copy assignment operator cannot bind to a volatile
lvalue; see C.6.7.
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4 If the definition of a class X does not explicitly declare a move assignment operator, one will be implicitly
declared as defaulted if and only if

—(4.1) X does not have a user-declared copy constructor,
—(4.2) X does not have a user-declared move constructor,
—(4.3) X does not have a user-declared copy assignment operator, and
—(4.4) X does not have a user-declared destructor.

[Example 2 : The class definition
struct S {

int a;
S& operator=(const S&) = default;

};

will not have a default move assignment operator implicitly declared because the copy assignment operator has been
user-declared. The move assignment operator may be explicitly defaulted.

struct S {
int a;
S& operator=(const S&) = default;
S& operator=(S&&) = default;

};

— end example ]
5 The implicitly-declared move assignment operator for a class X will have the form

X& X::operator=(X&&)

6 The implicitly-declared copy/move assignment operator for class X has the return type X&. An implicitly-
declared copy/move assignment operator is an inline public member of its class.

7 A defaulted copy/move assignment operator for class X is defined as deleted if X has:
—(7.1) a variant member with a non-trivial corresponding assignment operator and X is a union-like class, or
—(7.2) a non-static data member of const non-class type (or array thereof), or
—(7.3) a non-static data member of reference type, or
—(7.4) a direct non-static data member of class type M (or array thereof) or a direct base class M that cannot

be copied/moved because overload resolution (12.2), as applied to find M’s corresponding assignment
operator, results in an ambiguity or a function that is deleted or inaccessible from the defaulted
assignment operator.

[Note 6 : A defaulted move assignment operator that is defined as deleted is ignored by overload resolution (12.2,
12.3). — end note ]

8 Because a copy/move assignment operator is implicitly declared for a class if not declared by the user, a base
class copy/move assignment operator is always hidden by the corresponding assignment operator of a derived
class (12.4.3.2).
[Note 7 : A using-declaration in a derived class C that names an assignment operator from a base class never suppresses
the implicit declaration of an assignment operator of C, even if the base class assignment operator would be a copy or
move assignment operator if declared as a member of C. — end note ]

9 A copy/move assignment operator for class X is trivial if it is not user-provided and if:
—(9.1) class X has no virtual functions (11.7.3) and no virtual base classes (11.7.2), and
—(9.2) the assignment operator selected to copy/move each direct base class subobject is trivial, and
—(9.3) for each non-static data member of X that is of class type (or array thereof), the assignment operator

selected to copy/move that member is trivial;
otherwise the copy/move assignment operator is non-trivial.

10 An implicitly-defined (9.5.2) copy/move assignment operator is constexpr.
11 Before the defaulted copy/move assignment operator for a class is implicitly defined, all non-user-provided

copy/move assignment operators for its direct base classes and its non-static data members are implicitly
defined.
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[Note 8 : An implicitly-declared copy/move assignment operator has an implied exception specification (14.5). — end
note ]

12 The implicitly-defined copy/move assignment operator for a non-union class X performs memberwise copy-
/move assignment of its subobjects. The direct base classes of X are assigned first, in the order of their
declaration in the base-specifier-list, and then the immediate non-static data members of X are assigned, in
the order in which they were declared in the class definition. Let x be either the parameter of the function
or, for the move operator, an xvalue referring to the parameter. Each subobject is assigned in the manner
appropriate to its type:

—(12.1) if the subobject is of class type, as if by a call to operator= with the subobject as the object expression
and the corresponding subobject of x as a single function argument (as if by explicit qualification; that
is, ignoring any possible virtual overriding functions in more derived classes);

—(12.2) if the subobject is an array, each element is assigned, in the manner appropriate to the element type;
—(12.3) if the subobject is of scalar type, the built-in assignment operator is used.

It is unspecified whether subobjects representing virtual base classes are assigned more than once by the
implicitly-defined copy/move assignment operator.
[Example 3 :

struct V { };
struct A : virtual V { };
struct B : virtual V { };
struct C : B, A { };

It is unspecified whether the virtual base class subobject V is assigned twice by the implicitly-defined copy/move
assignment operator for C. — end example ]

13 The implicitly-defined copy/move assignment operator for a union X copies the object representation (6.8.1)
of X. If the source and destination of the assignment are not the same object, then for each object nested
within (6.7.2) the object that is the source of the copy, a corresponding object o nested within the destination
is created, and the lifetime of o begins before the copy is performed.

14 The implicitly-defined copy/move assignment operator for a class returns the object for which the assignment
operator is invoked, that is, the object assigned to.

11.4.7 Destructors [class.dtor]
1 A declaration whose declarator-id has an unqualified-id that begins with a ~ declares a prospective destructor ;

its declarator shall be a function declarator (9.3.4.6) of the form
ptr-declarator ( parameter-declaration-clause ) noexcept-specifieropt attribute-specifier-seqopt

where the ptr-declarator consists solely of an id-expression, an optional attribute-specifier-seq, and optional
surrounding parentheses, and the id-expression has one of the following forms:

—(1.1) in a member-declaration that belongs to the member-specification of a class or class template but is not
a friend declaration (11.8.4), the id-expression is ~class-name and the class-name is the injected-class-
name (11.1) of the immediately-enclosing entity or

—(1.2) otherwise, the id-expression is nested-name-specifier ~class-name and the class-name is the injected-class-
name of the class nominated by the nested-name-specifier .

A prospective destructor shall take no arguments (9.3.4.6). Each decl-specifier of the decl-specifier-seq of a
prospective destructor declaration (if any) shall be friend, inline, virtual, constexpr, or consteval.

2 If a class has no user-declared prospective destructor, a prospective destructor is implicitly declared as
defaulted (9.5). An implicitly-declared prospective destructor is an inline public member of its class.

3 An implicitly-declared prospective destructor for a class X will have the form
~X()

4 At the end of the definition of a class, overload resolution is performed among the prospective destructors
declared in that class with an empty argument list to select the destructor for the class, also known as the
selected destructor. The program is ill-formed if overload resolution fails. Destructor selection does not
constitute a reference to, or odr-use (6.3) of, the selected destructor, and in particular, the selected destructor
may be deleted (9.5.3).

5 The address of a destructor shall not be taken.
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[Note 1 : A return statement in the body of a destructor cannot specify a return value (8.7.4). — end note ]

A destructor can be invoked for a const, volatile or const volatile object. const and volatile
semantics (9.2.9.2) are not applied on an object under destruction. They stop being in effect when the
destructor for the most derived object (6.7.2) starts.

6 [Note 2 : A declaration of a destructor that does not have a noexcept-specifier has the same exception specification as
if it had been implicitly declared (14.5). — end note ]

7 A defaulted destructor for a class X is defined as deleted if:
—(7.1) X is a union-like class that has a variant member with a non-trivial destructor,
—(7.2) any potentially constructed subobject has class type M (or array thereof) and M has a deleted destructor

or a destructor that is inaccessible from the defaulted destructor,
—(7.3) or, for a virtual destructor, lookup of the non-array deallocation function results in an ambiguity or in

a function that is deleted or inaccessible from the defaulted destructor.
8 A destructor is trivial if it is not user-provided and if:

—(8.1) the destructor is not virtual,
—(8.2) all of the direct base classes of its class have trivial destructors, and
—(8.3) for all of the non-static data members of its class that are of class type (or array thereof), each such

class has a trivial destructor.
Otherwise, the destructor is non-trivial.

9 A defaulted destructor is a constexpr destructor if it is constexpr-suitable (9.2.6).
10 Before a defaulted destructor for a class is implicitly defined, all the non-user-provided destructors for its

base classes and its non-static data members are implicitly defined.
11 A prospective destructor can be declared virtual (11.7.3) and with a pure-specifier (11.7.4). If the destructor

of a class is virtual and any objects of that class or any derived class are created in the program, the destructor
shall be defined.

12 [Note 3 : Some language constructs have special semantics when used during destruction; see 11.9.5. — end note ]
13 After executing the body of the destructor and destroying any objects with automatic storage duration

allocated within the body, a destructor for class X calls the destructors for X’s direct non-variant non-static data
members, the destructors for X’s non-virtual direct base classes and, if X is the most derived class (11.9.3), its
destructor calls the destructors for X’s virtual base classes. All destructors are called as if they were referenced
with a qualified name, that is, ignoring any possible virtual overriding destructors in more derived classes.
Bases and members are destroyed in the reverse order of the completion of their constructor (see 11.9.3).
[Note 4 : A return statement (8.7.4) in a destructor might not directly return to the caller; before transferring control
to the caller, the destructors for the members and bases are called. — end note ]

Destructors for elements of an array are called in reverse order of their construction (see 11.9).
14 A destructor is invoked implicitly

—(14.1) for a constructed object with static storage duration (6.7.5.2) at program termination (6.9.3.4),
—(14.2) for a constructed object with thread storage duration (6.7.5.3) at thread exit,
—(14.3) for a constructed object with automatic storage duration (6.7.5.4) when the block in which an object is

created exits (8.8),
—(14.4) for a constructed temporary object when its lifetime ends (7.3.5, 6.7.7).

In each case, the context of the invocation is the context of the construction of the object. A destructor may
also be invoked implicitly through use of a delete-expression (7.6.2.9) for a constructed object allocated by a
new-expression (7.6.2.8); the context of the invocation is the delete-expression.
[Note 5 : An array of class type contains several subobjects for each of which the destructor is invoked. — end note ]

A destructor can also be invoked explicitly. A destructor is potentially invoked if it is invoked or as specified
in 7.6.2.8, 8.7.4, 9.4.2, 11.9.3, and 14.2. A program is ill-formed if a destructor that is potentially invoked is
deleted or not accessible from the context of the invocation.

15 At the point of definition of a virtual destructor (including an implicit definition), the non-array deallocation
function is determined as if for the expression delete this appearing in a non-virtual destructor of the
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destructor’s class (see 7.6.2.9). If the lookup fails or if the deallocation function has a deleted definition (9.5),
the program is ill-formed.
[Note 6 : This assures that a deallocation function corresponding to the dynamic type of an object is available for the
delete-expression (11.4.11). — end note ]

16 In an explicit destructor call, the destructor is specified by a ~ followed by a type-name or decltype-specifier
that denotes the destructor’s class type. The invocation of a destructor is subject to the usual rules for
member functions (11.4.2); that is, if the object is not of the destructor’s class type and not of a class derived
from the destructor’s class type (including when the destructor is invoked via a null pointer value), the
program has undefined behavior.
[Note 7 : Invoking delete on a null pointer does not call the destructor; see 7.6.2.9. — end note ]
[Example 1 :

struct B {
virtual ~B() { }

};
struct D : B {

~D() { }
};

D D_object;
typedef B B_alias;
B* B_ptr = &D_object;

void f() {
D_object.B::~B(); // calls B’s destructor
B_ptr->~B(); // calls D’s destructor
B_ptr->~B_alias(); // calls D’s destructor
B_ptr->B_alias::~B(); // calls B’s destructor
B_ptr->B_alias::~B_alias(); // calls B’s destructor

}

— end example ]
[Note 8 : An explicit destructor call must always be written using a member access operator (7.6.1.5) or a qualified-
id (7.5.4.3); in particular, the unary-expression ~X() in a member function is not an explicit destructor call (7.6.2.2).

— end note ]
17 [Note 9 : Explicit calls of destructors are rarely needed. One use of such calls is for objects placed at specific addresses

using a placement new-expression. Such use of explicit placement and destruction of objects can be necessary to cope
with dedicated hardware resources and for writing memory management facilities. For example,

void* operator new(std::size_t, void* p) { return p; }
struct X {

X(int);
~X();

};
void f(X* p);

void g() { // rare, specialized use:
char* buf = new char[sizeof(X)];
X* p = new(buf) X(222); // use buf[] and initialize
f(p);
p->X::~X(); // cleanup

}

— end note ]
18 Once a destructor is invoked for an object, the object’s lifetime ends; the behavior is undefined if the destructor

is invoked for an object whose lifetime has ended (6.7.3).
[Example 2 : If the destructor for an object with automatic storage duration is explicitly invoked, and the block is
subsequently left in a manner that would ordinarily invoke implicit destruction of the object, the behavior is undefined.

— end example ]
19 [Note 10 : The notation for explicit call of a destructor can be used for any scalar type name (7.5.4.4). Allowing this

makes it possible to write code without having to know if a destructor exists for a given type. For example:
typedef int I;
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I* p;
p->I::~I();

— end note ]
20 A destructor shall not be a coroutine.

11.4.8 Conversions [class.conv]
11.4.8.1 General [class.conv.general]

1 Type conversions of class objects can be specified by constructors and by conversion functions. These
conversions are called user-defined conversions and are used for implicit type conversions (7.3), for initialization
(9.4), and for explicit type conversions (7.6.1.4, 7.6.3, 7.6.1.9).

2 User-defined conversions are applied only where they are unambiguous (6.5.2, 11.4.8.3). Conversions obey
the access control rules (11.8). Access control is applied after ambiguity resolution (6.5).

3 [Note 1 : See 12.2 for a discussion of the use of conversions in function calls as well as examples below. — end note ]
4 At most one user-defined conversion (constructor or conversion function) is implicitly applied to a single

value.
[Example 1 :

struct X {
operator int();

};

struct Y {
operator X();

};

Y a;
int b = a; // error: no viable conversion (a.operator X().operator int() not considered)
int c = X(a); // OK, a.operator X().operator int()

— end example ]

11.4.8.2 Conversion by constructor [class.conv.ctor]
1 A constructor that is not explicit (9.2.3) specifies a conversion from the types of its parameters (if any) to

the type of its class. Such a constructor is called a converting constructor.
[Example 1 :

struct X {
X(int);
X(const char*, int =0);
X(int, int);

};

void f(X arg) {
X a = 1; // a = X(1)
X b = "Jessie"; // b = X("Jessie",0)
a = 2; // a = X(2)
f(3); // f(X(3))
f({1, 2}); // f(X(1,2))

}

— end example ]
2 [Note 1 : An explicit constructor constructs objects just like non-explicit constructors, but does so only where the direct-

initialization syntax (9.4) or where casts (7.6.1.9, 7.6.3) are explicitly used; see also 12.2.2.5. A default constructor can
be an explicit constructor; such a constructor will be used to perform default-initialization or value-initialization (9.4).
[Example 2 :

struct Z {
explicit Z();
explicit Z(int);
explicit Z(int, int);

};
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Z a; // OK, default-initialization performed
Z b{}; // OK, direct initialization syntax used
Z c = {}; // error: copy-list-initialization
Z a1 = 1; // error: no implicit conversion
Z a3 = Z(1); // OK, direct initialization syntax used
Z a2(1); // OK, direct initialization syntax used
Z* p = new Z(1); // OK, direct initialization syntax used
Z a4 = (Z)1; // OK, explicit cast used
Z a5 = static_cast<Z>(1); // OK, explicit cast used
Z a6 = { 3, 4 }; // error: no implicit conversion

— end example ]
— end note ]

3 A non-explicit copy/move constructor (11.4.5.3) is a converting constructor.
[Note 2 : An implicitly-declared copy/move constructor is not an explicit constructor; it can be called for implicit type
conversions. — end note ]

11.4.8.3 Conversion functions [class.conv.fct]
conversion-function-id :

operator conversion-type-id
conversion-type-id :

type-specifier-seq conversion-declaratoropt

conversion-declarator :
ptr-operator conversion-declaratoropt

1 A declaration whose declarator-id has an unqualified-id that is a conversion-function-id declares a conversion
function; its declarator shall be a function declarator (9.3.4.6) of the form

ptr-declarator ( parameter-declaration-clause ) cv-qualifier-seqopt
ref-qualifier-seqopt noexcept-specifieropt attribute-specifier-seqopt

where the ptr-declarator consists solely of an id-expression, an optional attribute-specifier-seq, and optional
surrounding parentheses, and the id-expression has one of the following forms:

—(1.1) in a member-declaration that belongs to the member-specification of a class or class template but is not
a friend declaration (11.8.4), the id-expression is a conversion-function-id ;

—(1.2) otherwise, the id-expression is a qualified-id whose unqualified-id is a conversion-function-id .
2 A conversion function shall have no non-object parameters and shall be a non-static member function of

a class or class template X; it specifies a conversion from X to the type specified by the conversion-type-id ,
interpreted as a type-id (9.3.2). A decl-specifier in the decl-specifier-seq of a conversion function (if any) shall
not be a defining-type-specifier .

3 The type of the conversion function is “noexceptopt function taking no parameter cv-qualifier-seqopt ref-
qualifieropt returning conversion-type-id”.

4 A conversion function is never used to convert a (possibly cv-qualified) object to the (possibly cv-qualified)
same object type (or a reference to it), to a (possibly cv-qualified) base class of that type (or a reference to
it), or to cv void.97

[Example 1 :
struct X {

operator int();
operator auto() -> short; // error: trailing return type

};

void f(X a) {
int i = int(a);
i = (int)a;
i = a;

}

97) These conversions are considered as standard conversions for the purposes of overload resolution (12.2.4.2, 12.2.4.2.5) and
therefore initialization (9.4) and explicit casts (7.6.1.9). A conversion to void does not invoke any conversion function (7.6.1.9).
Even though never directly called to perform a conversion, such conversion functions can be declared and can potentially be
reached through a call to a virtual conversion function in a base class.
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In all three cases the value assigned will be converted by X::operator int(). — end example ]
5 A conversion function may be explicit (9.2.3), in which case it is only considered as a user-defined conversion

for direct-initialization (9.4). Otherwise, user-defined conversions are not restricted to use in assignments and
initializations.
[Example 2 :

class Y { };
struct Z {

explicit operator Y() const;
};

void h(Z z) {
Y y1(z); // OK, direct-initialization
Y y2 = z; // error: no conversion function candidate for copy-initialization
Y y3 = (Y)z; // OK, cast notation

}

void g(X a, X b) {
int i = (a) ? 1+a : 0;
int j = (a&&b) ? a+b : i;
if (a) {
}

}

— end example ]
6 The conversion-type-id shall not represent a function type nor an array type. The conversion-type-id in a

conversion-function-id is the longest sequence of tokens that could possibly form a conversion-type-id .
[Note 1 : This prevents ambiguities between the declarator operator * and its expression counterparts.
[Example 3 :

&ac.operator int*i; // syntax error:
// parsed as: &(ac.operator int *)i
// not as: &(ac.operator int)*i

The * is the pointer declarator and not the multiplication operator. — end example ]
This rule also prevents ambiguities for attributes.
[Example 4 :

operator int [[noreturn]] (); // error: noreturn attribute applied to a type
— end example ]
— end note ]

7 [Note 2 : A conversion function in a derived class hides only conversion functions in base classes that convert to
the same type. A conversion function template with a dependent return type hides only templates in base classes
that correspond to it (6.5.2); otherwise, it hides and is hidden as a non-template function. Function overload
resolution (12.2.4) selects the best conversion function to perform the conversion.
[Example 5 :

struct X {
operator int();

};

struct Y : X {
operator char();

};

void f(Y& a) {
if (a) { // error: ambiguous between X::operator int() and Y::operator char()
}

}

— end example ]
— end note ]
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8 Conversion functions can be virtual.
9 A conversion function template shall not have a deduced return type (9.2.9.6).

[Example 6 :
struct S {

operator auto() const { return 10; } // OK
template<class T>
operator auto() const { return 1.2; } // error: conversion function template

};

— end example ]

11.4.9 Static members [class.static]
11.4.9.1 General [class.static.general]

1 A static member s of class X may be referred to using the qualified-id expression X::s; it is not necessary to
use the class member access syntax (7.6.1.5) to refer to a static member. A static member may be referred to
using the class member access syntax, in which case the object expression is evaluated.
[Example 1 :

struct process {
static void reschedule();

};
process& g();

void f() {
process::reschedule(); // OK, no object necessary
g().reschedule(); // g() is called

}

— end example ]
2 Static members obey the usual class member access rules (11.8). When used in the declaration of a

class member, the static specifier shall only be used in the member declarations that appear within the
member-specification of the class definition.
[Note 1 : It cannot be specified in member declarations that appear in namespace scope. — end note ]

11.4.9.2 Static member functions [class.static.mfct]
1 [Note 1 : The rules described in 11.4.2 apply to static member functions. — end note ]
2 [Note 2 : A static member function does not have a this pointer (7.5.2). A static member function cannot be qualified

with const, volatile, or virtual (9.3.4.6). — end note ]

11.4.9.3 Static data members [class.static.data]
1 A static data member is not part of the subobjects of a class. If a static data member is declared thread_-

local there is one copy of the member per thread. If a static data member is not declared thread_local
there is one copy of the data member that is shared by all the objects of the class.

2 A static data member shall not be mutable (9.2.2). A static data member shall not be a direct member (11.4)
of an unnamed (11.1) or local (11.6) class or of a (possibly indirectly) nested class (11.4.12) thereof.

3 The declaration of a non-inline static data member in its class definition is not a definition and may be of an
incomplete type other than cv void.
[Note 1 : The initializer in the definition of a static data member is in the scope of its class (6.4.7). — end note ]
[Example 1 :

class process {
static process* run_chain;
static process* running;

};

process* process::running = get_main();
process* process::run_chain = running;

The definition of the static data member run_chain of class process inhabits the global scope; the notation
process::run_chain indicates that the member run_chain is a member of class process and in the scope of class
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process. In the static data member definition, the initializer expression refers to the static data member running of
class process. — end example ]
[Note 2 : Once the static data member has been defined, it exists even if no objects of its class have been created.
[Example 2 : In the example above, run_chain and running exist even if no objects of class process are created by
the program. — end example ]
The initialization and destruction of static data members is described in 6.9.3.2, 6.9.3.3, and 6.9.3.4. — end note ]

4 If a non-volatile non-inline const static data member is of integral or enumeration type, its declaration in
the class definition can specify a brace-or-equal-initializer in which every initializer-clause that is an assignment-
expression is a constant expression (7.7). The member shall still be defined in a namespace scope if it is
odr-used (6.3) in the program and the namespace scope definition shall not contain an initializer . The
declaration of an inline static data member (which is a definition) may specify a brace-or-equal-initializer .
If the member is declared with the constexpr specifier, it may be redeclared in namespace scope with no
initializer (this usage is deprecated; see D.6). Declarations of other static data members shall not specify a
brace-or-equal-initializer .

5 [Note 3 : There is exactly one definition of a static data member that is odr-used (6.3) in a valid program. — end
note ]

6 [Note 4 : Static data members of a class in namespace scope have the linkage of the name of the class (6.6). — end
note ]

11.4.10 Bit-fields [class.bit]
1 A member-declarator of the form

identifieropt attribute-specifier-seqopt : constant-expression brace-or-equal-initializeropt

specifies a bit-field. The optional attribute-specifier-seq appertains to the entity being declared. A bit-field
shall not be a static member. A bit-field shall have integral or (possibly cv-qualified) enumeration type; the
bit-field semantic property is not part of the type of the class member. The constant-expression shall be an
integral constant expression with a value greater than or equal to zero and is called the width of the bit-field.
If the width of a bit-field is larger than the width of the bit-field’s type (or, in case of an enumeration type,
of its underlying type), the extra bits are padding bits (6.8.1). Allocation of bit-fields within a class object is
implementation-defined. Alignment of bit-fields is implementation-defined. Bit-fields are packed into some
addressable allocation unit.
[Note 1 : Bit-fields straddle allocation units on some machines and not on others. Bit-fields are assigned right-to-left
on some machines, left-to-right on others. — end note ]

2 A declaration for a bit-field that omits the identifier declares an unnamed bit-field. Unnamed bit-fields are
not members and cannot be initialized. An unnamed bit-field shall not be declared with a cv-qualified type.
[Note 2 : An unnamed bit-field is useful for padding to conform to externally-imposed layouts. — end note ]

As a special case, an unnamed bit-field with a width of zero specifies alignment of the next bit-field at an
allocation unit boundary. Only when declaring an unnamed bit-field may the width be zero.

3 The address-of operator & shall not be applied to a bit-field, so there are no pointers to bit-fields. A non-const
reference shall not bind to a bit-field (9.4.4).
[Note 3 : If the initializer for a reference of type const T& is an lvalue that refers to a bit-field, the reference is bound to
a temporary initialized to hold the value of the bit-field; the reference is not bound to the bit-field directly. See 9.4.4.

— end note ]
4 If a value of integral type (other than bool) is stored into a bit-field of width N and the value would be

representable in a hypothetical signed or unsigned integer type with width N and the same signedness as the
bit-field’s type, the original value and the value of the bit-field compare equal. If the value true or false is
stored into a bit-field of type bool of any size (including a one bit bit-field), the original bool value and the
value of the bit-field compare equal. If a value of an enumeration type is stored into a bit-field of the same
type and the width is large enough to hold all the values of that enumeration type (9.7.1), the original value
and the value of the bit-field compare equal.
[Example 1 :

enum BOOL { FALSE=0, TRUE=1 };
struct A {

BOOL b:1;
};
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A a;
void f() {

a.b = TRUE;
if (a.b == TRUE) // yields true

{ /* ... */ }
}

— end example ]

11.4.11 Allocation and deallocation functions [class.free]
1 Any allocation function for a class T is a static member (even if not explicitly declared static).
2 [Example 1 :

class Arena;
struct B {

void* operator new(std::size_t, Arena*);
};
struct D1 : B {
};

Arena* ap;
void foo(int i) {

new (ap) D1; // calls B::operator new(std::size_t, Arena*)
new D1[i]; // calls ::operator new[](std::size_t)
new D1; // error: ::operator new(std::size_t) hidden

}

— end example ]
3 Any deallocation function for a class X is a static member (even if not explicitly declared static).

[Example 2 :
class X {

void operator delete(void*);
void operator delete[](void*, std::size_t);

};

class Y {
void operator delete(void*, std::size_t);
void operator delete[](void*);

};

— end example ]
4 Since member allocation and deallocation functions are static they cannot be virtual.

[Note 1 : However, when the cast-expression of a delete-expression refers to an object of class type with a virtual
destructor, because the deallocation function is chosen by the destructor of the dynamic type of the object, the effect
is the same in that case. For example,

struct B {
virtual ~B();
void operator delete(void*, std::size_t);

};

struct D : B {
void operator delete(void*);

};

struct E : B {
void log_deletion();
void operator delete(E *p, std::destroying_delete_t) {

p->log_deletion();
p->~E();
::operator delete(p);

}
};
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void f() {
B* bp = new D;
delete bp; // 1: uses D::operator delete(void*)
bp = new E;
delete bp; // 2: uses E::operator delete(E*, std::destroying_delete_t)

}

Here, storage for the object of class D is deallocated by D::operator delete(), and the object of class E is destroyed
and its storage is deallocated by E::operator delete(), due to the virtual destructor. — end note ]
[Note 2 : Virtual destructors have no effect on the deallocation function actually called when the cast-expression of a
delete-expression refers to an array of objects of class type. For example,

struct B {
virtual ~B();
void operator delete[](void*, std::size_t);

};

struct D : B {
void operator delete[](void*, std::size_t);

};

void f(int i) {
D* dp = new D[i];
delete [] dp; // uses D::operator delete[](void*, std::size_t)
B* bp = new D[i];
delete[] bp; // undefined behavior

}

— end note ]
5 Access to the deallocation function is checked statically, even if a different one is actually executed.

[Example 3 : For the call on line “// 1” above, if B::operator delete() had been private, the delete expression
would have been ill-formed. — end example ]

6 [Note 3 : If a deallocation function has no explicit noexcept-specifier , it has a non-throwing exception specification (14.5).
— end note ]

11.4.12 Nested class declarations [class.nest]
1 A class can be declared within another class. A class declared within another is called a nested class.

[Note 1 : See 7.5.4 for restrictions on the use of non-static data members and non-static member functions. — end
note ]
[Example 1 :

int x;
int y;

struct enclose {
int x;
static int s;

struct inner {
void f(int i) {

int a = sizeof(x); // OK, operand of sizeof is an unevaluated operand
x = i; // error: assign to enclose::x
s = i; // OK, assign to enclose::s
::x = i; // OK, assign to global x
y = i; // OK, assign to global y

}
void g(enclose* p, int i) {

p->x = i; // OK, assign to enclose::x
}

};
};

inner* p = 0; // error: inner not found
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— end example ]
2 [Note 2 : Nested classes can be defined either in the enclosing class or in an enclosing namespace; member functions

and static data members of a nested class can be defined either in the nested class or in an enclosing namespace scope.
[Example 2 :

struct enclose {
struct inner {

static int x;
void f(int i);

};
};

int enclose::inner::x = 1;

void enclose::inner::f(int i) { /* ... */ }

class E {
class I1; // forward declaration of nested class
class I2;
class I1 { }; // definition of nested class

};
class E::I2 { }; // definition of nested class

— end example ]
— end note ]

3 A friend function (11.8.4) defined within a nested class has no special access rights to members of an enclosing
class.

11.5 Unions [class.union]
11.5.1 General [class.union.general]

1 A union is a class defined with the class-key union.
2 In a union, a non-static data member is active if its name refers to an object whose lifetime has begun and

has not ended (6.7.3). At most one of the non-static data members of an object of union type can be active
at any time, that is, the value of at most one of the non-static data members can be stored in a union at any
time.
[Note 1 : One special guarantee is made in order to simplify the use of unions: If a standard-layout union contains
several standard-layout structs that share a common initial sequence (11.4), and if a non-static data member of an
object of this standard-layout union type is active and is one of the standard-layout structs, it is permitted to inspect
the common initial sequence of any of the standard-layout struct members; see 11.4. — end note ]

3 The size of a union is sufficient to contain the largest of its non-static data members. Each non-static data
member is allocated as if it were the sole member of a non-union class.
[Note 2 : A union object and its non-static data members are pointer-interconvertible (6.8.4, 7.6.1.9). As a consequence,
all non-static data members of a union object have the same address. — end note ]

4 A union can have member functions (including constructors and destructors), but it shall not have virtual
(11.7.3) functions. A union shall not have base classes. A union shall not be used as a base class. If a union
contains a non-static data member of reference type the program is ill-formed.
[Note 3 : Absent default member initializers (11.4), if any non-static data member of a union has a non-trivial default
constructor (11.4.5.2), copy constructor, move constructor (11.4.5.3), copy assignment operator, move assignment
operator (11.4.6), or destructor (11.4.7), the corresponding member function of the union must be user-provided or it
will be implicitly deleted (9.5.3) for the union.
[Example 1 : Consider the following union:

union U {
int i;
float f;
std::string s;

};
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Since std::string (23.4) declares non-trivial versions of all of the special member functions, U will have an implicitly
deleted default constructor, copy/move constructor, copy/move assignment operator, and destructor. To use U, some
or all of these member functions must be user-provided. — end example ]
— end note ]

5 When the left operand of an assignment operator involves a member access expression (7.6.1.5) that nominates
a union member, it may begin the lifetime of that union member, as described below. For an expression E,
define the set S(E) of subexpressions of E as follows:

—(5.1) If E is of the form A.B, S(E) contains the elements of S(A), and also contains A.B if B names a union
member of a non-class, non-array type, or of a class type with a trivial default constructor that is not
deleted, or an array of such types.

—(5.2) If E is of the form A[B] and is interpreted as a built-in array subscripting operator, S(E) is S(A) if A is
of array type, S(B) if B is of array type, and empty otherwise.

—(5.3) Otherwise, S(E) is empty.
In an assignment expression of the form E1 = E2 that uses either the built-in assignment operator (7.6.19) or
a trivial assignment operator (11.4.6), for each element X of S(E1), if modification of X would have undefined
behavior under 6.7.3, an object of the type of X is implicitly created in the nominated storage; no initialization
is performed and the beginning of its lifetime is sequenced after the value computation of the left and right
operands and before the assignment.
[Note 4 : This ends the lifetime of the previously-active member of the union, if any (6.7.3). — end note ]
[Example 2 :

union A { int x; int y[4]; };
struct B { A a; };
union C { B b; int k; };
int f() {

C c; // does not start lifetime of any union member
c.b.a.y[3] = 4; // OK, S(c.b.a.y[3]) contains c.b and c.b.a.y;

// creates objects to hold union members c.b and c.b.a.y
return c.b.a.y[3]; // OK, c.b.a.y refers to newly created object (see 6.7.3)

}

struct X { const int a; int b; };
union Y { X x; int k; };
void g() {

Y y = { { 1, 2 } }; // OK, y.x is active union member (11.4)
int n = y.x.a;
y.k = 4; // OK, ends lifetime of y.x, y.k is active member of union
y.x.b = n; // undefined behavior: y.x.b modified outside its lifetime,

// S(y.x.b) is empty because X’s default constructor is deleted,
// so union member y.x’s lifetime does not implicitly start

}

— end example ]
6 [Note 5 : In cases where the above rule does not apply, the active member of a union can only be changed by the use

of a placement new-expression. — end note ]
[Example 3 : Consider an object u of a union type U having non-static data members m of type M and n of type N. If M
has a non-trivial destructor and N has a non-trivial constructor (for instance, if they declare or inherit virtual functions),
the active member of u can be safely switched from m to n using the destructor and placement new-expression as
follows:

u.m.~M();
new (&u.n) N;

— end example ]

11.5.2 Anonymous unions [class.union.anon]
1 A union of the form

union { member-specification } ;

is called an anonymous union; it defines an unnamed type and an unnamed object of that type called an
anonymous union member if it is a non-static data member or an anonymous union variable otherwise. Each
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member-declaration in the member-specification of an anonymous union shall either define one or more public
non-static data members or be a static_assert-declaration. Nested types, anonymous unions, and functions
shall not be declared within an anonymous union. The names of the members of an anonymous union are
bound in the scope inhabited by the union declaration.
[Example 1 :

void f() {
union { int a; const char* p; };
a = 1;
p = "Jennifer";

}

Here a and p are used like ordinary (non-member) variables, but since they are union members they have the same
address. — end example ]

2 Anonymous unions declared in the scope of a namespace with external linkage shall be declared static.
Anonymous unions declared at block scope shall be declared with any storage class allowed for a block
variable, or with no storage class. A storage class is not allowed in a declaration of an anonymous union in a
class scope.

3 [Note 1 : A union for which objects, pointers, or references are declared is not an anonymous union.
[Example 2 :

void f() {
union { int aa; char* p; } obj, *ptr = &obj;
aa = 1; // error
ptr->aa = 1; // OK

}

The assignment to plain aa is ill-formed since the member name is not visible outside the union, and even if it were
visible, it is not associated with any particular object. — end example ]
— end note ]
[Note 2 : Initialization of unions with no user-declared constructors is described in 9.4.2. — end note ]

4 A union-like class is a union or a class that has an anonymous union as a direct member. A union-like class X
has a set of variant members. If X is a union, a non-static data member of X that is not an anonymous union
is a variant member of X. In addition, a non-static data member of an anonymous union that is a member
of X is also a variant member of X. At most one variant member of a union may have a default member
initializer.
[Example 3 :

union U {
int x = 0;
union {

int k;
};
union {

int z;
int y = 1; // error: initialization for second variant member of U

};
};

— end example ]

11.6 Local class declarations [class.local]
1 A class can be declared within a function definition; such a class is called a local class.

[Note 1 : A declaration in a local class cannot odr-use (6.3) a local entity from an enclosing scope. — end note ]
[Example 1 :

int x;
void f() {

static int s;
int x;
const int N = 5;
extern int q();
int arr[2];
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auto [y, z] = arr;

struct local {
int g() { return x; } // error: odr-use of non-odr-usable variable x
int h() { return s; } // OK
int k() { return ::x; } // OK
int l() { return q(); } // OK
int m() { return N; } // OK, not an odr-use
int* n() { return &N; } // error: odr-use of non-odr-usable variable N
int p() { return y; } // error: odr-use of non-odr-usable structured binding y

};
}

local* p = 0; // error: local not found
— end example ]

2 An enclosing function has no special access to members of the local class; it obeys the usual access rules (11.8).
Member functions of a local class shall be defined within their class definition, if they are defined at all.

3 If class X is a local class a nested class Y may be declared in class X and later defined in the definition of class
X or be later defined in the same scope as the definition of class X. A class nested within a local class is a
local class.

4 [Note 2 : A local class cannot have static data members (11.4.9.3). — end note ]

11.7 Derived classes [class.derived]
11.7.1 General [class.derived.general]

1 A list of base classes can be specified in a class definition using the notation:
base-clause :

: base-specifier-list
base-specifier-list :

base-specifier ...opt
base-specifier-list , base-specifier ...opt

base-specifier :
attribute-specifier-seqopt class-or-decltype
attribute-specifier-seqopt virtual access-specifieropt class-or-decltype
attribute-specifier-seqopt access-specifier virtualopt class-or-decltype

class-or-decltype :
nested-name-specifieropt type-name
nested-name-specifier template simple-template-id
decltype-specifier

access-specifier :
private
protected
public

The optional attribute-specifier-seq appertains to the base-specifier .
2 The component names of a class-or-decltype are those of its nested-name-specifier , type-name, and/or simple-

template-id . A class-or-decltype shall denote a (possibly cv-qualified) class type that is not an incompletely
defined class (11.4); any cv-qualifiers are ignored. The class denoted by the class-or-decltype of a base-specifier
is called a direct base class for the class being defined. The lookup for the component name of the type-name
or simple-template-id is type-only (6.5). A class B is a base class of a class D if it is a direct base class of D or
a direct base class of one of D’s base classes. A class is an indirect base class of another if it is a base class
but not a direct base class. A class is said to be (directly or indirectly) derived from its (direct or indirect)
base classes.
[Note 1 : See 11.8 for the meaning of access-specifier . — end note ]

Members of a base class are also members of the derived class.
[Note 2 : Constructors of a base class can be explicitly inherited (9.9). Base class members can be referred
to in expressions in the same manner as other members of the derived class, unless their names are hidden or
ambiguous (6.5.2). The scope resolution operator :: (7.5.4.3) can be used to refer to a direct or indirect base member
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explicitly, even if it is hidden in the derived class. A derived class can itself serve as a base class subject to access
control; see 11.8.3. A pointer to a derived class can be implicitly converted to a pointer to an accessible unambiguous
base class (7.3.12). An lvalue of a derived class type can be bound to a reference to an accessible unambiguous base
class (9.4.4). — end note ]

3 The base-specifier-list specifies the type of the base class subobjects contained in an object of the derived class
type.
[Example 1 :

struct Base {
int a, b, c;

};

struct Derived : Base {
int b;

};

struct Derived2 : Derived {
int c;

};

Here, an object of class Derived2 will have a subobject of class Derived which in turn will have a subobject of class
Base. — end example ]

4 A base-specifier followed by an ellipsis is a pack expansion (13.7.4).
5 The order in which the base class subobjects are allocated in the most derived object (6.7.2) is unspecified.

[Note 3 : A derived class and its base class subobjects can be represented by a directed acyclic graph (DAG) where an
arrow means “directly derived from” (see Figure 3). An arrow need not have a physical representation in memory. A
DAG of subobjects is often referred to as a “subobject lattice”. — end note ]

Base

Derived1

Derived2

Figure 3: Directed acyclic graph [fig:class.dag]

6 [Note 4 : Initialization of objects representing base classes can be specified in constructors; see 11.9.3. — end note ]
7 [Note 5 : A base class subobject can have a layout different from the layout of a most derived object of the same type.

A base class subobject can have a polymorphic behavior (11.9.5) different from the polymorphic behavior of a most
derived object of the same type. A base class subobject can be of zero size; however, two subobjects that have the
same class type and that belong to the same most derived object cannot be allocated at the same address (6.7.2).

— end note ]

11.7.2 Multiple base classes [class.mi]
1 A class can be derived from any number of base classes.

[Note 1 : The use of more than one direct base class is often called multiple inheritance. — end note ]
[Example 1 :

class A { /* ... */ };
class B { /* ... */ };
class C { /* ... */ };
class D : public A, public B, public C { /* ... */ };

— end example ]
2 [Note 2 : The order of derivation is not significant except as specified by the semantics of initialization by constructor

(11.9.3), cleanup (11.4.7), and storage layout (11.4, 11.8.2). — end note ]
3 A class shall not be specified as a direct base class of a derived class more than once.

[Note 3 : A class can be an indirect base class more than once and can be a direct and an indirect base class. There
are limited things that can be done with such a class; lookup that finds its non-static data members and member
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functions in the scope of the derived class will be ambiguous. However, the static members, enumerations and types
can be unambiguously referred to. — end note ]
[Example 2 :

class X { /* ... */ };
class Y : public X, public X { /* ... */ }; // error
class L { public: int next; /* ... */ };
class A : public L { /* ... */ };
class B : public L { /* ... */ };
class C : public A, public B { void f(); /* ... */ }; // well-formed
class D : public A, public L { void f(); /* ... */ }; // well-formed

— end example ]
4 A base class specifier that does not contain the keyword virtual specifies a non-virtual base class. A base

class specifier that contains the keyword virtual specifies a virtual base class. For each distinct occurrence
of a non-virtual base class in the class lattice of the most derived class, the most derived object (6.7.2)
shall contain a corresponding distinct base class subobject of that type. For each distinct base class that is
specified virtual, the most derived object shall contain a single base class subobject of that type.

5 [Note 4 : For an object of class type C, each distinct occurrence of a (non-virtual) base class L in the class lattice of C
corresponds one-to-one with a distinct L subobject within the object of type C. Given the class C defined above, an
object of class C will have two subobjects of class L as shown in Figure 4.

L L

A B

C

Figure 4: Non-virtual base [fig:class.nonvirt]

In such lattices, explicit qualification can be used to specify which subobject is meant. The body of function C::f can
refer to the member next of each L subobject:

void C::f() { A::next = B::next; } // well-formed
Without the A:: or B:: qualifiers, the definition of C::f above would be ill-formed because of ambiguity (6.5.2).

— end note ]
6 [Note 5 : In contrast, consider the case with a virtual base class:

class V { /* ... */ };
class A : virtual public V { /* ... */ };
class B : virtual public V { /* ... */ };
class C : public A, public B { /* ... */ };

V

A B

C

Figure 5: Virtual base [fig:class.virt]

For an object c of class type C, a single subobject of type V is shared by every base class subobject of c that has a
virtual base class of type V. Given the class C defined above, an object of class C will have one subobject of class V,
as shown in Figure 5. — end note ]
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7 [Note 6 : A class can have both virtual and non-virtual base classes of a given type.
class B { /* ... */ };
class X : virtual public B { /* ... */ };
class Y : virtual public B { /* ... */ };
class Z : public B { /* ... */ };
class AA : public X, public Y, public Z { /* ... */ };

For an object of class AA, all virtual occurrences of base class B in the class lattice of AA correspond to a single B
subobject within the object of type AA, and every other occurrence of a (non-virtual) base class B in the class lattice of
AA corresponds one-to-one with a distinct B subobject within the object of type AA. Given the class AA defined above,
class AA has two subobjects of class B: Z’s B and the virtual B shared by X and Y, as shown in Figure 6.

B B

AA

X Y Z

Figure 6: Virtual and non-virtual base [fig:class.virtnonvirt]

— end note ]

11.7.3 Virtual functions [class.virtual]
1 A non-static member function is a virtual function if it is first declared with the keyword virtual or if it

overrides a virtual member function declared in a base class (see below).98

[Note 1 : Virtual functions support dynamic binding and object-oriented programming. — end note ]

A class with a virtual member function is called a polymorphic class.99

2 If a virtual member function F is declared in a class B, and, in a class D derived (directly or indirectly)
from B, a declaration of a member function G corresponds (6.4.1) to a declaration of F , ignoring trailing
requires-clauses, then G overrides100 F . For convenience we say that any virtual function overrides itself.
A virtual member function V of a class object S is a final overrider unless the most derived class (6.7.2)
of which S is a base class subobject (if any) has another member function that overrides V . In a derived
class, if a virtual member function of a base class subobject has more than one final overrider the program is
ill-formed.
[Example 1 :

struct A {
virtual void f();

};
struct B : virtual A {

virtual void f();
};
struct C : B , virtual A {

using A::f;
};

void foo() {
C c;
c.f(); // calls B::f, the final overrider
c.C::f(); // calls A::f because of the using-declaration

}

— end example ]

98) The use of the virtual specifier in the declaration of an overriding function is valid but redundant (has empty semantics).
99) If all virtual functions are immediate functions, the class is still polymorphic even if its internal representation does not

otherwise require any additions for that polymorphic behavior.
100) A function with the same name but a different parameter list (Clause 12) as a virtual function is not necessarily virtual
and does not override. Access control (11.8) is not considered in determining overriding.
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[Example 2 :
struct A { virtual void f(); };
struct B : A { };
struct C : A { void f(); };
struct D : B, C { }; // OK, A::f and C::f are the final overriders

// for the B and C subobjects, respectively
— end example ]

3 [Note 2 : A virtual member function does not have to be visible to be overridden, for example,
struct B {

virtual void f();
};
struct D : B {

void f(int);
};
struct D2 : D {

void f();
};

the function f(int) in class D hides the virtual function f() in its base class B; D::f(int) is not a virtual function.
However, f() declared in class D2 has the same name and the same parameter list as B::f(), and therefore is a virtual
function that overrides the function B::f() even though B::f() is not visible in class D2. — end note ]

4 If a virtual function f in some class B is marked with the virt-specifier final and in a class D derived from B
a function D::f overrides B::f, the program is ill-formed.
[Example 3 :

struct B {
virtual void f() const final;

};

struct D : B {
void f() const; // error: D::f attempts to override final B::f

};

— end example ]
5 If a virtual function is marked with the virt-specifier override and does not override a member function of a

base class, the program is ill-formed.
[Example 4 :

struct B {
virtual void f(int);

};

struct D : B {
virtual void f(long) override; // error: wrong signature overriding B::f
virtual void f(int) override; // OK

};

— end example ]
6 A virtual function shall not have a trailing requires-clause (9.3).

[Example 5 :
template<typename T>
struct A {

virtual void f() requires true; // error: virtual function cannot be constrained (13.5.3)
};

— end example ]
7 The ref-qualifier , or lack thereof, of an overriding function shall be the same as that of the overridden function.
8 The return type of an overriding function shall be either identical to the return type of the overridden function

or covariant with the classes of the functions. If a function D::f overrides a function B::f, the return types
of the functions are covariant if they satisfy the following criteria:
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—(8.1) both are pointers to classes, both are lvalue references to classes, or both are rvalue references to
classes101

—(8.2) the class in the return type of B::f is the same class as the class in the return type of D::f, or is an
unambiguous and accessible direct or indirect base class of the class in the return type of D::f

—(8.3) both pointers or references have the same cv-qualification and the class type in the return type of D::f
has the same cv-qualification as or less cv-qualification than the class type in the return type of B::f.

9 If the class type in the covariant return type of D::f differs from that of B::f, the class type in the return
type of D::f shall be complete at the locus (6.4.2) of the overriding declaration or shall be the class type D.
When the overriding function is called as the final overrider of the overridden function, its result is converted
to the type returned by the (statically chosen) overridden function (7.6.1.3).
[Example 6 :

class B { };
class D : private B { friend class Derived; };
struct Base {

virtual void vf1();
virtual void vf2();
virtual void vf3();
virtual B* vf4();
virtual B* vf5();
void f();

};

struct No_good : public Base {
D* vf4(); // error: B (base class of D) inaccessible

};

class A;
struct Derived : public Base {

void vf1(); // virtual and overrides Base::vf1()
void vf2(int); // not virtual, hides Base::vf2()
char vf3(); // error: invalid difference in return type only
D* vf4(); // OK, returns pointer to derived class
A* vf5(); // error: returns pointer to incomplete class
void f();

};

void g() {
Derived d;
Base* bp = &d; // standard conversion:

// Derived* to Base*
bp->vf1(); // calls Derived::vf1()
bp->vf2(); // calls Base::vf2()
bp->f(); // calls Base::f() (not virtual)
B* p = bp->vf4(); // calls Derived::vf4() and converts the

// result to B*
Derived* dp = &d;
D* q = dp->vf4(); // calls Derived::vf4() and does not

// convert the result to B*
dp->vf2(); // error: argument mismatch

}

— end example ]
10 [Note 3 : The interpretation of the call of a virtual function depends on the type of the object for which it is called

(the dynamic type), whereas the interpretation of a call of a non-virtual member function depends only on the type of
the pointer or reference denoting that object (the static type) (7.6.1.3). — end note ]

11 [Note 4 : The virtual specifier implies membership, so a virtual function cannot be a non-member (9.2.3) function.
Nor can a virtual function be a static member, since a virtual function call relies on a specific object for determining
which function to invoke. A virtual function declared in one class can be declared a friend (11.8.4) in another class.

— end note ]

101) Multi-level pointers to classes or references to multi-level pointers to classes are not allowed.

§ 11.7.3 301



© ISO/IEC N4950

12 A virtual function declared in a class shall be defined, or declared pure (11.7.4) in that class, or both; no
diagnostic is required (6.3).

13 [Example 7 : Here are some uses of virtual functions with multiple base classes:
struct A {

virtual void f();
};

struct B1 : A { // note non-virtual derivation
void f();

};

struct B2 : A {
void f();

};

struct D : B1, B2 { // D has two separate A subobjects
};

void foo() {
D d;

// A* ap = &d; // would be ill-formed: ambiguous
B1* b1p = &d;
A* ap = b1p;
D* dp = &d;
ap->f(); // calls D::B1::f
dp->f(); // error: ambiguous

}

In class D above there are two occurrences of class A and hence two occurrences of the virtual member function A::f.
The final overrider of B1::A::f is B1::f and the final overrider of B2::A::f is B2::f. — end example ]

14 [Example 8 : The following example shows a function that does not have a unique final overrider:
struct A {

virtual void f();
};

struct VB1 : virtual A { // note virtual derivation
void f();

};

struct VB2 : virtual A {
void f();

};

struct Error : VB1, VB2 { // error
};

struct Okay : VB1, VB2 {
void f();

};

Both VB1::f and VB2::f override A::f but there is no overrider of both of them in class Error. This example is
therefore ill-formed. Class Okay is well-formed, however, because Okay::f is a final overrider. — end example ]

15 [Example 9 : The following example uses the well-formed classes from above.
struct VB1a : virtual A { // does not declare f
};

struct Da : VB1a, VB2 {
};

void foe() {
VB1a* vb1ap = new Da;
vb1ap->f(); // calls VB2::f

}
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— end example ]
16 Explicit qualification with the scope operator (7.5.4.3) suppresses the virtual call mechanism.

[Example 10 :
class B { public: virtual void f(); };
class D : public B { public: void f(); };

void D::f() { /* ... */ B::f(); }

Here, the function call in D::f really does call B::f and not D::f. — end example ]
17 A deleted function (9.5) shall not override a function that is not deleted. Likewise, a function that is not

deleted shall not override a deleted function.
18 A consteval virtual function shall not override a virtual function that is not consteval. A consteval

virtual function shall not be overridden by a virtual function that is not consteval.

11.7.4 Abstract classes [class.abstract]
1 [Note 1 : The abstract class mechanism supports the notion of a general concept, such as a shape, of which only more

concrete variants, such as circle and square, can actually be used. An abstract class can also be used to define an
interface for which derived classes provide a variety of implementations. — end note ]

2 A virtual function is specified as a pure virtual function by using a pure-specifier (11.4) in the function
declaration in the class definition.
[Note 2 : Such a function might be inherited: see below. — end note ]

A class is an abstract class if it has at least one pure virtual function.
[Note 3 : An abstract class can be used only as a base class of some other class; no objects of an abstract class can be
created except as subobjects of a class derived from it (6.2, 11.4). — end note ]

A pure virtual function need be defined only if called with, or as if with (11.4.7), the qualified-id syntax (7.5.4.3).
[Example 1 :

class point { /* ... */ };
class shape { // abstract class

point center;
public:

point where() { return center; }
void move(point p) { center=p; draw(); }
virtual void rotate(int) = 0; // pure virtual
virtual void draw() = 0; // pure virtual

};

— end example ]
[Note 4 : A function declaration cannot provide both a pure-specifier and a definition. — end note ]
[Example 2 :

struct C {
virtual void f() = 0 { }; // error

};

— end example ]
3 [Note 5 : An abstract class type cannot be used as a parameter or return type of a function being defined (9.3.4.6) or

called (7.6.1.3), except as specified in 9.2.9.3. Further, an abstract class type cannot be used as the type of an explicit
type conversion (7.6.1.9, 7.6.1.10, 7.6.1.11), because the resulting prvalue would be of abstract class type (7.2.1).
However, pointers and references to abstract class types can appear in such contexts. — end note ]

4 A class is abstract if it has at least one pure virtual function for which the final overrider is pure virtual.
[Example 3 :

class ab_circle : public shape {
int radius;

public:
void rotate(int) { }
// ab_circle::draw() is a pure virtual

};
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Since shape::draw() is a pure virtual function ab_circle::draw() is a pure virtual by default. The alternative
declaration,

class circle : public shape {
int radius;

public:
void rotate(int) { }
void draw(); // a definition is required somewhere

};

would make class circle non-abstract and a definition of circle::draw() must be provided. — end example ]
5 [Note 6 : An abstract class can be derived from a class that is not abstract, and a pure virtual function can override a

virtual function which is not pure. — end note ]
6 Member functions can be called from a constructor (or destructor) of an abstract class; the effect of making a

virtual call (11.7.3) to a pure virtual function directly or indirectly for the object being created (or destroyed)
from such a constructor (or destructor) is undefined.

11.8 Member access control [class.access]
11.8.1 General [class.access.general]

1 A member of a class can be
—(1.1) private, that is, it can be named only by members and friends of the class in which it is declared;
—(1.2) protected, that is, it can be named only by members and friends of the class in which it is declared, by

classes derived from that class, and by their friends (see 11.8.5); or
—(1.3) public, that is, it can be named anywhere without access restriction.

[Note 1 : A constructor or destructor can be named by an expression (6.3) even though it has no name. — end note ]
2 A member of a class can also access all the members to which the class has access. A local class of a member

function may access the same members that the member function itself may access.102

3 Members of a class defined with the keyword class are private by default. Members of a class defined with
the keywords struct or union are public by default.
[Example 1 :

class X {
int a; // X::a is private by default

};

struct S {
int a; // S::a is public by default

};

— end example ]
4 Access control is applied uniformly to declarations and expressions.

[Note 2 : Access control applies to members nominated by friend declarations (11.8.4) and using-declarations (9.9).
— end note ]

When a using-declarator is named, access control is applied to it, not to the declarations that replace it. For
an overload set, access control is applied only to the function selected by overload resolution.
[Example 2 :

struct S {
void f(int);

private:
void f(double);

};

void g(S* sp) {
sp->f(2); // OK, access control applied after overload resolution

}

— end example ]

102) Access permissions are thus transitive and cumulative to nested and local classes.
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[Note 3 : Because access control applies to the declarations named, if access control is applied to a typedef-name, only
the accessibility of the typedef or alias declaration itself is considered. The accessibility of the entity referred to by
the typedef-name is not considered. For example,

class A {
class B { };

public:
typedef B BB;

};

void f() {
A::BB x; // OK, typedef A::BB is public
A::B y; // access error, A::B is private

}

— end note ]
5 [Note 4 : Access control does not prevent members from being found by name lookup or implicit conversions to base

classes from being considered. — end note ]

The interpretation of a given construct is established without regard to access control. If the interpretation
established makes use of inaccessible members or base classes, the construct is ill-formed.

6 All access controls in 11.8 affect the ability to name a class member from the declaration of a particular
entity, including parts of the declaration preceding the name of the entity being declared and, if the entity is
a class, the definitions of members of the class appearing outside the class’s member-specification.
[Note 5 : This access also applies to implicit references to constructors, conversion functions, and destructors. — end
note ]

7 [Example 3 :
class A {

typedef int I; // private member
I f();
friend I g(I);
static I x;
template<int> struct Q;
template<int> friend struct R;

protected:
struct B { };

};

A::I A::f() { return 0; }
A::I g(A::I p = A::x);
A::I g(A::I p) { return 0; }
A::I A::x = 0;
template<A::I> struct A::Q { };
template<A::I> struct R { };

struct D: A::B, A { };

Here, all the uses of A::I are well-formed because A::f, A::x, and A::Q are members of class A and g and R are
friends of class A. This implies, for example, that access checking on the first use of A::I must be deferred until
it is determined that this use of A::I is as the return type of a member of class A. Similarly, the use of A::B as a
base-specifier is well-formed because D is derived from A, so checking of base-specifiers must be deferred until the entire
base-specifier-list has been seen. — end example ]

8 Access is checked for a default argument (9.3.4.7) at the point of declaration, rather than at any points of
use of the default argument. Access checking for default arguments in function templates and in member
functions of class templates is performed as described in 13.9.2.

9 Access for a default template-argument (13.2) is checked in the context in which it appears rather than at any
points of use of it.
[Example 4 :

class B { };
template <class T> class C {
protected:

typedef T TT;
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};

template <class U, class V = typename U::TT>
class D : public U { };

D <C<B> >* d; // access error, C::TT is protected
— end example ]

11.8.2 Access specifiers [class.access.spec]
1 Member declarations can be labeled by an access-specifier (11.7):

access-specifier : member-specificationopt

An access-specifier specifies the access rules for members following it until the end of the class or until another
access-specifier is encountered.
[Example 1 :

class X {
int a; // X::a is private by default: class used

public:
int b; // X::b is public
int c; // X::c is public

};

— end example ]
2 Any number of access specifiers is allowed and no particular order is required.

[Example 2 :
struct S {

int a; // S::a is public by default: struct used
protected:

int b; // S::b is protected
private:

int c; // S::c is private
public:

int d; // S::d is public
};

— end example ]
3 When a member is redeclared within its class definition, the access specified at its redeclaration shall be the

same as at its initial declaration.
[Example 3 :

struct S {
class A;
enum E : int;

private:
class A { }; // error: cannot change access
enum E: int { e0 }; // error: cannot change access

};

— end example ]
4 [Note 1 : In a derived class, the lookup of a base class name will find the injected-class-name instead of the name of

the base class in the scope in which it was declared. The injected-class-name might be less accessible than the name
of the base class in the scope in which it was declared. — end note ]
[Example 4 :

class A { };
class B : private A { };
class C : public B {

A* p; // error: injected-class-name A is inaccessible
::A* q; // OK

};

— end example ]
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11.8.3 Accessibility of base classes and base class members [class.access.base]
1 If a class is declared to be a base class (11.7) for another class using the public access specifier, the public

members of the base class are accessible as public members of the derived class and protected members of the
base class are accessible as protected members of the derived class. If a class is declared to be a base class
for another class using the protected access specifier, the public and protected members of the base class
are accessible as protected members of the derived class. If a class is declared to be a base class for another
class using the private access specifier, the public and protected members of the base class are accessible as
private members of the derived class.103

2 In the absence of an access-specifier for a base class, public is assumed when the derived class is defined
with the class-key struct and private is assumed when the class is defined with the class-key class.
[Example 1 :

class B { /* ... */ };
class D1 : private B { /* ... */ };
class D2 : public B { /* ... */ };
class D3 : B { /* ... */ }; // B private by default
struct D4 : public B { /* ... */ };
struct D5 : private B { /* ... */ };
struct D6 : B { /* ... */ }; // B public by default
class D7 : protected B { /* ... */ };
struct D8 : protected B { /* ... */ };

Here B is a public base of D2, D4, and D6, a private base of D1, D3, and D5, and a protected base of D7 and D8. — end
example ]

3 [Note 1 : A member of a private base class can be inaccessible as inherited, but accessible directly. Because of the
rules on pointer conversions (7.3.12) and explicit casts (7.6.1.4, 7.6.1.9, 7.6.3), a conversion from a pointer to a derived
class to a pointer to an inaccessible base class can be ill-formed if an implicit conversion is used, but well-formed if an
explicit cast is used. For example,

class B {
public:

int mi; // non-static member
static int si; // static member

};
class D : private B {
};
class DD : public D {

void f();
};

void DD::f() {
mi = 3; // error: mi is private in D
si = 3; // error: si is private in D
::B b;
b.mi = 3; // OK (b.mi is different from this->mi)
b.si = 3; // OK (b.si is different from this->si)
::B::si = 3; // OK
::B* bp1 = this; // error: B is a private base class
::B* bp2 = (::B*)this; // OK with cast
bp2->mi = 3; // OK, access through a pointer to B.

}

— end note ]
4 A base class B of N is accessible at R, if

—(4.1) an invented public member of B would be a public member of N, or
—(4.2) R occurs in a direct member or friend of class N, and an invented public member of B would be a private

or protected member of N, or
—(4.3) R occurs in a direct member or friend of a class P derived from N, and an invented public member of B

would be a private or protected member of P, or

103) As specified previously in 11.8, private members of a base class remain inaccessible even to derived classes unless friend
declarations within the base class definition are used to grant access explicitly.
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—(4.4) there exists a class S such that B is a base class of S accessible at R and S is a base class of N accessible
at R.

[Example 2 :
class B {
public:

int m;
};

class S: private B {
friend class N;

};

class N: private S {
void f() {

B* p = this; // OK because class S satisfies the fourth condition above: B is a base class of N
// accessible in f() because B is an accessible base class of S and S is an accessible
// base class of N.

}
};

— end example ]
5 If a base class is accessible, one can implicitly convert a pointer to a derived class to a pointer to that base

class (7.3.12, 7.3.13).
[Note 2 : It follows that members and friends of a class X can implicitly convert an X* to a pointer to a private or
protected immediate base class of X. — end note ]

The access to a member is affected by the class in which the member is named. This naming class is the
class in whose scope name lookup performed a search that found the member.
[Note 3 : This class can be explicit, e.g., when a qualified-id is used, or implicit, e.g., when a class member access
operator (7.6.1.5) is used (including cases where an implicit “this->” is added). If both a class member access
operator and a qualified-id are used to name the member (as in p->T::m), the class naming the member is the class
denoted by the nested-name-specifier of the qualified-id (that is, T). — end note ]

A member m is accessible at the point R when named in class N if
—(5.1) m as a member of N is public, or
—(5.2) m as a member of N is private, and R occurs in a direct member or friend of class N, or
—(5.3) m as a member of N is protected, and R occurs in a direct member or friend of class N, or in a member

of a class P derived from N, where m as a member of P is public, private, or protected, or
—(5.4) there exists a base class B of N that is accessible at R, and m is accessible at R when named in class B.

[Example 3 :
class B;
class A {
private:

int i;
friend void f(B*);

};
class B : public A { };
void f(B* p) {

p->i = 1; // OK, B* can be implicitly converted to A*, and f has access to i in A
}

— end example ]
6 If a class member access operator, including an implicit “this->”, is used to access a non-static data member

or non-static member function, the reference is ill-formed if the left operand (considered as a pointer in the
“.” operator case) cannot be implicitly converted to a pointer to the naming class of the right operand.
[Note 4 : This requirement is in addition to the requirement that the member be accessible as named. — end note ]
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11.8.4 Friends [class.friend]
1 A friend of a class is a function or class that is given permission to name the private and protected members

of the class. A class specifies its friends, if any, by way of friend declarations. Such declarations give special
access rights to the friends, but they do not make the nominated friends members of the befriending class.
[Example 1 : The following example illustrates the differences between members and friends:

class X {
int a;
friend void friend_set(X*, int);

public:
void member_set(int);

};

void friend_set(X* p, int i) { p->a = i; }
void X::member_set(int i) { a = i; }

void f() {
X obj;
friend_set(&obj,10);
obj.member_set(10);

}

— end example ]
2 Declaring a class to be a friend implies that private and protected members of the class granting friendship

can be named in the base-specifiers and member declarations of the befriended class.
[Example 2 :

class A {
class B { };
friend class X;

};

struct X : A::B { // OK, A::B accessible to friend
A::B mx; // OK, A::B accessible to member of friend
class Y {

A::B my; // OK, A::B accessible to nested member of friend
};

};

— end example ]
[Example 3 :

class X {
enum { a=100 };
friend class Y;

};

class Y {
int v[X::a]; // OK, Y is a friend of X

};

class Z {
int v[X::a]; // error: X::a is private

};

— end example ]
3 A friend declaration that does not declare a function shall have one of the following forms:

friend elaborated-type-specifier ;
friend simple-type-specifier ;
friend typename-specifier ;

[Note 1 : A friend declaration can be the declaration in a template-declaration (13.1, 13.7.5). — end note ]

If the type specifier in a friend declaration designates a (possibly cv-qualified) class type, that class is
declared as a friend; otherwise, the friend declaration is ignored.
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[Example 4 :
class C;
typedef C Ct;

class X1 {
friend C; // OK, class C is a friend

};

class X2 {
friend Ct; // OK, class C is a friend
friend D; // error: D not found
friend class D; // OK, elaborated-type-specifier declares new class

};

template <typename T> class R {
friend T;

};

R<C> rc; // class C is a friend of R<C>
R<int> Ri; // OK, "friend int;" is ignored

— end example ]
4 A function first declared in a friend declaration has the linkage of the namespace of which it is a member (6.6).

Otherwise, the function retains its previous linkage (9.2.2).
5 [Note 2 : A friend declaration refers to an entity, not (all overloads of) a name. A member function of a class X can be

a friend of a class Y.
[Example 5 :

class Y {
friend char* X::foo(int);
friend X::X(char); // constructors can be friends
friend X::~X(); // destructors can be friends

};

— end example ]
— end note ]

6 A function may be defined in a friend declaration of a class if and only if the class is a non-local class (11.6)
and the function name is unqualified.
[Example 6 :

class M {
friend void f() { } // definition of global f, a friend of M,

// not the definition of a member function
};

— end example ]
7 Such a function is implicitly an inline (9.2.8) function if it is attached to the global module.

[Note 3 : If a friend function is defined outside a class, it is not in the scope of the class. — end note ]
8 No storage-class-specifier shall appear in the decl-specifier-seq of a friend declaration.
9 A member nominated by a friend declaration shall be accessible in the class containing the friend declaration.

The meaning of the friend declaration is the same whether the friend declaration appears in the private,
protected, or public (11.4) portion of the class member-specification.

10 Friendship is neither inherited nor transitive.
[Example 7 :

class A {
friend class B;
int a;

};
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class B {
friend class C;

};

class C {
void f(A* p) {

p->a++; // error: C is not a friend of A despite being a friend of a friend
}

};

class D : public B {
void f(A* p) {

p->a++; // error: D is not a friend of A despite being derived from a friend
}

};

— end example ]
11 [Note 4 : A friend declaration never binds any names (9.3.4, 9.2.9.4). — end note ]

[Example 8 :
// Assume f and g have not yet been declared.
void h(int);
template <class T> void f2(T);
namespace A {

class X {
friend void f(X); // A::f(X) is a friend
class Y {

friend void g(); // A::g is a friend
friend void h(int); // A::h is a friend

// ::h not considered
friend void f2<>(int); // ::f2<>(int) is a friend

};
};

// A::f, A::g and A::h are not visible here
X x;
void g() { f(x); } // definition of A::g
void f(X) { /* ... */ } // definition of A::f
void h(int) { /* ... */ } // definition of A::h
// A::f, A::g and A::h are visible here and known to be friends

}

using A::x;

void h() {
A::f(x);
A::X::f(x); // error: f is not a member of A::X
A::X::Y::g(); // error: g is not a member of A::X::Y

}

— end example ]
[Example 9 :

class X;
void a();
void f() {

class Y;
extern void b();
class A {
friend class X; // OK, but X is a local class, not ::X
friend class Y; // OK
friend class Z; // OK, introduces local class Z
friend void a(); // error, ::a is not considered
friend void b(); // OK
friend void c(); // error
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};
X* px; // OK, but ::X is found
Z* pz; // error: no Z is found

}

— end example ]

11.8.5 Protected member access [class.protected]
1 An additional access check beyond those described earlier in 11.8 is applied when a non-static data member

or non-static member function is a protected member of its naming class (11.8.3).104 As described earlier,
access to a protected member is granted because the reference occurs in a friend or direct member of some
class C. If the access is to form a pointer to member (7.6.2.2), the nested-name-specifier shall denote C or a
class derived from C. All other accesses involve a (possibly implicit) object expression (7.6.1.5). In this case,
the class of the object expression shall be C or a class derived from C.
[Example 1 :

class B {
protected:

int i;
static int j;

};

class D1 : public B {
};

class D2 : public B {
friend void fr(B*,D1*,D2*);
void mem(B*,D1*);

};

void fr(B* pb, D1* p1, D2* p2) {
pb->i = 1; // error
p1->i = 2; // error
p2->i = 3; // OK (access through a D2)
p2->B::i = 4; // OK (access through a D2, even though naming class is B)
int B::* pmi_B = &B::i; // error
int B::* pmi_B2 = &D2::i; // OK (type of &D2::i is int B::*)
B::j = 5; // error: not a friend of naming class B
D2::j = 6; // OK (because refers to static member)

}

void D2::mem(B* pb, D1* p1) {
pb->i = 1; // error
p1->i = 2; // error
i = 3; // OK (access through this)
B::i = 4; // OK (access through this, qualification ignored)
int B::* pmi_B = &B::i; // error
int B::* pmi_B2 = &D2::i; // OK
j = 5; // OK (because j refers to static member)
B::j = 6; // OK (because B::j refers to static member)

}

void g(B* pb, D1* p1, D2* p2) {
pb->i = 1; // error
p1->i = 2; // error
p2->i = 3; // error

}

— end example ]

104) This additional check does not apply to other members, e.g., static data members or enumerator member constants.
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11.8.6 Access to virtual functions [class.access.virt]
1 The access rules (11.8) for a virtual function are determined by its declaration and are not affected by the

rules for a function that later overrides it.
[Example 1 :

class B {
public:

virtual int f();
};

class D : public B {
private:

int f();
};

void f() {
D d;
B* pb = &d;
D* pd = &d;

pb->f(); // OK, B::f() is public, D::f() is invoked
pd->f(); // error: D::f() is private

}

— end example ]
2 Access is checked at the call point using the type of the expression used to denote the object for which the

member function is called (B* in the example above). The access of the member function in the class in
which it was defined (D in the example above) is in general not known.

11.8.7 Multiple access [class.paths]
1 If a declaration can be reached by several paths through a multiple inheritance graph, the access is that of

the path that gives most access.
[Example 1 :

class W { public: void f(); };
class A : private virtual W { };
class B : public virtual W { };
class C : public A, public B {

void f() { W::f(); } // OK
};

Since W::f() is available to C::f() along the public path through B, access is allowed. — end example ]

11.8.8 Nested classes [class.access.nest]
1 A nested class is a member and as such has the same access rights as any other member. The members of an

enclosing class have no special access to members of a nested class; the usual access rules (11.8) shall be
obeyed.
[Example 1 :

class E {
int x;
class B { };

class I {
B b; // OK, E::I can access E::B
int y;
void f(E* p, int i) {

p->x = i; // OK, E::I can access E::x
}

};

int g(I* p) {
return p->y; // error: I::y is private
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}
};

— end example ]

11.9 Initialization [class.init]
11.9.1 General [class.init.general]

1 When no initializer is specified for an object of (possibly cv-qualified) class type (or array thereof), or the
initializer has the form (), the object is initialized as specified in 9.4.

2 An object of class type (or array thereof) can be explicitly initialized; see 11.9.2 and 11.9.3.
3 When an array of class objects is initialized (either explicitly or implicitly) and the elements are initialized

by constructor, the constructor shall be called for each element of the array, following the subscript order;
see 9.3.4.5.
[Note 1 : Destructors for the array elements are called in reverse order of their construction. — end note ]

11.9.2 Explicit initialization [class.expl.init]
1 An object of class type can be initialized with a parenthesized expression-list, where the expression-list

is construed as an argument list for a constructor that is called to initialize the object. Alternatively,
a single assignment-expression can be specified as an initializer using the = form of initialization. Either
direct-initialization semantics or copy-initialization semantics apply; see 9.4.
[Example 1 :

struct complex {
complex();
complex(double);
complex(double,double);

};

complex sqrt(complex,complex);

complex a(1); // initialized by calling complex(double) with argument 1
complex b = a; // initialized as a copy of a
complex c = complex(1,2); // initialized by calling complex(double,double) with arguments 1 and 2
complex d = sqrt(b,c); // initialized by calling sqrt(complex,complex) with d as its result object
complex e; // initialized by calling complex()
complex f = 3; // initialized by calling complex(double) with argument 3
complex g = { 1, 2 }; // initialized by calling complex(double, double) with arguments 1 and 2

— end example ]
[Note 1 : Overloading of the assignment operator (12.4.3.2) has no effect on initialization. — end note ]

2 An object of class type can also be initialized by a braced-init-list. List-initialization semantics apply; see 9.4
and 9.4.5.
[Example 2 :

complex v[6] = { 1, complex(1,2), complex(), 2 };

Here, complex::complex(double) is called for the initialization of v[0] and v[3], complex::complex(double,
double) is called for the initialization of v[1], complex::complex() is called for the initialization of v[2], v[4], and
v[5]. For another example,

struct X {
int i;
float f;
complex c;

} x = { 99, 88.8, 77.7 };

Here, x.i is initialized with 99, x.f is initialized with 88.8, and complex::complex(double) is called for the
initialization of x.c. — end example ]
[Note 2 : Braces can be elided in the initializer-list for any aggregate, even if the aggregate has members of a class type
with user-defined type conversions; see 9.4.2. — end note ]

3 [Note 3 : If T is a class type with no default constructor, any declaration of an object of type T (or array thereof) is
ill-formed if no initializer is explicitly specified (see 11.9 and 9.4). — end note ]
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4 [Note 4 : The order in which objects with static or thread storage duration are initialized is described in 6.9.3.3
and 8.8. — end note ]

11.9.3 Initializing bases and members [class.base.init]
1 In the definition of a constructor for a class, initializers for direct and virtual base class subobjects and

non-static data members can be specified by a ctor-initializer , which has the form
ctor-initializer :

: mem-initializer-list
mem-initializer-list :

mem-initializer ...opt
mem-initializer-list , mem-initializer ...opt

mem-initializer :
mem-initializer-id ( expression-listopt )
mem-initializer-id braced-init-list

mem-initializer-id :
class-or-decltype
identifier

2 Lookup for an unqualified name in a mem-initializer-id ignores the constructor’s function parameter scope.
[Note 1 : If the constructor’s class contains a member with the same name as a direct or virtual base class of the class,
a mem-initializer-id naming the member or base class and composed of a single identifier refers to the class member. A
mem-initializer-id for the hidden base class can be specified using a qualified name. — end note ]

Unless the mem-initializer-id names the constructor’s class, a non-static data member of the constructor’s
class, or a direct or virtual base of that class, the mem-initializer is ill-formed.

3 A mem-initializer-list can initialize a base class using any class-or-decltype that denotes that base class type.
[Example 1 :

struct A { A(); };
typedef A global_A;
struct B { };
struct C: public A, public B { C(); };
C::C(): global_A() { } // mem-initializer for base A

— end example ]
4 If a mem-initializer-id is ambiguous because it designates both a direct non-virtual base class and an indirect

virtual base class, the mem-initializer is ill-formed.
[Example 2 :

struct A { A(); };
struct B: public virtual A { };
struct C: public A, public B { C(); };
C::C(): A() { } // error: which A?

— end example ]
5 A ctor-initializer may initialize a variant member of the constructor’s class. If a ctor-initializer specifies more

than one mem-initializer for the same member or for the same base class, the ctor-initializer is ill-formed.
6 A mem-initializer-list can delegate to another constructor of the constructor’s class using any class-or-decltype

that denotes the constructor’s class itself. If a mem-initializer-id designates the constructor’s class, it shall
be the only mem-initializer ; the constructor is a delegating constructor, and the constructor selected by the
mem-initializer is the target constructor. The target constructor is selected by overload resolution. Once the
target constructor returns, the body of the delegating constructor is executed. If a constructor delegates to
itself directly or indirectly, the program is ill-formed, no diagnostic required.
[Example 3 :

struct C {
C( int ) { } // #1: non-delegating constructor
C(): C(42) { } // #2: delegates to #1
C( char c ) : C(42.0) { } // #3: ill-formed due to recursion with #4
C( double d ) : C('a') { } // #4: ill-formed due to recursion with #3

};
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— end example ]
7 The expression-list or braced-init-list in a mem-initializer is used to initialize the designated subobject (or, in

the case of a delegating constructor, the complete class object) according to the initialization rules of 9.4 for
direct-initialization.
[Example 4 :

struct B1 { B1(int); /* ... */ };
struct B2 { B2(int); /* ... */ };
struct D : B1, B2 {

D(int);
B1 b;
const int c;

};

D::D(int a) : B2(a+1), B1(a+2), c(a+3), b(a+4) { /* ... */ }
D d(10);

— end example ]
[Note 2 : The initialization performed by each mem-initializer constitutes a full-expression (6.9.1). Any expression in a
mem-initializer is evaluated as part of the full-expression that performs the initialization. — end note ]

A mem-initializer where the mem-initializer-id denotes a virtual base class is ignored during execution of a
constructor of any class that is not the most derived class.

8 A temporary expression bound to a reference member in a mem-initializer is ill-formed.
[Example 5 :

struct A {
A() : v(42) { } // error
const int& v;

};

— end example ]
9 In a non-delegating constructor other than an implicitly-defined copy/move constructor (11.4.5.3), if a given

potentially constructed subobject is not designated by a mem-initializer-id (including the case where there is
no mem-initializer-list because the constructor has no ctor-initializer), then

—(9.1) if the entity is a non-static data member that has a default member initializer (11.4) and either
—(9.1.1) the constructor’s class is a union (11.5), and no other variant member of that union is designated

by a mem-initializer-id or
—(9.1.2) the constructor’s class is not a union, and, if the entity is a member of an anonymous union, no

other member of that union is designated by a mem-initializer-id ,
the entity is initialized from its default member initializer as specified in 9.4;

—(9.2) otherwise, if the entity is an anonymous union or a variant member (11.5.2), no initialization is
performed;

—(9.3) otherwise, the entity is default-initialized (9.4).
[Note 3 : An abstract class (11.7.4) is never a most derived class, thus its constructors never initialize virtual base
classes, therefore the corresponding mem-initializers can be omitted. — end note ]

An attempt to initialize more than one non-static data member of a union renders the program ill-formed.
[Note 4 : After the call to a constructor for class X for an object with automatic or dynamic storage duration has
completed, if the constructor was not invoked as part of value-initialization and a member of X is neither initialized
nor given a value during execution of the compound-statement of the body of the constructor, the member has an
indeterminate value. — end note ]
[Example 6 :

struct A {
A();

};
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struct B {
B(int);

};

struct C {
C() { } // initializes members as follows:
A a; // OK, calls A::A()
const B b; // error: B has no default constructor
int i; // OK, i has indeterminate value
int j = 5; // OK, j has the value 5

};

— end example ]
10 If a given non-static data member has both a default member initializer and a mem-initializer , the initialization

specified by the mem-initializer is performed, and the non-static data member’s default member initializer is
ignored.
[Example 7 : Given

struct A {
int i = /∗ some integer expression with side effects ∗/ ;
A(int arg) : i(arg) { }
// ...

};

the A(int) constructor will simply initialize i to the value of arg, and the side effects in i’s default member initializer
will not take place. — end example ]

11 A temporary expression bound to a reference member from a default member initializer is ill-formed.
[Example 8 :

struct A {
A() = default; // OK
A(int v) : v(v) { } // OK
const int& v = 42; // OK

};
A a1; // error: ill-formed binding of temporary to reference
A a2(1); // OK, unfortunately

— end example ]
12 In a non-delegating constructor, the destructor for each potentially constructed subobject of class type is

potentially invoked (11.4.7).
[Note 5 : This provision ensures that destructors can be called for fully-constructed subobjects in case an exception is
thrown (14.3). — end note ]

13 In a non-delegating constructor, initialization proceeds in the following order:
—(13.1) First, and only for the constructor of the most derived class (6.7.2), virtual base classes are initialized in

the order they appear on a depth-first left-to-right traversal of the directed acyclic graph of base classes,
where “left-to-right” is the order of appearance of the base classes in the derived class base-specifier-list.

—(13.2) Then, direct base classes are initialized in declaration order as they appear in the base-specifier-list
(regardless of the order of the mem-initializers).

—(13.3) Then, non-static data members are initialized in the order they were declared in the class definition
(again regardless of the order of the mem-initializers).

—(13.4) Finally, the compound-statement of the constructor body is executed.
[Note 6 : The declaration order is mandated to ensure that base and member subobjects are destroyed in the reverse
order of initialization. — end note ]

14 [Example 9 :
struct V {

V();
V(int);

};
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struct A : virtual V {
A();
A(int);

};

struct B : virtual V {
B();
B(int);

};

struct C : A, B, virtual V {
C();
C(int);

};

A::A(int i) : V(i) { /* ... */ }
B::B(int i) { /* ... */ }
C::C(int i) { /* ... */ }

V v(1); // use V(int)
A a(2); // use V(int)
B b(3); // use V()
C c(4); // use V()

— end example ]
15 [Note 7 : The expression-list or braced-init-list of a mem-initializer is in the function parameter scope of the constructor

and can use this to refer to the object being initialized. — end note ]
[Example 10 :

class X {
int a;
int b;
int i;
int j;

public:
const int& r;
X(int i): r(a), b(i), i(i), j(this->i) { }

};

initializes X::r to refer to X::a, initializes X::b with the value of the constructor parameter i, initializes X::i with
the value of the constructor parameter i, and initializes X::j with the value of X::i; this takes place each time an
object of class X is created. — end example ]

16 Member functions (including virtual member functions, 11.7.3) can be called for an object under construction.
Similarly, an object under construction can be the operand of the typeid operator (7.6.1.8) or of a dynamic_-
cast (7.6.1.7). However, if these operations are performed in a ctor-initializer (or in a function called directly
or indirectly from a ctor-initializer) before all the mem-initializers for base classes have completed, the program
has undefined behavior.
[Example 11 :

class A {
public:

A(int);
};

class B : public A {
int j;

public:
int f();
B() : A(f()), // undefined behavior: calls member function but base A not yet initialized
j(f()) { } // well-defined: bases are all initialized

};
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class C {
public:

C(int);
};

class D : public B, C {
int i;

public:
D() : C(f()), // undefined behavior: calls member function but base C not yet initialized
i(f()) { } // well-defined: bases are all initialized

};

— end example ]
17 [Note 8 : 11.9.5 describes the results of virtual function calls, typeid and dynamic_casts during construction for the

well-defined cases; that is, describes the polymorphic behavior of an object under construction. — end note ]
18 A mem-initializer followed by an ellipsis is a pack expansion (13.7.4) that initializes the base classes specified

by a pack expansion in the base-specifier-list for the class.
[Example 12 :

template<class... Mixins>
class X : public Mixins... {
public:

X(const Mixins&... mixins) : Mixins(mixins)... { }
};

— end example ]

11.9.4 Initialization by inherited constructor [class.inhctor.init]
1 When a constructor for type B is invoked to initialize an object of a different type D (that is, when the

constructor was inherited (9.9)), initialization proceeds as if a defaulted default constructor were used to
initialize the D object and each base class subobject from which the constructor was inherited, except that
the B subobject is initialized by the invocation of the inherited constructor. The complete initialization is
considered to be a single function call; in particular, the initialization of the inherited constructor’s parameters
is sequenced before the initialization of any part of the D object.
[Example 1 :

struct B1 {
B1(int, ...) { }

};

struct B2 {
B2(double) { }

};

int get();

struct D1 : B1 {
using B1::B1; // inherits B1(int, ...)
int x;
int y = get();

};

void test() {
D1 d(2, 3, 4); // OK, B1 is initialized by calling B1(2, 3, 4),

// then d.x is default-initialized (no initialization is performed),
// then d.y is initialized by calling get()

D1 e; // error: D1 has no default constructor
}

struct D2 : B2 {
using B2::B2;
B1 b;

};

§ 11.9.4 319



© ISO/IEC N4950

D2 f(1.0); // error: B1 has no default constructor

struct W { W(int); };
struct X : virtual W { using W::W; X() = delete; };
struct Y : X { using X::X; };
struct Z : Y, virtual W { using Y::Y; };
Z z(0); // OK, initialization of Y does not invoke default constructor of X

template<class T> struct Log : T {
using T::T; // inherits all constructors from class T
~Log() { std::clog << "Destroying wrapper" << std::endl; }

};

Class template Log wraps any class and forwards all of its constructors, while writing a message to the standard log
whenever an object of class Log is destroyed. — end example ]

2 If the constructor was inherited from multiple base class subobjects of type B, the program is ill-formed.
[Example 2 :

struct A { A(int); };
struct B : A { using A::A; };

struct C1 : B { using B::B; };
struct C2 : B { using B::B; };

struct D1 : C1, C2 {
using C1::C1;
using C2::C2;

};

struct V1 : virtual B { using B::B; };
struct V2 : virtual B { using B::B; };

struct D2 : V1, V2 {
using V1::V1;
using V2::V2;

};

D1 d1(0); // error: ambiguous
D2 d2(0); // OK, initializes virtual B base class, which initializes the A base class

// then initializes the V1 and V2 base classes as if by a defaulted default constructor

struct M { M(); M(int); };
struct N : M { using M::M; };
struct O : M {};
struct P : N, O { using N::N; using O::O; };
P p(0); // OK, use M(0) to initialize N’s base class,

// use M() to initialize O’s base class
— end example ]

3 When an object is initialized by an inherited constructor, initialization of the object is complete when the
initialization of all subobjects is complete.

11.9.5 Construction and destruction [class.cdtor]
1 For an object with a non-trivial constructor, referring to any non-static member or base class of the object

before the constructor begins execution results in undefined behavior. For an object with a non-trivial
destructor, referring to any non-static member or base class of the object after the destructor finishes execution
results in undefined behavior.
[Example 1 :

struct X { int i; };
struct Y : X { Y(); }; // non-trivial
struct A { int a; };
struct B : public A { int j; Y y; }; // non-trivial
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extern B bobj;
B* pb = &bobj; // OK
int* p1 = &bobj.a; // undefined behavior: refers to base class member
int* p2 = &bobj.y.i; // undefined behavior: refers to member’s member

A* pa = &bobj; // undefined behavior: upcast to a base class type
B bobj; // definition of bobj

extern X xobj;
int* p3 = &xobj.i; // OK, X is a trivial class
X xobj;

For another example,
struct W { int j; };
struct X : public virtual W { };
struct Y {

int* p;
X x;
Y() : p(&x.j) { // undefined, x is not yet constructed

}
};

— end example ]
2 During the construction of an object, if the value of the object or any of its subobjects is accessed through

a glvalue that is not obtained, directly or indirectly, from the constructor’s this pointer, the value of the
object or subobject thus obtained is unspecified.
[Example 2 :

struct C;
void no_opt(C*);

struct C {
int c;
C() : c(0) { no_opt(this); }

};

const C cobj;

void no_opt(C* cptr) {
int i = cobj.c * 100; // value of cobj.c is unspecified
cptr->c = 1;
cout << cobj.c * 100 // value of cobj.c is unspecified

<< '\n';
}

extern struct D d;
struct D {

D(int a) : a(a), b(d.a) {}
int a, b;

};
D d = D(1); // value of d.b is unspecified

— end example ]
3 To explicitly or implicitly convert a pointer (a glvalue) referring to an object of class X to a pointer (reference)

to a direct or indirect base class B of X, the construction of X and the construction of all of its direct or
indirect bases that directly or indirectly derive from B shall have started and the destruction of these classes
shall not have completed, otherwise the conversion results in undefined behavior. To form a pointer to (or
access the value of) a direct non-static member of an object obj, the construction of obj shall have started
and its destruction shall not have completed, otherwise the computation of the pointer value (or accessing
the member value) results in undefined behavior.
[Example 3 :

struct A { };
struct B : virtual A { };
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struct C : B { };
struct D : virtual A { D(A*); };
struct X { X(A*); };

struct E : C, D, X {
E() : D(this), // undefined behavior: upcast from E* to A* might use path E* → D* → A*

// but D is not constructed

// “D((C*)this)” would be defined: E* → C* is defined because E() has started,
// and C* → A* is defined because C is fully constructed

X(this) {} // defined: upon construction of X, C/B/D/A sublattice is fully constructed
};

— end example ]
4 Member functions, including virtual functions (11.7.3), can be called during construction or destruction (11.9.3).

When a virtual function is called directly or indirectly from a constructor or from a destructor, including
during the construction or destruction of the class’s non-static data members, and the object to which the
call applies is the object (call it x) under construction or destruction, the function called is the final overrider
in the constructor’s or destructor’s class and not one overriding it in a more-derived class. If the virtual
function call uses an explicit class member access (7.6.1.5) and the object expression refers to the complete
object of x or one of that object’s base class subobjects but not x or one of its base class subobjects, the
behavior is undefined.
[Example 4 :

struct V {
virtual void f();
virtual void g();

};

struct A : virtual V {
virtual void f();

};

struct B : virtual V {
virtual void g();
B(V*, A*);

};

struct D : A, B {
virtual void f();
virtual void g();
D() : B((A*)this, this) { }

};

B::B(V* v, A* a) {
f(); // calls V::f, not A::f
g(); // calls B::g, not D::g
v->g(); // v is base of B, the call is well-defined, calls B::g
a->f(); // undefined behavior: a’s type not a base of B

}

— end example ]
5 The typeid operator (7.6.1.8) can be used during construction or destruction (11.9.3). When typeid is

used in a constructor (including the mem-initializer or default member initializer (11.4) for a non-static
data member) or in a destructor, or used in a function called (directly or indirectly) from a constructor or
destructor, if the operand of typeid refers to the object under construction or destruction, typeid yields the
std::type_info object representing the constructor or destructor’s class. If the operand of typeid refers to
the object under construction or destruction and the static type of the operand is neither the constructor or
destructor’s class nor one of its bases, the behavior is undefined.

6 dynamic_casts (7.6.1.7) can be used during construction or destruction (11.9.3). When a dynamic_cast is
used in a constructor (including the mem-initializer or default member initializer for a non-static data member)
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or in a destructor, or used in a function called (directly or indirectly) from a constructor or destructor, if the
operand of the dynamic_cast refers to the object under construction or destruction, this object is considered
to be a most derived object that has the type of the constructor or destructor’s class. If the operand of the
dynamic_cast refers to the object under construction or destruction and the static type of the operand is
not a pointer to or object of the constructor or destructor’s own class or one of its bases, the dynamic_cast
results in undefined behavior.
[Example 5 :

struct V {
virtual void f();

};

struct A : virtual V { };

struct B : virtual V {
B(V*, A*);

};

struct D : A, B {
D() : B((A*)this, this) { }

};

B::B(V* v, A* a) {
typeid(*this); // type_info for B
typeid(*v); // well-defined: *v has type V, a base of B yields type_info for B
typeid(*a); // undefined behavior: type A not a base of B
dynamic_cast<B*>(v); // well-defined: v of type V*, V base of B results in B*
dynamic_cast<B*>(a); // undefined behavior: a has type A*, A not a base of B

}

— end example ]

11.9.6 Copy/move elision [class.copy.elision]
1 When certain criteria are met, an implementation is allowed to omit the copy/move construction of a class

object, even if the constructor selected for the copy/move operation and/or the destructor for the object
have side effects. In such cases, the implementation treats the source and target of the omitted copy/move
operation as simply two different ways of referring to the same object. If the first parameter of the selected
constructor is an rvalue reference to the object’s type, the destruction of that object occurs when the target
would have been destroyed; otherwise, the destruction occurs at the later of the times when the two objects
would have been destroyed without the optimization.105 This elision of copy/move operations, called copy
elision, is permitted in the following circumstances (which may be combined to eliminate multiple copies):

—(1.1) in a return statement in a function with a class return type, when the expression is the name of a
non-volatile object with automatic storage duration (other than a function parameter or a variable
introduced by the exception-declaration of a handler (14.4)) with the same type (ignoring cv-qualification)
as the function return type, the copy/move operation can be omitted by constructing the object directly
into the function call’s return object

—(1.2) in a throw-expression (7.6.18), when the operand is the name of a non-volatile object with automatic
storage duration (other than a function or catch-clause parameter) that belongs to a scope that does
not contain the innermost enclosing compound-statement associated with a try-block (if there is one),
the copy/move operation can be omitted by constructing the object directly into the exception object

—(1.3) in a coroutine (9.5.4), a copy of a coroutine parameter can be omitted and references to that copy
replaced with references to the corresponding parameter if the meaning of the program will be unchanged
except for the execution of a constructor and destructor for the parameter copy object

—(1.4) when the exception-declaration of an exception handler (14.1) declares an object of the same type (except
for cv-qualification) as the exception object (14.2), the copy operation can be omitted by treating
the exception-declaration as an alias for the exception object if the meaning of the program will be

105) Because only one object is destroyed instead of two, and one copy/move constructor is not executed, there is still one object
destroyed for each one constructed.
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unchanged except for the execution of constructors and destructors for the object declared by the
exception-declaration.
[Note 1 : There cannot be a move from the exception object because it is always an lvalue. — end note ]

Copy elision is not permitted where an expression is evaluated in a context requiring a constant expression (7.7)
and in constant initialization (6.9.3.2).
[Note 2 : It is possible that copy elision is performed if the same expression is evaluated in another context. — end
note ]

2 [Example 1 :
class Thing {
public:

Thing();
~Thing();
Thing(const Thing&);

};

Thing f() {
Thing t;
return t;

}

Thing t2 = f();

struct A {
void *p;
constexpr A(): p(this) {}

};

constexpr A g() {
A loc;
return loc;

}

constexpr A a; // well-formed, a.p points to a
constexpr A b = g(); // error: b.p would be dangling (7.7)

void h() {
A c = g(); // well-formed, c.p can point to c or be dangling

}

Here the criteria for elision can eliminate the copying of the object t with automatic storage duration into the result
object for the function call f(), which is the non-local object t2. Effectively, the construction of t can be viewed as
directly initializing t2, and that object’s destruction will occur at program exit. Adding a move constructor to Thing
has the same effect, but it is the move construction from the object with automatic storage duration to t2 that is
elided. — end example ]

3 [Example 2 :
class Thing {
public:

Thing();
~Thing();
Thing(Thing&&);

private:
Thing(const Thing&);

};

Thing f(bool b) {
Thing t;
if (b)

throw t; // OK, Thing(Thing&&) used (or elided) to throw t
return t; // OK, Thing(Thing&&) used (or elided) to return t

}
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Thing t2 = f(false); // OK, no extra copy/move performed, t2 constructed by call to f

struct Weird {
Weird();
Weird(Weird&);

};

Weird g(bool b) {
static Weird w1;
Weird w2;
if (b)

return w1; // OK, uses Weird(Weird&)
else

return w2; // error: w2 in this context is an xvalue
}

int& h(bool b, int i) {
static int s;
if (b)

return s; // OK
else

return i; // error: i is an xvalue
}

decltype(auto) h2(Thing t) {
return t; // OK, t is an xvalue and h2’s return type is Thing

}

decltype(auto) h3(Thing t) {
return (t); // OK, (t) is an xvalue and h3’s return type is Thing&&

}

— end example ]
4 [Example 3 :

template<class T> void g(const T&);

template<class T> void f() {
T x;
try {

T y;
try { g(x); }
catch (...) {

if (/∗...∗/)
throw x; // does not move

throw y; // moves
}
g(y);

} catch(...) {
g(x);
g(y); // error: y is not in scope

}
}

— end example ]

11.10 Comparisons [class.compare]
11.10.1 Defaulted comparison operator functions [class.compare.default]

1 A defaulted comparison operator function (12.4.3) for some class C shall be a non-template function that is
—(1.1) a non-static member or friend of C and
—(1.2) either has two parameters of type const C& or two parameters of type C, where the implicit object

parameter (if any) is considered to be the first parameter.
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Name lookups in the implicit definition (9.5.2) of a comparison operator function are performed from a
context equivalent to its function-body . A definition of a comparison operator as defaulted that appears in a
class shall be the first declaration of that function.

2 A defaulted <=> or == operator function for class C is defined as deleted if any non-static data member of C
is of reference type or C has variant members (11.5.2).

3 A binary operator expression a @ b is usable if either
—(3.1) a or b is of class or enumeration type and overload resolution (12.2) as applied to a @ b results in a

usable candidate, or
—(3.2) neither a nor b is of class or enumeration type and a @ b is a valid expression.

4 If the member-specification does not explicitly declare any member or friend named operator==, an ==
operator function is declared implicitly for each three-way comparison operator function defined as defaulted
in the member-specification, with the same access and function-definition and in the same class scope as the
respective three-way comparison operator function, except that the return type is replaced with bool and
the declarator-id is replaced with operator==.
[Note 1 : Such an implicitly-declared == operator for a class X is defined as defaulted in the definition of X and has
the same parameter-declaration-clause and trailing requires-clause as the respective three-way comparison operator.
It is declared with friend, virtual, constexpr, or consteval if the three-way comparison operator function is so
declared. If the three-way comparison operator function has no noexcept-specifier , the implicitly-declared == operator
function has an implicit exception specification (14.5) that can differ from the implicit exception specification of the
three-way comparison operator function. — end note ]
[Example 1 :

template<typename T> struct X {
friend constexpr std::partial_ordering operator<=>(X, X) requires (sizeof(T) != 1) = default;
// implicitly declares: friend constexpr bool operator==(X, X) requires (sizeof(T) != 1) = default;

[[nodiscard]] virtual std::strong_ordering operator<=>(const X&) const = default;
// implicitly declares: [[nodiscard]] virtual bool operator==(const X&) const = default;

};

— end example ]
[Note 2 : The == operator function is declared implicitly even if the defaulted three-way comparison operator function
is defined as deleted. — end note ]

5 The direct base class subobjects of C, in the order of their declaration in the base-specifier-list of C, followed
by the non-static data members of C, in the order of their declaration in the member-specification of C,
form a list of subobjects. In that list, any subobject of array type is recursively expanded to the sequence
of its elements, in the order of increasing subscript. Let xi be an lvalue denoting the ith element in the
expanded list of subobjects for an object x (of length n), where xi is formed by a sequence of derived-to-base
conversions (12.2.4.2), class member access expressions (7.6.1.5), and array subscript expressions (7.6.1.2)
applied to x.

11.10.2 Equality operator [class.eq]
1 A defaulted equality operator function (12.4.3) shall have a declared return type bool.
2 A defaulted == operator function for a class C is defined as deleted unless, for each xi in the expanded list of

subobjects for an object x of type C, xi == xi is usable (11.10.1).
3 The return value V of a defaulted == operator function with parameters x and y is determined by comparing

corresponding elements xi and yi in the expanded lists of subobjects for x and y (in increasing index order)
until the first index i where xi == yi yields a result value which, when contextually converted to bool, yields
false. If no such index exists, V is true. Otherwise, V is false.

4 [Example 1 :
struct D {

int i;
friend bool operator==(const D& x, const D& y) = default;

// OK, returns x.i == y.i
};

— end example ]
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11.10.3 Three-way comparison [class.spaceship]
1 The synthesized three-way comparison of type R (17.11.2) of glvalues a and b of the same type is defined as

follows:
—(1.1) If a <=> b is usable (11.10.1) and can be explicitly converted to R using static_cast, static_-

cast<R>(a <=> b).
—(1.2) Otherwise, if overload resolution for a <=> b is performed and finds at least one viable candidate, the

synthesized three-way comparison is not defined.
—(1.3) Otherwise, if R is not a comparison category type, or either the expression a == b or the expression a

< b is not usable, the synthesized three-way comparison is not defined.
—(1.4) Otherwise, if R is strong_ordering, then

a == b ? strong_ordering::equal :
a < b ? strong_ordering::less :

strong_ordering::greater

—(1.5) Otherwise, if R is weak_ordering, then
a == b ? weak_ordering::equivalent :
a < b ? weak_ordering::less :

weak_ordering::greater

—(1.6) Otherwise (when R is partial_ordering),
a == b ? partial_ordering::equivalent :
a < b ? partial_ordering::less :
b < a ? partial_ordering::greater :

partial_ordering::unordered

[Note 1 : A synthesized three-way comparison is ill-formed if overload resolution finds usable candidates that do not
otherwise meet the requirements implied by the defined expression. — end note ]

2 Let R be the declared return type of a defaulted three-way comparison operator function, and let xi be the
elements of the expanded list of subobjects for an object x of type C.

—(2.1) If R is auto, then let cvi Ri be the type of the expression xi <=> xi. The operator function is defined
as deleted if that expression is not usable or if Ri is not a comparison category type (17.11.2.1) for any
i. The return type is deduced as the common comparison type (see below) of R0, R1, . . . , Rn−1.

—(2.2) Otherwise, R shall not contain a placeholder type. If the synthesized three-way comparison of type R
between any objects xi and xi is not defined, the operator function is defined as deleted.

3 The return value V of type R of the defaulted three-way comparison operator function with parameters x and
y of the same type is determined by comparing corresponding elements xi and yi in the expanded lists of
subobjects for x and y (in increasing index order) until the first index i where the synthesized three-way
comparison of type R between xi and yi yields a result value vi where vi != 0, contextually converted to bool,
yields true; V is a copy of vi. If no such index exists, V is static_cast<R>(std::strong_ordering::equal).

4 The common comparison type U of a possibly-empty list of n comparison category types T0, T1, . . . , Tn−1 is
defined as follows:

—(4.1) If at least one Ti is std::partial_ordering, U is std::partial_ordering (17.11.2.2).
—(4.2) Otherwise, if at least one Ti is std::weak_ordering, U is std::weak_ordering (17.11.2.3).
—(4.3) Otherwise, U is std::strong_ordering (17.11.2.4).

[Note 2 : In particular, this is the result when n is 0. — end note ]

11.10.4 Secondary comparison operators [class.compare.secondary]
1 A secondary comparison operator is a relational operator (7.6.9) or the != operator. A defaulted operator

function (12.4.3) for a secondary comparison operator @ shall have a declared return type bool.
2 The operator function with parameters x and y is defined as deleted if

—(2.1) overload resolution (12.2), as applied to x @ y, does not result in a usable candidate, or
—(2.2) the candidate selected by overload resolution is not a rewritten candidate.

Otherwise, the operator function yields x @ y. The defaulted operator function is not considered as a
candidate in the overload resolution for the @ operator.
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3 [Example 1 :
struct HasNoLessThan { };

struct C {
friend HasNoLessThan operator<=>(const C&, const C&);
bool operator<(const C&) const = default; // OK, function is deleted

};

— end example ]
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12 Overloading [over]
12.1 Preamble [over.pre]

1 [Note 1 : Each of two or more entities with the same name in the same scope, which must be functions or function
templates, is commonly called an “overload”. — end note ]

2 When a function is named in a call, which function declaration is being referenced and the validity of the call
are determined by comparing the types of the arguments at the point of use with the types of the parameters
in the declarations in the overload set. This function selection process is called overload resolution and is
defined in 12.2.
[Example 1 :

double abs(double);
int abs(int);

abs(1); // calls abs(int);
abs(1.0); // calls abs(double);

— end example ]

12.2 Overload resolution [over.match]
12.2.1 General [over.match.general]

1 Overload resolution is a mechanism for selecting the best function to call given a list of expressions that are
to be the arguments of the call and a set of candidate functions that can be called based on the context of
the call. The selection criteria for the best function are the number of arguments, how well the arguments
match the parameter-type-list of the candidate function, how well (for non-static member functions) the
object matches the object parameter, and certain other properties of the candidate function.
[Note 1 : The function selected by overload resolution is not guaranteed to be appropriate for the context. Other
restrictions, such as the accessibility of the function, can make its use in the calling context ill-formed. — end note ]

2 Overload resolution selects the function to call in seven distinct contexts within the language:
—(2.1) invocation of a function named in the function call syntax (12.2.2.2.2);
—(2.2) invocation of a function call operator, a pointer-to-function conversion function, a reference-to-pointer-

to-function conversion function, or a reference-to-function conversion function on a class object named
in the function call syntax (12.2.2.2.3);

—(2.3) invocation of the operator referenced in an expression (12.2.2.3);
—(2.4) invocation of a constructor for default- or direct-initialization (9.4) of a class object (12.2.2.4);
—(2.5) invocation of a user-defined conversion for copy-initialization (9.4) of a class object (12.2.2.5);
—(2.6) invocation of a conversion function for initialization of an object of a non-class type from an expression

of class type (12.2.2.6); and
—(2.7) invocation of a conversion function for conversion in which a reference (9.4.4) will be directly bound

(12.2.2.7).
Each of these contexts defines the set of candidate functions and the list of arguments in its own unique way.
But, once the candidate functions and argument lists have been identified, the selection of the best function
is the same in all cases:

—(2.8) First, a subset of the candidate functions (those that have the proper number of arguments and meet
certain other conditions) is selected to form a set of viable functions (12.2.3).

—(2.9) Then the best viable function is selected based on the implicit conversion sequences (12.2.4.2) needed
to match each argument to the corresponding parameter of each viable function.

3 If a best viable function exists and is unique, overload resolution succeeds and produces it as the result.
Otherwise overload resolution fails and the invocation is ill-formed. When overload resolution succeeds, and
the best viable function is not accessible (11.8) in the context in which it is used, the program is ill-formed.
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4 Overload resolution results in a usable candidate if overload resolution succeeds and the selected candidate is
either not a function (12.5), or is a function that is not deleted and is accessible from the context in which
overload resolution was performed.

12.2.2 Candidate functions and argument lists [over.match.funcs]
12.2.2.1 General [over.match.funcs.general]

1 The subclauses of 12.2.2 describe the set of candidate functions and the argument list submitted to overload
resolution in each context in which overload resolution is used. The source transformations and constructions
defined in these subclauses are only for the purpose of describing the overload resolution process. An
implementation is not required to use such transformations and constructions.

2 The set of candidate functions can contain both member and non-member functions to be resolved against
the same argument list. If a member function is

—(2.1) an implicit object member function that is not a constructor, or
—(2.2) a static member function and the argument list includes an implied object argument,

it is considered to have an extra first parameter, called the implicit object parameter, which represents the
object for which the member function has been called.

3 Similarly, when appropriate, the context can construct an argument list that contains an implied object
argument as the first argument in the list to denote the object to be operated on.

4 For implicit object member functions, the type of the implicit object parameter is
—(4.1) “lvalue reference to cv X” for functions declared without a ref-qualifier or with the & ref-qualifier
—(4.2) “rvalue reference to cv X” for functions declared with the && ref-qualifier

where X is the class of which the function is a member and cv is the cv-qualification on the member function
declaration.
[Example 1 : For a const member function of class X, the extra parameter is assumed to have type “lvalue reference to
const X”. — end example ]

For conversion functions that are implicit object member functions, the function is considered to be a member
of the class of the implied object argument for the purpose of defining the type of the implicit object parameter.
For non-conversion functions that are implicit object member functions nominated by a using-declaration in
a derived class, the function is considered to be a member of the derived class for the purpose of defining
the type of the implicit object parameter. For static member functions, the implicit object parameter is
considered to match any object (since if the function is selected, the object is discarded).
[Note 1 : No actual type is established for the implicit object parameter of a static member function, and no attempt
will be made to determine a conversion sequence for that parameter (12.2.4). — end note ]

5 During overload resolution, the implied object argument is indistinguishable from other arguments. The
implicit object parameter, however, retains its identity since no user-defined conversions can be applied to
achieve a type match with it. For implicit object member functions declared without a ref-qualifier , even if
the implicit object parameter is not const-qualified, an rvalue can be bound to the parameter as long as in all
other respects the argument can be converted to the type of the implicit object parameter.
[Note 2 : The fact that such an argument is an rvalue does not affect the ranking of implicit conversion sequences
(12.2.4.3). — end note ]

6 Because other than in list-initialization only one user-defined conversion is allowed in an implicit conversion
sequence, special rules apply when selecting the best user-defined conversion (12.2.4, 12.2.4.2).
[Example 2 :

class T {
public:

T();
};

class C : T {
public:

C(int);
};
T a = 1; // error: no viable conversion (T(C(1)) not considered)
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— end example ]
7 In each case where conversion functions of a class S are considered for initializing an object or reference of

type T, the candidate functions include the result of a search for the conversion-function-id operator T in S.
[Note 3 : This search can find a specialization of a conversion function template (6.5). — end note ]

Each such case also defines sets of permissible types for explicit and non-explicit conversion functions; each
(non-template) conversion function that

—(7.1) is a non-hidden member of S,
—(7.2) yields a permissible type, and,
—(7.3) for the former set, is non-explicit

is also a candidate function. If initializing an object, for any permissible type cv U, any cv2 U, cv2 U&, or cv2
U&& is also a permissible type. If the set of permissible types for explicit conversion functions is empty, any
candidates that are explicit are discarded.

8 In each case where a candidate is a function template, candidate function template specializations are
generated using template argument deduction (13.10.4, 13.10.3). If a constructor template or conversion
function template has an explicit-specifier whose constant-expression is value-dependent (13.8.3), template
argument deduction is performed first and then, if the context admits only candidates that are not explicit and
the generated specialization is explicit (9.2.3), it will be removed from the candidate set. Those candidates
are then handled as candidate functions in the usual way.106 A given name can refer to, or a conversion
can consider, one or more function templates as well as a set of non-template functions. In such a case,
the candidate functions generated from each function template are combined with the set of non-template
candidate functions.

9 A defaulted move special member function (11.4.5.3, 11.4.6) that is defined as deleted is excluded from the
set of candidate functions in all contexts. A constructor inherited from class type C (11.9.4) that has a
first parameter of type “reference to cv1 P” (including such a constructor instantiated from a template) is
excluded from the set of candidate functions when constructing an object of type cv2 D if the argument list
has exactly one argument and C is reference-related to P and P is reference-related to D.
[Example 3 :

struct A {
A(); // #1
A(A &&); // #2
template<typename T> A(T &&); // #3

};
struct B : A {

using A::A;
B(const B &); // #4
B(B &&) = default; // #5, implicitly deleted

struct X { X(X &&) = delete; } x;
};
extern B b1;
B b2 = static_cast<B&&>(b1); // calls #4: #1 is not viable, #2, #3, and #5 are not candidates
struct C { operator B&&(); };
B b3 = C(); // calls #4

— end example ]

12.2.2.2 Function call syntax [over.match.call]
12.2.2.2.1 General [over.match.call.general]

1 In a function call (7.6.1.3)
postfix-expression ( expression-listopt )

106) The process of argument deduction fully determines the parameter types of the function template specializations, i.e.,
the parameters of function template specializations contain no template parameter types. Therefore, except where specified
otherwise, function template specializations and non-template functions (9.3.4.6) are treated equivalently for the remainder of
overload resolution.

§ 12.2.2.2.1 331



© ISO/IEC N4950

if the postfix-expression names at least one function or function template, overload resolution is applied as
specified in 12.2.2.2.2. If the postfix-expression denotes an object of class type, overload resolution is applied
as specified in 12.2.2.2.3.

2 If the postfix-expression is the address of an overload set, overload resolution is applied using that set as
described above.
[Note 1 : No implied object argument is added in this case. — end note ]

If the function selected by overload resolution is an implicit object member function, the program is ill-formed.
[Note 2 : The resolution of the address of an overload set in other contexts is described in 12.3. — end note ]

12.2.2.2.2 Call to named function [over.call.func]
1 Of interest in 12.2.2.2.2 are only those function calls in which the postfix-expression ultimately contains an

id-expression that denotes one or more functions. Such a postfix-expression, perhaps nested arbitrarily deep in
parentheses, has one of the following forms:

postfix-expression:
postfix-expression . id-expression
postfix-expression -> id-expression
primary-expression

These represent two syntactic subcategories of function calls: qualified function calls and unqualified function
calls.

2 In qualified function calls, the function is named by an id-expression preceded by an -> or . operator. Since
the construct A->B is generally equivalent to (*A).B, the rest of Clause 12 assumes, without loss of generality,
that all member function calls have been normalized to the form that uses an object and the . operator.
Furthermore, Clause 12 assumes that the postfix-expression that is the left operand of the . operator has type
“cv T” where T denotes a class.107 The function declarations found by name lookup (6.5.2) constitute the set
of candidate functions. The argument list is the expression-list in the call augmented by the addition of the
left operand of the . operator in the normalized member function call as the implied object argument (12.2.2).

3 In unqualified function calls, the function is named by a primary-expression. The function declarations found
by name lookup (6.5) constitute the set of candidate functions. Because of the rules for name lookup, the set
of candidate functions consists either entirely of non-member functions or entirely of member functions of
some class T. In the former case or if the primary-expression is the address of an overload set, the argument
list is the same as the expression-list in the call. Otherwise, the argument list is the expression-list in the
call augmented by the addition of an implied object argument as in a qualified function call. If the current
class is, or is derived from, T, and the keyword this (7.5.2) refers to it, then the implied object argument
is (*this). Otherwise, a contrived object of type T becomes the implied object argument;108 if overload
resolution selects a non-static member function, the call is ill-formed.
[Example 1 :

struct C {
void a();
void b() {

a(); // OK, (*this).a()
}

void c(this const C&); // #1
void c()&; // #2
static void c(int = 0); // #3

void d() {
c(); // error: ambiguous between #2 and #3
(C::c)(); // error: as above
(&(C::c))(); // error: cannot resolve address of overloaded this->C::c (12.3)
(&C::c)(C{}); // selects #1
(&C::c)(*this); // error: selects #2, and is ill-formed (12.2.2.2.1)

107) Note that cv-qualifiers on the type of objects are significant in overload resolution for both glvalue and class prvalue objects.
108) An implied object argument is contrived to correspond to the implicit object parameter attributed to member functions
during overload resolution. It is not used in the call to the selected function. Since the member functions all have the same
implicit object parameter, the contrived object will not be the cause to select or reject a function.

§ 12.2.2.2.2 332



© ISO/IEC N4950

(&C::c)(); // selects #3
}

void f(this const C&);
void g() const {

f(); // OK, (*this).f()
f(*this); // error: no viable candidate for (*this).f(*this)
this->f(); // OK

}

static void h() {
f(); // error: contrived object argument, but overload resolution

// picked a non-static member function
f(C{}); // error: no viable candidate
C{}.f(); // OK

}

void k(this int);
operator int() const;
void m(this const C& c) {

c.k(); // OK
}

};

— end example ]

12.2.2.2.3 Call to object of class type [over.call.object]
1 If the postfix-expression E in the function call syntax evaluates to a class object of type “cv T”, then the set of

candidate functions includes at least the function call operators of T. The function call operators of T are the
results of a search for the name operator() in the scope of T.

2 In addition, for each non-explicit conversion function declared in T of the form
operator conversion-type-id ( ) cv-qualifier-seqopt ref-qualifieropt noexcept-specifieropt attribute-specifier-seqopt ;

where the optional cv-qualifier-seq is the same cv-qualification as, or a greater cv-qualification than, cv,
and where conversion-type-id denotes the type “pointer to function of (P1, . . . , Pn) returning R”, or the type
“reference to pointer to function of (P1, . . . , Pn) returning R”, or the type “reference to function of (P1, . . . , Pn)
returning R”, a surrogate call function with the unique name call-function and having the form

R call-function ( conversion-type-id F, P1 a1, . . . , Pn an) { return F (a1, . . . , an); }

is also considered as a candidate function. Similarly, surrogate call functions are added to the set of candidate
functions for each non-explicit conversion function declared in a base class of T provided the function is not
hidden within T by another intervening declaration.109

3 The argument list submitted to overload resolution consists of the argument expressions present in the
function call syntax preceded by the implied object argument (E).
[Note 1 : When comparing the call against the function call operators, the implied object argument is compared
against the object parameter of the function call operator. When comparing the call against a surrogate call function,
the implied object argument is compared against the first parameter of the surrogate call function. — end note ]
[Example 1 :

int f1(int);
int f2(float);
typedef int (*fp1)(int);
typedef int (*fp2)(float);
struct A {

operator fp1() { return f1; }
operator fp2() { return f2; }

} a;
int i = a(1); // calls f1 via pointer returned from conversion function

— end example ]

109) Note that this construction can yield candidate call functions that cannot be differentiated one from the other by overload
resolution because they have identical declarations or differ only in their return type. The call will be ambiguous if overload
resolution cannot select a match to the call that is uniquely better than such undifferentiable functions.
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12.2.2.3 Operators in expressions [over.match.oper]
1 If no operand of an operator in an expression has a type that is a class or an enumeration, the operator is

assumed to be a built-in operator and interpreted according to 7.6.
[Note 1 : Because ., .*, and :: cannot be overloaded, these operators are always built-in operators interpreted
according to 7.6. ?: cannot be overloaded, but the rules in this subclause are used to determine the conversions to be
applied to the second and third operands when they have class or enumeration type (7.6.16). — end note ]
[Example 1 :

struct String {
String (const String&);
String (const char*);
operator const char* ();

};
String operator + (const String&, const String&);

void f() {
const char* p= "one" + "two"; // error: cannot add two pointers; overloaded operator+ not considered

// because neither operand has class or enumeration type
int I = 1 + 1; // always evaluates to 2 even if class or enumeration types exist

// that would perform the operation.
}

— end example ]
2 If either operand has a type that is a class or an enumeration, a user-defined operator function can be declared

that implements this operator or a user-defined conversion can be necessary to convert the operand to a
type that is appropriate for a built-in operator. In this case, overload resolution is used to determine which
operator function or built-in operator is to be invoked to implement the operator. Therefore, the operator
notation is first transformed to the equivalent function-call notation as summarized in Table 18 (where @
denotes one of the operators covered in the specified subclause). However, the operands are sequenced in the
order prescribed for the built-in operator (7.6).

Table 18: Relationship between operator and function call notation [tab:over.match.oper]

Subclause Expression As member function As non-member function
12.4.2 @a (a).operator@ ( ) operator@(a)
12.4.3 a@b (a).operator@ (b) operator@(a, b)
12.4.3.2 a=b (a).operator= (b)
12.4.5 a[b] (a).operator[](b)
12.4.6 a-> (a).operator->( )
12.4.7 a@ (a).operator@ (0) operator@(a, 0)

3 For a unary operator @ with an operand of type cv1 T1, and for a binary operator @ with a left operand
of type cv1 T1 and a right operand of type cv2 T2, four sets of candidate functions, designated member
candidates, non-member candidates, built-in candidates, and rewritten candidates, are constructed as follows:

—(3.1) If T1 is a complete class type or a class currently being defined, the set of member candidates is the
result of a search for operator@ in the scope of T1; otherwise, the set of member candidates is empty.

—(3.2) For the operators =, [], or ->, the set of non-member candidates is empty; otherwise, it includes the
result of unqualified lookup for operator@ in the rewritten function call (6.5.3, 6.5.4), ignoring all
member functions. However, if no operand has a class type, only those non-member functions in the
lookup set that have a first parameter of type T1 or “reference to cv T1”, when T1 is an enumeration
type, or (if there is a right operand) a second parameter of type T2 or “reference to cv T2”, when T2 is
an enumeration type, are candidate functions.

—(3.3) For the operator ,, the unary operator &, or the operator ->, the built-in candidates set is empty.
For all other operators, the built-in candidates include all of the candidate operator functions defined
in 12.5 that, compared to the given operator,

—(3.3.1) have the same operator name, and
—(3.3.2) accept the same number of operands, and
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—(3.3.3) accept operand types to which the given operand or operands can be converted according to
12.2.4.2, and

—(3.3.4) do not have the same parameter-type-list as any non-member candidate or rewritten non-member
candidate that is not a function template specialization.

—(3.4) The rewritten candidate set is determined as follows:
—(3.4.1) For the relational (7.6.9) operators, the rewritten candidates include all non-rewritten candidates

for the expression x <=> y.
—(3.4.2) For the relational (7.6.9) and three-way comparison (7.6.8) operators, the rewritten candidates

also include a synthesized candidate, with the order of the two parameters reversed, for each
non-rewritten candidate for the expression y <=> x.

—(3.4.3) For the != operator (7.6.10), the rewritten candidates include all non-rewritten candidates for the
expression x == y that are rewrite targets with first operand x (see below).

—(3.4.4) For the equality operators, the rewritten candidates also include a synthesized candidate, with the
order of the two parameters reversed, for each non-rewritten candidate for the expression y == x
that is a rewrite target with first operand y.

—(3.4.5) For all other operators, the rewritten candidate set is empty.
[Note 2 : A candidate synthesized from a member candidate has its object parameter as the second parameter,
thus implicit conversions are considered for the first, but not for the second, parameter. — end note ]

4 A non-template function or function template F named operator== is a rewrite target with first operand
o unless a search for the name operator!= in the scope S from the instantiation context of the operator
expression finds a function or function template that would correspond (6.4.1) to F if its name were operator==,
where S is the scope of the class type of o if F is a class member, and the namespace scope of which F is a
member otherwise. A function template specialization named operator== is a rewrite target if its function
template is a rewrite target.
[Example 2 :

struct A {};
template<typename T> bool operator==(A, T); // #1
bool a1 = 0 == A(); // OK, calls reversed #1
template<typename T> bool operator!=(A, T);
bool a2 = 0 == A(); // error, #1 is not a rewrite target

struct B {
bool operator==(const B&); // #2

};
struct C : B {

C();
C(B);
bool operator!=(const B&); // #3

};
bool c1 = B() == C(); // OK, calls #2; reversed #2 is not a candidate

// because search for operator!= in C finds #3
bool c2 = C() == B(); // error: ambiguous between #2 found when searching C and

// reversed #2 found when searching B

struct D {};
template<typename T> bool operator==(D, T); // #4
inline namespace N {

template<typename T> bool operator!=(D, T); // #5
}
bool d1 = 0 == D(); // OK, calls reversed #4; #5 does not forbid #4 as a rewrite target

— end example ]
5 For the built-in assignment operators, conversions of the left operand are restricted as follows:

—(5.1) no temporaries are introduced to hold the left operand, and
—(5.2) no user-defined conversions are applied to the left operand to achieve a type match with the left-most

parameter of a built-in candidate.
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6 For all other operators, no such restrictions apply.
7 The set of candidate functions for overload resolution for some operator @ is the union of the member

candidates, the non-member candidates, the built-in candidates, and the rewritten candidates for that
operator @.

8 The argument list contains all of the operands of the operator. The best function from the set of candidate
functions is selected according to 12.2.3 and 12.2.4.110

[Example 3 :
struct A {

operator int();
};
A operator+(const A&, const A&);
void m() {

A a, b;
a + b; // operator+(a, b) chosen over int(a) + int(b)

}

— end example ]
9 If a rewritten operator<=> candidate is selected by overload resolution for an operator @, x @ y is interpreted

as 0 @ (y <=> x) if the selected candidate is a synthesized candidate with reversed order of parameters, or
(x <=> y) @ 0 otherwise, using the selected rewritten operator<=> candidate. Rewritten candidates for
the operator @ are not considered in the context of the resulting expression.

10 If a rewritten operator== candidate is selected by overload resolution for an operator @, its return type shall
be cv bool, and x @ y is interpreted as:

—(10.1) if @ is != and the selected candidate is a synthesized candidate with reversed order of parameters, !(y
== x),

—(10.2) otherwise, if @ is !=, !(x == y),
—(10.3) otherwise (when @ is ==), y == x,

in each case using the selected rewritten operator== candidate.
11 If a built-in candidate is selected by overload resolution, the operands of class type are converted to the

types of the corresponding parameters of the selected operation function, except that the second standard
conversion sequence of a user-defined conversion sequence (12.2.4.2.3) is not applied. Then the operator is
treated as the corresponding built-in operator and interpreted according to 7.6.
[Example 4 :

struct X {
operator double();

};

struct Y {
operator int*();

};

int *a = Y() + 100.0; // error: pointer arithmetic requires integral operand
int *b = Y() + X(); // error: pointer arithmetic requires integral operand

— end example ]
12 The second operand of operator -> is ignored in selecting an operator-> function, and is not an argument

when the operator-> function is called. When operator-> returns, the operator -> is applied to the value
returned, with the original second operand.111

13 If the operator is the operator ,, the unary operator &, or the operator ->, and there are no viable functions,
then the operator is assumed to be the built-in operator and interpreted according to 7.6.

14 [Note 3 : The lookup rules for operators in expressions are different than the lookup rules for operator function names
in a function call, as shown in the following example:

struct A { };

110) If the set of candidate functions is empty, overload resolution is unsuccessful.
111) If the value returned by the operator-> function has class type, this can result in selecting and calling another operator->
function. The process repeats until an operator-> function returns a value of non-class type.
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void operator + (A, A);

struct B {
void operator + (B);
void f ();

};

A a;

void B::f() {
operator+ (a,a); // error: global operator hidden by member
a + a; // OK, calls global operator+

}

— end note ]

12.2.2.4 Initialization by constructor [over.match.ctor]
1 When objects of class type are direct-initialized (9.4), copy-initialized from an expression of the same

or a derived class type (9.4), or default-initialized (9.4), overload resolution selects the constructor. For
direct-initialization or default-initialization that is not in the context of copy-initialization, the candidate
functions are all the constructors of the class of the object being initialized. For copy-initialization (including
default initialization in the context of copy-initialization), the candidate functions are all the converting
constructors (11.4.8.2) of that class. The argument list is the expression-list or assignment-expression of the
initializer .

12.2.2.5 Copy-initialization of class by user-defined conversion [over.match.copy]
1 Under the conditions specified in 9.4, as part of a copy-initialization of an object of class type, a user-defined

conversion can be invoked to convert an initializer expression to the type of the object being initialized.
Overload resolution is used to select the user-defined conversion to be invoked.
[Note 1 : The conversion performed for indirect binding to a reference to a possibly cv-qualified class type is determined
in terms of a corresponding non-reference copy-initialization. — end note ]

Assuming that “cv1 T” is the type of the object being initialized, with T a class type, the candidate functions
are selected as follows:

—(1.1) The converting constructors (11.4.8.2) of T are candidate functions.
—(1.2) When the type of the initializer expression is a class type “cv S”, conversion functions are considered.

The permissible types for non-explicit conversion functions are T and any class derived from T. When
initializing a temporary object (11.4) to be bound to the first parameter of a constructor where the
parameter is of type “reference to cv2 T” and the constructor is called with a single argument in the
context of direct-initialization of an object of type “cv3 T”, the permissible types for explicit conversion
functions are the same; otherwise there are none.

2 In both cases, the argument list has one argument, which is the initializer expression.
[Note 2 : This argument will be compared against the first parameter of the constructors and against the object
parameter of the conversion functions. — end note ]

12.2.2.6 Initialization by conversion function [over.match.conv]
1 Under the conditions specified in 9.4, as part of an initialization of an object of non-class type, a conversion

function can be invoked to convert an initializer expression of class type to the type of the object being
initialized. Overload resolution is used to select the conversion function to be invoked. Assuming that “cv T”
is the type of the object being initialized, the candidate functions are selected as follows:

—(1.1) The permissible types for non-explicit conversion functions are those that can be converted to type T via
a standard conversion sequence (12.2.4.2.2). For direct-initialization, the permissible types for explicit
conversion functions are those that can be converted to type T with a (possibly trivial) qualification
conversion (7.3.6); otherwise there are none.

2 The argument list has one argument, which is the initializer expression.
[Note 1 : This argument will be compared against the object parameter of the conversion functions. — end note ]

§ 12.2.2.6 337



© ISO/IEC N4950

12.2.2.7 Initialization by conversion function for direct reference binding [over.match.ref]
1 Under the conditions specified in 9.4.4, a reference can be bound directly to the result of applying a conversion

function to an initializer expression. Overload resolution is used to select the conversion function to be
invoked. Assuming that “reference to cv1 T” is the type of the reference being initialized, the candidate
functions are selected as follows:

—(1.1) Let R be a set of types including
—(1.1.1) “lvalue reference to cv2 T2” (when initializing an lvalue reference or an rvalue reference to function)

and
—(1.1.2) “cv2 T2” and “rvalue reference to cv2 T2” (when initializing an rvalue reference or an lvalue

reference to function)
for any T2. The permissible types for non-explicit conversion functions are the members of R where
“cv1 T” is reference-compatible (9.4.4) with “cv2 T2”. For direct-initialization, the permissible types
for explicit conversion functions are the members of R where T2 can be converted to type T with a
(possibly trivial) qualification conversion (7.3.6); otherwise there are none.

2 The argument list has one argument, which is the initializer expression.
[Note 1 : This argument will be compared against the object parameter of the conversion functions. — end note ]

12.2.2.8 Initialization by list-initialization [over.match.list]
1 When objects of non-aggregate class type T are list-initialized such that 9.4.5 specifies that overload resolution

is performed according to the rules in this subclause or when forming a list-initialization sequence according
to 12.2.4.2.6, overload resolution selects the constructor in two phases:

—(1.1) If the initializer list is not empty or T has no default constructor, overload resolution is first performed
where the candidate functions are the initializer-list constructors (9.4.5) of the class T and the argument
list consists of the initializer list as a single argument.

—(1.2) Otherwise, or if no viable initializer-list constructor is found, overload resolution is performed again,
where the candidate functions are all the constructors of the class T and the argument list consists of
the elements of the initializer list.

In copy-list-initialization, if an explicit constructor is chosen, the initialization is ill-formed.
[Note 1 : This differs from other situations (12.2.2.4, 12.2.2.5), where only converting constructors are considered for
copy-initialization. This restriction only applies if this initialization is part of the final result of overload resolution.

— end note ]

12.2.2.9 Class template argument deduction [over.match.class.deduct]
1 When resolving a placeholder for a deduced class type (9.2.9.7) where the template-name names a primary

class template C, a set of functions and function templates, called the guides of C, is formed comprising:
—(1.1) If C is defined, for each constructor of C, a function template with the following properties:

—(1.1.1) The template parameters are the template parameters of C followed by the template parameters
(including default template arguments) of the constructor, if any.

—(1.1.2) The types of the function parameters are those of the constructor.
—(1.1.3) The return type is the class template specialization designated by C and template arguments

corresponding to the template parameters of C.
—(1.2) If C is not defined or does not declare any constructors, an additional function template derived as

above from a hypothetical constructor C().
—(1.3) An additional function template derived as above from a hypothetical constructor C(C), called the copy

deduction candidate.
—(1.4) For each deduction-guide, a function or function template with the following properties:

—(1.4.1) The template parameters, if any, and function parameters are those of the deduction-guide.
—(1.4.2) The return type is the simple-template-id of the deduction-guide.

In addition, if C is defined and its definition satisfies the conditions for an aggregate class (9.4.2) with the
assumption that any dependent base class has no virtual functions and no virtual base classes, and the
initializer is a non-empty braced-init-list or parenthesized expression-list, and there are no deduction-guides
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for C, the set contains an additional function template, called the aggregate deduction candidate, defined as
follows. Let x1, . . . , xn be the elements of the initializer-list or designated-initializer-list of the braced-init-list, or
of the expression-list. For each xi, let ei be the corresponding aggregate element of C or of one of its (possibly
recursive) subaggregates that would be initialized by xi (9.4.2) if

—(1.5) brace elision is not considered for any aggregate element that has
—(1.5.1) a dependent non-array type,
—(1.5.2) an array type with a value-dependent bound, or
—(1.5.3) an array type with a dependent array element type and xi is a string literal; and

—(1.6) each non-trailing aggregate element that is a pack expansion is assumed to correspond to no elements
of the initializer list, and

—(1.7) a trailing aggregate element that is a pack expansion is assumed to correspond to all remaining elements
of the initializer list (if any).

If there is no such aggregate element ei for any xi, the aggregate deduction candidate is not added to the set.
The aggregate deduction candidate is derived as above from a hypothetical constructor C(T1, . . . , Tn), where

—(1.8) if ei is of array type and xi is a braced-init-list, Ti is an rvalue reference to the declared type of ei, and
—(1.9) if ei is of array type and xi is a string-literal , Ti is an lvalue reference to the const-qualified declared

type of ei, and
—(1.10) otherwise, Ti is the declared type of ei,

except that additional parameter packs of the form Pj... are inserted into the parameter list in their
original aggregate element position corresponding to each non-trailing aggregate element of type Pj that
was skipped because it was a parameter pack, and the trailing sequence of parameters corresponding to a
trailing aggregate element that is a pack expansion (if any) is replaced by a single parameter of the form
Tn.... In addition, if C is defined and inherits constructors (9.9) from a direct base class denoted in the
base-specifier-list by a class-or-decltype B, let A be an alias template whose template parameter list is that of
C and whose defining-type-id is B. If A is a deducible template (9.2.9.3), the set contains the guides of A with
the return type R of each guide replaced with typename CC<R>::type given a class template

template <typename> class CC;

whose primary template is not defined and with a single partial specialization whose template parameter list
is that of A and whose template argument list is a specialization of A with the template argument list of
A (13.8.3.2) having a member typedef type designating a template specialization with the template argument
list of A but with C as the template.
[Note 1 : Equivalently, the template parameter list of the specialization is that of C, the template argument list of the
specialization is B, and the member typedef names C with the template argument list of C. — end note ]

2 [Example 1 :
template <typename T> struct B {

B(T);
};
template <typename T> struct C : public B<T> {

using B<T>::B;
};
template <typename T> struct D : public B<T> {};

C c(42); // OK, deduces C<int>
D d(42); // error: deduction failed, no inherited deduction guides
B(int) -> B<char>;
C c2(42); // OK, deduces C<char>

template <typename T> struct E : public B<int> {
using B<int>::B;

};

E e(42); // error: deduction failed, arguments of E cannot be deduced from introduced guides
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template <typename T, typename U, typename V> struct F {
F(T, U, V);

};
template <typename T, typename U> struct G : F<U, T, int> {

using G::F::F;
}

G g(true, 'a', 1); // OK, deduces G<char, bool>

template<class T, std::size_t N>
struct H {

T array[N];
};
template<class T, std::size_t N>
struct I {

volatile T array[N];
};
template<std::size_t N>
struct J {

unsigned char array[N];
};

H h = { "abc" }; // OK, deduces H<char, 4> (not T = const char)
I i = { "def" }; // OK, deduces I<char, 4>
J j = { "ghi" }; // error: cannot bind reference to array of unsigned char to array of char in deduction

— end example ]
3 When resolving a placeholder for a deduced class type (9.2.9.3) where the template-name names an alias

template A, the defining-type-id of A must be of the form
typenameopt nested-name-specifieropt templateopt simple-template-id

as specified in 9.2.9.3. The guides of A are the set of functions or function templates formed as follows. For
each function or function template f in the guides of the template named by the simple-template-id of the
defining-type-id , the template arguments of the return type of f are deduced from the defining-type-id of
A according to the process in 13.10.3.6 with the exception that deduction does not fail if not all template
arguments are deduced. If deduction fails for another reason, proceed with an empty set of deduced template
arguments. Let g denote the result of substituting these deductions into f. If substitution succeeds, form a
function or function template f’ with the following properties and add it to the set of guides of A:

—(3.1) The function type of f’ is the function type of g.
—(3.2) If f is a function template, f’ is a function template whose template parameter list consists of all

the template parameters of A (including their default template arguments) that appear in the above
deductions or (recursively) in their default template arguments, followed by the template parameters of
f that were not deduced (including their default template arguments), otherwise f’ is not a function
template.

—(3.3) The associated constraints (13.5.3) are the conjunction of the associated constraints of g and a constraint
that is satisfied if and only if the arguments of A are deducible (see below) from the return type.

—(3.4) If f is a copy deduction candidate, then f’ is considered to be so as well.
—(3.5) If f was generated from a deduction-guide (13.7.2.3), then f’ is considered to be so as well.
—(3.6) The explicit-specifier of f’ is the explicit-specifier of g (if any).

4 The arguments of a template A are said to be deducible from a type T if, given a class template
template <typename> class AA;

with a single partial specialization whose template parameter list is that of A and whose template argument
list is a specialization of A with the template argument list of A (13.8.3.2), AA<T> matches the partial
specialization.

5 Initialization and overload resolution are performed as described in 9.4 and 12.2.2.4, 12.2.2.5, or 12.2.2.8 (as
appropriate for the type of initialization performed) for an object of a hypothetical class type, where the
guides of the template named by the placeholder are considered to be the constructors of that class type for

§ 12.2.2.9 340



© ISO/IEC N4950

the purpose of forming an overload set, and the initializer is provided by the context in which class template
argument deduction was performed. The following exceptions apply:

—(5.1) The first phase in 12.2.2.8 (considering initializer-list constructors) is omitted if the initializer list
consists of a single expression of type cv U, where U is, or is derived from, a specialization of the class
template directly or indirectly named by the placeholder.

—(5.2) During template argument deduction for the aggregate deduction candidate, the number of elements in
a trailing parameter pack is only deduced from the number of remaining function arguments if it is not
otherwise deduced.

If the function or function template was generated from a constructor or deduction-guide that had an
explicit-specifier , each such notional constructor is considered to have that same explicit-specifier . All such
notional constructors are considered to be public members of the hypothetical class type.

6 [Example 2 :
template <class T> struct A {

explicit A(const T&, ...) noexcept; // #1
A(T&&, ...); // #2

};

int i;
A a1 = { i, i }; // error: explicit constructor #1 selected in copy-list-initialization during deduction,

// cannot deduce from non-forwarding rvalue reference in #2

A a2{i, i}; // OK, #1 deduces to A<int> and also initializes
A a3{0, i}; // OK, #2 deduces to A<int> and also initializes
A a4 = {0, i}; // OK, #2 deduces to A<int> and also initializes

template <class T> A(const T&, const T&) -> A<T&>; // #3
template <class T> explicit A(T&&, T&&) -> A<T>; // #4

A a5 = {0, 1}; // error: explicit deduction guide #4 selected in copy-list-initialization during deduction
A a6{0,1}; // OK, #4 deduces to A<int> and #2 initializes
A a7 = {0, i}; // error: #3 deduces to A<int&>, #1 and #2 declare same constructor
A a8{0,i}; // error: #3 deduces to A<int&>, #1 and #2 declare same constructor

template <class T> struct B {
template <class U> using TA = T;
template <class U> B(U, TA<U>);

};

B b{(int*)0, (char*)0}; // OK, deduces B<char*>

template <typename T>
struct S {

T x;
T y;

};

template <typename T>
struct C {

S<T> s;
T t;

};

template <typename T>
struct D {

S<int> s;
T t;

};

C c1 = {1, 2}; // error: deduction failed
C c2 = {1, 2, 3}; // error: deduction failed
C c3 = {{1u, 2u}, 3}; // OK, deduces C<int>
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D d1 = {1, 2}; // error: deduction failed
D d2 = {1, 2, 3}; // OK, braces elided, deduces D<int>

template <typename T>
struct E {

T t;
decltype(t) t2;

};

E e1 = {1, 2}; // OK, deduces E<int>

template <typename... T>
struct Types {};

template <typename... T>
struct F : Types<T...>, T... {};

struct X {};
struct Y {};
struct Z {};
struct W { operator Y(); };

F f1 = {Types<X, Y, Z>{}, {}, {}}; // OK, F<X, Y, Z> deduced
F f2 = {Types<X, Y, Z>{}, X{}, Y{}}; // OK, F<X, Y, Z> deduced
F f3 = {Types<X, Y, Z>{}, X{}, W{}}; // error: conflicting types deduced; operator Y not considered

— end example ]
7 [Example 3 :

template <class T, class U> struct C {
C(T, U); // #1

};
template<class T, class U>

C(T, U) -> C<T, std::type_identity_t<U>>; // #2

template<class V> using A = C<V *, V *>;
template<std::integral W> using B = A<W>;

int i{};
double d{};
A a1(&i, &i); // deduces A<int>
A a2(i, i); // error: cannot deduce V * from i
A a3(&i, &d); // error: #1: cannot deduce (V*, V*) from (int *, double *)

// #2: cannot deduce A<V> from C<int *, double *>
B b1(&i, &i); // deduces B<int>
B b2(&d, &d); // error: cannot deduce B<W> from C<double *, double *>

Possible exposition-only implementation of the above procedure:
// The following concept ensures a specialization of A is deduced.
template <class> class AA;
template <class V> class AA<A<V>> { };
template <class T> concept deduces_A = requires { sizeof(AA<T>); };

// f1 is formed from the constructor #1 of C, generating the following function template
template<class T, class U>

auto f1(T, U) -> C<T, U>;

// Deducing arguments for C<T, U> from C<V *, V*> deduces T as V * and U as V *;
// f1’ is obtained by transforming f1 as described by the above procedure.
template<class V> requires deduces_A<C<V *, V *>>

auto f1_prime(V *, V*) -> C<V *, V *>;

// f2 is formed from the deduction-guide #2 of C
template<class T, class U> auto f2(T, U) -> C<T, std::type_identity_t<U>>;
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// Deducing arguments for C<T, std::type_identity_t<U>> from C<V *, V*> deduces T as V *;
// f2’ is obtained by transforming f2 as described by the above procedure.
template<class V, class U>

requires deduces_A<C<V *, std::type_identity_t<U>>>
auto f2_prime(V *, U) -> C<V *, std::type_identity_t<U>>;

// The following concept ensures a specialization of B is deduced.
template <class> class BB;
template <class V> class BB<B<V>> { };
template <class T> concept deduces_B = requires { sizeof(BB<T>); };

// The guides for B derived from the above f1’ and f2’ for A are as follows:
template<std::integral W>

requires deduces_A<C<W *, W *>> && deduces_B<C<W *, W *>>
auto f1_prime_for_B(W *, W *) -> C<W *, W *>;

template<std::integral W, class U>
requires deduces_A<C<W *, std::type_identity_t<U>>> &&

deduces_B<C<W *, std::type_identity_t<U>>>
auto f2_prime_for_B(W *, U) -> C<W *, std::type_identity_t<U>>;

— end example ]

12.2.3 Viable functions [over.match.viable]
1 From the set of candidate functions constructed for a given context (12.2.2), a set of viable functions is chosen,

from which the best function will be selected by comparing argument conversion sequences and associated
constraints (13.5.3) for the best fit (12.2.4). The selection of viable functions considers associated constraints,
if any, and relationships between arguments and function parameters other than the ranking of conversion
sequences.

2 First, to be a viable function, a candidate function shall have enough parameters to agree in number with
the arguments in the list.

—(2.1) If there are m arguments in the list, all candidate functions having exactly m parameters are viable.
—(2.2) A candidate function having fewer than m parameters is viable only if it has an ellipsis in its parameter

list (9.3.4.6). For the purposes of overload resolution, any argument for which there is no corresponding
parameter is considered to “match the ellipsis” (12.2.4.2.4).

—(2.3) A candidate function having more than m parameters is viable only if all parameters following the
mth have default arguments (9.3.4.7). For the purposes of overload resolution, the parameter list is
truncated on the right, so that there are exactly m parameters.

3 Second, for a function to be viable, if it has associated constraints (13.5.3), those constraints shall be
satisfied (13.5.2).

4 Third, for F to be a viable function, there shall exist for each argument an implicit conversion sequence (12.2.4.2)
that converts that argument to the corresponding parameter of F. If the parameter has reference type, the
implicit conversion sequence includes the operation of binding the reference, and the fact that an lvalue
reference to non-const cannot bind to an rvalue and that an rvalue reference cannot bind to an lvalue can
affect the viability of the function (see 12.2.4.2.5).

12.2.4 Best viable function [over.match.best]
12.2.4.1 General [over.match.best.general]

1 Define ICSi(F) as the implicit conversion sequence that converts the ith argument in the list to the type of
the ith parameter of viable function F. 12.2.4.2 defines the implicit conversion sequences and 12.2.4.3 defines
what it means for one implicit conversion sequence to be a better conversion sequence or worse conversion
sequence than another.

2 Given these definitions, a viable function F1 is defined to be a better function than another viable function F2
if for all arguments i, ICSi(F1) is not a worse conversion sequence than ICSi(F2), and then

—(2.1) for some argument j, ICSj(F1) is a better conversion sequence than ICSj(F2), or, if not that,
—(2.2) the context is an initialization by user-defined conversion (see 9.4, 12.2.2.6, and 12.2.2.7) and the

standard conversion sequence from the return type of F1 to the destination type (i.e., the type of the
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entity being initialized) is a better conversion sequence than the standard conversion sequence from the
return type of F2 to the destination type
[Example 1 :

struct A {
A();
operator int();
operator double();

} a;
int i = a; // a.operator int() followed by no conversion is better than

// a.operator double() followed by a conversion to int
float x = a; // ambiguous: both possibilities require conversions,

// and neither is better than the other
— end example ]

or, if not that,
—(2.3) the context is an initialization by conversion function for direct reference binding (12.2.2.7) of a reference

to function type, the return type of F1 is the same kind of reference (lvalue or rvalue) as the reference
being initialized, and the return type of F2 is not
[Example 2 :

template <class T> struct A {
operator T&(); // #1
operator T&&(); // #2

};
typedef int Fn();
A<Fn> a;
Fn& lf = a; // calls #1
Fn&& rf = a; // calls #2

— end example ]

or, if not that,
—(2.4) F1 is not a function template specialization and F2 is a function template specialization, or, if not that,
—(2.5) F1 and F2 are function template specializations, and the function template for F1 is more specialized

than the template for F2 according to the partial ordering rules described in 13.7.7.3, or, if not that,
—(2.6) F1 and F2 are non-template functions with the same parameter-type-lists, and F1 is more constrained

than F2 according to the partial ordering of constraints described in 13.5.5, or if not that,
—(2.7) F1 is a constructor for a class D, F2 is a constructor for a base class B of D, and for all arguments the

corresponding parameters of F1 and F2 have the same type
[Example 3 :

struct A {
A(int = 0);

};

struct B: A {
using A::A;
B();

};

int main() {
B b; // OK, B::B()

}

— end example ]

or, if not that,
—(2.8) F2 is a rewritten candidate (12.2.2.3) and F1 is not

[Example 4 :
struct S {

friend auto operator<=>(const S&, const S&) = default; // #1
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friend bool operator<(const S&, const S&); // #2
};
bool b = S() < S(); // calls #2

— end example ]

or, if not that,
—(2.9) F1 and F2 are rewritten candidates, and F2 is a synthesized candidate with reversed order of parameters

and F1 is not
[Example 5 :

struct S {
friend std::weak_ordering operator<=>(const S&, int); // #1
friend std::weak_ordering operator<=>(int, const S&); // #2

};
bool b = 1 < S(); // calls #2

— end example ]

or, if not that
—(2.10) F1 and F2 are generated from class template argument deduction (12.2.2.9) for a class D, and F2 is

generated from inheriting constructors from a base class of D while F1 is not, and for each explicit
function argument, the corresponding parameters of F1 and F2 are either both ellipses or have the
same type, or, if not that,

—(2.11) F1 is generated from a deduction-guide (12.2.2.9) and F2 is not, or, if not that,
—(2.12) F1 is the copy deduction candidate (12.2.2.9) and F2 is not, or, if not that,
—(2.13) F1 is generated from a non-template constructor and F2 is generated from a constructor template.

[Example 6 :
template <class T> struct A {

using value_type = T;
A(value_type); // #1
A(const A&); // #2
A(T, T, int); // #3
template<class U>

A(int, T, U); // #4
// #5 is the copy deduction candidate, A(A)

};

A x(1, 2, 3); // uses #3, generated from a non-template constructor

template <class T>
A(T) -> A<T>; // #6, less specialized than #5

A a(42); // uses #6 to deduce A<int> and #1 to initialize
A b = a; // uses #5 to deduce A<int> and #2 to initialize

template <class T>
A(A<T>) -> A<A<T>>; // #7, as specialized as #5

A b2 = a; // uses #7 to deduce A<A<int>> and #1 to initialize
— end example ]

3 If there is exactly one viable function that is a better function than all other viable functions, then it is the
one selected by overload resolution; otherwise the call is ill-formed.112

[Example 7 :
void Fcn(const int*, short);
void Fcn(int*, int);

112) The algorithm for selecting the best viable function is linear in the number of viable functions. Run a simple tournament
to find a function W that is not worse than any opponent it faced. Although it is possible that another function F that W did not
face is at least as good as W, F cannot be the best function because at some point in the tournament F encountered another
function G such that F was not better than G. Hence, either W is the best function or there is no best function. So, make a second
pass over the viable functions to verify that W is better than all other functions.
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int i;
short s = 0;

void f() {
Fcn(&i, s); // is ambiguous because &i → int* is better than &i → const int*

// but s → short is also better than s → int

Fcn(&i, 1L); // calls Fcn(int*, int), because &i → int* is better than &i → const int*
// and 1L → short and 1L → int are indistinguishable

Fcn(&i, 'c'); // calls Fcn(int*, int), because &i → int* is better than &i → const int*
// and ’c’ → int is better than ’c’ → short

}

— end example ]
4 If the best viable function resolves to a function for which multiple declarations were found, and if any two of

these declarations inhabit different scopes and specify a default argument that made the function viable, the
program is ill-formed.
[Example 8 :

namespace A {
extern "C" void f(int = 5);

}
namespace B {

extern "C" void f(int = 5);
}

using A::f;
using B::f;

void use() {
f(3); // OK, default argument was not used for viability
f(); // error: found default argument twice

}

— end example ]

12.2.4.2 Implicit conversion sequences [over.best.ics]
12.2.4.2.1 General [over.best.ics.general]

1 An implicit conversion sequence is a sequence of conversions used to convert an argument in a function call
to the type of the corresponding parameter of the function being called. The sequence of conversions is an
implicit conversion as defined in 7.3, which means it is governed by the rules for initialization of an object or
reference by a single expression (9.4, 9.4.4).

2 Implicit conversion sequences are concerned only with the type, cv-qualification, and value category of the
argument and how these are converted to match the corresponding properties of the parameter.
[Note 1 : Other properties, such as the lifetime, storage class, alignment, accessibility of the argument, whether the
argument is a bit-field, and whether a function is deleted (9.5.3), are ignored. So, although an implicit conversion
sequence can be defined for a given argument-parameter pair, the conversion from the argument to the parameter
might still be ill-formed in the final analysis. — end note ]

3 A well-formed implicit conversion sequence is one of the following forms:
—(3.1) a standard conversion sequence (12.2.4.2.2),
—(3.2) a user-defined conversion sequence (12.2.4.2.3), or
—(3.3) an ellipsis conversion sequence (12.2.4.2.4).

4 However, if the target is
—(4.1) the first parameter of a constructor or
—(4.2) the object parameter of a user-defined conversion function

and the constructor or user-defined conversion function is a candidate by
—(4.3) 12.2.2.4, when the argument is the temporary in the second step of a class copy-initialization,
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—(4.4) 12.2.2.5, 12.2.2.6, or 12.2.2.7 (in all cases), or
—(4.5) the second phase of 12.2.2.8 when the initializer list has exactly one element that is itself an initializer

list, and the target is the first parameter of a constructor of class X, and the conversion is to X or
reference to cv X,

user-defined conversion sequences are not considered.
[Note 2 : These rules prevent more than one user-defined conversion from being applied during overload resolution,
thereby avoiding infinite recursion. — end note ]
[Example 1 :

struct Y { Y(int); };
struct A { operator int(); };
Y y1 = A(); // error: A::operator int() is not a candidate

struct X { X(); };
struct B { operator X(); };
B b;
X x{{b}}; // error: B::operator X() is not a candidate

— end example ]
5 For the case where the parameter type is a reference, see 12.2.4.2.5.
6 When the parameter type is not a reference, the implicit conversion sequence models a copy-initialization of

the parameter from the argument expression. The implicit conversion sequence is the one required to convert
the argument expression to a prvalue of the type of the parameter.
[Note 3 : When the parameter has a class type, this is a conceptual conversion defined for the purposes of Clause 12;
the actual initialization is defined in terms of constructors and is not a conversion. — end note ]

Any difference in top-level cv-qualification is subsumed by the initialization itself and does not constitute a
conversion.
[Example 2 : A parameter of type A can be initialized from an argument of type const A. The implicit conversion
sequence for that case is the identity sequence; it contains no “conversion” from const A to A. — end example ]

7 When the parameter has a class type and the argument expression has the same type, the implicit conversion
sequence is an identity conversion. When the parameter has a class type and the argument expression has a
derived class type, the implicit conversion sequence is a derived-to-base conversion from the derived class to
the base class. A derived-to-base conversion has Conversion rank (12.2.4.2.2).
[Note 4 : There is no such standard conversion; this derived-to-base conversion exists only in the description of implicit
conversion sequences. — end note ]

8 When the parameter is the implicit object parameter of a static member function, the implicit conversion
sequence is a standard conversion sequence that is neither better nor worse than any other standard conversion
sequence.

9 In all contexts, when converting to the implicit object parameter or when converting to the left operand of
an assignment operation only standard conversion sequences are allowed.
[Note 5 : When converting to the explicit object parameter, if any, user-defined conversion sequences are allowed.

— end note ]
10 If no conversions are required to match an argument to a parameter type, the implicit conversion sequence is

the standard conversion sequence consisting of the identity conversion (12.2.4.2.2).
11 If no sequence of conversions can be found to convert an argument to a parameter type, an implicit conversion

sequence cannot be formed.
12 If there are multiple well-formed implicit conversion sequences converting the argument to the parameter

type, the implicit conversion sequence associated with the parameter is defined to be the unique conversion
sequence designated the ambiguous conversion sequence. For the purpose of ranking implicit conversion
sequences as described in 12.2.4.3, the ambiguous conversion sequence is treated as a user-defined conversion
sequence that is indistinguishable from any other user-defined conversion sequence.
[Note 6 : This rule prevents a function from becoming non-viable because of an ambiguous conversion sequence for
one of its parameters.
[Example 3 :

class B;
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class A { A (B&);};
class B { operator A (); };
class C { C (B&); };
void f(A) { }
void f(C) { }
B b;
f(b); // error: ambiguous because there is a conversion b → C (via constructor)

// and an (ambiguous) conversion b → A (via constructor or conversion function)
void f(B) { }
f(b); // OK, unambiguous

— end example ]
— end note ]

If a function that uses the ambiguous conversion sequence is selected as the best viable function, the call will
be ill-formed because the conversion of one of the arguments in the call is ambiguous.

13 The three forms of implicit conversion sequences mentioned above are defined in the following subclauses.

12.2.4.2.2 Standard conversion sequences [over.ics.scs]
1 Table 19 summarizes the conversions defined in 7.3 and partitions them into four disjoint categories: Lvalue

Transformation, Qualification Adjustment, Promotion, and Conversion.
[Note 1 : These categories are orthogonal with respect to value category, cv-qualification, and data representation:
the Lvalue Transformations do not change the cv-qualification or data representation of the type; the Qualification
Adjustments do not change the value category or data representation of the type; and the Promotions and Conversions
do not change the value category or cv-qualification of the type. — end note ]

2 [Note 2 : As described in 7.3, a standard conversion sequence either is the Identity conversion by itself (that is, no
conversion) or consists of one to three conversions from the other four categories. If there are two or more conversions
in the sequence, the conversions are applied in the canonical order: Lvalue Transformation, Promotion or
Conversion, Qualification Adjustment. — end note ]

3 Each conversion in Table 19 also has an associated rank (Exact Match, Promotion, or Conversion). These are
used to rank standard conversion sequences (12.2.4.3). The rank of a conversion sequence is determined by
considering the rank of each conversion in the sequence and the rank of any reference binding (12.2.4.2.5). If
any of those has Conversion rank, the sequence has Conversion rank; otherwise, if any of those has Promotion
rank, the sequence has Promotion rank; otherwise, the sequence has Exact Match rank.

Table 19: Conversions [tab:over.ics.scs]

Conversion Category Rank Subclause
No conversions required Identity
Lvalue-to-rvalue conversion 7.3.2
Array-to-pointer conversion Lvalue Transformation 7.3.3
Function-to-pointer conversion Exact Match 7.3.4
Qualification conversions 7.3.6
Function pointer conversion Qualification Adjustment 7.3.14
Integral promotions 7.3.7
Floating-point promotion Promotion Promotion 7.3.8
Integral conversions 7.3.9
Floating-point conversions 7.3.10
Floating-integral conversions 7.3.11
Pointer conversions Conversion Conversion 7.3.12
Pointer-to-member conversions 7.3.13
Boolean conversions 7.3.15

12.2.4.2.3 User-defined conversion sequences [over.ics.user]
1 A user-defined conversion sequence consists of an initial standard conversion sequence followed by a user-

defined conversion (11.4.8) followed by a second standard conversion sequence. If the user-defined conversion
is specified by a constructor (11.4.8.2), the initial standard conversion sequence converts the source type to
the type of the first parameter of that constructor. If the user-defined conversion is specified by a conversion
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function (11.4.8.3), the initial standard conversion sequence converts the source type to the type of the object
parameter of that conversion function.

2 The second standard conversion sequence converts the result of the user-defined conversion to the target type
for the sequence; any reference binding is included in the second standard conversion sequence. Since an
implicit conversion sequence is an initialization, the special rules for initialization by user-defined conversion
apply when selecting the best user-defined conversion for a user-defined conversion sequence (see 12.2.4
and 12.2.4.2).

3 If the user-defined conversion is specified by a specialization of a conversion function template, the second
standard conversion sequence shall have exact match rank.

4 A conversion of an expression of class type to the same class type is given Exact Match rank, and a conversion
of an expression of class type to a base class of that type is given Conversion rank, in spite of the fact that a
constructor (i.e., a user-defined conversion function) is called for those cases.

12.2.4.2.4 Ellipsis conversion sequences [over.ics.ellipsis]
1 An ellipsis conversion sequence occurs when an argument in a function call is matched with the ellipsis

parameter specification of the function called (see 7.6.1.3).

12.2.4.2.5 Reference binding [over.ics.ref]
1 When a parameter of reference type binds directly (9.4.4) to an argument expression, the implicit conversion

sequence is the identity conversion, unless the argument expression has a type that is a derived class of the
parameter type, in which case the implicit conversion sequence is a derived-to-base conversion (12.2.4.2).
[Example 1 :

struct A {};
struct B : public A {} b;
int f(A&);
int f(B&);
int i = f(b); // calls f(B&), an exact match, rather than f(A&), a conversion

— end example ]

If the parameter binds directly to the result of applying a conversion function to the argument expression,
the implicit conversion sequence is a user-defined conversion sequence (12.2.4.2.3) whose second standard
conversion sequence is either an identity conversion or, if the conversion function returns an entity of a type
that is a derived class of the parameter type, a derived-to-base conversion.

2 When a parameter of reference type is not bound directly to an argument expression, the conversion
sequence is the one required to convert the argument expression to the referenced type according to 12.2.4.2.
Conceptually, this conversion sequence corresponds to copy-initializing a temporary of the referenced type
with the argument expression. Any difference in top-level cv-qualification is subsumed by the initialization
itself and does not constitute a conversion.

3 Except for an implicit object parameter, for which see 12.2.2, an implicit conversion sequence cannot be
formed if it requires binding an lvalue reference other than a reference to a non-volatile const type to an
rvalue or binding an rvalue reference to an lvalue other than a function lvalue.
[Note 1 : This means, for example, that a candidate function cannot be a viable function if it has a non-const lvalue
reference parameter (other than the implicit object parameter) and the corresponding argument would require a
temporary to be created to initialize the lvalue reference (see 9.4.4). — end note ]

4 Other restrictions on binding a reference to a particular argument that are not based on the types of the
reference and the argument do not affect the formation of an implicit conversion sequence, however.
[Example 2 : A function with an “lvalue reference to int” parameter can be a viable candidate even if the corresponding
argument is an int bit-field. The formation of implicit conversion sequences treats the int bit-field as an int lvalue
and finds an exact match with the parameter. If the function is selected by overload resolution, the call will nonetheless
be ill-formed because of the prohibition on binding a non-const lvalue reference to a bit-field (9.4.4). — end example ]

12.2.4.2.6 List-initialization sequence [over.ics.list]
1 When an argument is an initializer list (9.4.5), it is not an expression and special rules apply for converting

it to a parameter type.
2 If the initializer list is a designated-initializer-list, a conversion is only possible if the parameter has an aggregate

type that can be initialized from the initializer list according to the rules for aggregate initialization (9.4.2),
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in which case the implicit conversion sequence is a user-defined conversion sequence whose second standard
conversion sequence is an identity conversion.
[Note 1 : Aggregate initialization does not require that the members are declared in designation order. If, after
overload resolution, the order does not match for the selected overload, the initialization of the parameter will be
ill-formed (9.4.5).
[Example 1 :

struct A { int x, y; };
struct B { int y, x; };
void f(A a, int); // #1
void f(B b, ...); // #2
void g(A a); // #3
void g(B b); // #4
void h() {

f({.x = 1, .y = 2}, 0); // OK; calls #1
f({.y = 2, .x = 1}, 0); // error: selects #1, initialization of a fails

// due to non-matching member order (9.4.5)
g({.x = 1, .y = 2}); // error: ambiguous between #3 and #4

}

— end example ]
— end note ]

3 Otherwise, if the parameter type is an aggregate class X and the initializer list has a single element of type
cv U, where U is X or a class derived from X, the implicit conversion sequence is the one required to convert
the element to the parameter type.

4 Otherwise, if the parameter type is a character array113 and the initializer list has a single element that is an
appropriately-typed string-literal (9.4.3), the implicit conversion sequence is the identity conversion.

5 Otherwise, if the parameter type is std::initializer_list<X> and all the elements of the initializer list
can be implicitly converted to X, the implicit conversion sequence is the worst conversion necessary to convert
an element of the list to X, or if the initializer list has no elements, the identity conversion. This conversion
can be a user-defined conversion even in the context of a call to an initializer-list constructor.
[Example 2 :

void f(std::initializer_list<int>);
f( {} ); // OK, f(initializer_list<int>) identity conversion
f( {1,2,3} ); // OK, f(initializer_list<int>) identity conversion
f( {'a','b'} ); // OK, f(initializer_list<int>) integral promotion
f( {1.0} ); // error: narrowing

struct A {
A(std::initializer_list<double>); // #1
A(std::initializer_list<complex<double>>); // #2
A(std::initializer_list<std::string>); // #3

};
A a{ 1.0,2.0 }; // OK, uses #1

void g(A);
g({ "foo", "bar" }); // OK, uses #3

typedef int IA[3];
void h(const IA&);
h({ 1, 2, 3 }); // OK, identity conversion

— end example ]
6 Otherwise, if the parameter type is “array of N X” or “array of unknown bound of X”, if there exists an

implicit conversion sequence from each element of the initializer list (and from {} in the former case if N
exceeds the number of elements in the initializer list) to X, the implicit conversion sequence is the worst such
implicit conversion sequence.

7 Otherwise, if the parameter is a non-aggregate class X and overload resolution per 12.2.2.8 chooses a single
best constructor C of X to perform the initialization of an object of type X from the argument initializer list:

113) Since there are no parameters of array type, this will only occur as the referenced type of a reference parameter.
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—(7.1) If C is not an initializer-list constructor and the initializer list has a single element of type cv U, where
U is X or a class derived from X, the implicit conversion sequence has Exact Match rank if U is X, or
Conversion rank if U is derived from X.

—(7.2) Otherwise, the implicit conversion sequence is a user-defined conversion sequence whose second standard
conversion sequence is an identity conversion.

If multiple constructors are viable but none is better than the others, the implicit conversion sequence is
the ambiguous conversion sequence. User-defined conversions are allowed for conversion of the initializer list
elements to the constructor parameter types except as noted in 12.2.4.2.
[Example 3 :

struct A {
A(std::initializer_list<int>);

};
void f(A);
f( {'a', 'b'} ); // OK, f(A(std::initializer_list<int>)) user-defined conversion

struct B {
B(int, double);

};
void g(B);
g( {'a', 'b'} ); // OK, g(B(int, double)) user-defined conversion
g( {1.0, 1.0} ); // error: narrowing

void f(B);
f( {'a', 'b'} ); // error: ambiguous f(A) or f(B)

struct C {
C(std::string);

};
void h(C);
h({"foo"}); // OK, h(C(std::string("foo")))

struct D {
D(A, C);

};
void i(D);
i({ {1,2}, {"bar"} }); // OK, i(D(A(std::initializer_list<int>{1,2}), C(std::string("bar"))))

— end example ]
8 Otherwise, if the parameter has an aggregate type which can be initialized from the initializer list according

to the rules for aggregate initialization (9.4.2), the implicit conversion sequence is a user-defined conversion
sequence whose second standard conversion sequence is an identity conversion.
[Example 4 :

struct A {
int m1;
double m2;

};

void f(A);
f( {'a', 'b'} ); // OK, f(A(int,double)) user-defined conversion
f( {1.0} ); // error: narrowing

— end example ]
9 Otherwise, if the parameter is a reference, see 12.2.4.2.5.

[Note 2 : The rules in this subclause will apply for initializing the underlying temporary for the reference. — end note ]
[Example 5 :

struct A {
int m1;
double m2;

};
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void f(const A&);
f( {'a', 'b'} ); // OK, f(A(int,double)) user-defined conversion
f( {1.0} ); // error: narrowing

void g(const double &);
g({1}); // same conversion as int to double

— end example ]
10 Otherwise, if the parameter type is not a class:

—(10.1) if the initializer list has one element that is not itself an initializer list, the implicit conversion sequence
is the one required to convert the element to the parameter type;
[Example 6 :

void f(int);
f( {'a'} ); // OK, same conversion as char to int
f( {1.0} ); // error: narrowing

— end example ]

—(10.2) if the initializer list has no elements, the implicit conversion sequence is the identity conversion.
[Example 7 :

void f(int);
f( { } ); // OK, identity conversion

— end example ]
11 In all cases other than those enumerated above, no conversion is possible.

12.2.4.3 Ranking implicit conversion sequences [over.ics.rank]
1 This subclause defines a partial ordering of implicit conversion sequences based on the relationships better

conversion sequence and better conversion. If an implicit conversion sequence S1 is defined by these rules to
be a better conversion sequence than S2, then it is also the case that S2 is a worse conversion sequence than
S1. If conversion sequence S1 is neither better than nor worse than conversion sequence S2, S1 and S2 are
said to be indistinguishable conversion sequences.

2 When comparing the basic forms of implicit conversion sequences (as defined in 12.2.4.2)
—(2.1) a standard conversion sequence (12.2.4.2.2) is a better conversion sequence than a user-defined conversion

sequence or an ellipsis conversion sequence, and
—(2.2) a user-defined conversion sequence (12.2.4.2.3) is a better conversion sequence than an ellipsis conversion

sequence (12.2.4.2.4).
3 Two implicit conversion sequences of the same form are indistinguishable conversion sequences unless one of

the following rules applies:
—(3.1) List-initialization sequence L1 is a better conversion sequence than list-initialization sequence L2 if

—(3.1.1) L1 converts to std::initializer_list<X> for some X and L2 does not, or, if not that,
—(3.1.2) L1 and L2 convert to arrays of the same element type, and either the number of elements n1

initialized by L1 is less than the number of elements n2 initialized by L2, or n1 = n2 and L2
converts to an array of unknown bound and L1 does not,

even if one of the other rules in this paragraph would otherwise apply.
[Example 1 :

void f1(int); // #1
void f1(std::initializer_list<long>); // #2
void g1() { f1({42}); } // chooses #2

void f2(std::pair<const char*, const char*>); // #3
void f2(std::initializer_list<std::string>); // #4
void g2() { f2({"foo","bar"}); } // chooses #4

— end example ]
[Example 2 :

void f(int (&&)[] ); // #1
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void f(double (&&)[] ); // #2
void f(int (&&)[2]); // #3

f( {1} ); // Calls #1: Better than #2 due to conversion, better than #3 due to bounds
f( {1.0} ); // Calls #2: Identity conversion is better than floating-integral conversion
f( {1.0, 2.0} ); // Calls #2: Identity conversion is better than floating-integral conversion
f( {1, 2} ); // Calls #3: Converting to array of known bound is better than to unknown bound,

// and an identity conversion is better than floating-integral conversion
— end example ]

—(3.2) Standard conversion sequence S1 is a better conversion sequence than standard conversion sequence S2
if

—(3.2.1) S1 is a proper subsequence of S2 (comparing the conversion sequences in the canonical form
defined by 12.2.4.2.2, excluding any Lvalue Transformation; the identity conversion sequence is
considered to be a subsequence of any non-identity conversion sequence) or, if not that,

—(3.2.2) the rank of S1 is better than the rank of S2, or S1 and S2 have the same rank and are distinguishable
by the rules in the paragraph below, or, if not that,

—(3.2.3) S1 and S2 include reference bindings (9.4.4) and neither refers to an implicit object parameter of
a non-static member function declared without a ref-qualifier , and S1 binds an rvalue reference to
an rvalue and S2 binds an lvalue reference
[Example 3 :

int i;
int f1();
int&& f2();
int g(const int&);
int g(const int&&);
int j = g(i); // calls g(const int&)
int k = g(f1()); // calls g(const int&&)
int l = g(f2()); // calls g(const int&&)

struct A {
A& operator<<(int);
void p() &;
void p() &&;

};
A& operator<<(A&&, char);
A() << 1; // calls A::operator<<(int)
A() << 'c'; // calls operator<<(A&&, char)
A a;
a << 1; // calls A::operator<<(int)
a << 'c'; // calls A::operator<<(int)
A().p(); // calls A::p()&&
a.p(); // calls A::p()&

— end example ]

or, if not that,
—(3.2.4) S1 and S2 include reference bindings (9.4.4) and S1 binds an lvalue reference to a function lvalue

and S2 binds an rvalue reference to a function lvalue
[Example 4 :

int f(void(&)()); // #1
int f(void(&&)()); // #2
void g();
int i1 = f(g); // calls #1

— end example ]

or, if not that,
—(3.2.5) S1 and S2 differ only in their qualification conversion (7.3.6) and yield similar types T1 and T2,

respectively, where T1 can be converted to T2 by a qualification conversion.
[Example 5 :
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int f(const volatile int *);
int f(const int *);
int i;
int j = f(&i); // calls f(const int*)

— end example ]

or, if not that,
—(3.2.6) S1 and S2 include reference bindings (9.4.4), and the types to which the references refer are the

same type except for top-level cv-qualifiers, and the type to which the reference initialized by S2
refers is more cv-qualified than the type to which the reference initialized by S1 refers.
[Example 6 :

int f(const int &);
int f(int &);
int g(const int &);
int g(int);

int i;
int j = f(i); // calls f(int &)
int k = g(i); // ambiguous

struct X {
void f() const;
void f();

};
void g(const X& a, X b) {

a.f(); // calls X::f() const
b.f(); // calls X::f()

}

— end example ]

—(3.3) User-defined conversion sequence U1 is a better conversion sequence than another user-defined conversion
sequence U2 if they contain the same user-defined conversion function or constructor or they initialize
the same class in an aggregate initialization and in either case the second standard conversion sequence
of U1 is better than the second standard conversion sequence of U2.
[Example 7 :

struct A {
operator short();

} a;
int f(int);
int f(float);
int i = f(a); // calls f(int), because short → int is

// better than short → float.
— end example ]

4 Standard conversion sequences are ordered by their ranks: an Exact Match is a better conversion than a
Promotion, which is a better conversion than a Conversion. Two conversion sequences with the same rank
are indistinguishable unless one of the following rules applies:

—(4.1) A conversion that does not convert a pointer or a pointer to member to bool is better than one that
does.

—(4.2) A conversion that promotes an enumeration whose underlying type is fixed to its underlying type is
better than one that promotes to the promoted underlying type, if the two are different.

—(4.3) A conversion in either direction between floating-point type FP1 and floating-point type FP2 is better
than a conversion in the same direction between FP1 and arithmetic type T3 if

—(4.3.1) the floating-point conversion rank (6.8.6) of FP1 is equal to the rank of FP2, and
—(4.3.2) T3 is not a floating-point type, or T3 is a floating-point type whose rank is not equal to the rank

of FP1, or the floating-point conversion subrank (6.8.6) of FP2 is greater than the subrank of T3.
[Example 8 :

int f(std::float32_t);
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int f(std::float64_t);
int f(long long);
float x;
std::float16_t y;
int i = f(x); // calls f(std::float32_t) on implementations where

// float and std::float32_t have equal conversion ranks
int j = f(y); // error: ambiguous, no equal conversion rank

— end example ]

—(4.4) If class B is derived directly or indirectly from class A, conversion of B* to A* is better than conversion
of B* to void*, and conversion of A* to void* is better than conversion of B* to void*.

—(4.5) If class B is derived directly or indirectly from class A and class C is derived directly or indirectly from B,
—(4.5.1) conversion of C* to B* is better than conversion of C* to A*,

[Example 9 :
struct A {};
struct B : public A {};
struct C : public B {};
C* pc;
int f(A*);
int f(B*);
int i = f(pc); // calls f(B*)

— end example ]

—(4.5.2) binding of an expression of type C to a reference to type B is better than binding an expression of
type C to a reference to type A,

—(4.5.3) conversion of A::* to B::* is better than conversion of A::* to C::*,
—(4.5.4) conversion of C to B is better than conversion of C to A,
—(4.5.5) conversion of B* to A* is better than conversion of C* to A*,
—(4.5.6) binding of an expression of type B to a reference to type A is better than binding an expression of

type C to a reference to type A,
—(4.5.7) conversion of B::* to C::* is better than conversion of A::* to C::*, and
—(4.5.8) conversion of B to A is better than conversion of C to A.

[Note 1 : Compared conversion sequences will have different source types only in the context of comparing the
second standard conversion sequence of an initialization by user-defined conversion (see 12.2.4); in all other
contexts, the source types will be the same and the target types will be different. — end note ]

12.3 Address of an overload set [over.over]
1 An id-expression whose terminal name refers to an overload set S and that appears without arguments is

resolved to a function, a pointer to function, or a pointer to member function for a specific function that is
chosen from a set of functions selected from S determined based on the target type required in the context
(if any), as described below. The target can be

—(1.1) an object or reference being initialized (9.4, 9.4.4, 9.4.5),
—(1.2) the left side of an assignment (7.6.19),
—(1.3) a parameter of a function (7.6.1.3),
—(1.4) a parameter of a user-defined operator (12.4),
—(1.5) the return value of a function, operator function, or conversion (8.7.4),
—(1.6) an explicit type conversion (7.6.1.4, 7.6.1.9, 7.6.3), or
—(1.7) a non-type template-parameter (13.4.3).

The id-expression can be preceded by the & operator.
[Note 1 : Any redundant set of parentheses surrounding the function name is ignored (7.5.3). — end note ]

2 If there is no target, all non-template functions named are selected. Otherwise, a non-template function with
type F is selected for the function type FT of the target type if F (after possibly applying the function pointer
conversion (7.3.14)) is identical to FT.
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[Note 2 : That is, the class of which the function is a member is ignored when matching a pointer-to-member-function
type. — end note ]

3 The specialization, if any, generated by template argument deduction (13.10.4, 13.10.3.3, 13.10.2) for each
function template named is added to the set of selected functions considered.

4 Non-member functions, static member functions, and explicit object member functions match targets of
function pointer type or reference to function type. Implicit object member functions match targets of
pointer-to-member-function type.
[Note 3 : If an implicit object member function is chosen, the result can be used only to form a pointer to member
(7.6.2.2). — end note ]

5 All functions with associated constraints that are not satisfied (13.5.3) are eliminated from the set of selected
functions. If more than one function in the set remains, all function template specializations in the set are
eliminated if the set also contains a function that is not a function template specialization. Any given non-
template function F0 is eliminated if the set contains a second non-template function that is more constrained
than F0 according to the partial ordering rules of 13.5.5. Any given function template specialization F1 is
eliminated if the set contains a second function template specialization whose function template is more
specialized than the function template of F1 according to the partial ordering rules of 13.7.7.3. After such
eliminations, if any, there shall remain exactly one selected function.

6 [Example 1 :
int f(double);
int f(int);
int (*pfd)(double) = &f; // selects f(double)
int (*pfi)(int) = &f; // selects f(int)
int (*pfe)(...) = &f; // error: type mismatch
int (&rfi)(int) = f; // selects f(int)
int (&rfd)(double) = f; // selects f(double)
void g() {

(int (*)(int))&f; // cast expression as selector
}

The initialization of pfe is ill-formed because no f() with type int(...) has been declared, and not because of any
ambiguity. For another example,

struct X {
int f(int);
static int f(long);

};

int (X::*p1)(int) = &X::f; // OK
int (*p2)(int) = &X::f; // error: mismatch
int (*p3)(long) = &X::f; // OK
int (X::*p4)(long) = &X::f; // error: mismatch
int (X::*p5)(int) = &(X::f); // error: wrong syntax for

// pointer to member
int (*p6)(long) = &(X::f); // OK

— end example ]
7 [Note 4 : If f and g are both overload sets, the Cartesian product of possibilities is considered to resolve f(&g), or the

equivalent expression f(g). — end note ]
8 [Note 5 : Even if B is a public base of D, we have

D* f();
B* (*p1)() = &f; // error

void g(D*);
void (*p2)(B*) = &g; // error

— end note ]

12.4 Overloaded operators [over.oper]
12.4.1 General [over.oper.general]

1 A declaration whose declarator-id is an operator-function-id shall declare a function or function template or an
explicit instantiation or specialization of a function template. A function so declared is an operator function.
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A function template so declared is an operator function template. A specialization of an operator function
template is also an operator function. An operator function is said to implement the operator named in its
operator-function-id .

operator-function-id :
operator operator

operator : one of
new delete new[] delete[] co_await ( ) [ ] -> ->*
~ ! + - * / % ^ &
| = += -= *= /= %= ^= &=
|= == != < > <= >= <=> &&
|| << >> <<= >>= ++ -- ,

[Note 1 : The operators new[], delete[], (), and [] are formed from more than one token. The latter two operators
are function call (7.6.1.3) and subscripting (7.6.1.2). — end note ]

2 Both the unary and binary forms of
+ - * &

can be overloaded.
3 [Note 2 : The following operators cannot be overloaded:

. .* :: ?:

nor can the preprocessing symbols # (15.6.3) and ## (15.6.4). — end note ]
4 Operator functions are usually not called directly; instead they are invoked to evaluate the operators they

implement (12.4.2 – 12.4.7). They can be explicitly called, however, using the operator-function-id as the
name of the function in the function call syntax (7.6.1.3).
[Example 1 :

complex z = a.operator+(b); // complex z = a+b;
void* p = operator new(sizeof(int)*n);

— end example ]
5 The allocation and deallocation functions, operator new, operator new[], operator delete, and operator

delete[], are described completely in 6.7.5.5. The attributes and restrictions found in the rest of 12.4 do
not apply to them unless explicitly stated in 6.7.5.5.

6 The co_await operator is described completely in 7.6.2.4. The attributes and restrictions found in the rest
of 12.4 do not apply to it unless explicitly stated in 7.6.2.4.

7 An operator function shall either
—(7.1) be a member function or
—(7.2) be a non-member function that has at least one non-object parameter whose type is a class, a reference

to a class, an enumeration, or a reference to an enumeration.
It is not possible to change the precedence, grouping, or number of operands of operators. The meaning
of the operators =, (unary) &, and , (comma), predefined for each type, can be changed for specific class
types by defining operator functions that implement these operators. Likewise, the meaning of the operators
(unary) & and , (comma) can be changed for specific enumeration types. Operator functions are inherited in
the same manner as other base class functions.

8 An operator function shall be a prefix unary, binary, function call, subscripting, class member access,
increment, or decrement operator function.

9 [Note 3 : The identities among certain predefined operators applied to basic types (for example, ++a ≡ a+=1) need not
hold for operator functions. Some predefined operators, such as +=, require an operand to be an lvalue when applied
to basic types; this is not required by operator functions. — end note ]

10 An operator function cannot have default arguments (9.3.4.7), except where explicitly stated below. Operator
functions cannot have more or fewer parameters than the number required for the corresponding operator, as
described in the rest of 12.4.

11 Operators not mentioned explicitly in subclauses 12.4.3.2 through 12.4.7 act as ordinary unary and binary
operators obeying the rules of 12.4.2 or 12.4.3.
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12.4.2 Unary operators [over.unary]
1 A prefix unary operator function is a function named operator@ for a prefix unary-operator @ (7.6.2.2) that

is either a non-static member function (11.4.2) with no non-object parameters or a non-member function
with one parameter. For a unary-expression of the form @ cast-expression, the operator function is selected by
overload resolution (12.2.2.3). If a member function is selected, the expression is interpreted as

cast-expression . operator @ ()

Otherwise, if a non-member function is selected, the expression is interpreted as
operator @ ( cast-expression )

[Note 1 : The operators ++ and -- (7.6.2.3) are described in 12.4.7. — end note ]
2 [Note 2 : The unary and binary forms of the same operator have the same name. Consequently, a unary operator can

hide a binary operator from an enclosing scope, and vice versa. — end note ]

12.4.3 Binary operators [over.binary]
12.4.3.1 General [over.binary.general]

1 A binary operator function is a function named operator@ for a binary operator @ that is either a non-static
member function (11.4.2) with one non-object parameter or a non-member function with two parameters.
For an expression x @ y with subexpressions x and y, the operator function is selected by overload resolution
(12.2.2.3). If a member function is selected, the expression is interpreted as

x . operator @ ( y )

Otherwise, if a non-member function is selected, the expression is interpreted as
operator @ ( x , y )

2 An equality operator function is an operator function for an equality operator (7.6.10). A relational operator
function is an operator function for a relational operator (7.6.9). A three-way comparison operator function
is an operator function for the three-way comparison operator (7.6.8). A comparison operator function is an
equality operator function, a relational operator function, or a three-way comparison operator function.

12.4.3.2 Simple assignment [over.ass]
1 A simple assignment operator function is a binary operator function named operator=. A simple assignment

operator function shall be a non-static member function.
[Note 1 : Because only standard conversion sequences are considered when converting to the left operand of an
assignment operation (12.2.4.2), an expression x = y with a subexpression x of class type is always interpreted as
x.operator=(y). — end note ]

2 [Note 2 : Since a copy assignment operator is implicitly declared for a class if not declared by the user (11.4.6), a base
class assignment operator function is always hidden by the copy assignment operator function of the derived class.

— end note ]
3 [Note 3 : Any assignment operator function, even the copy and move assignment operators, can be virtual. For a

derived class D with a base class B for which a virtual copy/move assignment has been declared, the copy/move
assignment operator in D does not override B’s virtual copy/move assignment operator.
[Example 1 :

struct B {
virtual int operator= (int);
virtual B& operator= (const B&);

};
struct D : B {

virtual int operator= (int);
virtual D& operator= (const B&);

};

D dobj1;
D dobj2;
B* bptr = &dobj1;
void f() {

bptr->operator=(99); // calls D::operator=(int)
*bptr = 99; // ditto
bptr->operator=(dobj2); // calls D::operator=(const B&)
*bptr = dobj2; // ditto
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dobj1 = dobj2; // calls implicitly-declared D::operator=(const D&)
}

— end example ]
— end note ]

12.4.4 Function call [over.call]
1 A function call operator function is a function named operator() that is a member function with an arbitrary

number of parameters. It may have default arguments. For an expression of the form
postfix-expression ( expression-listopt )

where the postfix-expression is of class type, the operator function is selected by overload resolution (12.2.2.2.3).
If a surrogate call function is selected, let e be the result of invoking the corresponding conversion operator
function on the postfix-expression;
the expression is interpreted as

e ( expression-listopt )

Otherwise, the expression is interpreted as
postfix-expression . operator () ( expression-listopt )

12.4.5 Subscripting [over.sub]
1 A subscripting operator function is a member function named operator[] with an arbitrary number of

parameters. It may have default arguments. For an expression of the form
postfix-expression [ expression-listopt ]

the operator function is selected by overload resolution (12.2.2.3). If a member function is selected, the
expression is interpreted as

postfix-expression . operator [] ( expression-listopt )
2 [Example 1 :

struct X {
Z operator[](std::initializer_list<int>);
Z operator[](auto...);

};
X x;
x[{1,2,3}] = 7; // OK, meaning x.operator[]({1,2,3})
x[1,2,3] = 7; // OK, meaning x.operator[](1,2,3)
int a[10];
a[{1,2,3}] = 7; // error: built-in subscript operator
a[1,2,3] = 7; // error: built-in subscript operator

— end example ]

12.4.6 Class member access [over.ref]
1 A class member access operator function is a function named operator-> that is a non-static member

function taking no non-object parameters. For an expression of the form
postfix-expression -> templateopt id-expression

the operator function is selected by overload resolution (12.2.2.3), and the expression is interpreted as
( postfix-expression . operator -> () ) -> templateopt id-expression

12.4.7 Increment and decrement [over.inc]
1 An increment operator function is a function named operator++. If this function is a non-static member

function with no non-object parameters, or a non-member function with one parameter, it defines the prefix
increment operator ++ for objects of that type. If the function is a non-static member function with one
non-object parameter (which shall be of type int) or a non-member function with two parameters (the second
of which shall be of type int), it defines the postfix increment operator ++ for objects of that type. When
the postfix increment is called as a result of using the ++ operator, the int argument will have value zero.114

[Example 1 :

114) Calling operator++ explicitly, as in expressions like a.operator++(2), has no special properties: The argument to operator++
is 2.
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struct X {
X& operator++(); // prefix ++a
X operator++(int); // postfix a++

};

struct Y { };
Y& operator++(Y&); // prefix ++b
Y operator++(Y&, int); // postfix b++

void f(X a, Y b) {
++a; // a.operator++();
a++; // a.operator++(0);
++b; // operator++(b);
b++; // operator++(b, 0);

a.operator++(); // explicit call: like ++a;
a.operator++(0); // explicit call: like a++;
operator++(b); // explicit call: like ++b;
operator++(b, 0); // explicit call: like b++;

}

— end example ]
2 A decrement operator function is a function named operator-- and is handled analogously to an increment

operator function.

12.5 Built-in operators [over.built]
1 The candidate operator functions that represent the built-in operators defined in 7.6 are specified in this

subclause. These candidate functions participate in the operator overload resolution process as described
in 12.2.2.3 and are used for no other purpose.
[Note 1 : Because built-in operators take only operands with non-class type, and operator overload resolution occurs
only when an operand expression originally has class or enumeration type, operator overload resolution can resolve
to a built-in operator only when an operand has a class type that has a user-defined conversion to a non-class type
appropriate for the operator, or when an operand has an enumeration type that can be converted to a type appropriate
for the operator. Also note that some of the candidate operator functions given in this subclause are more permissive
than the built-in operators themselves. As described in 12.2.2.3, after a built-in operator is selected by overload
resolution the expression is subject to the requirements for the built-in operator given in 7.6, and therefore to any
additional semantic constraints given there. In some cases, user-written candidates with the same name and parameter
types as a built-in candidate operator function cause the built-in operator function to not be included in the set of
candidate functions. — end note ]

2 In this subclause, the term promoted integral type is used to refer to those cv-unqualified integral types which
are preserved by integral promotion (7.3.7) (including e.g. int and long but excluding e.g. char).
[Note 2 : In all cases where a promoted integral type is required, an operand of unscoped enumeration type will be
acceptable by way of the integral promotions. — end note ]

3 In the remainder of this subclause, vq represents either volatile or no cv-qualifier.
4 For every pair (T , vq), where T is a cv-unqualified arithmetic type other than bool or a cv-unqualified pointer

to (possibly cv-qualified) object type, there exist candidate operator functions of the form
vq T & operator++(vq T &);
T operator++(vq T &, int);
vq T & operator--(vq T &);
T operator--(vq T &, int);

5 For every (possibly cv-qualified) object type T and for every function type T that has neither cv-qualifiers
nor a ref-qualifier , there exist candidate operator functions of the form

T & operator*(T *);

6 For every type T there exist candidate operator functions of the form
T * operator+(T *);

7 For every cv-unqualified floating-point or promoted integral type T , there exist candidate operator functions
of the form

T operator+(T );
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T operator-(T );

8 For every promoted integral type T , there exist candidate operator functions of the form
T operator~(T );

9 For every quintuple (C1 , C2 , T , cv1, cv2 ), where C2 is a class type, C1 is the same type as C2 or is a derived
class of C2 , and T is an object type or a function type, there exist candidate operator functions of the form

cv12 T & operator->*(cv1 C1*, cv2 T C2::*);

where cv12 is the union of cv1 and cv2. The return type is shown for exposition only; see 7.6.4 for the
determination of the operator’s result type.

10 For every pair of types L and R , where each of L and R is a floating-point or promoted integral type, there
exist candidate operator functions of the form

LR operator*(L , R );
LR operator/(L , R );
LR operator+(L , R );
LR operator-(L , R );
bool operator==(L , R );
bool operator!=(L , R );
bool operator<(L , R );
bool operator>(L , R );
bool operator<=(L , R );
bool operator>=(L , R );

where LR is the result of the usual arithmetic conversions (7.4) between types L and R .
11 For every integral type T there exists a candidate operator function of the form

std::strong_ordering operator<=>(T , T );

12 For every pair of floating-point types L and R , there exists a candidate operator function of the form
std::partial_ordering operator<=>(L , R );

13 For every cv-qualified or cv-unqualified object type T there exist candidate operator functions of the form
T * operator+(T *, std::ptrdiff_t);
T & operator[](T *, std::ptrdiff_t);
T * operator-(T *, std::ptrdiff_t);
T * operator+(std::ptrdiff_t, T *);
T & operator[](std::ptrdiff_t, T *);

14 For every T , where T is a pointer to object type, there exist candidate operator functions of the form
std::ptrdiff_t operator-(T , T );

15 For every T , where T is an enumeration type or a pointer type, there exist candidate operator functions of
the form

bool operator==(T , T );
bool operator!=(T , T );
bool operator<(T , T );
bool operator>(T , T );
bool operator<=(T , T );
bool operator>=(T , T );
R operator<=>(T , T );

where R is the result type specified in 7.6.8.
16 For every T , where T is a pointer-to-member type or std::nullptr_t, there exist candidate operator

functions of the form
bool operator==(T , T );
bool operator!=(T , T );

17 For every pair of promoted integral types L and R , there exist candidate operator functions of the form
LR operator%(L , R );
LR operator&(L , R );
LR operator^(L , R );
LR operator|(L , R );
L operator<<(L , R );
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L operator>>(L , R );

where LR is the result of the usual arithmetic conversions (7.4) between types L and R .
18 For every triple (L , vq, R ), where L is an arithmetic type, and R is a floating-point or promoted integral

type, there exist candidate operator functions of the form
vq L & operator=(vq L &, R );
vq L & operator*=(vq L &, R );
vq L & operator/=(vq L &, R );
vq L & operator+=(vq L &, R );
vq L & operator-=(vq L &, R );

19 For every pair (T , vq), where T is any type, there exist candidate operator functions of the form
T *vq & operator=(T *vq &, T *);

20 For every pair (T , vq), where T is an enumeration or pointer-to-member type, there exist candidate operator
functions of the form

vq T & operator=(vq T &, T );

21 For every pair (T , vq), where T is a cv-qualified or cv-unqualified object type, there exist candidate operator
functions of the form

T *vq & operator+=(T *vq &, std::ptrdiff_t);
T *vq & operator-=(T *vq &, std::ptrdiff_t);

22 For every triple (L , vq, R ), where L is an integral type, and R is a promoted integral type, there exist
candidate operator functions of the form

vq L & operator%=(vq L &, R );
vq L & operator<<=(vq L &, R );
vq L & operator>>=(vq L &, R );
vq L & operator&=(vq L &, R );
vq L & operator^=(vq L &, R );
vq L & operator|=(vq L &, R );

23 There also exist candidate operator functions of the form
bool operator!(bool);
bool operator&&(bool, bool);
bool operator||(bool, bool);

24 For every pair of types L and R , where each of L and R is a floating-point or promoted integral type, there
exist candidate operator functions of the form

LR operator?:(bool, L , R );

where LR is the result of the usual arithmetic conversions (7.4) between types L and R .
[Note 3 : As with all these descriptions of candidate functions, this declaration serves only to describe the built-in
operator for purposes of overload resolution. The operator “?:” cannot be overloaded. — end note ]

25 For every type T , where T is a pointer, pointer-to-member, or scoped enumeration type, there exist candidate
operator functions of the form

T operator?:(bool, T , T );

12.6 User-defined literals [over.literal]
literal-operator-id :

operator string-literal identifier
operator user-defined-string-literal

1 The string-literal or user-defined-string-literal in a literal-operator-id shall have no encoding-prefix and shall
contain no characters other than the implicit terminating ’\0’. The ud-suffix of the user-defined-string-literal
or the identifier in a literal-operator-id is called a literal suffix identifier. The first form of literal-operator-id
is deprecated (D.9). Some literal suffix identifiers are reserved for future standardization; see 16.4.5.3.6. A
declaration whose literal-operator-id uses such a literal suffix identifier is ill-formed, no diagnostic required.

2 A declaration whose declarator-id is a literal-operator-id shall declare a function or function template that
belongs to a namespace (it could be a friend function (11.8.4)) or an explicit instantiation or specialization of
a function template. A function declared with a literal-operator-id is a literal operator. A function template
declared with a literal-operator-id is a literal operator template.
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3 The declaration of a literal operator shall have a parameter-declaration-clause equivalent to one of the following:
const char*
unsigned long long int
long double
char
wchar_t
char8_t
char16_t
char32_t
const char*, std::size_t
const wchar_t*, std::size_t
const char8_t*, std::size_t
const char16_t*, std::size_t
const char32_t*, std::size_t

If a parameter has a default argument (9.3.4.7), the program is ill-formed.
4 A raw literal operator is a literal operator with a single parameter whose type is const char*.
5 A numeric literal operator template is a literal operator template whose template-parameter-list has a single

template-parameter that is a non-type template parameter pack (13.7.4) with element type char. A string
literal operator template is a literal operator template whose template-parameter-list comprises a single non-
type template-parameter of class type. The declaration of a literal operator template shall have an empty
parameter-declaration-clause and shall declare either a numeric literal operator template or a string literal
operator template.

6 Literal operators and literal operator templates shall not have C language linkage.
7 [Note 1 : Literal operators and literal operator templates are usually invoked implicitly through user-defined literals

(5.13.8). However, except for the constraints described above, they are ordinary namespace-scope functions and
function templates. In particular, they are looked up like ordinary functions and function templates and they follow
the same overload resolution rules. Also, they can be declared inline or constexpr, they can have internal, module,
or external linkage, they can be called explicitly, their addresses can be taken, etc. — end note ]

8 [Example 1 :
void operator ""_km(long double); // OK
string operator "" _i18n(const char*, std::size_t); // OK, deprecated
template <char...> double operator ""_\u03C0(); // OK, UCN for lowercase pi
float operator ""_e(const char*); // OK
float operator ""E(const char*); // ill-formed, no diagnostic required:

// reserved literal suffix (16.4.5.3.6, 5.13.8)
double operator""_Bq(long double); // OK, does not use the reserved identifier _Bq (5.10)
double operator"" _Bq(long double); // ill-formed, no diagnostic required:

// uses the reserved identifier _Bq (5.10)
float operator " "B(const char*); // error: non-empty string-literal
string operator ""5X(const char*, std::size_t); // error: invalid literal suffix identifier
double operator ""_miles(double); // error: invalid parameter-declaration-clause
template <char...> int operator ""_j(const char*); // error: invalid parameter-declaration-clause
extern "C" void operator ""_m(long double); // error: C language linkage

— end example ]
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13 Templates [temp]
13.1 Preamble [temp.pre]

1 A template defines a family of classes, functions, or variables, an alias for a family of types, or a concept.
template-declaration :

template-head declaration
template-head concept-definition

template-head :
template < template-parameter-list > requires-clauseopt

template-parameter-list :
template-parameter
template-parameter-list , template-parameter

requires-clause :
requires constraint-logical-or-expression

constraint-logical-or-expression :
constraint-logical-and-expression
constraint-logical-or-expression || constraint-logical-and-expression

constraint-logical-and-expression :
primary-expression
constraint-logical-and-expression && primary-expression

[Note 1 : The > token following the template-parameter-list of a template-declaration can be the product of replacing a
>> token by two consecutive > tokens (13.3). — end note ]

2 The declaration in a template-declaration (if any) shall
—(2.1) declare or define a function, a class, or a variable, or
—(2.2) define a member function, a member class, a member enumeration, or a static data member of a class

template or of a class nested within a class template, or
—(2.3) define a member template of a class or class template, or
—(2.4) be a deduction-guide, or
—(2.5) be an alias-declaration.

3 A template-declaration is a declaration. A declaration introduced by a template declaration of a variable is a
variable template. A variable template at class scope is a static data member template.
[Example 1 :

template<class T>
constexpr T pi = T(3.1415926535897932385L);

template<class T>
T circular_area(T r) {

return pi<T> * r * r;
}

struct matrix_constants {
template<class T>

using pauli = hermitian_matrix<T, 2>;
template<class T>

constexpr static pauli<T> sigma1 = { { 0, 1 }, { 1, 0 } };
template<class T>

constexpr static pauli<T> sigma2 = { { 0, -1i }, { 1i, 0 } };
template<class T>

constexpr static pauli<T> sigma3 = { { 1, 0 }, { 0, -1 } };
};

— end example ]
4 [Note 2 : A template-declaration can appear only as a namespace scope or class scope declaration. — end note ]
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Its declaration shall not be an export-declaration. In a function template declaration, the unqualified-id of the
declarator-id shall be a name.
[Note 3 : A class or variable template declaration of a simple-template-id declares a partial specialization (13.7.6).

— end note ]
5 In a template-declaration, explicit specialization, or explicit instantiation the init-declarator-list in the declaration

shall contain at most one declarator. When such a declaration is used to declare a class template, no declarator
is permitted.

6 A specialization (explicit or implicit) of one template is distinct from all specializations of any other template.
A template, an explicit specialization (13.9.4), and a partial specialization shall not have C language linkage.
[Note 4 : Default arguments for function templates and for member functions of class templates are considered
definitions for the purpose of template instantiation (13.7) and must obey the one-definition rule (6.3). — end note ]

7 [Note 5 : A template cannot have the same name as any other name bound in the same scope (6.4.1), except that
a function template can share a name with non-template functions (9.3.4.6) and/or function templates (13.10.4).
Specializations, including partial specializations (13.7.6), do not reintroduce or bind names. Their target scope is the
target scope of the primary template, so all specializations of a template belong to the same scope as it does. — end
note ]

8 An entity is templated if it is
—(8.1) a template,
—(8.2) an entity defined (6.2) or created (6.7.7) in a templated entity,
—(8.3) a member of a templated entity,
—(8.4) an enumerator for an enumeration that is a templated entity, or
—(8.5) the closure type of a lambda-expression (7.5.5.2) appearing in the declaration of a templated entity.

[Note 6 : A local class, a local or block variable, or a friend function defined in a templated entity is a templated
entity. — end note ]

A templated function is a function template or a function that is templated. A templated class is a class
template or a class that is templated. A templated variable is a variable template or a variable that is
templated.

9 A template-declaration is written in terms of its template parameters. The optional requires-clause following a
template-parameter-list allows the specification of constraints (13.5.3) on template arguments (13.4). The
requires-clause introduces the constraint-expression that results from interpreting the constraint-logical-or-
expression as a constraint-expression. The constraint-logical-or-expression of a requires-clause is an unevaluated
operand (7.2.3).
[Note 7 : The expression in a requires-clause uses a restricted grammar to avoid ambiguities. Parentheses can be used
to specify arbitrary expressions in a requires-clause.
[Example 2 :

template<int N> requires N == sizeof new unsigned short
int f(); // error: parentheses required around == expression

— end example ]
— end note ]

10 A definition of a function template, member function of a class template, variable template, or static data
member of a class template shall be reachable from the end of every definition domain (6.3) in which it is
implicitly instantiated (13.9.2) unless the corresponding specialization is explicitly instantiated (13.9.3) in
some translation unit; no diagnostic is required.

13.2 Template parameters [temp.param]
1 The syntax for template-parameters is:

template-parameter :
type-parameter
parameter-declaration
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type-parameter :
type-parameter-key ...opt identifieropt
type-parameter-key identifieropt = type-id
type-constraint ...opt identifieropt
type-constraint identifieropt = type-id
template-head type-parameter-key ...opt identifieropt
template-head type-parameter-key identifieropt = id-expression

type-parameter-key :
class
typename

type-constraint :
nested-name-specifieropt concept-name
nested-name-specifieropt concept-name < template-argument-listopt >

The component names of a type-constraint are its concept-name and those of its nested-name-specifier (if any).
[Note 1 : The > token following the template-parameter-list of a type-parameter can be the product of replacing a >>
token by two consecutive > tokens (13.3). — end note ]

2 There is no semantic difference between class and typename in a type-parameter-key . typename followed by
an unqualified-id names a template type parameter. typename followed by a qualified-id denotes the type in a
non-type115 parameter-declaration. A template-parameter of the form class identifier is a type-parameter .
[Example 1 :

class T { /* ... */ };
int i;

template<class T, T i> void f(T t) {
T t1 = i; // template-parameters T and i
::T t2 = ::i; // global namespace members T and i

}

Here, the template f has a type-parameter called T, rather than an unnamed non-type template-parameter of class T.
— end example ]

A storage class shall not be specified in a template-parameter declaration. Types shall not be defined in a
template-parameter declaration.

3 The identifier in a type-parameter is not looked up. A type-parameter whose identifier does not follow an
ellipsis defines its identifier to be a typedef-name (if declared without template) or template-name (if declared
with template) in the scope of the template declaration.
[Note 2 : A template argument can be a class template or alias template. For example,

template<class T> class myarray { /* ... */ };

template<class K, class V, template<class T> class C = myarray>
class Map {

C<K> key;
C<V> value;

};

— end note ]
4 A type-constraint Q that designates a concept C can be used to constrain a contextually-determined type or

template type parameter pack T with a constraint-expression E defined as follows. If Q is of the form C<A1,
· · · , An>, then let E′ be C<T, A1, · · · , An>. Otherwise, let E′ be C<T>. If T is not a pack, then E is E′,
otherwise E is (E′ && ...). This constraint-expression E is called the immediately-declared constraint of Q for
T. The concept designated by a type-constraint shall be a type concept (13.7.9).

5 A type-parameter that starts with a type-constraint introduces the immediately-declared constraint of the
type-constraint for the parameter.
[Example 2 :

template<typename T> concept C1 = true;
template<typename... Ts> concept C2 = true;

115) Since template template-parameters and template template-arguments are treated as types for descriptive purposes, the
terms non-type parameter and non-type argument are used to refer to non-type, non-template parameters and arguments.
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template<typename T, typename U> concept C3 = true;

template<C1 T> struct s1; // associates C1<T>
template<C1... T> struct s2; // associates (C1<T> && ...)
template<C2... T> struct s3; // associates (C2<T> && ...)
template<C3<int> T> struct s4; // associates C3<T, int>
template<C3<int>... T> struct s5; // associates (C3<T, int> && ...)

— end example ]
6 A non-type template-parameter shall have one of the following (possibly cv-qualified) types:

—(6.1) a structural type (see below),
—(6.2) a type that contains a placeholder type (9.2.9.6), or
—(6.3) a placeholder for a deduced class type (9.2.9.7).

The top-level cv-qualifiers on the template-parameter are ignored when determining its type.
7 A structural type is one of the following:

—(7.1) a scalar type, or
—(7.2) an lvalue reference type, or
—(7.3) a literal class type with the following properties:

—(7.3.1) all base classes and non-static data members are public and non-mutable and
—(7.3.2) the types of all bases classes and non-static data members are structural types or (possibly

multidimensional) array thereof.
8 An id-expression naming a non-type template-parameter of class type T denotes a static storage duration object

of type const T, known as a template parameter object, whose value is that of the corresponding template
argument after it has been converted to the type of the template-parameter . All such template parameters in
the program of the same type with the same value denote the same template parameter object. A template
parameter object shall have constant destruction (7.7).
[Note 3 : If an id-expression names a non-type non-reference template-parameter , then it is a prvalue if it has non-class
type. Otherwise, if it is of class type T, it is an lvalue and has type const T (7.5.4.2). — end note ]
[Example 3 :

using X = int;
struct A {};
template<const X& x, int i, A a> void f() {

i++; // error: change of template-parameter value

&x; // OK
&i; // error: address of non-reference template-parameter
&a; // OK
int& ri = i; // error: attempt to bind non-const reference to temporary
const int& cri = i; // OK, const reference binds to temporary
const A& ra = a; // OK, const reference binds to a template parameter object

}

— end example ]
9 [Note 4 : A non-type template-parameter cannot be declared to have type cv void.

[Example 4 :
template<void v> class X; // error
template<void* pv> class Y; // OK

— end example ]
— end note ]

10 A non-type template-parameter of type “array of T” or of function type T is adjusted to be of type “pointer
to T”.
[Example 5 :

template<int* a> struct R { /* ... */ };
template<int b[5]> struct S { /* ... */ };
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int p;
R<&p> w; // OK
S<&p> x; // OK due to parameter adjustment
int v[5];
R<v> y; // OK due to implicit argument conversion
S<v> z; // OK due to both adjustment and conversion

— end example ]
11 A non-type template parameter declared with a type that contains a placeholder type with a type-constraint

introduces the immediately-declared constraint of the type-constraint for the invented type corresponding to
the placeholder (9.3.4.6).

12 A default template-argument is a template-argument (13.4) specified after = in a template-parameter . A default
template-argument may be specified for any kind of template-parameter (type, non-type, template) that is not
a template parameter pack (13.7.4). A default template-argument may be specified in a template declaration.
A default template-argument shall not be specified in the template-parameter-lists of the definition of a member
of a class template that appears outside of the member’s class. A default template-argument shall not be
specified in a friend class template declaration. If a friend function template declaration D specifies a default
template-argument, that declaration shall be a definition and there shall be no other declaration of the
function template which is reachable from D or from which D is reachable.

13 The set of default template-arguments available for use is obtained by merging the default arguments from all
prior declarations of the template in the same way default function arguments are (9.3.4.7).
[Example 6 :

template<class T1, class T2 = int> class A;
template<class T1 = int, class T2> class A;

is equivalent to
template<class T1 = int, class T2 = int> class A;

— end example ]
14 If a template-parameter of a class template, variable template, or alias template has a default template-

argument, each subsequent template-parameter shall either have a default template-argument supplied or be a
template parameter pack. If a template-parameter of a primary class template, primary variable template, or
alias template is a template parameter pack, it shall be the last template-parameter . A template parameter
pack of a function template shall not be followed by another template parameter unless that template
parameter can be deduced from the parameter-type-list (9.3.4.6) of the function template or has a default
argument (13.10.3). A template parameter of a deduction guide template (13.7.2.3) that does not have a
default argument shall be deducible from the parameter-type-list of the deduction guide template.
[Example 7 :

template<class T1 = int, class T2> class B; // error

// U can be neither deduced from the parameter-type-list nor specified
template<class... T, class... U> void f() { } // error
template<class... T, class U> void g() { } // error

— end example ]
15 When parsing a default template-argument for a non-type template-parameter , the first non-nested > is taken

as the end of the template-parameter-list rather than a greater-than operator.
[Example 8 :

template<int i = 3 > 4 > // syntax error
class X { /* ... */ };

template<int i = (3 > 4) > // OK
class Y { /* ... */ };

— end example ]
16 A template-parameter of a template template-parameter is permitted to have a default template-argument.

When such default arguments are specified, they apply to the template template-parameter in the scope of
the template template-parameter .
[Example 9 :
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template <template <class TT = float> class T> struct A {
inline void f();
inline void g();

};
template <template <class TT> class T> void A<T>::f() {

T<> t; // error: TT has no default template argument
}
template <template <class TT = char> class T> void A<T>::g() {

T<> t; // OK, T<char>
}

— end example ]
17 If a template-parameter is a type-parameter with an ellipsis prior to its optional identifier or is a parameter-

declaration that declares a pack (9.3.4.6), then the template-parameter is a template parameter pack (13.7.4). A
template parameter pack that is a parameter-declaration whose type contains one or more unexpanded packs is
a pack expansion. Similarly, a template parameter pack that is a type-parameter with a template-parameter-list
containing one or more unexpanded packs is a pack expansion. A type parameter pack with a type-constraint
that contains an unexpanded parameter pack is a pack expansion. A template parameter pack that is a pack
expansion shall not expand a template parameter pack declared in the same template-parameter-list.
[Example 10 :

template <class... Types> // Types is a template type parameter pack
class Tuple; // but not a pack expansion

template <class T, int... Dims> // Dims is a non-type template parameter pack
struct multi_array; // but not a pack expansion

template <class... T>
struct value_holder {

template <T... Values> struct apply { }; // Values is a non-type template parameter pack
}; // and a pack expansion

template <class... T, T... Values> // error: Values expands template type parameter
struct static_array; // pack T within the same template parameter list

— end example ]

13.3 Names of template specializations [temp.names]
1 A template specialization (13.9) can be referred to by a template-id :

simple-template-id :
template-name < template-argument-listopt >

template-id :
simple-template-id
operator-function-id < template-argument-listopt >
literal-operator-id < template-argument-listopt >

template-name :
identifier

template-argument-list :
template-argument ...opt
template-argument-list , template-argument ...opt

template-argument :
constant-expression
type-id
id-expression

2 The component name of a simple-template-id , template-id , or template-name is the first name in it.
3 A < is interpreted as the delimiter of a template-argument-list if it follows a name that is not a conversion-

function-id and
—(3.1) that follows the keyword template or a ~ after a nested-name-specifier or in a class member access

expression, or
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—(3.2) for which name lookup finds the injected-class-name of a class template or finds any declaration of a
template, or

—(3.3) that is an unqualified name for which name lookup either finds one or more functions or finds nothing,
or

—(3.4) that is a terminal name in a using-declarator (9.9), in a declarator-id (9.3.4), or in a type-only context
other than a nested-name-specifier (13.8).

[Note 1 : If the name is an identifier , it is then interpreted as a template-name. The keyword template is used to
indicate that a dependent qualified name (13.8.3.2) denotes a template where an expression might appear. — end
note ]
[Example 1 :

struct X {
template<std::size_t> X* alloc();
template<std::size_t> static X* adjust();

};
template<class T> void f(T* p) {

T* p1 = p->alloc<200>(); // error: < means less than
T* p2 = p->template alloc<200>(); // OK, < starts template argument list
T::adjust<100>(); // error: < means less than
T::template adjust<100>(); // OK, < starts template argument list

}

— end example ]
4 When parsing a template-argument-list, the first non-nested >116 is taken as the ending delimiter rather than

a greater-than operator. Similarly, the first non-nested >> is treated as two consecutive but distinct > tokens,
the first of which is taken as the end of the template-argument-list and completes the template-id .
[Note 2 : The second > token produced by this replacement rule can terminate an enclosing template-id construct or it
can be part of a different construct (e.g., a cast). — end note ]
[Example 2 :

template<int i> class X { /* ... */ };

X< 1>2 > x1; // syntax error
X<(1>2)> x2; // OK

template<class T> class Y { /* ... */ };
Y<X<1>> x3; // OK, same as Y<X<1> > x3;
Y<X<6>>1>> x4; // syntax error
Y<X<(6>>1)>> x5; // OK

— end example ]
5 The keyword template shall not appear immediately after a declarative nested-name-specifier (7.5.4.3).
6 A name prefixed by the keyword template shall be followed by a template argument list or refer to a class

template or an alias template. The latter case is deprecated (D.10). The keyword template shall not appear
immediately before a ~ token (as to name a destructor).
[Note 3 : The keyword template cannot be applied to non-template members of class templates. — end note ]
[Note 4 : As is the case with the typename prefix, the template prefix is allowed even when lookup for the name would
already find a template. — end note ]
[Example 3 :

template <class T> struct A {
void f(int);
template <class U> void f(U);

};

template <class T> void f(T t) {
A<T> a;
a.template f<>(t); // OK, calls template

116) A > that encloses the type-id of a dynamic_cast, static_cast, reinterpret_cast or const_cast, or which encloses the
template-arguments of a subsequent template-id , is considered nested for the purpose of this description.
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a.template f(t); // error: not a template-id
}

template <class T> struct B {
template <class T2> struct C { };

};

// deprecated: T::C is assumed to name a class template:
template <class T, template <class X> class TT = T::template C> struct D { };
D<B<int> > db;

— end example ]
7 A template-id is valid if

—(7.1) there are at most as many arguments as there are parameters or a parameter is a template parameter
pack (13.7.4),

—(7.2) there is an argument for each non-deducible non-pack parameter that does not have a default template-
argument,

—(7.3) each template-argument matches the corresponding template-parameter (13.4),
—(7.4) substitution of each template argument into the following template parameters (if any) succeeds, and
—(7.5) if the template-id is non-dependent, the associated constraints are satisfied as specified in the next

paragraph.
A simple-template-id shall be valid unless it names a function template specialization (13.10.3).
[Example 4 :

template<class T, T::type n = 0> class X;
struct S {

using type = int;
};
using T1 = X<S, int, int>; // error: too many arguments
using T2 = X<>; // error: no default argument for first template parameter
using T3 = X<1>; // error: value 1 does not match type-parameter
using T4 = X<int>; // error: substitution failure for second template parameter
using T5 = X<S>; // OK

— end example ]
8 When the template-name of a simple-template-id names a constrained non-function template or a constrained

template template-parameter , and all template-arguments in the simple-template-id are non-dependent (13.8.3.5),
the associated constraints (13.5.3) of the constrained template shall be satisfied (13.5.2).
[Example 5 :

template<typename T> concept C1 = sizeof(T) != sizeof(int);

template<C1 T> struct S1 { };
template<C1 T> using Ptr = T*;

S1<int>* p; // error: constraints not satisfied
Ptr<int> p; // error: constraints not satisfied

template<typename T>
struct S2 { Ptr<int> x; }; // ill-formed, no diagnostic required

template<typename T>
struct S3 { Ptr<T> x; }; // OK, satisfaction is not required

S3<int> x; // error: constraints not satisfied

template<template<C1 T> class X>
struct S4 {

X<int> x; // ill-formed, no diagnostic required
};
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template<typename T> concept C2 = sizeof(T) == 1;

template<C2 T> struct S { };

template struct S<char[2]>; // error: constraints not satisfied
template<> struct S<char[2]> { }; // error: constraints not satisfied

— end example ]
9 A concept-id is a simple-template-id where the template-name is a concept-name. A concept-id is a prvalue of

type bool, and does not name a template specialization. A concept-id evaluates to true if the concept’s
normalized constraint-expression (13.5.3) is satisfied (13.5.2) by the specified template arguments and false
otherwise.
[Note 5 : Since a constraint-expression is an unevaluated operand, a concept-id appearing in a constraint-expression is
not evaluated except as necessary to determine whether the normalized constraints are satisfied. — end note ]
[Example 6 :

template<typename T> concept C = true;
static_assert(C<int>); // OK

— end example ]

13.4 Template arguments [temp.arg]
13.4.1 General [temp.arg.general]

1 There are three forms of template-argument, corresponding to the three forms of template-parameter : type,
non-type and template. The type and form of each template-argument specified in a template-id shall match the
type and form specified for the corresponding parameter declared by the template in its template-parameter-list.
When the parameter declared by the template is a template parameter pack (13.7.4), it will correspond to
zero or more template-arguments.
[Example 1 :

template<class T> class Array {
T* v;
int sz;

public:
explicit Array(int);
T& operator[](int);
T& elem(int i) { return v[i]; }

};

Array<int> v1(20);
typedef std::complex<double> dcomplex; // std::complex is a standard library template
Array<dcomplex> v2(30);
Array<dcomplex> v3(40);

void bar() {
v1[3] = 7;
v2[3] = v3.elem(4) = dcomplex(7,8);

}

— end example ]
2 The template argument list of a template-head is a template argument list in which the nth template argument

has the value of the nth template parameter of the template-head . If the nth template parameter is a template
parameter pack (13.7.4), the nth template argument is a pack expansion whose pattern is the name of the
template parameter pack.

3 In a template-argument, an ambiguity between a type-id and an expression is resolved to a type-id , regardless
of the form of the corresponding template-parameter .117

[Example 2 :
template<class T> void f();
template<int I> void f();

117) There is no such ambiguity in a default template-argument because the form of the template-parameter determines the
allowable forms of the template-argument.
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void g() {
f<int()>(); // int() is a type-id: call the first f()

}

— end example ]
4 [Note 1 : Names used in a template-argument are subject to access control where they appear. Because a template-

parameter is not a class member, no access control applies. — end note ]
[Example 3 :

template<class T> class X {
static T t;

};

class Y {
private:

struct S { /* ... */ };
X<S> x; // OK, S is accessible

// X<Y::S> has a static member of type Y::S
// OK, even though Y::S is private

};

X<Y::S> y; // error: S not accessible
— end example ]

For a template-argument that is a class type or a class template, the template definition has no special access
rights to the members of the template-argument.
[Example 4 :

template <template <class TT> class T> class A {
typename T<int>::S s;

};

template <class U> class B {
private:

struct S { /* ... */ };
};

A<B> b; // error: A has no access to B::S

— end example ]
5 When template argument packs or default template-arguments are used, a template-argument list can be

empty. In that case the empty <> brackets shall still be used as the template-argument-list.
[Example 5 :

template<class T = char> class String;
String<>* p; // OK, String<char>
String* q; // syntax error
template<class ... Elements> class Tuple;
Tuple<>* t; // OK, Elements is empty
Tuple* u; // syntax error

— end example ]
6 An explicit destructor call (11.4.7) for an object that has a type that is a class template specialization may

explicitly specify the template-arguments.
[Example 6 :

template<class T> struct A {
~A();

};
void f(A<int>* p, A<int>* q) {

p->A<int>::~A(); // OK, destructor call
q->A<int>::~A<int>(); // OK, destructor call

}

— end example ]
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7 If the use of a template-argument gives rise to an ill-formed construct in the instantiation of a template
specialization, the program is ill-formed.

8 When name lookup for the component name of a template-id finds an overload set, both non-template
functions in the overload set and function templates in the overload set for which the template-arguments do
not match the template-parameters are ignored.
[Note 2 : If none of the function templates have matching template-parameters, the program is ill-formed. — end note ]

9 When a simple-template-id does not name a function, a default template-argument is implicitly instantiated
(13.9.2) when the value of that default argument is needed.
[Example 7 :

template<typename T, typename U = int> struct S { };
S<bool>* p; // the type of p is S<bool, int>*

The default argument for U is instantiated to form the type S<bool, int>*. — end example ]
10 A template-argument followed by an ellipsis is a pack expansion (13.7.4).

13.4.2 Template type arguments [temp.arg.type]
1 A template-argument for a template-parameter which is a type shall be a type-id .
2 [Example 1 :

template <class T> class X { };
template <class T> void f(T t) { }
struct { } unnamed_obj;

void f() {
struct A { };
enum { e1 };
typedef struct { } B;
B b;
X<A> x1; // OK
X<A*> x2; // OK
X<B> x3; // OK
f(e1); // OK
f(unnamed_obj); // OK
f(b); // OK

}

— end example ]
[Note 1 : A template type argument can be an incomplete type (6.8.1). — end note ]

13.4.3 Template non-type arguments [temp.arg.nontype]
1 If the type T of a template-parameter (13.2) contains a placeholder type (9.2.9.6) or a placeholder for a

deduced class type (9.2.9.7), the type of the parameter is the type deduced for the variable x in the invented
declaration

T x = template-argument ;

If a deduced parameter type is not permitted for a template-parameter declaration (13.2), the program is
ill-formed.

2 A template-argument for a non-type template-parameter shall be a converted constant expression (7.7) of the
type of the template-parameter .
[Note 1 : If the template-argument is an overload set (or the address of such, including forming a pointer-to-member),
the matching function is selected from the set (12.3). — end note ]

3 For a non-type template-parameter of reference or pointer type, or for each non-static data member of reference
or pointer type in a non-type template-parameter of class type or subobject thereof, the reference or pointer
value shall not refer to or be the address of (respectively):

—(3.1) a temporary object (6.7.7),
—(3.2) a string literal object (5.13.5),
—(3.3) the result of a typeid expression (7.6.1.8),
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—(3.4) a predefined __func__ variable (9.5.1), or
—(3.5) a subobject (6.7.2) of one of the above.

4 [Example 1 :
template<const int* pci> struct X { /* ... */ };
int ai[10];
X<ai> xi; // array to pointer and qualification conversions

struct Y { /* ... */ };
template<const Y& b> struct Z { /* ... */ };
Y y;
Z<y> z; // no conversion, but note extra cv-qualification

template<int (&pa)[5]> struct W { /* ... */ };
int b[5];
W<b> w; // no conversion

void f(char);
void f(int);

template<void (*pf)(int)> struct A { /* ... */ };

A<&f> a; // selects f(int)

template<auto n> struct B { /* ... */ };
B<5> b1; // OK, template parameter type is int
B<'a'> b2; // OK, template parameter type is char
B<2.5> b3; // OK, template parameter type is double
B<void(0)> b4; // error: template parameter type cannot be void

— end example ]
5 [Note 2 : A string-literal (5.13.5) is not an acceptable template-argument for a template-parameter of non-class type.

[Example 2 :
template<class T, T p> class X {

/* ... */
};

X<const char*, "Studebaker"> x; // error: string literal object as template-argument
X<const char*, "Knope" + 1> x2; // error: subobject of string literal object as template-argument

const char p[] = "Vivisectionist";
X<const char*, p> y; // OK

struct A {
constexpr A(const char*) {}

};

X<A, "Pyrophoricity"> z; // OK, string-literal is a constructor argument to A

— end example ]
— end note ]

6 [Note 3 : A temporary object is not an acceptable template-argument when the corresponding template-parameter has
reference type.
[Example 3 :

template<const int& CRI> struct B { /* ... */ };

B<1> b1; // error: temporary would be required for template argument

int c = 1;
B<c> b2; // OK

struct X { int n; };
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struct Y { const int &r; };
template<Y y> struct C { /* ... */ };
C<Y{X{1}.n}> c; // error: subobject of temporary object used to initialize

// reference member of template parameter
— end example ]
— end note ]

13.4.4 Template template arguments [temp.arg.template]
1 A template-argument for a template template-parameter shall be the name of a class template or an alias

template, expressed as id-expression. Only primary templates are considered when matching the template
template argument with the corresponding parameter; partial specializations are not considered even if their
parameter lists match that of the template template parameter.

2 Any partial specializations (13.7.6) associated with the primary template are considered when a specialization
based on the template template-parameter is instantiated. If a specialization is not reachable from the point of
instantiation, and it would have been selected had it been reachable, the program is ill-formed, no diagnostic
required.
[Example 1 :

template<class T> class A { // primary template
int x;

};
template<class T> class A<T*> { // partial specialization

long x;
};
template<template<class U> class V> class C {

V<int> y;
V<int*> z;

};
C<A> c; // V<int> within C<A> uses the primary template, so c.y.x has type int

// V<int*> within C<A> uses the partial specialization, so c.z.x has type long

— end example ]
3 A template-argument matches a template template-parameter P when P is at least as specialized as the

template-argument A. In this comparison, if P is unconstrained, the constraints on A are not considered. If P
contains a template parameter pack, then A also matches P if each of A’s template parameters matches the
corresponding template parameter in the template-head of P. Two template parameters match if they are of the
same kind (type, non-type, template), for non-type template-parameters, their types are equivalent (13.7.7.2),
and for template template-parameters, each of their corresponding template-parameters matches, recursively.
When P’s template-head contains a template parameter pack (13.7.4), the template parameter pack will
match zero or more template parameters or template parameter packs in the template-head of A with the
same type and form as the template parameter pack in P (ignoring whether those template parameters are
template parameter packs).
[Example 2 :

template<class T> class A { /* ... */ };
template<class T, class U = T> class B { /* ... */ };
template<class ... Types> class C { /* ... */ };
template<auto n> class D { /* ... */ };
template<template<class> class P> class X { /* ... */ };
template<template<class ...> class Q> class Y { /* ... */ };
template<template<int> class R> class Z { /* ... */ };

X<A> xa; // OK
X<B> xb; // OK
X<C> xc; // OK
Y<A> ya; // OK
Y<B> yb; // OK
Y<C> yc; // OK
Z<D> zd; // OK

— end example ]
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[Example 3 :
template <class T> struct eval;

template <template <class, class...> class TT, class T1, class... Rest>
struct eval<TT<T1, Rest...>> { };

template <class T1> struct A;
template <class T1, class T2> struct B;
template <int N> struct C;
template <class T1, int N> struct D;
template <class T1, class T2, int N = 17> struct E;

eval<A<int>> eA; // OK, matches partial specialization of eval
eval<B<int, float>> eB; // OK, matches partial specialization of eval
eval<C<17>> eC; // error: C does not match TT in partial specialization
eval<D<int, 17>> eD; // error: D does not match TT in partial specialization
eval<E<int, float>> eE; // error: E does not match TT in partial specialization

— end example ]
[Example 4 :

template<typename T> concept C = requires (T t) { t.f(); };
template<typename T> concept D = C<T> && requires (T t) { t.g(); };

template<template<C> class P> struct S { };

template<C> struct X { };
template<D> struct Y { };
template<typename T> struct Z { };

S<X> s1; // OK, X and P have equivalent constraints
S<Y> s2; // error: P is not at least as specialized as Y
S<Z> s3; // OK, P is at least as specialized as Z

— end example ]
4 A template template-parameter P is at least as specialized as a template template-argument A if, given

the following rewrite to two function templates, the function template corresponding to P is at least as
specialized as the function template corresponding to A according to the partial ordering rules for function
templates (13.7.7.3). Given an invented class template X with the template-head of A (including default
arguments and requires-clause, if any):

—(4.1) Each of the two function templates has the same template parameters and requires-clause (if any),
respectively, as P or A.

—(4.2) Each function template has a single function parameter whose type is a specialization of X with template
arguments corresponding to the template parameters from the respective function template where, for
each template parameter PP in the template-head of the function template, a corresponding template
argument AA is formed. If PP declares a template parameter pack, then AA is the pack expansion
PP... (13.7.4); otherwise, AA is the id-expression PP.

If the rewrite produces an invalid type, then P is not at least as specialized as A.

13.5 Template constraints [temp.constr]
13.5.1 General [temp.constr.general]

1 [Note 1 : Subclause 13.5 defines the meaning of constraints on template arguments. The abstract syntax and satisfaction
rules are defined in 13.5.2. Constraints are associated with declarations in 13.5.3. Declarations are partially ordered
by their associated constraints (13.5.5). — end note ]

13.5.2 Constraints [temp.constr.constr]
13.5.2.1 General [temp.constr.constr.general]

1 A constraint is a sequence of logical operations and operands that specifies requirements on template
arguments. The operands of a logical operation are constraints. There are three different kinds of constraints:

—(1.1) conjunctions (13.5.2.2),
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—(1.2) disjunctions (13.5.2.2), and
—(1.3) atomic constraints (13.5.2.3).

2 In order for a constrained template to be instantiated (13.9), its associated constraints (13.5.3) shall be
satisfied as described in the following subclauses.
[Note 1 : Forming the name of a specialization of a class template, a variable template, or an alias template (13.3)
requires the satisfaction of its constraints. Overload resolution (12.2.3) requires the satisfaction of constraints on
functions and function templates. — end note ]

13.5.2.2 Logical operations [temp.constr.op]
1 There are two binary logical operations on constraints: conjunction and disjunction.

[Note 1 : These logical operations have no corresponding C++ syntax. For the purpose of exposition, conjunction is
spelled using the symbol ∧ and disjunction is spelled using the symbol ∨. The operands of these operations are called
the left and right operands. In the constraint A ∧ B, A is the left operand, and B is the right operand. — end note ]

2 A conjunction is a constraint taking two operands. To determine if a conjunction is satisfied, the satisfaction
of the first operand is checked. If that is not satisfied, the conjunction is not satisfied. Otherwise, the
conjunction is satisfied if and only if the second operand is satisfied.

3 A disjunction is a constraint taking two operands. To determine if a disjunction is satisfied, the satisfaction
of the first operand is checked. If that is satisfied, the disjunction is satisfied. Otherwise, the disjunction is
satisfied if and only if the second operand is satisfied.

4 [Example 1 :
template<typename T>

constexpr bool get_value() { return T::value; }

template<typename T>
requires (sizeof(T) > 1) && (get_value<T>())

void f(T); // has associated constraint sizeof(T) > 1 ∧ get_value<T>()

void f(int);

f('a'); // OK, calls f(int)

In the satisfaction of the associated constraints (13.5.3) of f, the constraint sizeof(char) > 1 is not satisfied; the
second operand is not checked for satisfaction. — end example ]

5 [Note 2 : A logical negation expression (7.6.2.2) is an atomic constraint; the negation operator is not treated as a
logical operation on constraints. As a result, distinct negation constraint-expressions that are equivalent under 13.7.7.2
do not subsume one another under 13.5.5. Furthermore, if substitution to determine whether an atomic constraint is
satisfied (13.5.2.3) encounters a substitution failure, the constraint is not satisfied, regardless of the presence of a
negation operator.
[Example 2 :

template <class T> concept sad = false;

template <class T> int f1(T) requires (!sad<T>);
template <class T> int f1(T) requires (!sad<T>) && true;
int i1 = f1(42); // ambiguous, !sad<T> atomic constraint expressions (13.5.2.3)

// are not formed from the same expression

template <class T> concept not_sad = !sad<T>;
template <class T> int f2(T) requires not_sad<T>;
template <class T> int f2(T) requires not_sad<T> && true;
int i2 = f2(42); // OK, !sad<T> atomic constraint expressions both come from not_sad

template <class T> int f3(T) requires (!sad<typename T::type>);
int i3 = f3(42); // error: associated constraints not satisfied due to substitution failure

template <class T> concept sad_nested_type = sad<typename T::type>;
template <class T> int f4(T) requires (!sad_nested_type<T>);
int i4 = f4(42); // OK, substitution failure contained within sad_nested_type

Here, requires (!sad<typename T::type>) requires that there is a nested type that is not sad, whereas requires
(!sad_nested_type<T>) requires that there is no sad nested type. — end example ]
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— end note ]

13.5.2.3 Atomic constraints [temp.constr.atomic]
1 An atomic constraint is formed from an expression E and a mapping from the template parameters that

appear within E to template arguments that are formed via substitution during constraint normalization in
the declaration of a constrained entity (and, therefore, can involve the unsubstituted template parameters of
the constrained entity), called the parameter mapping (13.5.3).
[Note 1 : Atomic constraints are formed by constraint normalization (13.5.4). E is never a logical and expression (7.6.14)
nor a logical or expression (7.6.15). — end note ]

2 Two atomic constraints, e1 and e2, are identical if they are formed from the same appearance of the same
expression and if, given a hypothetical template A whose template-parameter-list consists of template-parameters
corresponding and equivalent (13.7.7.2) to those mapped by the parameter mappings of the expression,
a template-id naming A whose template-arguments are the targets of the parameter mapping of e1 is the
same (13.6) as a template-id naming A whose template-arguments are the targets of the parameter mapping
of e2.
[Note 2 : The comparison of parameter mappings of atomic constraints operates in a manner similar to that of
declaration matching with alias template substitution (13.7.8).
[Example 1 :

template <unsigned N> constexpr bool Atomic = true;
template <unsigned N> concept C = Atomic<N>;
template <unsigned N> concept Add1 = C<N + 1>;
template <unsigned N> concept AddOne = C<N + 1>;
template <unsigned M> void f()

requires Add1<2 * M>;
template <unsigned M> int f()

requires AddOne<2 * M> && true;

int x = f<0>(); // OK, the atomic constraints from concept C in both fs are Atomic<N>
// with mapping similar to N 7→ 2 * M + 1

template <unsigned N> struct WrapN;
template <unsigned N> using Add1Ty = WrapN<N + 1>;
template <unsigned N> using AddOneTy = WrapN<N + 1>;
template <unsigned M> void g(Add1Ty<2 * M> *);
template <unsigned M> void g(AddOneTy<2 * M> *);

void h() {
g<0>(nullptr); // OK, there is only one g

}

— end example ]
As specified in 13.7.7.2, if the validity or meaning of the program depends on whether two constructs are equivalent,
and they are functionally equivalent but not equivalent, the program is ill-formed, no diagnostic required.
[Example 2 :

template <unsigned N> void f2()
requires Add1<2 * N>;

template <unsigned N> int f2()
requires Add1<N * 2> && true;

void h2() {
f2<0>(); // ill-formed, no diagnostic required:

// requires determination of subsumption between atomic constraints that are
// functionally equivalent but not equivalent

}

— end example ]
— end note ]

3 To determine if an atomic constraint is satisfied, the parameter mapping and template arguments are first
substituted into its expression. If substitution results in an invalid type or expression, the constraint is
not satisfied. Otherwise, the lvalue-to-rvalue conversion (7.3.2) is performed if necessary, and E shall be a
constant expression of type bool. The constraint is satisfied if and only if evaluation of E results in true.
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If, at different points in the program, the satisfaction result is different for identical atomic constraints and
template arguments, the program is ill-formed, no diagnostic required.
[Example 3 :

template<typename T> concept C =
sizeof(T) == 4 && !true; // requires atomic constraints sizeof(T) == 4 and !true

template<typename T> struct S {
constexpr operator bool() const { return true; }

};

template<typename T> requires (S<T>{})
void f(T); // #1
void f(int); // #2

void g() {
f(0); // error: expression S<int>{} does not have type bool

} // while checking satisfaction of deduced arguments of #1;
// call is ill-formed even though #2 is a better match

— end example ]

13.5.3 Constrained declarations [temp.constr.decl]
1 A template declaration (13.1) or templated function declaration (9.3.4.6) can be constrained by the use of a

requires-clause. This allows the specification of constraints for that declaration as an expression:
constraint-expression :

logical-or-expression
2 Constraints can also be associated with a declaration through the use of type-constraints in a template-

parameter-list or parameter-type-list. Each of these forms introduces additional constraint-expressions that are
used to constrain the declaration.

3 A declaration’s associated constraints are defined as follows:
—(3.1) If there are no introduced constraint-expressions, the declaration has no associated constraints.
—(3.2) Otherwise, if there is a single introduced constraint-expression, the associated constraints are the normal

form (13.5.4) of that expression.
—(3.3) Otherwise, the associated constraints are the normal form of a logical and expression (7.6.14) whose

operands are in the following order:
—(3.3.1) the constraint-expression introduced by each type-constraint (13.2) in the declaration’s template-

parameter-list, in order of appearance, and
—(3.3.2) the constraint-expression introduced by a requires-clause following a template-parameter-list (13.1),

and
—(3.3.3) the constraint-expression introduced by each type-constraint in the parameter-type-list of a function

declaration, and
—(3.3.4) the constraint-expression introduced by a trailing requires-clause (9.3) of a function declaration

(9.3.4.6).
The formation of the associated constraints establishes the order in which constraints are instantiated when
checking for satisfaction (13.5.2).
[Example 1 :

template<typename T> concept C = true;

template<C T> void f1(T);
template<typename T> requires C<T> void f2(T);
template<typename T> void f3(T) requires C<T>;

The functions f1, f2, and f3 have the associated constraint C<T>.
template<typename T> concept C1 = true;
template<typename T> concept C2 = sizeof(T) > 0;
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template<C1 T> void f4(T) requires C2<T>;
template<typename T> requires C1<T> && C2<T> void f5(T);

The associated constraints of f4 and f5 are C1<T> ∧ C2<T>.
template<C1 T> requires C2<T> void f6();
template<C2 T> requires C1<T> void f7();

The associated constraints of f6 are C1<T> ∧ C2<T>, and those of f7 are C2<T> ∧ C1<T>. — end example ]
4 When determining whether a given introduced constraint-expression C1 of a declaration in an instantiated

specialization of a templated class is equivalent (13.7.7.2) to the corresponding constraint-expression C2 of a
declaration outside the class body, C1 is instantiated. If the instantiation results in an invalid expression, the
constraint-expressions are not equivalent.
[Note 1 : This can happen when determining which member template is specialized by an explicit specialization
declaration. — end note ]
[Example 2 :

template <class T> concept C = true;
template <class T> struct A {

template <class U> U f(U) requires C<typename T::type>; // #1
template <class U> U f(U) requires C<T>; // #2

};

template <> template <class U>
U A<int>::f(U u) requires C<int> { return u; } // OK, specializes #2

Substituting int for T in C<typename T::type> produces an invalid expression, so the specialization does not match #1.
Substituting int for T in C<T> produces C<int>, which is equivalent to the constraint-expression for the specialization,
so it does match #2. — end example ]

13.5.4 Constraint normalization [temp.constr.normal]
1 The normal form of an expression E is a constraint (13.5.2) that is defined as follows:

—(1.1) The normal form of an expression ( E ) is the normal form of E.
—(1.2) The normal form of an expression E1 || E2 is the disjunction (13.5.2.2) of the normal forms of E1 and

E2.
—(1.3) The normal form of an expression E1 && E2 is the conjunction of the normal forms of E1 and E2.
—(1.4) The normal form of a concept-id C<A1, A2, ..., An> is the normal form of the constraint-expression

of C, after substituting A1, A2, ..., An for C’s respective template parameters in the parameter
mappings in each atomic constraint. If any such substitution results in an invalid type or expression,
the program is ill-formed; no diagnostic is required.
[Example 1 :

template<typename T> concept A = T::value || true;
template<typename U> concept B = A<U*>;
template<typename V> concept C = B<V&>;

Normalization of B’s constraint-expression is valid and results in T::value (with the mapping T 7→ U*) ∨ true
(with an empty mapping), despite the expression T::value being ill-formed for a pointer type T. Normalization
of C’s constraint-expression results in the program being ill-formed, because it would form the invalid type V&*
in the parameter mapping. — end example ]

—(1.5) The normal form of any other expression E is the atomic constraint whose expression is E and whose
parameter mapping is the identity mapping.

2 The process of obtaining the normal form of a constraint-expression is called normalization.
[Note 1 : Normalization of constraint-expressions is performed when determining the associated constraints (13.5.2) of a
declaration and when evaluating the value of an id-expression that names a concept specialization (7.5.4). — end note ]

3 [Example 2 :
template<typename T> concept C1 = sizeof(T) == 1;
template<typename T> concept C2 = C1<T> && 1 == 2;
template<typename T> concept C3 = requires { typename T::type; };
template<typename T> concept C4 = requires (T x) { ++x; };
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template<C2 U> void f1(U); // #1
template<C3 U> void f2(U); // #2
template<C4 U> void f3(U); // #3

The associated constraints of #1 are sizeof(T) == 1 (with mapping T 7→ U) ∧ 1 == 2.
The associated constraints of #2 are requires { typename T::type; } (with mapping T 7→ U).
The associated constraints of #3 are requires (T x) { ++x; } (with mapping T 7→ U). — end example ]

13.5.5 Partial ordering by constraints [temp.constr.order]
1 A constraint P subsumes a constraint Q if and only if, for every disjunctive clause Pi in the disjunctive

normal form118 of P , Pi subsumes every conjunctive clause Qj in the conjunctive normal form119 of Q, where
—(1.1) a disjunctive clause Pi subsumes a conjunctive clause Qj if and only if there exists an atomic constraint

Pia in Pi for which there exists an atomic constraint Qjb in Qj such that Pia subsumes Qjb, and
—(1.2) an atomic constraint A subsumes another atomic constraint B if and only if A and B are identical

using the rules described in 13.5.2.3.
[Example 1 : Let A and B be atomic constraints (13.5.2.3). The constraint A∧B subsumes A, but A does not subsume
A ∧ B. The constraint A subsumes A ∨ B, but A ∨ B does not subsume A. Also note that every constraint subsumes
itself. — end example ]

2 [Note 1 : The subsumption relation defines a partial ordering on constraints. This partial ordering is used to determine
—(2.1) the best viable candidate of non-template functions (12.2.4),
—(2.2) the address of a non-template function (12.3),
—(2.3) the matching of template template arguments (13.4.4),
—(2.4) the partial ordering of class template specializations (13.7.6.3), and
—(2.5) the partial ordering of function templates (13.7.7.3).

— end note ]
3 A declaration D1 is at least as constrained as a declaration D2 if

—(3.1) D1 and D2 are both constrained declarations and D1’s associated constraints subsume those of D2; or
—(3.2) D2 has no associated constraints.

4 A declaration D1 is more constrained than another declaration D2 when D1 is at least as constrained as D2,
and D2 is not at least as constrained as D1.
[Example 2 :

template<typename T> concept C1 = requires(T t) { --t; };
template<typename T> concept C2 = C1<T> && requires(T t) { *t; };

template<C1 T> void f(T); // #1
template<C2 T> void f(T); // #2
template<typename T> void g(T); // #3
template<C1 T> void g(T); // #4

f(0); // selects #1
f((int*)0); // selects #2
g(true); // selects #3 because C1<bool> is not satisfied
g(0); // selects #4

— end example ]

13.6 Type equivalence [temp.type]
1 Two template-ids are the same if

—(1.1) their template-names, operator-function-ids, or literal-operator-ids refer to the same template, and
—(1.2) their corresponding type template-arguments are the same type, and

118) A constraint is in disjunctive normal form when it is a disjunction of clauses where each clause is a conjunction of atomic
constraints. For atomic constraints A, B, and C, the disjunctive normal form of the constraint A ∧ (B ∨ C) is (A ∧ B) ∨ (A ∧ C).
Its disjunctive clauses are (A ∧ B) and (A ∧ C).
119) A constraint is in conjunctive normal form when it is a conjunction of clauses where each clause is a disjunction of atomic
constraints. For atomic constraints A, B, and C, the constraint A ∧ (B ∨ C) is in conjunctive normal form. Its conjunctive
clauses are A and (B ∨ C).
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—(1.3) their corresponding non-type template-arguments are template-argument-equivalent (see below) after
conversion to the type of the template-parameter , and

—(1.4) their corresponding template template-arguments refer to the same template.
Two template-ids that are the same refer to the same class, function, or variable.

2 Two values are template-argument-equivalent if they are of the same type and
—(2.1) they are of integral type and their values are the same, or
—(2.2) they are of floating-point type and their values are identical, or
—(2.3) they are of type std::nullptr_t, or
—(2.4) they are of enumeration type and their values are the same,120 or
—(2.5) they are of pointer type and they have the same pointer value, or
—(2.6) they are of pointer-to-member type and they refer to the same class member or are both the null

member pointer value, or
—(2.7) they are of reference type and they refer to the same object or function, or
—(2.8) they are of array type and their corresponding elements are template-argument-equivalent,121 or
—(2.9) they are of union type and either they both have no active member or they have the same active

member and their active members are template-argument-equivalent, or
—(2.10) they are of class type and their corresponding direct subobjects and reference members are template-

argument-equivalent.
3 [Example 1 :

template<class E, int size> class buffer { /* ... */ };
buffer<char,2*512> x;
buffer<char,1024> y;

declares x and y to be of the same type, and
template<class T, void(*err_fct)()> class list { /* ... */ };
list<int,&error_handler1> x1;
list<int,&error_handler2> x2;
list<int,&error_handler2> x3;
list<char,&error_handler2> x4;

declares x2 and x3 to be of the same type. Their type differs from the types of x1 and x4.
template<class T> struct X { };
template<class> struct Y { };
template<class T> using Z = Y<T>;
X<Y<int> > y;
X<Z<int> > z;

declares y and z to be of the same type. — end example ]
4 If an expression e is type-dependent (13.8.3.3), decltype(e) denotes a unique dependent type. Two such

decltype-specifiers refer to the same type only if their expressions are equivalent (13.7.7.2).
[Note 1 : However, such a type might be aliased, e.g., by a typedef-name. — end note ]

13.7 Template declarations [temp.decls]
13.7.1 General [temp.decls.general]

1 The template parameters of a template are specified in the angle bracket enclosed list that immediately
follows the keyword template.

2 A primary template declaration is one in which the name of the template is not followed by a template-argument-
list. The template argument list of a primary template is the template argument list of its template-head (13.4).
A template declaration in which the name of the template is followed by a template-argument-list is a partial
specialization (13.7.6) of the template named in the declaration, which shall be a class or variable template.

3 For purposes of name lookup and instantiation, default arguments, type-constraints, requires-clauses (13.1),
and noexcept-specifiers of function templates and of member functions of class templates are considered

120) The identity of enumerators is not preserved.
121) An array as a template-parameter decays to a pointer.
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definitions; each default argument, type-constraint, requires-clause, or noexcept-specifier is a separate definition
which is unrelated to the templated function definition or to any other default arguments, type-constraints,
requires-clauses, or noexcept-specifiers. For the purpose of instantiation, the substatements of a constexpr if
statement (8.5.2) are considered definitions.

4 Because an alias-declaration cannot declare a template-id , it is not possible to partially or explicitly specialize
an alias template.

13.7.2 Class templates [temp.class]
13.7.2.1 General [temp.class.general]

1 A class template defines the layout and operations for an unbounded set of related types.
2 [Example 1 : It is possible for a single class template List to provide an unbounded set of class definitions: one

class List<T> for every type T, each describing a linked list of elements of type T. Similarly, a class template Array
describing a contiguous, dynamic array can be defined like this:

template<class T> class Array {
T* v;
int sz;

public:
explicit Array(int);
T& operator[](int);
T& elem(int i) { return v[i]; }

};

The prefix template<class T> specifies that a template is being declared and that a type-name T can be used in the
declaration. In other words, Array is a parameterized type with T as its parameter. — end example ]

3 [Note 1 : When a member of a class template is defined outside of the class template definition, the member definition
is defined as a template definition with the template-head equivalent to that of the class template. The names of the
template parameters used in the definition of the member can differ from the template parameter names used in the
class template definition. The class template name in the member definition is followed by the template argument list
of the template-head (13.4).
[Example 2 :

template<class T1, class T2> struct A {
void f1();
void f2();

};

template<class T2, class T1> void A<T2,T1>::f1() { } // OK
template<class T2, class T1> void A<T1,T2>::f2() { } // error
template<class ... Types> struct B {

void f3();
void f4();

};

template<class ... Types> void B<Types ...>::f3() { } // OK
template<class ... Types> void B<Types>::f4() { } // error
template<typename T> concept C = true;
template<typename T> concept D = true;

template<C T> struct S {
void f();
void g();
void h();
template<D U> struct Inner;

};

template<C A> void S<A>::f() { } // OK, template-heads match
template<typename T> void S<T>::g() { } // error: no matching declaration for S<T>

template<typename T> requires C<T> // ill-formed, no diagnostic required: template-heads are
void S<T>::h() { } // functionally equivalent but not equivalent
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template<C X> template<D Y>
struct S<X>::Inner { }; // OK

— end example ]
— end note ]

4 In a partial specialization, explicit specialization or explicit instantiation of a class template, the class-key
shall agree in kind with the original class template declaration (9.2.9.4).

13.7.2.2 Member functions of class templates [temp.mem.func]
1 A member function of a class template may be defined outside of the class template definition in which it is

declared.
[Example 1 :

template<class T> class Array {
T* v;
int sz;

public:
explicit Array(int);
T& operator[](int);
T& elem(int i) { return v[i]; }

};

declares three member functions of a class template. The subscript function can be defined like this:
template<class T> T& Array<T>::operator[](int i) {

if (i<0 || sz<=i) error("Array: range error");
return v[i];

}

A constrained member function can be defined out of line:
template<typename T> concept C = requires {

typename T::type;
};

template<typename T> struct S {
void f() requires C<T>;
void g() requires C<T>;

};

template<typename T>
void S<T>::f() requires C<T> { } // OK

template<typename T>
void S<T>::g() { } // error: no matching function in S<T>

— end example ]
2 The template-arguments for a member function of a class template are determined by the template-arguments

of the type of the object for which the member function is called.
[Example 2 : The template-argument for Array<T>::operator[] will be determined by the Array to which the
subscripting operation is applied.

Array<int> v1(20);
Array<dcomplex> v2(30);

v1[3] = 7; // Array<int>::operator[]
v2[3] = dcomplex(7,8); // Array<dcomplex>::operator[]

— end example ]

13.7.2.3 Deduction guides [temp.deduct.guide]
1 Deduction guides are used when a template-name appears as a type specifier for a deduced class type (9.2.9.7).

Deduction guides are not found by name lookup. Instead, when performing class template argument
deduction (12.2.2.9), all reachable deduction guides declared for the class template are considered.

deduction-guide :
explicit-specifieropt template-name ( parameter-declaration-clause ) -> simple-template-id ;
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2 [Example 1 :
template<class T, class D = int>
struct S {

T data;
};
template<class U>
S(U) -> S<typename U::type>;

struct A {
using type = short;
operator type();

};
S x{A()}; // x is of type S<short, int>

— end example ]
3 The same restrictions apply to the parameter-declaration-clause of a deduction guide as in a function declaration

(9.3.4.6). The simple-template-id shall name a class template specialization. The template-name shall be the
same identifier as the template-name of the simple-template-id . A deduction-guide shall inhabit the scope to
which the corresponding class template belongs and, for a member class template, have the same access. Two
deduction guide declarations for the same class template shall not have equivalent parameter-declaration-clauses
if either is reachable from the other.

13.7.2.4 Member classes of class templates [temp.mem.class]
1 A member class of a class template may be defined outside the class template definition in which it is declared.

[Note 1 : The member class must be defined before its first use that requires an instantiation (13.9.2). For example,
template<class T> struct A {

class B;
};
A<int>::B* b1; // OK, requires A to be defined but not A::B
template<class T> class A<T>::B { };
A<int>::B b2; // OK, requires A::B to be defined

— end note ]

13.7.2.5 Static data members of class templates [temp.static]
1 A definition for a static data member or static data member template may be provided in a namespace scope

enclosing the definition of the static member’s class template.
[Example 1 :

template<class T> class X {
static T s;

};
template<class T> T X<T>::s = 0;

struct limits {
template<class T>

static const T min; // declaration
};

template<class T>
const T limits::min = { }; // definition

— end example ]
2 An explicit specialization of a static data member declared as an array of unknown bound can have a different

bound from its definition, if any.
[Example 2 :

template <class T> struct A {
static int i[];

};
template <class T> int A<T>::i[4]; // 4 elements
template <> int A<int>::i[] = { 1 }; // OK, 1 element
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— end example ]

13.7.2.6 Enumeration members of class templates [temp.mem.enum]
1 An enumeration member of a class template may be defined outside the class template definition.

[Example 1 :
template<class T> struct A {

enum E : T;
};
A<int> a;
template<class T> enum A<T>::E : T { e1, e2 };
A<int>::E e = A<int>::e1;

— end example ]

13.7.3 Member templates [temp.mem]
1 A template can be declared within a class or class template; such a template is called a member template. A

member template can be defined within or outside its class definition or class template definition. A member
template of a class template that is defined outside of its class template definition shall be specified with a
template-head equivalent to that of the class template followed by a template-head equivalent to that of the
member template (13.7.7.2).
[Example 1 :

template<class T> struct string {
template<class T2> int compare(const T2&);
template<class T2> string(const string<T2>& s) { /* ... */ }

};

template<class T> template<class T2> int string<T>::compare(const T2& s) {
}

— end example ]
[Example 2 :

template<typename T> concept C1 = true;
template<typename T> concept C2 = sizeof(T) <= 4;

template<C1 T> struct S {
template<C2 U> void f(U);
template<C2 U> void g(U);

};

template<C1 T> template<C2 U>
void S<T>::f(U) { } // OK
template<C1 T> template<typename U>
void S<T>::g(U) { } // error: no matching function in S<T>

— end example ]
2 A local class of non-closure type shall not have member templates. Access control rules (11.8) apply to member

template names. A destructor shall not be a member template. A non-template member function (9.3.4.6)
with a given name and type and a member function template of the same name, which could be used to
generate a specialization of the same type, can both be declared in a class. When both exist, a use of that
name and type refers to the non-template member unless an explicit template argument list is supplied.
[Example 3 :

template <class T> struct A {
void f(int);
template <class T2> void f(T2);

};

template <> void A<int>::f(int) { } // non-template member function
template <> template <> void A<int>::f<>(int) { } // member function template specialization
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int main() {
A<char> ac;
ac.f(1); // non-template
ac.f('c'); // template
ac.f<>(1); // template

}

— end example ]
3 A member function template shall not be declared virtual.

[Example 4 :
template <class T> struct AA {

template <class C> virtual void g(C); // error
virtual void f(); // OK

};

— end example ]
4 A specialization of a member function template does not override a virtual function from a base class.

[Example 5 :
class B {

virtual void f(int);
};

class D : public B {
template <class T> void f(T); // does not override B::f(int)
void f(int i) { f<>(i); } // overriding function that calls the function template specialization

};

— end example ]
5 [Note 1 : A specialization of a conversion function template is referenced in the same way as a non-template conversion

function that converts to the same type (11.4.8.3).
[Example 6 :

struct A {
template <class T> operator T*();

};
template <class T> A::operator T*() { return 0; }
template <> A::operator char*() { return 0; } // specialization
template A::operator void*(); // explicit instantiation

int main() {
A a;
int* ip;
ip = a.operator int*(); // explicit call to template operator A::operator int*()

}

— end example ]
There is no syntax to form a template-id (13.3) by providing an explicit template argument list (13.10.2) for a
conversion function template. — end note ]

13.7.4 Variadic templates [temp.variadic]
1 A template parameter pack is a template parameter that accepts zero or more template arguments.

[Example 1 :
template<class ... Types> struct Tuple { };

Tuple<> t0; // Types contains no arguments
Tuple<int> t1; // Types contains one argument: int
Tuple<int, float> t2; // Types contains two arguments: int and float
Tuple<0> error; // error: 0 is not a type

— end example ]
2 A function parameter pack is a function parameter that accepts zero or more function arguments.

[Example 2 :
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template<class ... Types> void f(Types ... args);

f(); // args contains no arguments
f(1); // args contains one argument: int
f(2, 1.0); // args contains two arguments: int and double

— end example ]
3 An init-capture pack is a lambda capture that introduces an init-capture for each of the elements in the pack

expansion of its initializer .
[Example 3 :

template <typename... Args>
void foo(Args... args) {

[...xs=args]{
bar(xs...); // xs is an init-capture pack

};
}

foo(); // xs contains zero init-captures
foo(1); // xs contains one init-capture

— end example ]
4 A pack is a template parameter pack, a function parameter pack, or an init-capture pack. The number of

elements of a template parameter pack or a function parameter pack is the number of arguments provided
for the parameter pack. The number of elements of an init-capture pack is the number of elements in the
pack expansion of its initializer .

5 A pack expansion consists of a pattern and an ellipsis, the instantiation of which produces zero or more
instantiations of the pattern in a list (described below). The form of the pattern depends on the context in
which the expansion occurs. Pack expansions can occur in the following contexts:

—(5.1) In a function parameter pack (9.3.4.6); the pattern is the parameter-declaration without the ellipsis.
—(5.2) In a using-declaration (9.9); the pattern is a using-declarator .
—(5.3) In a template parameter pack that is a pack expansion (13.2):

—(5.3.1) if the template parameter pack is a parameter-declaration; the pattern is the parameter-declaration
without the ellipsis;

—(5.3.2) if the template parameter pack is a type-parameter ; the pattern is the corresponding type-parameter
without the ellipsis.

—(5.4) In an initializer-list (9.4); the pattern is an initializer-clause.
—(5.5) In a base-specifier-list (11.7); the pattern is a base-specifier .
—(5.6) In a mem-initializer-list (11.9.3) for a mem-initializer whose mem-initializer-id denotes a base class; the

pattern is the mem-initializer .
—(5.7) In a template-argument-list (13.4); the pattern is a template-argument.
—(5.8) In an attribute-list (9.12.1); the pattern is an attribute.
—(5.9) In an alignment-specifier (9.12.2); the pattern is the alignment-specifier without the ellipsis.
—(5.10) In a capture-list (7.5.5.3); the pattern is the capture without the ellipsis.
—(5.11) In a sizeof... expression (7.6.2.5); the pattern is an identifier .
—(5.12) In a fold-expression (7.5.6); the pattern is the cast-expression that contains an unexpanded pack.

[Example 4 :
template<class ... Types> void f(Types ... rest);
template<class ... Types> void g(Types ... rest) {

f(&rest ...); // “&rest ...” is a pack expansion; “&rest” is its pattern
}

— end example ]
6 For the purpose of determining whether a pack satisfies a rule regarding entities other than packs, the pack

is considered to be the entity that would result from an instantiation of the pattern in which it appears.
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7 A pack whose name appears within the pattern of a pack expansion is expanded by that pack expansion.
An appearance of the name of a pack is only expanded by the innermost enclosing pack expansion. The
pattern of a pack expansion shall name one or more packs that are not expanded by a nested pack expansion;
such packs are called unexpanded packs in the pattern. All of the packs expanded by a pack expansion shall
have the same number of arguments specified. An appearance of a name of a pack that is not expanded is
ill-formed.
[Example 5 :

template<typename...> struct Tuple {};
template<typename T1, typename T2> struct Pair {};

template<class ... Args1> struct zip {
template<class ... Args2> struct with {

typedef Tuple<Pair<Args1, Args2> ... > type;
};

};

typedef zip<short, int>::with<unsigned short, unsigned>::type T1;
// T1 is Tuple<Pair<short, unsigned short>, Pair<int, unsigned>>

typedef zip<short>::with<unsigned short, unsigned>::type T2;
// error: different number of arguments specified for Args1 and Args2

template<class ... Args>
void g(Args ... args) { // OK, Args is expanded by the function parameter pack args

f(const_cast<const Args*>(&args)...); // OK, “Args” and “args” are expanded
f(5 ...); // error: pattern does not contain any packs
f(args); // error: pack “args” is not expanded
f(h(args ...) + args ...); // OK, first “args” expanded within h,

// second “args” expanded within f
}

— end example ]
8 The instantiation of a pack expansion considers items E1, E2, . . . , EN , where N is the number of elements in

the pack expansion parameters. Each Ei is generated by instantiating the pattern and replacing each pack
expansion parameter with its ith element. Such an element, in the context of the instantiation, is interpreted
as follows:

—(8.1) if the pack is a template parameter pack, the element is an id-expression (for a non-type template
parameter pack), a typedef-name (for a type template parameter pack declared without template), or
a template-name (for a type template parameter pack declared with template), designating the ith

corresponding type or value template argument;
—(8.2) if the pack is a function parameter pack, the element is an id-expression designating the ith function

parameter that resulted from instantiation of the function parameter pack declaration; otherwise
—(8.3) if the pack is an init-capture pack, the element is an id-expression designating the variable introduced by

the ith init-capture that resulted from instantiation of the init-capture pack declaration.
When N is zero, the instantiation of a pack expansion does not alter the syntactic interpretation of the
enclosing construct, even in cases where omitting the pack expansion entirely would otherwise be ill-formed
or would result in an ambiguity in the grammar.

9 The instantiation of a sizeof... expression (7.6.2.5) produces an integral constant with value N .
10 The instantiation of a fold-expression (7.5.6) produces:

—(10.1) ( ((E1 op E2) op · · · ) op EN ) for a unary left fold,
—(10.2) ( E1 op (· · · op (EN−1 op EN )) ) for a unary right fold,
—(10.3) ( (((E op E1) op E2) op · · · ) op EN ) for a binary left fold, and
—(10.4) ( E1 op (· · · op (EN−1 op (EN op E))) ) for a binary right fold.

In each case, op is the fold-operator . For a binary fold, E is generated by instantiating the cast-expression that
did not contain an unexpanded pack.
[Example 6 :
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template<typename ...Args>
bool all(Args ...args) { return (... && args); }

bool b = all(true, true, true, false);

Within the instantiation of all, the returned expression expands to ((true && true) && true) && false, which
evaluates to false. — end example ]

If N is zero for a unary fold, the value of the expression is shown in Table 20; if the operator is not listed in
Table 20, the instantiation is ill-formed.

Table 20: Value of folding empty sequences [tab:temp.fold.empty]

Operator Value when pack is empty
&& true
|| false
, void()

11 The instantiation of any other pack expansion produces a list of elements E1, E2, . . . , EN .
[Note 1 : The variety of list varies with the context: expression-list, base-specifier-list, template-argument-list, etc.

— end note ]

When N is zero, the instantiation of the expansion produces an empty list.
[Example 7 :

template<class... T> struct X : T... { };
template<class... T> void f(T... values) {

X<T...> x(values...);
}

template void f<>(); // OK, X<> has no base classes
// x is a variable of type X<> that is value-initialized

— end example ]

13.7.5 Friends [temp.friend]
1 A friend of a class or class template can be a function template or class template, a specialization of a

function template or class template, or a non-template function or class.
[Example 1 :

template<class T> class task;
template<class T> task<T>* preempt(task<T>*);

template<class T> class task {
friend void next_time();
friend void process(task<T>*);
friend task<T>* preempt<T>(task<T>*);
template<class C> friend int func(C);

friend class task<int>;
template<class P> friend class frd;

};

Here, each specialization of the task class template has the function next_time as a friend; because process does not
have explicit template-arguments, each specialization of the task class template has an appropriately typed function
process as a friend, and this friend is not a function template specialization; because the friend preempt has an
explicit template-argument T, each specialization of the task class template has the appropriate specialization of the
function template preempt as a friend; and each specialization of the task class template has all specializations of the
function template func as friends. Similarly, each specialization of the task class template has the class template
specialization task<int> as a friend, and has all specializations of the class template frd as friends. — end example ]

2 Friend classes, class templates, functions, or function templates can be declared within a class template.
When a template is instantiated, its friend declarations are found by name lookup as if the specialization had
been explicitly declared at its point of instantiation.
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[Note 1 : They can introduce entities that belong to an enclosing namespace scope (9.3.4), in which case they are
attached to the same module as the class template (10.1). — end note ]

3 A friend template may be declared within a class or class template. A friend function template may be
defined within a class or class template, but a friend class template may not be defined in a class or class
template. In these cases, all specializations of the friend class or friend function template are friends of the
class or class template granting friendship.
[Example 2 :

class A {
template<class T> friend class B; // OK
template<class T> friend void f(T) { /* ... */ } // OK

};

— end example ]
4 A template friend declaration specifies that all specializations of that template, whether they are implicitly

instantiated (13.9.2), partially specialized (13.7.6) or explicitly specialized (13.9.4), are friends of the class
containing the template friend declaration.
[Example 3 :

class X {
template<class T> friend struct A;
class Y { };

};

template<class T> struct A { X::Y ab; }; // OK
template<class T> struct A<T*> { X::Y ab; }; // OK

— end example ]
5 A template friend declaration may declare a member of a dependent type to be a friend. The friend

declaration shall declare a function or specify a type with an elaborated-type-specifier , in either case with a
nested-name-specifier ending with a simple-template-id , C, whose template-name names a class template. The
template parameters of the template friend declaration shall be deducible from C (13.10.3.6). In this case, a
member of a specialization S of the class template is a friend of the class granting friendship if deduction of
the template parameters of C from S succeeds, and substituting the deduced template arguments into the
friend declaration produces a declaration that corresponds to the member of the specialization.
[Example 4 :

template<class T> struct A {
struct B { };
void f();
struct D {

void g();
};
T h();
template<T U> T i();

};
template<> struct A<int> {

struct B { };
int f();
struct D {

void g();
};
template<int U> int i();

};
template<> struct A<float*> {

int *h();
};

class C {
template<class T> friend struct A<T>::B; // grants friendship to A<int>::B even though

// it is not a specialization of A<T>::B
template<class T> friend void A<T>::f(); // does not grant friendship to A<int>::f()
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// because its return type does not match
template<class T> friend void A<T>::D::g(); // error: A<T>::D does not end with a simple-template-id
template<class T> friend int *A<T*>::h(); // grants friendship to A<int*>::h() and A<float*>::h()
template<class T> template<T U> // grants friendship to instantiations of A<T>::i() and

friend T A<T>::i(); // to A<int>::i(), and thereby to all specializations
}; // of those function templates

— end example ]
6 A friend template shall not be declared in a local class.
7 Friend declarations shall not declare partial specializations.

[Example 5 :
template<class T> class A { };
class X {

template<class T> friend class A<T*>; // error
};

— end example ]
8 When a friend declaration refers to a specialization of a function template, the function parameter declarations

shall not include default arguments, nor shall the inline, constexpr, or consteval specifiers be used in
such a declaration.

9 A non-template friend declaration with a requires-clause shall be a definition. A friend function template
with a constraint that depends on a template parameter from an enclosing template shall be a definition.
Such a constrained friend function or function template declaration does not declare the same function or
function template as a declaration in any other scope.

13.7.6 Partial specialization [temp.spec.partial]
13.7.6.1 General [temp.spec.partial.general]

1 A partial specialization of a template provides an alternative definition of the template that is used instead of
the primary definition when the arguments in a specialization match those given in the partial specialization
(13.7.6.2). A declaration of the primary template shall precede any partial specialization of that template. A
partial specialization shall be reachable from any use of a template specialization that would make use of the
partial specialization as the result of an implicit or explicit instantiation; no diagnostic is required.

2 Two partial specialization declarations declare the same entity if they are partial specializations of the
same template and have equivalent template-heads and template argument lists (13.7.7.2). Each partial
specialization is a distinct template.

3 [Example 1 :
template<class T1, class T2, int I> class A { };
template<class T, int I> class A<T, T*, I> { };
template<class T1, class T2, int I> class A<T1*, T2, I> { };
template<class T> class A<int, T*, 5> { };
template<class T1, class T2, int I> class A<T1, T2*, I> { };

The first declaration declares the primary (unspecialized) class template. The second and subsequent declarations
declare partial specializations of the primary template. — end example ]

4 A partial specialization may be constrained (13.5).
[Example 2 :

template<typename T> concept C = true;

template<typename T> struct X { };
template<typename T> struct X<T*> { }; // #1
template<C T> struct X<T> { }; // #2

Both partial specializations are more specialized than the primary template. #1 is more specialized because the
deduction of its template arguments from the template argument list of the class template specialization succeeds,
while the reverse does not. #2 is more specialized because the template arguments are equivalent, but the partial
specialization is more constrained (13.5.5). — end example ]

5 The template argument list of a partial specialization is the template-argument-list following the name of the
template.
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6 A partial specialization may be declared in any scope in which the corresponding primary template may be
defined (9.3.4, 11.4, 13.7.3).
[Example 3 :

template<class T> struct A {
struct C {

template<class T2> struct B { };
template<class T2> struct B<T2**> { }; // partial specialization #1

};
};

// partial specialization of A<T>::C::B<T2>
template<class T> template<class T2>

struct A<T>::C::B<T2*> { }; // #2

A<short>::C::B<int*> absip; // uses partial specialization #2
— end example ]

7 Partial specialization declarations do not introduce a name. Instead, when the primary template name is
used, any reachable partial specializations of the primary template are also considered.
[Note 1 : One consequence is that a using-declaration which refers to a class template does not restrict the set of partial
specializations that are found through the using-declaration. — end note ]
[Example 4 :

namespace N {
template<class T1, class T2> class A { }; // primary template

}

using N::A; // refers to the primary template

namespace N {
template<class T> class A<T, T*> { }; // partial specialization

}

A<int,int*> a; // uses the partial specialization, which is found through the using-declaration
// which refers to the primary template

— end example ]
8 A non-type argument is non-specialized if it is the name of a non-type parameter. All other non-type

arguments are specialized.
9 Within the argument list of a partial specialization, the following restrictions apply:

—(9.1) The type of a template parameter corresponding to a specialized non-type argument shall not be
dependent on a parameter of the partial specialization.
[Example 5 :

template <class T, T t> struct C {};
template <class T> struct C<T, 1>; // error

template< int X, int (*array_ptr)[X] > class A {};
int array[5];
template< int X > class A<X,&array> { }; // error

— end example ]

—(9.2) The partial specialization shall be more specialized than the primary template (13.7.6.3).
—(9.3) The template parameter list of a partial specialization shall not contain default template argument

values.122

—(9.4) An argument shall not contain an unexpanded pack. If an argument is a pack expansion (13.7.4), it
shall be the last argument in the template argument list.

10 The usual access checking rules do not apply to non-dependent names used to specify template arguments of
the simple-template-id of the partial specialization.

122) There is no context in which they would be used.
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[Note 2 : The template arguments can be private types or objects that would normally not be accessible. Dependent
names cannot be checked when declaring the partial specialization, but will be checked when substituting into the
partial specialization. — end note ]

13.7.6.2 Matching of partial specializations [temp.spec.partial.match]
1 When a template is used in a context that requires an instantiation of the template, it is necessary to

determine whether the instantiation is to be generated using the primary template or one of the partial
specializations. This is done by matching the template arguments of the template specialization with the
template argument lists of the partial specializations.

—(1.1) If exactly one matching partial specialization is found, the instantiation is generated from that partial
specialization.

—(1.2) If more than one matching partial specialization is found, the partial order rules (13.7.6.3) are used
to determine whether one of the partial specializations is more specialized than the others. If such a
partial specialization exists, the instantiation is generated from that partial specialization; otherwise,
the use of the template is ambiguous and the program is ill-formed.

—(1.3) If no matches are found, the instantiation is generated from the primary template.
2 A partial specialization matches a given actual template argument list if the template arguments of the

partial specialization can be deduced from the actual template argument list (13.10.3), and the deduced
template arguments satisfy the associated constraints of the partial specialization, if any (13.5.3).
[Example 1 :

template<class T1, class T2, int I> class A { }; // #1
template<class T, int I> class A<T, T*, I> { }; // #2
template<class T1, class T2, int I> class A<T1*, T2, I> { }; // #3
template<class T> class A<int, T*, 5> { }; // #4
template<class T1, class T2, int I> class A<T1, T2*, I> { }; // #5

A<int, int, 1> a1; // uses #1
A<int, int*, 1> a2; // uses #2, T is int, I is 1
A<int, char*, 5> a3; // uses #4, T is char
A<int, char*, 1> a4; // uses #5, T1 is int, T2 is char, I is 1
A<int*, int*, 2> a5; // ambiguous: matches #3 and #5

— end example ]
[Example 2 :

template<typename T> concept C = requires (T t) { t.f(); };

template<typename T> struct S { }; // #1
template<C T> struct S<T> { }; // #2

struct Arg { void f(); };

S<int> s1; // uses #1; the constraints of #2 are not satisfied
S<Arg> s2; // uses #2; both constraints are satisfied but #2 is more specialized

— end example ]
3 If the template arguments of a partial specialization cannot be deduced because of the structure of its

template-parameter-list and the template-id , the program is ill-formed.
[Example 3 :

template <int I, int J> struct A {};
template <int I> struct A<I+5, I*2> {}; // error

template <int I> struct A<I, I> {}; // OK

template <int I, int J, int K> struct B {};
template <int I> struct B<I, I*2, 2> {}; // OK

— end example ]
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4 In a name that refers to a specialization of a class or variable template (e.g., A<int, int, 1>), the argument
list shall match the template parameter list of the primary template. The template arguments of a partial
specialization are deduced from the arguments of the primary template.

13.7.6.3 Partial ordering of partial specializations [temp.spec.partial.order]
1 For two partial specializations, the first is more specialized than the second if, given the following rewrite

to two function templates, the first function template is more specialized than the second according to the
ordering rules for function templates (13.7.7.3):

—(1.1) Each of the two function templates has the same template parameters and associated constraints (13.5.3)
as the corresponding partial specialization.

—(1.2) Each function template has a single function parameter whose type is a class template specialization
where the template arguments are the corresponding template parameters from the function template
for each template argument in the template-argument-list of the simple-template-id of the partial
specialization.

2 [Example 1 :
template<int I, int J, class T> class X { };
template<int I, int J> class X<I, J, int> { }; // #1
template<int I> class X<I, I, int> { }; // #2

template<int I0, int J0> void f(X<I0, J0, int>); // A
template<int I0> void f(X<I0, I0, int>); // B

template <auto v> class Y { };
template <auto* p> class Y<p> { }; // #3
template <auto** pp> class Y<pp> { }; // #4

template <auto* p0> void g(Y<p0>); // C
template <auto** pp0> void g(Y<pp0>); // D

According to the ordering rules for function templates, the function template B is more specialized than the function
template A and the function template D is more specialized than the function template C. Therefore, the partial
specialization #2 is more specialized than the partial specialization #1 and the partial specialization #4 is more
specialized than the partial specialization #3. — end example ]
[Example 2 :

template<typename T> concept C = requires (T t) { t.f(); };
template<typename T> concept D = C<T> && requires (T t) { t.f(); };

template<typename T> class S { };
template<C T> class S<T> { }; // #1
template<D T> class S<T> { }; // #2

template<C T> void f(S<T>); // A
template<D T> void f(S<T>); // B

The partial specialization #2 is more specialized than #1 because B is more specialized than A. — end example ]

13.7.6.4 Members of class template partial specializations [temp.spec.partial.member]
1 The members of the class template partial specialization are unrelated to the members of the primary

template. Class template partial specialization members that are used in a way that requires a definition
shall be defined; the definitions of members of the primary template are never used as definitions for members
of a class template partial specialization. An explicit specialization of a member of a class template partial
specialization is declared in the same way as an explicit specialization of a member of the primary template.
[Example 1 :

// primary class template
template<class T, int I> struct A {

void f();
};

// member of primary class template
template<class T, int I> void A<T,I>::f() { }
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// class template partial specialization
template<class T> struct A<T,2> {

void f();
void g();
void h();

};

// member of class template partial specialization
template<class T> void A<T,2>::g() { }

// explicit specialization
template<> void A<char,2>::h() { }

int main() {
A<char,0> a0;
A<char,2> a2;
a0.f(); // OK, uses definition of primary template’s member
a2.g(); // OK, uses definition of partial specialization’s member
a2.h(); // OK, uses definition of explicit specialization’s member
a2.f(); // error: no definition of f for A<T,2>; the primary template is not used here

}

— end example ]
2 If a member template of a class template is partially specialized, the member template partial specializations

are member templates of the enclosing class template; if the enclosing class template is instantiated (13.9.2,
13.9.3), a declaration for every member template partial specialization is also instantiated as part of creating
the members of the class template specialization. If the primary member template is explicitly specialized for
a given (implicit) specialization of the enclosing class template, the partial specializations of the member
template are ignored for this specialization of the enclosing class template. If a partial specialization of the
member template is explicitly specialized for a given (implicit) specialization of the enclosing class template,
the primary member template and its other partial specializations are still considered for this specialization
of the enclosing class template.
[Example 2 :

template<class T> struct A {
template<class T2> struct B {}; // #1
template<class T2> struct B<T2*> {}; // #2

};

template<> template<class T2> struct A<short>::B {}; // #3

A<char>::B<int*> abcip; // uses #2
A<short>::B<int*> absip; // uses #3
A<char>::B<int> abci; // uses #1

— end example ]

13.7.7 Function templates [temp.fct]
13.7.7.1 General [temp.fct.general]

1 A function template defines an unbounded set of related functions.
[Example 1 : A family of sort functions can be declared like this:

template<class T> class Array { };
template<class T> void sort(Array<T>&);

— end example ]
2 [Note 1 : A function template can have the same name as other function templates and non-template functions (9.3.4.6)

in the same scope. — end note ]

A non-template function is not related to a function template (i.e., it is never considered to be a specialization),
even if it has the same name and type as a potentially generated function template specialization.123

123) That is, declarations of non-template functions do not merely guide overload resolution of function template specializations
with the same name. If such a non-template function is odr-used (6.3) in a program, it must be defined; it will not be implicitly
instantiated using the function template definition.
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13.7.7.2 Function template overloading [temp.over.link]
1 It is possible to overload function templates so that two different function template specializations have the

same type.
[Example 1 :

// translation unit 1:
template<class T>

void f(T*);
void g(int* p) {

f(p); // calls f<int>(int*)
}

// translation unit 2:
template<class T>

void f(T);
void h(int* p) {

f(p); // calls f<int*>(int*)
}

— end example ]
2 Such specializations are distinct functions and do not violate the one-definition rule (6.3).
3 The signature of a function template is defined in Clause 3. The names of the template parameters are

significant only for establishing the relationship between the template parameters and the rest of the signature.
[Note 1 : Two distinct function templates can have identical function return types and function parameter lists, even
if overload resolution alone cannot distinguish them.

template<class T> void f();
template<int I> void f(); // OK, overloads the first template

// distinguishable with an explicit template argument list
— end note ]

4 When an expression that references a template parameter is used in the function parameter list or the return
type in the declaration of a function template, the expression that references the template parameter is part
of the signature of the function template. This is necessary to permit a declaration of a function template in
one translation unit to be linked with another declaration of the function template in another translation
unit and, conversely, to ensure that function templates that are intended to be distinct are not linked with
one another.
[Example 2 :

template <int I, int J> A<I+J> f(A<I>, A<J>); // #1
template <int K, int L> A<K+L> f(A<K>, A<L>); // same as #1
template <int I, int J> A<I-J> f(A<I>, A<J>); // different from #1

— end example ]
[Note 2 : Most expressions that use template parameters use non-type template parameters, but it is possible for
an expression to reference a type parameter. For example, a template type parameter can be used in the sizeof
operator. — end note ]

5 Two expressions involving template parameters are considered equivalent if two function definitions containing
the expressions would satisfy the one-definition rule (6.3), except that the tokens used to name the template
parameters may differ as long as a token used to name a template parameter in one expression is replaced by
another token that names the same template parameter in the other expression. Two unevaluated operands
that do not involve template parameters are considered equivalent if two function definitions containing the
expressions would satisfy the one-definition rule, except that the tokens used to name types and declarations
may differ as long as they name the same entities, and the tokens used to form concept-ids (13.3) may differ
as long as the two template-ids are the same (13.6).
[Note 3 : For instance, A<42> and A<40+2> name the same type. — end note ]

Two lambda-expressions are never considered equivalent.
[Note 4 : The intent is to avoid lambda-expressions appearing in the signature of a function template with external
linkage. — end note ]

For determining whether two dependent names (13.8.3) are equivalent, only the name itself is considered, not
the result of name lookup.
[Note 5 : If such a dependent name is unqualified, it is looked up from the first declaration of the function template
(13.8.4.2). — end note ]
[Example 3 :

template <int I, int J> void f(A<I+J>); // #1
template <int K, int L> void f(A<K+L>); // same as #1
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template <class T> decltype(g(T())) h();
int g(int);
template <class T> decltype(g(T())) h() // redeclaration of h() uses the earlier lookup. . .

{ return g(T()); } // . . . although the lookup here does find g(int)
int i = h<int>(); // template argument substitution fails; g(int)

// not considered at the first declaration of h()

// ill-formed, no diagnostic required: the two expressions are functionally equivalent but not equivalent
template <int N> void foo(const char (*s)[([]{}, N)]);
template <int N> void foo(const char (*s)[([]{}, N)]);

// two different declarations because the non-dependent portions are not considered equivalent
template <class T> void spam(decltype([]{}) (*s)[sizeof(T)]);
template <class T> void spam(decltype([]{}) (*s)[sizeof(T)]);

— end example ]

Two potentially-evaluated expressions involving template parameters that are not equivalent are functionally
equivalent if, for any given set of template arguments, the evaluation of the expression results in the same
value. Two unevaluated operands that are not equivalent are functionally equivalent if, for any given set of
template arguments, the expressions perform the same operations in the same order with the same entities.
[Note 6 : For instance, one could have redundant parentheses. — end note ]
[Example 4 :

template<int I> concept C = true;
template<typename T> struct A {

void f() requires C<42>; // #1
void f() requires true; // OK, different functions

};

— end example ]
6 Two template-heads are equivalent if their template-parameter-lists have the same length, corresponding

template-parameters are equivalent and are both declared with type-constraints that are equivalent if either
template-parameter is declared with a type-constraint, and if either template-head has a requires-clause, they
both have requires-clauses and the corresponding constraint-expressions are equivalent. Two template-parameters
are equivalent under the following conditions:

—(6.1) they declare template parameters of the same kind,
—(6.2) if either declares a template parameter pack, they both do,
—(6.3) if they declare non-type template parameters, they have equivalent types ignoring the use of type-

constraints for placeholder types, and
—(6.4) if they declare template template parameters, their template parameters are equivalent.

When determining whether types or type-constraints are equivalent, the rules above are used to compare
expressions involving template parameters. Two template-heads are functionally equivalent if they accept and
are satisfied by (13.5.2) the same set of template argument lists.

7 If the validity or meaning of the program depends on whether two constructs are equivalent, and they are
functionally equivalent but not equivalent, the program is ill-formed, no diagnostic required. Furthermore, if
two function templates that do not correspond

—(7.1) have the same name,
—(7.2) have corresponding signatures (6.4.1),
—(7.3) would declare the same entity (6.6) considering them to correspond, and
—(7.4) accept and are satisfied by the same set of template argument lists,

the program is ill-formed, no diagnostic required.
8 [Note 7 : This rule guarantees that equivalent declarations will be linked with one another, while not requiring

implementations to use heroic efforts to guarantee that functionally equivalent declarations will be treated as distinct.
For example, the last two declarations are functionally equivalent and would cause a program to be ill-formed:

// guaranteed to be the same
template <int I> void f(A<I>, A<I+10>);
template <int I> void f(A<I>, A<I+10>);
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// guaranteed to be different
template <int I> void f(A<I>, A<I+10>);
template <int I> void f(A<I>, A<I+11>);

// ill-formed, no diagnostic required
template <int I> void f(A<I>, A<I+10>);
template <int I> void f(A<I>, A<I+1+2+3+4>);

— end note ]

13.7.7.3 Partial ordering of function templates [temp.func.order]
1 If multiple function templates share a name, the use of that name can be ambiguous because template

argument deduction (13.10.3) may identify a specialization for more than one function template. Partial
ordering of overloaded function template declarations is used in the following contexts to select the function
template to which a function template specialization refers:

—(1.1) during overload resolution for a call to a function template specialization (12.2.4);
—(1.2) when the address of a function template specialization is taken;
—(1.3) when a placement operator delete that is a function template specialization is selected to match a

placement operator new (6.7.5.5.3, 7.6.2.8);
—(1.4) when a friend function declaration (13.7.5), an explicit instantiation (13.9.3) or an explicit specialization

(13.9.4) refers to a function template specialization.
2 Partial ordering selects which of two function templates is more specialized than the other by transforming

each template in turn (see next paragraph) and performing template argument deduction using the function
type. The deduction process determines whether one of the templates is more specialized than the other.
If so, the more specialized template is the one chosen by the partial ordering process. If both deductions
succeed, the partial ordering selects the more constrained template (if one exists) as determined below.

3 To produce the transformed template, for each type, non-type, or template template parameter (including
template parameter packs (13.7.4) thereof) synthesize a unique type, value, or class template respectively
and substitute it for each occurrence of that parameter in the function type of the template.
[Note 1 : The type replacing the placeholder in the type of the value synthesized for a non-type template parameter is
also a unique synthesized type. — end note ]

Each function template M that is a member function is considered to have a new first parameter of type
X(M), described below, inserted in its function parameter list. If exactly one of the function templates was
considered by overload resolution via a rewritten candidate (12.2.2.3) with a reversed order of parameters,
then the order of the function parameters in its transformed template is reversed. For a function template M
with cv-qualifiers cv that is a member of a class A:

—(3.1) The type X(M) is “rvalue reference to cv A” if the optional ref-qualifier of M is && or if M has no
ref-qualifier and the positionally-corresponding parameter of the other transformed template has rvalue
reference type; if this determination depends recursively upon whether X(M) is an rvalue reference
type, it is not considered to have rvalue reference type.

—(3.2) Otherwise, X(M) is “lvalue reference to cv A”.
[Note 2 : This allows a non-static member to be ordered with respect to a non-member function and for the results to
be equivalent to the ordering of two equivalent non-members. — end note ]
[Example 1 :

struct A { };
template<class T> struct B {

template<class R> int operator*(R&); // #1
};

template<class T, class R> int operator*(T&, R&); // #2

// The declaration of B::operator* is transformed into the equivalent of
// template<class R> int operator*(B<A>&, R&); // #1a

int main() {
A a;
B<A> b;
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b * a; // calls #1
}

— end example ]
4 Using the transformed function template’s function type, perform type deduction against the other template

as described in 13.10.3.5.
[Example 2 :

template<class T> struct A { A(); };

template<class T> void f(T);
template<class T> void f(T*);
template<class T> void f(const T*);

template<class T> void g(T);
template<class T> void g(T&);

template<class T> void h(const T&);
template<class T> void h(A<T>&);

void m() {
const int* p;
f(p); // f(const T*) is more specialized than f(T) or f(T*)
float x;
g(x); // ambiguous: g(T) or g(T&)
A<int> z;
h(z); // overload resolution selects h(A<T>&)
const A<int> z2;
h(z2); // h(const T&) is called because h(A<T>&) is not callable

}

— end example ]
5 [Note 3 : Since, in a call context, such type deduction considers only parameters for which there are explicit call

arguments, some parameters are ignored (namely, function parameter packs, parameters with default arguments, and
ellipsis parameters).
[Example 3 :

template<class T> void f(T); // #1
template<class T> void f(T*, int=1); // #2
template<class T> void g(T); // #3
template<class T> void g(T*, ...); // #4
int main() {

int* ip;
f(ip); // calls #2
g(ip); // calls #4

}

— end example ]
[Example 4 :

template<class T, class U> struct A { };

template<class T, class U> void f(U, A<U, T>* p = 0); // #1
template< class U> void f(U, A<U, U>* p = 0); // #2
template<class T > void g(T, T = T()); // #3
template<class T, class... U> void g(T, U ...); // #4

void h() {
f<int>(42, (A<int, int>*)0); // calls #2
f<int>(42); // error: ambiguous
g(42); // error: ambiguous

}

— end example ]
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[Example 5 :
template<class T, class... U> void f(T, U...); // #1
template<class T > void f(T); // #2
template<class T, class... U> void g(T*, U...); // #3
template<class T > void g(T); // #4

void h(int i) {
f(&i); // OK, calls #2
g(&i); // OK, calls #3

}

— end example ]
— end note ]

6 If deduction against the other template succeeds for both transformed templates, constraints can be considered
as follows:

—(6.1) If their template-parameter-lists (possibly including template-parameters invented for an abbreviated
function template (9.3.4.6)) or function parameter lists differ in length, neither template is more
specialized than the other.

—(6.2) Otherwise:
—(6.2.1) If exactly one of the templates was considered by overload resolution via a rewritten candidate

with reversed order of parameters:
—(6.2.1.1) If, for either template, some of the template parameters are not deducible from their function

parameters, neither template is more specialized than the other.
—(6.2.1.2) If there is either no reordering or more than one reordering of the associated template-parameter-

list such that
—(6.2.1.2) the corresponding template-parameters of the template-parameter-lists are equivalent and
—(6.2.1.2) the function parameters that positionally correspond between the two templates are of

the same type,
neither template is more specialized than the other.

—(6.2.2) Otherwise, if the corresponding template-parameters of the template-parameter-lists are not equiva-
lent (13.7.7.2) or if the function parameters that positionally correspond between the two templates
are not of the same type, neither template is more specialized than the other.

—(6.3) Otherwise, if the context in which the partial ordering is done is that of a call to a conversion function
and the return types of the templates are not the same, then neither template is more specialized than
the other.

—(6.4) Otherwise, if one template is more constrained than the other (13.5.5), the more constrained template
is more specialized than the other.

—(6.5) Otherwise, neither template is more specialized than the other.
[Example 6 :

template <typename> constexpr bool True = true;
template <typename T> concept C = True<T>;

void f(C auto &, auto &) = delete;
template <C Q> void f(Q &, C auto &);

void g(struct A *ap, struct B *bp) {
f(*ap, *bp); // OK, can use different methods to produce template parameters

}

template <typename T, typename U> struct X {};

template <typename T, C U, typename V> bool operator==(X<T, U>, V) = delete;
template <C T, C U, C V> bool operator==(T, X<U, V>);
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void h() {
X<void *, int>{} == 0; // OK, correspondence of [ T, U, V] and [ U, V, T]

}

— end example ]

13.7.8 Alias templates [temp.alias]
1 A template-declaration in which the declaration is an alias-declaration (9.1) declares the identifier to be an

alias template. An alias template is a name for a family of types. The name of the alias template is a
template-name.

2 When a template-id refers to the specialization of an alias template, it is equivalent to the associated type
obtained by substitution of its template-arguments for the template-parameters in the defining-type-id of the
alias template.
[Note 1 : An alias template name is never deduced. — end note ]
[Example 1 :

template<class T> struct Alloc { /* ... */ };
template<class T> using Vec = vector<T, Alloc<T>>;
Vec<int> v; // same as vector<int, Alloc<int>> v;

template<class T>
void process(Vec<T>& v)
{ /* ... */ }

template<class T>
void process(vector<T, Alloc<T>>& w)
{ /* ... */ } // error: redefinition

template<template<class> class TT>
void f(TT<int>);

f(v); // error: Vec not deduced

template<template<class,class> class TT>
void g(TT<int, Alloc<int>>);

g(v); // OK, TT = vector

— end example ]
3 However, if the template-id is dependent, subsequent template argument substitution still applies to the

template-id .
[Example 2 :

template<typename...> using void_t = void;
template<typename T> void_t<typename T::foo> f();
f<int>(); // error: int does not have a nested type foo

— end example ]
4 The defining-type-id in an alias template declaration shall not refer to the alias template being declared.

The type produced by an alias template specialization shall not directly or indirectly make use of that
specialization.
[Example 3 :

template <class T> struct A;
template <class T> using B = typename A<T>::U;
template <class T> struct A {

typedef B<T> U;
};
B<short> b; // error: instantiation of B<short> uses own type via A<short>::U

— end example ]
5 The type of a lambda-expression appearing in an alias template declaration is different between instantiations

of that template, even when the lambda-expression is not dependent.
[Example 4 :
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template <class T>
using A = decltype([] { }); // A<int> and A<char> refer to different closure types

— end example ]

13.7.9 Concept definitions [temp.concept]
1 A concept is a template that defines constraints on its template arguments.

concept-definition :
concept concept-name attribute-specifier-seqopt = constraint-expression ;

concept-name :
identifier

2 A concept-definition declares a concept. Its identifier becomes a concept-name referring to that concept within
its scope. The optional attribute-specifier-seq appertains to the concept.
[Example 1 :

template<typename T>
concept C = requires(T x) {

{ x == x } -> std::convertible_to<bool>;
};

template<typename T>
requires C<T> // C constrains f1(T) in constraint-expression

T f1(T x) { return x; }

template<C T> // C, as a type-constraint, constrains f2(T)
T f2(T x) { return x; }

— end example ]
3 A concept-definition shall inhabit a namespace scope (6.4.6).
4 A concept shall not have associated constraints (13.5.3).
5 A concept is not instantiated (13.9).

[Note 1 : A concept-id (13.3) is evaluated as an expression. A concept cannot be explicitly instantiated (13.9.3),
explicitly specialized (13.9.4), or partially specialized (13.7.6). — end note ]

6 The constraint-expression of a concept-definition is an unevaluated operand (7.2.3).
7 The first declared template parameter of a concept definition is its prototype parameter. A type concept is a

concept whose prototype parameter is a type template-parameter .

13.8 Name resolution [temp.res]
13.8.1 General [temp.res.general]

1 A name that appears in a declaration D of a template T is looked up from where it appears in an unspecified
declaration of T that either is D itself or is reachable from D and from which no other declaration of T that
contains the usage of the name is reachable. If the name is dependent (as specified in 13.8.3), it is looked up
for each specialization (after substitution) because the lookup depends on a template parameter.
[Note 1 : Some dependent names are also looked up during parsing to determine that they are dependent or to interpret
following < tokens. Uses of other names might be type-dependent or value-dependent (13.8.3.3, 13.8.3.4). A using-
declarator is never dependent in a specialization and is therefore replaced during lookup for that specialization (6.5).

— end note ]
[Example 1 :

struct A { operator int(); };
template<class B, class T>
struct D : B {

T get() { return operator T(); } // conversion-function-id is dependent
};
int f(D<A, int> d) { return d.get(); } // OK, lookup finds A::operator int

— end example ]
[Example 2 :

void f(char);
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template<class T> void g(T t) {
f(1); // f(char)
f(T(1)); // dependent
f(t); // dependent
dd++; // not dependent; error: declaration for dd not found

}

enum E { e };
void f(E);

double dd;
void h() {

g(e); // will cause one call of f(char) followed by two calls of f(E)
g('a'); // will cause three calls of f(char)

}

— end example ]
[Example 3 :

struct A {
struct B { /* ... */ };
int a;
int Y;

};

int a;

template<class T> struct Y : T {
struct B { /* ... */ };
B b; // The B defined in Y
void f(int i) { a = i; } // ::a
Y* p; // Y<T>

};

Y<A> ya;

The members A::B, A::a, and A::Y of the template argument A do not affect the binding of names in Y<A>. — end
example ]

2 If the validity or meaning of the program would be changed by considering a default argument or default
template argument introduced in a declaration that is reachable from the point of instantiation of a
specialization (13.8.4.1) but is not found by lookup for the specialization, the program is ill-formed, no
diagnostic required.

typename-specifier :
typename nested-name-specifier identifier
typename nested-name-specifier templateopt simple-template-id

3 The component names of a typename-specifier are its identifier (if any) and those of its nested-name-specifier
and simple-template-id (if any). A typename-specifier denotes the type or class template denoted by the
simple-type-specifier (9.2.9.3) formed by omitting the keyword typename.
[Note 2 : The usual qualified name lookup (6.5.5) applies even in the presence of typename. — end note ]
[Example 4 :

struct A {
struct X { };
int X;

};
struct B {

struct X { };
};
template<class T> void f(T t) {

typename T::X x;
}
void foo() {

A a;
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B b;
f(b); // OK, T::X refers to B::X
f(a); // error: T::X refers to the data member A::X not the struct A::X

}

— end example ]
4 A qualified or unqualified name is said to be in a type-only context if it is the terminal name of

—(4.1) a typename-specifier , nested-name-specifier , elaborated-type-specifier , class-or-decltype, or
—(4.2) a type-specifier of a

—(4.2.1) new-type-id ,
—(4.2.2) defining-type-id ,
—(4.2.3) conversion-type-id ,
—(4.2.4) trailing-return-type,
—(4.2.5) default argument of a type-parameter , or
—(4.2.6) type-id of a static_cast, const_cast, reinterpret_cast, or dynamic_cast, or

—(4.3) a decl-specifier of the decl-specifier-seq of a
—(4.3.1) simple-declaration or a function-definition in namespace scope,
—(4.3.2) member-declaration,
—(4.3.3) parameter-declaration in a member-declaration,124 unless that parameter-declaration appears in a

default argument,
—(4.3.4) parameter-declaration in a declarator of a function or function template declaration whose declarator-

id is qualified, unless that parameter-declaration appears in a default argument,
—(4.3.5) parameter-declaration in a lambda-declarator or requirement-parameter-list, unless that parameter-

declaration appears in a default argument, or
—(4.3.6) parameter-declaration of a (non-type) template-parameter .

[Example 5 :
template<class T> T::R f(); // OK, return type of a function declaration at global scope
template<class T> void f(T::R); // ill-formed, no diagnostic required: attempt to declare

// a void variable template
template<class T> struct S {

using Ptr = PtrTraits<T>::Ptr; // OK, in a defining-type-id
T::R f(T::P p) { // OK, class scope

return static_cast<T::R>(p); // OK, type-id of a static_cast
}
auto g() -> S<T*>::Ptr; // OK, trailing-return-type

};
template<typename T> void f() {

void (*pf)(T::X); // variable pf of type void* initialized with T::X
void g(T::X); // error: T::X at block scope does not denote a type

// (attempt to declare a void variable)
}

— end example ]
5 A qualified-id whose terminal name is dependent and that is in a type-only context is considered to denote

a type. A name that refers to a using-declarator whose terminal name is dependent is interpreted as a
typedef-name if the using-declarator uses the keyword typename.
[Example 6 :

template <class T> void f(int i) {
T::x * i; // expression, not the declaration of a variable i

}

124) This includes friend function declarations.
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struct Foo {
typedef int x;

};

struct Bar {
static int const x = 5;

};

int main() {
f<Bar>(1); // OK
f<Foo>(1); // error: Foo::x is a type

}

— end example ]
6 The validity of a template may be checked prior to any instantiation.

[Note 3 : Knowing which names are type names allows the syntax of every template to be checked in this way. — end
note ]

The program is ill-formed, no diagnostic required, if:
—(6.1) no valid specialization, ignoring static_assert-declarations that fail, can be generated for a template or a

substatement of a constexpr if statement (8.5.2) within a template and the template is not instantiated,
or

—(6.2) any constraint-expression in the program, introduced or otherwise, has (in its normal form) an atomic
constraint A where no satisfaction check of A could be well-formed and no satisfaction check of A is
performed, or

—(6.3) every valid specialization of a variadic template requires an empty template parameter pack, or
—(6.4) a hypothetical instantiation of a template immediately following its definition would be ill-formed due

to a construct that does not depend on a template parameter, or
—(6.5) the interpretation of such a construct in the hypothetical instantiation is different from the interpretation

of the corresponding construct in any actual instantiation of the template.
[Note 4 : This can happen in situations including the following:

—(6.6) a type used in a non-dependent name is incomplete at the point at which a template is defined but is complete
at the point at which an instantiation is performed, or

—(6.7) lookup for a name in the template definition found a using-declaration, but the lookup in the corresponding
scope in the instantiation does not find any declarations because the using-declaration was a pack expansion and
the corresponding pack is empty, or

—(6.8) an instantiation uses a default argument or default template argument that had not been defined at the point
at which the template was defined, or

—(6.9) constant expression evaluation (7.7) within the template instantiation uses
—(6.9.1) the value of a const object of integral or unscoped enumeration type or
—(6.9.2) the value of a constexpr object or
—(6.9.3) the value of a reference or
—(6.9.4) the definition of a constexpr function,

and that entity was not defined when the template was defined, or
—(6.10) a class template specialization or variable template specialization that is specified by a non-dependent simple-

template-id is used by the template, and either it is instantiated from a partial specialization that was not
defined when the template was defined or it names an explicit specialization that was not declared when the
template was defined.

— end note ]

Otherwise, no diagnostic shall be issued for a template for which a valid specialization can be generated.
[Note 5 : If a template is instantiated, errors will be diagnosed according to the other rules in this document. Exactly
when these errors are diagnosed is a quality of implementation issue. — end note ]
[Example 7 :

int j;
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template<class T> class X {
void f(T t, int i, char* p) {

t = i; // diagnosed if X::f is instantiated, and the assignment to t is an error
p = i; // may be diagnosed even if X::f is not instantiated
p = j; // may be diagnosed even if X::f is not instantiated
X<T>::g(t); // OK
X<T>::h(); // may be diagnosed even if X::f is not instantiated

}
void g(T t) {

+; // may be diagnosed even if X::g is not instantiated
}

};

template<class... T> struct A {
void operator++(int, T... t); // error: too many parameters

};
template<class... T> union X : T... { }; // error: union with base class
template<class... T> struct A : T..., T... { }; // error: duplicate base class

— end example ]
7 [Note 6 : For purposes of name lookup, default arguments and noexcept-specifiers of function templates and default

arguments and noexcept-specifiers of member functions of class templates are considered definitions (13.7). — end
note ]

13.8.2 Locally declared names [temp.local]
1 Like normal (non-template) classes, class templates have an injected-class-name (11.1). The injected-class-

name can be used as a template-name or a type-name. When it is used with a template-argument-list, as a
template-argument for a template template-parameter , or as the final identifier in the elaborated-type-specifier
of a friend class template declaration, it is a template-name that refers to the class template itself. Otherwise,
it is a type-name equivalent to the template-name followed by the template argument list (13.7.1, 13.4.1) of
the class template enclosed in <>.

2 When the injected-class-name of a class template specialization or partial specialization is used as a type-name,
it is equivalent to the template-name followed by the template-arguments of the class template specialization
or partial specialization enclosed in <>.
[Example 1 :

template<template<class> class T> class A { };
template<class T> class Y;
template<> class Y<int> {

Y* p; // meaning Y<int>
Y<char>* q; // meaning Y<char>
A<Y>* a; // meaning A<::Y>
class B {

template<class> friend class Y; // meaning ::Y
};

};

— end example ]
3 The injected-class-name of a class template or class template specialization can be used as either a template-

name or a type-name wherever it is named.
[Example 2 :

template <class T> struct Base {
Base* p;

};

template <class T> struct Derived: public Base<T> {
typename Derived::Base* p; // meaning Derived::Base<T>

};

template<class T, template<class> class U = T::Base> struct Third { };
Third<Derived<int> > t; // OK, default argument uses injected-class-name as a template

— end example ]
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4 A lookup that finds an injected-class-name (6.5.2) can result in an ambiguity in certain cases (for example, if it
is found in more than one base class). If all of the injected-class-names that are found refer to specializations
of the same class template, and if the name is used as a template-name, the reference refers to the class
template itself and not a specialization thereof, and is not ambiguous.
[Example 3 :

template <class T> struct Base { };
template <class T> struct Derived: Base<int>, Base<char> {

typename Derived::Base b; // error: ambiguous
typename Derived::Base<double> d; // OK

};

— end example ]
5 When the normal name of the template (i.e., the name from the enclosing scope, not the injected-class-name)

is used, it always refers to the class template itself and not a specialization of the template.
[Example 4 :

template<class T> class X {
X* p; // meaning X<T>
X<T>* p2;
X<int>* p3;
::X* p4; // error: missing template argument list

// ::X does not refer to the injected-class-name
};

— end example ]
6 The name of a template-parameter shall not be bound to any following declaration whose locus is contained

by the scope to which the template-parameter belongs.
[Example 5 :

template<class T, int i> class Y {
int T; // error: template-parameter hidden
void f() {

char T; // error: template-parameter hidden
}
friend void T(); // OK, no name bound

};

template<class X> class X; // error: hidden by template-parameter
— end example ]

7 Unqualified name lookup considers the template parameter scope of a template-declaration immediately after
the outermost scope associated with the template declared (even if its parent scope does not contain the
template-parameter-list).
[Note 1 : The scope of a class template, including its non-dependent base classes (13.8.3.2, 6.5.2), is searched before
its template parameter scope. — end note ]
[Example 6 :

struct B { };
namespace N {

typedef void V;
template<class T> struct A : B {

typedef void C;
void f();
template<class U> void g(U);

};
}

template<class V> void N::A<V>::f() { // N::V not considered here
V v; // V is still the template parameter, not N::V

}

template<class B> template<class C> void N::A<B>::g(C) {
B b; // B is the base class, not the template parameter
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C c; // C is the template parameter, not A’s C
}

— end example ]

13.8.3 Dependent names [temp.dep]
13.8.3.1 General [temp.dep.general]

1 Inside a template, some constructs have semantics which may differ from one instantiation to another. Such
a construct depends on the template parameters. In particular, types and expressions may depend on the
type and/or value of template parameters (as determined by the template arguments) and this determines
the context for name lookup for certain names. An expression may be type-dependent (that is, its type
may depend on a template parameter) or value-dependent (that is, its value when evaluated as a constant
expression (7.7) may depend on a template parameter) as described below.

2 A dependent call is an expression, possibly formed as a non-member candidate for an operator (12.2.2.3), of
the form:

postfix-expression ( expression-listopt )

where the postfix-expression is an unqualified-id and
—(2.1) any of the expressions in the expression-list is a pack expansion (13.7.4), or
—(2.2) any of the expressions or braced-init-lists in the expression-list is type-dependent (13.8.3.3), or
—(2.3) the unqualified-id is a template-id in which any of the template arguments depends on a template

parameter.
The component name of an unqualified-id (7.5.4.2) is dependent if

—(2.4) it is a conversion-function-id whose conversion-type-id is dependent, or
—(2.5) it is operator= and the current class is a templated entity, or
—(2.6) the unqualified-id is the postfix-expression in a dependent call.

[Note 1 : Such names are looked up only at the point of the template instantiation (13.8.4.1) in both the context of
the template definition and the context of the point of instantiation (13.8.4.2). — end note ]

3 [Example 1 :
template<class T> struct X : B<T> {

typename T::A* pa;
void f(B<T>* pb) {

static int i = B<T>::i;
pb->j++;

}
};

The base class name B<T>, the type name T::A, the names B<T>::i and pb->j explicitly depend on the template-
parameter . — end example ]

13.8.3.2 Dependent types [temp.dep.type]
1 A name or template-id refers to the current instantiation if it is

—(1.1) in the definition of a class template, a nested class of a class template, a member of a class template, or
a member of a nested class of a class template, the injected-class-name (11.1) of the class template or
nested class,

—(1.2) in the definition of a primary class template or a member of a primary class template, the name of the
class template followed by the template argument list of its template-head (13.4) enclosed in <> (or an
equivalent template alias specialization),

—(1.3) in the definition of a nested class of a class template, the name of the nested class referenced as a
member of the current instantiation, or

—(1.4) in the definition of a class template partial specialization or a member of a class template partial
specialization, the name of the class template followed by a template argument list equivalent to that
of the partial specialization (13.7.6) enclosed in <> (or an equivalent template alias specialization).

2 A template argument that is equivalent to a template parameter can be used in place of that template
parameter in a reference to the current instantiation. For a template type-parameter , a template argument
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is equivalent to a template parameter if it denotes the same type. For a non-type template parameter, a
template argument is equivalent to a template parameter if it is an identifier that names a variable that is
equivalent to the template parameter. A variable is equivalent to a template parameter if

—(2.1) it has the same type as the template parameter (ignoring cv-qualification) and
—(2.2) its initializer consists of a single identifier that names the template parameter or, recursively, such a

variable.
[Note 1 : Using a parenthesized variable name breaks the equivalence. — end note ]
[Example 1 :

template <class T> class A {
A* p1; // A is the current instantiation
A<T>* p2; // A<T> is the current instantiation
A<T*> p3; // A<T*> is not the current instantiation
::A<T>* p4; // ::A<T> is the current instantiation
class B {

B* p1; // B is the current instantiation
A<T>::B* p2; // A<T>::B is the current instantiation
typename A<T*>::B* p3; // A<T*>::B is not the current instantiation

};
};

template <class T> class A<T*> {
A<T*>* p1; // A<T*> is the current instantiation
A<T>* p2; // A<T> is not the current instantiation

};

template <class T1, class T2, int I> struct B {
B<T1, T2, I>* b1; // refers to the current instantiation
B<T2, T1, I>* b2; // not the current instantiation
typedef T1 my_T1;
static const int my_I = I;
static const int my_I2 = I+0;
static const int my_I3 = my_I;
static const long my_I4 = I;
static const int my_I5 = (I);
B<my_T1, T2, my_I>* b3; // refers to the current instantiation
B<my_T1, T2, my_I2>* b4; // not the current instantiation
B<my_T1, T2, my_I3>* b5; // refers to the current instantiation
B<my_T1, T2, my_I4>* b6; // not the current instantiation
B<my_T1, T2, my_I5>* b7; // not the current instantiation

};

— end example ]
3 A dependent base class is a base class that is a dependent type and is not the current instantiation.

[Note 2 : A base class can be the current instantiation in the case of a nested class naming an enclosing class as a base.
[Example 2 :

template<class T> struct A {
typedef int M;
struct B {

typedef void M;
struct C;

};
};

template<class T> struct A<T>::B::C : A<T> {
M m; // OK, A<T>::M

};

— end example ]
— end note ]
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4 A qualified (6.5.5) or unqualified name is a member of the current instantiation if
—(4.1) its lookup context, if it is a qualified name, is the current instantiation, and
—(4.2) lookup for it finds any member of a class that is the current instantiation

[Example 3 :
template <class T> class A {

static const int i = 5;
int n1[i]; // i refers to a member of the current instantiation
int n2[A::i]; // A::i refers to a member of the current instantiation
int n3[A<T>::i]; // A<T>::i refers to a member of the current instantiation
int f();

};

template <class T> int A<T>::f() {
return i; // i refers to a member of the current instantiation

}

— end example ]

A qualified or unqualified name names a dependent member of the current instantiation if it is a member
of the current instantiation that, when looked up, refers to at least one member declaration (including a
using-declarator whose terminal name is dependent) of a class that is the current instantiation.

5 A qualified name (6.5.5) is dependent if
—(5.1) it is a conversion-function-id whose conversion-type-id is dependent, or
—(5.2) its lookup context is dependent and is not the current instantiation, or
—(5.3) its lookup context is the current instantiation and it is operator=,125 or
—(5.4) its lookup context is the current instantiation and has at least one dependent base class, and qualified

name lookup for the name finds nothing (6.5.5).
[Example 4 :

struct A {
using B = int;
A f();

};
struct C : A {};
template<class T>
void g(T t) {

decltype(t.A::f())::B i; // error: typename needed to interpret B as a type
}
template void g(C); // . . . even though A is ::A here

— end example ]
6 If, for a given set of template arguments, a specialization of a template is instantiated that refers to a member

of the current instantiation with a qualified name, the name is looked up in the template instantiation context.
If the result of this lookup differs from the result of name lookup in the template definition context, name
lookup is ambiguous.
[Example 5 :

struct A {
int m;

};

struct B {
int m;

};

template<typename T>
struct C : A, T {

int f() { return this->m; } // finds A::m in the template definition context

125) Every instantiation of a class template declares a different set of assignment operators.
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int g() { return m; } // finds A::m in the template definition context
};

template int C<B>::f(); // error: finds both A::m and B::m
template int C<B>::g(); // OK, transformation to class member access syntax

// does not occur in the template definition context; see 11.4.3
— end example ]

7 A type is dependent if it is
—(7.1) a template parameter,
—(7.2) denoted by a dependent (qualified) name,
—(7.3) a nested class or enumeration that is a direct member of a class that is the current instantiation,
—(7.4) a cv-qualified type where the cv-unqualified type is dependent,
—(7.5) a compound type constructed from any dependent type,
—(7.6) an array type whose element type is dependent or whose bound (if any) is value-dependent,
—(7.7) a function type whose parameters include one or more function parameter packs,
—(7.8) a function type whose exception specification is value-dependent,
—(7.9) denoted by a simple-template-id in which either the template name is a template parameter or any of

the template arguments is a dependent type or an expression that is type-dependent or value-dependent
or is a pack expansion,126 or

—(7.10) denoted by decltype(expression), where expression is type-dependent (13.8.3.3).
8 [Note 3 : Because typedefs do not introduce new types, but instead simply refer to other types, a name that refers to

a typedef that is a member of the current instantiation is dependent only if the type referred to is dependent. — end
note ]

13.8.3.3 Type-dependent expressions [temp.dep.expr]
1 Except as described below, an expression is type-dependent if any subexpression is type-dependent.
2 this is type-dependent if the current class (7.5.2) is dependent (13.8.3.2).
3 An id-expression is type-dependent if it is a template-id that is not a concept-id and is dependent; or if its

terminal name is
—(3.1) associated by name lookup with one or more declarations declared with a dependent type,
—(3.2) associated by name lookup with a non-type template-parameter declared with a type that contains a

placeholder type (9.2.9.6),
—(3.3) associated by name lookup with a variable declared with a type that contains a placeholder type (9.2.9.6)

where the initializer is type-dependent,
—(3.4) associated by name lookup with one or more declarations of member functions of a class that is the

current instantiation declared with a return type that contains a placeholder type,
—(3.5) associated by name lookup with a structured binding declaration (9.6) whose brace-or-equal-initializer is

type-dependent,
—(3.6) associated by name lookup with an entity captured by copy (7.5.5.3) in a lambda-expression that has an

explicit object parameter whose type is dependent (9.3.4.6),
—(3.7) the identifier __func__ (9.5.1), where any enclosing function is a template, a member of a class template,

or a generic lambda,
—(3.8) a conversion-function-id that specifies a dependent type, or
—(3.9) dependent

or if it names a dependent member of the current instantiation that is a static data member of type “array of
unknown bound of T” for some T (13.7.2.5). Expressions of the following forms are type-dependent only if
the type specified by the type-id , simple-type-specifier , typename-specifier , or new-type-id is dependent, even if
any subexpression is type-dependent:

126) This includes an injected-class-name (11.1) of a class template used without a template-argument-list.
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simple-type-specifier ( expression-listopt )
simple-type-specifier braced-init-list
typename-specifier ( expression-listopt )
typename-specifier braced-init-list
::opt new new-placementopt new-type-id new-initializeropt
::opt new new-placementopt ( type-id ) new-initializeropt
dynamic_cast < type-id > ( expression )
static_cast < type-id > ( expression )
const_cast < type-id > ( expression )
reinterpret_cast < type-id > ( expression )
( type-id ) cast-expression

4 Expressions of the following forms are never type-dependent (because the type of the expression cannot be
dependent):

literal
sizeof unary-expression
sizeof ( type-id )
sizeof ... ( identifier )
alignof ( type-id )
typeid ( expression )
typeid ( type-id )
::opt delete cast-expression
::opt delete [ ] cast-expression
throw assignment-expressionopt
noexcept ( expression )

[Note 1 : For the standard library macro offsetof, see 17.2. — end note ]
5 A class member access expression (7.6.1.5) is type-dependent if the terminal name of its id-expression, if any,

is dependent or the expression refers to a member of the current instantiation and the type of the referenced
member is dependent.
[Note 2 : In an expression of the form x.y or xp->y the type of the expression is usually the type of the member y of
the class of x (or the class pointed to by xp). However, if x or xp refers to a dependent type that is not the current
instantiation, the type of y is always dependent. — end note ]

6 A braced-init-list is type-dependent if any element is type-dependent or is a pack expansion.
7 A fold-expression is type-dependent.

13.8.3.4 Value-dependent expressions [temp.dep.constexpr]
1 Except as described below, an expression used in a context where a constant expression is required is

value-dependent if any subexpression is value-dependent.
2 An id-expression is value-dependent if:

—(2.1) it is a concept-id and any of its arguments are dependent,
—(2.2) it is type-dependent,
—(2.3) it is the name of a non-type template parameter,
—(2.4) it names a static data member that is a dependent member of the current instantiation and is not

initialized in a member-declarator ,
—(2.5) it names a static member function that is a dependent member of the current instantiation, or
—(2.6) it names a potentially-constant variable (7.7) that is initialized with an expression that is value-

dependent.
Expressions of the following form are value-dependent if the unary-expression or expression is type-dependent
or the type-id is dependent:

sizeof unary-expression
sizeof ( type-id )
typeid ( expression )
typeid ( type-id )
alignof ( type-id )
noexcept ( expression )

[Note 1 : For the standard library macro offsetof, see 17.2. — end note ]

§ 13.8.3.4 414



© ISO/IEC N4950

3 Expressions of the following form are value-dependent if either the type-id or simple-type-specifier is dependent
or the expression or cast-expression is value-dependent:

simple-type-specifier ( expression-listopt )
static_cast < type-id > ( expression )
const_cast < type-id > ( expression )
reinterpret_cast < type-id > ( expression )
( type-id ) cast-expression

4 Expressions of the following form are value-dependent:
sizeof ... ( identifier )
fold-expression

5 An expression of the form &qualified-id where the qualified-id names a dependent member of the current
instantiation is value-dependent. An expression of the form &cast-expression is also value-dependent if
evaluating cast-expression as a core constant expression (7.7) succeeds and the result of the evaluation refers
to a templated entity that is an object with static or thread storage duration or a member function.

13.8.3.5 Dependent template arguments [temp.dep.temp]
1 A type template-argument is dependent if the type it specifies is dependent.
2 A non-type template-argument is dependent if its type is dependent or the constant expression it specifies is

value-dependent.
3 Furthermore, a non-type template-argument is dependent if the corresponding non-type template-parameter

is of reference or pointer type and the template-argument designates or points to a member of the current
instantiation or a member of a dependent type.

4 A template template-parameter is dependent if it names a template-parameter or its terminal name is dependent.

13.8.4 Dependent name resolution [temp.dep.res]
13.8.4.1 Point of instantiation [temp.point]

1 For a function template specialization, a member function template specialization, or a specialization for a
member function or static data member of a class template, if the specialization is implicitly instantiated
because it is referenced from within another template specialization and the context from which it is referenced
depends on a template parameter, the point of instantiation of the specialization is the point of instantiation
of the enclosing specialization. Otherwise, the point of instantiation for such a specialization immediately
follows the namespace scope declaration or definition that refers to the specialization.

2 If a function template or member function of a class template is called in a way which uses the definition of a
default argument of that function template or member function, the point of instantiation of the default
argument is the point of instantiation of the function template or member function specialization.

3 For a noexcept-specifier of a function template specialization or specialization of a member function of a
class template, if the noexcept-specifier is implicitly instantiated because it is needed by another template
specialization and the context that requires it depends on a template parameter, the point of instantiation
of the noexcept-specifier is the point of instantiation of the specialization that requires it. Otherwise, the
point of instantiation for such a noexcept-specifier immediately follows the namespace scope declaration or
definition that requires the noexcept-specifier .

4 For a class template specialization, a class member template specialization, or a specialization for a class
member of a class template, if the specialization is implicitly instantiated because it is referenced from within
another template specialization, if the context from which the specialization is referenced depends on a
template parameter, and if the specialization is not instantiated previous to the instantiation of the enclosing
template, the point of instantiation is immediately before the point of instantiation of the enclosing template.
Otherwise, the point of instantiation for such a specialization immediately precedes the namespace scope
declaration or definition that refers to the specialization.

5 If a virtual function is implicitly instantiated, its point of instantiation is immediately following the point of
instantiation of its enclosing class template specialization.

6 An explicit instantiation definition is an instantiation point for the specialization or specializations specified
by the explicit instantiation.
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7 A specialization for a function template, a member function template, or of a member function or static
data member of a class template may have multiple points of instantiations within a translation unit, and in
addition to the points of instantiation described above,

—(7.1) for any such specialization that has a point of instantiation within the declaration-seq of the translation-
unit, prior to the private-module-fragment (if any), the point after the declaration-seq of the translation-unit
is also considered a point of instantiation, and

—(7.2) for any such specialization that has a point of instantiation within the private-module-fragment, the end
of the translation unit is also considered a point of instantiation.

A specialization for a class template has at most one point of instantiation within a translation unit. A
specialization for any template may have points of instantiation in multiple translation units. If two different
points of instantiation give a template specialization different meanings according to the one-definition
rule (6.3), the program is ill-formed, no diagnostic required.

13.8.4.2 Candidate functions [temp.dep.candidate]
1 If a dependent call (13.8.3) would be ill-formed or would find a better match had the lookup for its dependent

name considered all the function declarations with external linkage introduced in the associated namespaces
in all translation units, not just considering those declarations found in the template definition and template
instantiation contexts (6.5.4), then the program is ill-formed, no diagnostic required.

2 [Example 1 :

Source file "X.h":
namespace Q {

struct X { };
}

Source file "G.h":
namespace Q {

void g_impl(X, X);
}

Module interface unit of M1:
module;
#include "X.h"
#include "G.h"
export module M1;
export template<typename T>
void g(T t) {

g_impl(t, Q::X{ }); // ADL in definition context finds Q::g_impl, g_impl not discarded
}

Module interface unit of M2:
module;
#include "X.h"
export module M2;
import M1;
void h(Q::X x) {

g(x); // OK
}

— end example ]
3 [Example 2 :

Module interface unit of Std:
export module Std;
export template<typename Iter>
void indirect_swap(Iter lhs, Iter rhs)
{

swap(*lhs, *rhs); // swap not found by unqualified lookup, can be found only via ADL
}
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Module interface unit of M:
export module M;
import Std;

struct S { /∗ ...∗/ };
void swap(S&, S&); // #1

void f(S* p, S* q)
{

indirect_swap(p, q); // finds #1 via ADL in instantiation context
}

— end example ]
4 [Example 3 :

Source file "X.h":
struct X { /∗ ... ∗/ };
X operator+(X, X);

Module interface unit of F:
export module F;
export template<typename T>
void f(T t) {

t + t;
}

Module interface unit of M:
module;
#include "X.h"
export module M;
import F;
void g(X x) {

f(x); // OK, instantiates f from F,
// operator+ is visible in instantiation context

}

— end example ]
5 [Example 4 :

Module interface unit of A:
export module A;
export template<typename T>
void f(T t) {

cat(t, t); // #1
dog(t, t); // #2

}

Module interface unit of B:
export module B;
import A;
export template<typename T, typename U>
void g(T t, U u) {

f(t);
}

Source file "foo.h", not an importable header:
struct foo {

friend int cat(foo, foo);
};
int dog(foo, foo);

Module interface unit of C1:
module;
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#include "foo.h" // dog not referenced, discarded
export module C1;
import B;
export template<typename T>
void h(T t) {

g(foo{ }, t);
}

Translation unit:
import C1;
void i() {

h(0); // error: dog not found at #2
}

Importable header "bar.h":
struct bar {

friend int cat(bar, bar);
};
int dog(bar, bar);

Module interface unit of C2:
module;
#include "bar.h" // imports header unit "bar.h"
export module C2;
import B;
export template<typename T>
void j(T t) {

g(bar{ }, t);
}

Translation unit:
import C2;
void k() {

j(0); // OK, dog found in instantiation context:
// visible at end of module interface unit of C2

}

— end example ]

13.9 Template instantiation and specialization [temp.spec]
13.9.1 General [temp.spec.general]

1 The act of instantiating a function, a variable, a class, a member of a class template, or a member template
is referred to as template instantiation.

2 A function instantiated from a function template is called an instantiated function. A class instantiated from
a class template is called an instantiated class. A member function, a member class, a member enumeration,
or a static data member of a class template instantiated from the member definition of the class template is
called, respectively, an instantiated member function, member class, member enumeration, or static data
member. A member function instantiated from a member function template is called an instantiated member
function. A member class instantiated from a member class template is called an instantiated member class.
A variable instantiated from a variable template is called an instantiated variable. A static data member
instantiated from a static data member template is called an instantiated static data member.

3 An explicit specialization may be declared for a function template, a variable template, a class template, a
member of a class template, or a member template. An explicit specialization declaration is introduced by
template<>. In an explicit specialization declaration for a variable template, a class template, a member
of a class template, or a class member template, the variable or class that is explicitly specialized shall be
specified with a simple-template-id . In the explicit specialization declaration for a function template or a
member function template, the function or member function explicitly specialized may be specified using a
template-id .
[Example 1 :
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template<class T = int> struct A {
static int x;

};
template<class U> void g(U) { }

template<> struct A<double> { }; // specialize for T == double
template<> struct A<> { }; // specialize for T == int
template<> void g(char) { } // specialize for U == char

// U is deduced from the parameter type
template<> void g<int>(int) { } // specialize for U == int
template<> int A<char>::x = 0; // specialize for T == char

template<class T = int> struct B {
static int x;

};
template<> int B<>::x = 1; // specialize for T == int

— end example ]
4 An instantiated template specialization can be either implicitly instantiated (13.9.2) for a given argument list

or be explicitly instantiated (13.9.3). A specialization is a class, variable, function, or class member that is
either instantiated (13.9.2) from a templated entity or is an explicit specialization (13.9.4) of a templated
entity.

5 For a given template and a given set of template-arguments,
—(5.1) an explicit instantiation definition shall appear at most once in a program,
—(5.2) an explicit specialization shall be defined at most once in a program, as specified in 6.3, and
—(5.3) both an explicit instantiation and a declaration of an explicit specialization shall not appear in a

program unless the explicit specialization is reachable from the explicit instantiation.
An implementation is not required to diagnose a violation of this rule if neither declaration is reachable from
the other.

6 The usual access checking rules do not apply to names in a declaration of an explicit instantiation or explicit
specialization, with the exception of names appearing in a function body, default argument, base-clause,
member-specification, enumerator-list, or static data member or variable template initializer.
[Note 1 : In particular, the template arguments and names used in the function declarator (including parameter types,
return types and exception specifications) can be private types or objects that would normally not be accessible.

— end note ]
7 Each class template specialization instantiated from a template has its own copy of any static members.

[Example 2 :
template<class T> class X {

static T s;
};
template<class T> T X<T>::s = 0;
X<int> aa;
X<char*> bb;

X<int> has a static member s of type int and X<char*> has a static member s of type char*. — end example ]
8 If a function declaration acquired its function type through a dependent type (13.8.3.2) without using the

syntactic form of a function declarator, the program is ill-formed.
[Example 3 :

template<class T> struct A {
static T t;

};
typedef int function();
A<function> a; // error: would declare A<function>::t as a static member function

— end example ]
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13.9.2 Implicit instantiation [temp.inst]
1 A template specialization E is a declared specialization if there is a reachable explicit instantiation definition

(13.9.3) or explicit specialization declaration (13.9.4) for E, or if there is a reachable explicit instantiation
declaration for E and E is not

—(1.1) an inline function,
—(1.2) declared with a type deduced from its initializer or return value (9.2.9.6),
—(1.3) a potentially-constant variable (7.7), or
—(1.4) a specialization of a templated class.

[Note 1 : An implicit instantiation in an importing translation unit cannot use names with internal linkage from an
imported translation unit (6.6). — end note ]

2 Unless a class template specialization is a declared specialization, the class template specialization is implicitly
instantiated when the specialization is referenced in a context that requires a completely-defined object type
or when the completeness of the class type affects the semantics of the program.
[Note 2 : In particular, if the semantics of an expression depend on the member or base class lists of a class template
specialization, the class template specialization is implicitly generated. For instance, deleting a pointer to class type
depends on whether or not the class declares a destructor, and a conversion between pointers to class type depends on
the inheritance relationship between the two classes involved. — end note ]
[Example 1 :

template<class T> class B { /* ... */ };
template<class T> class D : public B<T> { /* ... */ };

void f(void*);
void f(B<int>*);

void g(D<int>* p, D<char>* pp, D<double>* ppp) {
f(p); // instantiation of D<int> required: call f(B<int>*)
B<char>* q = pp; // instantiation of D<char> required: convert D<char>* to B<char>*
delete ppp; // instantiation of D<double> required

}

— end example ]

If the template selected for the specialization (13.7.6.2) has been declared, but not defined, at the point of
instantiation (13.8.4.1), the instantiation yields an incomplete class type (6.8.1).
[Example 2 :

template<class T> class X;
X<char> ch; // error: incomplete type X<char>

— end example ]
[Note 3 : Within a template declaration, a local class (11.6) or enumeration and the members of a local class are never
considered to be entities that can be separately instantiated (this includes their default arguments, noexcept-specifiers,
and non-static data member initializers, if any, but not their type-constraints or requires-clauses). As a result, the
dependent names are looked up, the semantic constraints are checked, and any templates used are instantiated as part
of the instantiation of the entity within which the local class or enumeration is declared. — end note ]

3 The implicit instantiation of a class template specialization causes
—(3.1) the implicit instantiation of the declarations, but not of the definitions, of the non-deleted class member

functions, member classes, scoped member enumerations, static data members, member templates, and
friends; and

—(3.2) the implicit instantiation of the definitions of deleted member functions, unscoped member enumerations,
and member anonymous unions.

The implicit instantiation of a class template specialization does not cause the implicit instantiation of default
arguments or noexcept-specifiers of the class member functions.
[Example 3 :

template<class T>
struct C {

void f() { T x; }
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void g() = delete;
};
C<void> c; // OK, definition of C<void>::f is not instantiated at this point
template<> void C<int>::g() { } // error: redefinition of C<int>::g

— end example ]

However, for the purpose of determining whether an instantiated redeclaration is valid according to 6.3
and 11.4, an instantiated declaration that corresponds to a definition in the template is considered to be a
definition.
[Example 4 :

template<class T, class U>
struct Outer {

template<class X, class Y> struct Inner;
template<class Y> struct Inner<T, Y>; // #1a
template<class Y> struct Inner<T, Y> { }; // #1b; OK, valid redeclaration of #1a
template<class Y> struct Inner<U, Y> { }; // #2

};

Outer<int, int> outer; // error at #2
Outer<int, int>::Inner<int, Y> is redeclared at #1b. (It is not defined but noted as being associated with a
definition in Outer<T, U>.) #2 is also a redeclaration of #1a. It is noted as associated with a definition, so it is an
invalid redeclaration of the same partial specialization.

template<typename T> struct Friendly {
template<typename U> friend int f(U) { return sizeof(T); }

};
Friendly<char> fc;
Friendly<float> ff; // error: produces second definition of f(U)

— end example ]
4 Unless a member of a templated class is a declared specialization, the specialization of the member is implicitly

instantiated when the specialization is referenced in a context that requires the member definition to exist
or if the existence of the definition of the member affects the semantics of the program; in particular, the
initialization (and any associated side effects) of a static data member does not occur unless the static data
member is itself used in a way that requires the definition of the static data member to exist.

5 Unless a function template specialization is a declared specialization, the function template specialization is
implicitly instantiated when the specialization is referenced in a context that requires a function definition to
exist or if the existence of the definition affects the semantics of the program. A function whose declaration
was instantiated from a friend function definition is implicitly instantiated when it is referenced in a context
that requires a function definition to exist or if the existence of the definition affects the semantics of the
program. Unless a call is to a function template explicit specialization or to a member function of an
explicitly specialized class template, a default argument for a function template or a member function of a
class template is implicitly instantiated when the function is called in a context that requires the value of the
default argument.
[Note 4 : An inline function that is the subject of an explicit instantiation declaration is not a declared specialization;
the intent is that it still be implicitly instantiated when odr-used (6.3) so that the body can be considered for inlining,
but that no out-of-line copy of it be generated in the translation unit. — end note ]

6 [Example 5 :
template<class T> struct Z {

void f();
void g();

};

void h() {
Z<int> a; // instantiation of class Z<int> required
Z<char>* p; // instantiation of class Z<char> not required
Z<double>* q; // instantiation of class Z<double> not required

a.f(); // instantiation of Z<int>::f() required
p->g(); // instantiation of class Z<char> required, and
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// instantiation of Z<char>::g() required
}

Nothing in this example requires class Z<double>, Z<int>::g(), or Z<char>::f() to be implicitly instantiated.
— end example ]

7 Unless a variable template specialization is a declared specialization, the variable template specialization is
implicitly instantiated when it is referenced in a context that requires a variable definition to exist or if the
existence of the definition affects the semantics of the program. A default template argument for a variable
template is implicitly instantiated when the variable template is referenced in a context that requires the
value of the default argument.

8 The existence of a definition of a variable or function is considered to affect the semantics of the program if
the variable or function is needed for constant evaluation by an expression (7.7), even if constant evaluation
of the expression is not required or if constant expression evaluation does not use the definition.
[Example 6 :

template<typename T> constexpr int f() { return T::value; }
template<bool B, typename T> void g(decltype(B ? f<T>() : 0));
template<bool B, typename T> void g(...);
template<bool B, typename T> void h(decltype(int{B ? f<T>() : 0}));
template<bool B, typename T> void h(...);
void x() {

g<false, int>(0); // OK, B ? f<T>() : 0 is not potentially constant evaluated
h<false, int>(0); // error, instantiates f<int> even though B evaluates to false and

// list-initialization of int from int cannot be narrowing
}

— end example ]
9 If the function selected by overload resolution (12.2) can be determined without instantiating a class template

definition, it is unspecified whether that instantiation actually takes place.
[Example 7 :

template <class T> struct S {
operator int();

};

void f(int);
void f(S<int>&);
void f(S<float>);

void g(S<int>& sr) {
f(sr); // instantiation of S<int> allowed but not required

// instantiation of S<float> allowed but not required
};

— end example ]
10 If a function template or a member function template specialization is used in a way that involves overload

resolution, a declaration of the specialization is implicitly instantiated (13.10.4).
11 An implementation shall not implicitly instantiate a function template, a variable template, a member

template, a non-virtual member function, a member class or static data member of a templated class, or a
substatement of a constexpr if statement (8.5.2), unless such instantiation is required.
[Note 5 : The instantiation of a generic lambda does not require instantiation of substatements of a constexpr if
statement within its compound-statement unless the call operator template is instantiated. — end note ]

It is unspecified whether or not an implementation implicitly instantiates a virtual member function of a
class template if the virtual member function would not otherwise be instantiated. The use of a template
specialization in a default argument or default member initializer shall not cause the template to be implicitly
instantiated except where needed to determine the correctness of the default argument or default member
initializer. The use of a default argument in a function call causes specializations in the default argument to
be implicitly instantiated. Similarly, the use of a default member initializer in a constructor definition or an
aggregate initialization causes specializations in the default member initializer to be instantiated.

12 If a templated function f is called in a way that requires a default argument to be used, the dependent names
are looked up, the semantics constraints are checked, and the instantiation of any template used in the default
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argument is done as if the default argument had been an initializer used in a function template specialization
with the same scope, the same template parameters and the same access as that of the function template f
used at that point, except that the scope in which a closure type is declared (7.5.5.2) — and therefore its
associated namespaces — remain as determined from the context of the definition for the default argument.
This analysis is called default argument instantiation. The instantiated default argument is then used as the
argument of f.

13 Each default argument is instantiated independently.
[Example 8 :

template<class T> void f(T x, T y = ydef(T()), T z = zdef(T()));

class A { };

A zdef(A);

void g(A a, A b, A c) {
f(a, b, c); // no default argument instantiation
f(a, b); // default argument z = zdef(T()) instantiated
f(a); // error: ydef is not declared

}

— end example ]
14 The noexcept-specifier of a function template specialization is not instantiated along with the function

declaration; it is instantiated when needed (14.5). If such an noexcept-specifier is needed but has not yet been
instantiated, the dependent names are looked up, the semantics constraints are checked, and the instantiation
of any template used in the noexcept-specifier is done as if it were being done as part of instantiating the
declaration of the specialization at that point.

15 [Note 6 : 13.8.4.1 defines the point of instantiation of a template specialization. — end note ]
16 There is an implementation-defined quantity that specifies the limit on the total depth of recursive instan-

tiations (Annex B), which could involve more than one template. The result of an infinite recursion in
instantiation is undefined.
[Example 9 :

template<class T> class X {
X<T>* p; // OK
X<T*> a; // implicit generation of X<T> requires

// the implicit instantiation of X<T*> which requires
// the implicit instantiation of X<T**> which . . .

};

— end example ]
17 The type-constraints and requires-clause of a template specialization or member function are not instantiated

along with the specialization or function itself, even for a member function of a local class; substitution
into the atomic constraints formed from them is instead performed as specified in 13.5.3 and 13.5.2.3 when
determining whether the constraints are satisfied or as specified in 13.5.3 when comparing declarations.
[Note 7 : The satisfaction of constraints is determined during template argument deduction (13.10.3) and overload
resolution (12.2). — end note ]
[Example 10 :

template<typename T> concept C = sizeof(T) > 2;
template<typename T> concept D = C<T> && sizeof(T) > 4;

template<typename T> struct S {
S() requires C<T> { } // #1
S() requires D<T> { } // #2

};

S<char> s1; // error: no matching constructor
S<char[8]> s2; // OK, calls #2
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When S<char> is instantiated, both constructors are part of the specialization. Their constraints are not satisfied, and
they suppress the implicit declaration of a default constructor for S<char> (11.4.5.2), so there is no viable constructor
for s1. — end example ]
[Example 11 :

template<typename T> struct S1 {
template<typename U>

requires false
struct Inner1; // ill-formed, no diagnostic required

};

template<typename T> struct S2 {
template<typename U>

requires (sizeof(T[-(int)sizeof(T)]) > 1)
struct Inner2; // ill-formed, no diagnostic required

};

The class S1<T>::Inner1 is ill-formed, no diagnostic required, because it has no valid specializations. S2 is ill-formed,
no diagnostic required, since no substitution into the constraints of its Inner2 template would result in a valid
expression. — end example ]

13.9.3 Explicit instantiation [temp.explicit]
1 A class, function, variable, or member template specialization can be explicitly instantiated from its template.

A member function, member class or static data member of a class template can be explicitly instantiated
from the member definition associated with its class template.

2 The syntax for explicit instantiation is:
explicit-instantiation :

externopt template declaration

There are two forms of explicit instantiation: an explicit instantiation definition and an explicit instantiation
declaration. An explicit instantiation declaration begins with the extern keyword.

3 An explicit instantiation shall not use a storage-class-specifier (9.2.2) other than thread_local. An explicit
instantiation of a function template, member function of a class template, or variable template shall not
use the inline, constexpr, or consteval specifiers. No attribute-specifier-seq (9.12.1) shall appertain to an
explicit instantiation.

4 If the explicit instantiation is for a class or member class, the elaborated-type-specifier in the declaration shall
include a simple-template-id ; otherwise, the declaration shall be a simple-declaration whose init-declarator-list
comprises a single init-declarator that does not have an initializer . If the explicit instantiation is for a variable
template specialization, the unqualified-id in the declarator shall be a simple-template-id .
[Example 1 :

template<class T> class Array { void mf(); };
template class Array<char>;
template void Array<int>::mf();

template<class T> void sort(Array<T>& v) { /* ... */ }
template void sort(Array<char>&); // argument is deduced here

namespace N {
template<class T> void f(T&) { }

}
template void N::f<int>(int&);

— end example ]
5 An explicit instantiation does not introduce a name (6.4.1). A declaration of a function template, a variable

template, a member function or static data member of a class template, or a member function template of a
class or class template shall be reachable from any explicit instantiation of that entity. A definition of a class
template, a member class of a class template, or a member class template of a class or class template shall be
reachable from any explicit instantiation of that entity unless an explicit specialization of the entity with the
same template arguments is reachable therefrom. If the declaration of the explicit instantiation names an
implicitly-declared special member function (11.4.4), the program is ill-formed.
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6 The declaration in an explicit-instantiation and the declaration produced by the corresponding substitution
into the templated function, variable, or class are two declarations of the same entity.
[Note 1 : These declarations are required to have matching types as specified in 6.6, except as specified in 14.5.
[Example 2 :

template<typename T> T var = {};
template float var<float>; // OK, instantiated variable has type float
template int var<int[16]>[]; // OK, absence of major array bound is permitted
template int *var<int>; // error: instantiated variable has type int

template<typename T> auto av = T();
template int av<int>; // OK, variable with type int can be redeclared with type auto

template<typename T> auto f() {}
template void f<int>(); // error: function with deduced return type

// redeclared with non-deduced return type (9.2.9.6)
— end example ]
— end note ]

Despite its syntactic form, the declaration in an explicit-instantiation for a variable is not itself a definition and
does not conflict with the definition instantiated by an explicit instantiation definition for that variable.

7 For a given set of template arguments, if an explicit instantiation of a template appears after a declaration
of an explicit specialization for that template, the explicit instantiation has no effect. Otherwise, for an
explicit instantiation definition, the definition of a function template, a variable template, a member function
template, or a member function or static data member of a class template shall be present in every translation
unit in which it is explicitly instantiated.

8 A trailing template-argument can be left unspecified in an explicit instantiation of a function template
specialization or of a member function template specialization provided it can be deduced (13.10.3.7). If all
template arguments can be deduced, the empty template argument list <> may be omitted.
[Example 3 :

template<class T> class Array { /* ... */ };
template<class T> void sort(Array<T>& v) { /* ... */ }

// instantiate sort(Array<int>&) – template-argument deduced
template void sort<>(Array<int>&);

— end example ]
9 [Note 2 : An explicit instantiation of a constrained template is required to satisfy that template’s associated

constraints (13.5.3). The satisfaction of constraints is determined when forming the template name of an explicit
instantiation in which all template arguments are specified (13.3), or, for explicit instantiations of function templates,
during template argument deduction (13.10.3.7) when one or more trailing template arguments are left unspecified.

— end note ]
10 An explicit instantiation that names a class template specialization is also an explicit instantiation of the

same kind (declaration or definition) of each of its direct non-template members that has not been previously
explicitly specialized in the translation unit containing the explicit instantiation, provided that the associated
constraints, if any, of that member are satisfied by the template arguments of the explicit instantiation (13.5.3,
13.5.2), except as described below.
[Note 3 : In addition, it will typically be an explicit instantiation of certain implementation-dependent data about the
class. — end note ]

11 An explicit instantiation definition that names a class template specialization explicitly instantiates the class
template specialization and is an explicit instantiation definition of only those members that have been
defined at the point of instantiation.

12 An explicit instantiation of a prospective destructor (11.4.7) shall correspond to the selected destructor of
the class.

13 If an entity is the subject of both an explicit instantiation declaration and an explicit instantiation definition
in the same translation unit, the definition shall follow the declaration. An entity that is the subject of
an explicit instantiation declaration and that is also used in a way that would otherwise cause an implicit
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instantiation (13.9.2) in the translation unit shall be the subject of an explicit instantiation definition
somewhere in the program; otherwise the program is ill-formed, no diagnostic required.
[Note 4 : This rule does apply to inline functions even though an explicit instantiation declaration of such an entity has
no other normative effect. This is needed to ensure that if the address of an inline function is taken in a translation
unit in which the implementation chose to suppress the out-of-line body, another translation unit will supply the
body. — end note ]

An explicit instantiation declaration shall not name a specialization of a template with internal linkage.
14 An explicit instantiation does not constitute a use of a default argument, so default argument instantiation is

not done.
[Example 4 :

char* p = 0;
template<class T> T g(T x = &p) { return x; }
template int g<int>(int); // OK even though &p isn’t an int.

— end example ]

13.9.4 Explicit specialization [temp.expl.spec]
1 An explicit specialization of any of the following:

—(1.1) function template
—(1.2) class template
—(1.3) variable template
—(1.4) member function of a class template
—(1.5) static data member of a class template
—(1.6) member class of a class template
—(1.7) member enumeration of a class template
—(1.8) member class template of a class or class template
—(1.9) member function template of a class or class template

can be declared by a declaration introduced by template<>; that is:
explicit-specialization :

template < > declaration
[Example 1 :

template<class T> class stream;

template<> class stream<char> { /* ... */ };

template<class T> class Array { /* ... */ };
template<class T> void sort(Array<T>& v) { /* ... */ }

template<> void sort<char*>(Array<char*>&);

Given these declarations, stream<char> will be used as the definition of streams of chars; other streams will be
handled by class template specializations instantiated from the class template. Similarly, sort<char*> will be used as
the sort function for arguments of type Array<char*>; other Array types will be sorted by functions generated from
the template. — end example ]

2 The declaration in an explicit-specialization shall not be an export-declaration. An explicit specialization shall
not use a storage-class-specifier (9.2.2) other than thread_local.

3 An explicit specialization may be declared in any scope in which the corresponding primary template may be
defined (9.3.4, 11.4, 13.7.3).

4 An explicit specialization does not introduce a name (6.4.1). A declaration of a function template, class
template, or variable template being explicitly specialized shall be reachable from the declaration of the
explicit specialization.
[Note 1 : A declaration, but not a definition of the template is required. — end note ]
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The definition of a class or class template shall be reachable from the declaration of an explicit specialization
for a member template of the class or class template.
[Example 2 :

template<> class X<int> { /* ... */ }; // error: X not a template

template<class T> class X;

template<> class X<char*> { /* ... */ }; // OK, X is a template
— end example ]

5 A member function, a member function template, a member class, a member enumeration, a member class
template, a static data member, or a static data member template of a class template may be explicitly
specialized for a class specialization that is implicitly instantiated; in this case, the definition of the class
template shall be reachable from the explicit specialization for the member of the class template. If such
an explicit specialization for the member of a class template names an implicitly-declared special member
function (11.4.4), the program is ill-formed.

6 A member of an explicitly specialized class is not implicitly instantiated from the member declaration of
the class template; instead, the member of the class template specialization shall itself be explicitly defined
if its definition is required. The definition of the class template explicit specialization shall be reachable
from the definition of any member of it. The definition of an explicitly specialized class is unrelated to the
definition of a generated specialization. That is, its members need not have the same names, types, etc. as
the members of a generated specialization. Members of an explicitly specialized class template are defined in
the same manner as members of normal classes, and not using the template<> syntax. The same is true
when defining a member of an explicitly specialized member class. However, template<> is used in defining
a member of an explicitly specialized member class template that is specialized as a class template.
[Example 3 :

template<class T> struct A {
struct B { };
template<class U> struct C { };

};

template<> struct A<int> {
void f(int);

};

void h() {
A<int> a;
a.f(16); // A<int>::f must be defined somewhere

}

// template<> not used for a member of an explicitly specialized class template
void A<int>::f(int) { /* ... */ }

template<> struct A<char>::B {
void f();

};
// template<> also not used when defining a member of an explicitly specialized member class
void A<char>::B::f() { /* ... */ }

template<> template<class U> struct A<char>::C {
void f();

};
// template<> is used when defining a member of an explicitly specialized member class template
// specialized as a class template
template<>
template<class U> void A<char>::C<U>::f() { /* ... */ }

template<> struct A<short>::B {
void f();

};
template<> void A<short>::B::f() { /* ... */ } // error: template<> not permitted
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template<> template<class U> struct A<short>::C {
void f();

};
template<class U> void A<short>::C<U>::f() { /* ... */ } // error: template<> required

— end example ]
7 If a template, a member template or a member of a class template is explicitly specialized, a declaration

of that specialization shall be reachable from every use of that specialization that would cause an implicit
instantiation to take place, in every translation unit in which such a use occurs; no diagnostic is required. If
the program does not provide a definition for an explicit specialization and either the specialization is used in
a way that would cause an implicit instantiation to take place or the member is a virtual member function,
the program is ill-formed, no diagnostic required. An implicit instantiation is never generated for an explicit
specialization that is declared but not defined.
[Example 4 :

class String { };
template<class T> class Array { /* ... */ };
template<class T> void sort(Array<T>& v) { /* ... */ }

void f(Array<String>& v) {
sort(v); // use primary template sort(Array<T>&), T is String

}

template<> void sort<String>(Array<String>& v); // error: specialization after use of primary template
template<> void sort<>(Array<char*>& v); // OK, sort<char*> not yet used
template<class T> struct A {

enum E : T;
enum class S : T;

};
template<> enum A<int>::E : int { eint }; // OK
template<> enum class A<int>::S : int { sint }; // OK
template<class T> enum A<T>::E : T { eT };
template<class T> enum class A<T>::S : T { sT };
template<> enum A<char>::E : char { echar }; // error: A<char>::E was instantiated

// when A<char> was instantiated
template<> enum class A<char>::S : char { schar }; // OK

— end example ]
8 The placement of explicit specialization declarations for function templates, class templates, variable templates,

member functions of class templates, static data members of class templates, member classes of class templates,
member enumerations of class templates, member class templates of class templates, member function
templates of class templates, static data member templates of class templates, member functions of member
templates of class templates, member functions of member templates of non-template classes, static data
member templates of non-template classes, member function templates of member classes of class templates,
etc., and the placement of partial specialization declarations of class templates, variable templates, member
class templates of non-template classes, static data member templates of non-template classes, member class
templates of class templates, etc., can affect whether a program is well-formed according to the relative
positioning of the explicit specialization declarations and their points of instantiation in the translation unit
as specified above and below. When writing a specialization, be careful about its location; or to make it
compile will be such a trial as to kindle its self-immolation.

9 A simple-template-id that names a class template explicit specialization that has been declared but not defined
can be used exactly like the names of other incompletely-defined classes (6.8).
[Example 5 :

template<class T> class X; // X is a class template
template<> class X<int>;

X<int>* p; // OK, pointer to declared class X<int>
X<int> x; // error: object of incomplete class X<int>

— end example ]
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10 A trailing template-argument can be left unspecified in the template-id naming an explicit function template
specialization provided it can be deduced (13.10.3.7).
[Example 6 :

template<class T> class Array { /* ... */ };
template<class T> void sort(Array<T>& v);

// explicit specialization for sort(Array<int>&)
// with deduced template-argument of type int
template<> void sort(Array<int>&);

— end example ]
11 [Note 2 : An explicit specialization of a constrained template is required to satisfy that template’s associated

constraints (13.5.3). The satisfaction of constraints is determined when forming the template name of an explicit
specialization in which all template arguments are specified (13.3), or, for explicit specializations of function templates,
during template argument deduction (13.10.3.7) when one or more trailing template arguments are left unspecified.

— end note ]
12 A function with the same name as a template and a type that exactly matches that of a template specialization

is not an explicit specialization (13.7.7).
13 Whether an explicit specialization of a function or variable template is inline, constexpr, constinit, or consteval

is determined by the explicit specialization and is independent of those properties of the template. Similarly,
attributes appearing in the declaration of a template have no effect on an explicit specialization of that
template.
[Example 7 :

template<class T> void f(T) { /* ... */ }
template<class T> inline T g(T) { /* ... */ }

template<> inline void f<>(int) { /* ... */ } // OK, inline
template<> int g<>(int) { /* ... */ } // OK, not inline

template<typename> [[noreturn]] void h([[maybe_unused]] int i);
template<> void h<int>(int i) {

// Implementations are expected not to warn that the function returns
// but can warn about the unused parameter.

}

— end example ]
14 An explicit specialization of a static data member of a template or an explicit specialization of a static data

member template is a definition if the declaration includes an initializer; otherwise, it is a declaration.
[Note 3 : The definition of a static data member of a template for which default-initialization is desired can use
functional cast notation (7.6.1.4):

template<> X Q<int>::x; // declaration
template<> X Q<int>::x (); // error: declares a function
template<> X Q<int>::x = X(); // definition

— end note ]
15 A member or a member template of a class template may be explicitly specialized for a given implicit

instantiation of the class template, even if the member or member template is defined in the class template
definition. An explicit specialization of a member or member template is specified using the syntax for
explicit specialization.
[Example 8 :

template<class T> struct A {
void f(T);
template<class X1> void g1(T, X1);
template<class X2> void g2(T, X2);
void h(T) { }

};

// specialization
template<> void A<int>::f(int);
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// out of class member template definition
template<class T> template<class X1> void A<T>::g1(T, X1) { }

// member template specialization
template<> template<class X1> void A<int>::g1(int, X1);

// member template specialization
template<> template<>

void A<int>::g1(int, char); // X1 deduced as char
template<> template<>

void A<int>::g2<char>(int, char); // X2 specified as char

// member specialization even if defined in class definition
template<> void A<int>::h(int) { }

— end example ]
16 A member or a member template may be nested within many enclosing class templates. In an explicit

specialization for such a member, the member declaration shall be preceded by a template<> for each
enclosing class template that is explicitly specialized.
[Example 9 :

template<class T1> class A {
template<class T2> class B {

void mf();
};

};
template<> template<> class A<int>::B<double>;
template<> template<> void A<char>::B<char>::mf();

— end example ]
17 In an explicit specialization declaration for a member of a class template or a member template that

appears in namespace scope, the member template and some of its enclosing class templates may remain
unspecialized, except that the declaration shall not explicitly specialize a class member template if its
enclosing class templates are not explicitly specialized as well. In such an explicit specialization declaration,
the keyword template followed by a template-parameter-list shall be provided instead of the template<>
preceding the explicit specialization declaration of the member. The types of the template-parameters in the
template-parameter-list shall be the same as those specified in the primary template definition.
[Example 10 :

template <class T1> class A {
template<class T2> class B {

template<class T3> void mf1(T3);
void mf2();

};
};
template <> template <class X>

class A<int>::B {
template <class T> void mf1(T);

};
template <> template <> template<class T>

void A<int>::B<double>::mf1(T t) { }
template <class Y> template <>

void A<Y>::B<double>::mf2() { } // error: B<double> is specialized but
// its enclosing class template A is not

— end example ]
18 A specialization of a member function template, member class template, or static data member template of a

non-specialized class template is itself a template.
19 An explicit specialization declaration shall not be a friend declaration.
20 Default function arguments shall not be specified in a declaration or a definition for one of the following

explicit specializations:
—(20.1) the explicit specialization of a function template;
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—(20.2) the explicit specialization of a member function template;
—(20.3) the explicit specialization of a member function of a class template where the class template specialization

to which the member function specialization belongs is implicitly instantiated.
[Note 4 : Default function arguments can be specified in the declaration or definition of a member function of a
class template specialization that is explicitly specialized. — end note ]

13.10 Function template specializations [temp.fct.spec]
13.10.1 General [temp.fct.spec.general]

1 A function instantiated from a function template is called a function template specialization; so is an explicit
specialization of a function template. Template arguments can be explicitly specified when naming the
function template specialization, deduced from the context (e.g., deduced from the function arguments in a
call to the function template specialization, see 13.10.3), or obtained from default template arguments.

2 Each function template specialization instantiated from a template has its own copy of any static variable.
[Example 1 :

template<class T> void f(T* p) {
static T s;

};

void g(int a, char* b) {
f(&a); // calls f<int>(int*)
f(&b); // calls f<char*>(char**)

}

Here f<int>(int*) has a static variable s of type int and f<char*>(char**) has a static variable s of type char*.
— end example ]

13.10.2 Explicit template argument specification [temp.arg.explicit]
1 Template arguments can be specified when referring to a function template specialization that is not a

specialization of a constructor template by qualifying the function template name with the list of template-
arguments in the same way as template-arguments are specified in uses of a class template specialization.
[Example 1 :

template<class T> void sort(Array<T>& v);
void f(Array<dcomplex>& cv, Array<int>& ci) {

sort<dcomplex>(cv); // sort(Array<dcomplex>&)
sort<int>(ci); // sort(Array<int>&)

}

and
template<class U, class V> U convert(V v);

void g(double d) {
int i = convert<int,double>(d); // int convert(double)
char c = convert<char,double>(d); // char convert(double)

}

— end example ]
2 Template arguments shall not be specified when referring to a specialization of a constructor template (11.4.5,

6.5.5.2).
3 A template argument list may be specified when referring to a specialization of a function template

—(3.1) when a function is called,
—(3.2) when the address of a function is taken, when a function initializes a reference to function, or when a

pointer to member function is formed,
—(3.3) in an explicit specialization,
—(3.4) in an explicit instantiation, or
—(3.5) in a friend declaration.
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4 Trailing template arguments that can be deduced (13.10.3) or obtained from default template-arguments may
be omitted from the list of explicit template-arguments.
[Note 1 : A trailing template parameter pack (13.7.4) not otherwise deduced will be deduced as an empty sequence of
template arguments. — end note ]

If all of the template arguments can be deduced or obtained from default template-arguments, they may all
be omitted; in this case, the empty template argument list <> itself may also be omitted.
[Example 2 :

template<class X, class Y> X f(Y);
template<class X, class Y, class ... Z> X g(Y);
void h() {

int i = f<int>(5.6); // Y deduced as double
int j = f(5.6); // error: X cannot be deduced
f<void>(f<int, bool>); // Y for outer f deduced as int (*)(bool)
f<void>(f<int>); // error: f<int> does not denote a single function template specialization
int k = g<int>(5.6); // Y deduced as double; Z deduced as an empty sequence
f<void>(g<int, bool>); // Y for outer f deduced as int (*)(bool),

// Z deduced as an empty sequence
}

— end example ]
5 [Note 2 : An empty template argument list can be used to indicate that a given use refers to a specialization of a

function template even when a non-template function (9.3.4.6) is visible that would otherwise be used. For example:
template <class T> int f(T); // #1
int f(int); // #2
int k = f(1); // uses #2
int l = f<>(1); // uses #1

— end note ]
6 Template arguments that are present shall be specified in the declaration order of their corresponding

template-parameters. The template argument list shall not specify more template-arguments than there are
corresponding template-parameters unless one of the template-parameters is a template parameter pack.
[Example 3 :

template<class X, class Y, class Z> X f(Y,Z);
template<class ... Args> void f2();
void g() {

f<int,const char*,double>("aa",3.0);
f<int,const char*>("aa",3.0); // Z deduced as double
f<int>("aa",3.0); // Y deduced as const char*; Z deduced as double
f("aa",3.0); // error: X cannot be deduced
f2<char, short, int, long>(); // OK

}

— end example ]
7 Implicit conversions (7.3) will be performed on a function argument to convert it to the type of the

corresponding function parameter if the parameter type contains no template-parameters that participate in
template argument deduction.
[Note 3 : Template parameters do not participate in template argument deduction if they are explicitly specified. For
example,

template<class T> void f(T);

class Complex {
Complex(double);

};

void g() {
f<Complex>(1); // OK, means f<Complex>(Complex(1))

}

— end note ]

§ 13.10.2 432



© ISO/IEC N4950

8 [Note 4 : Because the explicit template argument list follows the function template name, and because constructor
templates (11.4.5) are named without using a function name (6.5.5.2), there is no way to provide an explicit template
argument list for these function templates. — end note ]

9 Template argument deduction can extend the sequence of template arguments corresponding to a template
parameter pack, even when the sequence contains explicitly specified template arguments.
[Example 4 :

template<class ... Types> void f(Types ... values);

void g() {
f<int*, float*>(0, 0, 0); // Types deduced as the sequence int*, float*, int

}

— end example ]

13.10.3 Template argument deduction [temp.deduct]
13.10.3.1 General [temp.deduct.general]

1 When a function template specialization is referenced, all of the template arguments shall have values.
The values can be explicitly specified or, in some cases, be deduced from the use or obtained from default
template-arguments.
[Example 1 :

void f(Array<dcomplex>& cv, Array<int>& ci) {
sort(cv); // calls sort(Array<dcomplex>&)
sort(ci); // calls sort(Array<int>&)

}

and
void g(double d) {

int i = convert<int>(d); // calls convert<int,double>(double)
int c = convert<char>(d); // calls convert<char,double>(double)

}

— end example ]
2 When an explicit template argument list is specified, if the given template-id is not valid (13.3), type deduction

fails. Otherwise, the specified template argument values are substituted for the corresponding template
parameters as specified below.

3 After this substitution is performed, the function parameter type adjustments described in 9.3.4.6 are
performed.
[Example 2 : A parameter type of “void (const int, int[5])” becomes “void(*)(int,int*)”. — end example ]
[Note 1 : A top-level qualifier in a function parameter declaration does not affect the function type but still affects the
type of the function parameter variable within the function. — end note ]
[Example 3 :

template <class T> void f(T t);
template <class X> void g(const X x);
template <class Z> void h(Z, Z*);

int main() {
// #1: function type is f(int), t is non const
f<int>(1);

// #2: function type is f(int), t is const
f<const int>(1);

// #3: function type is g(int), x is const
g<int>(1);

// #4: function type is g(int), x is const
g<const int>(1);
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// #5: function type is h(int, const int*)
h<const int>(1,0);

}

— end example ]
4 [Note 2 : f<int>(1) and f<const int>(1) call distinct functions even though both of the functions called have the

same function type. — end note ]
5 The resulting substituted and adjusted function type is used as the type of the function template for template

argument deduction. If a template argument has not been deduced and its corresponding template parameter
has a default argument, the template argument is determined by substituting the template arguments
determined for preceding template parameters into the default argument. If the substitution results in an
invalid type, as described above, type deduction fails.
[Example 4 :

template <class T, class U = double>
void f(T t = 0, U u = 0);

void g() {
f(1, 'c'); // f<int,char>(1,’c’)
f(1); // f<int,double>(1,0)
f(); // error: T cannot be deduced
f<int>(); // f<int,double>(0,0)
f<int,char>(); // f<int,char>(0,0)

}

— end example ]

When all template arguments have been deduced or obtained from default template arguments, all uses of
template parameters in the template parameter list of the template are replaced with the corresponding
deduced or default argument values. If the substitution results in an invalid type, as described above, type
deduction fails. If the function template has associated constraints (13.5.3), those constraints are checked for
satisfaction (13.5.2). If the constraints are not satisfied, type deduction fails. In the context of a function
call, if type deduction has not yet failed, then for those function parameters for which the function call
has arguments, each function parameter with a type that was non-dependent before substitution of any
explicitly-specified template arguments is checked against its corresponding argument; if the corresponding
argument cannot be implicitly converted to the parameter type, type deduction fails.
[Note 3 : Overload resolution will check the other parameters, including parameters with dependent types in which no
template parameters participate in template argument deduction and parameters that became non-dependent due to
substitution of explicitly-specified template arguments. — end note ]

If type deduction has not yet failed, then all uses of template parameters in the function type are replaced
with the corresponding deduced or default argument values. If the substitution results in an invalid type, as
described above, type deduction fails.
[Example 5 :

template <class T> struct Z {
typedef typename T::x xx;

};
template <class T> concept C = requires { typename T::A; };
template <C T> typename Z<T>::xx f(void *, T); // #1
template <class T> void f(int, T); // #2
struct A {} a;
struct ZZ {

template <class T, class = typename Z<T>::xx> operator T *();
operator int();

};
int main() {

ZZ zz;
f(1, a); // OK, deduction fails for #1 because there is no conversion from int to void*
f(zz, 42); // OK, deduction fails for #1 because C<int> is not satisfied

}

— end example ]

§ 13.10.3.1 434



© ISO/IEC N4950

6 At certain points in the template argument deduction process it is necessary to take a function type
that makes use of template parameters and replace those template parameters with the corresponding
template arguments. This is done at the beginning of template argument deduction when any explicitly
specified template arguments are substituted into the function type, and again at the end of template
argument deduction when any template arguments that were deduced or obtained from default arguments
are substituted.

7 The deduction substitution loci are
—(7.1) the function type outside of the noexcept-specifier ,
—(7.2) the explicit-specifier , and
—(7.3) the template parameter declarations.

The substitution occurs in all types and expressions that are used in the deduction substitution loci. The
expressions include not only constant expressions such as those that appear in array bounds or as nontype
template arguments but also general expressions (i.e., non-constant expressions) inside sizeof, decltype,
and other contexts that allow non-constant expressions. The substitution proceeds in lexical order and stops
when a condition that causes deduction to fail is encountered. If substitution into different declarations of
the same function template would cause template instantiations to occur in a different order or not at all,
the program is ill-formed; no diagnostic required.
[Note 4 : The equivalent substitution in exception specifications is done only when the noexcept-specifier is instantiated,
at which point a program is ill-formed if the substitution results in an invalid type or expression. — end note ]
[Example 6 :

template <class T> struct A { using X = typename T::X; };
template <class T> typename T::X f(typename A<T>::X);
template <class T> void f(...) { }
template <class T> auto g(typename A<T>::X) -> typename T::X;
template <class T> void g(...) { }
template <class T> typename T::X h(typename A<T>::X);
template <class T> auto h(typename A<T>::X) -> typename T::X; // redeclaration
template <class T> void h(...) { }

void x() {
f<int>(0); // OK, substituting return type causes deduction to fail
g<int>(0); // error, substituting parameter type instantiates A<int>
h<int>(0); // ill-formed, no diagnostic required

}

— end example ]
8 If a substitution results in an invalid type or expression, type deduction fails. An invalid type or expression is

one that would be ill-formed, with a diagnostic required, if written in the same context using the substituted
arguments.
[Note 5 : If no diagnostic is required, the program is still ill-formed. Access checking is done as part of the substitution
process. — end note ]

Invalid types and expressions can result in a deduction failure only in the immediate context of the deduction
substitution loci.
[Note 6 : The substitution into types and expressions can result in effects such as the instantiation of class template
specializations and/or function template specializations, the generation of implicitly-defined functions, etc. Such
effects are not in the “immediate context” and can result in the program being ill-formed. — end note ]

9 A lambda-expression appearing in a function type or a template parameter is not considered part of the
immediate context for the purposes of template argument deduction.
[Note 7 : The intent is to avoid requiring implementations to deal with substitution failure involving arbitrary
statements.
[Example 7 :

template <class T>
auto f(T) -> decltype([]() { T::invalid; } ());

void f(...);
f(0); // error: invalid expression not part of the immediate context
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template <class T, std::size_t = sizeof([]() { T::invalid; })>
void g(T);

void g(...);
g(0); // error: invalid expression not part of the immediate context

template <class T>
auto h(T) -> decltype([x = T::invalid]() { });

void h(...);
h(0); // error: invalid expression not part of the immediate context

template <class T>
auto i(T) -> decltype([]() -> typename T::invalid { });

void i(...);
i(0); // error: invalid expression not part of the immediate context

template <class T>
auto j(T t) -> decltype([](auto x) -> decltype(x.invalid) { } (t)); // #1

void j(...); // #2
j(0); // deduction fails on #1, calls #2

— end example ]
— end note ]

10 [Example 8 :
struct X { };
struct Y {

Y(X) {}
};

template <class T> auto f(T t1, T t2) -> decltype(t1 + t2); // #1
X f(Y, Y); // #2

X x1, x2;
X x3 = f(x1, x2); // deduction fails on #1 (cannot add X+X), calls #2

— end example ]
11 [Note 8 : Type deduction can fail for the following reasons:

—(11.1) Attempting to instantiate a pack expansion containing multiple packs of differing lengths.
—(11.2) Attempting to create an array with an element type that is void, a function type, or a reference type, or

attempting to create an array with a size that is zero or negative.
[Example 9 :

template <class T> int f(T[5]);
int I = f<int>(0);
int j = f<void>(0); // invalid array

— end example ]
—(11.3) Attempting to use a type that is not a class or enumeration type in a qualified name.

[Example 10 :
template <class T> int f(typename T::B*);
int i = f<int>(0);

— end example ]
—(11.4) Attempting to use a type in a nested-name-specifier of a qualified-id when that type does not contain the specified

member, or
—(11.4.1) the specified member is not a type where a type is required, or
—(11.4.2) the specified member is not a template where a template is required, or
—(11.4.3) the specified member is not a non-type where a non-type is required.

[Example 11 :
template <int I> struct X { };
template <template <class T> class> struct Z { };
template <class T> void f(typename T::Y*) {}
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template <class T> void g(X<T::N>*) {}
template <class T> void h(Z<T::TT>*) {}
struct A {};
struct B { int Y; };
struct C {

typedef int N;
};
struct D {

typedef int TT;
};

int main() {
// Deduction fails in each of these cases:
f<A>(0); // A does not contain a member Y
f<B>(0); // The Y member of B is not a type
g<C>(0); // The N member of C is not a non-type
h<D>(0); // The TT member of D is not a template

}

— end example ]
—(11.5) Attempting to create a pointer to reference type.
—(11.6) Attempting to create a reference to void.
—(11.7) Attempting to create “pointer to member of T” when T is not a class type.

[Example 12 :
template <class T> int f(int T::*);
int i = f<int>(0);

— end example ]
—(11.8) Attempting to give an invalid type to a non-type template parameter.

[Example 13 :
template <class T, T> struct S {};
template <class T> int f(S<T, T{}>*); // #1
class X {

int m;
};
int i0 = f<X>(0); // #1 uses a value of non-structural type X as a non-type template argument

— end example ]
—(11.9) Attempting to perform an invalid conversion in either a template argument expression, or an expression used in

the function declaration.
[Example 14 :

template <class T, T*> int f(int);
int i2 = f<int,1>(0); // can’t convert 1 to int*

— end example ]
—(11.10) Attempting to create a function type in which a parameter has a type of void, or in which the return type is a

function type or array type.
— end note ]

12 [Example 15 : In the following example, assuming a signed char cannot represent the value 1000, a narrowing
conversion (9.4.5) would be required to convert the template-argument of type int to signed char, therefore substitution
fails for the second template (13.4.3).

template <int> int f(int);
template <signed char> int f(int);
int i1 = f<1000>(0); // OK
int i2 = f<1>(0); // ambiguous; not narrowing

— end example ]

13.10.3.2 Deducing template arguments from a function call [temp.deduct.call]
1 Template argument deduction is done by comparing each function template parameter type (call it P)

that contains template-parameters that participate in template argument deduction with the type of the
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corresponding argument of the call (call it A) as described below. If removing references and cv-qualifiers from
P gives std::initializer_list<P′> or P′[N] for some P′ and N and the argument is a non-empty initializer
list (9.4.5), then deduction is performed instead for each element of the initializer list independently, taking
P′ as separate function template parameter types P′

i and the ith initializer element as the corresponding
argument. In the P′[N] case, if N is a non-type template parameter, N is deduced from the length of the
initializer list. Otherwise, an initializer list argument causes the parameter to be considered a non-deduced
context (13.10.3.6).
[Example 1 :

template<class T> void f(std::initializer_list<T>);
f({1,2,3}); // T deduced as int
f({1,"asdf"}); // error: T deduced as both int and const char*

template<class T> void g(T);
g({1,2,3}); // error: no argument deduced for T

template<class T, int N> void h(T const(&)[N]);
h({1,2,3}); // T deduced as int; N deduced as 3

template<class T> void j(T const(&)[3]);
j({42}); // T deduced as int; array bound not considered

struct Aggr { int i; int j; };
template<int N> void k(Aggr const(&)[N]);
k({1,2,3}); // error: deduction fails, no conversion from int to Aggr
k({{1},{2},{3}}); // OK, N deduced as 3

template<int M, int N> void m(int const(&)[M][N]);
m({{1,2},{3,4}}); // M and N both deduced as 2

template<class T, int N> void n(T const(&)[N], T);
n({{1},{2},{3}},Aggr()); // OK, T is Aggr, N is 3

template<typename T, int N> void o(T (* const (&)[N])(T)) { }
int f1(int);
int f4(int);
char f4(char);
o({ &f1, &f4 }); // OK, T deduced as int from first element, nothing

// deduced from second element, N deduced as 2
o({ &f1, static_cast<char(*)(char)>(&f4) }); // error: conflicting deductions for T

— end example ]

For a function parameter pack that occurs at the end of the parameter-declaration-list, deduction is performed
for each remaining argument of the call, taking the type P of the declarator-id of the function parameter pack
as the corresponding function template parameter type. Each deduction deduces template arguments for
subsequent positions in the template parameter packs expanded by the function parameter pack. When a
function parameter pack appears in a non-deduced context (13.10.3.6), the type of that pack is never deduced.
[Example 2 :

template<class ... Types> void f(Types& ...);
template<class T1, class ... Types> void g(T1, Types ...);
template<class T1, class ... Types> void g1(Types ..., T1);

void h(int x, float& y) {
const int z = x;
f(x, y, z); // Types deduced as int, float, const int
g(x, y, z); // T1 deduced as int; Types deduced as float, int
g1(x, y, z); // error: Types is not deduced
g1<int, int, int>(x, y, z); // OK, no deduction occurs

}

— end example ]
2 If P is not a reference type:
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—(2.1) If A is an array type, the pointer type produced by the array-to-pointer standard conversion (7.3.3) is
used in place of A for type deduction; otherwise,

—(2.2) If A is a function type, the pointer type produced by the function-to-pointer standard conversion (7.3.4)
is used in place of A for type deduction; otherwise,

—(2.3) If A is a cv-qualified type, the top-level cv-qualifiers of A’s type are ignored for type deduction.
3 If P is a cv-qualified type, the top-level cv-qualifiers of P’s type are ignored for type deduction. If P is a

reference type, the type referred to by P is used for type deduction.
[Example 3 :

template<class T> int f(const T&);
int n1 = f(5); // calls f<int>(const int&)
const int i = 0;
int n2 = f(i); // calls f<int>(const int&)
template <class T> int g(volatile T&);
int n3 = g(i); // calls g<const int>(const volatile int&)

— end example ]

A forwarding reference is an rvalue reference to a cv-unqualified template parameter that does not represent
a template parameter of a class template (during class template argument deduction (12.2.2.9)). If P is a
forwarding reference and the argument is an lvalue, the type “lvalue reference to A” is used in place of A for
type deduction.
[Example 4 :

template <class T> int f(T&& heisenreference);
template <class T> int g(const T&&);
int i;
int n1 = f(i); // calls f<int&>(int&)
int n2 = f(0); // calls f<int>(int&&)
int n3 = g(i); // error: would call g<int>(const int&&), which

// would bind an rvalue reference to an lvalue

template <class T> struct A {
template <class U>

A(T&&, U&&, int*); // #1: T&& is not a forwarding reference.
// U&& is a forwarding reference.

A(T&&, int*); // #2
};

template <class T> A(T&&, int*) -> A<T>; // #3: T&& is a forwarding reference.

int *ip;
A a{i, 0, ip}; // error: cannot deduce from #1
A a0{0, 0, ip}; // uses #1 to deduce A<int> and #1 to initialize
A a2{i, ip}; // uses #3 to deduce A<int&> and #2 to initialize

— end example ]
4 In general, the deduction process attempts to find template argument values that will make the deduced A

identical to A (after the type A is transformed as described above). However, there are three cases that allow
a difference:

—(4.1) If the original P is a reference type, the deduced A (i.e., the type referred to by the reference) can be
more cv-qualified than the transformed A.

—(4.2) The transformed A can be another pointer or pointer-to-member type that can be converted to the
deduced A via a function pointer conversion (7.3.14) and/or qualification conversion (7.3.6).

—(4.3) If P is a class and P has the form simple-template-id , then the transformed A can be a derived class D of
the deduced A. Likewise, if P is a pointer to a class of the form simple-template-id , the transformed A
can be a pointer to a derived class D pointed to by the deduced A. However, if there is a class C that is
a (direct or indirect) base class of D and derived (directly or indirectly) from a class B and that would
be a valid deduced A, the deduced A cannot be B or pointer to B, respectively.
[Example 5 :

template <typename... T> struct X;
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template <> struct X<> {};
template <typename T, typename... Ts>

struct X<T, Ts...> : X<Ts...> {};
struct D : X<int> {};
struct E : X<>, X<int> {};

template <typename... T>
int f(const X<T...>&);
int x = f(D()); // calls f<int>, not f<>

// B is X<>, C is X<int>
int z = f(E()); // calls f<int>, not f<>

— end example ]
5 These alternatives are considered only if type deduction would otherwise fail. If they yield more than one

possible deduced A, the type deduction fails.
[Note 1 : If a template-parameter is not used in any of the function parameters of a function template, or is used
only in a non-deduced context, its corresponding template-argument cannot be deduced from a function call and the
template-argument must be explicitly specified. — end note ]

6 When P is a function type, function pointer type, or pointer-to-member-function type:
—(6.1) If the argument is an overload set containing one or more function templates, the parameter is treated

as a non-deduced context.
—(6.2) If the argument is an overload set (not containing function templates), trial argument deduction is

attempted using each of the members of the set. If deduction succeeds for only one of the overload set
members, that member is used as the argument value for the deduction. If deduction succeeds for more
than one member of the overload set the parameter is treated as a non-deduced context.

7 [Example 6 :
// Only one function of an overload set matches the call so the function parameter is a deduced context.
template <class T> int f(T (*p)(T));
int g(int);
int g(char);
int i = f(g); // calls f(int (*)(int))

— end example ]
8 [Example 7 :

// Ambiguous deduction causes the second function parameter to be a non-deduced context.
template <class T> int f(T, T (*p)(T));
int g(int);
char g(char);
int i = f(1, g); // calls f(int, int (*)(int))

— end example ]
9 [Example 8 :

// The overload set contains a template, causing the second function parameter to be a non-deduced context.
template <class T> int f(T, T (*p)(T));
char g(char);
template <class T> T g(T);
int i = f(1, g); // calls f(int, int (*)(int))

— end example ]

13.10.3.3 Deducing template arguments taking the address of a function template
[temp.deduct.funcaddr]

1 Template arguments can be deduced from the type specified when taking the address of an overload set (12.3).
If there is a target, the function template’s function type and the target type are used as the types of P and
A, and the deduction is done as described in 13.10.3.6. Otherwise, deduction is performed with empty sets of
types P and A.

2 A placeholder type (9.2.9.6) in the return type of a function template is a non-deduced context. If template
argument deduction succeeds for such a function, the return type is determined from instantiation of the
function body.
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13.10.3.4 Deducing conversion function template arguments [temp.deduct.conv]
1 Template argument deduction is done by comparing the return type of the conversion function template (call

it P) with the type specified by the conversion-type-id of the conversion-function-id being looked up (call it A)
as described in 13.10.3.6. If the conversion-function-id is constructed during overload resolution (12.2.2), the
rules in the remainder of this subclause apply.

2 If P is a reference type, the type referred to by P is used in place of P for type deduction and for any further
references to or transformations of P in the remainder of this subclause.

3 If A is not a reference type:
—(3.1) If P is an array type, the pointer type produced by the array-to-pointer standard conversion (7.3.3) is

used in place of P for type deduction; otherwise,
—(3.2) If P is a function type, the pointer type produced by the function-to-pointer standard conversion (7.3.4)

is used in place of P for type deduction; otherwise,
—(3.3) If P is a cv-qualified type, the top-level cv-qualifiers of P’s type are ignored for type deduction.

4 If A is a cv-qualified type, the top-level cv-qualifiers of A’s type are ignored for type deduction. If A is a
reference type, the type referred to by A is used for type deduction.

5 In general, the deduction process attempts to find template argument values that will make the deduced A
identical to A. However, certain attributes of A may be ignored:

—(5.1) If the original A is a reference type, any cv-qualifiers of A (i.e., the type referred to by the reference).
—(5.2) If the original A is a function pointer or pointer-to-member-function type with a potentially-throwing

exception specification (14.5), the exception specification.
—(5.3) Any cv-qualifiers in A that can be restored by a qualification conversion.

These attributes are ignored only if type deduction would otherwise fail. If ignoring them allows more than
one possible deduced A, the type deduction fails.

13.10.3.5 Deducing template arguments during partial ordering [temp.deduct.partial]
1 Template argument deduction is done by comparing certain types associated with the two function templates

being compared.
2 Two sets of types are used to determine the partial ordering. For each of the templates involved there is the

original function type and the transformed function type.
[Note 1 : The creation of the transformed type is described in 13.7.7.3. — end note ]

The deduction process uses the transformed type as the argument template and the original type of the
other template as the parameter template. This process is done twice for each type involved in the partial
ordering comparison: once using the transformed template-1 as the argument template and template-2 as the
parameter template and again using the transformed template-2 as the argument template and template-1 as
the parameter template.

3 The types used to determine the ordering depend on the context in which the partial ordering is done:
—(3.1) In the context of a function call, the types used are those function parameter types for which the

function call has arguments.127

—(3.2) In the context of a call to a conversion function, the return types of the conversion function templates
are used.

—(3.3) In other contexts (13.7.7.3) the function template’s function type is used.
4 Each type nominated above from the parameter template and the corresponding type from the argument

template are used as the types of P and A.
5 Before the partial ordering is done, certain transformations are performed on the types used for partial

ordering:
—(5.1) If P is a reference type, P is replaced by the type referred to.
—(5.2) If A is a reference type, A is replaced by the type referred to.

127) Default arguments are not considered to be arguments in this context; they only become arguments after a function has
been selected.
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6 If both P and A were reference types (before being replaced with the type referred to above), determine which
of the two types (if any) is more cv-qualified than the other; otherwise the types are considered to be equally
cv-qualified for partial ordering purposes. The result of this determination will be used below.

7 Remove any top-level cv-qualifiers:
—(7.1) If P is a cv-qualified type, P is replaced by the cv-unqualified version of P.
—(7.2) If A is a cv-qualified type, A is replaced by the cv-unqualified version of A.

8 Using the resulting types P and A, the deduction is then done as described in 13.10.3.6. If P is a function
parameter pack, the type A of each remaining parameter type of the argument template is compared with the
type P of the declarator-id of the function parameter pack. Each comparison deduces template arguments for
subsequent positions in the template parameter packs expanded by the function parameter pack. Similarly,
if A was transformed from a function parameter pack, it is compared with each remaining parameter type
of the parameter template. If deduction succeeds for a given type, the type from the argument template is
considered to be at least as specialized as the type from the parameter template.
[Example 1 :

template<class... Args> void f(Args... args); // #1
template<class T1, class... Args> void f(T1 a1, Args... args); // #2
template<class T1, class T2> void f(T1 a1, T2 a2); // #3

f(); // calls #1
f(1, 2, 3); // calls #2
f(1, 2); // calls #3; non-variadic template #3 is more specialized

// than the variadic templates #1 and #2
— end example ]

9 If, for a given type, the types are identical after the transformations above and both P and A were reference
types (before being replaced with the type referred to above):

—(9.1) if the type from the argument template was an lvalue reference and the type from the parameter
template was not, the parameter type is not considered to be at least as specialized as the argument
type; otherwise,

—(9.2) if the type from the argument template is more cv-qualified than the type from the parameter template
(as described above), the parameter type is not considered to be at least as specialized as the argument
type.

10 Function template F is at least as specialized as function template G if, for each pair of types used to determine
the ordering, the type from F is at least as specialized as the type from G. F is more specialized than G if F is
at least as specialized as G and G is not at least as specialized as F.

11 If, after considering the above, function template F is at least as specialized as function template G and
vice-versa, and if G has a trailing function parameter pack for which F does not have a corresponding
parameter, and if F does not have a trailing function parameter pack, then F is more specialized than G.

12 In most cases, deduction fails if not all template parameters have values, but for partial ordering purposes a
template parameter may remain without a value provided it is not used in the types being used for partial
ordering.
[Note 2 : A template parameter used in a non-deduced context is considered used. — end note ]
[Example 2 :

template <class T> T f(int); // #1
template <class T, class U> T f(U); // #2
void g() {

f<int>(1); // calls #1
}

— end example ]
13 [Note 3 : Partial ordering of function templates containing template parameter packs is independent of the number of

deduced arguments for those template parameter packs. — end note ]
[Example 3 :

template<class ...> struct Tuple { };
template<class ... Types> void g(Tuple<Types ...>); // #1
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template<class T1, class ... Types> void g(Tuple<T1, Types ...>); // #2
template<class T1, class ... Types> void g(Tuple<T1, Types& ...>); // #3

g(Tuple<>()); // calls #1
g(Tuple<int, float>()); // calls #2
g(Tuple<int, float&>()); // calls #3
g(Tuple<int>()); // calls #3

— end example ]

13.10.3.6 Deducing template arguments from a type [temp.deduct.type]
1 Template arguments can be deduced in several different contexts, but in each case a type that is specified

in terms of template parameters (call it P) is compared with an actual type (call it A), and an attempt is
made to find template argument values (a type for a type parameter, a value for a non-type parameter, or a
template for a template parameter) that will make P, after substitution of the deduced values (call it the
deduced A), compatible with A.

2 In some cases, the deduction is done using a single set of types P and A, in other cases, there will be a set
of corresponding types P and A. Type deduction is done independently for each P/A pair, and the deduced
template argument values are then combined. If type deduction cannot be done for any P/A pair, or if for any
pair the deduction leads to more than one possible set of deduced values, or if different pairs yield different
deduced values, or if any template argument remains neither deduced nor explicitly specified, template
argument deduction fails. The type of a type parameter is only deduced from an array bound if it is not
otherwise deduced.

3 A given type P can be composed from a number of other types, templates, and non-type values:
—(3.1) A function type includes the types of each of the function parameters, the return type, and its exception

specification.
—(3.2) A pointer-to-member type includes the type of the class object pointed to and the type of the member

pointed to.
—(3.3) A type that is a specialization of a class template (e.g., A<int>) includes the types, templates, and

non-type values referenced by the template argument list of the specialization.
—(3.4) An array type includes the array element type and the value of the array bound.

4 In most cases, the types, templates, and non-type values that are used to compose P participate in template
argument deduction. That is, they may be used to determine the value of a template argument, and template
argument deduction fails if the value so determined is not consistent with the values determined elsewhere.
In certain contexts, however, the value does not participate in type deduction, but instead uses the values of
template arguments that were either deduced elsewhere or explicitly specified. If a template parameter is
used only in non-deduced contexts and is not explicitly specified, template argument deduction fails.
[Note 1 : Under 13.10.3.2, if P contains no template-parameters that appear in deduced contexts, no deduction is done,
so P and A need not have the same form. — end note ]

5 The non-deduced contexts are:
—(5.1) The nested-name-specifier of a type that was specified using a qualified-id .
—(5.2) The expression of a decltype-specifier .
—(5.3) A non-type template argument or an array bound in which a subexpression references a template

parameter.
—(5.4) A template parameter used in the parameter type of a function parameter that has a default argument

that is being used in the call for which argument deduction is being done.
—(5.5) A function parameter for which the associated argument is an overload set (12.3), and one or more of

the following apply:
—(5.5.1) more than one function matches the function parameter type (resulting in an ambiguous deduction),

or
—(5.5.2) no function matches the function parameter type, or
—(5.5.3) the overload set supplied as an argument contains one or more function templates.
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—(5.6) A function parameter for which the associated argument is an initializer list (9.4.5) but the parameter
does not have a type for which deduction from an initializer list is specified (13.10.3.2).
[Example 1 :

template<class T> void g(T);
g({1,2,3}); // error: no argument deduced for T

— end example ]

—(5.7) A function parameter pack that does not occur at the end of the parameter-declaration-list.
6 When a type name is specified in a way that includes a non-deduced context, all of the types that comprise

that type name are also non-deduced. However, a compound type can include both deduced and non-deduced
types.
[Example 2 : If a type is specified as A<T>::B<T2>, both T and T2 are non-deduced. Likewise, if a type is specified
as A<I+J>::X<T>, I, J, and T are non-deduced. If a type is specified as void f(typename A<T>::B, A<T>), the T in
A<T>::B is non-deduced but the T in A<T> is deduced. — end example ]

7 [Example 3 : Here is an example in which different parameter/argument pairs produce inconsistent template argument
deductions:

template<class T> void f(T x, T y) { /* ... */ }
struct A { /* ... */ };
struct B : A { /* ... */ };
void g(A a, B b) {

f(a,b); // error: T deduced as both A and B
f(b,a); // error: T deduced as both A and B
f(a,a); // OK, T is A
f(b,b); // OK, T is B

}

Here is an example where two template arguments are deduced from a single function parameter/argument pair. This
can lead to conflicts that cause type deduction to fail:

template <class T, class U> void f( T (*)( T, U, U ) );

int g1( int, float, float);
char g2( int, float, float);
int g3( int, char, float);

void r() {
f(g1); // OK, T is int and U is float
f(g2); // error: T deduced as both char and int
f(g3); // error: U deduced as both char and float

}

Here is an example where the exception specification of a function type is deduced:
template<bool E> void f1(void (*)() noexcept(E));
template<bool> struct A { };
template<bool B> void f2(void (*)(A<B>) noexcept(B));

void g1();
void g2() noexcept;
void g3(A<true>);

void h() {
f1(g1); // OK, E is false
f1(g2); // OK, E is true
f2(g3); // error: B deduced as both true and false

}

Here is an example where a qualification conversion applies between the argument type on the function call and the
deduced template argument type:

template<class T> void f(const T*) { }
int* p;
void s() {

f(p); // f(const int*)
}
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Here is an example where the template argument is used to instantiate a derived class type of the corresponding
function parameter type:

template <class T> struct B { };
template <class T> struct D : public B<T> {};
struct D2 : public B<int> {};
template <class T> void f(B<T>&) {}
void t() {

D<int> d;
D2 d2;
f(d); // calls f(B<int>&)
f(d2); // calls f(B<int>&)

}

— end example ]
8 A template type argument T, a template template argument TT, or a template non-type argument i can be

deduced if P and A have one of the following forms:
cv opt T
T*
T&
T&&
Topt[iopt]
Topt(Topt) noexcept(iopt)
Topt Topt::*
TTopt<T>
TTopt<i>
TTopt<TT>
TTopt<>

where
—(8.1) Topt represents a type or parameter-type-list that either satisfies these rules recursively, is a non-deduced

context in P or A, or is the same non-dependent type in P and A,
—(8.2) TTopt represents either a class template or a template template parameter,
—(8.3) iopt represents an expression that either is an i, is value-dependent in P or A, or has the same constant

value in P and A, and
—(8.4) noexcept(iopt) represents an exception specification (14.5) in which the (possibly-implicit, see 9.3.4.6)

noexcept-specifier ’s operand satisfies the rules for an iopt above.
[Note 2 : If a type matches such a form but contains no Ts, is, or TTs, deduction is not possible. — end note ]

Similarly, <T> represents template argument lists where at least one argument contains a T, <i> represents
template argument lists where at least one argument contains an i and <> represents template argument
lists where no argument contains a T or an i.

9 If P has a form that contains <T> or <i>, then each argument Pi of the respective template argument list
of P is compared with the corresponding argument Ai of the corresponding template argument list of A.
If the template argument list of P contains a pack expansion that is not the last template argument, the
entire template argument list is a non-deduced context. If Pi is a pack expansion, then the pattern of Pi

is compared with each remaining argument in the template argument list of A. Each comparison deduces
template arguments for subsequent positions in the template parameter packs expanded by Pi. During partial
ordering (13.10.3.5), if Ai was originally a pack expansion:

—(9.1) if P does not contain a template argument corresponding to Ai then Ai is ignored;
—(9.2) otherwise, if Pi is not a pack expansion, template argument deduction fails.

[Example 4 :
template<class T1, class... Z> class S; // #1
template<class T1, class... Z> class S<T1, const Z&...> { }; // #2
template<class T1, class T2> class S<T1, const T2&> { }; // #3
S<int, const int&> s; // both #2 and #3 match; #3 is more specialized

template<class T, class... U> struct A { }; // #1
template<class T1, class T2, class... U> struct A<T1, T2*, U...> { }; // #2
template<class T1, class T2> struct A<T1, T2> { }; // #3
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template struct A<int, int*>; // selects #2
— end example ]

10 Similarly, if P has a form that contains (T), then each parameter type Pi of the respective parameter-type-
list (9.3.4.6) of P is compared with the corresponding parameter type Ai of the corresponding parameter-
type-list of A. If P and A are function types that originated from deduction when taking the address of a
function template (13.10.3.3) or when deducing template arguments from a function declaration (13.10.3.7)
and Pi and Ai are parameters of the top-level parameter-type-list of P and A, respectively, Pi is adjusted if it
is a forwarding reference (13.10.3.2) and Ai is an lvalue reference, in which case the type of Pi is changed to
be the template parameter type (i.e., T&& is changed to simply T).
[Note 3 : As a result, when Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be deduced as X&. — end
note ]
[Example 5 :

template <class T> void f(T&&);
template <> void f(int&) { } // #1
template <> void f(int&&) { } // #2
void g(int i) {

f(i); // calls f<int&>(int&), i.e., #1
f(0); // calls f<int>(int&&), i.e., #2

}

— end example ]

If the parameter-declaration corresponding to Pi is a function parameter pack, then the type of its declarator-id
is compared with each remaining parameter type in the parameter-type-list of A. Each comparison deduces
template arguments for subsequent positions in the template parameter packs expanded by the function
parameter pack. During partial ordering (13.10.3.5), if Ai was originally a function parameter pack:

—(10.1) if P does not contain a function parameter type corresponding to Ai then Ai is ignored;
—(10.2) otherwise, if Pi is not a function parameter pack, template argument deduction fails.

[Example 6 :
template<class T, class... U> void f(T*, U...) { } // #1
template<class T> void f(T) { } // #2
template void f(int*); // selects #1

— end example ]
11 These forms can be used in the same way as T is for further composition of types.

[Example 7 :
X<int> (*)(char[6])

is of the form
template-name<T> (*)(type [i])

which is a variant of
type (*)(T)

where type is X<int> and T is char[6]. — end example ]
12 Template arguments cannot be deduced from function arguments involving constructs other than the ones

specified above.
13 When the value of the argument corresponding to a non-type template parameter P that is declared with a

dependent type is deduced from an expression, the template parameters in the type of P are deduced from
the type of the value.
[Example 8 :

template<long n> struct A { };

template<typename T> struct C;
template<typename T, T n> struct C<A<n>> {

using Q = T;
};

§ 13.10.3.6 446



© ISO/IEC N4950

using R = long;
using R = C<A<2>>::Q; // OK; T was deduced as long from the

// template argument value in the type A<2>

— end example ]
14 The type of N in the type T[N] is std::size_t.

[Example 9 :
template<typename T> struct S;
template<typename T, T n> struct S<int[n]> {

using Q = T;
};

using V = decltype(sizeof 0);
using V = S<int[42]>::Q; // OK; T was deduced as std::size_t from the type int[42]

— end example ]
15 The type of B in the noexcept-specifier noexcept(B) of a function type is bool.

[Example 10 :
template<bool> struct A { };
template<auto> struct B;
template<auto X, void (*F)() noexcept(X)> struct B<F> {

A<X> ax;
};
void f_nothrow() noexcept;
B<f_nothrow> bn; // OK, type of X deduced as bool

— end example ]
16 [Example 11 :

template<class T, T i> void f(int (&a)[i]);
int v[10];
void g() {

f(v); // OK, T is std::size_t
}

— end example ]
17 [Note 4 : Except for reference and pointer types, a major array bound is not part of a function parameter type and

cannot be deduced from an argument:
template<int i> void f1(int a[10][i]);
template<int i> void f2(int a[i][20]);
template<int i> void f3(int (&a)[i][20]);

void g() {
int v[10][20];
f1(v); // OK, i deduced as 20
f1<20>(v); // OK
f2(v); // error: cannot deduce template-argument i
f2<10>(v); // OK
f3(v); // OK, i deduced as 10

}

— end note ]
18 [Note 5 : If, in the declaration of a function template with a non-type template parameter, the non-type template

parameter is used in a subexpression in the function parameter list, the expression is a non-deduced context as
specified above.
[Example 12 :

template <int i> class A { /* ... */ };
template <int i> void g(A<i+1>);
template <int i> void f(A<i>, A<i+1>);
void k() {

A<1> a1;
A<2> a2;
g(a1); // error: deduction fails for expression i+1
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g<0>(a1); // OK
f(a1, a2); // OK

}

— end example ]
— end note ]

19 [Note 6 : Template parameters do not participate in template argument deduction if they are used only in non-deduced
contexts. For example,

template<int i, typename T>
T deduce(typename A<T>::X x, // T is not deduced here

T t, // but T is deduced here
typename B<i>::Y y); // i is not deduced here

A<int> a;
B<77> b;

int x = deduce<77>(a.xm, 62, b.ym);
// T deduced as int; a.xm must be convertible to A<int>::X
// i is explicitly specified to be 77; b.ym must be convertible to B<77>::Y

— end note ]
20 If P has a form that contains <i>, and if the type of i differs from the type of the corresponding template

parameter of the template named by the enclosing simple-template-id , deduction fails. If P has a form that
contains [i], and if the type of i is not an integral type, deduction fails.128 If P has a form that includes
noexcept(i) and the type of i is not bool, deduction fails.
[Example 13 :

template<int i> class A { /* ... */ };
template<short s> void f(A<s>);
void k1() {

A<1> a;
f(a); // error: deduction fails for conversion from int to short
f<1>(a); // OK

}

template<const short cs> class B { };
template<short s> void g(B<s>);
void k2() {

B<1> b;
g(b); // OK, cv-qualifiers are ignored on template parameter types

}

— end example ]
21 A template-argument can be deduced from a function, pointer to function, or pointer-to-member-function

type.
[Example 14 :

template<class T> void f(void(*)(T,int));
template<class T> void foo(T,int);
void g(int,int);
void g(char,int);

void h(int,int,int);
void h(char,int);
int m() {

f(&g); // error: ambiguous
f(&h); // OK, void h(char,int) is a unique match
f(&foo); // error: type deduction fails because foo is a template

}

— end example ]

128) Although the template-argument corresponding to a template-parameter of type bool can be deduced from an array bound,
the resulting value will always be true because the array bound will be nonzero.
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22 A template type-parameter cannot be deduced from the type of a function default argument.
[Example 15 :

template <class T> void f(T = 5, T = 7);
void g() {

f(1); // OK, calls f<int>(1,7)
f(); // error: cannot deduce T
f<int>(); // OK, calls f<int>(5,7)

}

— end example ]
23 The template-argument corresponding to a template template-parameter is deduced from the type of the

template-argument of a class template specialization used in the argument list of a function call.
[Example 16 :

template <template <class T> class X> struct A { };
template <template <class T> class X> void f(A<X>) { }
template<class T> struct B { };
A<B> ab;
f(ab); // calls f(A<B>)

— end example ]
24 [Note 7 : Template argument deduction involving parameter packs (13.7.4) can deduce zero or more arguments for

each parameter pack. — end note ]
[Example 17 :

template<class> struct X { };
template<class R, class ... ArgTypes> struct X<R(int, ArgTypes ...)> { };
template<class ... Types> struct Y { };
template<class T, class ... Types> struct Y<T, Types& ...> { };

template<class ... Types> int f(void (*)(Types ...));
void g(int, float);

X<int> x1; // uses primary template
X<int(int, float, double)> x2; // uses partial specialization; ArgTypes contains float, double
X<int(float, int)> x3; // uses primary template
Y<> y1; // uses primary template; Types is empty
Y<int&, float&, double&> y2; // uses partial specialization; T is int&, Types contains float, double
Y<int, float, double> y3; // uses primary template; Types contains int, float, double
int fv = f(g); // OK; Types contains int, float

— end example ]

13.10.3.7 Deducing template arguments from a function declaration [temp.deduct.decl]
1 In a declaration whose declarator-id refers to a specialization of a function template, template argument

deduction is performed to identify the specialization to which the declaration refers. Specifically, this is done
for explicit instantiations (13.9.3), explicit specializations (13.9.4), and certain friend declarations (13.7.5).
This is also done to determine whether a deallocation function template specialization matches a placement
operator new (6.7.5.5.3, 7.6.2.8). In all these cases, P is the type of the function template being considered
as a potential match and A is either the function type from the declaration or the type of the deallocation
function that would match the placement operator new as described in 7.6.2.8. The deduction is done as
described in 13.10.3.6.

2 If, for the set of function templates so considered, there is either no match or more than one match after
partial ordering has been considered (13.7.7.3), deduction fails and, in the declaration cases, the program is
ill-formed.

13.10.4 Overload resolution [temp.over]
1 When a call of a function or function template is written (explicitly, or implicitly using the operator notation),

template argument deduction (13.10.3) and checking of any explicit template arguments (13.4) are performed
for each function template to find the template argument values (if any) that can be used with that function
template to instantiate a function template specialization that can be invoked with the call arguments or,
for conversion function templates, that can convert to the required type. For each function template, if
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the argument deduction and checking succeeds, the template-arguments (deduced and/or explicit) are used
to synthesize the declaration of a single function template specialization which is added to the candidate
functions set to be used in overload resolution. If, for a given function template, argument deduction fails or
the synthesized function template specialization would be ill-formed, no such function is added to the set of
candidate functions for that template. The complete set of candidate functions includes all the synthesized
declarations and all of the non-template functions found by name lookup. The synthesized declarations are
treated like any other functions in the remainder of overload resolution, except as explicitly noted in 12.2.4.129

2 [Example 1 :
template<class T> T max(T a, T b) { return a>b?a:b; }

void f(int a, int b, char c, char d) {
int m1 = max(a,b); // max(int a, int b)
char m2 = max(c,d); // max(char a, char b)
int m3 = max(a,c); // error: cannot generate max(int,char)

}

Adding the non-template function
int max(int,int);

to the example above would resolve the third call, by providing a function that can be called for max(a,c) after using
the standard conversion of char to int for c. — end example ]

3 [Example 2 : Here is an example involving conversions on a function argument involved in template-argument deduction:
template<class T> struct B { /* ... */ };
template<class T> struct D : public B<T> { /* ... */ };
template<class T> void f(B<T>&);

void g(B<int>& bi, D<int>& di) {
f(bi); // f(bi)
f(di); // f((B<int>&)di)

}

— end example ]
4 [Example 3 : Here is an example involving conversions on a function argument not involved in template-parameter

deduction:
template<class T> void f(T*,int); // #1
template<class T> void f(T,char); // #2

void h(int* pi, int i, char c) {
f(pi,i); // #1: f<int>(pi,i)
f(pi,c); // #2: f<int*>(pi,c)

f(i,c); // #2: f<int>(i,c);
f(i,i); // #2: f<int>(i,char(i))

}

— end example ]
5 Only the signature of a function template specialization is needed to enter the specialization in a set of

candidate functions. Therefore only the function template declaration is needed to resolve a call for which a
template specialization is a candidate.
[Example 4 :

template<class T> void f(T); // declaration

void g() {
f("Annemarie"); // calls f<const char*>

}

129) The parameters of function template specializations contain no template parameter types. The set of conversions allowed on
deduced arguments is limited, because the argument deduction process produces function templates with parameters that either
match the call arguments exactly or differ only in ways that can be bridged by the allowed limited conversions. Non-deduced
arguments allow the full range of conversions. Note also that 12.2.4 specifies that a non-template function will be given preference
over a template specialization if the two functions are otherwise equally good candidates for an overload match.
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The call to f is well-formed even if the template f is only declared and not defined at the point of the call. The
program will be ill-formed unless a specialization for f<const char*> is explicitly instantiated in some translation
unit (13.1). — end example ]
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14 Exception handling [except]
14.1 Preamble [except.pre]

1 Exception handling provides a way of transferring control and information from a point in the execution of a
thread to an exception handler associated with a point previously passed by the execution. A handler will be
invoked only by throwing an exception in code executed in the handler’s try block or in functions called from
the handler’s try block.

try-block :
try compound-statement handler-seq

function-try-block :
try ctor-initializeropt compound-statement handler-seq

handler-seq :
handler handler-seqopt

handler :
catch ( exception-declaration ) compound-statement

exception-declaration :
attribute-specifier-seqopt type-specifier-seq declarator
attribute-specifier-seqopt type-specifier-seq abstract-declaratoropt
...

The optional attribute-specifier-seq in an exception-declaration appertains to the parameter of the catch
clause (14.4).

2 A try-block is a statement (8.1).
[Note 1 : Within this Clause “try block” is taken to mean both try-block and function-try-block. — end note ]

3 The compound-statement of a try block or of a handler is a control-flow-limited statement (8.2).
[Example 1 :

void f() {
goto l1; // error
goto l2; // error
try {

goto l1; // OK
goto l2; // error
l1: ;

} catch (...) {
l2: ;
goto l1; // error
goto l2; // OK

}
}

— end example ]

A goto, break, return, or continue statement can be used to transfer control out of a try block or handler.
When this happens, each variable declared in the try block will be destroyed in the context that directly
contains its declaration.
[Example 2 :

lab: try {
T1 t1;
try {

T2 t2;
if (condition)

goto lab;
} catch(...) { /* handler 2 */ }

} catch(...) { /* handler 1 */ }
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Here, executing goto lab; will destroy first t2, then t1, assuming the condition does not declare a variable. Any
exception thrown while destroying t2 will result in executing handler 2; any exception thrown while destroying t1
will result in executing handler 1. — end example ]

4 A function-try-block associates a handler-seq with the ctor-initializer , if present, and the compound-statement.
An exception thrown during the execution of the compound-statement or, for constructors and destructors,
during the initialization or destruction, respectively, of the class’s subobjects, transfers control to a handler
in a function-try-block in the same way as an exception thrown during the execution of a try-block transfers
control to other handlers.
[Example 3 :

int f(int);
class C {

int i;
double d;

public:
C(int, double);

};

C::C(int ii, double id)
try : i(f(ii)), d(id) {

// constructor statements
} catch (...) {

// handles exceptions thrown from the ctor-initializer and from the constructor statements
}

— end example ]
5 In this Clause, “before” and “after” refer to the “sequenced before” relation (6.9.1).

14.2 Throwing an exception [except.throw]
1 Throwing an exception transfers control to a handler.

[Note 1 : An exception can be thrown from one of the following contexts: throw-expressions (7.6.18), allocation functions
(6.7.5.5.2), dynamic_cast (7.6.1.7), typeid (7.6.1.8), new-expressions (7.6.2.8), and standard library functions (16.3.2.4).

— end note ]

An object is passed and the type of that object determines which handlers can catch it.
[Example 1 :

throw "Help!";

can be caught by a handler of const char* type:
try {

// ...
} catch(const char* p) {

// handle character string exceptions here
}

and
class Overflow {
public:

Overflow(char,double,double);
};

void f(double x) {
throw Overflow('+',x,3.45e107);

}

can be caught by a handler for exceptions of type Overflow:
try {

f(1.2);
} catch(Overflow& oo) {

// handle exceptions of type Overflow here
}

— end example ]
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2 When an exception is thrown, control is transferred to the nearest handler with a matching type (14.4);
“nearest” means the handler for which the compound-statement or ctor-initializer following the try keyword
was most recently entered by the thread of control and not yet exited.

3 Throwing an exception copy-initializes (9.4, 11.4.5.3) a temporary object, called the exception object. If the
type of the exception object would be an incomplete type, an abstract class type (11.7.4), or a pointer to an
incomplete type other than cv void the program is ill-formed.

4 The memory for the exception object is allocated in an unspecified way, except as noted in 6.7.5.5.2. If a
handler exits by rethrowing, control is passed to another handler for the same exception object. The points
of potential destruction for the exception object are:

—(4.1) when an active handler for the exception exits by any means other than rethrowing, immediately after
the destruction of the object (if any) declared in the exception-declaration in the handler;

—(4.2) when an object of type std::exception_ptr (17.9.7) that refers to the exception object is destroyed,
before the destructor of std::exception_ptr returns.

Among all points of potential destruction for the exception object, there is an unspecified last one where the
exception object is destroyed. All other points happen before that last one (6.9.2.2).
[Note 2 : No other thread synchronization is implied in exception handling. — end note ]

The implementation may then deallocate the memory for the exception object; any such deallocation is done
in an unspecified way.
[Note 3 : A thrown exception does not propagate to other threads unless caught, stored, and rethrown using appropriate
library functions; see 17.9.7 and 33.10. — end note ]

5 When the thrown object is a class object, the constructor selected for the copy-initialization as well as
the constructor selected for a copy-initialization considering the thrown object as an lvalue shall be non-
deleted and accessible, even if the copy/move operation is elided (11.9.6). The destructor is potentially
invoked (11.4.7).

6 An exception is considered caught when a handler for that exception becomes active (14.4).
[Note 4 : An exception can have active handlers and still be considered uncaught if it is rethrown. — end note ]

7 If the exception handling mechanism handling an uncaught exception (14.6.3) directly invokes a function
that exits via an exception, the function std::terminate is invoked (14.6.2).
[Example 2 :

struct C {
C() { }
C(const C&) {

if (std::uncaught_exceptions()) {
throw 0; // throw during copy to handler’s exception-declaration object (14.4)

}
}

};

int main() {
try {

throw C(); // calls std::terminate if construction of the handler’s
// exception-declaration object is not elided (11.9.6)

} catch(C) { }
}

— end example ]
[Note 5 : If a destructor directly invoked by stack unwinding exits via an exception, std::terminate is invoked.

— end note ]

14.3 Constructors and destructors [except.ctor]
1 As control passes from the point where an exception is thrown to a handler, objects are destroyed by a

process, specified in this subclause, called stack unwinding.
2 Each object with automatic storage duration is destroyed if it has been constructed, but not yet destroyed,

since the try block was entered. If an exception is thrown during the destruction of temporaries or local
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variables for a return statement (8.7.4), the destructor for the returned object (if any) is also invoked. The
objects are destroyed in the reverse order of the completion of their construction.
[Example 1 :

struct A { };

struct Y { ~Y() noexcept(false) { throw 0; } };

A f() {
try {

A a;
Y y;
A b;
return {}; // #1

} catch (...) {
}
return {}; // #2

}

At #1, the returned object of type A is constructed. Then, the local variable b is destroyed (8.7). Next, the local
variable y is destroyed, causing stack unwinding, resulting in the destruction of the returned object, followed by the
destruction of the local variable a. Finally, the returned object is constructed again at #2. — end example ]

3 If the initialization of an object other than by delegating constructor is terminated by an exception, the
destructor is invoked for each of the object’s subobjects that were known to be initialized by the object’s
initialization and whose initialization has completed (9.4).
[Note 1 : If such an object has a reference member that extends the lifetime of a temporary object, this ends the
lifetime of the reference member, so the lifetime of the temporary object is effectively not extended. — end note ]

A subobject is known to be initialized if its initialization is specified
—(3.1) in 11.9.3 for initialization by constructor,
—(3.2) in 11.4.5.3 for initialization by defaulted copy/move constructor,
—(3.3) in 11.9.4 for initialization by inherited constructor,
—(3.4) in 9.4.2 for aggregate initialization,
—(3.5) in 7.5.5.3 for the initialization of the closure object when evaluating a lambda-expression,
—(3.6) in 9.4.1 for default-initialization, value-initialization, or direct-initialization of an array.

[Note 2 : This includes virtual base class subobjects if the initialization is for a complete object, and can include
variant members that were nominated explicitly by a mem-initializer or designated-initializer-clause or that have a
default member initializer. — end note ]

If the destructor of an object is terminated by an exception, each destructor invocation that would be
performed after executing the body of the destructor (11.4.7) and that has not yet begun execution is
performed.
[Note 3 : This includes virtual base class subobjects if the destructor was invoked for a complete object. — end note ]

The subobjects are destroyed in the reverse order of the completion of their construction. Such destruction is
sequenced before entering a handler of the function-try-block of the constructor or destructor, if any.

4 If the compound-statement of the function-body of a delegating constructor for an object exits via an
exception, the object’s destructor is invoked. Such destruction is sequenced before entering a handler of the
function-try-block of a delegating constructor for that object, if any.

5 [Note 4 : If the object was allocated by a new-expression (7.6.2.8), the matching deallocation function (6.7.5.5.3), if
any, is called to free the storage occupied by the object. — end note ]

14.4 Handling an exception [except.handle]
1 The exception-declaration in a handler describes the type(s) of exceptions that can cause that handler to be

entered. The exception-declaration shall not denote an incomplete type, an abstract class type, or an rvalue
reference type. The exception-declaration shall not denote a pointer or reference to an incomplete type, other
than “pointer to cv void”.

2 A handler of type “array of T” or function type T is adjusted to be of type “pointer to T”.
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3 A handler is a match for an exception object of type E if
—(3.1) The handler is of type cv T or cv T& and E and T are the same type (ignoring the top-level cv-qualifiers),

or
—(3.2) the handler is of type cv T or cv T& and T is an unambiguous public base class of E, or
—(3.3) the handler is of type cv T or const T& where T is a pointer or pointer-to-member type and E is a

pointer or pointer-to-member type that can be converted to T by one or more of
—(3.3.1) a standard pointer conversion (7.3.12) not involving conversions to pointers to private or protected

or ambiguous classes
—(3.3.2) a function pointer conversion (7.3.14)
—(3.3.3) a qualification conversion (7.3.6), or

—(3.4) the handler is of type cv T or const T& where T is a pointer or pointer-to-member type and E is
std::nullptr_t.

[Note 1 : A throw-expression whose operand is an integer literal with value zero does not match a handler of pointer
or pointer-to-member type. A handler of reference to array or function type is never a match for any exception
object (7.6.18). — end note ]
[Example 1 :

class Matherr { /* ... */ virtual void vf(); };
class Overflow: public Matherr { /* ... */ };
class Underflow: public Matherr { /* ... */ };
class Zerodivide: public Matherr { /* ... */ };

void f() {
try {

g();
} catch (Overflow oo) {

// ...
} catch (Matherr mm) {

// ...
}

}

Here, the Overflow handler will catch exceptions of type Overflow and the Matherr handler will catch exceptions of
type Matherr and of all types publicly derived from Matherr including exceptions of type Underflow and Zerodivide.

— end example ]
4 The handlers for a try block are tried in order of appearance.

[Note 2 : This makes it possible to write handlers that can never be executed, for example by placing a handler for a
final derived class after a handler for a corresponding unambiguous public base class. — end note ]

5 A ... in a handler’s exception-declaration functions similarly to ... in a function parameter declaration; it
specifies a match for any exception. If present, a ... handler shall be the last handler for its try block.

6 If no match is found among the handlers for a try block, the search for a matching handler continues in a
dynamically surrounding try block of the same thread.

7 A handler is considered active when initialization is complete for the parameter (if any) of the catch clause.
[Note 3 : The stack will have been unwound at that point. — end note ]

Also, an implicit handler is considered active when the function std::terminate is entered due to a throw.
A handler is no longer considered active when the catch clause exits.

8 The exception with the most recently activated handler that is still active is called the currently handled
exception.

9 If no matching handler is found, the function std::terminate is invoked; whether or not the stack is unwound
before this invocation of std::terminate is implementation-defined (14.6.2).

10 Referring to any non-static member or base class of an object in the handler for a function-try-block of a
constructor or destructor for that object results in undefined behavior.

11 Exceptions thrown in destructors of objects with static storage duration or in constructors of objects
associated with non-block variables with static storage duration are not caught by a function-try-block on
the main function (6.9.3.1). Exceptions thrown in destructors of objects with thread storage duration or in
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constructors of objects associated with non-block variables with thread storage duration are not caught by a
function-try-block on the initial function of the thread.

12 If a return statement (8.7.4) appears in a handler of the function-try-block of a constructor, the program is
ill-formed.

13 The currently handled exception is rethrown if control reaches the end of a handler of the function-try-block
of a constructor or destructor. Otherwise, flowing off the end of the compound-statement of a handler of a
function-try-block is equivalent to flowing off the end of the compound-statement of that function (see 8.7.4).

14 The variable declared by the exception-declaration, of type cv T or cv T&, is initialized from the exception
object, of type E, as follows:

—(14.1) if T is a base class of E, the variable is copy-initialized (9.4) from an lvalue of type T designating the
corresponding base class subobject of the exception object;

—(14.2) otherwise, the variable is copy-initialized (9.4) from an lvalue of type E designating the exception object.
The lifetime of the variable ends when the handler exits, after the destruction of any objects with automatic
storage duration initialized within the handler.

15 When the handler declares an object, any changes to that object will not affect the exception object. When
the handler declares a reference to an object, any changes to the referenced object are changes to the exception
object and will have effect should that object be rethrown.

14.5 Exception specifications [except.spec]
1 The predicate indicating whether a function cannot exit via an exception is called the exception specification

of the function. If the predicate is false, the function has a potentially-throwing exception specification,
otherwise it has a non-throwing exception specification. The exception specification is either defined implicitly,
or defined explicitly by using a noexcept-specifier as a suffix of a function declarator (9.3.4.6).

noexcept-specifier :
noexcept ( constant-expression )
noexcept

2 In a noexcept-specifier , the constant-expression, if supplied, shall be a contextually converted constant
expression of type bool (7.7); that constant expression is the exception specification of the function type
in which the noexcept-specifier appears. A ( token that follows noexcept is part of the noexcept-specifier
and does not commence an initializer (9.4). The noexcept-specifier noexcept without a constant-expression is
equivalent to the noexcept-specifier noexcept(true).
[Example 1 :

void f() noexcept(sizeof(char[2])); // error: narrowing conversion of value 2 to type bool
void g() noexcept(sizeof(char)); // OK, conversion of value 1 to type bool is non-narrowing

— end example ]
3 If a declaration of a function does not have a noexcept-specifier , the declaration has a potentially throwing

exception specification unless it is a destructor or a deallocation function or is defaulted on its first declaration,
in which cases the exception specification is as specified below and no other declaration for that function
shall have a noexcept-specifier . In an explicit instantiation (13.9.3) a noexcept-specifier may be specified, but
is not required. If a noexcept-specifier is specified in an explicit instantiation, the exception specification shall
be the same as the exception specification of all other declarations of that function. A diagnostic is required
only if the exception specifications are not the same within a single translation unit.

4 If a virtual function has a non-throwing exception specification, all declarations, including the definition, of
any function that overrides that virtual function in any derived class shall have a non-throwing exception
specification, unless the overriding function is defined as deleted.
[Example 2 :

struct B {
virtual void f() noexcept;
virtual void g();
virtual void h() noexcept = delete;

};

§ 14.5 457



© ISO/IEC N4950

struct D: B {
void f(); // error
void g() noexcept; // OK
void h() = delete; // OK

};

The declaration of D::f is ill-formed because it has a potentially-throwing exception specification, whereas B::f has a
non-throwing exception specification. — end example ]

5 Whenever an exception is thrown and the search for a handler (14.4) encounters the outermost block of a
function with a non-throwing exception specification, the function std::terminate is invoked (14.6.2).
[Note 1 : An implementation is not permitted to reject an expression merely because, when executed, it throws or
might throw an exception from a function with a non-throwing exception specification. — end note ]
[Example 3 :

extern void f(); // potentially-throwing

void g() noexcept {
f(); // valid, even if f throws
throw 42; // valid, effectively a call to std::terminate

}

The call to f is well-formed despite the possibility for it to throw an exception. — end example ]
6 An expression E is potentially-throwing if

—(6.1) E is a function call (7.6.1.3) whose postfix-expression has a function type, or a pointer-to-function type,
with a potentially-throwing exception specification, or

—(6.2) E implicitly invokes a function (such as an overloaded operator, an allocation function in a new-
expression, a constructor for a function argument, or a destructor if E is a full-expression (6.9.1)) that
has a potentially-throwing exception specification, or

—(6.3) E is a throw-expression (7.6.18), or
—(6.4) E is a dynamic_cast expression that casts to a reference type and requires a runtime check (7.6.1.7), or
—(6.5) E is a typeid expression applied to a (possibly parenthesized) built-in unary * operator applied to a

pointer to a polymorphic class type (7.6.1.8), or
—(6.6) any of the immediate subexpressions (6.9.1) of E is potentially-throwing.

7 An implicitly-declared constructor for a class X, or a constructor without a noexcept-specifier that is defaulted
on its first declaration, has a potentially-throwing exception specification if and only if any of the following
constructs is potentially-throwing:

—(7.1) the invocation of a constructor selected by overload resolution in the implicit definition of the constructor
for class X to initialize a potentially constructed subobject, or

—(7.2) a subexpression of such an initialization, such as a default argument expression, or,
—(7.3) for a default constructor, a default member initializer.

[Note 2 : Even though destructors for fully-constructed subobjects are invoked when an exception is thrown during
the execution of a constructor (14.3), their exception specifications do not contribute to the exception specification of
the constructor, because an exception thrown from such a destructor would call the function std::terminate rather
than escape the constructor (14.2, 14.6.2). — end note ]

8 The exception specification for an implicitly-declared destructor, or a destructor without a noexcept-specifier ,
is potentially-throwing if and only if any of the destructors for any of its potentially constructed subobjects
has a potentially-throwing exception specification or the destructor is virtual and the destructor of any virtual
base class has a potentially-throwing exception specification.

9 The exception specification for an implicitly-declared assignment operator, or an assignment-operator without
a noexcept-specifier that is defaulted on its first declaration, is potentially-throwing if and only if the invocation
of any assignment operator in the implicit definition is potentially-throwing.

10 A deallocation function (6.7.5.5.3) with no explicit noexcept-specifier has a non-throwing exception specifica-
tion.
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11 The exception specification for a comparison operator function (12.4.3) without a noexcept-specifier that is
defaulted on its first declaration is potentially-throwing if and only if any expression in the implicit definition
is potentially-throwing.

12 [Example 4 :
struct A {

A(int = (A(5), 0)) noexcept;
A(const A&) noexcept;
A(A&&) noexcept;
~A();

};
struct B {

B() noexcept;
B(const B&) = default; // implicit exception specification is noexcept(true)
B(B&&, int = (throw 42, 0)) noexcept;
~B() noexcept(false);

};
int n = 7;
struct D : public A, public B {

int * p = new int[n];
// D::D() potentially-throwing, as the new operator may throw bad_alloc or bad_array_new_length
// D::D(const D&) non-throwing
// D::D(D&&) potentially-throwing, as the default argument for B’s constructor may throw
// D::~D() potentially-throwing

};

Furthermore, if A::~A() were virtual, the program would be ill-formed since a function that overrides a virtual
function from a base class shall not have a potentially-throwing exception specification if the base class function has a
non-throwing exception specification. — end example ]

13 An exception specification is considered to be needed when:
—(13.1) in an expression, the function is selected by overload resolution (12.2, 12.3);
—(13.2) the function is odr-used (6.3) or, if it appears in an unevaluated operand, would be odr-used if the

expression were potentially-evaluated;
—(13.3) the exception specification is compared to that of another declaration (e.g., an explicit specialization or

an overriding virtual function);
—(13.4) the function is defined; or
—(13.5) the exception specification is needed for a defaulted function that calls the function.

[Note 3 : A defaulted declaration does not require the exception specification of a base member function
to be evaluated until the implicit exception specification of the derived function is needed, but an explicit
noexcept-specifier needs the implicit exception specification to compare against. — end note ]

The exception specification of a defaulted function is evaluated as described above only when needed; similarly,
the noexcept-specifier of a specialization of a function template or member function of a class template is
instantiated only when needed.

14.6 Special functions [except.special]
14.6.1 General [except.special.general]

1 The function std::terminate (14.6.2) is used by the exception handling mechanism for coping with errors
related to the exception handling mechanism itself. The function std::current_exception() (17.9.7) and
the class std::nested_exception (17.9.8) can be used by a program to capture the currently handled
exception.

14.6.2 The std::terminate function [except.terminate]
1 In some situations exception handling is abandoned for less subtle error handling techniques.

[Note 1 : These situations are:
—(1.1) when the exception handling mechanism, after completing the initialization of the exception object but before

activation of a handler for the exception (14.2), calls a function that exits via an exception, or
—(1.2) when the exception handling mechanism cannot find a handler for a thrown exception (14.4), or
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—(1.3) when the search for a handler (14.4) encounters the outermost block of a function with a non-throwing exception
specification (14.5), or

—(1.4) when the destruction of an object during stack unwinding (14.3) terminates by throwing an exception, or
—(1.5) when initialization of a non-block variable with static or thread storage duration (6.9.3.3) exits via an exception,

or
—(1.6) when destruction of an object with static or thread storage duration exits via an exception (6.9.3.4), or
—(1.7) when execution of a function registered with std::atexit or std::at_quick_exit exits via an exception (17.5),

or
—(1.8) when a throw-expression (7.6.18) with no operand attempts to rethrow an exception and no exception is being

handled (14.2), or
—(1.9) when the function std::nested_exception::rethrow_nested is called for an object that has captured no

exception (17.9.8), or
—(1.10) when execution of the initial function of a thread exits via an exception (33.4.3.3), or
—(1.11) for a parallel algorithm whose ExecutionPolicy specifies such behavior (22.12.4, 22.12.5, 22.12.6), when

execution of an element access function (27.3.1) of the parallel algorithm exits via an exception (27.3.4), or
—(1.12) when the destructor or the move assignment operator is invoked on an object of type std::thread that refers

to a joinable thread (33.4.3.4, 33.4.3.5), or
—(1.13) when a call to a wait(), wait_until(), or wait_for() function on a condition variable (33.7.4, 33.7.5) fails to

meet a postcondition.
— end note ]

2 In such cases, the function std::terminate is invoked (17.9.5). In the situation where no matching handler
is found, it is implementation-defined whether or not the stack is unwound before std::terminate is invoked.
In the situation where the search for a handler (14.4) encounters the outermost block of a function with a non-
throwing exception specification (14.5), it is implementation-defined whether the stack is unwound, unwound
partially, or not unwound at all before the function std::terminate is invoked. In all other situations,
the stack shall not be unwound before the function std::terminate is invoked. An implementation is not
permitted to finish stack unwinding prematurely based on a determination that the unwind process will
eventually cause an invocation of the function std::terminate.

14.6.3 The std::uncaught_exceptions function [except.uncaught]
1 An exception is considered uncaught after completing the initialization of the exception object (14.2) until

completing the activation of a handler for the exception (14.4).
[Note 1 : As a consequence, an exception is considered uncaught during any stack unwinding resulting from it being
thrown. — end note ]

If an exception is rethrown (7.6.18, 17.9.7), it is considered uncaught from the point of rethrow until the
rethrown exception is caught. The function std::uncaught_exceptions (17.9.6) returns the number of
uncaught exceptions in the current thread.
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15 Preprocessing directives [cpp]
15.1 Preamble [cpp.pre]

preprocessing-file :
groupopt
module-file

module-file :
pp-global-module-fragmentopt pp-module groupopt pp-private-module-fragmentopt

pp-global-module-fragment :
module ; new-line groupopt

pp-private-module-fragment :
module : private ; new-line groupopt

group :
group-part
group group-part

group-part :
control-line
if-section
text-line
# conditionally-supported-directive

control-line :
# include pp-tokens new-line
pp-import
# define identifier replacement-list new-line
# define identifier lparen identifier-listopt ) replacement-list new-line
# define identifier lparen ... ) replacement-list new-line
# define identifier lparen identifier-list , ... ) replacement-list new-line
# undef identifier new-line
# line pp-tokens new-line
# error pp-tokensopt new-line
# warning pp-tokensopt new-line
# pragma pp-tokensopt new-line
# new-line

if-section :
if-group elif-groupsopt else-groupopt endif-line

if-group :
# if constant-expression new-line groupopt
# ifdef identifier new-line groupopt
# ifndef identifier new-line groupopt

elif-groups :
elif-group
elif-groups elif-group

elif-group :
# elif constant-expression new-line groupopt
# elifdef identifier new-line groupopt
# elifndef identifier new-line groupopt

else-group :
# else new-line groupopt

endif-line :
# endif new-line

text-line :
pp-tokensopt new-line

conditionally-supported-directive :
pp-tokens new-line
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lparen :
a ( character not immediately preceded by whitespace

identifier-list :
identifier
identifier-list , identifier

replacement-list :
pp-tokensopt

pp-tokens :
preprocessing-token
pp-tokens preprocessing-token

new-line :
the new-line character

1 A preprocessing directive consists of a sequence of preprocessing tokens that satisfies the following constraints:
At the start of translation phase 4, the first token in the sequence, referred to as a directive-introducing
token, begins with the first character in the source file (optionally after whitespace containing no new-line
characters) or follows whitespace containing at least one new-line character, and is

—(1.1) a # preprocessing token, or
—(1.2) an import preprocessing token immediately followed on the same logical line by a header-name, <,

identifier , string-literal , or : preprocessing token, or
—(1.3) a module preprocessing token immediately followed on the same logical line by an identifier , :, or ;

preprocessing token, or
—(1.4) an export preprocessing token immediately followed on the same logical line by one of the two preceding

forms.
The last token in the sequence is the first token within the sequence that is immediately followed by whitespace
containing a new-line character.130

[Note 1 : A new-line character ends the preprocessing directive even if it occurs within what would otherwise be an
invocation of a function-like macro. — end note ]
[Example 1 :

# // preprocessing directive
module ; // preprocessing directive
export module leftpad; // preprocessing directive
import <string>; // preprocessing directive
export import "squee"; // preprocessing directive
import rightpad; // preprocessing directive
import :part; // preprocessing directive

module // not a preprocessing directive
; // not a preprocessing directive

export // not a preprocessing directive
import // not a preprocessing directive
foo; // not a preprocessing directive

export // not a preprocessing directive
import foo; // preprocessing directive (ill-formed at phase 7)

import :: // not a preprocessing directive
import -> // not a preprocessing directive

— end example ]
2 A sequence of preprocessing tokens is only a text-line if it does not begin with a directive-introducing token. A

sequence of preprocessing tokens is only a conditionally-supported-directive if it does not begin with any of the
directive names appearing after a # in the syntax. A conditionally-supported-directive is conditionally-supported
with implementation-defined semantics.

130) Thus, preprocessing directives are commonly called “lines”. These “lines” have no other syntactic significance, as all
whitespace is equivalent except in certain situations during preprocessing (see the # character string literal creation operator
in 15.6.3, for example).
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3 At the start of phase 4 of translation, the group of a pp-global-module-fragment shall contain neither a text-line
nor a pp-import.

4 When in a group that is skipped (15.2), the directive syntax is relaxed to allow any sequence of preprocessing
tokens to occur between the directive name and the following new-line character.

5 The only whitespace characters that shall appear between preprocessing tokens within a preprocessing
directive (from just after the directive-introducing token through just before the terminating new-line
character) are space and horizontal-tab (including spaces that have replaced comments or possibly other
whitespace characters in translation phase 3).

6 The implementation can process and skip sections of source files conditionally, include other source files,
import macros from header units, and replace macros. These capabilities are called preprocessing, because
conceptually they occur before translation of the resulting translation unit.

7 The preprocessing tokens within a preprocessing directive are not subject to macro expansion unless otherwise
stated.
[Example 2 : In:

#define EMPTY
EMPTY # include <file.h>

the sequence of preprocessing tokens on the second line is not a preprocessing directive, because it does not begin
with a # at the start of translation phase 4, even though it will do so after the macro EMPTY has been replaced. — end
example ]

15.2 Conditional inclusion [cpp.cond]
defined-macro-expression :

defined identifier
defined ( identifier )

h-preprocessing-token :
any preprocessing-token other than >

h-pp-tokens :
h-preprocessing-token
h-pp-tokens h-preprocessing-token

header-name-tokens :
string-literal
< h-pp-tokens >

has-include-expression :
__has_include ( header-name )
__has_include ( header-name-tokens )

has-attribute-expression :
__has_cpp_attribute ( pp-tokens )

1 The expression that controls conditional inclusion shall be an integral constant expression except that
identifiers (including those lexically identical to keywords) are interpreted as described below131 and it may
contain zero or more defined-macro-expressions and/or has-include-expressions and/or has-attribute-expressions
as unary operator expressions.

2 A defined-macro-expression evaluates to 1 if the identifier is currently defined as a macro name (that is, if it
is predefined or if it has one or more active macro definitions (15.5), for example because it has been the
subject of a #define preprocessing directive without an intervening #undef directive with the same subject
identifier), 0 if it is not.

3 The second form of has-include-expression is considered only if the first form does not match, in which case
the preprocessing tokens are processed just as in normal text.

4 The header or source file identified by the parenthesized preprocessing token sequence in each contained
has-include-expression is searched for as if that preprocessing token sequence were the pp-tokens in a #include
directive, except that no further macro expansion is performed. If such a directive would not satisfy the
syntactic requirements of a #include directive, the program is ill-formed. The has-include-expression evaluates
to 1 if the search for the source file succeeds, and to 0 if the search fails.

131) Because the controlling constant expression is evaluated during translation phase 4, all identifiers either are or are not
macro names — there simply are no keywords, enumeration constants, etc.
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5 Each has-attribute-expression is replaced by a non-zero pp-number matching the form of an integer-literal if
the implementation supports an attribute with the name specified by interpreting the pp-tokens, after macro
expansion, as an attribute-token, and by 0 otherwise. The program is ill-formed if the pp-tokens do not match
the form of an attribute-token.

6 For an attribute specified in this document, the value of the has-attribute-expression is given by Table 21. For
other attributes recognized by the implementation, the value is implementation-defined.
[Note 1 : It is expected that the availability of an attribute can be detected by any non-zero result. — end note ]

Table 21: __has_cpp_attribute values [tab:cpp.cond.ha]

Attribute Value
assume 202207L
carries_dependency 200809L
deprecated 201309L
fallthrough 201603L
likely 201803L
maybe_unused 201603L
no_unique_address 201803L
nodiscard 201907L
noreturn 200809L
unlikely 201803L

7 The #ifdef, #ifndef, #elifdef, and #elifndef directives, and the defined conditional inclusion operator,
shall treat __has_include and __has_cpp_attribute as if they were the names of defined macros. The
identifiers __has_include and __has_cpp_attribute shall not appear in any context not mentioned in this
subclause.

8 Each preprocessing token that remains (in the list of preprocessing tokens that will become the controlling
expression) after all macro replacements have occurred shall be in the lexical form of a token (5.6).

9 Preprocessing directives of the forms
# if constant-expression new-line groupopt
# elif constant-expression new-line groupopt

check whether the controlling constant expression evaluates to nonzero.
10 Prior to evaluation, macro invocations in the list of preprocessing tokens that will become the controlling

constant expression are replaced (except for those macro names modified by the defined unary operator),
just as in normal text. If the token defined is generated as a result of this replacement process or use of
the defined unary operator does not match one of the two specified forms prior to macro replacement, the
behavior is undefined.

11 After all replacements due to macro expansion and evaluations of defined-macro-expressions, has-include-
expressions, and has-attribute-expressions have been performed, all remaining identifiers and keywords, except
for true and false, are replaced with the pp-number 0, and then each preprocessing token is converted into
a token.
[Note 2 : An alternative token (5.5) is not an identifier, even when its spelling consists entirely of letters and underscores.
Therefore it is not subject to this replacement. — end note ]

12 The resulting tokens comprise the controlling constant expression which is evaluated according to the rules
of 7.7 using arithmetic that has at least the ranges specified in 17.3. For the purposes of this token conversion
and evaluation all signed and unsigned integer types act as if they have the same representation as, respectively,
intmax_t or uintmax_t (17.4.1).
[Note 3 : Thus on an implementation where std::numeric_limits<int>::max() is 0x7FFF and std::numeric_-
limits<unsigned int>::max() is 0xFFFF, the integer literal 0x8000 is signed and positive within a #if expression
even though it is unsigned in translation phase 7 (5.2). — end note ]

This includes interpreting character-literals according to the rules in 5.13.3.
[Note 4 : The associated character encodings of literals are the same in #if and #elif directives and in any expression.

— end note ]
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Each subexpression with type bool is subjected to integral promotion before processing continues.
13 Preprocessing directives of the forms

# ifdef identifier new-line groupopt
# ifndef identifier new-line groupopt
# elifdef identifier new-line groupopt
# elifndef identifier new-line groupopt

check whether the identifier is or is not currently defined as a macro name. Their conditions are equivalent
to #if defined identifier , #if !defined identifier , #elif defined identifier , and #elif !defined identifier ,
respectively.

14 Each directive’s condition is checked in order. If it evaluates to false (zero), the group that it controls is
skipped: directives are processed only through the name that determines the directive in order to keep track
of the level of nested conditionals; the rest of the directives’ preprocessing tokens are ignored, as are the other
preprocessing tokens in the group. Only the first group whose control condition evaluates to true (nonzero)
is processed; any following groups are skipped and their controlling directives are processed as if they were
in a group that is skipped. If none of the conditions evaluates to true, and there is a #else directive, the
group controlled by the #else is processed; lacking a #else directive, all the groups until the #endif are
skipped.132

15 [Example 1 : This demonstrates a way to include a library optional facility only if it is available:
#if __has_include(<optional>)
# include <optional>
# if __cpp_lib_optional >= 201603
# define have_optional 1
# endif
#elif __has_include(<experimental/optional>)
# include <experimental/optional>
# if __cpp_lib_experimental_optional >= 201411
# define have_optional 1
# define experimental_optional 1
# endif
#endif
#ifndef have_optional
# define have_optional 0
#endif

— end example ]
16 [Example 2 : This demonstrates a way to use the attribute [[acme::deprecated]] only if it is available.

#if __has_cpp_attribute(acme::deprecated)
# define ATTR_DEPRECATED(msg) [[acme::deprecated(msg)]]
#else
# define ATTR_DEPRECATED(msg) [[deprecated(msg)]]
#endif
ATTR_DEPRECATED("This function is deprecated") void anvil();

— end example ]

15.3 Source file inclusion [cpp.include]
1 A #include directive shall identify a header or source file that can be processed by the implementation.
2 A preprocessing directive of the form

# include < h-char-sequence > new-line

searches a sequence of implementation-defined places for a header identified uniquely by the specified sequence
between the < and > delimiters, and causes the replacement of that directive by the entire contents of the
header. How the places are specified or the header identified is implementation-defined.

3 A preprocessing directive of the form
# include " q-char-sequence " new-line

132) As indicated by the syntax, a preprocessing token cannot follow a #else or #endif directive before the terminating new-line
character. However, comments can appear anywhere in a source file, including within a preprocessing directive.
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causes the replacement of that directive by the entire contents of the source file identified by the specified
sequence between the " delimiters. The named source file is searched for in an implementation-defined
manner. If this search is not supported, or if the search fails, the directive is reprocessed as if it read

# include < h-char-sequence > new-line

with the identical contained sequence (including > characters, if any) from the original directive.
4 A preprocessing directive of the form

# include pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after include in
the directive are processed just as in normal text (i.e., each identifier currently defined as a macro name is
replaced by its replacement list of preprocessing tokens). If the directive resulting after all replacements does
not match one of the two previous forms, the behavior is undefined.133 The method by which a sequence of
preprocessing tokens between a < and a > preprocessing token pair or a pair of " characters is combined into
a single header name preprocessing token is implementation-defined.

5 The implementation shall provide unique mappings for sequences consisting of one or more nondigits or
digits (5.10) followed by a period (.) and a single nondigit. The first character shall not be a digit. The
implementation may ignore distinctions of alphabetical case.

6 A #include preprocessing directive may appear in a source file that has been read because of a #include
directive in another file, up to an implementation-defined nesting limit.

7 If the header identified by the header-name denotes an importable header (10.3), it is implementation-defined
whether the #include preprocessing directive is instead replaced by an import directive (15.5) of the
form

import header-name ; new-line
8 [Note 1 : An implementation can provide a mechanism for making arbitrary source files available to the < > search.

However, using the < > form for headers provided with the implementation and the " " form for sources outside the
control of the implementation achieves wider portability. For instance:

#include <stdio.h>
#include <unistd.h>
#include "usefullib.h"
#include "myprog.h"

— end note ]
9 [Example 1 : This illustrates macro-replaced #include directives:

#if VERSION == 1
#define INCFILE "vers1.h"

#elif VERSION == 2
#define INCFILE "vers2.h" // and so on

#else
#define INCFILE "versN.h"

#endif
#include INCFILE

— end example ]

15.4 Module directive [cpp.module]
pp-module :

exportopt module pp-tokensopt ; new-line
1 A pp-module shall not appear in a context where module or (if it is the first token of the pp-module) export

is an identifier defined as an object-like macro.
2 Any preprocessing tokens after the module preprocessing token in the module directive are processed just as

in normal text.
[Note 1 : Each identifier currently defined as a macro name is replaced by its replacement list of preprocessing tokens.

— end note ]

133) Note that adjacent string-literals are not concatenated into a single string-literal (see the translation phases in 5.2); thus, an
expansion that results in two string-literals is an invalid directive.
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3 The module and export (if it exists) preprocessing tokens are replaced by the module-keyword and export-
keyword preprocessing tokens respectively.
[Note 2 : This makes the line no longer a directive so it is not removed at the end of phase 4. — end note ]

15.5 Header unit importation [cpp.import]
pp-import :

exportopt import header-name pp-tokensopt ; new-line
exportopt import header-name-tokens pp-tokensopt ; new-line
exportopt import pp-tokens ; new-line

1 A pp-import shall not appear in a context where import or (if it is the first token of the pp-import) export is
an identifier defined as an object-like macro.

2 The preprocessing tokens after the import preprocessing token in the import control-line are processed just
as in normal text (i.e., each identifier currently defined as a macro name is replaced by its replacement list of
preprocessing tokens).
[Note 1 : An import directive matching the first two forms of a pp-import instructs the preprocessor to import macros
from the header unit (10.3) denoted by the header-name, as described below. — end note ]

The point of macro import for the first two forms of pp-import is immediately after the new-line terminating
the pp-import. The last form of pp-import is only considered if the first two forms did not match, and does
not have a point of macro import.

3 If a pp-import is produced by source file inclusion (including by the rewrite produced when a #include
directive names an importable header) while processing the group of a module-file, the program is ill-formed.

4 In all three forms of pp-import, the import and export (if it exists) preprocessing tokens are replaced by the
import-keyword and export-keyword preprocessing tokens respectively.
[Note 2 : This makes the line no longer a directive so it is not removed at the end of phase 4. — end note ]

Additionally, in the second form of pp-import, a header-name token is formed as if the header-name-tokens
were the pp-tokens of a #include directive. The header-name-tokens are replaced by the header-name token.
[Note 3 : This ensures that imports are treated consistently by the preprocessor and later phases of translation. — end
note ]

5 Each #define directive encountered when preprocessing each translation unit in a program results in a
distinct macro definition.
[Note 4 : A predefined macro name (15.11) is not introduced by a #define directive. Implementations providing
mechanisms to predefine additional macros are encouraged to not treat them as being introduced by a #define
directive. — end note ]

Each macro definition has at most one point of definition in each translation unit and at most one point of
undefinition, as follows:

—(5.1) The point of definition of a macro definition within a translation unit T is
—(5.1.1) if the #define directive of the macro definition occurs within T , the point at which that directive

occurs, or otherwise,
—(5.1.2) if the macro name is not lexically identical to a keyword (5.11) or to the identifiers module or

import, the first point of macro import in T of a header unit containing a point of definition for
the macro definition, if any.

In the latter case, the macro is said to be imported from the header unit.
—(5.2) The point of undefinition of a macro definition within a translation unit is the first point at which

a #undef directive naming the macro occurs after its point of definition, or the first point of macro
import of a header unit containing a point of undefinition for the macro definition, whichever (if any)
occurs first.

6 A macro directive is active at a source location if it has a point of definition in that translation unit preceding
the location, and does not have a point of undefinition in that translation unit preceding the location.

7 If a macro would be replaced or redefined, and multiple macro definitions are active for that macro name,
the active macro definitions shall all be valid redefinitions of the same macro (15.6).
[Note 5 : The relative order of pp-imports has no bearing on whether a particular macro definition is active. — end
note ]
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8 [Example 1 :

Importable header "a.h":
#define X 123 // #1
#define Y 45 // #2
#define Z a // #3
#undef X // point of undefinition of #1 in "a.h"

Importable header "b.h":
import "a.h"; // point of definition of #1, #2, and #3, point of undefinition of #1 in "b.h"
#define X 456 // OK, #1 is not active
#define Y 6 // error: #2 is active

Importable header "c.h":
#define Y 45 // #4
#define Z c // #5

Importable header "d.h":
import "c.h"; // point of definition of #4 and #5 in "d.h"

Importable header "e.h":
import "a.h"; // point of definition of #1, #2, and #3, point of undefinition of #1 in "e.h"
import "d.h"; // point of definition of #4 and #5 in "e.h"
int a = Y; // OK, active macro definitions #2 and #4 are valid redefinitions
int c = Z; // error: active macro definitions #3 and #5 are not valid redefinitions of Z

Module unit f:
export module f;
export import "a.h";

int a = Y; // OK

Translation unit #1:
import f;
int x = Y; // error: Y is neither a defined macro nor a declared name

— end example ]

15.6 Macro replacement [cpp.replace]
15.6.1 General [cpp.replace.general]

1 Two replacement lists are identical if and only if the preprocessing tokens in both have the same number,
ordering, spelling, and whitespace separation, where all whitespace separations are considered identical.

2 An identifier currently defined as an object-like macro (see below) may be redefined by another #define
preprocessing directive provided that the second definition is an object-like macro definition and the two
replacement lists are identical, otherwise the program is ill-formed. Likewise, an identifier currently defined as
a function-like macro (see below) may be redefined by another #define preprocessing directive provided that
the second definition is a function-like macro definition that has the same number and spelling of parameters,
and the two replacement lists are identical, otherwise the program is ill-formed.

3 [Example 1 : The following sequence is valid:
#define OBJ_LIKE (1-1)
#define OBJ_LIKE /* whitespace */ (1-1) /* other */
#define FUNC_LIKE(a) ( a )
#define FUNC_LIKE( a )( /* note the whitespace */ \

a /* other stuff on this line
*/ )

But the following redefinitions are invalid:
#define OBJ_LIKE (0) // different token sequence
#define OBJ_LIKE (1 - 1) // different whitespace
#define FUNC_LIKE(b) ( a ) // different parameter usage
#define FUNC_LIKE(b) ( b ) // different parameter spelling

— end example ]
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4 There shall be whitespace between the identifier and the replacement list in the definition of an object-like
macro.

5 If the identifier-list in the macro definition does not end with an ellipsis, the number of arguments (including
those arguments consisting of no preprocessing tokens) in an invocation of a function-like macro shall equal
the number of parameters in the macro definition. Otherwise, there shall be at least as many arguments in
the invocation as there are parameters in the macro definition (excluding the ...). There shall exist a )
preprocessing token that terminates the invocation.

6 The identifiers __VA_ARGS__ and __VA_OPT__ shall occur only in the replacement-list of a function-like macro
that uses the ellipsis notation in the parameters.

7 A parameter identifier in a function-like macro shall be uniquely declared within its scope.
8 The identifier immediately following the define is called the macro name. There is one name space for

macro names. Any whitespace characters preceding or following the replacement list of preprocessing tokens
are not considered part of the replacement list for either form of macro.

9 If a # preprocessing token, followed by an identifier, occurs lexically at the point at which a preprocessing
directive can begin, the identifier is not subject to macro replacement.

10 A preprocessing directive of the form
# define identifier replacement-list new-line

defines an object-like macro that causes each subsequent instance of the macro name134 to be replaced by the
replacement list of preprocessing tokens that constitute the remainder of the directive.135 The replacement
list is then rescanned for more macro names as specified below.

11 [Example 2 : The simplest use of this facility is to define a “manifest constant”, as in
#define TABSIZE 100
int table[TABSIZE];

— end example ]
12 A preprocessing directive of the form

# define identifier lparen identifier-listopt ) replacement-list new-line
# define identifier lparen ... ) replacement-list new-line
# define identifier lparen identifier-list , ... ) replacement-list new-line

defines a function-like macro with parameters, whose use is similar syntactically to a function call. The
parameters are specified by the optional list of identifiers. Each subsequent instance of the function-like
macro name followed by a ( as the next preprocessing token introduces the sequence of preprocessing tokens
that is replaced by the replacement list in the definition (an invocation of the macro). The replaced sequence
of preprocessing tokens is terminated by the matching ) preprocessing token, skipping intervening matched
pairs of left and right parenthesis preprocessing tokens. Within the sequence of preprocessing tokens making
up an invocation of a function-like macro, new-line is considered a normal whitespace character.

13 The sequence of preprocessing tokens bounded by the outside-most matching parentheses forms the list of
arguments for the function-like macro. The individual arguments within the list are separated by comma
preprocessing tokens, but comma preprocessing tokens between matching inner parentheses do not separate
arguments. If there are sequences of preprocessing tokens within the list of arguments that would otherwise
act as preprocessing directives,136 the behavior is undefined.

14 [Example 3 : The following defines a function-like macro whose value is the maximum of its arguments. It has the
disadvantages of evaluating one or the other of its arguments a second time (including side effects) and generating
more code than a function if invoked several times. It also cannot have its address taken, as it has none.

#define max(a, b) ((a) > (b) ? (a) : (b))

The parentheses ensure that the arguments and the resulting expression are bound properly. — end example ]
15 If there is a ... immediately preceding the ) in the function-like macro definition, then the trailing arguments

(if any), including any separating comma preprocessing tokens, are merged to form a single item: the variable

134) Since, by macro-replacement time, all character-literals and string-literals are preprocessing tokens, not sequences possibly
containing identifier-like subsequences (see 5.2, translation phases), they are never scanned for macro names or parameters.
135) An alternative token (5.5) is not an identifier, even when its spelling consists entirely of letters and underscores. Therefore
it is not possible to define a macro whose name is the same as that of an alternative token.
136) A conditionally-supported-directive is a preprocessing directive regardless of whether the implementation supports it.
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arguments. The number of arguments so combined is such that, following merger, the number of arguments
is either equal to or one more than the number of parameters in the macro definition (excluding the ...).

15.6.2 Argument substitution [cpp.subst]
va-opt-replacement :

__VA_OPT__ ( pp-tokensopt )

1 After the arguments for the invocation of a function-like macro have been identified, argument substitution
takes place. For each parameter in the replacement list that is neither preceded by a # or ## preprocessing
token nor followed by a ## preprocessing token, the preprocessing tokens naming the parameter are replaced
by a token sequence determined as follows:

—(1.1) If the parameter is of the form va-opt-replacement, the replacement preprocessing tokens are the
preprocessing token sequence for the corresponding argument, as specified below.

—(1.2) Otherwise, the replacement preprocessing tokens are the preprocessing tokens of corresponding argument
after all macros contained therein have been expanded. The argument’s preprocessing tokens are
completely macro replaced before being substituted as if they formed the rest of the preprocessing file
with no other preprocessing tokens being available.

[Example 1 :
#define LPAREN() (
#define G(Q) 42
#define F(R, X, ...) __VA_OPT__(G R X) )
int x = F(LPAREN(), 0, <:-); // replaced by int x = 42;

— end example ]
2 An identifier __VA_ARGS__ that occurs in the replacement list shall be treated as if it were a parameter, and

the variable arguments shall form the preprocessing tokens used to replace it.
3 [Example 2 :

#define debug(...) fprintf(stderr, __VA_ARGS__)
#define showlist(...) puts(#__VA_ARGS__)
#define report(test, ...) ((test) ? puts(#test) : printf(__VA_ARGS__))
debug("Flag");
debug("X = %d\n", x);
showlist(The first, second, and third items.);
report(x>y, "x is %d but y is %d", x, y);

results in
fprintf(stderr, "Flag");
fprintf(stderr, "X = %d\n", x);
puts("The first, second, and third items.");
((x>y) ? puts("x>y") : printf("x is %d but y is %d", x, y));

— end example ]
4 The identifier __VA_OPT__ shall always occur as part of the preprocessing token sequence va-opt-replacement;

its closing ) is determined by skipping intervening pairs of matching left and right parentheses in its pp-
tokens. The pp-tokens of a va-opt-replacement shall not contain __VA_OPT__. If the pp-tokens would be
ill-formed as the replacement list of the current function-like macro, the program is ill-formed. A va-opt-
replacement is treated as if it were a parameter, and the preprocessing token sequence for the corresponding
argument is defined as follows. If the substitution of __VA_ARGS__ as neither an operand of # nor ##
consists of no preprocessing tokens, the argument consists of a single placemarker preprocessing token (15.6.4,
15.6.5). Otherwise, the argument consists of the results of the expansion of the contained pp-tokens as the
replacement list of the current function-like macro before removal of placemarker tokens, rescanning, and
further replacement.
[Note 1 : The placemarker tokens are removed before stringization (15.6.3), and can be removed by rescanning and
further replacement (15.6.5). — end note ]
[Example 3 :

#define F(...) f(0 __VA_OPT__(,) __VA_ARGS__)
#define G(X, ...) f(0, X __VA_OPT__(,) __VA_ARGS__)
#define SDEF(sname, ...) S sname __VA_OPT__(= { __VA_ARGS__ })
#define EMP
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F(a, b, c) // replaced by f(0, a, b, c)
F() // replaced by f(0)
F(EMP) // replaced by f(0)

G(a, b, c) // replaced by f(0, a, b, c)
G(a, ) // replaced by f(0, a)
G(a) // replaced by f(0, a)

SDEF(foo); // replaced by S foo;
SDEF(bar, 1, 2); // replaced by S bar = { 1, 2 };

#define H1(X, ...) X __VA_OPT__(##) __VA_ARGS__ // error: ## may not appear at
// the beginning of a replacement list (15.6.4)

#define H2(X, Y, ...) __VA_OPT__(X ## Y,) __VA_ARGS__
H2(a, b, c, d) // replaced by ab, c, d

#define H3(X, ...) #__VA_OPT__(X##X X##X)
H3(, 0) // replaced by ""

#define H4(X, ...) __VA_OPT__(a X ## X) ## b
H4(, 1) // replaced by a b

#define H5A(...) __VA_OPT__()/**/__VA_OPT__()
#define H5B(X) a ## X ## b
#define H5C(X) H5B(X)
H5C(H5A()) // replaced by ab

— end example ]

15.6.3 The # operator [cpp.stringize]
1 Each # preprocessing token in the replacement list for a function-like macro shall be followed by a parameter

as the next preprocessing token in the replacement list.
2 A character string literal is a string-literal with no prefix. If, in the replacement list, a parameter is immediately

preceded by a # preprocessing token, both are replaced by a single character string literal preprocessing token
that contains the spelling of the preprocessing token sequence for the corresponding argument (excluding
placemarker tokens). Let the stringizing argument be the preprocessing token sequence for the corresponding
argument with placemarker tokens removed. Each occurrence of whitespace between the stringizing argument’s
preprocessing tokens becomes a single space character in the character string literal. Whitespace before
the first preprocessing token and after the last preprocessing token comprising the stringizing argument is
deleted. Otherwise, the original spelling of each preprocessing token in the stringizing argument is retained
in the character string literal, except for special handling for producing the spelling of string-literals and
character-literals: a \ character is inserted before each " and \ character of a character-literal or string-literal
(including the delimiting " characters). If the replacement that results is not a valid character string literal,
the behavior is undefined. The character string literal corresponding to an empty stringizing argument is "".
The order of evaluation of # and ## operators is unspecified.

15.6.4 The ## operator [cpp.concat]
1 A ## preprocessing token shall not occur at the beginning or at the end of a replacement list for either form

of macro definition.
2 If, in the replacement list of a function-like macro, a parameter is immediately preceded or followed by a ##

preprocessing token, the parameter is replaced by the corresponding argument’s preprocessing token sequence;
however, if an argument consists of no preprocessing tokens, the parameter is replaced by a placemarker
preprocessing token instead.137

3 For both object-like and function-like macro invocations, before the replacement list is reexamined for more
macro names to replace, each instance of a ## preprocessing token in the replacement list (not from an
argument) is deleted and the preceding preprocessing token is concatenated with the following preprocessing
token. Placemarker preprocessing tokens are handled specially: concatenation of two placemarkers results

137) Placemarker preprocessing tokens do not appear in the syntax because they are temporary entities that exist only within
translation phase 4.
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in a single placemarker preprocessing token, and concatenation of a placemarker with a non-placemarker
preprocessing token results in the non-placemarker preprocessing token. If the result begins with a sequence
matching the syntax of universal-character-name, the behavior is undefined.
[Note 1 : This determination does not consider the replacement of universal-character-names in translation phase
3 (5.2). — end note ]

If the result is not a valid preprocessing token, the behavior is undefined. The resulting token is available for
further macro replacement. The order of evaluation of ## operators is unspecified.

4 [Example 1 : The sequence
#define str(s) # s
#define xstr(s) str(s)
#define debug(s, t) printf("x" # s "= %d, x" # t "= %s", \

x ## s, x ## t)
#define INCFILE(n) vers ## n
#define glue(a, b) a ## b
#define xglue(a, b) glue(a, b)
#define HIGHLOW "hello"
#define LOW LOW ", world"

debug(1, 2);
fputs(str(strncmp("abc\0d", "abc", '\4') // this goes away

== 0) str(: @\n), s);
#include xstr(INCFILE(2).h)
glue(HIGH, LOW);
xglue(HIGH, LOW)

results in
printf("x" "1" "= %d, x" "2" "= %s", x1, x2);
fputs("strncmp(\"abc\\0d\", \"abc\", '\\4') == 0" ": @\n", s);
#include "vers2.h" (after macro replacement, before file access)
"hello";
"hello" ", world"

or, after concatenation of the character string literals,
printf("x1= %d, x2= %s", x1, x2);
fputs("strncmp(\"abc\\0d\", \"abc\", '\\4') == 0: @\n", s);
#include "vers2.h" (after macro replacement, before file access)
"hello";
"hello, world"

Space around the # and ## tokens in the macro definition is optional. — end example ]
5 [Example 2 : In the following fragment:

#define hash_hash # ## #
#define mkstr(a) # a
#define in_between(a) mkstr(a)
#define join(c, d) in_between(c hash_hash d)
char p[] = join(x, y); // equivalent to char p[] = "x ## y";

The expansion produces, at various stages:
join(x, y)
in_between(x hash_hash y)
in_between(x ## y)
mkstr(x ## y)
"x ## y"

In other words, expanding hash_hash produces a new token, consisting of two adjacent sharp signs, but this new
token is not the ## operator. — end example ]

6 [Example 3 : To illustrate the rules for placemarker preprocessing tokens, the sequence
#define t(x,y,z) x ## y ## z
int j[] = { t(1,2,3), t(,4,5), t(6,,7), t(8,9,),

t(10,,), t(,11,), t(,,12), t(,,) };

results in
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int j[] = { 123, 45, 67, 89,
10, 11, 12, };

— end example ]

15.6.5 Rescanning and further replacement [cpp.rescan]
1 After all parameters in the replacement list have been substituted and # and ## processing has taken place, all

placemarker preprocessing tokens are removed. Then the resulting preprocessing token sequence is rescanned,
along with all subsequent preprocessing tokens of the source file, for more macro names to replace.

2 [Example 1 : The sequence
#define x 3
#define f(a) f(x * (a))
#undef x
#define x 2
#define g f
#define z z[0]
#define h g(~
#define m(a) a(w)
#define w 0,1
#define t(a) a
#define p() int
#define q(x) x
#define r(x,y) x ## y
#define str(x) # x

f(y+1) + f(f(z)) % t(t(g)(0) + t)(1);
g(x+(3,4)-w) | h 5) & m

(f)^m(m);
p() i[q()] = { q(1), r(2,3), r(4,), r(,5), r(,) };
char c[2][6] = { str(hello), str() };

results in
f(2 * (y+1)) + f(2 * (f(2 * (z[0])))) % f(2 * (0)) + t(1);
f(2 * (2+(3,4)-0,1)) | f(2 * (~ 5)) & f(2 * (0,1))^m(0,1);
int i[] = { 1, 23, 4, 5, };
char c[2][6] = { "hello", "" };

— end example ]
3 If the name of the macro being replaced is found during this scan of the replacement list (not including the rest

of the source file’s preprocessing tokens), it is not replaced. Furthermore, if any nested replacements encounter
the name of the macro being replaced, it is not replaced. These nonreplaced macro name preprocessing
tokens are no longer available for further replacement even if they are later (re)examined in contexts in which
that macro name preprocessing token would otherwise have been replaced.

4 The resulting completely macro-replaced preprocessing token sequence is not processed as a preprocessing
directive even if it resembles one, but all pragma unary operator expressions within it are then processed as
specified in 15.12 below.

15.6.6 Scope of macro definitions [cpp.scope]
1 A macro definition lasts (independent of block structure) until a corresponding #undef directive is encountered

or (if none is encountered) until the end of the translation unit. Macro definitions have no significance after
translation phase 4.

2 A preprocessing directive of the form
# undef identifier new-line

causes the specified identifier no longer to be defined as a macro name. It is ignored if the specified identifier
is not currently defined as a macro name.

15.7 Line control [cpp.line]
1 The string-literal of a #line directive, if present, shall be a character string literal.
2 The line number of the current source line is one greater than the number of new-line characters read or

introduced in translation phase 1 (5.2) while processing the source file to the current token.
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3 A preprocessing directive of the form
# line digit-sequence new-line

causes the implementation to behave as if the following sequence of source lines begins with a source line that
has a line number as specified by the digit sequence (interpreted as a decimal integer). If the digit sequence
specifies zero or a number greater than 2147483647, the behavior is undefined.

4 A preprocessing directive of the form
# line digit-sequence " s-char-sequenceopt " new-line

sets the presumed line number similarly and changes the presumed name of the source file to be the contents
of the character string literal.

5 A preprocessing directive of the form
# line pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after line on the
directive are processed just as in normal text (each identifier currently defined as a macro name is replaced by
its replacement list of preprocessing tokens). If the directive resulting after all replacements does not match
one of the two previous forms, the behavior is undefined; otherwise, the result is processed as appropriate.

15.8 Diagnostic directives [cpp.error]
1 A preprocessing directive of either of the following forms

# error pp-tokensopt new-line
# warning pp-tokensopt new-line

causes the implementation to produce a diagnostic message that should include the specified sequence of
preprocessing tokens; the # error directive renders the program ill-formed.

15.9 Pragma directive [cpp.pragma]
1 A preprocessing directive of the form

# pragma pp-tokensopt new-line

causes the implementation to behave in an implementation-defined manner. The behavior may cause
translation to fail or cause the translator or the resulting program to behave in a non-conforming manner.
Any pragma that is not recognized by the implementation is ignored.

15.10 Null directive [cpp.null]
1 A preprocessing directive of the form

# new-line

has no effect.

15.11 Predefined macro names [cpp.predefined]
1 The following macro names shall be defined by the implementation:

__cplusplus
The integer literal 202302L.
[Note 1 : Future revisions of C++ will replace the value of this macro with a greater value. — end note ]

The names listed in Table 22.
The macros defined in Table 22 shall be defined to the corresponding integer literal.
[Note 2 : Future revisions of C++ might replace the values of these macros with greater values. — end note ]

__DATE__
The date of translation of the source file: a character string literal of the form "Mmm dd yyyy", where
the names of the months are the same as those generated by the asctime function, and the first
character of dd is a space character if the value is less than 10. If the date of translation is not available,
an implementation-defined valid date shall be supplied.

__FILE__
The presumed name of the current source file (a character string literal).138

138) The presumed source file name can be changed by the #line directive.
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__LINE__
The presumed line number (within the current source file) of the current source line (an integer
literal).139

__STDC_HOSTED__
The integer literal 1 if the implementation is a hosted implementation or the integer literal 0 if it is a
freestanding implementation (4.1).

__STDCPP_DEFAULT_NEW_ALIGNMENT__
An integer literal of type std::size_t whose value is the alignment guaranteed by a call to operator
new(std::size_t) or operator new[](std::size_t).
[Note 3 : Larger alignments will be passed to operator new(std::size_t, std::align_val_t), etc. (7.6.2.8).

— end note ]

__STDCPP_FLOAT16_T__
Defined as the integer literal 1 if and only if the implementation supports the ISO/IEC/IEEE 60559
floating-point interchange format binary16 as an extended floating-point type (6.8.3).

__STDCPP_FLOAT32_T__
Defined as the integer literal 1 if and only if the implementation supports the ISO/IEC/IEEE 60559
floating-point interchange format binary32 as an extended floating-point type.

__STDCPP_FLOAT64_T__
Defined as the integer literal 1 if and only if the implementation supports the ISO/IEC/IEEE 60559
floating-point interchange format binary64 as an extended floating-point type.

__STDCPP_FLOAT128_T__
Defined as the integer literal 1 if and only if the implementation supports the ISO/IEC/IEEE 60559
floating-point interchange format binary128 as an extended floating-point type.

__STDCPP_BFLOAT16_T__
Defined as the integer literal 1 if and only if the implementation supports an extended floating-point
type with the properties of the typedef-name std::bfloat16_t as described in 6.8.3.

__TIME__
The time of translation of the source file: a character string literal of the form "hh:mm:ss" as in the time
generated by the asctime function. If the time of translation is not available, an implementation-defined
valid time shall be supplied.

Table 22: Feature-test macros [tab:cpp.predefined.ft]

Macro name Value
__cpp_aggregate_bases 201603L
__cpp_aggregate_nsdmi 201304L
__cpp_aggregate_paren_init 201902L
__cpp_alias_templates 200704L
__cpp_aligned_new 201606L
__cpp_attributes 200809L
__cpp_auto_cast 202110L
__cpp_binary_literals 201304L
__cpp_capture_star_this 201603L
__cpp_char8_t 202207L
__cpp_concepts 202002L
__cpp_conditional_explicit 201806L
__cpp_constexpr 202211L
__cpp_constexpr_dynamic_alloc 201907L
__cpp_constexpr_in_decltype 201711L
__cpp_consteval 202211L

139) The presumed line number can be changed by the #line directive.
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Table 22: Feature-test macros (continued)

Name Value
__cpp_constinit 201907L
__cpp_decltype 200707L
__cpp_decltype_auto 201304L
__cpp_deduction_guides 201907L
__cpp_delegating_constructors 200604L
__cpp_designated_initializers 201707L
__cpp_enumerator_attributes 201411L
__cpp_explicit_this_parameter 202110L
__cpp_fold_expressions 201603L
__cpp_generic_lambdas 201707L
__cpp_guaranteed_copy_elision 201606L
__cpp_hex_float 201603L
__cpp_if_consteval 202106L
__cpp_if_constexpr 201606L
__cpp_impl_coroutine 201902L
__cpp_impl_destroying_delete 201806L
__cpp_impl_three_way_comparison 201907L
__cpp_implicit_move 202207L
__cpp_inheriting_constructors 201511L
__cpp_init_captures 201803L
__cpp_initializer_lists 200806L
__cpp_inline_variables 201606L
__cpp_lambdas 200907L
__cpp_modules 201907L
__cpp_multidimensional_subscript 202211L
__cpp_named_character_escapes 202207L
__cpp_namespace_attributes 201411L
__cpp_noexcept_function_type 201510L
__cpp_nontype_template_args 201911L
__cpp_nontype_template_parameter_auto 201606L
__cpp_nsdmi 200809L
__cpp_range_based_for 202211L
__cpp_raw_strings 200710L
__cpp_ref_qualifiers 200710L
__cpp_return_type_deduction 201304L
__cpp_rvalue_references 200610L
__cpp_size_t_suffix 202011L
__cpp_sized_deallocation 201309L
__cpp_static_assert 201411L
__cpp_static_call_operator 202207L
__cpp_structured_bindings 201606L
__cpp_template_template_args 201611L
__cpp_threadsafe_static_init 200806L
__cpp_unicode_characters 200704L
__cpp_unicode_literals 200710L
__cpp_user_defined_literals 200809L
__cpp_using_enum 201907L
__cpp_variable_templates 201304L
__cpp_variadic_templates 200704L
__cpp_variadic_using 201611L

2 The following macro names are conditionally defined by the implementation:
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__STDC__
Whether __STDC__ is predefined and if so, what its value is, are implementation-defined.

__STDC_MB_MIGHT_NEQ_WC__
The integer literal 1, intended to indicate that, in the encoding for wchar_t, a member of the basic
character set need not have a code value equal to its value when used as the lone character in an
ordinary character literal.

__STDC_VERSION__
Whether __STDC_VERSION__ is predefined and if so, what its value is, are implementation-defined.

__STDC_ISO_10646__
An integer literal of the form yyyymmL (for example, 199712L). Whether __STDC_ISO_10646__ is
predefined and if so, what its value is, are implementation-defined.

__STDCPP_THREADS__
Defined, and has the value integer literal 1, if and only if a program can have more than one thread of
execution (6.9.2).

3 The values of the predefined macros (except for __FILE__ and __LINE__) remain constant throughout the
translation unit.

4 If any of the pre-defined macro names in this subclause, or the identifier defined, is the subject of a #define
or a #undef preprocessing directive, the behavior is undefined. Any other predefined macro names shall
begin with a leading underscore followed by an uppercase letter or a second underscore.

15.12 Pragma operator [cpp.pragma.op]
1 A unary operator expression of the form:

_Pragma ( string-literal )

is processed as follows: The string-literal is destringized by deleting the L prefix, if present, deleting the leading
and trailing double-quotes, replacing each escape sequence \" by a double-quote, and replacing each escape
sequence \\ by a single backslash. The resulting sequence of characters is processed through translation
phase 3 to produce preprocessing tokens that are executed as if they were the pp-tokens in a pragma directive.
The original four preprocessing tokens in the unary operator expression are removed.

2 [Example 1 :
#pragma listing on "..\listing.dir"

can also be expressed as:
_Pragma ( "listing on \"..\\listing.dir\"" )

The latter form is processed in the same way whether it appears literally as shown, or results from macro replacement,
as in:

#define LISTING(x) PRAGMA(listing on #x)
#define PRAGMA(x) _Pragma(#x)

LISTING( ..\listing.dir )

— end example ]
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16 Library introduction [library]
16.1 General [library.general]

1 This Clause describes the contents of the C++ standard library, how a well-formed C++ program makes use
of the library, and how a conforming implementation may provide the entities in the library.

2 The following subclauses describe the method of description (16.3) and organization (16.4.2) of the library.
16.4, Clause 17 through Clause 33, and Annex D specify the contents of the library, as well as library
requirements and constraints on both well-formed C++ programs and conforming implementations.

3 Detailed specifications for each of the components in the library are in Clause 17–Clause 33, as shown in
Table 23.

Table 23: Library categories [tab:library.categories]

Clause Category
Clause 17 Language support library
Clause 18 Concepts library
Clause 19 Diagnostics library
Clause 20 Memory management library
Clause 21 Metaprogramming library
Clause 22 General utilities library
Clause 23 Strings library
Clause 24 Containers library
Clause 25 Iterators library
Clause 26 Ranges library
Clause 27 Algorithms library
Clause 28 Numerics library
Clause 29 Time library
Clause 30 Localization library
Clause 31 Input/output library
Clause 32 Regular expressions library
Clause 33 Concurrency support library

4 The operating system interface described in ISO/IEC/IEEE 9945:2009 is hereinafter called POSIX.
5 The language support library (Clause 17) provides components that are required by certain parts of the C++

language, such as memory allocation (7.6.2.8, 7.6.2.9) and exception processing (Clause 14).
6 The concepts library (Clause 18) describes library components that C++ programs may use to perform

compile-time validation of template arguments and perform function dispatch based on properties of types.
7 The diagnostics library (Clause 19) provides a consistent framework for reporting errors in a C++ program,

including predefined exception classes.
8 The memory management library (Clause 20) provides components for memory management, including smart

pointers and scoped allocators.
9 The metaprogramming library (Clause 21) describes facilities for use in templates and during constant

evaluation, including type traits, integer sequences, and rational arithmetic.
10 The general utilities library (Clause 22) includes components used by other library elements, such as a

predefined storage allocator for dynamic storage management (6.7.5.5), and components used as infrastructure
in C++ programs, such as tuples and function wrappers.

11 The strings library (Clause 23) provides support for manipulating text represented as sequences of type
char, sequences of type char8_t, sequences of type char16_t, sequences of type char32_t, sequences of
type wchar_t, and sequences of any other character-like type.

12 The containers (Clause 24), iterators (Clause 25), ranges (Clause 26), and algorithms (Clause 27) libraries
provide a C++ program with access to a subset of the most widely used algorithms and data structures.
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13 The numerics library (Clause 28) provides numeric algorithms and complex number components that extend
support for numeric processing. The valarray component provides support for n-at-a-time processing,
potentially implemented as parallel operations on platforms that support such processing. The random
number component provides facilities for generating pseudo-random numbers.

14 The time library (Clause 29) provides generally useful time utilities.
15 The localization library (Clause 30) provides extended internationalization support for text processing.
16 The input/output library (Clause 31) provides the iostream components that are the primary mechanism

for C++ program input and output. They can be used with other elements of the library, particularly strings,
locales, and iterators.

17 The regular expressions library (Clause 32) provides regular expression matching and searching.
18 The concurrency support library (Clause 33) provides components to create and manage threads, including

atomic operations, mutual exclusion, and interthread communication.

16.2 The C standard library [library.c]
1 The C++ standard library also makes available the facilities of the C standard library, suitably adjusted to

ensure static type safety.
2 The descriptions of many library functions rely on the C standard library for the semantics of those functions.

In some cases, the signatures specified in this document may be different from the signatures in the C
standard library, and additional overloads may be declared in this document, but the behavior and the
preconditions (including any preconditions implied by the use of an ISO C restrict qualifier) are the same
unless otherwise stated.

3 A call to a C standard library function is a non-constant library call (3.33) if it raises a floating-point
exception other than FE_INEXACT. The semantics of a call to a C standard library function evaluated as a
core constant expression are those specified in ISO/IEC 9899:2018, Annex F140 to the extent applicable to
the floating-point types (6.8.2) that are parameter types of the called function.
[Note 1 : Annex F specifies the conditions under which floating-point exceptions are raised and the behavior when
NaNs and/or infinities are passed as arguments. — end note ]
[Note 2 : Equivalently, a call to a C standard library function is a non-constant library call if errno is set when
math_errhandling & MATH_ERRNO is true. — end note ]

16.3 Method of description [description]
16.3.1 General [description.general]

1 Subclause 16.3 describes the conventions used to specify the C++ standard library. 16.3.2 describes the
structure of Clause 17 through Clause 33 and Annex D. 16.3.3 describes other editorial conventions.

16.3.2 Structure of each clause [structure]
16.3.2.1 Elements [structure.elements]

1 Each library clause contains the following elements, as applicable:141

—(1.1) Summary
—(1.2) Requirements
—(1.3) Detailed specifications
—(1.4) References to the C standard library

16.3.2.2 Summary [structure.summary]
1 The Summary provides a synopsis of the category, and introduces the first-level subclauses. Each subclause

also provides a summary, listing the headers specified in the subclause and the library entities provided in
each header.

2 The contents of the summary and the detailed specifications include:
—(2.1) macros

140) See also ISO/IEC 9899:2018, 7.6.
141) To save space, items that do not apply to a Clause are omitted. For example, if a Clause does not specify any requirements,
there will be no “Requirements” subclause.
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—(2.2) values
—(2.3) types and alias templates
—(2.4) classes and class templates
—(2.5) functions and function templates
—(2.6) objects and variable templates
—(2.7) concepts

16.3.2.3 Requirements [structure.requirements]
1 Requirements describe constraints that shall be met by a C++ program that extends the standard library.

Such extensions are generally one of the following:
—(1.1) Template arguments
—(1.2) Derived classes
—(1.3) Containers, iterators, and algorithms that meet an interface convention or model a concept

2 The string and iostream components use an explicit representation of operations required of template
arguments. They use a class template char_traits to define these constraints.

3 Interface convention requirements are stated as generally as possible. Instead of stating “class X has to define
a member function operator++()”, the interface requires “for any object x of class X, ++x is defined”. That
is, whether the operator is a member is unspecified.

4 Requirements are stated in terms of well-defined expressions that define valid terms of the types that meet
the requirements. For every set of well-defined expression requirements there is either a named concept or a
table that specifies an initial set of the valid expressions and their semantics. Any generic algorithm (Clause
27) that uses the well-defined expression requirements is described in terms of the valid expressions for its
template type parameters.

5 The library specification uses a typographical convention for naming requirements. Names in italic type that
begin with the prefix Cpp17 refer to sets of well-defined expression requirements typically presented in tabular
form, possibly with additional prose semantic requirements. For example, Cpp17Destructible (Table 35) is
such a named requirement. Names in constant width type refer to library concepts which are presented
as a concept definition (Clause 13), possibly with additional prose semantic requirements. For example,
destructible (18.4.10) is such a named requirement.

6 Template argument requirements are sometimes referenced by name. See 16.3.3.3.
7 In some cases the semantic requirements are presented as C++ code. Such code is intended as a specification

of equivalence of a construct to another construct, not necessarily as the way the construct must be
implemented.142

8 Required operations of any concept defined in this document need not be total functions; that is, some
arguments to a required operation may result in the required semantics failing to be met.
[Example 1 : The required < operator of the totally_ordered concept (18.5.5) does not meet the semantic requirements
of that concept when operating on NaNs. — end example ]

This does not affect whether a type models the concept.
9 A declaration may explicitly impose requirements through its associated constraints (13.5.3). When the

associated constraints refer to a concept (13.7.9), the semantic constraints specified for that concept are
additionally imposed on the use of the declaration.

16.3.2.4 Detailed specifications [structure.specifications]
1 The detailed specifications each contain the following elements:

—(1.1) name and brief description
—(1.2) synopsis (class definition or function declaration, as appropriate)
—(1.3) restrictions on template arguments, if any
—(1.4) description of class invariants
—(1.5) description of function semantics

142) Although in some cases the code given is unambiguously the optimum implementation.
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2 Descriptions of class member functions follow the order (as appropriate):143

—(2.1) constructor(s) and destructor
—(2.2) copying, moving & assignment functions
—(2.3) comparison operator functions
—(2.4) modifier functions
—(2.5) observer functions
—(2.6) operators and other non-member functions

3 Descriptions of function semantics contain the following elements (as appropriate):144

—(3.1) Constraints: the conditions for the function’s participation in overload resolution (12.2).
[Note 1 : Failure to meet such a condition results in the function’s silent non-viability. — end note ]
[Example 1 : An implementation can express such a condition via a constraint-expression (13.5.3). — end
example ]

—(3.2) Mandates: the conditions that, if not met, render the program ill-formed.
[Example 2 : An implementation can express such a condition via the constant-expression in a static_assert-
declaration (9.1). If the diagnostic is to be emitted only after the function has been selected by overload
resolution, an implementation can express such a condition via a constraint-expression (13.5.3) and also define
the function as deleted. — end example ]

—(3.3) Preconditions: the conditions that the function assumes to hold whenever it is called; violation of any
preconditions results in undefined behavior.

—(3.4) Effects: the actions performed by the function.
—(3.5) Synchronization: the synchronization operations (6.9.2) applicable to the function.
—(3.6) Postconditions: the conditions (sometimes termed observable results) established by the function.
—(3.7) Result: for a typename-specifier , a description of the named type; for an expression, a description of the

type of the expression; the expression is an lvalue if the type is an lvalue reference type, an xvalue if
the type is an rvalue reference type, and a prvalue otherwise.

—(3.8) Returns: a description of the value(s) returned by the function.
—(3.9) Throws: any exceptions thrown by the function, and the conditions that would cause the exception.
—(3.10) Complexity: the time and/or space complexity of the function.
—(3.11) Remarks: additional semantic constraints on the function.
—(3.12) Error conditions: the error conditions for error codes reported by the function.

4 Whenever the Effects element specifies that the semantics of some function F are Equivalent to some code
sequence, then the various elements are interpreted as follows. If F’s semantics specifies any Constraints or
Mandates elements, then those requirements are logically imposed prior to the equivalent-to semantics. Next,
the semantics of the code sequence are determined by the Constraints, Mandates, Preconditions, Effects,
Synchronization, Postconditions, Returns, Throws, Complexity, Remarks, and Error conditions specified
for the function invocations contained in the code sequence. The value returned from F is specified by
F’s Returns element, or if F has no Returns element, a non-void return from F is specified by the return
statements (8.7.4) in the code sequence. If F’s semantics contains a Throws, Postconditions, or Complexity
element, then that supersedes any occurrences of that element in the code sequence.

5 For non-reserved replacement and handler functions, Clause 17 specifies two behaviors for the functions in
question: their required and default behavior. The default behavior describes a function definition provided
by the implementation. The required behavior describes the semantics of a function definition provided by
either the implementation or a C++ program. Where no distinction is explicitly made in the description, the
behavior described is the required behavior.

143) To save space, items that do not apply to a class are omitted. For example, if a class does not specify any comparison
operator functions, there will be no “Comparison operator functions” subclause.
144) To save space, elements that do not apply to a function are omitted. For example, if a function specifies no preconditions,
there will be no Preconditions: element.
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6 If the formulation of a complexity requirement calls for a negative number of operations, the actual requirement
is zero operations.145

7 Complexity requirements specified in the library clauses are upper bounds, and implementations that provide
better complexity guarantees meet the requirements.

8 Error conditions specify conditions where a function may fail. The conditions are listed, together with a
suitable explanation, as the enum class errc constants (19.5).

16.3.2.5 C library [structure.see.also]
1 Paragraphs labeled “See also” contain cross-references to the relevant portions of other standards (Clause

2).

16.3.3 Other conventions [conventions]
16.3.3.1 General [conventions.general]

1 Subclause 16.3.3 describes several editorial conventions used to describe the contents of the C++ standard
library. These conventions are for describing implementation-defined types (16.3.3.3), and member functions
(16.3.3.4).

16.3.3.2 Exposition-only entities, etc. [expos.only.entity]
1 Several entities and typedef-names defined in Clause 17 through Clause 33 and Annex D are only defined

for the purpose of exposition. The declaration of such an entity or typedef-name is followed by a comment
ending in exposition only.

2 The following are defined for exposition only to aid in the specification of the library:
namespace std {

template<class T>
requires convertible_to<T, decay_t<T>>

constexpr decay_t<T> decay-copy(T&& v)
noexcept(is_nothrow_convertible_v<T, decay_t<T>>) // exposition only

{ return std::forward<T>(v); }

constexpr auto synth-three-way =
[]<class T, class U>(const T& t, const U& u)

requires requires {
{ t < u } -> boolean-testable ;
{ u < t } -> boolean-testable ;

}
{

if constexpr (three_way_comparable_with<T, U>) {
return t <=> u;

} else {
if (t < u) return weak_ordering::less;
if (u < t) return weak_ordering::greater;
return weak_ordering::equivalent;

}
};

template<class T, class U=T>
using synth-three-way-result = decltype(synth-three-way(declval<T&>(), declval<U&>()));

}

16.3.3.3 Type descriptions [type.descriptions]
16.3.3.3.1 General [type.descriptions.general]

1 The Requirements subclauses may describe names that are used to specify constraints on template argu-
ments.146 These names are used in library Clauses to describe the types that may be supplied as arguments
by a C++ program when instantiating template components from the library.

2 Certain types defined in Clause 31 are used to describe implementation-defined types. They are based on
other types, but with added constraints.
145) This simplifies the presentation of complexity requirements in some cases.
146) Examples from 16.4.4 include: Cpp17EqualityComparable, Cpp17LessThanComparable, Cpp17CopyConstructible. Examples
from 25.3 include: Cpp17InputIterator, Cpp17ForwardIterator.
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16.3.3.3.2 Enumerated types [enumerated.types]
1 Several types defined in Clause 31 are enumerated types. Each enumerated type may be implemented as an

enumeration or as a synonym for an enumeration.147

2 The enumerated type enumerated can be written:
enum enumerated { V 0, V 1, V 2, V 3, . . . };

inline const enumerated C 0(V 0);
inline const enumerated C 1(V 1);
inline const enumerated C 2(V 2);
inline const enumerated C 3(V 3);

...

3 Here, the names C 0, C 1, etc. represent enumerated elements for this particular enumerated type. All such
elements have distinct values.

16.3.3.3.3 Bitmask types [bitmask.types]
1 Several types defined in Clause 17 through Clause 33 and Annex D are bitmask types. Each bitmask type

can be implemented as an enumerated type that overloads certain operators, as an integer type, or as a
bitset (22.9.2).

2 The bitmask type bitmask can be written:
// For exposition only.
// int_type is an integral type capable of representing all values of the bitmask type.
enum bitmask : int_type {

V 0 = 1 << 0, V 1 = 1 << 1, V 2 = 1 << 2, V 3 = 1 << 3, . . .
};

inline constexpr bitmask C 0(V 0);
inline constexpr bitmask C 1(V 1);
inline constexpr bitmask C 2(V 2);
inline constexpr bitmask C 3(V 3);

...

constexpr bitmask operator&(bitmask X, bitmask Y) {
return static_cast<bitmask >(

static_cast<int_type>(X) & static_cast<int_type>(Y));
}
constexpr bitmask operator|(bitmask X, bitmask Y) {

return static_cast<bitmask >(
static_cast<int_type>(X) | static_cast<int_type>(Y));

}
constexpr bitmask operator^(bitmask X, bitmask Y) {

return static_cast<bitmask >(
static_cast<int_type>(X) ^ static_cast<int_type>(Y));

}
constexpr bitmask operator~(bitmask X) {

return static_cast<bitmask >(~static_cast<int_type>(X));
}
bitmask & operator&=(bitmask & X, bitmask Y) {

X = X & Y; return X;
}
bitmask & operator|=(bitmask & X, bitmask Y) {

X = X | Y; return X;
}
bitmask & operator^=(bitmask & X, bitmask Y) {

X = X ^ Y; return X;
}

147) Such as an integer type, with constant integer values (6.8.2).
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3 Here, the names C 0, C 1, etc. represent bitmask elements for this particular bitmask type. All such elements
have distinct, nonzero values such that, for any pair C i and C j where i ̸= j, Ci & Ci is nonzero and Ci & Cj

is zero. Additionally, the value 0 is used to represent an empty bitmask, in which no bitmask elements are set.
4 The following terms apply to objects and values of bitmask types:

—(4.1) To set a value Y in an object X is to evaluate the expression X |= Y.
—(4.2) To clear a value Y in an object X is to evaluate the expression X &= ~Y.
—(4.3) The value Y is set in the object X if the expression X & Y is nonzero.

16.3.3.3.4 Character sequences [character.seq]
16.3.3.3.4.1 General [character.seq.general]

1 The C standard library makes widespread use of characters and character sequences that follow a few uniform
conventions:

—(1.1) Properties specified as locale-specific may change during program execution by a call to setlocale(int,
const char*) (30.5.1), or by a change to a locale object, as described in 30.3 and Clause 31.

—(1.2) The execution character set and the execution wide-character set are supersets of the basic literal
character set (5.3). The encodings of the execution character sets and the sets of additional elements
(if any) are locale-specific. Each element of the execution wide-character set is encoded as a single code
unit representable by a value of type wchar_t.
[Note 1 : The encodings of the execution character sets can be unrelated to any literal encoding. — end note ]

—(1.3) A letter is any of the 26 lowercase or 26 uppercase letters in the basic character set.
—(1.4) The decimal-point character is the locale-specific (single-byte) character used by functions that convert

between a (single-byte) character sequence and a value of one of the floating-point types. It is used
in the character sequence to denote the beginning of a fractional part. It is represented in Clause 17
through Clause 33 and Annex D by a period, ’.’, which is also its value in the "C" locale.

—(1.5) A character sequence is an array object (9.3.4.5) A that can be declared as T A[N ], where T is any of
the types char, unsigned char, or signed char (6.8.2), optionally qualified by any combination of
const or volatile. The initial elements of the array have defined contents up to and including an
element determined by some predicate. A character sequence can be designated by a pointer value S
that points to its first element.

16.3.3.3.4.2 Byte strings [byte.strings]
1 A null-terminated byte string, or ntbs, is a character sequence whose highest-addressed element with defined

content has the value zero (the terminating null character); no other element in the sequence has the value
zero.148

2 The length of an ntbs is the number of elements that precede the terminating null character. An empty
ntbs has a length of zero.

3 The value of an ntbs is the sequence of values of the elements up to and including the terminating null
character.

4 A static ntbs is an ntbs with static storage duration.149

16.3.3.3.4.3 Multibyte strings [multibyte.strings]
1 A multibyte character is a sequence of one or more bytes representing the code unit sequence for an encoded

character of the execution character set.
2 A null-terminated multibyte string, or ntmbs, is an ntbs that constitutes a sequence of valid multibyte

characters, beginning and ending in the initial shift state.150

3 A static ntmbs is an ntmbs with static storage duration.

148) Many of the objects manipulated by function signatures declared in <cstring> (23.5.3) are character sequences or ntbss.
The size of some of these character sequences is limited by a length value, maintained separately from the character sequence.
149) A string-literal , such as "abc", is a static ntbs.
150) An ntbs that contains characters only from the basic literal character set is also an ntmbs. Each multibyte character then
consists of a single byte.
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16.3.3.3.5 Customization Point Object types [customization.point.object]
1 A customization point object is a function object (22.10) with a literal class type that interacts with

program-defined types while enforcing semantic requirements on that interaction.
2 The type of a customization point object, ignoring cv-qualifiers, shall model semiregular (18.6).
3 All instances of a specific customization point object type shall be equal (18.2). The effects of invoking

different instances of a specific customization point object type on the same arguments are equivalent.
4 The type T of a customization point object, ignoring cv-qualifiers, shall model invocable<T&, Args...>,

invocable<const T&, Args...>, invocable<T, Args...>, and invocable<const T, Args...> (18.7.2)
when the types in Args... meet the requirements specified in that customization point object’s definition.
When the types of Args... do not meet the customization point object’s requirements, T shall not have a
function call operator that participates in overload resolution.

5 For a given customization point object o, let p be a variable initialized as if by auto p = o;. Then for any
sequence of arguments args..., the following expressions have effects equivalent to o(args...):

—(5.1) p(args...)
—(5.2) as_const(p)(args...)
—(5.3) std::move(p)(args...)
—(5.4) std::move(as_const(p))(args...)

6 Each customization point object type constrains its return type to model a particular concept.

16.3.3.4 Functions within classes [functions.within.classes]
1 For the sake of exposition, Clause 17 through Clause 33 and Annex D do not describe copy/move constructors,

assignment operators, or (non-virtual) destructors with the same apparent semantics as those that can be
generated by default (11.4.5.3, 11.4.6, 11.4.7). It is unspecified whether the implementation provides explicit
definitions for such member function signatures, or for virtual destructors that can be generated by default.

16.3.3.5 Private members [objects.within.classes]
1 Clause 17 through Clause 33 and Annex D do not specify the representation of classes, and intentionally omit

specification of class members (11.4). An implementation may define static or non-static class members, or
both, as needed to implement the semantics of the member functions specified in Clause 17 through Clause
33 and Annex D.

2 For the sake of exposition, some subclauses provide representative declarations, and semantic requirements,
for private members of classes that meet the external specifications of the classes. The declarations for such
members are followed by a comment that ends with exposition only, as in:

streambuf* sb; // exposition only
3 An implementation may use any technique that provides equivalent observable behavior.

16.3.3.6 Freestanding items [freestanding.item]
1 A freestanding item is a declaration, entity, typedef-name, or macro that is required to be present in a

freestanding implementation and a hosted implementation.
2 Unless otherwise specified, the requirements on freestanding items for a freestanding implementation are the

same as the corresponding requirements for a hosted implementation, except that not all of the members of
the namespaces are required to be present.
[Note 1 : This implies that freestanding item enumerations have the same enumerators on freestanding implementations
and hosted implementations. Furthermore, class types have the same members and class templates have the same
deduction guides on freestanding implementations and hosted implementations. — end note ]

3 A declaration in a header synopsis is a freestanding item if
—(3.1) it is followed by a comment that includes freestanding, or
—(3.2) the header synopsis begins with a comment that includes all freestanding.

4 An entity or typedef-name is a freestanding item if it is:
—(4.1) introduced by a declaration that is a freestanding item,
—(4.2) an enclosing namespace of a freestanding item,
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—(4.3) a friend of a freestanding item,
—(4.4) denoted by a typedef-name that is a freestanding item, or
—(4.5) denoted by an alias template that is a freestanding item.

5 A macro is a freestanding item if it is defined in a header synopsis and
—(5.1) the definition is followed by a comment that includes freestanding, or
—(5.2) the header synopsis begins with a comment that includes all freestanding.

6 [Example 1 :
#define NULL see below // freestanding

— end example ]
[Example 2 :

// all freestanding
namespace std {

— end example ]

16.4 Library-wide requirements [requirements]
16.4.1 General [requirements.general]

1 Subclause 16.4 specifies requirements that apply to the entire C++ standard library. Clause 17 through
Clause 33 and Annex D specify the requirements of individual entities within the library.

2 Requirements specified in terms of interactions between threads do not apply to programs having only a
single thread of execution.

3 16.4.2 describes the library’s contents and organization, 16.4.3 describes how well-formed C++ programs gain
access to library entities, 16.4.4 describes constraints on types and functions used with the C++ standard
library, 16.4.5 describes constraints on well-formed C++ programs, and 16.4.6 describes constraints on
conforming implementations.

16.4.2 Library contents and organization [organization]
16.4.2.1 General [organization.general]

1 16.4.2.2 describes the entities and macros defined in the C++ standard library. 16.4.2.3 lists the standard library
headers and some constraints on those headers. 16.4.2.5 lists requirements for a freestanding implementation
of the C++ standard library.

16.4.2.2 Library contents [contents]
1 The C++ standard library provides definitions for the entities and macros described in the synopses of the

C++ standard library headers (16.4.2.3), unless otherwise specified.
2 All library entities except operator new and operator delete are defined within the namespace std or

namespaces nested within namespace std.151 It is unspecified whether names declared in a specific namespace
are declared directly in that namespace or in an inline namespace inside that namespace.152

3 Whenever an unqualified name other than swap, make_error_code, or make_error_condition is used in
the specification of a declaration D in Clause 17 through Clause 33 or Annex D, its meaning is established
as-if by performing unqualified name lookup (6.5.3) in the context of D.
[Note 1 : Argument-dependent lookup is not performed. — end note ]

Similarly, the meaning of a qualified-id is established as-if by performing qualified name lookup (6.5.5) in the
context of D.
[Example 1 : The reference to is_array_v in the specification of std::to_array (24.3.7.6) refers to ::std::is_array_v.

— end example ]
[Note 2 : Operators in expressions (12.2.2.3) are not so constrained; see 16.4.6.4. — end note ]

The meaning of the unqualified name swap is established in an overload resolution context for swappable
values (16.4.4.3). The meanings of the unqualified names make_error_code and make_error_condition are
established as-if by performing argument-dependent lookup (6.5.4).
151) The C standard library headers (17.14) also define names within the global namespace, while the C++ headers for C library
facilities (16.4.2.3) can also define names within the global namespace.
152) This gives implementers freedom to use inline namespaces to support multiple configurations of the library.
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16.4.2.3 Headers [headers]
1 Each element of the C++ standard library is declared or defined (as appropriate) in a header.153

2 The C++ standard library provides the C++ library headers, shown in Table 24.

Table 24: C++ library headers [tab:headers.cpp]

<algorithm>
<any>
<array>
<atomic>
<barrier>
<bit>
<bitset>
<charconv>
<chrono>
<codecvt>
<compare>
<complex>
<concepts>
<condition_variable>
<coroutine>
<deque>
<exception>
<execution>
<expected>
<filesystem>
<flat_map>

<flat_set>
<format>
<forward_list>
<fstream>
<functional>
<future>
<generator>
<initializer_list>
<iomanip>
<ios>
<iosfwd>
<iostream>
<istream>
<iterator>
<latch>
<limits>
<list>
<locale>
<map>
<mdspan>
<memory>
<memory_resource>

<mutex>
<new>
<numbers>
<numeric>
<optional>
<ostream>
<print>
<queue>
<random>
<ranges>
<ratio>
<regex>
<scoped_allocator>
<semaphore>
<set>
<shared_mutex>
<source_location>
<span>
<spanstream>
<sstream>
<stack>
<stacktrace>

<stdexcept>
<stdfloat>
<stop_token>
<streambuf>
<string>
<string_view>
<strstream>
<syncstream>
<system_error>
<thread>
<tuple>
<type_traits>
<typeindex>
<typeinfo>
<unordered_map>
<unordered_set>
<utility>
<valarray>
<variant>
<vector>
<version>

3 The facilities of the C standard library are provided in the additional headers shown in Table 25.154

Table 25: C++ headers for C library facilities [tab:headers.cpp.c]

<cassert>
<cctype>
<cerrno>

<cfenv>
<cfloat>
<cinttypes>

<climits>
<clocale>
<cmath>

<csetjmp>
<csignal>
<cstdarg>

<cstddef>
<cstdint>
<cstdio>

<cstdlib>
<cstring>
<ctime>

<cuchar>
<cwchar>
<cwctype>

4 The headers listed in Table 24, or, for a freestanding implementation, the subset of such headers that are
provided by the implementation, are collectively known as the importable C++ library headers.
[Note 1 : Importable C++ library headers can be imported (10.3). — end note ]
[Example 1 :

import <vector>; // imports the <vector> header unit
std::vector<int> vi; // OK

— end example ]
5 Except as noted in Clause 16 through Clause 33 and Annex D, the contents of each header cname is the

same as that of the corresponding header name.h as specified in the C standard library (Clause 2). In the
C++ standard library, however, the declarations (except for names which are defined as macros in C) are
within namespace scope (6.4.6) of the namespace std. It is unspecified whether these names (including any
overloads added in Clause 17 through Clause 33 and Annex D) are first declared within the global namespace
scope and are then injected into namespace std by explicit using-declarations (9.9).

6 Names which are defined as macros in C shall be defined as macros in the C++ standard library, even if C
grants license for implementation as functions.

153) A header is not necessarily a source file, nor are the sequences delimited by < and > in header names necessarily valid source
file names (15.3).
154) It is intentional that there is no C++ header for any of these C headers: <stdnoreturn.h>, <threads.h>.
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[Note 2 : The names defined as macros in C include the following: assert, offsetof, setjmp, va_arg, va_end, and
va_start. — end note ]

7 Names that are defined as functions in C shall be defined as functions in the C++ standard library.155

8 Identifiers that are keywords or operators in C++ shall not be defined as macros in C++ standard library
headers.156

9 17.14, C standard library headers, describes the effects of using the name.h (C header) form in a C++

program.157

10 ISO/IEC 9899:2018, Annex K describes a large number of functions, with associated types and macros, which
“promote safer, more secure programming” than many of the traditional C library functions. The names of
the functions have a suffix of _s; most of them provide the same service as the C library function with the
unsuffixed name, but generally take an additional argument whose value is the size of the result array. If any
C++ header is included, it is implementation-defined whether any of these names is declared in the global
namespace. (None of them is declared in namespace std.)

11 Table 26 lists the Annex K names that may be declared in some header. These names are also subject to the
restrictions of 16.4.5.3.3.

Table 26: Names from ISO/IEC 9899:2018, Annex K [tab:c.annex.k.names]

abort_handler_s
asctime_s
bsearch_s
constraint_handler_t
ctime_s
errno_t
fopen_s
fprintf_s
freopen_s
fscanf_s
fwprintf_s
fwscanf_s
getenv_s
gets_s
gmtime_s
ignore_handler_s
localtime_s
L_tmpnam_s
mbsrtowcs_s

mbstowcs_s
memcpy_s
memmove_s
memset_s
printf_s
qsort_s
RSIZE_MAX
rsize_t
scanf_s
set_constraint_handler_s
snprintf_s
snwprintf_s
sprintf_s
sscanf_s
strcat_s
strcpy_s
strerrorlen_s
strerror_s
strlen_s

strncat_s
strncpy_s
strtok_s
swprintf_s
swscanf_s
tmpfile_s
TMP_MAX_S
tmpnam_s
vfprintf_s
vfscanf_s
vfwprintf_s
vfwscanf_s
vprintf_s
vscanf_s
vsnprintf_s
vsnwprintf_s
vsprintf_s
vsscanf_s
vswprintf_s

vswscanf_s
vwprintf_s
vwscanf_s
wcrtomb_s
wcscat_s
wcscpy_s
wcsncat_s
wcsncpy_s
wcsnlen_s
wcsrtombs_s
wcstok_s
wcstombs_s
wctomb_s
wmemcpy_s
wmemmove_s
wprintf_s
wscanf_s

16.4.2.4 Modules [std.modules]
1 The C++ standard library provides the following C++ library modules.
2 The named module std exports declarations in namespace std that are provided by the importable C++

library headers (Table 24 or the subset provided by a freestanding implementation) and the C++ headers for
C library facilities (Table 25). It additionally exports declarations in the global namespace for the storage
allocation and deallocation functions that are provided by <new> (17.6.2).

3 The named module std.compat exports the same declarations as the named module std, and additionally
exports declarations in the global namespace corresponding to the declarations in namespace std that are
provided by the C++ headers for C library facilities (Table 25), except the explicitly excluded declarations
described in 17.14.7.

4 It is unspecified to which module a declaration in the standard library is attached.

155) This disallows the practice, allowed in C, of providing a masking macro in addition to the function prototype. The only
way to achieve equivalent inline behavior in C++ is to provide a definition as an extern inline function.
156) In particular, including the standard header <iso646.h> has no effect.
157) The ".h" headers dump all their names into the global namespace, whereas the newer forms keep their names in namespace
std. Therefore, the newer forms are the preferred forms for all uses except for C++ programs which are intended to be strictly
compatible with C.
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[Note 1 : Implementations are required to ensure that mixing #include and import does not result in conflicting
attachments (6.6). — end note ]

Recommended practice: Implementations should ensure such attachments do not preclude further evolution
or decomposition of the standard library modules.

5 A declaration in the standard library denotes the same entity regardless of whether it was made reachable
through including a header, importing a header unit, or importing a C++ library module.

6 Recommended practice: Implementations should avoid exporting any other declarations from the C++ library
modules.
[Note 2 : Like all named modules, the C++ library modules do not make macros visible (10.3), such as assert (19.3.2),
errno (19.4.2), offsetof (17.2.1), and va_arg (17.13.2). — end note ]

16.4.2.5 Freestanding implementations [compliance]
1 Two kinds of implementations are defined: hosted and freestanding (4.1); the kind of the implementation is

implementation-defined. For a hosted implementation, this document describes the set of available headers.
2 A freestanding implementation has an implementation-defined set of headers. This set shall include at least

the headers shown in Table 27.

Table 27: C++ headers for freestanding implementations [tab:headers.cpp.fs]

Subclause Header
17.2 Common definitions <cstddef>
17.3 Implementation properties <cfloat>, <climits>, <limits>, <version>
17.4.1 Integer types <cstdint>
17.5 Start and termination <cstdlib>
17.6 Dynamic memory management <new>
17.7 Type identification <typeinfo>
17.8 Source location <source_location>
17.9 Exception handling <exception>
17.10 Initializer lists <initializer_list>
17.11 Comparisons <compare>
17.12 Coroutines support <coroutine>
17.13 Other runtime support <cstdarg>
Clause 18 Concepts library <concepts>
21.3 Type traits <type_traits>
22.15 Bit manipulation <bit>
33.5 Atomics <atomic>
22.2 Utility components <utility>
22.4 Tuples <tuple>
20.2 Memory <memory>
22.10 Function objects <functional>
21.4 Compile-time rational arithmetic <ratio>
Clause 25 Iterators library <iterator>
Clause 26 Ranges library <ranges>

3 For each of the headers listed in Table 27, a freestanding implementation provides at least the freestanding
items (16.3.3.6) declared in the header.

16.4.3 Using the library [using]
16.4.3.1 Overview [using.overview]

1 Subclause 16.4.3 describes how a C++ program gains access to the facilities of the C++ standard library.
16.4.3.2 describes effects during translation phase 4, while 16.4.3.3 describes effects during phase 8 (5.2).

16.4.3.2 Headers [using.headers]
1 The entities in the C++ standard library are defined in headers, whose contents are made available to a

translation unit when it contains the appropriate #include preprocessing directive (15.3) or the appropriate
import declaration (10.3).
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2 A translation unit may include library headers in any order (5.1). Each may be included more than
once, with no effect different from being included exactly once, except that the effect of including either
<cassert> (19.3.2) or <assert.h> (17.14) depends each time on the lexically current definition of NDEBUG.158

3 A translation unit shall include a header only outside of any declaration or definition and, in the case of a
module unit, only in its global-module-fragment, and shall include the header or import the corresponding
header unit lexically before the first reference in that translation unit to any of the entities declared in that
header. No diagnostic is required.

16.4.3.3 Linkage [using.linkage]
1 Entities in the C++ standard library have external linkage (6.6). Unless otherwise specified, objects and

functions have the default extern "C++" linkage (9.11).
2 Whether a name from the C standard library declared with external linkage has extern "C" or extern

"C++" linkage is implementation-defined. It is recommended that an implementation use extern "C++"
linkage for this purpose.159

3 Objects and functions defined in the library and required by a C++ program are included in the program
prior to program startup.

4 See also replacement functions (16.4.5.6), runtime changes (16.4.5.7).

16.4.4 Requirements on types and expressions [utility.requirements]
16.4.4.1 General [utility.requirements.general]

1 16.4.4.2 describes requirements on types and expressions used to instantiate templates defined in the C++

standard library. 16.4.4.3 describes the requirements on swappable types and swappable expressions. 16.4.4.4
describes the requirements on pointer-like types that support null values. 16.4.4.5 describes the requirements
on hash function objects. 16.4.4.6 describes the requirements on storage allocators.

16.4.4.2 Template argument requirements [utility.arg.requirements]
1 The template definitions in the C++ standard library refer to various named requirements whose details are

set out in Tables 28–35. In these tables,
—(1.1) T denotes an object or reference type to be supplied by a C++ program instantiating a template,
—(1.2) a, b, and c denote values of type (possibly const) T,
—(1.3) s and t denote modifiable lvalues of type T,
—(1.4) u denotes an identifier,
—(1.5) rv denotes an rvalue of type T, and
—(1.6) v denotes an lvalue of type (possibly const) T or an rvalue of type const T.

2 In general, a default constructor is not required. Certain container class member function signatures specify
T() as a default argument. T() shall be a well-defined expression (9.4) if one of those signatures is called
using the default argument (9.3.4.7).

Table 28: Cpp17EqualityComparable requirements [tab:cpp17.equalitycomparable]

Expression Return type Requirement
a == b decltype(a ==

b) models
boolean-testa-
ble

== is an equivalence relation, that is, it has the
following properties:

— For all a, a == a.
— If a == b, then b == a.
— If a == b and b == c, then a == c.

158) This is the same as the C standard library.
159) The only reliable way to declare an object or function signature from the C standard library is by including the header that
declares it, notwithstanding the latitude granted in ISO/IEC 9899:2018, 7.1.4.
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Table 29: Cpp17LessThanComparable requirements [tab:cpp17.lessthancomparable]

Expression Return type Requirement
a < b decltype(a <

b) models
boolean-testa-
ble

< is a strict weak ordering relation (27.8)

Table 30: Cpp17DefaultConstructible requirements [tab:cpp17.defaultconstructible]

Expression Post-condition
T t; object t is default-initialized
T u{}; object u is value-initialized or aggregate-initialized
T()
T{}

an object of type T is value-initialized or aggregate-
initialized

Table 31: Cpp17MoveConstructible requirements [tab:cpp17.moveconstructible]

Expression Post-condition
T u = rv; u is equivalent to the value of rv before the construction
T(rv) T(rv) is equivalent to the value of rv before the construction
rv’s state is unspecified
[Note 1 : rv must still meet the requirements of the library component that is using it. The
operations listed in those requirements must work as specified whether rv has been moved from
or not. — end note ]

Table 32: Cpp17CopyConstructible requirements (in addition to Cpp17MoveConstructible)
[tab:cpp17.copyconstructible]

Expression Post-condition
T u = v; the value of v is unchanged and is equivalent to u
T(v) the value of v is unchanged and is equivalent to T(v)

Table 33: Cpp17MoveAssignable requirements [tab:cpp17.moveassignable]

Expression Return type Return value Post-condition
t = rv T& t If t and rv do not refer to the

same object, t is equivalent to
the value of rv before the assign-
ment

rv’s state is unspecified.
[Note 2 : rv must still meet the requirements of the library component that is using it, whether
or not t and rv refer to the same object. The operations listed in those requirements must work
as specified whether rv has been moved from or not. — end note ]

Table 34: Cpp17CopyAssignable requirements (in addition to Cpp17MoveAssignable)
[tab:cpp17.copyassignable]

Expression Return type Return value Post-condition
t = v T& t t is equivalent to v, the value of

v is unchanged
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Table 35: Cpp17Destructible requirements [tab:cpp17.destructible]

Expression Post-condition
u.~T() All resources owned by u are reclaimed, no exception is propagated.
[Note 3 : Array types and non-object types are not Cpp17Destructible. — end note ]

16.4.4.3 Swappable requirements [swappable.requirements]
1 This subclause provides definitions for swappable types and expressions. In these definitions, let t denote an

expression of type T, and let u denote an expression of type U.
2 An object t is swappable with an object u if and only if:

—(2.1) the expressions swap(t, u) and swap(u, t) are valid when evaluated in the context described below,
and

—(2.2) these expressions have the following effects:
—(2.2.1) the object referred to by t has the value originally held by u and
—(2.2.2) the object referred to by u has the value originally held by t.

3 The context in which swap(t, u) and swap(u, t) are evaluated shall ensure that a binary non-member
function named “swap” is selected via overload resolution (12.2) on a candidate set that includes:

—(3.1) the two swap function templates defined in <utility> (22.2.1) and
—(3.2) the lookup set produced by argument-dependent lookup (6.5.4).

[Note 1 : If T and U are both fundamental types or arrays of fundamental types and the declarations from the header
<utility> are in scope, the overall lookup set described above is equivalent to that of the qualified name lookup
applied to the expression std::swap(t, u) or std::swap(u, t) as appropriate. — end note ]
[Note 2 : It is unspecified whether a library component that has a swappable requirement includes the header <utility>
to ensure an appropriate evaluation context. — end note ]

4 An rvalue or lvalue t is swappable if and only if t is swappable with any rvalue or lvalue, respectively, of
type T.

5 A type X meets the Cpp17Swappable requirements if lvalues of type X are swappable.
6 A type X meeting any of the iterator requirements (25.3) meets the Cpp17ValueSwappable requirements if, for

any dereferenceable object x of type X, *x is swappable.
7 [Example 1 : User code can ensure that the evaluation of swap calls is performed in an appropriate context under the

various conditions as follows:
#include <cassert>
#include <utility>

// Preconditions: std::forward<T>(t) is swappable with std::forward<U>(u).
template<class T, class U>
void value_swap(T&& t, U&& u) {

using std::swap;
swap(std::forward<T>(t), std::forward<U>(u)); // OK, uses “swappable with” conditions

// for rvalues and lvalues
}

// Preconditions: T meets the Cpp17Swappable requirements.
template<class T>
void lv_swap(T& t1, T& t2) {

using std::swap;
swap(t1, t2); // OK, uses swappable conditions for lvalues of type T

}

namespace N {
struct A { int m; };
struct Proxy { A* a; };
Proxy proxy(A& a) { return Proxy{ &a }; }

§ 16.4.4.3 492



© ISO/IEC N4950

void swap(A& x, Proxy p) {
std::swap(x.m, p.a->m); // OK, uses context equivalent to swappable

// conditions for fundamental types
}
void swap(Proxy p, A& x) { swap(x, p); } // satisfy symmetry constraint

}

int main() {
int i = 1, j = 2;
lv_swap(i, j);
assert(i == 2 && j == 1);

N::A a1 = { 5 }, a2 = { -5 };
value_swap(a1, proxy(a2));
assert(a1.m == -5 && a2.m == 5);

}

— end example ]

16.4.4.4 Cpp17NullablePointer requirements [nullablepointer.requirements]
1 A Cpp17NullablePointer type is a pointer-like type that supports null values. A type P meets the Cpp17-

NullablePointer requirements if:
—(1.1) P meets the Cpp17EqualityComparable, Cpp17DefaultConstructible, Cpp17CopyConstructible, Cpp17-

CopyAssignable, Cpp17Swappable, and Cpp17Destructible requirements,
—(1.2) the expressions shown in Table 36 are valid and have the indicated semantics, and
—(1.3) P meets all the other requirements of this subclause.

2 A value-initialized object of type P produces the null value of the type. The null value shall be equivalent
only to itself. A default-initialized object of type P may have an indeterminate value.
[Note 1 : Operations involving indeterminate values can cause undefined behavior. — end note ]

3 An object p of type P can be contextually converted to bool (7.3). The effect shall be as if p != nullptr
had been evaluated in place of p.

4 No operation which is part of the Cpp17NullablePointer requirements shall exit via an exception.
5 In Table 36, u denotes an identifier, t denotes a non-const lvalue of type P, a and b denote values of type

(possibly const) P, and np denotes a value of type (possibly const) std::nullptr_t.

Table 36: Cpp17NullablePointer requirements [tab:cpp17.nullablepointer]

Expression Return type Operational semantics
P u(np); Postconditions: u == nullptr
P u = np;
P(np) Postconditions: P(np) == nullptr
t = np P& Postconditions: t == nullptr
a != b decltype(a != b) models

boolean-testable
!(a == b)

a == np decltype(a == np) and
decltype(np == a) each model
boolean-testable

a == P()

np == a
a != np decltype(a != np) and

decltype(np != a) each model
boolean-testable

!(a == np)

np != a

16.4.4.5 Cpp17Hash requirements [hash.requirements]
1 A type H meets the Cpp17Hash requirements if:

—(1.1) it is a function object type (22.10),
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—(1.2) it meets the Cpp17CopyConstructible (Table 32) and Cpp17Destructible (Table 35) requirements, and
—(1.3) the expressions shown in Table 37 are valid and have the indicated semantics.

2 Given Key is an argument type for function objects of type H, in Table 37 h is a value of type (possibly const)
H, u is an lvalue of type Key, and k is a value of a type convertible to (possibly const) Key.

Table 37: Cpp17Hash requirements [tab:cpp17.hash]

Expression Return type Requirement
h(k) size_t The value returned shall depend only on the argument k for

the duration of the program.
[Note 1 : Thus all evaluations of the expression h(k) with the
same value for k yield the same result for a given execution of
the program. — end note ]
For two different values t1 and t2, the probability that h(t1)
and h(t2) compare equal should be very small, approaching
1.0 / numeric_limits<size_t>::max().

h(u) size_t Shall not modify u.

16.4.4.6 Cpp17Allocator requirements [allocator.requirements]
16.4.4.6.1 General [allocator.requirements.general]

1 The library describes a standard set of requirements for allocators, which are class-type objects that encapsulate
the information about an allocation model. This information includes the knowledge of pointer types, the type
of their difference, the type of the size of objects in this allocation model, as well as the memory allocation
and deallocation primitives for it. All of the string types (Clause 23), containers (Clause 24) (except array),
string buffers and string streams (Clause 31), and match_results (Clause 32) are parameterized in terms of
allocators.

2 In subclause 16.4.4.6,
—(2.1) T, U, C denote any cv-unqualified object type (6.8.1),
—(2.2) X denotes an allocator class for type T,
—(2.3) Y denotes the corresponding allocator class for type U,
—(2.4) XX denotes the type allocator_traits<X>,
—(2.5) YY denotes the type allocator_traits<Y>,
—(2.6) a, a1, a2 denote lvalues of type X,
—(2.7) u denotes the name of a variable being declared,
—(2.8) b denotes a value of type Y,
—(2.9) c denotes a pointer of type C* through which indirection is valid,
—(2.10) p denotes a value of type XX::pointer obtained by calling a1.allocate, where a1 == a,
—(2.11) q denotes a value of type XX::const_pointer obtained by conversion from a value p,
—(2.12) r denotes a value of type T& obtained by the expression *p,
—(2.13) w denotes a value of type XX::void_pointer obtained by conversion from a value p,
—(2.14) x denotes a value of type XX::const_void_pointer obtained by conversion from a value q or a value

w,
—(2.15) y denotes a value of type XX::const_void_pointer obtained by conversion from a result value of

YY::allocate, or else a value of type (possibly const) std::nullptr_t,
—(2.16) n denotes a value of type XX::size_type,
—(2.17) Args denotes a template parameter pack, and
—(2.18) args denotes a function parameter pack with the pattern Args&&.

3 The class template allocator_traits (20.2.9) supplies a uniform interface to all allocator types. This
subclause describes the requirements on allocator types and thus on types used to instantiate allocator_-
traits. A requirement is optional if a default for a given type or expression is specified. Within the standard
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library allocator_traits template, an optional requirement that is not supplied by an allocator is replaced
by the specified default type or expression.
[Note 1 : There are no program-defined specializations of allocator_traits. — end note ]

typename X::pointer

4 Remarks: Default: T*

typename X::const_pointer

5 Mandates: XX::pointer is convertible to XX::const_pointer.
6 Remarks: Default: pointer_traits<XX::pointer>::rebind<const T>

typename X::void_pointer
typename Y::void_pointer

7 Mandates: XX::pointer is convertible to XX::void_pointer. XX::void_pointer and YY::void_-
pointer are the same type.

8 Remarks: Default: pointer_traits<XX::pointer>::rebind<void>

typename X::const_void_pointer
typename Y::const_void_pointer

9 Mandates: XX::pointer, XX::const_pointer, and XX::void_pointer are convertible to XX::const_-
void_pointer. XX::const_void_pointer and YY::const_void_pointer are the same type.

10 Remarks: Default: pointer_traits<XX::pointer>::rebind<const void>

typename X::value_type

11 Result: Identical to T.

typename X::size_type

12 Result: An unsigned integer type that can represent the size of the largest object in the allocation
model.

13 Remarks: Default: make_unsigned_t<XX::difference_type>

typename X::difference_type

14 Result: A signed integer type that can represent the difference between any two pointers in the allocation
model.

15 Remarks: Default: pointer_traits<XX::pointer>::difference_type

typename X::template rebind<U>::other

16 Result: Y
17 Postconditions: For all U (including T), YY::rebind_alloc<T> is X.
18 Remarks: If Allocator is a class template instantiation of the form SomeAllocator<T, Args>, where

Args is zero or more type arguments, and Allocator does not supply a rebind member template,
the standard allocator_traits template uses SomeAllocator<U, Args> in place of Allocator::re-
bind<U>::other by default. For allocator types that are not template instantiations of the above form,
no default is provided.

19 [Note 2 : The member class template rebind of X is effectively a typedef template. In general, if the
name Allocator is bound to SomeAllocator<T>, then Allocator::rebind<U>::other is the same type as
SomeAllocator<U>, where SomeAllocator<T>::value_type is T and SomeAllocator<U>::value_type is U. —
end note ]

*p

20 Result: T&

*q

21 Result: const T&
22 Postconditions: *q refers to the same object as *p.
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p->m

23 Result: Type of T::m.
24 Preconditions: (*p).m is well-defined.
25 Effects: Equivalent to (*p).m.

q->m

26 Result: Type of T::m.
27 Preconditions: (*q).m is well-defined.
28 Effects: Equivalent to (*q).m.

static_cast<XX::pointer>(w)

29 Result: XX::pointer
30 Postconditions: static_cast<XX::pointer>(w) == p.

static_cast<XX::const_pointer>(x)

31 Result: XX::const_pointer
32 Postconditions: static_cast<XX::const_pointer>(x) == q.

pointer_traits<XX::pointer>::pointer_to(r)

33 Result: XX::pointer
34 Postconditions: Same as p.

a.allocate(n)

35 Result: XX::pointer
36 Effects: Memory is allocated for an array of n T and such an object is created but array elements are

not constructed.
[Example 1 : When reusing storage denoted by some pointer value p, launder(reinterpret_cast<T*>(new (p)
byte[n * sizeof(T)])) can be used to implicitly create a suitable array object and obtain a pointer to it.

— end example ]
37 Throws: allocate may throw an appropriate exception.
38 [Note 3 : It is intended that a.allocate be an efficient means of allocating a single object of type T, even when

sizeof(T) is small. That is, there is no need for a container to maintain its own free list. — end note ]
39 Remarks: If n == 0, the return value is unspecified.

a.allocate(n, y)

40 Result: XX::pointer
41 Effects: Same as a.allocate(n). The use of y is unspecified, but it is intended as an aid to locality.
42 Remarks: Default: a.allocate(n)

a.allocate_at_least(n)

43 Result: allocation_result<XX::pointer, XX::size_type>
44 Returns: allocation_result<XX::pointer, XX::size_type>{ptr, count} where ptr is memory

allocated for an array of count T and such an object is created but array elements are not constructed,
such that count ≥ n. If n == 0, the return value is unspecified.

45 Throws: allocate_at_least may throw an appropriate exception.
46 Remarks: Default: {a.allocate(n), n}.

a.deallocate(p, n)

47 Result: (not used)
48 Preconditions:
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—(48.1) If p is memory that was obtained by a call to a.allocate_at_least, let ret be the value returned
and req be the value passed as the first argument of that call. p is equal to ret.ptr and n is a
value such that req ≤ n ≤ ret.count.

—(48.2) Otherwise, p is a pointer value obtained from allocate. n equals the value passed as the first
argument to the invocation of allocate which returned p.

p has not been invalidated by an intervening call to deallocate.
49 Throws: Nothing.

a.max_size()

50 Result: XX::size_type
51 Returns: The largest value n that can meaningfully be passed to a.allocate(n).
52 Remarks: Default: numeric_limits<size_type>::max() / sizeof(value_type)

a1 == a2

53 Result: bool
54 Returns: true only if storage allocated from each can be deallocated via the other.
55 Throws: Nothing.
56 Remarks: operator== shall be reflexive, symmetric, and transitive.

a1 != a2

57 Result: bool
58 Returns: !(a1 == a2).

a == b

59 Result: bool
60 Returns: a == YY::rebind_alloc<T>(b).

a != b

61 Result: bool
62 Returns: !(a == b).

X u(a);
X u = a;

63 Postconditions: u == a
64 Throws: Nothing.

X u(b);

65 Postconditions: Y(u) == b and u == X(b).
66 Throws: Nothing.

X u(std::move(a));
X u = std::move(a);

67 Postconditions: The value of a is unchanged and is equal to u.
68 Throws: Nothing.

X u(std::move(b));

69 Postconditions: u is equal to the prior value of X(b).
70 Throws: Nothing.

a.construct(c, args...)

71 Result: (not used)
72 Effects: Constructs an object of type C at c.
73 Remarks: Default: construct_at(c, std::forward<Args>(args)...)
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a.destroy(c)

74 Result: (not used)
75 Effects: Destroys the object at c.
76 Remarks: Default: destroy_at(c)

a.select_on_container_copy_construction()

77 Result: X
78 Returns: Typically returns either a or X().
79 Remarks: Default: return a;

typename X::propagate_on_container_copy_assignment

80 Result: Identical to or derived from true_type or false_type.
81 Returns: true_type only if an allocator of type X should be copied when the client container is

copy-assigned; if so, X shall meet the Cpp17CopyAssignable requirements (Table 34) and the copy
operation shall not throw exceptions.

82 Remarks: Default: false_type

typename X::propagate_on_container_move_assignment

83 Result: Identical to or derived from true_type or false_type.
84 Returns: true_type only if an allocator of type X should be moved when the client container is

move-assigned; if so, X shall meet the Cpp17MoveAssignable requirements (Table 33) and the move
operation shall not throw exceptions.

85 Remarks: Default: false_type

typename X::propagate_on_container_swap

86 Result: Identical to or derived from true_type or false_type.
87 Returns: true_type only if an allocator of type X should be swapped when the client container is

swapped; if so, X shall meet the Cpp17Swappable requirements (16.4.4.3) and the swap operation shall
not throw exceptions.

88 Remarks: Default: false_type

typename X::is_always_equal

89 Result: Identical to or derived from true_type or false_type.
90 Returns: true_type only if the expression a1 == a2 is guaranteed to be true for any two (possibly

const) values a1, a2 of type X.
91 Remarks: Default: is_empty<X>::type
92 An allocator type X shall meet the Cpp17CopyConstructible requirements (Table 32). The XX::pointer,

XX::const_pointer, XX::void_pointer, and XX::const_void_pointer types shall meet the Cpp17Nullable-
Pointer requirements (Table 36). No constructor, comparison operator function, copy operation, move
operation, or swap operation on these pointer types shall exit via an exception. XX::pointer and XX::const_-
pointer shall also meet the requirements for a Cpp17RandomAccessIterator (25.3.5.7) and the additional
requirement that, when p and (p + n) are dereferenceable pointer values for some integral value n,

addressof(*(p + n)) == addressof(*p) + n

is true.
93 Let x1 and x2 denote objects of (possibly different) types XX::void_pointer, XX::const_void_pointer,

XX::pointer, or XX::const_pointer. Then, x1 and x2 are equivalently-valued pointer values, if and only if
both x1 and x2 can be explicitly converted to the two corresponding objects px1 and px2 of type XX::const_-
pointer, using a sequence of static_casts using only these four types, and the expression px1 == px2
evaluates to true.

94 Let w1 and w2 denote objects of type XX::void_pointer. Then for the expressions
w1 == w2
w1 != w2
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either or both objects may be replaced by an equivalently-valued object of type XX::const_void_pointer
with no change in semantics.

95 Let p1 and p2 denote objects of type XX::pointer. Then for the expressions
p1 == p2
p1 != p2
p1 < p2
p1 <= p2
p1 >= p2
p1 > p2
p1 - p2

either or both objects may be replaced by an equivalently-valued object of type XX::const_pointer with no
change in semantics.

96 An allocator may constrain the types on which it can be instantiated and the arguments for which its
construct or destroy members may be called. If a type cannot be used with a particular allocator, the
allocator class or the call to construct or destroy may fail to instantiate.

97 If the alignment associated with a specific over-aligned type is not supported by an allocator, instantiation of
the allocator for that type may fail. The allocator also may silently ignore the requested alignment.
[Note 4 : Additionally, the member function allocate for that type can fail by throwing an object of type bad_alloc.

— end note ]
98 [Example 2 : The following is an allocator class template supporting the minimal interface that meets the requirements

of 16.4.4.6.1:
template<class T>
struct SimpleAllocator {

using value_type = T;
SimpleAllocator(ctor args );

template<class U> SimpleAllocator(const SimpleAllocator<U>& other);

T* allocate(std::size_t n);
void deallocate(T* p, std::size_t n);

template<class U> bool operator==(const SimpleAllocator<U>& rhs) const;
};

— end example ]

16.4.4.6.2 Allocator completeness requirements [allocator.requirements.completeness]
1 If X is an allocator class for type T, X additionally meets the allocator completeness requirements if, whether

or not T is a complete type:
—(1.1) X is a complete type, and
—(1.2) all the member types of allocator_traits<X> (20.2.9) other than value_type are complete types.

16.4.5 Constraints on programs [constraints]
16.4.5.1 Overview [constraints.overview]

1 Subclause 16.4.5 describes restrictions on C++ programs that use the facilities of the C++ standard library.
The following subclauses specify constraints on the program’s use of namespaces (16.4.5.2.1), its use of
various reserved names (16.4.5.3), its use of headers (16.4.5.4), its use of standard library classes as base
classes (16.4.5.5), its definitions of replacement functions (16.4.5.6), and its installation of handler functions
during execution (16.4.5.7).

16.4.5.2 Namespace use [namespace.constraints]
16.4.5.2.1 Namespace std [namespace.std]

1 Unless otherwise specified, the behavior of a C++ program is undefined if it adds declarations or definitions
to namespace std or to a namespace within namespace std.
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2 Unless explicitly prohibited, a program may add a template specialization for any standard library class
template to namespace std provided that (a) the added declaration depends on at least one program-defined
type and (b) the specialization meets the standard library requirements for the original template.160

3 The behavior of a C++ program is undefined if it declares an explicit or partial specialization of any standard
library variable template, except where explicitly permitted by the specification of that variable template.
[Note 1 : The requirements on an explicit or partial specialization are stated by each variable template that grants
such permission. — end note ]

4 The behavior of a C++ program is undefined if it declares
—(4.1) an explicit specialization of any member function of a standard library class template, or
—(4.2) an explicit specialization of any member function template of a standard library class or class template,

or
—(4.3) an explicit or partial specialization of any member class template of a standard library class or class

template, or
—(4.4) a deduction guide for any standard library class template.

5 A program may explicitly instantiate a class template defined in the standard library only if the declaration
(a) depends on the name of at least one program-defined type and (b) the instantiation meets the standard
library requirements for the original template.

6 Let F denote a standard library function (16.4.6.4), a standard library static member function, or an
instantiation of a standard library function template. Unless F is designated an addressable function, the
behavior of a C++ program is unspecified (possibly ill-formed) if it explicitly or implicitly attempts to form a
pointer to F .
[Note 2 : Possible means of forming such pointers include application of the unary & operator (7.6.2.2), addressof
(20.2.11), or a function-to-pointer standard conversion (7.3.4). — end note ]

Moreover, the behavior of a C++ program is unspecified (possibly ill-formed) if it attempts to form a reference
to F or if it attempts to form a pointer-to-member designating either a standard library non-static member
function (16.4.6.5) or an instantiation of a standard library member function template.

7 A translation unit shall not declare namespace std to be an inline namespace (9.8.2).

16.4.5.2.2 Namespace posix [namespace.posix]
1 The behavior of a C++ program is undefined if it adds declarations or definitions to namespace posix or to a

namespace within namespace posix unless otherwise specified. The namespace posix is reserved for use by
ISO/IEC/IEEE 9945 and other POSIX standards.

16.4.5.2.3 Namespaces for future standardization [namespace.future]
1 Top-level namespaces whose namespace-name consists of std followed by one or more digits (5.10) are reserved

for future standardization. The behavior of a C++ program is undefined if it adds declarations or definitions
to such a namespace.
[Example 1 : The top-level namespace std2 is reserved for use by future revisions of this International Standard.

— end example ]

16.4.5.3 Reserved names [reserved.names]
16.4.5.3.1 General [reserved.names.general]

1 The C++ standard library reserves the following kinds of names:
—(1.1) macros
—(1.2) global names
—(1.3) names with external linkage

2 If a program declares or defines a name in a context where it is reserved, other than as explicitly allowed by
Clause 16, its behavior is undefined.

160) Any library code that instantiates other library templates must be prepared to work adequately with any user-supplied
specialization that meets the minimum requirements of this document.
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16.4.5.3.2 Zombie names [zombie.names]
1 In namespace std, the following names are reserved for previous standardization:

—(1.1) auto_ptr,
—(1.2) auto_ptr_ref,
—(1.3) binary_function,
—(1.4) binary_negate,
—(1.5) bind1st,
—(1.6) bind2nd,
—(1.7) binder1st,
—(1.8) binder2nd,
—(1.9) const_mem_fun1_ref_t,
—(1.10) const_mem_fun1_t,
—(1.11) const_mem_fun_ref_t,
—(1.12) const_mem_fun_t,
—(1.13) declare_no_pointers,
—(1.14) declare_reachable,
—(1.15) get_pointer_safety,
—(1.16) get_temporary_buffer,
—(1.17) get_unexpected,
—(1.18) gets,
—(1.19) is_literal_type,
—(1.20) is_literal_type_v,
—(1.21) mem_fun1_ref_t,
—(1.22) mem_fun1_t,
—(1.23) mem_fun_ref_t,
—(1.24) mem_fun_ref,
—(1.25) mem_fun_t,
—(1.26) mem_fun,
—(1.27) not1,
—(1.28) not2,
—(1.29) pointer_safety,
—(1.30) pointer_to_binary_function,
—(1.31) pointer_to_unary_function,
—(1.32) ptr_fun,
—(1.33) random_shuffle,
—(1.34) raw_storage_iterator,
—(1.35) result_of,
—(1.36) result_of_t,
—(1.37) return_temporary_buffer,
—(1.38) set_unexpected,
—(1.39) unary_function,
—(1.40) unary_negate,
—(1.41) uncaught_exception,
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—(1.42) undeclare_no_pointers,
—(1.43) undeclare_reachable, and
—(1.44) unexpected_handler.

2 The following names are reserved as members for previous standardization, and may not be used as a name
for object-like macros in portable code:

—(2.1) argument_type,
—(2.2) first_argument_type,
—(2.3) io_state,
—(2.4) open_mode,
—(2.5) preferred,
—(2.6) second_argument_type,
—(2.7) seek_dir, and.
—(2.8) strict.

3 The name stossc is reserved as a member function for previous standardization, and may not be used as a
name for function-like macros in portable code.

4 The header names <ccomplex>, <ciso646>, <cstdalign>, <cstdbool>, and <ctgmath> are reserved for
previous standardization.

16.4.5.3.3 Macro names [macro.names]
1 A translation unit that includes a standard library header shall not #define or #undef names declared in

any standard library header.
2 A translation unit shall not #define or #undef names lexically identical to keywords, to the identifiers listed

in Table 4, or to the attribute-tokens described in 9.12, except that the names likely and unlikely may be
defined as function-like macros (15.6).

16.4.5.3.4 External linkage [extern.names]
1 Each name declared as an object with external linkage in a header is reserved to the implementation to

designate that library object with external linkage,161 both in namespace std and in the global namespace.
2 Each global function signature declared with external linkage in a header is reserved to the implementation

to designate that function signature with external linkage.162

3 Each name from the C standard library declared with external linkage is reserved to the implementation for
use as a name with extern "C" linkage, both in namespace std and in the global namespace.

4 Each function signature from the C standard library declared with external linkage is reserved to the
implementation for use as a function signature with both extern "C" and extern "C++" linkage,163 or as a
name of namespace scope in the global namespace.

16.4.5.3.5 Types [extern.types]
1 For each type T from the C standard library, the types ::T and std::T are reserved to the implementation

and, when defined, ::T shall be identical to std::T.

16.4.5.3.6 User-defined literal suffixes [usrlit.suffix]
1 Literal suffix identifiers (12.6) that do not start with an underscore are reserved for future standardization.

Literal suffix identifiers that contain a double underscore __ are reserved for use by C++ implementations.

16.4.5.4 Headers [alt.headers]
1 If a file with a name equivalent to the derived file name for one of the C++ standard library headers is not

provided as part of the implementation, and a file with that name is placed in any of the standard places for
a source file to be included (15.3), the behavior is undefined.

161) The list of such reserved names includes errno, declared or defined in <cerrno> (19.4.2).
162) The list of such reserved function signatures with external linkage includes setjmp(jmp_buf), declared or defined in
<csetjmp> (17.13.3), and va_end(va_list), declared or defined in <cstdarg> (17.13.2).
163) The function signatures declared in <cuchar> (23.5.5), <cwchar> (23.5.4), and <cwctype> (23.5.2) are always reserved,
notwithstanding the restrictions imposed in subclause 4.5.1 of Amendment 1 to the C Standard for these headers.
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16.4.5.5 Derived classes [derived.classes]
1 Virtual member function signatures defined for a base class in the C++ standard library may be overridden

in a derived class defined in the program (11.7.3).

16.4.5.6 Replacement functions [replacement.functions]
1 Clause 17 through Clause 33 and Annex D describe the behavior of numerous functions defined by the C++

standard library. Under some circumstances, however, certain of these function descriptions also apply to
replacement functions defined in the program.

2 A C++ program may provide the definition for any of the following dynamic memory allocation function
signatures declared in header <new> (6.7.5.5, 17.6.2):

operator new(std::size_t)
operator new(std::size_t, std::align_val_t)
operator new(std::size_t, const std::nothrow_t&)
operator new(std::size_t, std::align_val_t, const std::nothrow_t&)

operator delete(void*)
operator delete(void*, std::size_t)
operator delete(void*, std::align_val_t)
operator delete(void*, std::size_t, std::align_val_t)
operator delete(void*, const std::nothrow_t&)
operator delete(void*, std::align_val_t, const std::nothrow_t&)

operator new[](std::size_t)
operator new[](std::size_t, std::align_val_t)
operator new[](std::size_t, const std::nothrow_t&)
operator new[](std::size_t, std::align_val_t, const std::nothrow_t&)

operator delete[](void*)
operator delete[](void*, std::size_t)
operator delete[](void*, std::align_val_t)
operator delete[](void*, std::size_t, std::align_val_t)
operator delete[](void*, const std::nothrow_t&)
operator delete[](void*, std::align_val_t, const std::nothrow_t&)

3 The program’s definitions are used instead of the default versions supplied by the implementation (17.6.3).
Such replacement occurs prior to program startup (6.3, 6.9.3). The program’s declarations shall not be
specified as inline. No diagnostic is required.

16.4.5.7 Handler functions [handler.functions]
1 The C++ standard library provides a default version of the following handler function (Clause 17):

—(1.1) terminate_handler
2 A C++ program may install different handler functions during execution, by supplying a pointer to a function

defined in the program or the library as an argument to (respectively):
—(2.1) set_new_handler
—(2.2) set_terminate

See also subclauses 17.6.4, Storage allocation errors, and 17.9, Exception handling.
3 A C++ program can get a pointer to the current handler function by calling the following functions:

—(3.1) get_new_handler
—(3.2) get_terminate

4 Calling the set_* and get_* functions shall not incur a data race. A call to any of the set_* functions shall
synchronize with subsequent calls to the same set_* function and to the corresponding get_* function.

16.4.5.8 Other functions [res.on.functions]
1 In certain cases (replacement functions, handler functions, operations on types used to instantiate standard

library template components), the C++ standard library depends on components supplied by a C++ pro-
gram. If these components do not meet their requirements, this document places no requirements on the
implementation.

2 In particular, the behavior is undefined in the following cases:
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—(2.1) For replacement functions (17.6.3), if the installed replacement function does not implement the
semantics of the applicable Required behavior : paragraph.

—(2.2) For handler functions (17.6.4.3, 17.9.5.1), if the installed handler function does not implement the
semantics of the applicable Required behavior : paragraph.

—(2.3) For types used as template arguments when instantiating a template component, if the operations on
the type do not implement the semantics of the applicable Requirements subclause (16.4.4.6, 24.2, 25.3,
27.2, 28.2). Operations on such types can report a failure by throwing an exception unless otherwise
specified.

—(2.4) If any replacement function or handler function or destructor operation exits via an exception, unless
specifically allowed in the applicable Required behavior : paragraph.

—(2.5) If an incomplete type (6.8.1) is used as a template argument when instantiating a template component
or evaluating a concept, unless specifically allowed for that component.

16.4.5.9 Function arguments [res.on.arguments]
1 Each of the following applies to all arguments to functions defined in the C++ standard library, unless

explicitly stated otherwise.
—(1.1) If an argument to a function has an invalid value (such as a value outside the domain of the function or

a pointer invalid for its intended use), the behavior is undefined.
—(1.2) If a function argument is described as being an array, the pointer actually passed to the function shall

have a value such that all address computations and accesses to objects (that would be valid if the
pointer did point to the first element of such an array) are in fact valid.

—(1.3) If a function argument is bound to an rvalue reference parameter, the implementation may assume
that this parameter is a unique reference to this argument, except that the argument passed to a
move-assignment operator may be a reference to *this (16.4.6.15).
[Note 1 : If the type of a parameter is a forwarding reference (13.10.3.2) that is deduced to an lvalue reference
type, then the argument is not bound to an rvalue reference. — end note ]
[Note 2 : If a program casts an lvalue to an xvalue while passing that lvalue to a library function (e.g., by calling
the function with the argument std::move(x)), the program is effectively asking that function to treat that
lvalue as a temporary object. The implementation is free to optimize away aliasing checks which would possibly
be needed if the argument was an lvalue. — end note ]

16.4.5.10 Library object access [res.on.objects]
1 The behavior of a program is undefined if calls to standard library functions from different threads may

introduce a data race. The conditions under which this may occur are specified in 16.4.6.10.
[Note 1 : Modifying an object of a standard library type that is shared between threads risks undefined behavior
unless objects of that type are explicitly specified as being shareable without data races or the user supplies a locking
mechanism. — end note ]

2 If an object of a standard library type is accessed, and the beginning of the object’s lifetime (6.7.3) does not
happen before the access, or the access does not happen before the end of the object’s lifetime, the behavior
is undefined unless otherwise specified.
[Note 2 : This applies even to objects such as mutexes intended for thread synchronization. — end note ]

16.4.5.11 Semantic requirements [res.on.requirements]
1 A sequence Args of template arguments is said to model a concept C if Args satisfies C (13.5.3) and meets all

semantic requirements (if any) given in the specification of C.
2 If the validity or meaning of a program depends on whether a sequence of template arguments models a

concept, and the concept is satisfied but not modeled, the program is ill-formed, no diagnostic required.
3 If the semantic requirements of a declaration’s constraints (16.3.2.3) are not modeled at the point of use, the

program is ill-formed, no diagnostic required.

16.4.6 Conforming implementations [conforming]
16.4.6.1 Overview [conforming.overview]

1 Subclause 16.4.6 describes the constraints upon, and latitude of, implementations of the C++ standard library.
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2 An implementation’s use of headers is discussed in 16.4.6.2, its use of macros in 16.4.6.3, non-member functions
in 16.4.6.4, member functions in 16.4.6.5, data race avoidance in 16.4.6.10, access specifiers in 16.4.6.11, class
derivation in 16.4.6.12, and exceptions in 16.4.6.13.

16.4.6.2 Headers [res.on.headers]
1 A C++ header may include other C++ headers. A C++ header shall provide the declarations and definitions

that appear in its synopsis. A C++ header shown in its synopsis as including other C++ headers shall provide
the declarations and definitions that appear in the synopses of those other headers.

2 Certain types and macros are defined in more than one header. Every such entity shall be defined such that
any header that defines it may be included after any other header that also defines it (6.3).

3 The C standard library headers (17.14) shall include only their corresponding C++ standard library header,
as described in 16.4.2.3.

16.4.6.3 Restrictions on macro definitions [res.on.macro.definitions]
1 The names and global function signatures described in 16.4.2.2 are reserved to the implementation.
2 All object-like macros defined by the C standard library and described in this Clause as expanding to integral

constant expressions are also suitable for use in #if preprocessing directives, unless explicitly stated otherwise.

16.4.6.4 Non-member functions [global.functions]
1 It is unspecified whether any non-member functions in the C++ standard library are defined as inline (9.2.8).
2 A call to a non-member function signature described in Clause 17 through Clause 33 and Annex D shall

behave as if the implementation declared no additional non-member function signatures.164

3 An implementation shall not declare a non-member function signature with additional default arguments.
4 Unless otherwise specified, calls made by functions in the standard library to non-operator, non-member

functions do not use functions from another namespace which are found through argument-dependent name
lookup (6.5.4).
[Note 1 : The phrase “unless otherwise specified” applies to cases such as the swappable with requirements
(16.4.4.3). The exception for overloaded operators allows argument-dependent lookup in cases like that of ostream_-
iterator::operator= (25.6.3.3):
Effects:

*out_stream << value;
if (delim != 0)

*out_stream << delim ;
return *this;

— end note ]

16.4.6.5 Member functions [member.functions]
1 It is unspecified whether any member functions in the C++ standard library are defined as inline (9.2.8).
2 For a non-virtual member function described in the C++ standard library, an implementation may declare a

different set of member function signatures, provided that any call to the member function that would select
an overload from the set of declarations described in this document behaves as if that overload were selected.
[Note 1 : For instance, an implementation can add parameters with default values, or replace a member function with
default arguments with two or more member functions with equivalent behavior, or add additional signatures for a
member function name. — end note ]

16.4.6.6 Friend functions [hidden.friends]
1 Whenever this document specifies a friend declaration of a function or function template within a class or

class template definition, that declaration shall be the only declaration of that function or function template
provided by an implementation.
[Note 1 : In particular, an implementation is not allowed to provide an additional declaration of that function or
function template at namespace scope. — end note ]
[Note 2 : Such a friend function or function template declaration is known as a hidden friend, as it is visible neither to
ordinary unqualified lookup (6.5.3) nor to qualified lookup (6.5.5). — end note ]

164) A valid C++ program always calls the expected library non-member function. An implementation can also define additional
non-member functions that would otherwise not be called by a valid C++ program.
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16.4.6.7 Constexpr functions and constructors [constexpr.functions]
1 This document explicitly requires that certain standard library functions are constexpr (9.2.6). An imple-

mentation shall not declare any standard library function signature as constexpr except for those where it
is explicitly required. Within any header that provides any non-defining declarations of constexpr functions
or constructors an implementation shall provide corresponding definitions.

16.4.6.8 Requirements for stable algorithms [algorithm.stable]
1 When the requirements for an algorithm state that it is “stable” without further elaboration, it means:

—(1.1) For the sort algorithms the relative order of equivalent elements is preserved.
—(1.2) For the remove and copy algorithms the relative order of the elements that are not removed is preserved.
—(1.3) For the merge algorithms, for equivalent elements in the original two ranges, the elements from the first

range (preserving their original order) precede the elements from the second range (preserving their
original order).

16.4.6.9 Reentrancy [reentrancy]
1 Except where explicitly specified in this document, it is implementation-defined which functions in the C++

standard library may be recursively reentered.

16.4.6.10 Data race avoidance [res.on.data.races]
1 This subclause specifies requirements that implementations shall meet to prevent data races (6.9.2). Every

standard library function shall meet each requirement unless otherwise specified. Implementations may
prevent data races in cases other than those specified below.

2 A C++ standard library function shall not directly or indirectly access objects (6.9.2) accessible by threads
other than the current thread unless the objects are accessed directly or indirectly via the function’s arguments,
including this.

3 A C++ standard library function shall not directly or indirectly modify objects (6.9.2) accessible by threads
other than the current thread unless the objects are accessed directly or indirectly via the function’s non-const
arguments, including this.

4 [Note 1 : This means, for example, that implementations can’t use an object with static storage duration for internal
purposes without synchronization because doing so can cause a data race even in programs that do not explicitly
share objects between threads. — end note ]

5 A C++ standard library function shall not access objects indirectly accessible via its arguments or via elements
of its container arguments except by invoking functions required by its specification on those container
elements.

6 Operations on iterators obtained by calling a standard library container or string member function may
access the underlying container, but shall not modify it.
[Note 2 : In particular, container operations that invalidate iterators conflict with operations on iterators associated
with that container. — end note ]

7 Implementations may share their own internal objects between threads if the objects are not visible to users
and are protected against data races.

8 Unless otherwise specified, C++ standard library functions shall perform all operations solely within the
current thread if those operations have effects that are visible (6.9.2) to users.

9 [Note 3 : This allows implementations to parallelize operations if there are no visible side effects. — end note ]

16.4.6.11 Protection within classes [protection.within.classes]
1 It is unspecified whether any function signature or class described in Clause 17 through Clause 33 and Annex

D is a friend of another class in the C++ standard library.

16.4.6.12 Derived classes [derivation]
1 An implementation may derive any class in the C++ standard library from a class with a name reserved to

the implementation.
2 Certain classes defined in the C++ standard library are required to be derived from other classes in the C++

standard library. An implementation may derive such a class directly from the required base or indirectly
through a hierarchy of base classes with names reserved to the implementation.
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3 In any case:
—(3.1) Every base class described as virtual shall be virtual;
—(3.2) Every base class not specified as virtual shall not be virtual;
—(3.3) Unless explicitly stated otherwise, types with distinct names shall be distinct types.

[Note 1 : There is an implicit exception to this rule for types that are described as synonyms (9.2.4, 9.9), such
as size_t (17.2) and streamoff (31.2.2). — end note ]

4 All types specified in the C++ standard library shall be non-final types unless otherwise specified.

16.4.6.13 Restrictions on exception handling [res.on.exception.handling]
1 Any of the functions defined in the C++ standard library can report a failure by throwing an exception of a

type described in its Throws: paragraph, or of a type derived from a type named in the Throws: paragraph
that would be caught by an exception handler for the base type.

2 Functions from the C standard library shall not throw exceptions165 except when such a function calls a
program-supplied function that throws an exception.166

3 Destructor operations defined in the C++ standard library shall not throw exceptions. Every destructor in
the C++ standard library shall behave as if it had a non-throwing exception specification.

4 Functions defined in the C++ standard library that do not have a Throws: paragraph but do have a potentially-
throwing exception specification may throw implementation-defined exceptions.167 Implementations should
report errors by throwing exceptions of or derived from the standard exception classes (17.6.4.1, 17.9, 19.2).

5 An implementation may strengthen the exception specification for a non-virtual function by adding a
non-throwing exception specification.

16.4.6.14 Value of error codes [value.error.codes]
1 Certain functions in the C++ standard library report errors via a std::error_code (19.5.4.1) object. That

object’s category() member shall return std::system_category() for errors originating from the operating
system, or a reference to an implementation-defined error_category object for errors originating elsewhere.
The implementation shall define the possible values of value() for each of these error categories.
[Example 1 : For operating systems that are based on POSIX, implementations should define the std::system_-
category() values as identical to the POSIX errno values, with additional values as defined by the operating system’s
documentation. Implementations for operating systems that are not based on POSIX should define values identical to
the operating system’s values. For errors that do not originate from the operating system, the implementation may
provide enums for the associated values. — end example ]

16.4.6.15 Moved-from state of library types [lib.types.movedfrom]
1 Objects of types defined in the C++ standard library may be moved from (11.4.5.3). Move operations may

be explicitly specified or implicitly generated. Unless otherwise specified, such moved-from objects shall be
placed in a valid but unspecified state.

2 An object of a type defined in the C++ standard library may be move-assigned (11.4.6) to itself. Unless
otherwise specified, such an assignment places the object in a valid but unspecified state.

165) That is, the C standard library functions can all be treated as if they are marked noexcept. This allows implementations
to make performance optimizations based on the absence of exceptions at runtime.
166) The functions qsort() and bsearch() (27.12) meet this condition.
167) In particular, they can report a failure to allocate storage by throwing an exception of type bad_alloc, or a class derived
from bad_alloc (17.6.4.1).
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17 Language support library [support]
17.1 General [support.general]

1 This Clause describes the function signatures that are called implicitly, and the types of objects generated
implicitly, during the execution of some C++ programs. It also describes the headers that declare these
function signatures and define any related types.

2 The following subclauses describe common type definitions used throughout the library, characteristics of
the predefined types, functions supporting start and termination of a C++ program, support for dynamic
memory management, support for dynamic type identification, support for exception processing, support for
initializer lists, and other runtime support, as summarized in Table 38.

Table 38: Language support library summary [tab:support.summary]

Subclause Header
17.2 Common definitions <cstddef>, <cstdlib>
17.3 Implementation properties <cfloat>, <climits>, <limits>, <version>
17.4 Arithmetic types <cstdint>, <stdfloat>
17.5 Start and termination <cstdlib>
17.6 Dynamic memory management <new>
17.7 Type identification <typeinfo>
17.8 Source location <source_location>
17.9 Exception handling <exception>
17.10 Initializer lists <initializer_list>
17.11 Comparisons <compare>
17.12 Coroutines <coroutine>
17.13 Other runtime support <csetjmp>, <csignal>, <cstdarg>, <cstdlib>

17.2 Common definitions [support.types]
17.2.1 Header <cstddef> synopsis [cstddef.syn]

// all freestanding
namespace std {

using ptrdiff_t = see below ;
using size_t = see below ;
using max_align_t = see below ;
using nullptr_t = decltype(nullptr);

enum class byte : unsigned char {};

// 17.2.5, byte type operations
template<class IntType>

constexpr byte& operator<<=(byte& b, IntType shift) noexcept;
template<class IntType>

constexpr byte operator<<(byte b, IntType shift) noexcept;
template<class IntType>

constexpr byte& operator>>=(byte& b, IntType shift) noexcept;
template<class IntType>

constexpr byte operator>>(byte b, IntType shift) noexcept;
constexpr byte& operator|=(byte& l, byte r) noexcept;
constexpr byte operator|(byte l, byte r) noexcept;
constexpr byte& operator&=(byte& l, byte r) noexcept;
constexpr byte operator&(byte l, byte r) noexcept;
constexpr byte& operator^=(byte& l, byte r) noexcept;
constexpr byte operator^(byte l, byte r) noexcept;
constexpr byte operator~(byte b) noexcept;
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template<class IntType>
constexpr IntType to_integer(byte b) noexcept;

}

#define NULL see below
#define offsetof(P, D) see below

1 The contents and meaning of the header <cstddef> are the same as the C standard library header <stddef.h>,
except that it does not declare the type wchar_t, that it also declares the type byte and its associated
operations (17.2.5), and as noted in 17.2.3 and 17.2.4.
See also: ISO/IEC 9899:2018, 7.19

17.2.2 Header <cstdlib> synopsis [cstdlib.syn]
namespace std {

using size_t = see below ; // freestanding
using div_t = see below ;
using ldiv_t = see below ;
using lldiv_t = see below ;

}

#define NULL see below // freestanding
#define EXIT_FAILURE see below
#define EXIT_SUCCESS see below
#define RAND_MAX see below
#define MB_CUR_MAX see below

namespace std {
// Exposition-only function type aliases
extern "C" using c-atexit-handler = void(); // exposition only
extern "C++" using atexit-handler = void(); // exposition only
extern "C" using c-compare-pred = int(const void*, const void*); // exposition only
extern "C++" using compare-pred = int(const void*, const void*); // exposition only

// 17.5, start and termination
[[noreturn]] void abort() noexcept; // freestanding
int atexit(c-atexit-handler * func) noexcept; // freestanding
int atexit(atexit-handler * func) noexcept; // freestanding
int at_quick_exit(c-atexit-handler * func) noexcept; // freestanding
int at_quick_exit(atexit-handler * func) noexcept; // freestanding
[[noreturn]] void exit(int status); // freestanding
[[noreturn]] void _Exit(int status) noexcept; // freestanding
[[noreturn]] void quick_exit(int status) noexcept; // freestanding

char* getenv(const char* name);
int system(const char* string);

// 20.2.12, C library memory allocation
void* aligned_alloc(size_t alignment, size_t size);
void* calloc(size_t nmemb, size_t size);
void free(void* ptr);
void* malloc(size_t size);
void* realloc(void* ptr, size_t size);

double atof(const char* nptr);
int atoi(const char* nptr);
long int atol(const char* nptr);
long long int atoll(const char* nptr);
double strtod(const char* nptr, char** endptr);
float strtof(const char* nptr, char** endptr);
long double strtold(const char* nptr, char** endptr);
long int strtol(const char* nptr, char** endptr, int base);
long long int strtoll(const char* nptr, char** endptr, int base);
unsigned long int strtoul(const char* nptr, char** endptr, int base);
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unsigned long long int strtoull(const char* nptr, char** endptr, int base);

// 23.5.6, multibyte / wide string and character conversion functions
int mblen(const char* s, size_t n);
int mbtowc(wchar_t* pwc, const char* s, size_t n);
int wctomb(char* s, wchar_t wchar);
size_t mbstowcs(wchar_t* pwcs, const char* s, size_t n);
size_t wcstombs(char* s, const wchar_t* pwcs, size_t n);

// 27.12, C standard library algorithms
void* bsearch(const void* key, const void* base, size_t nmemb, size_t size,

c-compare-pred * compar);
void* bsearch(const void* key, const void* base, size_t nmemb, size_t size,

compare-pred * compar);
void qsort(void* base, size_t nmemb, size_t size, c-compare-pred * compar);
void qsort(void* base, size_t nmemb, size_t size, compare-pred * compar);

// 28.5.10, low-quality random number generation
int rand();
void srand(unsigned int seed);

// 28.7.2, absolute values
constexpr int abs(int j);
constexpr long int abs(long int j);
constexpr long long int abs(long long int j);
constexpr floating-point-type abs(floating-point-type j);

constexpr long int labs(long int j);
constexpr long long int llabs(long long int j);

constexpr div_t div(int numer, int denom);
constexpr ldiv_t div(long int numer, long int denom); // see 16.2
constexpr lldiv_t div(long long int numer, long long int denom); // see 16.2
constexpr ldiv_t ldiv(long int numer, long int denom);
constexpr lldiv_t lldiv(long long int numer, long long int denom);

}

1 The contents and meaning of the header <cstdlib> are the same as the C standard library header <stdlib.h>,
except that it does not declare the type wchar_t, and except as noted in 17.2.3, 17.2.4, 17.5, 20.2.12, 23.5.6,
27.12, 28.5.10, and 28.7.2.
[Note 1 : Several functions have additional overloads in this document, but they have the same behavior as in the C
standard library (16.2). — end note ]

See also: ISO/IEC 9899:2018, 7.22

17.2.3 Null pointers [support.types.nullptr]
1 The type nullptr_t is a synonym for the type of a nullptr expression, and it has the characteristics

described in 6.8.2 and 7.3.12.
[Note 1 : Although nullptr’s address cannot be taken, the address of another nullptr_t object that is an lvalue can
be taken. — end note ]

2 The macro NULL is an implementation-defined null pointer constant.168

See also: ISO/IEC 9899:2018, 7.19

17.2.4 Sizes, alignments, and offsets [support.types.layout]
1 The macro offsetof(type, member-designator ) has the same semantics as the corresponding macro in the

C standard library header <stddef.h>, but accepts a restricted set of type arguments in this document. Use
of the offsetof macro with a type other than a standard-layout class (11.2) is conditionally-supported.169

The expression offsetof(type, member-designator ) is never type-dependent (13.8.3.3) and it is value-
dependent (13.8.3.4) if and only if type is dependent. The result of applying the offsetof macro to a static

168) Possible definitions include 0 and 0L, but not (void*)0.
169) Note that offsetof is required to work as specified even if unary operator& is overloaded for any of the types involved.
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data member or a function member is undefined. No operation invoked by the offsetof macro shall throw
an exception and noexcept(offsetof(type, member-designator )) shall be true.

2 The type ptrdiff_t is an implementation-defined signed integer type that can hold the difference of two
subscripts in an array object, as described in 7.6.6.

3 The type size_t is an implementation-defined unsigned integer type that is large enough to contain the size
in bytes of any object (7.6.2.5).

4 Recommended practice: An implementation should choose types for ptrdiff_t and size_t whose integer
conversion ranks (6.8.6) are no greater than that of signed long int unless a larger size is necessary to
contain all the possible values.

5 The type max_align_t is a trivial standard-layout type whose alignment requirement is at least as great as
that of every scalar type, and whose alignment requirement is supported in every context (6.7.6).
See also: ISO/IEC 9899:2018, 7.19

17.2.5 byte type operations [support.types.byteops]
template<class IntType>

constexpr byte& operator<<=(byte& b, IntType shift) noexcept;

1 Constraints: is_integral_v<IntType> is true.
2 Effects: Equivalent to: return b = b << shift;

template<class IntType>
constexpr byte operator<<(byte b, IntType shift) noexcept;

3 Constraints: is_integral_v<IntType> is true.
4 Effects: Equivalent to:

return static_cast<byte>(static_cast<unsigned int>(b) << shift);

template<class IntType>
constexpr byte& operator>>=(byte& b, IntType shift) noexcept;

5 Constraints: is_integral_v<IntType> is true.
6 Effects: Equivalent to: return b = b >> shift;

template<class IntType>
constexpr byte operator>>(byte b, IntType shift) noexcept;

7 Constraints: is_integral_v<IntType> is true.
8 Effects: Equivalent to:

return static_cast<byte>(static_cast<unsigned int>(b) >> shift);

constexpr byte& operator|=(byte& l, byte r) noexcept;

9 Effects: Equivalent to: return l = l | r;

constexpr byte operator|(byte l, byte r) noexcept;

10 Effects: Equivalent to:
return static_cast<byte>(static_cast<unsigned int>(l) | static_cast<unsigned int>(r));

constexpr byte& operator&=(byte& l, byte r) noexcept;

11 Effects: Equivalent to: return l = l & r;

constexpr byte operator&(byte l, byte r) noexcept;

12 Effects: Equivalent to:
return static_cast<byte>(static_cast<unsigned int>(l) & static_cast<unsigned int>(r));

constexpr byte& operator^=(byte& l, byte r) noexcept;

13 Effects: Equivalent to: return l = l ^ r;
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constexpr byte operator^(byte l, byte r) noexcept;

14 Effects: Equivalent to:
return static_cast<byte>(static_cast<unsigned int>(l) ^ static_cast<unsigned int>(r));

constexpr byte operator~(byte b) noexcept;

15 Effects: Equivalent to:
return static_cast<byte>(~static_cast<unsigned int>(b));

template<class IntType>
constexpr IntType to_integer(byte b) noexcept;

16 Constraints: is_integral_v<IntType> is true.
17 Effects: Equivalent to: return static_cast<IntType>(b);

17.3 Implementation properties [support.limits]
17.3.1 General [support.limits.general]

1 The headers <limits> (17.3.3), <climits> (17.3.6), and <cfloat> (17.3.7) supply characteristics of imple-
mentation-dependent arithmetic types (6.8.2).

17.3.2 Header <version> synopsis [version.syn]
1 The header <version> supplies implementation-dependent information about the C++ standard library (e.g.,

version number and release date).
2 Each of the macros defined in <version> is also defined after inclusion of any member of the set of library

headers indicated in the corresponding comment in this synopsis.
[Note 1 : Future revisions of C++ might replace the values of these macros with greater values. — end note ]

#define __cpp_lib_adaptor_iterator_pair_constructor 202106L // also in <stack>, <queue>
#define __cpp_lib_addressof_constexpr 201603L // also in <memory>
#define __cpp_lib_algorithm_iterator_requirements 202207L

// also in <algorithm>, <numeric>, <memory>
#define __cpp_lib_allocate_at_least 202302L // also in <memory>
#define __cpp_lib_allocator_traits_is_always_equal 201411L

// also in <memory>, <scoped_allocator>, <string>, <deque>, <forward_list>, <list>, <vector>,
// <map>, <set>, <unordered_map>, <unordered_set>

#define __cpp_lib_any 201606L // also in <any>
#define __cpp_lib_apply 201603L // also in <tuple>
#define __cpp_lib_array_constexpr 201811L // also in <iterator>, <array>
#define __cpp_lib_as_const 201510L // also in <utility>
#define __cpp_lib_associative_heterogeneous_erasure 202110L

// also in <map>, <set>, <unordered_map>, <unordered_set>
#define __cpp_lib_assume_aligned 201811L // also in <memory>
#define __cpp_lib_atomic_flag_test 201907L // also in <atomic>
#define __cpp_lib_atomic_float 201711L // also in <atomic>
#define __cpp_lib_atomic_is_always_lock_free 201603L // also in <atomic>
#define __cpp_lib_atomic_lock_free_type_aliases 201907L // also in <atomic>
#define __cpp_lib_atomic_ref 201806L // also in <atomic>
#define __cpp_lib_atomic_shared_ptr 201711L // also in <memory>
#define __cpp_lib_atomic_value_initialization 201911L // also in <atomic>, <memory>
#define __cpp_lib_atomic_wait 201907L // also in <atomic>
#define __cpp_lib_barrier 202302L // also in <barrier>
#define __cpp_lib_bind_back 202202L // also in <functional>
#define __cpp_lib_bind_front 201907L // also in <functional>
#define __cpp_lib_bit_cast 201806L // also in <bit>
#define __cpp_lib_bitops 201907L // also in <bit>
#define __cpp_lib_bool_constant 201505L // also in <type_traits>
#define __cpp_lib_bounded_array_traits 201902L // also in <type_traits>
#define __cpp_lib_boyer_moore_searcher 201603L // also in <functional>
#define __cpp_lib_byte 201603L // also in <cstddef>
#define __cpp_lib_byteswap 202110L // also in <bit>
#define __cpp_lib_char8_t 201907L

// also in <atomic>, <filesystem>, <istream>, <limits>, <locale>, <ostream>, <string>, <string_view>
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#define __cpp_lib_chrono 201907L // also in <chrono>
#define __cpp_lib_chrono_udls 201304L // also in <chrono>
#define __cpp_lib_clamp 201603L // also in <algorithm>
#define __cpp_lib_common_reference 202302L // also in <type_traits>
#define __cpp_lib_common_reference_wrapper 202302L // also in <functional>
#define __cpp_lib_complex_udls 201309L // also in <complex>
#define __cpp_lib_concepts 202207L // also in <concepts>, <compare>
#define __cpp_lib_constexpr_algorithms 201806L // also in <algorithm>, <utility>
#define __cpp_lib_constexpr_bitset 202207L // also in <bitset>
#define __cpp_lib_constexpr_charconv 202207L // also in <charconv>
#define __cpp_lib_constexpr_cmath 202202L // also in <cmath>, <cstdlib>
#define __cpp_lib_constexpr_complex 201711L // also in <complex>
#define __cpp_lib_constexpr_dynamic_alloc 201907L // also in <memory>
#define __cpp_lib_constexpr_functional 201907L // also in <functional>
#define __cpp_lib_constexpr_iterator 201811L // also in <iterator>
#define __cpp_lib_constexpr_memory 202202L // also in <memory>
#define __cpp_lib_constexpr_numeric 201911L // also in <numeric>
#define __cpp_lib_constexpr_string 201907L // also in <string>
#define __cpp_lib_constexpr_string_view 201811L // also in <string_view>
#define __cpp_lib_constexpr_tuple 201811L // also in <tuple>
#define __cpp_lib_constexpr_typeinfo 202106L // also in <typeinfo>
#define __cpp_lib_constexpr_utility 201811L // also in <utility>
#define __cpp_lib_constexpr_vector 201907L // also in <vector>
#define __cpp_lib_containers_ranges 202202L

// also in <vector>, <list>, <forward_list>, <map>, <set>, <unordered_map>, <unordered_set>,
// <deque>, <queue>, <stack>, <string>

#define __cpp_lib_coroutine 201902L // also in <coroutine>
#define __cpp_lib_destroying_delete 201806L // also in <new>
#define __cpp_lib_enable_shared_from_this 201603L // also in <memory>
#define __cpp_lib_endian 201907L // also in <bit>
#define __cpp_lib_erase_if 202002L

// also in <string>, <deque>, <forward_list>, <list>, <vector>, <map>, <set>, <unordered_map>,
// <unordered_set>

#define __cpp_lib_exchange_function 201304L // also in <utility>
#define __cpp_lib_execution 201902L // also in <execution>
#define __cpp_lib_expected 202211L // also in <expected>
#define __cpp_lib_filesystem 201703L // also in <filesystem>
#define __cpp_lib_flat_map 202207L // also in <flat_map>
#define __cpp_lib_flat_set 202207L // also in <flat_set>
#define __cpp_lib_format 202207L // also in <format>
#define __cpp_lib_format_ranges 202207L // also in <format>
#define __cpp_lib_formatters 202302L // also in <stacktrace>, <thread>
#define __cpp_lib_forward_like 202207L // also in <utility>
#define __cpp_lib_gcd_lcm 201606L // also in <numeric>
#define __cpp_lib_generator 202207L // also in <generator>
#define __cpp_lib_generic_associative_lookup 201304L // also in <map>, <set>
#define __cpp_lib_generic_unordered_lookup 201811L

// also in <unordered_map>, <unordered_set>
#define __cpp_lib_hardware_interference_size 201703L // also in <new>
#define __cpp_lib_has_unique_object_representations 201606L // also in <type_traits>
#define __cpp_lib_hypot 201603L // also in <cmath>
#define __cpp_lib_incomplete_container_elements 201505L

// also in <forward_list>, <list>, <vector>
#define __cpp_lib_int_pow2 202002L // also in <bit>
#define __cpp_lib_integer_comparison_functions 202002L // also in <utility>
#define __cpp_lib_integer_sequence 201304L // also in <utility>
#define __cpp_lib_integral_constant_callable 201304L // also in <type_traits>
#define __cpp_lib_interpolate 201902L // also in <cmath>, <numeric>
#define __cpp_lib_invoke 201411L // also in <functional>
#define __cpp_lib_invoke_r 202106L // also in <functional>
#define __cpp_lib_ios_noreplace 202207L // also in <ios>
#define __cpp_lib_is_aggregate 201703L // also in <type_traits>
#define __cpp_lib_is_constant_evaluated 201811L // also in <type_traits>
#define __cpp_lib_is_final 201402L // also in <type_traits>
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#define __cpp_lib_is_implicit_lifetime 202302L // also in <type_traits>
#define __cpp_lib_is_invocable 201703L // also in <type_traits>
#define __cpp_lib_is_layout_compatible 201907L // also in <type_traits>
#define __cpp_lib_is_nothrow_convertible 201806L // also in <type_traits>
#define __cpp_lib_is_null_pointer 201309L // also in <type_traits>
#define __cpp_lib_is_pointer_interconvertible 201907L // also in <type_traits>
#define __cpp_lib_is_scoped_enum 202011L // also in <type_traits>
#define __cpp_lib_is_swappable 201603L // also in <type_traits>
#define __cpp_lib_jthread 201911L // also in <stop_token>, <thread>
#define __cpp_lib_latch 201907L // also in <latch>
#define __cpp_lib_launder 201606L // also in <new>
#define __cpp_lib_list_remove_return_type 201806L // also in <forward_list>, <list>
#define __cpp_lib_logical_traits 201510L // also in <type_traits>
#define __cpp_lib_make_from_tuple 201606L // also in <tuple>
#define __cpp_lib_make_reverse_iterator 201402L // also in <iterator>
#define __cpp_lib_make_unique 201304L // also in <memory>
#define __cpp_lib_map_try_emplace 201411L // also in <map>
#define __cpp_lib_math_constants 201907L // also in <numbers>
#define __cpp_lib_math_special_functions 201603L // also in <cmath>
#define __cpp_lib_mdspan 202207L // also in <mdspan>
#define __cpp_lib_memory_resource 201603L // also in <memory_resource>
#define __cpp_lib_modules 202207L
#define __cpp_lib_move_iterator_concept 202207L // also in <iterator>
#define __cpp_lib_move_only_function 202110L // also in <functional>
#define __cpp_lib_node_extract 201606L

// also in <map>, <set>, <unordered_map>, <unordered_set>
#define __cpp_lib_nonmember_container_access 201411L

// also in <array>, <deque>, <forward_list>, <iterator>, <list>, <map>, <regex>, <set>, <string>,
// <unordered_map>, <unordered_set>, <vector>

#define __cpp_lib_not_fn 201603L // also in <functional>
#define __cpp_lib_null_iterators 201304L // also in <iterator>
#define __cpp_lib_optional 202110L // also in <optional>
#define __cpp_lib_out_ptr 202106L // also in <memory>
#define __cpp_lib_parallel_algorithm 201603L // also in <algorithm>, <numeric>
#define __cpp_lib_polymorphic_allocator 201902L // also in <memory_resource>
#define __cpp_lib_print 202207L // also in <print>, <ostream>
#define __cpp_lib_quoted_string_io 201304L // also in <iomanip>
#define __cpp_lib_ranges 202302L

// also in <algorithm>, <functional>, <iterator>, <memory>, <ranges>
#define __cpp_lib_ranges_as_const 202207L // also in <ranges>
#define __cpp_lib_ranges_as_rvalue 202207L // also in <ranges>
#define __cpp_lib_ranges_cartesian_product 202207L // also in <ranges>
#define __cpp_lib_ranges_chunk 202202L // also in <ranges>
#define __cpp_lib_ranges_chunk_by 202202L // also in <ranges>
#define __cpp_lib_ranges_contains 202207L // also in <algorithm>
#define __cpp_lib_ranges_enumerate 202302L // also in <ranges>, <version>
#define __cpp_lib_ranges_find_last 202207L // also in <algorithm>
#define __cpp_lib_ranges_fold 202207L // also in <algorithm>
#define __cpp_lib_ranges_iota 202202L // also in <numeric>
#define __cpp_lib_ranges_join_with 202202L // also in <ranges>
#define __cpp_lib_ranges_repeat 202207L // also in <ranges>
#define __cpp_lib_ranges_slide 202202L // also in <ranges>
#define __cpp_lib_ranges_starts_ends_with 202106L // also in <algorithm>
#define __cpp_lib_ranges_stride 202207L // also in <ranges>
#define __cpp_lib_ranges_to_container 202202L // also in <ranges>
#define __cpp_lib_ranges_zip 202110L // also in <ranges>, <tuple>, <utility>
#define __cpp_lib_raw_memory_algorithms 201606L // also in <memory>
#define __cpp_lib_reference_from_temporary 202202L // also in <type_traits>
#define __cpp_lib_remove_cvref 201711L // also in <type_traits>
#define __cpp_lib_result_of_sfinae 201210L // also in <functional>, <type_traits>
#define __cpp_lib_robust_nonmodifying_seq_ops 201304L // also in <algorithm>
#define __cpp_lib_sample 201603L // also in <algorithm>
#define __cpp_lib_scoped_lock 201703L // also in <mutex>
#define __cpp_lib_semaphore 201907L // also in <semaphore>
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#define __cpp_lib_shared_mutex 201505L // also in <shared_mutex>
#define __cpp_lib_shared_ptr_arrays 201707L // also in <memory>
#define __cpp_lib_shared_ptr_weak_type 201606L // also in <memory>
#define __cpp_lib_shared_timed_mutex 201402L // also in <shared_mutex>
#define __cpp_lib_shift 202202L // also in <algorithm>
#define __cpp_lib_smart_ptr_for_overwrite 202002L // also in <memory>
#define __cpp_lib_source_location 201907L // also in <source_location>
#define __cpp_lib_span 202002L // also in <span>
#define __cpp_lib_spanstream 202106L // also in <spanstream>
#define __cpp_lib_ssize 201902L // also in <iterator>
#define __cpp_lib_stacktrace 202011L // also in <stacktrace>
#define __cpp_lib_start_lifetime_as 202207L // also in <memory>
#define __cpp_lib_starts_ends_with 201711L // also in <string>, <string_view>
#define __cpp_lib_stdatomic_h 202011L // also in <stdatomic.h>
#define __cpp_lib_string_contains 202011L // also in <string>, <string_view>
#define __cpp_lib_string_resize_and_overwrite 202110L // also in <string>
#define __cpp_lib_string_udls 201304L // also in <string>
#define __cpp_lib_string_view 201803L // also in <string>, <string_view>
#define __cpp_lib_syncbuf 201803L // also in <syncstream>
#define __cpp_lib_three_way_comparison 201907L // also in <compare>
#define __cpp_lib_to_address 201711L // also in <memory>
#define __cpp_lib_to_array 201907L // also in <array>
#define __cpp_lib_to_chars 201611L // also in <charconv>
#define __cpp_lib_to_underlying 202102L // also in <utility>
#define __cpp_lib_transformation_trait_aliases 201304L // also in <type_traits>
#define __cpp_lib_transparent_operators 201510L // also in <memory>, <functional>
#define __cpp_lib_tuple_element_t 201402L // also in <tuple>
#define __cpp_lib_tuple_like 202207L

// also in <utility>, <tuple>, <map>, <unordered_map>
#define __cpp_lib_tuples_by_type 201304L // also in <utility>, <tuple>
#define __cpp_lib_type_identity 201806L // also in <type_traits>
#define __cpp_lib_type_trait_variable_templates 201510L // also in <type_traits>
#define __cpp_lib_uncaught_exceptions 201411L // also in <exception>
#define __cpp_lib_unordered_map_try_emplace 201411L // also in <unordered_map>
#define __cpp_lib_unreachable 202202L // also in <utility>
#define __cpp_lib_unwrap_ref 201811L // also in <type_traits>
#define __cpp_lib_variant 202106L // also in <variant>
#define __cpp_lib_void_t 201411L // also in <type_traits>

17.3.3 Header <limits> synopsis [limits.syn]
// all freestanding
namespace std {

// 17.3.4, enumeration float_round_style
enum float_round_style;

// 17.3.5, class template numeric_limits
template<class T> class numeric_limits;

template<class T> class numeric_limits<const T>;
template<class T> class numeric_limits<volatile T>;
template<class T> class numeric_limits<const volatile T>;

template<> class numeric_limits<bool>;

template<> class numeric_limits<char>;
template<> class numeric_limits<signed char>;
template<> class numeric_limits<unsigned char>;
template<> class numeric_limits<char8_t>;
template<> class numeric_limits<char16_t>;
template<> class numeric_limits<char32_t>;
template<> class numeric_limits<wchar_t>;
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template<> class numeric_limits<short>;
template<> class numeric_limits<int>;
template<> class numeric_limits<long>;
template<> class numeric_limits<long long>;
template<> class numeric_limits<unsigned short>;
template<> class numeric_limits<unsigned int>;
template<> class numeric_limits<unsigned long>;
template<> class numeric_limits<unsigned long long>;

template<> class numeric_limits<float>;
template<> class numeric_limits<double>;
template<> class numeric_limits<long double>;

}

17.3.4 Enum float_round_style [round.style]
namespace std {

enum float_round_style {
round_indeterminate = -1,
round_toward_zero = 0,
round_to_nearest = 1,
round_toward_infinity = 2,
round_toward_neg_infinity = 3

};
}

1 The rounding mode for floating-point arithmetic is characterized by the values:
—(1.1) round_indeterminate if the rounding style is indeterminable
—(1.2) round_toward_zero if the rounding style is toward zero
—(1.3) round_to_nearest if the rounding style is to the nearest representable value
—(1.4) round_toward_infinity if the rounding style is toward infinity
—(1.5) round_toward_neg_infinity if the rounding style is toward negative infinity

17.3.5 Class template numeric_limits [numeric.limits]
17.3.5.1 General [numeric.limits.general]

1 The numeric_limits class template provides a C++ program with information about various properties of
the implementation’s representation of the arithmetic types.

namespace std {
template<class T> class numeric_limits {
public:

static constexpr bool is_specialized = false;
static constexpr T min() noexcept { return T(); }
static constexpr T max() noexcept { return T(); }
static constexpr T lowest() noexcept { return T(); }

static constexpr int digits = 0;
static constexpr int digits10 = 0;
static constexpr int max_digits10 = 0;
static constexpr bool is_signed = false;
static constexpr bool is_integer = false;
static constexpr bool is_exact = false;
static constexpr int radix = 0;
static constexpr T epsilon() noexcept { return T(); }
static constexpr T round_error() noexcept { return T(); }

static constexpr int min_exponent = 0;
static constexpr int min_exponent10 = 0;
static constexpr int max_exponent = 0;
static constexpr int max_exponent10 = 0;
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static constexpr bool has_infinity = false;
static constexpr bool has_quiet_NaN = false;
static constexpr bool has_signaling_NaN = false;
static constexpr T infinity() noexcept { return T(); }
static constexpr T quiet_NaN() noexcept { return T(); }
static constexpr T signaling_NaN() noexcept { return T(); }
static constexpr T denorm_min() noexcept { return T(); }

static constexpr bool is_iec559 = false;
static constexpr bool is_bounded = false;
static constexpr bool is_modulo = false;

static constexpr bool traps = false;
static constexpr bool tinyness_before = false;
static constexpr float_round_style round_style = round_toward_zero;

};
}

2 For all members declared static constexpr in the numeric_limits template, specializations shall define
these values in such a way that they are usable as constant expressions.

3 For the numeric_limits primary template, all data members are value-initialized and all member functions
return a value-initialized object.
[Note 1 : This means all members have zero or false values unless numeric_limits is specialized for a type. — end
note ]

4 Specializations shall be provided for each arithmetic type, both floating-point and integer, including bool.
The member is_specialized shall be true for all such specializations of numeric_limits.

5 The value of each member of a specialization of numeric_limits on a cv-qualified type cv T shall be equal
to the value of the corresponding member of the specialization on the unqualified type T.

6 Non-arithmetic standard types, such as complex<T> (28.4.3), shall not have specializations.

17.3.5.2 numeric_limits members [numeric.limits.members]
1 Each member function defined in this subclause is signal-safe (17.13.5).

static constexpr T min() noexcept;

2 Minimum finite value.170

3 For floating-point types with subnormal numbers, returns the minimum positive normalized value.
4 Meaningful for all specializations in which is_bounded != false, or is_bounded == false && is_-

signed == false.

static constexpr T max() noexcept;

5 Maximum finite value.171

6 Meaningful for all specializations in which is_bounded != false.

static constexpr T lowest() noexcept;

7 A finite value x such that there is no other finite value y where y < x.172

8 Meaningful for all specializations in which is_bounded != false.

static constexpr int digits;

9 Number of radix digits that can be represented without change.
10 For integer types, the number of non-sign bits in the representation.
11 For floating-point types, the number of radix digits in the mantissa.173

170) Equivalent to CHAR_MIN, SHRT_MIN, FLT_MIN, DBL_MIN, etc.
171) Equivalent to CHAR_MAX, SHRT_MAX, FLT_MAX, DBL_MAX, etc.
172) lowest() is necessary because not all floating-point representations have a smallest (most negative) value that is the
negative of the largest (most positive) finite value.
173) Equivalent to FLT_MANT_DIG, DBL_MANT_DIG, LDBL_MANT_DIG.
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static constexpr int digits10;

12 Number of base 10 digits that can be represented without change.174

13 Meaningful for all specializations in which is_bounded != false.

static constexpr int max_digits10;

14 Number of base 10 digits required to ensure that values which differ are always differentiated.
15 Meaningful for all floating-point types.

static constexpr bool is_signed;

16 true if the type is signed.
17 Meaningful for all specializations.

static constexpr bool is_integer;

18 true if the type is integer.
19 Meaningful for all specializations.

static constexpr bool is_exact;

20 true if the type uses an exact representation. All integer types are exact, but not all exact types are
integer. For example, rational and fixed-exponent representations are exact but not integer.

21 Meaningful for all specializations.

static constexpr int radix;

22 For floating-point types, specifies the base or radix of the exponent representation (often 2).175

23 For integer types, specifies the base of the representation.176

24 Meaningful for all specializations.

static constexpr T epsilon() noexcept;

25 Machine epsilon: the difference between 1 and the least value greater than 1 that is representable.177

26 Meaningful for all floating-point types.

static constexpr T round_error() noexcept;

27 Measure of the maximum rounding error.178

static constexpr int min_exponent;

28 Minimum negative integer such that radix raised to the power of one less than that integer is a
normalized floating-point number.179

29 Meaningful for all floating-point types.

static constexpr int min_exponent10;

30 Minimum negative integer such that 10 raised to that power is in the range of normalized floating-point
numbers.180

31 Meaningful for all floating-point types.

static constexpr int max_exponent;

32 Maximum positive integer such that radix raised to the power one less than that integer is a representable
finite floating-point number.181

174) Equivalent to FLT_DIG, DBL_DIG, LDBL_DIG.
175) Equivalent to FLT_RADIX.
176) Distinguishes types with bases other than 2 (e.g., BCD).
177) Equivalent to FLT_EPSILON, DBL_EPSILON, LDBL_EPSILON.
178) Rounding error is described in LIA-1 Section 5.2.4 and Annex C Rationale Section C.5.2.4 — Rounding and rounding
constants.
179) Equivalent to FLT_MIN_EXP, DBL_MIN_EXP, LDBL_MIN_EXP.
180) Equivalent to FLT_MIN_10_EXP, DBL_MIN_10_EXP, LDBL_MIN_10_EXP.
181) Equivalent to FLT_MAX_EXP, DBL_MAX_EXP, LDBL_MAX_EXP.
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33 Meaningful for all floating-point types.

static constexpr int max_exponent10;

34 Maximum positive integer such that 10 raised to that power is in the range of representable finite
floating-point numbers.182

35 Meaningful for all floating-point types.

static constexpr bool has_infinity;

36 true if the type has a representation for positive infinity.
37 Meaningful for all floating-point types.
38 Shall be true for all specializations in which is_iec559 != false.

static constexpr bool has_quiet_NaN;

39 true if the type has a representation for a quiet (non-signaling) “Not a Number”.183

40 Meaningful for all floating-point types.
41 Shall be true for all specializations in which is_iec559 != false.

static constexpr bool has_signaling_NaN;

42 true if the type has a representation for a signaling “Not a Number”.184

43 Meaningful for all floating-point types.
44 Shall be true for all specializations in which is_iec559 != false.

static constexpr T infinity() noexcept;

45 Representation of positive infinity, if available.185

46 Meaningful for all specializations for which has_infinity != false. Required in specializations for
which is_iec559 != false.

static constexpr T quiet_NaN() noexcept;

47 Representation of a quiet “Not a Number”, if available.186

48 Meaningful for all specializations for which has_quiet_NaN != false. Required in specializations for
which is_iec559 != false.

static constexpr T signaling_NaN() noexcept;

49 Representation of a signaling “Not a Number”, if available.187

50 Meaningful for all specializations for which has_signaling_NaN != false. Required in specializations
for which is_iec559 != false.

static constexpr T denorm_min() noexcept;

51 Minimum positive subnormal value, if available.188 Otherwise, minimum positive normalized value.
52 Meaningful for all floating-point types.

static constexpr bool is_iec559;

53 true if and only if the type adheres to ISO/IEC/IEEE 60559.189

[Note 1 : The value is true for any of the types float16_t, float32_t, float64_t, or float128_t, if present
(6.8.3). — end note ]

54 Meaningful for all floating-point types.

182) Equivalent to FLT_MAX_10_EXP, DBL_MAX_10_EXP, LDBL_MAX_10_EXP.
183) Required by LIA-1.
184) Required by LIA-1.
185) Required by LIA-1.
186) Required by LIA-1.
187) Required by LIA-1.
188) Required by LIA-1.
189) ISO/IEC/IEEE 60559:2020 is the same as IEEE 754-2019.
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static constexpr bool is_bounded;

55 true if the set of values representable by the type is finite.190

[Note 2 : All fundamental types (6.8.2) are bounded. This member would be false for arbitrary precision types.
— end note ]

56 Meaningful for all specializations.

static constexpr bool is_modulo;

57 true if the type is modulo.191 A type is modulo if, for any operation involving +, -, or * on values of
that type whose result would fall outside the range [min(), max()], the value returned differs from the
true value by an integer multiple of max() - min() + 1.

58 [Example 1 : is_modulo is false for signed integer types (6.8.2) unless an implementation, as an extension to
this document, defines signed integer overflow to wrap. — end example ]

59 Meaningful for all specializations.

static constexpr bool traps;

60 true if, at the start of the program, there exists a value of the type that would cause an arithmetic
operation using that value to trap.192

61 Meaningful for all specializations.

static constexpr bool tinyness_before;

62 true if tinyness is detected before rounding.193

63 Meaningful for all floating-point types.

static constexpr float_round_style round_style;

64 The rounding style for the type.194

65 Meaningful for all floating-point types. Specializations for integer types shall return round_toward_-
zero.

17.3.5.3 numeric_limits specializations [numeric.special]
1 All members shall be provided for all specializations. However, many values are only required to be meaningful

under certain conditions (for example, epsilon() is only meaningful if is_integer is false). Any value
that is not “meaningful” shall be set to 0 or false.

2 [Example 1 :
namespace std {

template<> class numeric_limits<float> {
public:

static constexpr bool is_specialized = true;

static constexpr float min() noexcept { return 1.17549435E-38F; }
static constexpr float max() noexcept { return 3.40282347E+38F; }
static constexpr float lowest() noexcept { return -3.40282347E+38F; }

static constexpr int digits = 24;
static constexpr int digits10 = 6;
static constexpr int max_digits10 = 9;

static constexpr bool is_signed = true;
static constexpr bool is_integer = false;
static constexpr bool is_exact = false;

static constexpr int radix = 2;
static constexpr float epsilon() noexcept { return 1.19209290E-07F; }

190) Required by LIA-1.
191) Required by LIA-1.
192) Required by LIA-1.
193) Refer to ISO/IEC/IEEE 60559. Required by LIA-1.
194) Equivalent to FLT_ROUNDS. Required by LIA-1.
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static constexpr float round_error() noexcept { return 0.5F; }

static constexpr int min_exponent = -125;
static constexpr int min_exponent10 = - 37;
static constexpr int max_exponent = +128;
static constexpr int max_exponent10 = + 38;

static constexpr bool has_infinity = true;
static constexpr bool has_quiet_NaN = true;
static constexpr bool has_signaling_NaN = true;

static constexpr float infinity() noexcept { return value ; }
static constexpr float quiet_NaN() noexcept { return value ; }
static constexpr float signaling_NaN() noexcept { return value ; }
static constexpr float denorm_min() noexcept { return min(); }

static constexpr bool is_iec559 = true;
static constexpr bool is_bounded = true;
static constexpr bool is_modulo = false;
static constexpr bool traps = true;
static constexpr bool tinyness_before = true;

static constexpr float_round_style round_style = round_to_nearest;
};

}

— end example ]
3 The specialization for bool shall be provided as follows:

namespace std {
template<> class numeric_limits<bool> {
public:

static constexpr bool is_specialized = true;
static constexpr bool min() noexcept { return false; }
static constexpr bool max() noexcept { return true; }
static constexpr bool lowest() noexcept { return false; }

static constexpr int digits = 1;
static constexpr int digits10 = 0;
static constexpr int max_digits10 = 0;

static constexpr bool is_signed = false;
static constexpr bool is_integer = true;
static constexpr bool is_exact = true;
static constexpr int radix = 2;
static constexpr bool epsilon() noexcept { return 0; }
static constexpr bool round_error() noexcept { return 0; }

static constexpr int min_exponent = 0;
static constexpr int min_exponent10 = 0;
static constexpr int max_exponent = 0;
static constexpr int max_exponent10 = 0;

static constexpr bool has_infinity = false;
static constexpr bool has_quiet_NaN = false;
static constexpr bool has_signaling_NaN = false;
static constexpr bool infinity() noexcept { return 0; }
static constexpr bool quiet_NaN() noexcept { return 0; }
static constexpr bool signaling_NaN() noexcept { return 0; }
static constexpr bool denorm_min() noexcept { return 0; }

static constexpr bool is_iec559 = false;
static constexpr bool is_bounded = true;
static constexpr bool is_modulo = false;
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static constexpr bool traps = false;
static constexpr bool tinyness_before = false;
static constexpr float_round_style round_style = round_toward_zero;

};
}

17.3.6 Header <climits> synopsis [climits.syn]
// all freestanding
#define CHAR_BIT see below
#define SCHAR_MIN see below
#define SCHAR_MAX see below
#define UCHAR_MAX see below
#define CHAR_MIN see below
#define CHAR_MAX see below
#define MB_LEN_MAX see below
#define SHRT_MIN see below
#define SHRT_MAX see below
#define USHRT_MAX see below
#define INT_MIN see below
#define INT_MAX see below
#define UINT_MAX see below
#define LONG_MIN see below
#define LONG_MAX see below
#define ULONG_MAX see below
#define LLONG_MIN see below
#define LLONG_MAX see below
#define ULLONG_MAX see below

1 The header <climits> defines all macros the same as the C standard library header <limits.h>.
[Note 1 : Except for CHAR_BIT and MB_LEN_MAX, a macro referring to an integer type T defines a constant whose type
is the promoted type of T (7.3.7). — end note ]

See also: ISO/IEC 9899:2018, 5.2.4.2.1

17.3.7 Header <cfloat> synopsis [cfloat.syn]
// all freestanding
#define FLT_ROUNDS see below
#define FLT_EVAL_METHOD see below
#define FLT_HAS_SUBNORM see below
#define DBL_HAS_SUBNORM see below
#define LDBL_HAS_SUBNORM see below
#define FLT_RADIX see below
#define FLT_MANT_DIG see below
#define DBL_MANT_DIG see below
#define LDBL_MANT_DIG see below
#define FLT_DECIMAL_DIG see below
#define DBL_DECIMAL_DIG see below
#define LDBL_DECIMAL_DIG see below
#define DECIMAL_DIG see below
#define FLT_DIG see below
#define DBL_DIG see below
#define LDBL_DIG see below
#define FLT_MIN_EXP see below
#define DBL_MIN_EXP see below
#define LDBL_MIN_EXP see below
#define FLT_MIN_10_EXP see below
#define DBL_MIN_10_EXP see below
#define LDBL_MIN_10_EXP see below
#define FLT_MAX_EXP see below
#define DBL_MAX_EXP see below
#define LDBL_MAX_EXP see below
#define FLT_MAX_10_EXP see below
#define DBL_MAX_10_EXP see below
#define LDBL_MAX_10_EXP see below
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#define FLT_MAX see below
#define DBL_MAX see below
#define LDBL_MAX see below
#define FLT_EPSILON see below
#define DBL_EPSILON see below
#define LDBL_EPSILON see below
#define FLT_MIN see below
#define DBL_MIN see below
#define LDBL_MIN see below
#define FLT_TRUE_MIN see below
#define DBL_TRUE_MIN see below
#define LDBL_TRUE_MIN see below

1 The header <cfloat> defines all macros the same as the C standard library header <float.h>.
See also: ISO/IEC 9899:2018, 5.2.4.2.2

17.4 Arithmetic types [support.arith.types]
17.4.1 Header <cstdint> synopsis [cstdint.syn]

1 The header <cstdint> supplies integer types having specified widths, and macros that specify limits of
integer types.

// all freestanding
namespace std {

using int8_t = signed integer type ; // optional
using int16_t = signed integer type ; // optional
using int32_t = signed integer type ; // optional
using int64_t = signed integer type ; // optional
using intN_t = see below ; // optional

using int_fast8_t = signed integer type ;
using int_fast16_t = signed integer type ;
using int_fast32_t = signed integer type ;
using int_fast64_t = signed integer type ;
using int_fastN_t = see below ; // optional

using int_least8_t = signed integer type ;
using int_least16_t = signed integer type ;
using int_least32_t = signed integer type ;
using int_least64_t = signed integer type ;
using int_leastN_t = see below ; // optional

using intmax_t = signed integer type ;
using intptr_t = signed integer type ; // optional

using uint8_t = unsigned integer type ; // optional
using uint16_t = unsigned integer type ; // optional
using uint32_t = unsigned integer type ; // optional
using uint64_t = unsigned integer type ; // optional
using uintN_t = see below ; // optional

using uint_fast8_t = unsigned integer type ;
using uint_fast16_t = unsigned integer type ;
using uint_fast32_t = unsigned integer type ;
using uint_fast64_t = unsigned integer type ;
using uint_fastN_t = see below ; // optional

using uint_least8_t = unsigned integer type ;
using uint_least16_t = unsigned integer type ;
using uint_least32_t = unsigned integer type ;
using uint_least64_t = unsigned integer type ;
using uint_leastN_t = see below ; // optional
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using uintmax_t = unsigned integer type ;
using uintptr_t = unsigned integer type ; // optional

}

#define INTN_MIN see below
#define INTN_MAX see below
#define UINTN_MAX see below

#define INT_FASTN_MIN see below
#define INT_FASTN_MAX see below
#define UINT_FASTN_MAX see below

#define INT_LEASTN_MIN see below
#define INT_LEASTN_MAX see below
#define UINT_LEASTN_MAX see below

#define INTMAX_MIN see below
#define INTMAX_MAX see below
#define UINTMAX_MAX see below

#define INTPTR_MIN see below // optional
#define INTPTR_MAX see below // optional
#define UINTPTR_MAX see below // optional

#define PTRDIFF_MIN see below
#define PTRDIFF_MAX see below
#define SIZE_MAX see below

#define SIG_ATOMIC_MIN see below
#define SIG_ATOMIC_MAX see below

#define WCHAR_MIN see below
#define WCHAR_MAX see below

#define WINT_MIN see below
#define WINT_MAX see below

#define INTN_C(value) see below
#define UINTN_C(value) see below
#define INTMAX_C(value) see below
#define UINTMAX_C(value) see below

2 The header defines all types and macros the same as the C standard library header <stdint.h>.
See also: ISO/IEC 9899:2018, 7.20

3 All types that use the placeholder N are optional when N is not 8, 16, 32, or 64. The exact-width types
intN_t and uintN_t for N = 8, 16, 32, and 64 are also optional; however, if an implementation defines integer
types with the corresponding width and no padding bits, it defines the corresponding typedef-names. Each of
the macros listed in this subclause is defined if and only if the implementation defines the corresponding
typedef-name.
[Note 1 : The macros INTN_C and UINTN_C correspond to the typedef-names int_leastN_t and uint_leastN_t,
respectively. — end note ]

17.4.2 Header <stdfloat> synopsis [stdfloat.syn]
1 The header <stdfloat> defines type aliases for the optional extended floating-point types that are specified

in 6.8.3.
namespace std {

#if defined(__STDCPP_FLOAT16_T__)
using float16_t = implementation-defined ; // see 6.8.3

#endif
#if defined(__STDCPP_FLOAT32_T__)

using float32_t = implementation-defined ; // see 6.8.3
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#endif
#if defined(__STDCPP_FLOAT64_T__)

using float64_t = implementation-defined ; // see 6.8.3
#endif
#if defined(__STDCPP_FLOAT128_T__)

using float128_t = implementation-defined ; // see 6.8.3
#endif
#if defined(__STDCPP_BFLOAT16_T__)

using bfloat16_t = implementation-defined ; // see 6.8.3
#endif

}

17.5 Startup and termination [support.start.term]
1 [Note 1 : The header <cstdlib> (17.2.2) declares the functions described in this subclause. — end note ]

[[noreturn]] void _Exit(int status) noexcept;

2 Effects: This function has the semantics specified in the C standard library.
3 Remarks: The program is terminated without executing destructors for objects of automatic, thread,

or static storage duration and without calling functions passed to atexit() (6.9.3.4). The function
_Exit is signal-safe (17.13.5).

[[noreturn]] void abort() noexcept;

4 Effects: This function has the semantics specified in the C standard library.
5 Remarks: The program is terminated without executing destructors for objects of automatic, thread,

or static storage duration and without calling functions passed to atexit() (6.9.3.4). The function
abort is signal-safe (17.13.5).

int atexit(c-atexit-handler * f) noexcept;
int atexit(atexit-handler * f) noexcept;

6 Effects: The atexit() functions register the function pointed to by f to be called without arguments
at normal program termination. It is unspecified whether a call to atexit() that does not happen
before (6.9.2) a call to exit() will succeed.
[Note 2 : The atexit() functions do not introduce a data race (16.4.6.10). — end note ]

7 Implementation limits: The implementation shall support the registration of at least 32 functions.
8 Returns: The atexit() function returns zero if the registration succeeds, nonzero if it fails.

[[noreturn]] void exit(int status);

9 Effects:
—(9.1) First, objects with thread storage duration and associated with the current thread are destroyed.

Next, objects with static storage duration are destroyed and functions registered by calling atexit
are called.195 See 6.9.3.4 for the order of destructions and calls. (Objects with automatic storage
duration are not destroyed as a result of calling exit().)196

If a registered function invoked by exit exits via an exception, the function std::terminate is
invoked (14.6.2).

—(9.2) Next, all open C streams (as mediated by the function signatures declared in <cstdio> (31.13.1))
with unwritten buffered data are flushed, all open C streams are closed, and all files created by
calling tmpfile() are removed.

—(9.3) Finally, control is returned to the host environment. If status is zero or EXIT_SUCCESS, an
implementation-defined form of the status successful termination is returned. If status is EXIT_-
FAILURE, an implementation-defined form of the status unsuccessful termination is returned.
Otherwise the status returned is implementation-defined.197

195) A function is called for every time it is registered.
196) Objects with automatic storage duration are all destroyed in a program whose main function (6.9.3.1) contains no objects
with automatic storage duration and executes the call to exit(). Control can be transferred directly to such a main function by
throwing an exception that is caught in main.
197) The macros EXIT_FAILURE and EXIT_SUCCESS are defined in <cstdlib> (17.2.2).
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int at_quick_exit(c-atexit-handler * f) noexcept;
int at_quick_exit(atexit-handler * f) noexcept;

10 Effects: The at_quick_exit() functions register the function pointed to by f to be called without
arguments when quick_exit is called. It is unspecified whether a call to at_quick_exit() that does
not happen before (6.9.2) all calls to quick_exit will succeed.
[Note 3 : The at_quick_exit() functions do not introduce a data race (16.4.6.10). — end note ]
[Note 4 : The order of registration could be indeterminate if at_quick_exit was called from more than one
thread. — end note ]
[Note 5 : The at_quick_exit registrations are distinct from the atexit registrations, and applications might
need to call both registration functions with the same argument. — end note ]

11 Implementation limits: The implementation shall support the registration of at least 32 functions.
12 Returns: Zero if the registration succeeds, nonzero if it fails.

[[noreturn]] void quick_exit(int status) noexcept;

13 Effects: Functions registered by calls to at_quick_exit are called in the reverse order of their
registration, except that a function shall be called after any previously registered functions that had
already been called at the time it was registered. Objects shall not be destroyed as a result of calling
quick_exit. If a registered function invoked by quick_exit exits via an exception, the function
std::terminate is invoked (14.6.2).
[Note 6 : A function registered via at_quick_exit is invoked by the thread that calls quick_exit, which can be
a different thread than the one that registered it, so registered functions cannot rely on the identity of objects
with thread storage duration. — end note ]

After calling registered functions, quick_exit shall call _Exit(status).
14 Remarks: The function quick_exit is signal-safe (17.13.5) when the functions registered with at_-

quick_exit are.
See also: ISO/IEC 9899:2018, 7.22.4

17.6 Dynamic memory management [support.dynamic]
17.6.1 General [support.dynamic.general]

1 The header <new> defines several functions that manage the allocation of dynamic storage in a program. It
also defines components for reporting storage management errors.

17.6.2 Header <new> synopsis [new.syn]
// all freestanding
namespace std {

// 17.6.4, storage allocation errors
class bad_alloc;
class bad_array_new_length;

struct destroying_delete_t {
explicit destroying_delete_t() = default;

};
inline constexpr destroying_delete_t destroying_delete{};

// global operator new control
enum class align_val_t : size_t {};

struct nothrow_t { explicit nothrow_t() = default; };
extern const nothrow_t nothrow;

using new_handler = void (*)();
new_handler get_new_handler() noexcept;
new_handler set_new_handler(new_handler new_p) noexcept;

// 17.6.5, pointer optimization barrier
template<class T> [[nodiscard]] constexpr T* launder(T* p) noexcept;
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// 17.6.6, hardware interference size
inline constexpr size_t hardware_destructive_interference_size = implementation-defined ;
inline constexpr size_t hardware_constructive_interference_size = implementation-defined ;

}

// 17.6.3, storage allocation and deallocation
[[nodiscard]] void* operator new(std::size_t size);
[[nodiscard]] void* operator new(std::size_t size, std::align_val_t alignment);
[[nodiscard]] void* operator new(std::size_t size, const std::nothrow_t&) noexcept;
[[nodiscard]] void* operator new(std::size_t size, std::align_val_t alignment,

const std::nothrow_t&) noexcept;

void operator delete(void* ptr) noexcept;
void operator delete(void* ptr, std::size_t size) noexcept;
void operator delete(void* ptr, std::align_val_t alignment) noexcept;
void operator delete(void* ptr, std::size_t size, std::align_val_t alignment) noexcept;
void operator delete(void* ptr, const std::nothrow_t&) noexcept;
void operator delete(void* ptr, std::align_val_t alignment, const std::nothrow_t&) noexcept;

[[nodiscard]] void* operator new[](std::size_t size);
[[nodiscard]] void* operator new[](std::size_t size, std::align_val_t alignment);
[[nodiscard]] void* operator new[](std::size_t size, const std::nothrow_t&) noexcept;
[[nodiscard]] void* operator new[](std::size_t size, std::align_val_t alignment,

const std::nothrow_t&) noexcept;

void operator delete[](void* ptr) noexcept;
void operator delete[](void* ptr, std::size_t size) noexcept;
void operator delete[](void* ptr, std::align_val_t alignment) noexcept;
void operator delete[](void* ptr, std::size_t size, std::align_val_t alignment) noexcept;
void operator delete[](void* ptr, const std::nothrow_t&) noexcept;
void operator delete[](void* ptr, std::align_val_t alignment, const std::nothrow_t&) noexcept;

[[nodiscard]] void* operator new (std::size_t size, void* ptr) noexcept;
[[nodiscard]] void* operator new[](std::size_t size, void* ptr) noexcept;
void operator delete (void* ptr, void*) noexcept;
void operator delete[](void* ptr, void*) noexcept;

17.6.3 Storage allocation and deallocation [new.delete]
17.6.3.1 General [new.delete.general]

1 Except where otherwise specified, the provisions of 6.7.5.5 apply to the library versions of operator new
and operator delete. If the value of an alignment argument passed to any of these functions is not a valid
alignment value, the behavior is undefined.

17.6.3.2 Single-object forms [new.delete.single]

[[nodiscard]] void* operator new(std::size_t size);
[[nodiscard]] void* operator new(std::size_t size, std::align_val_t alignment);

1 Effects: The allocation functions (6.7.5.5.2) called by a new-expression (7.6.2.8) to allocate size bytes
of storage. The second form is called for a type with new-extended alignment, and the first form is
called otherwise.

2 Replaceable: A C++ program may define functions with either of these function signatures, and thereby
displace the default versions defined by the C++ standard library.

3 Required behavior : Return a non-null pointer to suitably aligned storage (6.7.5.5), or else throw a
bad_alloc exception. This requirement is binding on any replacement versions of these functions.

4 Default behavior :
—(4.1) Executes a loop: Within the loop, the function first attempts to allocate the requested storage.

Whether the attempt involves a call to the C standard library functions malloc or aligned_alloc
is unspecified.

—(4.2) Returns a pointer to the allocated storage if the attempt is successful. Otherwise, if the current
new_handler (17.6.4.5) is a null pointer value, throws bad_alloc.
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—(4.3) Otherwise, the function calls the current new_handler function (17.6.4.3). If the called function
returns, the loop repeats.

—(4.4) The loop terminates when an attempt to allocate the requested storage is successful or when a
called new_handler function does not return.

[[nodiscard]] void* operator new(std::size_t size, const std::nothrow_t&) noexcept;
[[nodiscard]] void* operator new(std::size_t size, std::align_val_t alignment,

const std::nothrow_t&) noexcept;

5 Effects: Same as above, except that these are called by a placement version of a new-expression when a
C++ program prefers a null pointer result as an error indication, instead of a bad_alloc exception.

6 Replaceable: A C++ program may define functions with either of these function signatures, and thereby
displace the default versions defined by the C++ standard library.

7 Required behavior : Return a non-null pointer to suitably aligned storage (6.7.5.5), or else return a null
pointer. Each of these nothrow versions of operator new returns a pointer obtained as if acquired
from the (possibly replaced) corresponding non-placement function. This requirement is binding on
any replacement versions of these functions.

8 Default behavior : Calls operator new(size), or operator new(size, alignment), respectively. If
the call returns normally, returns the result of that call. Otherwise, returns a null pointer.

9 [Example 1 :
T* p1 = new T; // throws bad_alloc if it fails
T* p2 = new(nothrow) T; // returns nullptr if it fails

— end example ]

void operator delete(void* ptr) noexcept;
void operator delete(void* ptr, std::size_t size) noexcept;
void operator delete(void* ptr, std::align_val_t alignment) noexcept;
void operator delete(void* ptr, std::size_t size, std::align_val_t alignment) noexcept;

10 Preconditions: ptr is a null pointer or its value represents the address of a block of memory allocated by
an earlier call to a (possibly replaced) operator new(std::size_t) or operator new(std::size_t,
std::align_val_t) which has not been invalidated by an intervening call to operator delete.

11 If the alignment parameter is not present, ptr was returned by an allocation function without an
alignment parameter. If present, the alignment argument is equal to the alignment argument passed
to the allocation function that returned ptr. If present, the size argument is equal to the size
argument passed to the allocation function that returned ptr.

12 Effects: The deallocation functions (6.7.5.5.3) called by a delete-expression (7.6.2.9) to render the value
of ptr invalid.

13 Replaceable: A C++ program may define functions with any of these function signatures, and thereby
displace the default versions defined by the C++ standard library. If a function without a size parameter
is defined, the program should also define the corresponding function with a size parameter. If a
function with a size parameter is defined, the program shall also define the corresponding version
without the size parameter.
[Note 1 : The default behavior below might change in the future, which will require replacing both deallocation
functions when replacing the allocation function. — end note ]

14 Required behavior : A call to an operator delete with a size parameter may be changed to a call to
the corresponding operator delete without a size parameter, without affecting memory allocation.
[Note 2 : A conforming implementation is for operator delete(void* ptr, std::size_t size) to simply call
operator delete(ptr). — end note ]

15 Default behavior : The functions that have a size parameter forward their other parameters to the
corresponding function without a size parameter.
[Note 3 : See the note in the above Replaceable: paragraph. — end note ]

16 Default behavior : If ptr is null, does nothing. Otherwise, reclaims the storage allocated by the earlier
call to operator new.
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17 Remarks: It is unspecified under what conditions part or all of such reclaimed storage will be allocated
by subsequent calls to operator new or any of aligned_alloc, calloc, malloc, or realloc, declared
in <cstdlib> (17.2.2).

void operator delete(void* ptr, const std::nothrow_t&) noexcept;
void operator delete(void* ptr, std::align_val_t alignment, const std::nothrow_t&) noexcept;

18 Preconditions: ptr is a null pointer or its value represents the address of a block of memory allocated by
an earlier call to a (possibly replaced) operator new(std::size_t) or operator new(std::size_t,
std::align_val_t) which has not been invalidated by an intervening call to operator delete.

19 If the alignment parameter is not present, ptr was returned by an allocation function without an
alignment parameter. If present, the alignment argument is equal to the alignment argument passed
to the allocation function that returned ptr.

20 Effects: The deallocation functions (6.7.5.5.3) called by the implementation to render the value of ptr
invalid when the constructor invoked from a nothrow placement version of the new-expression throws an
exception.

21 Replaceable: A C++ program may define functions with either of these function signatures, and thereby
displace the default versions defined by the C++ standard library.

22 Default behavior : Calls operator delete(ptr), or operator delete(ptr, alignment), respectively.

17.6.3.3 Array forms [new.delete.array]

[[nodiscard]] void* operator new[](std::size_t size);
[[nodiscard]] void* operator new[](std::size_t size, std::align_val_t alignment);

1 Effects: The allocation functions (6.7.5.5.2) called by the array form of a new-expression (7.6.2.8) to
allocate size bytes of storage. The second form is called for a type with new-extended alignment, and
the first form is called otherwise.198

2 Replaceable: A C++ program may define functions with either of these function signatures, and thereby
displace the default versions defined by the C++ standard library.

3 Required behavior : Same as for the corresponding single-object forms. This requirement is binding on
any replacement versions of these functions.

4 Default behavior : Returns operator new(size), or operator new(size, alignment), respectively.

[[nodiscard]] void* operator new[](std::size_t size, const std::nothrow_t&) noexcept;
[[nodiscard]] void* operator new[](std::size_t size, std::align_val_t alignment,

const std::nothrow_t&) noexcept;

5 Effects: Same as above, except that these are called by a placement version of a new-expression when a
C++ program prefers a null pointer result as an error indication, instead of a bad_alloc exception.

6 Replaceable: A C++ program may define functions with either of these function signatures, and thereby
displace the default versions defined by the C++ standard library.

7 Required behavior : Return a non-null pointer to suitably aligned storage (6.7.5.5), or else return a null
pointer. Each of these nothrow versions of operator new[] returns a pointer obtained as if acquired
from the (possibly replaced) corresponding non-placement function. This requirement is binding on
any replacement versions of these functions.

8 Default behavior : Calls operator new[](size), or operator new[](size, alignment), respectively.
If the call returns normally, returns the result of that call. Otherwise, returns a null pointer.

void operator delete[](void* ptr) noexcept;
void operator delete[](void* ptr, std::size_t size) noexcept;
void operator delete[](void* ptr, std::align_val_t alignment) noexcept;
void operator delete[](void* ptr, std::size_t size, std::align_val_t alignment) noexcept;

9 Preconditions: ptr is a null pointer or its value represents the address of a block of memory
allocated by an earlier call to a (possibly replaced) operator new[](std::size_t) or operator

198) It is not the direct responsibility of operator new[] or operator delete[] to note the repetition count or element size of
the array. Those operations are performed elsewhere in the array new and delete expressions. The array new expression, can,
however, increase the size argument to operator new[] to obtain space to store supplemental information.
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new[](std::size_t, std::align_val_t) which has not been invalidated by an intervening call to
operator delete[].

10 If the alignment parameter is not present, ptr was returned by an allocation function without an
alignment parameter. If present, the alignment argument is equal to the alignment argument passed
to the allocation function that returned ptr. If present, the size argument is equal to the size
argument passed to the allocation function that returned ptr.

11 Effects: The deallocation functions (6.7.5.5.3) called by the array form of a delete-expression to render
the value of ptr invalid.

12 Replaceable: A C++ program may define functions with any of these function signatures, and thereby
displace the default versions defined by the C++ standard library. If a function without a size parameter
is defined, the program should also define the corresponding function with a size parameter. If a
function with a size parameter is defined, the program shall also define the corresponding version
without the size parameter.
[Note 1 : The default behavior below might change in the future, which will require replacing both deallocation
functions when replacing the allocation function. — end note ]

13 Required behavior : A call to an operator delete[] with a size parameter may be changed to a
call to the corresponding operator delete[] without a size parameter, without affecting memory
allocation.
[Note 2 : A conforming implementation is for operator delete[](void* ptr, std::size_t size) to simply
call operator delete[](ptr). — end note ]

14 Default behavior : The functions that have a size parameter forward their other parameters to the
corresponding function without a size parameter. The functions that do not have a size parameter
forward their parameters to the corresponding operator delete (single-object) function.

void operator delete[](void* ptr, const std::nothrow_t&) noexcept;
void operator delete[](void* ptr, std::align_val_t alignment, const std::nothrow_t&) noexcept;

15 Preconditions: ptr is a null pointer or its value represents the address of a block of memory
allocated by an earlier call to a (possibly replaced) operator new[](std::size_t) or operator
new[](std::size_t, std::align_val_t) which has not been invalidated by an intervening call to
operator delete[].

16 If the alignment parameter is not present, ptr was returned by an allocation function without an
alignment parameter. If present, the alignment argument is equal to the alignment argument passed
to the allocation function that returned ptr.

17 Effects: The deallocation functions (6.7.5.5.3) called by the implementation to render the value of ptr
invalid when the constructor invoked from a nothrow placement version of the array new-expression
throws an exception.

18 Replaceable: A C++ program may define functions with either of these function signatures, and thereby
displace the default versions defined by the C++ standard library.

19 Default behavior : Calls operator delete[](ptr), or operator delete[](ptr, alignment), respec-
tively.

17.6.3.4 Non-allocating forms [new.delete.placement]
1 These functions are reserved; a C++ program may not define functions that displace the versions in the

C++ standard library (16.4.5). The provisions of 6.7.5.5 do not apply to these reserved placement forms of
operator new and operator delete.

[[nodiscard]] void* operator new(std::size_t size, void* ptr) noexcept;

2 Returns: ptr.
3 Remarks: Intentionally performs no other action.
4 [Example 1 : This can be useful for constructing an object at a known address:

void* place = operator new(sizeof(Something));
Something* p = new (place) Something();

— end example ]
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[[nodiscard]] void* operator new[](std::size_t size, void* ptr) noexcept;

5 Returns: ptr.
6 Remarks: Intentionally performs no other action.

void operator delete(void* ptr, void*) noexcept;

7 Effects: Intentionally performs no action.
8 Remarks: Default function called when any part of the initialization in a placement new-expression that

invokes the library’s non-array placement operator new terminates by throwing an exception (7.6.2.8).

void operator delete[](void* ptr, void*) noexcept;

9 Effects: Intentionally performs no action.
10 Remarks: Default function called when any part of the initialization in a placement new-expression that

invokes the library’s array placement operator new terminates by throwing an exception (7.6.2.8).

17.6.3.5 Data races [new.delete.dataraces]
1 For purposes of determining the existence of data races, the library versions of operator new, user replacement

versions of global operator new, the C standard library functions aligned_alloc, calloc, and malloc, the
library versions of operator delete, user replacement versions of operator delete, the C standard library
function free, and the C standard library function realloc shall not introduce a data race (16.4.6.10). Calls
to these functions that allocate or deallocate a particular unit of storage shall occur in a single total order,
and each such deallocation call shall happen before (6.9.2) the next allocation (if any) in this order.

17.6.4 Storage allocation errors [alloc.errors]
17.6.4.1 Class bad_alloc [bad.alloc]

namespace std {
class bad_alloc : public exception {
public:

// see 17.9.3 for the specification of the special member functions
const char* what() const noexcept override;

};
}

1 The class bad_alloc defines the type of objects thrown as exceptions by the implementation to report a
failure to allocate storage.

const char* what() const noexcept override;

2 Returns: An implementation-defined ntbs.

17.6.4.2 Class bad_array_new_length [new.badlength]
namespace std {

class bad_array_new_length : public bad_alloc {
public:

// see 17.9.3 for the specification of the special member functions
const char* what() const noexcept override;

};
}

1 The class bad_array_new_length defines the type of objects thrown as exceptions by the implementation
to report an attempt to allocate an array of size less than zero or greater than an implementation-defined
limit (7.6.2.8).

const char* what() const noexcept override;

2 Returns: An implementation-defined ntbs.

17.6.4.3 Type new_handler [new.handler]

using new_handler = void (*)();

1 The type of a handler function to be called by operator new() or operator new[]() (17.6.3) when
they cannot satisfy a request for additional storage.
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2 Required behavior : A new_handler shall perform one of the following:
—(2.1) make more storage available for allocation and then return;
—(2.2) throw an exception of type bad_alloc or a class derived from bad_alloc;
—(2.3) terminate execution of the program without returning to the caller.

17.6.4.4 set_new_handler [set.new.handler]

new_handler set_new_handler(new_handler new_p) noexcept;

1 Effects: Establishes the function designated by new_p as the current new_handler.
2 Returns: The previous new_handler.
3 Remarks: The initial new_handler is a null pointer.

17.6.4.5 get_new_handler [get.new.handler]

new_handler get_new_handler() noexcept;

1 Returns: The current new_handler.
[Note 1 : This can be a null pointer value. — end note ]

17.6.5 Pointer optimization barrier [ptr.launder]
template<class T> [[nodiscard]] constexpr T* launder(T* p) noexcept;

1 Mandates: !is_function_v<T> && !is_void_v<T> is true.
2 Preconditions: p represents the address A of a byte in memory. An object X that is within its

lifetime (6.7.3) and whose type is similar (7.3.6) to T is located at the address A. All bytes of storage
that would be reachable through (6.8.4) the result are reachable through p.

3 Returns: A value of type T* that points to X.
4 Remarks: An invocation of this function may be used in a core constant expression if and only if the

(converted) value of its argument may be used in place of the function invocation.
5 [Note 1 : If a new object is created in storage occupied by an existing object of the same type, a pointer to

the original object can be used to refer to the new object unless its complete object is a const object or it is a
base class subobject; in the latter cases, this function can be used to obtain a usable pointer to the new object.
See 6.7.3. — end note ]

6 [Example 1 :
struct X { int n; };
const X *p = new const X{3};
const int a = p->n;
new (const_cast<X*>(p)) const X{5}; // p does not point to new object (6.7.3) because its type is const
const int b = p->n; // undefined behavior
const int c = std::launder(p)->n; // OK

— end example ]

17.6.6 Hardware interference size [hardware.interference]
inline constexpr size_t hardware_destructive_interference_size = implementation-defined ;

1 This number is the minimum recommended offset between two concurrently-accessed objects to avoid
additional performance degradation due to contention introduced by the implementation. It shall be at least
alignof(max_align_t).
[Example 1 :

struct keep_apart {
alignas(hardware_destructive_interference_size) atomic<int> cat;
alignas(hardware_destructive_interference_size) atomic<int> dog;

};

— end example ]
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inline constexpr size_t hardware_constructive_interference_size = implementation-defined ;

2 This number is the maximum recommended size of contiguous memory occupied by two objects accessed
with temporal locality by concurrent threads. It shall be at least alignof(max_align_t).
[Example 2 :

struct together {
atomic<int> dog;
int puppy;

};
struct kennel {

// Other data members...
alignas(sizeof(together)) together pack;
// Other data members...

};
static_assert(sizeof(together) <= hardware_constructive_interference_size);

— end example ]

17.7 Type identification [support.rtti]
17.7.1 General [support.rtti.general]

1 The header <typeinfo> defines a type associated with type information generated by the implementation. It
also defines two types for reporting dynamic type identification errors.

17.7.2 Header <typeinfo> synopsis [typeinfo.syn]
// all freestanding
namespace std {

class type_info;
class bad_cast;
class bad_typeid;

}

17.7.3 Class type_info [type.info]
namespace std {

class type_info {
public:

virtual ~type_info();
constexpr bool operator==(const type_info& rhs) const noexcept;
bool before(const type_info& rhs) const noexcept;
size_t hash_code() const noexcept;
const char* name() const noexcept;

type_info(const type_info&) = delete; // cannot be copied
type_info& operator=(const type_info&) = delete; // cannot be copied

};
}

1 The class type_info describes type information generated by the implementation (7.6.1.8). Objects of this
class effectively store a pointer to a name for the type, and an encoded value suitable for comparing two types
for equality or collating order. The names, encoding rule, and collating sequence for types are all unspecified
and may differ between programs.

constexpr bool operator==(const type_info& rhs) const noexcept;

2 Effects: Compares the current object with rhs.
3 Returns: true if the two values describe the same type.

bool before(const type_info& rhs) const noexcept;

4 Effects: Compares the current object with rhs.
5 Returns: true if *this precedes rhs in the implementation’s collation order.
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size_t hash_code() const noexcept;

6 Returns: An unspecified value, except that within a single execution of the program, it shall return the
same value for any two type_info objects which compare equal.

7 Remarks: An implementation should return different values for two type_info objects which do not
compare equal.

const char* name() const noexcept;

8 Returns: An implementation-defined ntbs.
9 Remarks: The message may be a null-terminated multibyte string (16.3.3.3.4.3), suitable for conversion

and display as a wstring (23.4, 30.4.2.5).

17.7.4 Class bad_cast [bad.cast]
namespace std {

class bad_cast : public exception {
public:

// see 17.9.3 for the specification of the special member functions
const char* what() const noexcept override;

};
}

1 The class bad_cast defines the type of objects thrown as exceptions by the implementation to report the
execution of an invalid dynamic_cast expression (7.6.1.7).

const char* what() const noexcept override;

2 Returns: An implementation-defined ntbs.

17.7.5 Class bad_typeid [bad.typeid]
namespace std {

class bad_typeid : public exception {
public:

// see 17.9.3 for the specification of the special member functions
const char* what() const noexcept override;

};
}

1 The class bad_typeid defines the type of objects thrown as exceptions by the implementation to report a
null pointer in a typeid expression (7.6.1.8).

const char* what() const noexcept override;

2 Returns: An implementation-defined ntbs.

17.8 Source location [support.srcloc]
17.8.1 Header <source_location> synopsis [source.location.syn]

1 The header <source_location> defines the class source_location that provides a means to obtain source
location information.

// all freestanding
namespace std {

struct source_location;
}

17.8.2 Class source_location [support.srcloc.class]
17.8.2.1 General [support.srcloc.class.general]

namespace std {
struct source_location {

// source location construction
static consteval source_location current() noexcept;
constexpr source_location() noexcept;
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// source location field access
constexpr uint_least32_t line() const noexcept;
constexpr uint_least32_t column() const noexcept;
constexpr const char* file_name() const noexcept;
constexpr const char* function_name() const noexcept;

private:
uint_least32_t line_; // exposition only
uint_least32_t column_; // exposition only
const char* file_name_; // exposition only
const char* function_name_; // exposition only

};
}

1 The type source_location meets the Cpp17DefaultConstructible, Cpp17CopyConstructible, Cpp17Copy-
Assignable, Cpp17Swappable, and Cpp17Destructible requirements (16.4.4.2, 16.4.4.3). All of the following
conditions are true:

—(1.1) is_nothrow_move_constructible_v<source_location>
—(1.2) is_nothrow_move_assignable_v<source_location>
—(1.3) is_nothrow_swappable_v<source_location>

[Note 1 : The intent of source_location is to have a small size and efficient copying. It is unspecified whether the
copy/move constructors and the copy/move assignment operators are trivial and/or constexpr. — end note ]

2 The data members file_name_ and function_name_ always each refer to an ntbs.
3 The copy/move constructors and the copy/move assignment operators of source_location meet the following

postconditions: Given two objects lhs and rhs of type source_location, where lhs is a copy/move result
of rhs, and where rhs_p is a value denoting the state of rhs before the corresponding copy/move operation,
then each of the following conditions is true:

—(3.1) strcmp(lhs.file_name(), rhs_p.file_name()) == 0
—(3.2) strcmp(lhs.function_name(), rhs_p.function_name()) == 0
—(3.3) lhs.line() == rhs_p.line()
—(3.4) lhs.column() == rhs_p.column()

17.8.2.2 Creation [support.srcloc.cons]

static consteval source_location current() noexcept;

1 Returns:
—(1.1) When invoked by a function call whose postfix-expression is a (possibly parenthesized) id-expression

naming current, returns a source_location with an implementation-defined value. The value
should be affected by #line (15.7) in the same manner as for __LINE__ and __FILE__. The
values of the exposition-only data members of the returned source_location object are indicated
in Table 39.

—(1.2) Otherwise, when invoked in some other way, returns a source_location whose data members
are initialized with valid but unspecified values.

2 Remarks: Any call to current that appears as a default member initializer (11.4), or as a subexpression
thereof, should correspond to the location of the constructor definition or aggregate initialization that
uses the default member initializer. Any call to current that appears as a default argument (9.3.4.7),
or as a subexpression thereof, should correspond to the location of the invocation of the function that
uses the default argument (7.6.1.3).

3 [Example 1 :
struct s {

source_location member = source_location::current();
int other_member;
s(source_location loc = source_location::current())

: member(loc) // values of member refer to the location of the calling function (9.3.4.7)
{}
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Table 39: Value of object returned by current [tab:support.srcloc.current]

Element Value
line_ A presumed line number (15.11). Line numbers

are presumed to be 1-indexed; however, an imple-
mentation is encouraged to use 0 when the line
number is unknown.

column_ An implementation-defined value denoting some
offset from the start of the line denoted by line_.
Column numbers are presumed to be 1-indexed;
however, an implementation is encouraged to use
0 when the column number is unknown.

file_name_ A presumed name of the current source file (15.11)
as an ntbs.

function_name_ A name of the current function such as in
__func__ (9.5.1) if any, an empty string other-
wise.

s(int blather) : // values of member refer to this location
other_member(blather)

{}
s(double) // values of member refer to this location
{}

};
void f(source_location a = source_location::current()) {

source_location b = source_location::current(); // values in b refer to this line
}

void g() {
f(); // f’s first argument corresponds to this line of code

source_location c = source_location::current();
f(c); // f’s first argument gets the same values as c, above

}

— end example ]

constexpr source_location() noexcept;

4 Effects: The data members are initialized with valid but unspecified values.

17.8.2.3 Observers [support.srcloc.obs]

constexpr uint_least32_t line() const noexcept;

1 Returns: line_.

constexpr uint_least32_t column() const noexcept;

2 Returns: column_.

constexpr const char* file_name() const noexcept;

3 Returns: file_name_.

constexpr const char* function_name() const noexcept;

4 Returns: function_name_.

17.9 Exception handling [support.exception]
17.9.1 General [support.exception.general]

1 The header <exception> defines several types and functions related to the handling of exceptions in a C++

program.
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17.9.2 Header <exception> synopsis [exception.syn]
// all freestanding
namespace std {

class exception;
class bad_exception;
class nested_exception;

using terminate_handler = void (*)();
terminate_handler get_terminate() noexcept;
terminate_handler set_terminate(terminate_handler f) noexcept;
[[noreturn]] void terminate() noexcept;

int uncaught_exceptions() noexcept;

using exception_ptr = unspecified ;

exception_ptr current_exception() noexcept;
[[noreturn]] void rethrow_exception(exception_ptr p);
template<class E> exception_ptr make_exception_ptr(E e) noexcept;

template<class T> [[noreturn]] void throw_with_nested(T&& t);
template<class E> void rethrow_if_nested(const E& e);

}

17.9.3 Class exception [exception]
namespace std {

class exception {
public:

exception() noexcept;
exception(const exception&) noexcept;
exception& operator=(const exception&) noexcept;
virtual ~exception();
virtual const char* what() const noexcept;

};
}

1 The class exception defines the base class for the types of objects thrown as exceptions by C++ standard
library components, and certain expressions, to report errors detected during program execution.

2 Each standard library class T that derives from class exception has the following publicly accessible member
functions, each of them having a non-throwing exception specification (14.5):

—(2.1) default constructor (unless the class synopsis shows other constructors)
—(2.2) copy constructor
—(2.3) copy assignment operator

The copy constructor and the copy assignment operator meet the following postcondition: If two objects lhs
and rhs both have dynamic type T and lhs is a copy of rhs, then strcmp(lhs.what(), rhs.what()) is equal
to 0. The what() member function of each such T satisfies the constraints specified for exception::what()
(see below).

exception(const exception& rhs) noexcept;
exception& operator=(const exception& rhs) noexcept;

3 Postconditions: If *this and rhs both have dynamic type exception then the value of the expression
strcmp(what(), rhs.what()) shall equal 0.

virtual ~exception();

4 Effects: Destroys an object of class exception.

virtual const char* what() const noexcept;

5 Returns: An implementation-defined ntbs.
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6 Remarks: The message may be a null-terminated multibyte string (16.3.3.3.4.3), suitable for conversion
and display as a wstring (23.4, 30.4.2.5). The return value remains valid until the exception object
from which it is obtained is destroyed or a non-const member function of the exception object is called.

17.9.4 Class bad_exception [bad.exception]
namespace std {

class bad_exception : public exception {
public:

// see 17.9.3 for the specification of the special member functions
const char* what() const noexcept override;

};
}

1 The class bad_exception defines the type of the object referenced by the exception_ptr returned from a
call to current_exception (17.9.7) when the currently active exception object fails to copy.

const char* what() const noexcept override;

2 Returns: An implementation-defined ntbs.

17.9.5 Abnormal termination [exception.terminate]
17.9.5.1 Type terminate_handler [terminate.handler]

using terminate_handler = void (*)();

1 The type of a handler function to be invoked by terminate when terminating exception processing.
2 Required behavior : A terminate_handler shall terminate execution of the program without returning

to the caller.
3 Default behavior : The implementation’s default terminate_handler calls abort().

17.9.5.2 set_terminate [set.terminate]

terminate_handler set_terminate(terminate_handler f) noexcept;

1 Effects: Establishes the function designated by f as the current handler function for terminating
exception processing.

2 Returns: The previous terminate_handler.
3 Remarks: It is unspecified whether a null pointer value designates the default terminate_handler.

17.9.5.3 get_terminate [get.terminate]

terminate_handler get_terminate() noexcept;

1 Returns: The current terminate_handler.
[Note 1 : This can be a null pointer value. — end note ]

17.9.5.4 terminate [terminate]

[[noreturn]] void terminate() noexcept;

1 Effects: Calls a terminate_handler function. It is unspecified which terminate_handler function
will be called if an exception is active during a call to set_terminate. Otherwise calls the current
terminate_handler function.
[Note 1 : A default terminate_handler is always considered a callable handler in this context. — end note ]

2 Remarks: Called by the implementation when exception handling must be abandoned for any of several
reasons (14.6.2). May also be called directly by the program.

17.9.6 uncaught_exceptions [uncaught.exceptions]
int uncaught_exceptions() noexcept;

1 Returns: The number of uncaught exceptions (14.6.3).
2 Remarks: When uncaught_exceptions() > 0, throwing an exception can result in a call of the

function std::terminate (14.6.2).
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17.9.7 Exception propagation [propagation]
using exception_ptr = unspecified ;

1 The type exception_ptr can be used to refer to an exception object.
2 exception_ptr meets the requirements of Cpp17NullablePointer (Table 36).
3 Two non-null values of type exception_ptr are equivalent and compare equal if and only if they refer

to the same exception.
4 The default constructor of exception_ptr produces the null value of the type.
5 exception_ptr shall not be implicitly convertible to any arithmetic, enumeration, or pointer type.
6 [Note 1 : An implementation can use a reference-counted smart pointer as exception_ptr. — end note ]
7 For purposes of determining the presence of a data race, operations on exception_ptr objects shall

access and modify only the exception_ptr objects themselves and not the exceptions they refer to.
Use of rethrow_exception on exception_ptr objects that refer to the same exception object shall
not introduce a data race.
[Note 2 : If rethrow_exception rethrows the same exception object (rather than a copy), concurrent access to
that rethrown exception object can introduce a data race. Changes in the number of exception_ptr objects
that refer to a particular exception do not introduce a data race. — end note ]

exception_ptr current_exception() noexcept;

8 Returns: An exception_ptr object that refers to the currently handled exception (14.4) or a copy of
the currently handled exception, or a null exception_ptr object if no exception is being handled. The
referenced object shall remain valid at least as long as there is an exception_ptr object that refers to
it. If the function needs to allocate memory and the attempt fails, it returns an exception_ptr object
that refers to an instance of bad_alloc. It is unspecified whether the return values of two successive
calls to current_exception refer to the same exception object.
[Note 3 : That is, it is unspecified whether current_exception creates a new copy each time it is called. — end
note ]

If the attempt to copy the current exception object throws an exception, the function returns an
exception_ptr object that refers to the thrown exception or, if this is not possible, to an instance of
bad_exception.
[Note 4 : The copy constructor of the thrown exception can also fail, so the implementation is allowed to
substitute a bad_exception object to avoid infinite recursion. — end note ]

[[noreturn]] void rethrow_exception(exception_ptr p);

9 Preconditions: p is not a null pointer.
10 Effects: Let u be the exception object to which p refers, or a copy of that exception object. It is

unspecified whether a copy is made, and memory for the copy is allocated in an unspecified way.
—(10.1) If allocating memory to form u fails, throws an instance of bad_alloc;
—(10.2) otherwise, if copying the exception to which p refers to form u throws an exception, throws that

exception;
—(10.3) otherwise, throws u.

template<class E> exception_ptr make_exception_ptr(E e) noexcept;

11 Effects: Creates an exception_ptr object that refers to a copy of e, as if:
try {

throw e;
} catch(...) {

return current_exception();
}

12 [Note 5 : This function is provided for convenience and efficiency reasons. — end note ]

17.9.8 nested_exception [except.nested]
namespace std {

class nested_exception {
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public:
nested_exception() noexcept;
nested_exception(const nested_exception&) noexcept = default;
nested_exception& operator=(const nested_exception&) noexcept = default;
virtual ~nested_exception() = default;

// access functions
[[noreturn]] void rethrow_nested() const;
exception_ptr nested_ptr() const noexcept;

};

template<class T> [[noreturn]] void throw_with_nested(T&& t);
template<class E> void rethrow_if_nested(const E& e);

}

1 The class nested_exception is designed for use as a mixin through multiple inheritance. It captures the
currently handled exception and stores it for later use.

2 [Note 1 : nested_exception has a virtual destructor to make it a polymorphic class. Its presence can be tested for
with dynamic_cast. — end note ]

nested_exception() noexcept;

3 Effects: The constructor calls current_exception() and stores the returned value.

[[noreturn]] void rethrow_nested() const;

4 Effects: If nested_ptr() returns a null pointer, the function calls the function std::terminate.
Otherwise, it throws the stored exception captured by *this.

exception_ptr nested_ptr() const noexcept;

5 Returns: The stored exception captured by this nested_exception object.

template<class T> [[noreturn]] void throw_with_nested(T&& t);

6 Let U be decay_t<T>.
7 Preconditions: U meets the Cpp17CopyConstructible requirements.
8 Throws: If is_class_v<U> && !is_final_v<U> && !is_base_of_v<nested_exception, U> is true,

an exception of unspecified type that is publicly derived from both U and nested_exception and
constructed from std::forward<T>(t), otherwise std::forward<T>(t).

template<class E> void rethrow_if_nested(const E& e);

9 Effects: If E is not a polymorphic class type, or if nested_exception is an inaccessible or ambiguous
base class of E, there is no effect. Otherwise, performs:

if (auto p = dynamic_cast<const nested_exception*>(addressof(e)))
p->rethrow_nested();

17.10 Initializer lists [support.initlist]
17.10.1 General [support.initlist.general]

1 The header <initializer_list> defines a class template and several support functions related to list-
initialization (see 9.4.5). All functions specified in 17.10 are signal-safe (17.13.5).

17.10.2 Header <initializer_list> synopsis [initializer.list.syn]
// all freestanding
namespace std {

template<class E> class initializer_list {
public:

using value_type = E;
using reference = const E&;
using const_reference = const E&;
using size_type = size_t;

using iterator = const E*;
using const_iterator = const E*;
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constexpr initializer_list() noexcept;

constexpr size_t size() const noexcept; // number of elements
constexpr const E* begin() const noexcept; // first element
constexpr const E* end() const noexcept; // one past the last element

};

// 17.10.5, initializer list range access
template<class E> constexpr const E* begin(initializer_list<E> il) noexcept;
template<class E> constexpr const E* end(initializer_list<E> il) noexcept;

}

1 An object of type initializer_list<E> provides access to an array of objects of type const E.
[Note 1 : A pair of pointers or a pointer plus a length would be obvious representations for initializer_list.
initializer_list is used to implement initializer lists as specified in 9.4.5. Copying an initializer list does not copy
the underlying elements. — end note ]

2 If an explicit specialization or partial specialization of initializer_list is declared, the program is
ill-formed.

17.10.3 Initializer list constructors [support.initlist.cons]
constexpr initializer_list() noexcept;

1 Postconditions: size() == 0.

17.10.4 Initializer list access [support.initlist.access]
constexpr const E* begin() const noexcept;

1 Returns: A pointer to the beginning of the array. If size() == 0 the values of begin() and end()
are unspecified but they shall be identical.

constexpr const E* end() const noexcept;

2 Returns: begin() + size().

constexpr size_t size() const noexcept;

3 Returns: The number of elements in the array.
4 Complexity: Constant time.

17.10.5 Initializer list range access [support.initlist.range]
template<class E> constexpr const E* begin(initializer_list<E> il) noexcept;

1 Returns: il.begin().

template<class E> constexpr const E* end(initializer_list<E> il) noexcept;

2 Returns: il.end().

17.11 Comparisons [cmp]
17.11.1 Header <compare> synopsis [compare.syn]

1 The header <compare> specifies types, objects, and functions for use primarily in connection with the
three-way comparison operator (7.6.8).

// all freestanding
namespace std {

// 17.11.2, comparison category types
class partial_ordering;
class weak_ordering;
class strong_ordering;

// named comparison functions
constexpr bool is_eq (partial_ordering cmp) noexcept { return cmp == 0; }
constexpr bool is_neq (partial_ordering cmp) noexcept { return cmp != 0; }
constexpr bool is_lt (partial_ordering cmp) noexcept { return cmp < 0; }
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constexpr bool is_lteq(partial_ordering cmp) noexcept { return cmp <= 0; }
constexpr bool is_gt (partial_ordering cmp) noexcept { return cmp > 0; }
constexpr bool is_gteq(partial_ordering cmp) noexcept { return cmp >= 0; }

// 17.11.3, common comparison category type
template<class... Ts>
struct common_comparison_category {

using type = see below ;
};
template<class... Ts>

using common_comparison_category_t = typename common_comparison_category<Ts...>::type;

// 17.11.4, concept three_way_comparable
template<class T, class Cat = partial_ordering>

concept three_way_comparable = see below ;
template<class T, class U, class Cat = partial_ordering>

concept three_way_comparable_with = see below ;

// 17.11.5, result of three-way comparison
template<class T, class U = T> struct compare_three_way_result;

template<class T, class U = T>
using compare_three_way_result_t = typename compare_three_way_result<T, U>::type;

// 22.10.8.8, class compare_three_way
struct compare_three_way;

// 17.11.6, comparison algorithms
inline namespace unspecified {

inline constexpr unspecified strong_order = unspecified ;
inline constexpr unspecified weak_order = unspecified ;
inline constexpr unspecified partial_order = unspecified ;
inline constexpr unspecified compare_strong_order_fallback = unspecified ;
inline constexpr unspecified compare_weak_order_fallback = unspecified ;
inline constexpr unspecified compare_partial_order_fallback = unspecified ;

}
}

17.11.2 Comparison category types [cmp.categories]
17.11.2.1 Preamble [cmp.categories.pre]

1 The types partial_ordering, weak_ordering, and strong_ordering are collectively termed the comparison
category types. Each is specified in terms of an exposition-only data member named value whose value
typically corresponds to that of an enumerator from one of the following exposition-only enumerations:

enum class ord { equal = 0, equivalent = equal, less = -1, greater = 1 }; // exposition only
enum class ncmp { unordered = -127 }; // exposition only

2 [Note 1 : The type strong_ordering corresponds to the term total ordering in mathematics. — end note ]
3 The relational and equality operators for the comparison category types are specified with an anonymous

parameter of unspecified type. This type shall be selected by the implementation such that these parameters
can accept literal 0 as a corresponding argument.
[Example 1 : nullptr_t meets this requirement. — end example ]

In this context, the behavior of a program that supplies an argument other than a literal 0 is undefined.
4 For the purposes of subclause 17.11.2, substitutability is the property that f(a) == f(b) is true whenever a

== b is true, where f denotes a function that reads only comparison-salient state that is accessible via the
argument’s public const members.

17.11.2.2 Class partial_ordering [cmp.partialord]
1 The partial_ordering type is typically used as the result type of a three-way comparison operator (7.6.8)

for a type that admits all of the six two-way comparison operators (7.6.9, 7.6.10), for which equality need not
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imply substitutability, and that permits two values to be incomparable.199

namespace std {
class partial_ordering {

int value; // exposition only
bool is_ordered; // exposition only

// exposition-only constructors
constexpr explicit

partial_ordering(ord v) noexcept : value(int(v)), is_ordered(true) {} // exposition only
constexpr explicit

partial_ordering(ncmp v) noexcept : value(int(v)), is_ordered(false) {} // exposition only

public:
// valid values
static const partial_ordering less;
static const partial_ordering equivalent;
static const partial_ordering greater;
static const partial_ordering unordered;

// comparisons
friend constexpr bool operator==(partial_ordering v, unspecified ) noexcept;
friend constexpr bool operator==(partial_ordering v, partial_ordering w) noexcept = default;
friend constexpr bool operator< (partial_ordering v, unspecified ) noexcept;
friend constexpr bool operator> (partial_ordering v, unspecified ) noexcept;
friend constexpr bool operator<=(partial_ordering v, unspecified ) noexcept;
friend constexpr bool operator>=(partial_ordering v, unspecified ) noexcept;
friend constexpr bool operator< (unspecified , partial_ordering v) noexcept;
friend constexpr bool operator> (unspecified , partial_ordering v) noexcept;
friend constexpr bool operator<=(unspecified , partial_ordering v) noexcept;
friend constexpr bool operator>=(unspecified , partial_ordering v) noexcept;
friend constexpr partial_ordering operator<=>(partial_ordering v, unspecified ) noexcept;
friend constexpr partial_ordering operator<=>(unspecified , partial_ordering v) noexcept;

};

// valid values’ definitions
inline constexpr partial_ordering partial_ordering::less(ord ::less );
inline constexpr partial_ordering partial_ordering::equivalent(ord ::equivalent );
inline constexpr partial_ordering partial_ordering::greater(ord ::greater );
inline constexpr partial_ordering partial_ordering::unordered(ncmp ::unordered );

}

constexpr bool operator==(partial_ordering v, unspecified ) noexcept;
constexpr bool operator< (partial_ordering v, unspecified ) noexcept;
constexpr bool operator> (partial_ordering v, unspecified ) noexcept;
constexpr bool operator<=(partial_ordering v, unspecified ) noexcept;
constexpr bool operator>=(partial_ordering v, unspecified ) noexcept;

2 Returns: For operator@, v.is_ordered && v.value @ 0.

constexpr bool operator< (unspecified , partial_ordering v) noexcept;
constexpr bool operator> (unspecified , partial_ordering v) noexcept;
constexpr bool operator<=(unspecified , partial_ordering v) noexcept;
constexpr bool operator>=(unspecified , partial_ordering v) noexcept;

3 Returns: For operator@, v.is_ordered && 0 @ v.value.

constexpr partial_ordering operator<=>(partial_ordering v, unspecified ) noexcept;

4 Returns: v.

constexpr partial_ordering operator<=>(unspecified , partial_ordering v) noexcept;

5 Returns: v < 0 ? partial_ordering::greater : v > 0 ? partial_ordering::less : v.

199) That is, a < b, a == b, and a > b might all be false.
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17.11.2.3 Class weak_ordering [cmp.weakord]
1 The weak_ordering type is typically used as the result type of a three-way comparison operator (7.6.8) for a

type that admits all of the six two-way comparison operators (7.6.9, 7.6.10) and for which equality need not
imply substitutability.

namespace std {
class weak_ordering {

int value; // exposition only

// exposition-only constructors
constexpr explicit weak_ordering(ord v) noexcept : value(int(v)) {} // exposition only

public:
// valid values
static const weak_ordering less;
static const weak_ordering equivalent;
static const weak_ordering greater;

// conversions
constexpr operator partial_ordering() const noexcept;

// comparisons
friend constexpr bool operator==(weak_ordering v, unspecified ) noexcept;
friend constexpr bool operator==(weak_ordering v, weak_ordering w) noexcept = default;
friend constexpr bool operator< (weak_ordering v, unspecified ) noexcept;
friend constexpr bool operator> (weak_ordering v, unspecified ) noexcept;
friend constexpr bool operator<=(weak_ordering v, unspecified ) noexcept;
friend constexpr bool operator>=(weak_ordering v, unspecified ) noexcept;
friend constexpr bool operator< (unspecified , weak_ordering v) noexcept;
friend constexpr bool operator> (unspecified , weak_ordering v) noexcept;
friend constexpr bool operator<=(unspecified , weak_ordering v) noexcept;
friend constexpr bool operator>=(unspecified , weak_ordering v) noexcept;
friend constexpr weak_ordering operator<=>(weak_ordering v, unspecified ) noexcept;
friend constexpr weak_ordering operator<=>(unspecified , weak_ordering v) noexcept;

};

// valid values’ definitions
inline constexpr weak_ordering weak_ordering::less(ord ::less );
inline constexpr weak_ordering weak_ordering::equivalent(ord ::equivalent );
inline constexpr weak_ordering weak_ordering::greater(ord ::greater );

}

constexpr operator partial_ordering() const noexcept;

2 Returns:
value == 0 ? partial_ordering::equivalent :
value < 0 ? partial_ordering::less :

partial_ordering::greater

constexpr bool operator==(weak_ordering v, unspecified ) noexcept;
constexpr bool operator< (weak_ordering v, unspecified ) noexcept;
constexpr bool operator> (weak_ordering v, unspecified ) noexcept;
constexpr bool operator<=(weak_ordering v, unspecified ) noexcept;
constexpr bool operator>=(weak_ordering v, unspecified ) noexcept;

3 Returns: v.value @ 0 for operator@.

constexpr bool operator< (unspecified , weak_ordering v) noexcept;
constexpr bool operator> (unspecified , weak_ordering v) noexcept;
constexpr bool operator<=(unspecified , weak_ordering v) noexcept;
constexpr bool operator>=(unspecified , weak_ordering v) noexcept;

4 Returns: 0 @ v.value for operator@.
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constexpr weak_ordering operator<=>(weak_ordering v, unspecified ) noexcept;

5 Returns: v.

constexpr weak_ordering operator<=>(unspecified , weak_ordering v) noexcept;

6 Returns: v < 0 ? weak_ordering::greater : v > 0 ? weak_ordering::less : v.

17.11.2.4 Class strong_ordering [cmp.strongord]
1 The strong_ordering type is typically used as the result type of a three-way comparison operator (7.6.8)

for a type that admits all of the six two-way comparison operators (7.6.9, 7.6.10) and for which equality does
imply substitutability.

namespace std {
class strong_ordering {

int value; // exposition only

// exposition-only constructors
constexpr explicit strong_ordering(ord v) noexcept : value(int(v)) {} // exposition only

public:
// valid values
static const strong_ordering less;
static const strong_ordering equal;
static const strong_ordering equivalent;
static const strong_ordering greater;

// conversions
constexpr operator partial_ordering() const noexcept;
constexpr operator weak_ordering() const noexcept;

// comparisons
friend constexpr bool operator==(strong_ordering v, unspecified ) noexcept;
friend constexpr bool operator==(strong_ordering v, strong_ordering w) noexcept = default;
friend constexpr bool operator< (strong_ordering v, unspecified ) noexcept;
friend constexpr bool operator> (strong_ordering v, unspecified ) noexcept;
friend constexpr bool operator<=(strong_ordering v, unspecified ) noexcept;
friend constexpr bool operator>=(strong_ordering v, unspecified ) noexcept;
friend constexpr bool operator< (unspecified , strong_ordering v) noexcept;
friend constexpr bool operator> (unspecified , strong_ordering v) noexcept;
friend constexpr bool operator<=(unspecified , strong_ordering v) noexcept;
friend constexpr bool operator>=(unspecified , strong_ordering v) noexcept;
friend constexpr strong_ordering operator<=>(strong_ordering v, unspecified ) noexcept;
friend constexpr strong_ordering operator<=>(unspecified , strong_ordering v) noexcept;

};

// valid values’ definitions
inline constexpr strong_ordering strong_ordering::less(ord ::less );
inline constexpr strong_ordering strong_ordering::equal(ord ::equal );
inline constexpr strong_ordering strong_ordering::equivalent(ord ::equivalent );
inline constexpr strong_ordering strong_ordering::greater(ord ::greater );

}

constexpr operator partial_ordering() const noexcept;

2 Returns:
value == 0 ? partial_ordering::equivalent :
value < 0 ? partial_ordering::less :

partial_ordering::greater

constexpr operator weak_ordering() const noexcept;

3 Returns:
value == 0 ? weak_ordering::equivalent :
value < 0 ? weak_ordering::less :

weak_ordering::greater
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constexpr bool operator==(strong_ordering v, unspecified ) noexcept;
constexpr bool operator< (strong_ordering v, unspecified ) noexcept;
constexpr bool operator> (strong_ordering v, unspecified ) noexcept;
constexpr bool operator<=(strong_ordering v, unspecified ) noexcept;
constexpr bool operator>=(strong_ordering v, unspecified ) noexcept;

4 Returns: v.value @ 0 for operator@.

constexpr bool operator< (unspecified , strong_ordering v) noexcept;
constexpr bool operator> (unspecified , strong_ordering v) noexcept;
constexpr bool operator<=(unspecified , strong_ordering v) noexcept;
constexpr bool operator>=(unspecified , strong_ordering v) noexcept;

5 Returns: 0 @ v.value for operator@.

constexpr strong_ordering operator<=>(strong_ordering v, unspecified ) noexcept;

6 Returns: v.

constexpr strong_ordering operator<=>(unspecified , strong_ordering v) noexcept;

7 Returns: v < 0 ? strong_ordering::greater : v > 0 ? strong_ordering::less : v.

17.11.3 Class template common_comparison_category [cmp.common]
1 The type common_comparison_category provides an alias for the strongest comparison category to which

all of the template arguments can be converted.
[Note 1 : A comparison category type is stronger than another if they are distinct types and an instance of the former
can be converted to an instance of the latter. — end note ]

template<class... Ts>
struct common_comparison_category {

using type = see below ;
};

2 Remarks: The member typedef-name type denotes the common comparison type (11.10.3) of Ts...,
the expanded parameter pack, or void if any element of Ts is not a comparison category type.
[Note 2 : This is std::strong_ordering if the expansion is empty. — end note ]

17.11.4 Concept three_way_comparable [cmp.concept]
template<class T, class Cat>

concept compares-as = // exposition only
same_as<common_comparison_category_t<T, Cat>, Cat>;

template<class T, class U>
concept partially-ordered-with = // exposition only

requires(const remove_reference_t<T>& t, const remove_reference_t<U>& u) {
{ t < u } -> boolean-testable ;
{ t > u } -> boolean-testable ;
{ t <= u } -> boolean-testable ;
{ t >= u } -> boolean-testable ;
{ u < t } -> boolean-testable ;
{ u > t } -> boolean-testable ;
{ u <= t } -> boolean-testable ;
{ u >= t } -> boolean-testable ;

};

1 Let t and u be lvalues of types const remove_reference_t<T> and const remove_reference_t<U>, re-
spectively. T and U model partially-ordered-with <T, U> only if:

—(1.1) t < u, t <= u, t > u, t >= u, u < t, u <= t, u > t, and u >= t have the same domain.
—(1.2) bool(t < u) == bool(u > t) is true,
—(1.3) bool(u < t) == bool(t > u) is true,
—(1.4) bool(t <= u) == bool(u >= t) is true, and
—(1.5) bool(u <= t) == bool(t >= u) is true.
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template<class T, class Cat = partial_ordering>
concept three_way_comparable =

weakly-equality-comparable-with <T, T> &&
partially-ordered-with <T, T> &&
requires(const remove_reference_t<T>& a, const remove_reference_t<T>& b) {

{ a <=> b } -> compares-as <Cat>;
};

2 Let a and b be lvalues of type const remove_reference_t<T>. T and Cat model three_way_comparable<T,
Cat> only if:

—(2.1) (a <=> b == 0) == bool(a == b) is true,
—(2.2) (a <=> b != 0) == bool(a != b) is true,
—(2.3) ((a <=> b) <=> 0) and (0 <=> (b <=> a)) are equal,
—(2.4) (a <=> b < 0) == bool(a < b) is true,
—(2.5) (a <=> b > 0) == bool(a > b) is true,
—(2.6) (a <=> b <= 0) == bool(a <= b) is true,
—(2.7) (a <=> b >= 0) == bool(a >= b) is true, and
—(2.8) if Cat is convertible to strong_ordering, T models totally_ordered (18.5.5).
template<class T, class U, class Cat = partial_ordering>

concept three_way_comparable_with =
three_way_comparable<T, Cat> &&
three_way_comparable<U, Cat> &&
comparison-common-type-with <T, U> &&
three_way_comparable<

common_reference_t<const remove_reference_t<T>&, const remove_reference_t<U>&>, Cat> &&
weakly-equality-comparable-with <T, U> &&
partially-ordered-with <T, U> &&
requires(const remove_reference_t<T>& t, const remove_reference_t<U>& u) {

{ t <=> u } -> compares-as <Cat>;
{ u <=> t } -> compares-as <Cat>;

};

3 Let t and t2 be lvalues denoting distinct equal objects of types const remove_reference_t<T> and remove_-
cvref_t<T>, respectively, and let u and u2 be lvalues denoting distinct equal objects of types const remove_-
reference_t<U> and remove_cvref_t<U>, respectively. Let C be common_reference_t<const remove_-
reference_t<T>&, const remove_reference_t<U>&>. Let CONVERT_TO_LVALUE <C>(E) be defined as in
18.5.1. T, U, and Cat model three_way_comparable_with<T, U, Cat> only if:

—(3.1) t <=> u and u <=> t have the same domain,
—(3.2) ((t <=> u) <=> 0) and (0 <=> (u <=> t)) are equal,
—(3.3) (t <=> u == 0) == bool(t == u) is true,
—(3.4) (t <=> u != 0) == bool(t != u) is true,
—(3.5) Cat(t <=> u) == Cat(CONVERT_TO_LVALUE <C>(t2) <=> CONVERT_TO_LVALUE <C>(u2)) is true,
—(3.6) (t <=> u < 0) == bool(t < u) is true,
—(3.7) (t <=> u > 0) == bool(t > u) is true,
—(3.8) (t <=> u <= 0) == bool(t <= u) is true,
—(3.9) (t <=> u >= 0) == bool(t >= u) is true, and
—(3.10) if Cat is convertible to strong_ordering, T and U model totally_ordered_with<T, U> (18.5.5).

17.11.5 Result of three-way comparison [cmp.result]
1 The behavior of a program that adds specializations for the compare_three_way_result template defined

in this subclause is undefined.
2 For the compare_three_way_result type trait applied to the types T and U, let t and u denote lvalues of

types const remove_reference_t<T> and const remove_reference_t<U>, respectively. If the expression
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t <=> u is well-formed when treated as an unevaluated operand (7.2.3), the member typedef-name type
denotes the type decltype(t <=> u). Otherwise, there is no member type.

17.11.6 Comparison algorithms [cmp.alg]
1 The name strong_order denotes a customization point object (16.3.3.3.5). Given subexpressions E and F,

the expression strong_order(E, F) is expression-equivalent (3.20) to the following:
—(1.1) If the decayed types of E and F differ, strong_order(E, F) is ill-formed.
—(1.2) Otherwise, strong_ordering(strong_order(E, F)) if it is a well-formed expression where the meaning

of strong_order is established as-if by performing argument-dependent lookup only (6.5.4).
—(1.3) Otherwise, if the decayed type T of E is a floating-point type, yields a value of type strong_ordering that

is consistent with the ordering observed by T’s comparison operators, and if numeric_limits<T>::is_-
iec559 is true, is additionally consistent with the totalOrder operation as specified in ISO/IEC/IEEE
60559.

—(1.4) Otherwise, strong_ordering(compare_three_way()(E, F)) if it is a well-formed expression.
—(1.5) Otherwise, strong_order(E, F) is ill-formed.

[Note 1 : Ill-formed cases above result in substitution failure when strong_order(E, F) appears in the immediate
context of a template instantiation. — end note ]

2 The name weak_order denotes a customization point object (16.3.3.3.5). Given subexpressions E and F, the
expression weak_order(E, F) is expression-equivalent (3.20) to the following:

—(2.1) If the decayed types of E and F differ, weak_order(E, F) is ill-formed.
—(2.2) Otherwise, weak_ordering(weak_order(E, F)) if it is a well-formed expression where the meaning of

weak_order is established as-if by performing argument-dependent lookup only (6.5.4).
—(2.3) Otherwise, if the decayed type T of E is a floating-point type, yields a value of type weak_ordering

that is consistent with the ordering observed by T’s comparison operators and strong_order, and
if numeric_limits<T>::is_iec559 is true, is additionally consistent with the following equivalence
classes, ordered from lesser to greater:

—(2.3.1) together, all negative NaN values;
—(2.3.2) negative infinity;
—(2.3.3) each normal negative value;
—(2.3.4) each subnormal negative value;
—(2.3.5) together, both zero values;
—(2.3.6) each subnormal positive value;
—(2.3.7) each normal positive value;
—(2.3.8) positive infinity;
—(2.3.9) together, all positive NaN values.

—(2.4) Otherwise, weak_ordering(compare_three_way()(E, F)) if it is a well-formed expression.
—(2.5) Otherwise, weak_ordering(strong_order(E, F)) if it is a well-formed expression.
—(2.6) Otherwise, weak_order(E, F) is ill-formed.

[Note 2 : Ill-formed cases above result in substitution failure when weak_order(E, F) appears in the immediate
context of a template instantiation. — end note ]

3 The name partial_order denotes a customization point object (16.3.3.3.5). Given subexpressions E and F,
the expression partial_order(E, F) is expression-equivalent (3.20) to the following:

—(3.1) If the decayed types of E and F differ, partial_order(E, F) is ill-formed.
—(3.2) Otherwise, partial_ordering(partial_order(E, F)) if it is a well-formed expression where the

meaning of partial_order is established as-if by performing argument-dependent lookup only (6.5.4).
—(3.3) Otherwise, partial_ordering(compare_three_way()(E, F)) if it is a well-formed expression.
—(3.4) Otherwise, partial_ordering(weak_order(E, F)) if it is a well-formed expression.
—(3.5) Otherwise, partial_order(E, F) is ill-formed.
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[Note 3 : Ill-formed cases above result in substitution failure when partial_order(E, F) appears in the immediate
context of a template instantiation. — end note ]

4 The name compare_strong_order_fallback denotes a customization point object (16.3.3.3.5). Given
subexpressions E and F, the expression compare_strong_order_fallback(E, F) is expression-equivalent
(3.20) to:

—(4.1) If the decayed types of E and F differ, compare_strong_order_fallback(E, F) is ill-formed.
—(4.2) Otherwise, strong_order(E, F) if it is a well-formed expression.
—(4.3) Otherwise, if the expressions E == F and E < F are both well-formed and each of decltype(E == F)

and decltype(E < F) models boolean-testable ,
E == F ? strong_ordering::equal :
E < F ? strong_ordering::less :

strong_ordering::greater

except that E and F are evaluated only once.
—(4.4) Otherwise, compare_strong_order_fallback(E, F) is ill-formed.

[Note 4 : Ill-formed cases above result in substitution failure when compare_strong_order_fallback(E, F) appears
in the immediate context of a template instantiation. — end note ]

5 The name compare_weak_order_fallback denotes a customization point object (16.3.3.3.5). Given subex-
pressions E and F, the expression compare_weak_order_fallback(E, F) is expression-equivalent (3.20)
to:

—(5.1) If the decayed types of E and F differ, compare_weak_order_fallback(E, F) is ill-formed.
—(5.2) Otherwise, weak_order(E, F) if it is a well-formed expression.
—(5.3) Otherwise, if the expressions E == F and E < F are both well-formed and each of decltype(E == F)

and decltype(E < F) models boolean-testable ,
E == F ? weak_ordering::equivalent :
E < F ? weak_ordering::less :

weak_ordering::greater

except that E and F are evaluated only once.
—(5.4) Otherwise, compare_weak_order_fallback(E, F) is ill-formed.

[Note 5 : Ill-formed cases above result in substitution failure when compare_weak_order_fallback(E, F) appears in
the immediate context of a template instantiation. — end note ]

6 The name compare_partial_order_fallback denotes a customization point object (16.3.3.3.5). Given
subexpressions E and F, the expression compare_partial_order_fallback(E, F) is expression-equivalent
(3.20) to:

—(6.1) If the decayed types of E and F differ, compare_partial_order_fallback(E, F) is ill-formed.
—(6.2) Otherwise, partial_order(E, F) if it is a well-formed expression.
—(6.3) Otherwise, if the expressions E == F, E < F, and F < E are all well-formed and each of decltype(E

== F) and decltype(E < F) models boolean-testable ,
E == F ? partial_ordering::equivalent :
E < F ? partial_ordering::less :
F < E ? partial_ordering::greater :

partial_ordering::unordered

except that E and F are evaluated only once.
—(6.4) Otherwise, compare_partial_order_fallback(E, F) is ill-formed.

[Note 6 : Ill-formed cases above result in substitution failure when compare_partial_order_fallback(E, F) appears
in the immediate context of a template instantiation. — end note ]

17.12 Coroutines [support.coroutine]
17.12.1 General [support.coroutine.general]

1 The header <coroutine> defines several types providing compile and run-time support for coroutines in a
C++ program.
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17.12.2 Header <coroutine> synopsis [coroutine.syn]
// all freestanding
#include <compare> // see 17.11.1

namespace std {
// 17.12.3, coroutine traits
template<class R, class... ArgTypes>

struct coroutine_traits;

// 17.12.4, coroutine handle
template<class Promise = void>

struct coroutine_handle;

// 17.12.4.8, comparison operators
constexpr bool operator==(coroutine_handle<> x, coroutine_handle<> y) noexcept;
constexpr strong_ordering operator<=>(coroutine_handle<> x, coroutine_handle<> y) noexcept;

// 17.12.4.9, hash support
template<class T> struct hash;
template<class P> struct hash<coroutine_handle<P>>;

// 17.12.5, no-op coroutines
struct noop_coroutine_promise;

template<> struct coroutine_handle<noop_coroutine_promise>;
using noop_coroutine_handle = coroutine_handle<noop_coroutine_promise>;

noop_coroutine_handle noop_coroutine() noexcept;

// 17.12.6, trivial awaitables
struct suspend_never;
struct suspend_always;

}

17.12.3 Coroutine traits [coroutine.traits]
17.12.3.1 General [coroutine.traits.general]

1 Subclause 17.12.3 defines requirements on classes representing coroutine traits, and defines the class template
coroutine_traits that meets those requirements.

17.12.3.2 Class template coroutine_traits [coroutine.traits.primary]
1 The header <coroutine> defines the primary template coroutine_traits such that if ArgTypes is a

parameter pack of types and if the qualified-id R::promise_type is valid and denotes a type (13.10.3), then
coroutine_traits<R, ArgTypes...> has the following publicly accessible member:

using promise_type = typename R::promise_type;

Otherwise, coroutine_traits<R, ArgTypes...> has no members.
2 Program-defined specializations of this template shall define a publicly accessible nested type named promise_-

type.

17.12.4 Class template coroutine_handle [coroutine.handle]
17.12.4.1 General [coroutine.handle.general]

namespace std {
template<>
struct coroutine_handle<void>
{

// 17.12.4.2, construct/reset
constexpr coroutine_handle() noexcept;
constexpr coroutine_handle(nullptr_t) noexcept;
coroutine_handle& operator=(nullptr_t) noexcept;
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// 17.12.4.4, export/import
constexpr void* address() const noexcept;
static constexpr coroutine_handle from_address(void* addr);

// 17.12.4.5, observers
constexpr explicit operator bool() const noexcept;
bool done() const;

// 17.12.4.6, resumption
void operator()() const;
void resume() const;
void destroy() const;

private:
void* ptr; // exposition only

};

template<class Promise>
struct coroutine_handle
{

// 17.12.4.2, construct/reset
constexpr coroutine_handle() noexcept;
constexpr coroutine_handle(nullptr_t) noexcept;
static coroutine_handle from_promise(Promise&);
coroutine_handle& operator=(nullptr_t) noexcept;

// 17.12.4.4, export/import
constexpr void* address() const noexcept;
static constexpr coroutine_handle from_address(void* addr);

// 17.12.4.3, conversion
constexpr operator coroutine_handle<>() const noexcept;

// 17.12.4.5, observers
constexpr explicit operator bool() const noexcept;
bool done() const;

// 17.12.4.6, resumption
void operator()() const;
void resume() const;
void destroy() const;

// 17.12.4.7, promise access
Promise& promise() const;

private:
void* ptr; // exposition only

};
}

1 An object of type coroutine_handle<T> is called a coroutine handle and can be used to refer to a suspended
or executing coroutine. A coroutine_handle object whose member address() returns a null pointer value
does not refer to any coroutine. Two coroutine_handle objects refer to the same coroutine if and only if
their member address() returns the same non-null value.

2 If a program declares an explicit or partial specialization of coroutine_handle, the behavior is undefined.

17.12.4.2 Construct/reset [coroutine.handle.con]

constexpr coroutine_handle() noexcept;
constexpr coroutine_handle(nullptr_t) noexcept;

1 Postconditions: address() == nullptr.
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static coroutine_handle from_promise(Promise& p);

2 Preconditions: p is a reference to a promise object of a coroutine.
3 Postconditions: addressof(h.promise()) == addressof(p).
4 Returns: A coroutine handle h referring to the coroutine.

coroutine_handle& operator=(nullptr_t) noexcept;

5 Postconditions: address() == nullptr.
6 Returns: *this.

17.12.4.3 Conversion [coroutine.handle.conv]

constexpr operator coroutine_handle<>() const noexcept;

1 Effects: Equivalent to: return coroutine_handle<>::from_address(address());

17.12.4.4 Export/import [coroutine.handle.export.import]

constexpr void* address() const noexcept;

1 Returns: ptr.

static constexpr coroutine_handle<> coroutine_handle<>::from_address(void* addr);

2 Preconditions: addr was obtained via a prior call to address on an object whose type is a specialization
of coroutine_handle.

3 Postconditions: from_address(address()) == *this.

static constexpr coroutine_handle<Promise> coroutine_handle<Promise>::from_address(void* addr);

4 Preconditions: addr was obtained via a prior call to address on an object of type cv coroutine_-
handle<Promise>.

5 Postconditions: from_address(address()) == *this.

17.12.4.5 Observers [coroutine.handle.observers]

constexpr explicit operator bool() const noexcept;

1 Returns: address() != nullptr.

bool done() const;

2 Preconditions: *this refers to a suspended coroutine.
3 Returns: true if the coroutine is suspended at its final suspend point, otherwise false.

17.12.4.6 Resumption [coroutine.handle.resumption]
1 Resuming a coroutine via resume, operator(), or destroy on an execution agent other than the one on

which it was suspended has implementation-defined behavior unless each execution agent either is an instance
of std::thread or std::jthread, or is the thread that executes main.
[Note 1 : A coroutine that is resumed on a different execution agent should avoid relying on consistent thread identity
throughout, such as holding a mutex object across a suspend point. — end note ]
[Note 2 : A concurrent resumption of the coroutine can result in a data race. — end note ]

void operator()() const;
void resume() const;

2 Preconditions: *this refers to a suspended coroutine. The coroutine is not suspended at its final
suspend point.

3 Effects: Resumes the execution of the coroutine.

void destroy() const;

4 Preconditions: *this refers to a suspended coroutine.
5 Effects: Destroys the coroutine (9.5.4).
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17.12.4.7 Promise access [coroutine.handle.promise]

Promise& promise() const;

1 Preconditions: *this refers to a coroutine.
2 Returns: A reference to the promise of the coroutine.

17.12.4.8 Comparison operators [coroutine.handle.compare]

constexpr bool operator==(coroutine_handle<> x, coroutine_handle<> y) noexcept;

1 Returns: x.address() == y.address().

constexpr strong_ordering operator<=>(coroutine_handle<> x, coroutine_handle<> y) noexcept;

2 Returns: compare_three_way()(x.address(), y.address()).

17.12.4.9 Hash support [coroutine.handle.hash]

template<class P> struct hash<coroutine_handle<P>>;

1 The specialization is enabled (22.10.19).

17.12.5 No-op coroutines [coroutine.noop]
17.12.5.1 Class noop_coroutine_promise [coroutine.promise.noop]

struct noop_coroutine_promise {};

1 The class noop_coroutine_promise defines the promise type for the coroutine referred to by noop_-
coroutine_handle (17.12.2).

17.12.5.2 Class coroutine_handle<noop_coroutine_promise> [coroutine.handle.noop]
namespace std {

template<>
struct coroutine_handle<noop_coroutine_promise>
{

// 17.12.5.2.1, conversion
constexpr operator coroutine_handle<>() const noexcept;

// 17.12.5.2.2, observers
constexpr explicit operator bool() const noexcept;
constexpr bool done() const noexcept;

// 17.12.5.2.3, resumption
constexpr void operator()() const noexcept;
constexpr void resume() const noexcept;
constexpr void destroy() const noexcept;

// 17.12.5.2.4, promise access
noop_coroutine_promise& promise() const noexcept;

// 17.12.5.2.5, address
constexpr void* address() const noexcept;

private:
coroutine_handle(unspecified );
void* ptr; // exposition only

};
}

17.12.5.2.1 Conversion [coroutine.handle.noop.conv]

constexpr operator coroutine_handle<>() const noexcept;

1 Effects: Equivalent to: return coroutine_handle<>::from_address(address());
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17.12.5.2.2 Observers [coroutine.handle.noop.observers]

constexpr explicit operator bool() const noexcept;

1 Returns: true.

constexpr bool done() const noexcept;

2 Returns: false.

17.12.5.2.3 Resumption [coroutine.handle.noop.resumption]

constexpr void operator()() const noexcept;
constexpr void resume() const noexcept;
constexpr void destroy() const noexcept;

1 Effects: None.
2 Remarks: If noop_coroutine_handle is converted to coroutine_handle<>, calls to operator(),

resume and destroy on that handle will also have no observable effects.

17.12.5.2.4 Promise access [coroutine.handle.noop.promise]

noop_coroutine_promise& promise() const noexcept;

1 Returns: A reference to the promise object associated with this coroutine handle.

17.12.5.2.5 Address [coroutine.handle.noop.address]

constexpr void* address() const noexcept;

1 Returns: ptr.
2 Remarks: A noop_coroutine_handle’s ptr is always a non-null pointer value.

17.12.5.3 Function noop_coroutine [coroutine.noop.coroutine]

noop_coroutine_handle noop_coroutine() noexcept;

1 Returns: A handle to a coroutine that has no observable effects when resumed or destroyed.
2 Remarks: A handle returned from noop_coroutine may or may not compare equal to a handle returned

from another invocation of noop_coroutine.

17.12.6 Trivial awaitables [coroutine.trivial.awaitables]
namespace std {

struct suspend_never {
constexpr bool await_ready() const noexcept { return true; }
constexpr void await_suspend(coroutine_handle<>) const noexcept {}
constexpr void await_resume() const noexcept {}

};
struct suspend_always {

constexpr bool await_ready() const noexcept { return false; }
constexpr void await_suspend(coroutine_handle<>) const noexcept {}
constexpr void await_resume() const noexcept {}

};
}

1 [Note 1 : The types suspend_never and suspend_always can be used to indicate that an await-expression either never
suspends or always suspends, and in either case does not produce a value. — end note ]

17.13 Other runtime support [support.runtime]
17.13.1 General [support.runtime.general]

1 Headers <csetjmp> (nonlocal jumps), <csignal> (signal handling), <cstdarg> (variable arguments), and
<cstdlib> (runtime environment getenv, system), provide further compatibility with C code.

2 Calls to the function getenv (17.2.2) shall not introduce a data race (16.4.6.10) provided that nothing
modifies the environment.
[Note 1 : Calls to the POSIX functions setenv and putenv modify the environment. — end note ]
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3 A call to the setlocale function (30.5) may introduce a data race with other calls to the setlocale function
or with calls to functions that are affected by the current C locale. The implementation shall behave as if no
library function other than locale::global calls the setlocale function.

17.13.2 Header <cstdarg> synopsis [cstdarg.syn]
// all freestanding
namespace std {

using va_list = see below ;
}

#define va_arg(V, P) see below
#define va_copy(VDST, VSRC) see below
#define va_end(V) see below
#define va_start(V, P) see below

1 The contents of the header <cstdarg> are the same as the C standard library header <stdarg.h>, with the
following changes:

—(1.1) In lieu of the default argument promotions specified in ISO C 6.5.2.2, the definition in 7.6.1.3 applies.
—(1.2) The restrictions that ISO C places on the second parameter to the va_start macro in header <stdarg.h>

are different in this document. The parameter parmN is the rightmost parameter in the variable
parameter list of the function definition (the one just before the ...).200 If the parameter parmN is a
pack expansion (13.7.4) or an entity resulting from a lambda capture (7.5.5), the program is ill-formed,
no diagnostic required. If the parameter parmN is of a reference type, or of a type that is not compatible
with the type that results when passing an argument for which there is no parameter, the behavior is
undefined.

See also: ISO/IEC 9899:2018, 7.16.1.1

17.13.3 Header <csetjmp> synopsis [csetjmp.syn]
namespace std {

using jmp_buf = see below ;
[[noreturn]] void longjmp(jmp_buf env, int val);

}

#define setjmp(env) see below

1 The contents of the header <csetjmp> are the same as the C standard library header <setjmp.h>.
2 The function signature longjmp(jmp_buf jbuf, int val) has more restricted behavior in this document.

A setjmp/longjmp call pair has undefined behavior if replacing the setjmp and longjmp by catch and
throw would invoke any non-trivial destructors for any objects with automatic storage duration. A call to
setjmp or longjmp has undefined behavior if invoked in a suspension context of a coroutine (7.6.2.4).
See also: ISO/IEC 9899:2018, 7.13

17.13.4 Header <csignal> synopsis [csignal.syn]
namespace std {

using sig_atomic_t = see below ;

// 17.13.5, signal handlers
extern "C" using signal-handler = void(int); // exposition only
signal-handler * signal(int sig, signal-handler * func);

int raise(int sig);
}

200) Note that va_start is required to work as specified even if unary operator& is overloaded for the type of parmN.
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#define SIG_DFL see below
#define SIG_ERR see below
#define SIG_IGN see below
#define SIGABRT see below
#define SIGFPE see below
#define SIGILL see below
#define SIGINT see below
#define SIGSEGV see below
#define SIGTERM see below

1 The contents of the header <csignal> are the same as the C standard library header <signal.h>.

17.13.5 Signal handlers [support.signal]
1 A call to the function signal synchronizes with any resulting invocation of the signal handler so installed.
2 A plain lock-free atomic operation is an invocation of a function f from 33.5, such that:

—(2.1) f is the function atomic_is_lock_free(), or
—(2.2) f is the member function is_lock_free(), or
—(2.3) f is a non-static member function of class atomic_flag, or
—(2.4) f is a non-member function, and the first parameter of f has type cv atomic_flag*, or
—(2.5) f is a non-static member function invoked on an object A, such that A.is_lock_free() yields true, or
—(2.6) f is a non-member function, and for every pointer-to-atomic argument A passed to f, atomic_is_-

lock_free(A) yields true.
3 An evaluation is signal-safe unless it includes one of the following:

—(3.1) a call to any standard library function, except for plain lock-free atomic operations and functions
explicitly identified as signal-safe;
[Note 1 : This implicitly excludes the use of new and delete expressions that rely on a library-provided memory
allocator. — end note ]

—(3.2) an access to an object with thread storage duration;
—(3.3) a dynamic_cast expression;
—(3.4) throwing of an exception;
—(3.5) control entering a try-block or function-try-block;
—(3.6) initialization of a variable with static storage duration requiring dynamic initialization (6.9.3.3, 8.8)201 ;

or
—(3.7) waiting for the completion of the initialization of a variable with static storage duration (8.8).

A signal handler invocation has undefined behavior if it includes an evaluation that is not signal-safe.
4 The function signal is signal-safe if it is invoked with the first argument equal to the signal number

corresponding to the signal that caused the invocation of the handler.
See also: ISO/IEC 9899:2018, 7.14

17.14 C headers [support.c.headers]
17.14.1 General [support.c.headers.general]

1 For compatibility with the C standard library, the C++ standard library provides the C headers shown in
Table 40. The intended use of these headers is for interoperability only. It is possible that C++ source files
need to include one of these headers in order to be valid ISO C. Source files that are not intended to also be
valid ISO C should not use any of the C headers.
[Note 1 : The C headers either have no effect, such as <stdbool.h> (17.14.5) and <stdalign.h> (17.14.4), or otherwise
the corresponding header of the form <cname > provides the same facilities and assuredly defines them in namespace
std. — end note ]

201) Such initialization can occur because it is the first odr-use (6.3) of that variable.
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[Example 1 : The following source file is both valid C++ and valid ISO C. Viewed as C++, it declares a function with
C language linkage; viewed as C it simply declares a function (and provides a prototype).

#include <stdbool.h> // for bool in C, no effect in C++

#include <stddef.h> // for size_t

#ifdef __cplusplus // see 15.11
extern "C" // see 9.11
#endif
void f(bool b[], size_t n);

— end example ]

Table 40: C headers [tab:c.headers]

<assert.h>
<complex.h>
<ctype.h>
<errno.h>
<fenv.h>
<float.h>

<inttypes.h>
<iso646.h>
<limits.h>
<locale.h>
<math.h>
<setjmp.h>

<signal.h>
<stdalign.h>
<stdarg.h>
<stdatomic.h>
<stdbool.h>
<stddef.h>

<stdint.h>
<stdio.h>
<stdlib.h>
<string.h>
<tgmath.h>
<time.h>

<uchar.h>
<wchar.h>
<wctype.h>

17.14.2 Header <complex.h> synopsis [complex.h.syn]
#include <complex>

1 The header <complex.h> behaves as if it simply includes the header <complex> (28.4.2).
2 [Note 1 : Names introduced by <complex> in namespace std are not placed into the global namespace scope by

<complex.h>. — end note ]

17.14.3 Header <iso646.h> synopsis [iso646.h.syn]
1 The C++ header <iso646.h> is empty.

[Note 1 : and, and_eq, bitand, bitor, compl, not_eq, not, or, or_eq, xor, and xor_eq are keywords in C++ (5.11).
— end note ]

17.14.4 Header <stdalign.h> synopsis [stdalign.h.syn]
1 The contents of the C++ header <stdalign.h> are the same as the C standard library header <stdalign.h>,

with the following changes: The header <stdalign.h> does not define a macro named alignas.
See also: ISO/IEC 9899:2018, 7.15

17.14.5 Header <stdbool.h> synopsis [stdbool.h.syn]
1 The contents of the C++ header <stdbool.h> are the same as the C standard library header <stdbool.h>,

with the following changes: The header <stdbool.h> does not define macros named bool, true, or false.
See also: ISO/IEC 9899:2018, 7.18

17.14.6 Header <tgmath.h> synopsis [tgmath.h.syn]
#include <cmath>
#include <complex>

1 The header <tgmath.h> behaves as if it simply includes the headers <cmath> (28.7.1) and <complex> (28.4.2).
2 [Note 1 : The overloads provided in C by type-generic macros are already provided in <complex> and <cmath> by

“sufficient” additional overloads. — end note ]
3 [Note 2 : Names introduced by <cmath> or <complex> in namespace std are not placed into the global namespace

scope by <tgmath.h>. — end note ]

17.14.7 Other C headers [support.c.headers.other]
1 Every C header other than <complex.h> (17.14.2), <iso646.h> (17.14.3), <stdalign.h> (17.14.4),

<stdatomic.h> (33.5.12), <stdbool.h> (17.14.5), and <tgmath.h> (17.14.6), each of which has a name of
the form <name.h>, behaves as if each name placed in the standard library namespace by the corresponding
<cname > header is placed within the global namespace scope, except for the functions described in 28.7.6,
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the std::lerp function overloads (28.7.4), the declaration of std::byte (17.2.1), and the functions and
function templates described in 17.2.5. It is unspecified whether these names are first declared or defined
within namespace scope (6.4.6) of the namespace std and are then injected into the global namespace scope
by explicit using-declarations (9.9).

2 [Example 1 : The header <cstdlib> assuredly provides its declarations and definitions within the namespace std. It
may also provide these names within the global namespace. The header <stdlib.h> assuredly provides the same
declarations and definitions within the global namespace, much as in ISO/IEC 9899. It may also provide these names
within the namespace std. — end example ]
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18 Concepts library [concepts]
18.1 General [concepts.general]

1 This Clause describes library components that C++ programs may use to perform compile-time validation
of template arguments and perform function dispatch based on properties of types. The purpose of these
concepts is to establish a foundation for equational reasoning in programs.

2 The following subclauses describe language-related concepts, comparison concepts, object concepts, and
callable concepts as summarized in Table 41.

Table 41: Fundamental concepts library summary [tab:concepts.summary]

Subclause Header
18.2 Equality preservation
18.4 Language-related concepts <concepts>
18.5 Comparison concepts
18.6 Object concepts
18.7 Callable concepts

18.2 Equality preservation [concepts.equality]
1 An expression is equality-preserving if, given equal inputs, the expression results in equal outputs. The inputs

to an expression are the set of the expression’s operands. The output of an expression is the expression’s
result and all operands modified by the expression. For the purposes of this subclause, the operands of an
expression are the largest subexpressions that include only:

—(1.1) an id-expression (7.5.4), and
—(1.2) invocations of the library function templates std::move, std::forward, and std::declval (22.2.4,

22.2.6).
[Example 1 : The operands of the expression a = std::move(b) are a and std::move(b). — end example ]

2 Not all input values need be valid for a given expression.
[Example 2 : For integers a and b, the expression a / b is not well-defined when b is 0. This does not preclude the
expression a / b being equality-preserving. — end example ]

The domain of an expression is the set of input values for which the expression is required to be well-defined.
3 Expressions required to be equality-preserving are further required to be stable: two evaluations of such an

expression with the same input objects are required to have equal outputs absent any explicit intervening
modification of those input objects.
[Note 1 : This requirement allows generic code to reason about the current values of objects based on knowledge
of the prior values as observed via equality-preserving expressions. It effectively forbids spontaneous changes to an
object, changes to an object from another thread of execution, changes to an object as side effects of non-modifying
expressions, and changes to an object as side effects of modifying a distinct object if those changes could be observable
to a library function via an equality-preserving expression that is required to be valid for that object. — end note ]

4 Expressions declared in a requires-expression in the library clauses are required to be equality-preserving,
except for those annotated with the comment “not required to be equality-preserving.” An expression so
annotated may be equality-preserving, but is not required to be so.

5 An expression that may alter the value of one or more of its inputs in a manner observable to equality-
preserving expressions is said to modify those inputs. The library clauses use a notational convention to
specify which expressions declared in a requires-expression modify which inputs: except where otherwise
specified, an expression operand that is a non-constant lvalue or rvalue may be modified. Operands that
are constant lvalues or rvalues are required to not be modified. For the purposes of this subclause, the
cv-qualification and value category of each operand are determined by assuming that each template type
parameter denotes a cv-unqualified complete non-array object type.
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6 Where a requires-expression declares an expression that is non-modifying for some constant lvalue operand,
additional variations of that expression that accept a non-constant lvalue or (possibly constant) rvalue for
the given operand are also required except where such an expression variation is explicitly required with
differing semantics. These implicit expression variations are required to meet the semantic requirements of
the declared expression. The extent to which an implementation validates the syntax of the variations is
unspecified.

7 [Example 3 :
template<class T> concept C = requires(T a, T b, const T c, const T d) {

c == d; // #1
a = std::move(b); // #2
a = c; // #3

};

For the above example:
—(7.1) Expression #1 does not modify either of its operands, #2 modifies both of its operands, and #3 modifies only

its first operand a.
—(7.2) Expression #1 implicitly requires additional expression variations that meet the requirements for c == d

(including non-modification), as if the expressions
c == b;

c == std::move(d); c == std::move(b);
std::move(c) == d; std::move(c) == b;
std::move(c) == std::move(d); std::move(c) == std::move(b);

a == d; a == b;
a == std::move(d); a == std::move(b);

std::move(a) == d; std::move(a) == b;
std::move(a) == std::move(d); std::move(a) == std::move(b);

had been declared as well.
—(7.3) Expression #3 implicitly requires additional expression variations that meet the requirements for a = c

(including non-modification of the second operand), as if the expressions a = b and a = std::move(c) had
been declared. Expression #3 does not implicitly require an expression variation with a non-constant rvalue
second operand, since expression #2 already specifies exactly such an expression explicitly.

— end example ]
8 [Example 4 : The following type T meets the explicitly stated syntactic requirements of concept C above but does not

meet the additional implicit requirements:
struct T {

bool operator==(const T&) const { return true; }
bool operator==(T&) = delete;

};

T fails to meet the implicit requirements of C, so T satisfies but does not model C. Since implementations are not
required to validate the syntax of implicit requirements, it is unspecified whether an implementation diagnoses as
ill-formed a program that requires C<T>. — end example ]

18.3 Header <concepts> synopsis [concepts.syn]
// all freestanding
namespace std {

// 18.4, language-related concepts
// 18.4.2, concept same_as
template<class T, class U>

concept same_as = see below ;

// 18.4.3, concept derived_from
template<class Derived, class Base>

concept derived_from = see below ;

// 18.4.4, concept convertible_to
template<class From, class To>

concept convertible_to = see below ;
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// 18.4.5, concept common_reference_with
template<class T, class U>

concept common_reference_with = see below ;

// 18.4.6, concept common_with
template<class T, class U>

concept common_with = see below ;

// 18.4.7, arithmetic concepts
template<class T>

concept integral = see below ;
template<class T>

concept signed_integral = see below ;
template<class T>

concept unsigned_integral = see below ;
template<class T>

concept floating_point = see below ;

// 18.4.8, concept assignable_from
template<class LHS, class RHS>

concept assignable_from = see below ;

// 18.4.9, concept swappable
namespace ranges {

inline namespace unspecified {
inline constexpr unspecified swap = unspecified ;

}
}
template<class T>

concept swappable = see below ;
template<class T, class U>

concept swappable_with = see below ;

// 18.4.10, concept destructible
template<class T>

concept destructible = see below ;

// 18.4.11, concept constructible_from
template<class T, class... Args>

concept constructible_from = see below ;

// 18.4.12, concept default_initializable
template<class T>

concept default_initializable = see below ;

// 18.4.13, concept move_constructible
template<class T>

concept move_constructible = see below ;

// 18.4.14, concept copy_constructible
template<class T>

concept copy_constructible = see below ;

// 18.5, comparison concepts
// 18.5.4, concept equality_comparable
template<class T>

concept equality_comparable = see below ;
template<class T, class U>

concept equality_comparable_with = see below ;

// 18.5.5, concept totally_ordered
template<class T>

concept totally_ordered = see below ;
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template<class T, class U>
concept totally_ordered_with = see below ;

// 18.6, object concepts
template<class T>

concept movable = see below ;
template<class T>

concept copyable = see below ;
template<class T>

concept semiregular = see below ;
template<class T>

concept regular = see below ;

// 18.7, callable concepts
// 18.7.2, concept invocable
template<class F, class... Args>

concept invocable = see below ;

// 18.7.3, concept regular_invocable
template<class F, class... Args>

concept regular_invocable = see below ;

// 18.7.4, concept predicate
template<class F, class... Args>

concept predicate = see below ;

// 18.7.5, concept relation
template<class R, class T, class U>

concept relation = see below ;

// 18.7.6, concept equivalence_relation
template<class R, class T, class U>

concept equivalence_relation = see below ;

// 18.7.7, concept strict_weak_order
template<class R, class T, class U>

concept strict_weak_order = see below ;
}

18.4 Language-related concepts [concepts.lang]
18.4.1 General [concepts.lang.general]

1 Subclause 18.4 contains the definition of concepts corresponding to language features. These concepts express
relationships between types, type classifications, and fundamental type properties.

18.4.2 Concept same_as [concept.same]
template<class T, class U>

concept same-as-impl = is_same_v<T, U>; // exposition only

template<class T, class U>
concept same_as = same-as-impl <T, U> && same-as-impl <U, T>;

1 [Note 1 : same_as<T, U> subsumes same_as<U, T> and vice versa. — end note ]

18.4.3 Concept derived_from [concept.derived]
template<class Derived, class Base>

concept derived_from =
is_base_of_v<Base, Derived> &&
is_convertible_v<const volatile Derived*, const volatile Base*>;

1 [Note 1 : derived_from<Derived, Base> is satisfied if and only if Derived is publicly and unambiguously
derived from Base, or Derived and Base are the same class type ignoring cv-qualifiers. — end note ]
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18.4.4 Concept convertible_to [concept.convertible]
1 Given types From and To and an expression E whose type and value category are the same as those of

declval<From>(), convertible_to<From, To> requires E to be both implicitly and explicitly convertible
to type To. The implicit and explicit conversions are required to produce equal results.

template<class From, class To>
concept convertible_to =

is_convertible_v<From, To> &&
requires {

static_cast<To>(declval<From>());
};

2 Let FromR be add_rvalue_reference_t<From> and test be the invented function:
To test(FromR (&f)()) {

return f();
}

and let f be a function with no arguments and return type FromR such that f() is equality-preserving.
Types From and To model convertible_to<From, To> only if:

—(2.1) To is not an object or reference-to-object type, or static_cast<To>(f()) is equal to test(f).
—(2.2) FromR is not a reference-to-object type, or

—(2.2.1) If FromR is an rvalue reference to a non const-qualified type, the resulting state of the object
referenced by f() after either above expression is valid but unspecified (16.4.6.15).

—(2.2.2) Otherwise, the object referred to by f() is not modified by either above expression.

18.4.5 Concept common_reference_with [concept.commonref]
1 For two types T and U, if common_reference_t<T, U> is well-formed and denotes a type C such that both

convertible_to<T, C> and convertible_to<U, C> are modeled, then T and U share a common reference
type, C.
[Note 1 : C can be the same as T or U, or can be a different type. C can be a reference type. — end note ]

template<class T, class U>
concept common_reference_with =

same_as<common_reference_t<T, U>, common_reference_t<U, T>> &&
convertible_to<T, common_reference_t<T, U>> &&
convertible_to<U, common_reference_t<T, U>>;

2 Let C be common_reference_t<T, U>. Let t1 and t2 be equality-preserving expressions (18.2) such that
decltype((t1)) and decltype((t2)) are each T, and let u1 and u2 be equality-preserving expressions
such that decltype((u1)) and decltype((u2)) are each U. T and U model common_reference_with<T,
U> only if:

—(2.1) C(t1) equals C(t2) if and only if t1 equals t2, and
—(2.2) C(u1) equals C(u2) if and only if u1 equals u2.

3 [Note 2 : Users can customize the behavior of common_reference_with by specializing the basic_common_-
reference class template (21.3.8.7). — end note ]

18.4.6 Concept common_with [concept.common]
1 If T and U can both be explicitly converted to some third type, C, then T and U share a common type, C.

[Note 1 : C can be the same as T or U, or can be a different type. C is not necessarily unique. — end note ]

template<class T, class U>
concept common_with =

same_as<common_type_t<T, U>, common_type_t<U, T>> &&
requires {

static_cast<common_type_t<T, U>>(declval<T>());
static_cast<common_type_t<T, U>>(declval<U>());

} &&
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common_reference_with<
add_lvalue_reference_t<const T>,
add_lvalue_reference_t<const U>> &&

common_reference_with<
add_lvalue_reference_t<common_type_t<T, U>>,
common_reference_t<

add_lvalue_reference_t<const T>,
add_lvalue_reference_t<const U>>>;

2 Let C be common_type_t<T, U>. Let t1 and t2 be equality-preserving expressions (18.2) such that
decltype((t1)) and decltype((t2)) are each T, and let u1 and u2 be equality-preserving expressions
such that decltype((u1)) and decltype((u2)) are each U. T and U model common_with<T, U> only
if:

—(2.1) C(t1) equals C(t2) if and only if t1 equals t2, and
—(2.2) C(u1) equals C(u2) if and only if u1 equals u2.

3 [Note 2 : Users can customize the behavior of common_with by specializing the common_type class template
(21.3.8.7). — end note ]

18.4.7 Arithmetic concepts [concepts.arithmetic]
template<class T>

concept integral = is_integral_v<T>;
template<class T>

concept signed_integral = integral<T> && is_signed_v<T>;
template<class T>

concept unsigned_integral = integral<T> && !signed_integral<T>;
template<class T>

concept floating_point = is_floating_point_v<T>;
1 [Note 1 : signed_integral can be modeled even by types that are not signed integer types (6.8.2); for example,

char. — end note ]
2 [Note 2 : unsigned_integral can be modeled even by types that are not unsigned integer types (6.8.2); for

example, bool. — end note ]

18.4.8 Concept assignable_from [concept.assignable]
template<class LHS, class RHS>

concept assignable_from =
is_lvalue_reference_v<LHS> &&
common_reference_with<const remove_reference_t<LHS>&, const remove_reference_t<RHS>&> &&
requires(LHS lhs, RHS&& rhs) {

{ lhs = std::forward<RHS>(rhs) } -> same_as<LHS>;
};

1 Let:
—(1.1) lhs be an lvalue that refers to an object lcopy such that decltype((lhs)) is LHS,
—(1.2) rhs be an expression such that decltype((rhs)) is RHS, and
—(1.3) rcopy be a distinct object that is equal to rhs.

LHS and RHS model assignable_from<LHS, RHS> only if
—(1.4) addressof(lhs = rhs) == addressof(lcopy).
—(1.5) After evaluating lhs = rhs:

—(1.5.1) lhs is equal to rcopy, unless rhs is a non-const xvalue that refers to lcopy.
—(1.5.2) If rhs is a non-const xvalue, the resulting state of the object to which it refers is valid but

unspecified (16.4.6.15).
—(1.5.3) Otherwise, if rhs is a glvalue, the object to which it refers is not modified.

2 [Note 1 : Assignment need not be a total function (16.3.2.3); in particular, if assignment to an object x can
result in a modification of some other object y, then x = y is likely not in the domain of =. — end note ]
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18.4.9 Concept swappable [concept.swappable]
1 Let t1 and t2 be equality-preserving expressions that denote distinct equal objects of type T, and let u1 and

u2 similarly denote distinct equal objects of type U.
[Note 1 : t1 and u1 can denote distinct objects, or the same object. — end note ]

An operation exchanges the values denoted by t1 and u1 if and only if the operation modifies neither t2 nor
u2 and:

—(1.1) If T and U are the same type, the result of the operation is that t1 equals u2 and u1 equals t2.
—(1.2) If T and U are different types and common_reference_with<decltype((t1)), decltype((u1))> is

modeled, the result of the operation is that C(t1) equals C(u2) and C(u1) equals C(t2) where C is
common_reference_t<decltype((t1)), decltype((u1))>.

2 The name ranges::swap denotes a customization point object (16.3.3.3.5). The expression ranges::swap(E1,
E2) for subexpressions E1 and E2 is expression-equivalent to an expression S determined as follows:

—(2.1) S is (void)swap(E1, E2)202 if E1 or E2 has class or enumeration type (6.8.4) and that expression is
valid, with overload resolution performed in a context that includes the declaration

template<class T>
void swap(T&, T&) = delete;

and does not include a declaration of ranges::swap. If the function selected by overload resolution
does not exchange the values denoted by E1 and E2, the program is ill-formed, no diagnostic required.
[Note 2 : This precludes calling unconstrained program-defined overloads of swap. When the deleted overload is
viable, program-defined overloads need to be more specialized (13.7.7.3) to be selected. — end note ]

—(2.2) Otherwise, if E1 and E2 are lvalues of array types (6.8.4) with equal extent and ranges::swap(*E1,
*E2) is a valid expression, S is (void)ranges::swap_ranges(E1, E2), except that noexcept(S) is
equal to noexcept(ranges::swap(*E1, *E2)).

—(2.3) Otherwise, if E1 and E2 are lvalues of the same type T that models move_constructible<T> and
assignable_from<T&, T>, S is an expression that exchanges the denoted values. S is a constant
expression if

—(2.3.1) T is a literal type (6.8.1),
—(2.3.2) both E1 = std::move(E2) and E2 = std::move(E1) are constant subexpressions (3.14), and
—(2.3.3) the full-expressions of the initializers in the declarations

T t1(std::move(E1));
T t2(std::move(E2));

are constant subexpressions.
noexcept(S) is equal to is_nothrow_move_constructible_v<T> && is_nothrow_move_assignable-
_v<T>.

—(2.4) Otherwise, ranges::swap(E1, E2) is ill-formed.
[Note 3 : This case can result in substitution failure when ranges::swap(E1, E2) appears in the immediate
context of a template instantiation. — end note ]

3 [Note 4 : Whenever ranges::swap(E1, E2) is a valid expression, it exchanges the values denoted by E1 and E2 and
has type void. — end note ]

template<class T>
concept swappable = requires(T& a, T& b) { ranges::swap(a, b); };

template<class T, class U>
concept swappable_with =

common_reference_with<T, U> &&
requires(T&& t, U&& u) {

ranges::swap(std::forward<T>(t), std::forward<T>(t));
ranges::swap(std::forward<U>(u), std::forward<U>(u));
ranges::swap(std::forward<T>(t), std::forward<U>(u));
ranges::swap(std::forward<U>(u), std::forward<T>(t));

202) The name swap is used here unqualified.
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};
4 [Note 5 : The semantics of the swappable and swappable_with concepts are fully defined by the ranges::swap

customization point object. — end note ]
5 [Example 1 : User code can ensure that the evaluation of swap calls is performed in an appropriate context under the

various conditions as follows:
#include <cassert>
#include <concepts>
#include <utility>

namespace ranges = std::ranges;

template<class T, std::swappable_with<T> U>
void value_swap(T&& t, U&& u) {

ranges::swap(std::forward<T>(t), std::forward<U>(u));
}

template<std::swappable T>
void lv_swap(T& t1, T& t2) {

ranges::swap(t1, t2);
}

namespace N {
struct A { int m; };
struct Proxy {

A* a;
Proxy(A& a) : a{&a} {}
friend void swap(Proxy x, Proxy y) {

ranges::swap(*x.a, *y.a);
}

};
Proxy proxy(A& a) { return Proxy{ a }; }

}

int main() {
int i = 1, j = 2;
lv_swap(i, j);
assert(i == 2 && j == 1);

N::A a1 = { 5 }, a2 = { -5 };
value_swap(a1, proxy(a2));
assert(a1.m == -5 && a2.m == 5);

}

— end example ]

18.4.10 Concept destructible [concept.destructible]
1 The destructible concept specifies properties of all types, instances of which can be destroyed at the end

of their lifetime, or reference types.

template<class T>
concept destructible = is_nothrow_destructible_v<T>;

2 [Note 1 : Unlike the Cpp17Destructible requirements (Table 35), this concept forbids destructors that are
potentially throwing, even if a particular invocation of the destructor does not actually throw. — end note ]

18.4.11 Concept constructible_from [concept.constructible]
1 The constructible_from concept constrains the initialization of a variable of a given type with a particular

set of argument types.

template<class T, class... Args>
concept constructible_from = destructible<T> && is_constructible_v<T, Args...>;
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18.4.12 Concept default_initializable [concept.default.init]
template<class T>

constexpr bool is-default-initializable = see below ; // exposition only

template<class T>
concept default_initializable = constructible_from<T> &&

requires { T{}; } &&
is-default-initializable <T>;

1 For a type T, is-default-initializable <T> is true if and only if the variable definition
T t;

is well-formed for some invented variable t; otherwise it is false. Access checking is performed as if in
a context unrelated to T. Only the validity of the immediate context of the variable initialization is
considered.

18.4.13 Concept move_constructible [concept.moveconstructible]
template<class T>

concept move_constructible = constructible_from<T, T> && convertible_to<T, T>;

1 If T is an object type, then let rv be an rvalue of type T and u2 a distinct object of type T equal to rv.
T models move_constructible only if

—(1.1) After the definition T u = rv;, u is equal to u2.
—(1.2) T(rv) is equal to u2.
—(1.3) If T is not const, rv’s resulting state is valid but unspecified (16.4.6.15); otherwise, it is unchanged.

18.4.14 Concept copy_constructible [concept.copyconstructible]
template<class T>

concept copy_constructible =
move_constructible<T> &&
constructible_from<T, T&> && convertible_to<T&, T> &&
constructible_from<T, const T&> && convertible_to<const T&, T> &&
constructible_from<T, const T> && convertible_to<const T, T>;

1 If T is an object type, then let v be an lvalue of type T or const T or an rvalue of type const T. T
models copy_constructible only if

—(1.1) After the definition T u = v;, u is equal to v (18.2) and v is not modified.
—(1.2) T(v) is equal to v and does not modify v.

18.5 Comparison concepts [concepts.compare]
18.5.1 General [concepts.compare.general]

1 Subclause 18.5 describes concepts that establish relationships and orderings on values of possibly differing
object types.

2 Given an expression E and a type C, let CONVERT_TO_LVALUE <C>(E) be:
—(2.1) static_cast<const C&>(as_const(E)) if that is a valid expression, and
—(2.2) static_cast<const C&>(std::move(E)) otherwise.

18.5.2 Boolean testability [concept.booleantestable]
1 The exposition-only boolean-testable concept specifies the requirements on expressions that are convertible

to bool and for which the logical operators (7.6.14, 7.6.15, 7.6.2.2) have the conventional semantics.

template<class T>
concept boolean-testable-impl = convertible_to<T, bool>; // exposition only

2 Let e be an expression such that decltype((e)) is T. T models boolean-testable-impl only if:
—(2.1) either remove_cvref_t<T> is not a class type, or a search for the names operator&& and operator||

in the scope of remove_cvref_t<T> finds nothing; and
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—(2.2) argument-dependent lookup (6.5.4) for the names operator&& and operator|| with T as the only
argument type finds no disqualifying declaration (defined below).

3 A disqualifying parameter is a function parameter whose declared type P
—(3.1) is not dependent on a template parameter, and there exists an implicit conversion sequence (12.2.4.2)

from e to P; or
—(3.2) is dependent on one or more template parameters, and either

—(3.2.1) P contains no template parameter that participates in template argument deduction (13.10.3.6), or
—(3.2.2) template argument deduction using the rules for deducing template arguments in a function

call (13.10.3.2) and e as the argument succeeds.
4 A key parameter of a function template D is a function parameter of type cv X or reference thereto, where X

names a specialization of a class template that has the same innermost enclosing non-inline namespace as D,
and X contains at least one template parameter that participates in template argument deduction.
[Example 1 : In

namespace Z {
template<class> struct C {};
template<class T>

void operator&&(C<T> x, T y);
template<class T>

void operator||(C<type_identity_t<T>> x, T y);
}

the declaration of Z::operator&& contains one key parameter, C<T> x, and the declaration of Z::operator|| contains
no key parameters. — end example ]

5 A disqualifying declaration is
—(5.1) a (non-template) function declaration that contains at least one disqualifying parameter; or
—(5.2) a function template declaration that contains at least one disqualifying parameter, where

—(5.2.1) at least one disqualifying parameter is a key parameter; or
—(5.2.2) the declaration contains no key parameters; or
—(5.2.3) the declaration declares a function template to which no name is bound (9.3.4).

6 [Note 1 : The intention is to ensure that given two types T1 and T2 that each model boolean-testable-impl , the &&
and || operators within the expressions declval<T1>() && declval<T2>() and declval<T1>() || declval<T2>()
resolve to the corresponding built-in operators. — end note ]

template<class T>
concept boolean-testable = // exposition only

boolean-testable-impl <T> && requires(T&& t) {
{ !std::forward<T>(t) } -> boolean-testable-impl ;

};

7 Let e be an expression such that decltype((e)) is T. T models boolean-testable only if bool(e) ==
!bool(!e).

8 [Example 2 : The types bool, true_type (21.3.3), int*, and bitset<N>::reference (22.9.2) model boolean-testable .
— end example ]

18.5.3 Comparison common types [concept.comparisoncommontype]
template<class T, class U, class C = common_reference_t<const T&, const U&>>

concept comparison-common-type-with-impl = // exposition only
same_as<common_reference_t<const T&, const U&>,

common_reference_t<const U&, const T&>> &&
requires {

requires convertible_to<const T&, const C&> || convertible_to<T, const C&>;
requires convertible_to<const U&, const C&> || convertible_to<U, const C&>;

};
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template<class T, class U>
concept comparison-common-type-with = // exposition only

comparison-common-type-with-impl <remove_cvref_t<T>, remove_cvref_t<U>>;

1 Let C be common_reference_t<const T&, const U&>. Let t1 and t2 be equality-preserving expressions
that are lvalues of type remove_cvref_t<T>, and let u1 and u2 be equality-preserving expressions that are
lvalues of type remove_cvref_t<U>. T and U model comparison-common-type-with <T, U> only if:

—(1.1) CONVERT_TO_LVALUE <C>(t1) equals CONVERT_TO_LVALUE <C>(t2) if and only if t1 equals t2, and
—(1.2) CONVERT_TO_LVALUE <C>(u1) equals CONVERT_TO_LVALUE <C>(u2) if and only if u1 equals u2

18.5.4 Concept equality_comparable [concept.equalitycomparable]
template<class T, class U>

concept weakly-equality-comparable-with = // exposition only
requires(const remove_reference_t<T>& t,

const remove_reference_t<U>& u) {
{ t == u } -> boolean-testable ;
{ t != u } -> boolean-testable ;
{ u == t } -> boolean-testable ;
{ u != t } -> boolean-testable ;

};

1 Given types T and U, let t and u be lvalues of types const remove_reference_t<T> and const
remove_reference_t<U> respectively. T and U model weakly-equality-comparable-with <T, U>
only if

—(1.1) t == u, u == t, t != u, and u != t have the same domain.
—(1.2) bool(u == t) == bool(t == u).
—(1.3) bool(t != u) == !bool(t == u).
—(1.4) bool(u != t) == bool(t != u).

template<class T>
concept equality_comparable = weakly-equality-comparable-with <T, T>;

2 Let a and b be objects of type T. T models equality_comparable only if bool(a == b) is true when
a is equal to b (18.2), and false otherwise.

3 [Note 1 : The requirement that the expression a == b is equality-preserving implies that == is transitive and
symmetric. — end note ]

template<class T, class U>
concept equality_comparable_with =

equality_comparable<T> && equality_comparable<U> &&
comparison-common-type-with <T, U> &&
equality_comparable<

common_reference_t<
const remove_reference_t<T>&,
const remove_reference_t<U>&>> &&

weakly-equality-comparable-with <T, U>;

4 Given types T and U, let t and t2 be lvalues denoting distinct equal objects of types const remove_-
reference_t<T> and remove_cvref_t<T>, respectively, let u and u2 be lvalues denoting distinct equal
objects of types const remove_reference_t<U> and remove_cvref_t<U>, respectively, and let C be:

common_reference_t<const remove_reference_t<T>&, const remove_reference_t<U>&>

T and U model equality_comparable_with<T, U> only if
bool(t == u) == bool(CONVERT_TO_LVALUE <C>(t2) == CONVERT_TO_LVALUE <C>(u2))

18.5.5 Concept totally_ordered [concept.totallyordered]
template<class T>

concept totally_ordered =
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equality_comparable<T> && partially-ordered-with <T, T>;

1 Given a type T, let a, b, and c be lvalues of type const remove_reference_t<T>. T models totally_-
ordered only if

—(1.1) Exactly one of bool(a < b), bool(a > b), or bool(a == b) is true.
—(1.2) If bool(a < b) and bool(b < c), then bool(a < c).
—(1.3) bool(a <= b) == !bool(b < a).
—(1.4) bool(a >= b) == !bool(a < b).

template<class T, class U>
concept totally_ordered_with =

totally_ordered<T> && totally_ordered<U> &&
equality_comparable_with<T, U> &&
totally_ordered<

common_reference_t<
const remove_reference_t<T>&,
const remove_reference_t<U>&>> &&

partially-ordered-with <T, U>;

2 Given types T and U, let t and t2 be lvalues denoting distinct equal objects of types const remove_-
reference_t<T> and remove_cvref_t<T>, respectively, let u and u2 be lvalues denoting distinct equal
objects of types const remove_reference_t<U> and remove_cvref_t<U>, respectively, and let C be:

common_reference_t<const remove_reference_t<T>&, const remove_reference_t<U>&>

T and U model totally_ordered_with<T, U> only if
—(2.1) bool(t < u) == bool(CONVERT_TO_LVALUE <C>(t2) < CONVERT_TO_LVALUE <C>(u2)).
—(2.2) bool(t > u) == bool(CONVERT_TO_LVALUE <C>(t2) > CONVERT_TO_LVALUE <C>(u2)).
—(2.3) bool(t <= u) == bool(CONVERT_TO_LVALUE <C>(t2) <= CONVERT_TO_LVALUE <C>(u2)).
—(2.4) bool(t >= u) == bool(CONVERT_TO_LVALUE <C>(t2) >= CONVERT_TO_LVALUE <C>(u2)).
—(2.5) bool(u < t) == bool(CONVERT_TO_LVALUE <C>(u2) < CONVERT_TO_LVALUE <C>(t2)).
—(2.6) bool(u > t) == bool(CONVERT_TO_LVALUE <C>(u2) > CONVERT_TO_LVALUE <C>(t2)).
—(2.7) bool(u <= t) == bool(CONVERT_TO_LVALUE <C>(u2) <= CONVERT_TO_LVALUE <C>(t2)).
—(2.8) bool(u >= t) == bool(CONVERT_TO_LVALUE <C>(u2) >= CONVERT_TO_LVALUE <C>(t2)).

18.6 Object concepts [concepts.object]
1 This subclause describes concepts that specify the basis of the value-oriented programming style on which

the library is based.

template<class T>
concept movable = is_object_v<T> && move_constructible<T> &&

assignable_from<T&, T> && swappable<T>;
template<class T>

concept copyable = copy_constructible<T> && movable<T> && assignable_from<T&, T&> &&
assignable_from<T&, const T&> && assignable_from<T&, const T>;

template<class T>
concept semiregular = copyable<T> && default_initializable<T>;

template<class T>
concept regular = semiregular<T> && equality_comparable<T>;

2 [Note 1 : The semiregular concept is modeled by types that behave similarly to fundamental types like int,
except that they need not be comparable with ==. — end note ]

3 [Note 2 : The regular concept is modeled by types that behave similarly to fundamental types like int and
that are comparable with ==. — end note ]

18.7 Callable concepts [concepts.callable]
18.7.1 General [concepts.callable.general]

1 The concepts in subclause 18.7 describe the requirements on function objects (22.10) and their arguments.
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18.7.2 Concept invocable [concept.invocable]
1 The invocable concept specifies a relationship between a callable type (22.10.3) F and a set of argument

types Args... which can be evaluated by the library function invoke (22.10.5).

template<class F, class... Args>
concept invocable = requires(F&& f, Args&&... args) {

invoke(std::forward<F>(f), std::forward<Args>(args)...); // not required to be equality-preserving
};

2 [Example 1 : A function that generates random numbers can model invocable, since the invoke function call
expression is not required to be equality-preserving (18.2). — end example ]

18.7.3 Concept regular_invocable [concept.regularinvocable]
template<class F, class... Args>

concept regular_invocable = invocable<F, Args...>;

1 The invoke function call expression shall be equality-preserving (18.2) and shall not modify the function
object or the arguments.
[Note 1 : This requirement supersedes the annotation in the definition of invocable. — end note ]

2 [Example 1 : A random number generator does not model regular_invocable. — end example ]
3 [Note 2 : The distinction between invocable and regular_invocable is purely semantic. — end note ]

18.7.4 Concept predicate [concept.predicate]
template<class F, class... Args>

concept predicate =
regular_invocable<F, Args...> && boolean-testable <invoke_result_t<F, Args...>>;

18.7.5 Concept relation [concept.relation]
template<class R, class T, class U>

concept relation =
predicate<R, T, T> && predicate<R, U, U> &&
predicate<R, T, U> && predicate<R, U, T>;

18.7.6 Concept equivalence_relation [concept.equiv]
template<class R, class T, class U>

concept equivalence_relation = relation<R, T, U>;

1 A relation models equivalence_relation only if it imposes an equivalence relation on its arguments.

18.7.7 Concept strict_weak_order [concept.strictweakorder]
template<class R, class T, class U>

concept strict_weak_order = relation<R, T, U>;

1 A relation models strict_weak_order only if it imposes a strict weak ordering on its arguments.
2 The term strict refers to the requirement of an irreflexive relation (!comp(x, x) for all x), and the term

weak to requirements that are not as strong as those for a total ordering, but stronger than those for a
partial ordering. If we define equiv(a, b) as !comp(a, b) && !comp(b, a), then the requirements
are that comp and equiv both be transitive relations:

—(2.1) comp(a, b) && comp(b, c) implies comp(a, c)
—(2.2) equiv(a, b) && equiv(b, c) implies equiv(a, c)

3 [Note 1 : Under these conditions, it can be shown that
—(3.1) equiv is an equivalence relation,
—(3.2) comp induces a well-defined relation on the equivalence classes determined by equiv, and
—(3.3) the induced relation is a strict total ordering.

— end note ]
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19 Diagnostics library [diagnostics]
19.1 General [diagnostics.general]

1 This Clause describes components that C++ programs may use to detect and report error conditions.
2 The following subclauses describe components for reporting several kinds of exceptional conditions, document-

ing program assertions, obtaining stacktraces, and a global variable for error number codes, as summarized
in Table 42.

Table 42: Diagnostics library summary [tab:diagnostics.summary]

Subclause Header
19.2 Exception classes <stdexcept>
19.3 Assertions <cassert>
19.4 Error numbers <cerrno>
19.5 System error support <system_error>
19.6 Stacktrace <stacktrace>

19.2 Exception classes [std.exceptions]
19.2.1 General [std.exceptions.general]

1 The C++ standard library provides classes to be used to report certain errors (16.4.6.13) in C++ programs.
In the error model reflected in these classes, errors are divided into two broad categories: logic errors and
runtime errors.

2 The distinguishing characteristic of logic errors is that they are due to errors in the internal logic of the
program. In theory, they are preventable.

3 By contrast, runtime errors are due to events beyond the scope of the program. They cannot be easily
predicted in advance. The header <stdexcept> defines several types of predefined exceptions for reporting
errors in a C++ program. These exceptions are related by inheritance.

19.2.2 Header <stdexcept> synopsis [stdexcept.syn]
namespace std {

class logic_error;
class domain_error;
class invalid_argument;
class length_error;
class out_of_range;

class runtime_error;
class range_error;
class overflow_error;
class underflow_error;

}

19.2.3 Class logic_error [logic.error]
namespace std {

class logic_error : public exception {
public:

explicit logic_error(const string& what_arg);
explicit logic_error(const char* what_arg);

};
}

1 The class logic_error defines the type of objects thrown as exceptions to report errors presumably detectable
before the program executes, such as violations of logical preconditions or class invariants.
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logic_error(const string& what_arg);

2 Postconditions: strcmp(what(), what_arg.c_str()) == 0.

logic_error(const char* what_arg);

3 Postconditions: strcmp(what(), what_arg) == 0.

19.2.4 Class domain_error [domain.error]
namespace std {

class domain_error : public logic_error {
public:

explicit domain_error(const string& what_arg);
explicit domain_error(const char* what_arg);

};
}

1 The class domain_error defines the type of objects thrown as exceptions by the implementation to report
domain errors.

domain_error(const string& what_arg);

2 Postconditions: strcmp(what(), what_arg.c_str()) == 0.

domain_error(const char* what_arg);

3 Postconditions: strcmp(what(), what_arg) == 0.

19.2.5 Class invalid_argument [invalid.argument]
namespace std {

class invalid_argument : public logic_error {
public:

explicit invalid_argument(const string& what_arg);
explicit invalid_argument(const char* what_arg);

};
}

1 The class invalid_argument defines the type of objects thrown as exceptions to report an invalid argument.

invalid_argument(const string& what_arg);

2 Postconditions: strcmp(what(), what_arg.c_str()) == 0.

invalid_argument(const char* what_arg);

3 Postconditions: strcmp(what(), what_arg) == 0.

19.2.6 Class length_error [length.error]
namespace std {

class length_error : public logic_error {
public:

explicit length_error(const string& what_arg);
explicit length_error(const char* what_arg);

};
}

1 The class length_error defines the type of objects thrown as exceptions to report an attempt to produce an
object whose length exceeds its maximum allowable size.

length_error(const string& what_arg);

2 Postconditions: strcmp(what(), what_arg.c_str()) == 0.

length_error(const char* what_arg);

3 Postconditions: strcmp(what(), what_arg) == 0.
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19.2.7 Class out_of_range [out.of.range]
namespace std {

class out_of_range : public logic_error {
public:

explicit out_of_range(const string& what_arg);
explicit out_of_range(const char* what_arg);

};
}

1 The class out_of_range defines the type of objects thrown as exceptions to report an argument value not in
its expected range.

out_of_range(const string& what_arg);

2 Postconditions: strcmp(what(), what_arg.c_str()) == 0.

out_of_range(const char* what_arg);

3 Postconditions: strcmp(what(), what_arg) == 0.

19.2.8 Class runtime_error [runtime.error]
namespace std {

class runtime_error : public exception {
public:

explicit runtime_error(const string& what_arg);
explicit runtime_error(const char* what_arg);

};
}

1 The class runtime_error defines the type of objects thrown as exceptions to report errors presumably
detectable only when the program executes.

runtime_error(const string& what_arg);

2 Postconditions: strcmp(what(), what_arg.c_str()) == 0.

runtime_error(const char* what_arg);

3 Postconditions: strcmp(what(), what_arg) == 0.

19.2.9 Class range_error [range.error]
namespace std {

class range_error : public runtime_error {
public:

explicit range_error(const string& what_arg);
explicit range_error(const char* what_arg);

};
}

1 The class range_error defines the type of objects thrown as exceptions to report range errors in internal
computations.

range_error(const string& what_arg);

2 Postconditions: strcmp(what(), what_arg.c_str()) == 0.

range_error(const char* what_arg);

3 Postconditions: strcmp(what(), what_arg) == 0.

19.2.10 Class overflow_error [overflow.error]
namespace std {

class overflow_error : public runtime_error {
public:

explicit overflow_error(const string& what_arg);
explicit overflow_error(const char* what_arg);

};
}
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1 The class overflow_error defines the type of objects thrown as exceptions to report an arithmetic overflow
error.

overflow_error(const string& what_arg);

2 Postconditions: strcmp(what(), what_arg.c_str()) == 0.

overflow_error(const char* what_arg);

3 Postconditions: strcmp(what(), what_arg) == 0.

19.2.11 Class underflow_error [underflow.error]
namespace std {

class underflow_error : public runtime_error {
public:

explicit underflow_error(const string& what_arg);
explicit underflow_error(const char* what_arg);

};
}

1 The class underflow_error defines the type of objects thrown as exceptions to report an arithmetic underflow
error.

underflow_error(const string& what_arg);

2 Postconditions: strcmp(what(), what_arg.c_str()) == 0.

underflow_error(const char* what_arg);

3 Postconditions: strcmp(what(), what_arg) == 0.

19.3 Assertions [assertions]
19.3.1 General [assertions.general]

1 The header <cassert> provides a macro for documenting C++ program assertions and a mechanism for
disabling the assertion checks.

19.3.2 Header <cassert> synopsis [cassert.syn]
#define assert(E) see below

1 The contents are the same as the C standard library header <assert.h>, except that a macro named
static_assert is not defined.
See also: ISO/IEC 9899:2018, 7.2

19.3.3 The assert macro [assertions.assert]
1 An expression assert(E) is a constant subexpression (3.14), if

—(1.1) NDEBUG is defined at the point where assert is last defined or redefined, or
—(1.2) E contextually converted to bool (7.3) is a constant subexpression that evaluates to the value true.

19.4 Error numbers [errno]
19.4.1 General [errno.general]

1 The contents of the header <cerrno> are the same as the POSIX header <errno.h>, except that errno shall
be defined as a macro.
[Note 1 : The intent is to remain in close alignment with the POSIX standard. — end note ]

A separate errno value is provided for each thread.

19.4.2 Header <cerrno> synopsis [cerrno.syn]
#define errno see below
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#define E2BIG see below
#define EACCES see below
#define EADDRINUSE see below
#define EADDRNOTAVAIL see below
#define EAFNOSUPPORT see below
#define EAGAIN see below
#define EALREADY see below
#define EBADF see below
#define EBADMSG see below
#define EBUSY see below
#define ECANCELED see below
#define ECHILD see below
#define ECONNABORTED see below
#define ECONNREFUSED see below
#define ECONNRESET see below
#define EDEADLK see below
#define EDESTADDRREQ see below
#define EDOM see below
#define EEXIST see below
#define EFAULT see below
#define EFBIG see below
#define EHOSTUNREACH see below
#define EIDRM see below
#define EILSEQ see below
#define EINPROGRESS see below
#define EINTR see below
#define EINVAL see below
#define EIO see below
#define EISCONN see below
#define EISDIR see below
#define ELOOP see below
#define EMFILE see below
#define EMLINK see below
#define EMSGSIZE see below
#define ENAMETOOLONG see below
#define ENETDOWN see below
#define ENETRESET see below
#define ENETUNREACH see below
#define ENFILE see below
#define ENOBUFS see below
#define ENODEV see below
#define ENOENT see below
#define ENOEXEC see below
#define ENOLCK see below
#define ENOLINK see below
#define ENOMEM see below
#define ENOMSG see below
#define ENOPROTOOPT see below
#define ENOSPC see below
#define ENOSYS see below
#define ENOTCONN see below
#define ENOTDIR see below
#define ENOTEMPTY see below
#define ENOTRECOVERABLE see below
#define ENOTSOCK see below
#define ENOTSUP see below
#define ENOTTY see below
#define ENXIO see below
#define EOPNOTSUPP see below
#define EOVERFLOW see below
#define EOWNERDEAD see below
#define EPERM see below
#define EPIPE see below
#define EPROTO see below
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#define EPROTONOSUPPORT see below
#define EPROTOTYPE see below
#define ERANGE see below
#define EROFS see below
#define ESPIPE see below
#define ESRCH see below
#define ETIMEDOUT see below
#define ETXTBSY see below
#define EWOULDBLOCK see below
#define EXDEV see below

1 The meaning of the macros in this header is defined by the POSIX standard.
See also: ISO/IEC 9899:2018, 7.5

19.5 System error support [syserr]
19.5.1 General [syserr.general]

1 Subclause 19.5 describes components that the standard library and C++ programs may use to report error
conditions originating from the operating system or other low-level application program interfaces.

2 Components described in 19.5 do not change the value of errno (19.4).
Recommended practice: Implementations should leave the error states provided by other libraries unchanged.

19.5.2 Header <system_error> synopsis [system.error.syn]
#include <compare> // see 17.11.1

namespace std {
class error_category;
const error_category& generic_category() noexcept;
const error_category& system_category() noexcept;

class error_code;
class error_condition;
class system_error;

template<class T>
struct is_error_code_enum : public false_type {};

template<class T>
struct is_error_condition_enum : public false_type {};

enum class errc {
address_family_not_supported, // EAFNOSUPPORT
address_in_use, // EADDRINUSE
address_not_available, // EADDRNOTAVAIL
already_connected, // EISCONN
argument_list_too_long, // E2BIG
argument_out_of_domain, // EDOM
bad_address, // EFAULT
bad_file_descriptor, // EBADF
bad_message, // EBADMSG
broken_pipe, // EPIPE
connection_aborted, // ECONNABORTED
connection_already_in_progress, // EALREADY
connection_refused, // ECONNREFUSED
connection_reset, // ECONNRESET
cross_device_link, // EXDEV
destination_address_required, // EDESTADDRREQ
device_or_resource_busy, // EBUSY
directory_not_empty, // ENOTEMPTY
executable_format_error, // ENOEXEC
file_exists, // EEXIST
file_too_large, // EFBIG
filename_too_long, // ENAMETOOLONG
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function_not_supported, // ENOSYS
host_unreachable, // EHOSTUNREACH
identifier_removed, // EIDRM
illegal_byte_sequence, // EILSEQ
inappropriate_io_control_operation, // ENOTTY
interrupted, // EINTR
invalid_argument, // EINVAL
invalid_seek, // ESPIPE
io_error, // EIO
is_a_directory, // EISDIR
message_size, // EMSGSIZE
network_down, // ENETDOWN
network_reset, // ENETRESET
network_unreachable, // ENETUNREACH
no_buffer_space, // ENOBUFS
no_child_process, // ECHILD
no_link, // ENOLINK
no_lock_available, // ENOLCK
no_message, // ENOMSG
no_protocol_option, // ENOPROTOOPT
no_space_on_device, // ENOSPC
no_such_device_or_address, // ENXIO
no_such_device, // ENODEV
no_such_file_or_directory, // ENOENT
no_such_process, // ESRCH
not_a_directory, // ENOTDIR
not_a_socket, // ENOTSOCK
not_connected, // ENOTCONN
not_enough_memory, // ENOMEM
not_supported, // ENOTSUP
operation_canceled, // ECANCELED
operation_in_progress, // EINPROGRESS
operation_not_permitted, // EPERM
operation_not_supported, // EOPNOTSUPP
operation_would_block, // EWOULDBLOCK
owner_dead, // EOWNERDEAD
permission_denied, // EACCES
protocol_error, // EPROTO
protocol_not_supported, // EPROTONOSUPPORT
read_only_file_system, // EROFS
resource_deadlock_would_occur, // EDEADLK
resource_unavailable_try_again, // EAGAIN
result_out_of_range, // ERANGE
state_not_recoverable, // ENOTRECOVERABLE
text_file_busy, // ETXTBSY
timed_out, // ETIMEDOUT
too_many_files_open_in_system, // ENFILE
too_many_files_open, // EMFILE
too_many_links, // EMLINK
too_many_symbolic_link_levels, // ELOOP
value_too_large, // EOVERFLOW
wrong_protocol_type, // EPROTOTYPE

};

template<> struct is_error_condition_enum<errc> : true_type {};

// 19.5.4.5, non-member functions
error_code make_error_code(errc e) noexcept;

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const error_code& ec);
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// 19.5.5.5, non-member functions
error_condition make_error_condition(errc e) noexcept;

// 19.5.6, comparison operator functions
bool operator==(const error_code& lhs, const error_code& rhs) noexcept;
bool operator==(const error_code& lhs, const error_condition& rhs) noexcept;
bool operator==(const error_condition& lhs, const error_condition& rhs) noexcept;
strong_ordering operator<=>(const error_code& lhs, const error_code& rhs) noexcept;
strong_ordering operator<=>(const error_condition& lhs, const error_condition& rhs) noexcept;

// 19.5.7, hash support
template<class T> struct hash;
template<> struct hash<error_code>;
template<> struct hash<error_condition>;

// 19.5, system error support
template<class T>

constexpr bool is_error_code_enum_v = is_error_code_enum<T>::value;
template<class T>

constexpr bool is_error_condition_enum_v = is_error_condition_enum<T>::value;
}

1 The value of each enum errc enumerator is the same as the value of the <cerrno> macro shown in the above
synopsis. Whether or not the <system_error> implementation exposes the <cerrno> macros is unspecified.

2 The is_error_code_enum and is_error_condition_enum templates may be specialized for program-defined
types to indicate that such types are eligible for class error_code and class error_condition implicit
conversions, respectively.

19.5.3 Class error_category [syserr.errcat]
19.5.3.1 Overview [syserr.errcat.overview]

1 The class error_category serves as a base class for types used to identify the source and encoding of a
particular category of error code. Classes may be derived from error_category to support categories of
errors in addition to those defined in this document. Such classes shall behave as specified in subclause 19.5.3.
[Note 1 : error_category objects are passed by reference, and two such objects are equal if they have the same
address. If there is more than a single object of a custom error_category type, such equality comparisons can
evaluate to false even for objects holding the same value. — end note ]

namespace std {
class error_category {
public:

constexpr error_category() noexcept;
virtual ~error_category();
error_category(const error_category&) = delete;
error_category& operator=(const error_category&) = delete;
virtual const char* name() const noexcept = 0;
virtual error_condition default_error_condition(int ev) const noexcept;
virtual bool equivalent(int code, const error_condition& condition) const noexcept;
virtual bool equivalent(const error_code& code, int condition) const noexcept;
virtual string message(int ev) const = 0;

bool operator==(const error_category& rhs) const noexcept;
strong_ordering operator<=>(const error_category& rhs) const noexcept;

};

const error_category& generic_category() noexcept;
const error_category& system_category() noexcept;

}

19.5.3.2 Virtual members [syserr.errcat.virtuals]

virtual const char* name() const noexcept = 0;

1 Returns: A string naming the error category.
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virtual error_condition default_error_condition(int ev) const noexcept;

2 Returns: error_condition(ev, *this).

virtual bool equivalent(int code, const error_condition& condition) const noexcept;

3 Returns: default_error_condition(code) == condition.

virtual bool equivalent(const error_code& code, int condition) const noexcept;

4 Returns: *this == code.category() && code.value() == condition.

virtual string message(int ev) const = 0;

5 Returns: A string that describes the error condition denoted by ev.

19.5.3.3 Non-virtual members [syserr.errcat.nonvirtuals]

bool operator==(const error_category& rhs) const noexcept;

1 Returns: this == &rhs.

strong_ordering operator<=>(const error_category& rhs) const noexcept;

2 Returns: compare_three_way()(this, &rhs).
[Note 1 : compare_three_way (22.10.8.8) provides a total ordering for pointers. — end note ]

19.5.3.4 Program-defined classes derived from error_category [syserr.errcat.derived]

virtual const char* name() const noexcept = 0;

1 Returns: A string naming the error category.

virtual error_condition default_error_condition(int ev) const noexcept;

2 Returns: An object of type error_condition that corresponds to ev.

virtual bool equivalent(int code, const error_condition& condition) const noexcept;

3 Returns: true if, for the category of error represented by *this, code is considered equivalent to
condition; otherwise, false.

virtual bool equivalent(const error_code& code, int condition) const noexcept;

4 Returns: true if, for the category of error represented by *this, code is considered equivalent to
condition; otherwise, false.

19.5.3.5 Error category objects [syserr.errcat.objects]

const error_category& generic_category() noexcept;

1 Returns: A reference to an object of a type derived from class error_category. All calls to this
function shall return references to the same object.

2 Remarks: The object’s default_error_condition and equivalent virtual functions shall behave as
specified for the class error_category. The object’s name virtual function shall return a pointer to
the string "generic".

const error_category& system_category() noexcept;

3 Returns: A reference to an object of a type derived from class error_category. All calls to this
function shall return references to the same object.

4 Remarks: The object’s equivalent virtual functions shall behave as specified for class error_category.
The object’s name virtual function shall return a pointer to the string "system". The object’s default_-
error_condition virtual function shall behave as follows:
If the argument ev is equal to 0, the function returns error_condition(0, generic_category()).
Otherwise, if ev corresponds to a POSIX errno value pxv, the function returns error_condition(pxv,
generic_category()). Otherwise, the function returns error_condition(ev, system_category()).
What constitutes correspondence for any given operating system is unspecified.
[Note 1 : The number of potential system error codes is large and unbounded, and some might not correspond to
any POSIX errno value. Thus implementations are given latitude in determining correspondence. — end note ]
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19.5.4 Class error_code [syserr.errcode]
19.5.4.1 Overview [syserr.errcode.overview]

1 The class error_code describes an object used to hold error code values, such as those originating from the
operating system or other low-level application program interfaces.
[Note 1 : Class error_code is an adjunct to error reporting by exception. — end note ]

namespace std {
class error_code {
public:

// 19.5.4.2, constructors
error_code() noexcept;
error_code(int val, const error_category& cat) noexcept;
template<class ErrorCodeEnum>

error_code(ErrorCodeEnum e) noexcept;

// 19.5.4.3, modifiers
void assign(int val, const error_category& cat) noexcept;
template<class ErrorCodeEnum>

error_code& operator=(ErrorCodeEnum e) noexcept;
void clear() noexcept;

// 19.5.4.4, observers
int value() const noexcept;
const error_category& category() const noexcept;
error_condition default_error_condition() const noexcept;
string message() const;
explicit operator bool() const noexcept;

private:
int val_; // exposition only
const error_category* cat_; // exposition only

};

// 19.5.4.5, non-member functions
error_code make_error_code(errc e) noexcept;

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const error_code& ec);
}

19.5.4.2 Constructors [syserr.errcode.constructors]

error_code() noexcept;

1 Effects: Initializes val_ with 0 and cat_ with &system_category().

error_code(int val, const error_category& cat) noexcept;

2 Effects: Initializes val_ with val and cat_ with &cat.

template<class ErrorCodeEnum>
error_code(ErrorCodeEnum e) noexcept;

3 Constraints: is_error_code_enum_v<ErrorCodeEnum> is true.
4 Effects: Equivalent to:

error_code ec = make_error_code(e);
assign(ec.value(), ec.category());

19.5.4.3 Modifiers [syserr.errcode.modifiers]

void assign(int val, const error_category& cat) noexcept;

1 Postconditions: val_ == val and cat_ == &cat.

§ 19.5.4.3 581



© ISO/IEC N4950

template<class ErrorCodeEnum>
error_code& operator=(ErrorCodeEnum e) noexcept;

2 Constraints: is_error_code_enum_v<ErrorCodeEnum> is true.
3 Effects: Equivalent to:

error_code ec = make_error_code(e);
assign(ec.value(), ec.category());

4 Returns: *this.

void clear() noexcept;

5 Postconditions: value() == 0 and category() == system_category().

19.5.4.4 Observers [syserr.errcode.observers]

int value() const noexcept;

1 Returns: val_.

const error_category& category() const noexcept;

2 Returns: *cat_.

error_condition default_error_condition() const noexcept;

3 Returns: category().default_error_condition(value()).

string message() const;

4 Returns: category().message(value()).

explicit operator bool() const noexcept;

5 Returns: value() != 0.

19.5.4.5 Non-member functions [syserr.errcode.nonmembers]

error_code make_error_code(errc e) noexcept;

1 Returns: error_code(static_cast<int>(e), generic_category()).

template<class charT, class traits>
basic_ostream<charT, traits>& operator<<(basic_ostream<charT, traits>& os, const error_code& ec);

2 Effects: Equivalent to: return os << ec.category().name() << ’:’ << ec.value();

19.5.5 Class error_condition [syserr.errcondition]
19.5.5.1 Overview [syserr.errcondition.overview]

1 The class error_condition describes an object used to hold values identifying error conditions.
[Note 1 : error_condition values are portable abstractions, while error_code values (19.5.4) are implementation
specific. — end note ]

namespace std {
class error_condition {
public:

// 19.5.5.2, constructors
error_condition() noexcept;
error_condition(int val, const error_category& cat) noexcept;
template<class ErrorConditionEnum>

error_condition(ErrorConditionEnum e) noexcept;

// 19.5.5.3, modifiers
void assign(int val, const error_category& cat) noexcept;
template<class ErrorConditionEnum>

error_condition& operator=(ErrorConditionEnum e) noexcept;
void clear() noexcept;
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// 19.5.5.4, observers
int value() const noexcept;
const error_category& category() const noexcept;
string message() const;
explicit operator bool() const noexcept;

private:
int val_; // exposition only
const error_category* cat_; // exposition only

};
}

19.5.5.2 Constructors [syserr.errcondition.constructors]

error_condition() noexcept;

1 Effects: Initializes val_ with 0 and cat_ with &generic_category().

error_condition(int val, const error_category& cat) noexcept;

2 Effects: Initializes val_ with val and cat_ with &cat.

template<class ErrorConditionEnum>
error_condition(ErrorConditionEnum e) noexcept;

3 Constraints: is_error_condition_enum_v<ErrorConditionEnum> is true.
4 Effects: Equivalent to:

error_condition ec = make_error_condition(e);
assign(ec.value(), ec.category());

19.5.5.3 Modifiers [syserr.errcondition.modifiers]

void assign(int val, const error_category& cat) noexcept;

1 Postconditions: val_ == val and cat_ == &cat.

template<class ErrorConditionEnum>
error_condition& operator=(ErrorConditionEnum e) noexcept;

2 Constraints: is_error_condition_enum_v<ErrorConditionEnum> is true.
3 Effects: Equivalent to:

error_condition ec = make_error_condition(e);
assign(ec.value(), ec.category());

4 Returns: *this.

void clear() noexcept;

5 Postconditions: value() == 0 and category() == generic_category().

19.5.5.4 Observers [syserr.errcondition.observers]

int value() const noexcept;

1 Returns: val_.

const error_category& category() const noexcept;

2 Returns: *cat_.

string message() const;

3 Returns: category().message(value()).

explicit operator bool() const noexcept;

4 Returns: value() != 0.
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19.5.5.5 Non-member functions [syserr.errcondition.nonmembers]

error_condition make_error_condition(errc e) noexcept;

1 Returns: error_condition(static_cast<int>(e), generic_category()).

19.5.6 Comparison operator functions [syserr.compare]
bool operator==(const error_code& lhs, const error_code& rhs) noexcept;

1 Returns:
lhs.category() == rhs.category() && lhs.value() == rhs.value()

bool operator==(const error_code& lhs, const error_condition& rhs) noexcept;

2 Returns:
lhs.category().equivalent(lhs.value(), rhs) || rhs.category().equivalent(lhs, rhs.value())

bool operator==(const error_condition& lhs, const error_condition& rhs) noexcept;

3 Returns:
lhs.category() == rhs.category() && lhs.value() == rhs.value()

strong_ordering operator<=>(const error_code& lhs, const error_code& rhs) noexcept;

4 Effects: Equivalent to:
if (auto c = lhs.category() <=> rhs.category(); c != 0) return c;
return lhs.value() <=> rhs.value();

strong_ordering operator<=>(const error_condition& lhs, const error_condition& rhs) noexcept;

5 Returns:
if (auto c = lhs.category() <=> rhs.category(); c != 0) return c;
return lhs.value() <=> rhs.value();

19.5.7 System error hash support [syserr.hash]
template<> struct hash<error_code>;
template<> struct hash<error_condition>;

1 The specializations are enabled (22.10.19).

19.5.8 Class system_error [syserr.syserr]
19.5.8.1 Overview [syserr.syserr.overview]

1 The class system_error describes an exception object used to report error conditions that have an associated
error code. Such error conditions typically originate from the operating system or other low-level application
program interfaces.

2 [Note 1 : If an error represents an out-of-memory condition, implementations are encouraged to throw an exception
object of type bad_alloc (17.6.4.1) rather than system_error. — end note ]

namespace std {
class system_error : public runtime_error {
public:

system_error(error_code ec, const string& what_arg);
system_error(error_code ec, const char* what_arg);
system_error(error_code ec);
system_error(int ev, const error_category& ecat, const string& what_arg);
system_error(int ev, const error_category& ecat, const char* what_arg);
system_error(int ev, const error_category& ecat);
const error_code& code() const noexcept;
const char* what() const noexcept override;

};
}
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19.5.8.2 Members [syserr.syserr.members]

system_error(error_code ec, const string& what_arg);

1 Postconditions: code() == ec and
string_view(what()).find(what_arg.c_str()) != string_view::npos.

system_error(error_code ec, const char* what_arg);

2 Postconditions: code() == ec and string_view(what()).find(what_arg) != string_view::npos.

system_error(error_code ec);

3 Postconditions: code() == ec.

system_error(int ev, const error_category& ecat, const string& what_arg);

4 Postconditions: code() == error_code(ev, ecat) and
string_view(what()).find(what_arg.c_str()) != string_view::npos.

system_error(int ev, const error_category& ecat, const char* what_arg);

5 Postconditions: code() == error_code(ev, ecat) and
string_view(what()).find(what_arg) != string_view::npos.

system_error(int ev, const error_category& ecat);

6 Postconditions: code() == error_code(ev, ecat).

const error_code& code() const noexcept;

7 Returns: ec or error_code(ev, ecat), from the constructor, as appropriate.

const char* what() const noexcept override;

8 Returns: An ntbs incorporating the arguments supplied in the constructor.
[Note 1 : The returned ntbs might be the contents of what_arg + ": " + code.message(). — end note ]

19.6 Stacktrace [stacktrace]
19.6.1 General [stacktrace.general]

1 Subclause 19.6 describes components that C++ programs may use to store the stacktrace of the current
thread of execution and query information about the stored stacktrace at runtime.

2 The invocation sequence of the current evaluation x0 in the current thread of execution is a sequence
(x0, . . . , xn) of evaluations such that, for i ≥ 0, xi is within the function invocation xi+1 (6.9.1).

3 A stacktrace is an approximate representation of an invocation sequence and consists of stacktrace entries. A
stacktrace entry represents an evaluation in a stacktrace.

19.6.2 Header <stacktrace> synopsis [stacktrace.syn]
#include <compare> // see 17.11.1

namespace std {
// 19.6.3, class stacktrace_entry
class stacktrace_entry;

// 19.6.4, class template basic_stacktrace
template<class Allocator>

class basic_stacktrace;

// basic_stacktrace typedef-names
using stacktrace = basic_stacktrace<allocator<stacktrace_entry>>;

// 19.6.4.6, non-member functions
template<class Allocator>

void swap(basic_stacktrace<Allocator>& a, basic_stacktrace<Allocator>& b)
noexcept(noexcept(a.swap(b)));

string to_string(const stacktrace_entry& f);
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template<class Allocator>
string to_string(const basic_stacktrace<Allocator>& st);

ostream& operator<<(ostream& os, const stacktrace_entry& f);
template<class Allocator>

ostream& operator<<(ostream& os, const basic_stacktrace<Allocator>& st);

// 19.6.4.7, formatting support
template<> struct formatter<stacktrace_entry>;
template<class Allocator> struct formatter<basic_stacktrace<Allocator>>;

namespace pmr {
using stacktrace = basic_stacktrace<polymorphic_allocator<stacktrace_entry>>;

}

// 19.6.4.8, hash support
template<class T> struct hash;
template<> struct hash<stacktrace_entry>;
template<class Allocator> struct hash<basic_stacktrace<Allocator>>;

}

19.6.3 Class stacktrace_entry [stacktrace.entry]
19.6.3.1 Overview [stacktrace.entry.overview]

namespace std {
class stacktrace_entry {
public:

using native_handle_type = implementation-defined ;

// 19.6.3.2, constructors
constexpr stacktrace_entry() noexcept;
constexpr stacktrace_entry(const stacktrace_entry& other) noexcept;
constexpr stacktrace_entry& operator=(const stacktrace_entry& other) noexcept;

~stacktrace_entry();

// 19.6.3.3, observers
constexpr native_handle_type native_handle() const noexcept;
constexpr explicit operator bool() const noexcept;

// 19.6.3.4, query
string description() const;
string source_file() const;
uint_least32_t source_line() const;

// 19.6.3.5, comparison
friend constexpr bool operator==(const stacktrace_entry& x,

const stacktrace_entry& y) noexcept;
friend constexpr strong_ordering operator<=>(const stacktrace_entry& x,

const stacktrace_entry& y) noexcept;
};

}

1 An object of type stacktrace_entry is either empty, or represents a stacktrace entry and provides operations
for querying information about it. The class stacktrace_entry models regular (18.6) and three_way_-
comparable<strong_ordering> (17.11.4).

19.6.3.2 Constructors [stacktrace.entry.cons]

constexpr stacktrace_entry() noexcept;

1 Postconditions: *this is empty.
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19.6.3.3 Observers [stacktrace.entry.obs]

constexpr native_handle_type native_handle() const noexcept;

1 The semantics of this function are implementation-defined.
2 Remarks: Successive invocations of the native_handle function for an unchanged stacktrace_entry

object return identical values.

constexpr explicit operator bool() const noexcept;

3 Returns: false if and only if *this is empty.

19.6.3.4 Query [stacktrace.entry.query]
1 [Note 1 : All the stacktrace_entry query functions treat errors other than memory allocation errors as “no information

available” and do not throw in that case. — end note ]

string description() const;

2 Returns: A description of the evaluation represented by *this, or an empty string.
3 Throws: bad_alloc if memory for the internal data structures or the resulting string cannot be

allocated.

string source_file() const;

4 Returns: The presumed or actual name of the source file (15.11) that lexically contains the expression
or statement whose evaluation is represented by *this, or an empty string.

5 Throws: bad_alloc if memory for the internal data structures or the resulting string cannot be
allocated.

uint_least32_t source_line() const;

6 Returns: 0, or a 1-based line number that lexically relates to the evaluation represented by *this.
If source_file returns the presumed name of the source file, returns the presumed line number; if
source_file returns the actual name of the source file, returns the actual line number.

7 Throws: bad_alloc if memory for the internal data structures cannot be allocated.

19.6.3.5 Comparison [stacktrace.entry.cmp]

friend constexpr bool operator==(const stacktrace_entry& x, const stacktrace_entry& y) noexcept;

1 Returns: true if and only if x and y represent the same stacktrace entry or both x and y are empty.

19.6.4 Class template basic_stacktrace [stacktrace.basic]
19.6.4.1 Overview [stacktrace.basic.overview]

namespace std {
template<class Allocator>
class basic_stacktrace {
public:

using value_type = stacktrace_entry;
using const_reference = const value_type&;
using reference = value_type&;
using const_iterator = implementation-defined ; // see 19.6.4.3
using iterator = const_iterator;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
using difference_type = implementation-defined ;
using size_type = implementation-defined ;
using allocator_type = Allocator;

// 19.6.4.2, creation and assignment
static basic_stacktrace current(const allocator_type& alloc = allocator_type()) noexcept;
static basic_stacktrace current(size_type skip,

const allocator_type& alloc = allocator_type()) noexcept;
static basic_stacktrace current(size_type skip, size_type max_depth,

const allocator_type& alloc = allocator_type()) noexcept;
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basic_stacktrace() noexcept(is_nothrow_default_constructible_v<allocator_type>);
explicit basic_stacktrace(const allocator_type& alloc) noexcept;

basic_stacktrace(const basic_stacktrace& other);
basic_stacktrace(basic_stacktrace&& other) noexcept;
basic_stacktrace(const basic_stacktrace& other, const allocator_type& alloc);
basic_stacktrace(basic_stacktrace&& other, const allocator_type& alloc);
basic_stacktrace& operator=(const basic_stacktrace& other);
basic_stacktrace& operator=(basic_stacktrace&& other)

noexcept(allocator_traits<Allocator>::propagate_on_container_move_assignment::value ||
allocator_traits<Allocator>::is_always_equal::value);

~basic_stacktrace();

// 19.6.4.3, observers
allocator_type get_allocator() const noexcept;

const_iterator begin() const noexcept;
const_iterator end() const noexcept;
const_reverse_iterator rbegin() const noexcept;
const_reverse_iterator rend() const noexcept;

const_iterator cbegin() const noexcept;
const_iterator cend() const noexcept;
const_reverse_iterator crbegin() const noexcept;
const_reverse_iterator crend() const noexcept;

[[nodiscard]] bool empty() const noexcept;
size_type size() const noexcept;
size_type max_size() const noexcept;

const_reference operator[](size_type) const;
const_reference at(size_type) const;

// 19.6.4.4, comparisons
template<class Allocator2>
friend bool operator==(const basic_stacktrace& x,

const basic_stacktrace<Allocator2>& y) noexcept;
template<class Allocator2>
friend strong_ordering operator<=>(const basic_stacktrace& x,

const basic_stacktrace<Allocator2>& y) noexcept;

// 19.6.4.5, modifiers
void swap(basic_stacktrace& other)

noexcept(allocator_traits<Allocator>::propagate_on_container_swap::value ||
allocator_traits<Allocator>::is_always_equal::value);

private:
vector<value_type, allocator_type> frames_; // exposition only

};
}

1 The class template basic_stacktrace satisfies the requirements of a reversible container (24.2.2.3), of an
allocator-aware container (24.2.2.5), and of a sequence container (24.2.4), except that

—(1.1) only move, assignment, swap, and operations defined for const-qualified sequence containers are
supported and,

—(1.2) the semantics of comparison functions are different from those required for a container.

19.6.4.2 Creation and assignment [stacktrace.basic.cons]

static basic_stacktrace current(const allocator_type& alloc = allocator_type()) noexcept;

1 Returns: A basic_stacktrace object with frames_ storing the stacktrace of the current evaluation
in the current thread of execution, or an empty basic_stacktrace object if the initialization of
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frames_ failed. alloc is passed to the constructor of the frames_ object.
[Note 1 : If the stacktrace was successfully obtained, then frames_.front() is the stacktrace_entry rep-
resenting approximately the current evaluation, and frames_.back() is the stacktrace_entry representing
approximately the initial function of the current thread of execution. — end note ]

static basic_stacktrace current(size_type skip,
const allocator_type& alloc = allocator_type()) noexcept;

2 Let t be a stacktrace as-if obtained via basic_stacktrace::current(alloc). Let n be t.size().
3 Returns: A basic_stacktrace object where frames_ is direct-non-list-initialized from arguments

t.begin() + min(n, skip), t.end(), and alloc, or an empty basic_stacktrace object if the
initialization of frames_ failed.

static basic_stacktrace current(size_type skip, size_type max_depth,
const allocator_type& alloc = allocator_type()) noexcept;

4 Let t be a stacktrace as-if obtained via basic_stacktrace::current(alloc). Let n be t.size().
5 Preconditions: skip <= skip + max_depth is true.
6 Returns: A basic_stacktrace object where frames_ is direct-non-list-initialized from arguments

t.begin() + min(n, skip), t.begin() + min(n, skip + max_depth), and alloc, or an empty
basic_stacktrace object if the initialization of frames_ failed.

basic_stacktrace() noexcept(is_nothrow_default_constructible_v<allocator_type>);

7 Postconditions: empty() is true.

explicit basic_stacktrace(const allocator_type& alloc) noexcept;

8 Effects: alloc is passed to the frames_ constructor.
9 Postconditions: empty() is true.

basic_stacktrace(const basic_stacktrace& other);
basic_stacktrace(const basic_stacktrace& other, const allocator_type& alloc);
basic_stacktrace(basic_stacktrace&& other, const allocator_type& alloc);
basic_stacktrace& operator=(const basic_stacktrace& other);
basic_stacktrace& operator=(basic_stacktrace&& other)

noexcept(allocator_traits<Allocator>::propagate_on_container_move_assignment::value ||
allocator_traits<Allocator>::is_always_equal::value);

10 Remarks: Implementations may strengthen the exception specification for these functions (16.4.6.13)
by ensuring that empty() is true on failed allocation.

19.6.4.3 Observers [stacktrace.basic.obs]

using const_iterator = implementation-defined ;

1 The type models random_access_iterator (25.3.4.13) and meets the Cpp17RandomAccessIterator
requirements (25.3.5.7).

allocator_type get_allocator() const noexcept;

2 Returns: frames_.get_allocator().

const_iterator begin() const noexcept;
const_iterator cbegin() const noexcept;

3 Returns: An iterator referring to the first element in frames_. If empty() is true, then it returns the
same value as end().

const_iterator end() const noexcept;
const_iterator cend() const noexcept;

4 Returns: The end iterator.

const_reverse_iterator rbegin() const noexcept;
const_reverse_iterator crbegin() const noexcept;

5 Returns: reverse_iterator(cend()).
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const_reverse_iterator rend() const noexcept;
const_reverse_iterator crend() const noexcept;

6 Returns: reverse_iterator(cbegin()).

[[nodiscard]] bool empty() const noexcept;

7 Returns: frames_.empty().

size_type size() const noexcept;

8 Returns: frames_.size().

size_type max_size() const noexcept;

9 Returns: frames_.max_size().

const_reference operator[](size_type frame_no) const;

10 Preconditions: frame_no < size() is true.
11 Returns: frames_[frame_no].
12 Throws: Nothing.

const_reference at(size_type frame_no) const;

13 Returns: frames_[frame_no].
14 Throws: out_of_range if frame_no >= size().

19.6.4.4 Comparisons [stacktrace.basic.cmp]

template<class Allocator2>
friend bool operator==(const basic_stacktrace& x, const basic_stacktrace<Allocator2>& y) noexcept;

1 Returns: equal(x.begin(), x.end(), y.begin(), y.end()).

template<class Allocator2>
friend strong_ordering

operator<=>(const basic_stacktrace& x, const basic_stacktrace<Allocator2>& y) noexcept;

2 Returns: x.size() <=> y.size() if x.size() != y.size(); lexicographical_compare_three_-
way(x.begin(), x.end(), y.begin(), y.end()) otherwise.

19.6.4.5 Modifiers [stacktrace.basic.mod]

void swap(basic_stacktrace& other)
noexcept(allocator_traits<Allocator>::propagate_on_container_swap::value ||

allocator_traits<Allocator>::is_always_equal::value);

1 Effects: Exchanges the contents of *this and other.

19.6.4.6 Non-member functions [stacktrace.basic.nonmem]

template<class Allocator>
void swap(basic_stacktrace<Allocator>& a, basic_stacktrace<Allocator>& b)

noexcept(noexcept(a.swap(b)));

1 Effects: Equivalent to a.swap(b).

string to_string(const stacktrace_entry& f);

2 Returns: A string with a description of f.
3 Recommended practice: The description should provide information about the contained evaluation,

including information from f.source_file() and f.source_line().

template<class Allocator>
string to_string(const basic_stacktrace<Allocator>& st);

4 Returns: A string with a description of st.
[Note 1 : The number of lines is not guaranteed to be equal to st.size(). — end note ]
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ostream& operator<<(ostream& os, const stacktrace_entry& f);

5 Effects: Equivalent to: return os << to_string(f);

template<class Allocator>
ostream& operator<<(ostream& os, const basic_stacktrace<Allocator>& st);

6 Effects: Equivalent to: return os << to_string(st);

19.6.4.7 Formatting support [stacktrace.format]

template<> struct formatter<stacktrace_entry>;

1 formatter<stacktrace_entry> interprets format-spec as a stacktrace-entry-format-spec. The syntax
of format specifications is as follows:

stacktrace-entry-format-spec :
fill-and-alignopt widthopt

[Note 1 : The productions fill-and-align and width are described in 22.14.2.2. — end note ]
2 A stacktrace_entry object se is formatted as if by copying to_string(se) through the output

iterator of the context with additional padding and adjustments as specified by the format specifiers.

template<class Allocator> struct formatter<basic_stacktrace<Allocator>>;

3 For formatter<basic_stacktrace<Allocator>>, format-spec is empty.
4 A basic_stacktrace<Allocator> object s is formatted as if by copying to_string(s) through the

output iterator of the context.

19.6.4.8 Hash support [stacktrace.basic.hash]

template<> struct hash<stacktrace_entry>;
template<class Allocator> struct hash<basic_stacktrace<Allocator>>;

1 The specializations are enabled (22.10.19).
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20 Memory management library [mem]
20.1 General [mem.general]

1 This Clause describes components for memory management.
2 The following subclauses describe general memory management facilities, smart pointers, memory resources,

and scoped allocators, as summarized in Table 43.

Table 43: Memory management library summary [tab:mem.summary]

Subclause Header
20.2 Memory <cstdlib>, <memory>
20.3 Smart pointers <memory>
20.4 Memory resources <memory_resource>
20.5 Scoped allocators <scoped_allocator>

20.2 Memory [memory]
20.2.1 In general [memory.general]

1 Subclause 20.2 describes the contents of the header <memory> (20.2.2) and some of the contents of the header
<cstdlib> (17.2.2).

20.2.2 Header <memory> synopsis [memory.syn]
1 The header <memory> defines several types and function templates that describe properties of pointers and

pointer-like types, manage memory for containers and other template types, destroy objects, and construct
objects in uninitialized memory buffers (20.2.3–20.2.11 and 27.11). The header also defines the templates
unique_ptr, shared_ptr, weak_ptr, out_ptr_t, inout_ptr_t, and various function templates that operate
on objects of these types (20.3).

2 Let POINTER_OF (T) denote a type that is
—(2.1) T::pointer if the qualified-id T::pointer is valid and denotes a type,
—(2.2) otherwise, T::element_type* if the qualified-id T::element_type is valid and denotes a type,
—(2.3) otherwise, pointer_traits<T>::element_type*.

3 Let POINTER_OF_OR (T, U) denote a type that is:
—(3.1) POINTER_OF (T) if POINTER_OF (T) is valid and denotes a type,
—(3.2) otherwise, U.
#include <compare> // see 17.11.1

namespace std {
// 20.2.3, pointer traits
template<class Ptr> struct pointer_traits; // freestanding
template<class T> struct pointer_traits<T*>; // freestanding

// 20.2.4, pointer conversion
template<class T>

constexpr T* to_address(T* p) noexcept; // freestanding
template<class Ptr>

constexpr auto to_address(const Ptr& p) noexcept; // freestanding

// 20.2.5, pointer alignment
void* align(size_t alignment, size_t size, void*& ptr, size_t& space); // freestanding
template<size_t N, class T>

[[nodiscard]] constexpr T* assume_aligned(T* ptr); // freestanding
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// 20.2.6, explicit lifetime management
template<class T>

T* start_lifetime_as(void* p) noexcept; // freestanding
template<class T>

const T* start_lifetime_as(const void* p) noexcept; // freestanding
template<class T>

volatile T* start_lifetime_as(volatile void* p) noexcept; // freestanding
template<class T>

const volatile T* start_lifetime_as(const volatile void* p) noexcept; // freestanding
template<class T>

T* start_lifetime_as_array(void* p, size_t n) noexcept; // freestanding
template<class T>

const T* start_lifetime_as_array(const void* p, size_t n) noexcept; // freestanding
template<class T>

volatile T* start_lifetime_as_array(volatile void* p, size_t n) noexcept; // freestanding
template<class T>

const volatile T* start_lifetime_as_array(const volatile void* p, // freestanding
size_t n) noexcept;

// 20.2.7, allocator argument tag
struct allocator_arg_t { // freestanding

explicit allocator_arg_t() = default; // freestanding
};
inline constexpr allocator_arg_t allocator_arg{}; // freestanding

// 20.2.8, uses_allocator
template<class T, class Alloc> struct uses_allocator; // freestanding

// 20.2.8.1, uses_allocator
template<class T, class Alloc>

constexpr bool uses_allocator_v = uses_allocator<T, Alloc>::value; // freestanding

// 20.2.8.2, uses-allocator construction
template<class T, class Alloc, class... Args>

constexpr auto uses_allocator_construction_args(const Alloc& alloc, // freestanding
Args&&... args) noexcept;

template<class T, class Alloc, class Tuple1, class Tuple2>
constexpr auto uses_allocator_construction_args(const Alloc& alloc, // freestanding

piecewise_construct_t,
Tuple1&& x, Tuple2&& y) noexcept;

template<class T, class Alloc>
constexpr auto uses_allocator_construction_args(const Alloc& alloc) noexcept; // freestanding

template<class T, class Alloc, class U, class V>
constexpr auto uses_allocator_construction_args(const Alloc& alloc, // freestanding

U&& u, V&& v) noexcept;
template<class T, class Alloc, class U, class V>

constexpr auto uses_allocator_construction_args(const Alloc& alloc, // freestanding
pair<U, V>& pr) noexcept;

template<class T, class Alloc, class U, class V>
constexpr auto uses_allocator_construction_args(const Alloc& alloc, // freestanding

const pair<U, V>& pr) noexcept;
template<class T, class Alloc, class U, class V>

constexpr auto uses_allocator_construction_args(const Alloc& alloc, // freestanding
pair<U, V>&& pr) noexcept;

template<class T, class Alloc, class U, class V>
constexpr auto uses_allocator_construction_args(const Alloc& alloc, // freestanding

const pair<U, V>&& pr) noexcept;
template<class T, class Alloc, pair-like P>

constexpr auto uses_allocator_construction_args(const Alloc& alloc, // freestanding
P&& p) noexcept;

template<class T, class Alloc, class U>
constexpr auto uses_allocator_construction_args(const Alloc& alloc, // freestanding

U&& u) noexcept;
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template<class T, class Alloc, class... Args>
constexpr T make_obj_using_allocator(const Alloc& alloc, Args&&... args); // freestanding

template<class T, class Alloc, class... Args>
constexpr T* uninitialized_construct_using_allocator(T* p, // freestanding

const Alloc& alloc, Args&&... args);

// 20.2.9, allocator traits
template<class Alloc> struct allocator_traits; // freestanding

template<class Pointer, class SizeType = size_t>
struct allocation_result { // freestanding

Pointer ptr;
SizeType count;

};

// 20.2.10, the default allocator
template<class T> class allocator;
template<class T, class U>

constexpr bool operator==(const allocator<T>&, const allocator<U>&) noexcept;

// 20.2.11, addressof
template<class T>

constexpr T* addressof(T& r) noexcept; // freestanding
template<class T>

const T* addressof(const T&&) = delete; // freestanding

// 27.11, specialized algorithms
// 27.11.2, special memory concepts
template<class I>

concept nothrow-input-iterator = see below ; // exposition only
template<class I>

concept nothrow-forward-iterator = see below ; // exposition only
template<class S, class I>

concept nothrow-sentinel-for = see below ; // exposition only
template<class R>

concept nothrow-input-range = see below ; // exposition only
template<class R>

concept nothrow-forward-range = see below ; // exposition only

template<class NoThrowForwardIterator>
void uninitialized_default_construct(NoThrowForwardIterator first, // freestanding

NoThrowForwardIterator last);
template<class ExecutionPolicy, class NoThrowForwardIterator>

void uninitialized_default_construct(ExecutionPolicy&& exec, // see 27.3.5
NoThrowForwardIterator first,
NoThrowForwardIterator last);

template<class NoThrowForwardIterator, class Size>
NoThrowForwardIterator

uninitialized_default_construct_n(NoThrowForwardIterator first, Size n); // freestanding
template<class ExecutionPolicy, class NoThrowForwardIterator, class Size>

NoThrowForwardIterator
uninitialized_default_construct_n(ExecutionPolicy&& exec, // see 27.3.5

NoThrowForwardIterator first, Size n);

namespace ranges {
template<nothrow-forward-iterator I, nothrow-sentinel-for <I> S>

requires default_initializable<iter_value_t<I>>
I uninitialized_default_construct(I first, S last); // freestanding

template<nothrow-forward-range R>
requires default_initializable<range_value_t<R>>

borrowed_iterator_t<R> uninitialized_default_construct(R&& r); // freestanding

§ 20.2.2 594



© ISO/IEC N4950

template<nothrow-forward-iterator I>
requires default_initializable<iter_value_t<I>>

I uninitialized_default_construct_n(I first, iter_difference_t<I> n); // freestanding
}

template<class NoThrowForwardIterator>
void uninitialized_value_construct(NoThrowForwardIterator first, // freestanding

NoThrowForwardIterator last);
template<class ExecutionPolicy, class NoThrowForwardIterator>

void uninitialized_value_construct(ExecutionPolicy&& exec, // see 27.3.5
NoThrowForwardIterator first,
NoThrowForwardIterator last);

template<class NoThrowForwardIterator, class Size>
NoThrowForwardIterator

uninitialized_value_construct_n(NoThrowForwardIterator first, Size n); // freestanding
template<class ExecutionPolicy, class NoThrowForwardIterator, class Size>

NoThrowForwardIterator
uninitialized_value_construct_n(ExecutionPolicy&& exec, // see 27.3.5

NoThrowForwardIterator first, Size n);

namespace ranges {
template<nothrow-forward-iterator I, nothrow-sentinel-for <I> S>

requires default_initializable<iter_value_t<I>>
I uninitialized_value_construct(I first, S last); // freestanding

template<nothrow-forward-range R>
requires default_initializable<range_value_t<R>>

borrowed_iterator_t<R> uninitialized_value_construct(R&& r); // freestanding

template<nothrow-forward-iterator I>
requires default_initializable<iter_value_t<I>>

I uninitialized_value_construct_n(I first, iter_difference_t<I> n); // freestanding
}

template<class InputIterator, class NoThrowForwardIterator>
NoThrowForwardIterator uninitialized_copy(InputIterator first, // freestanding

InputIterator last,
NoThrowForwardIterator result);

template<class ExecutionPolicy, class ForwardIterator, class NoThrowForwardIterator>
NoThrowForwardIterator uninitialized_copy(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last,
NoThrowForwardIterator result);

template<class InputIterator, class Size, class NoThrowForwardIterator>
NoThrowForwardIterator uninitialized_copy_n(InputIterator first, Size n, // freestanding

NoThrowForwardIterator result);
template<class ExecutionPolicy, class ForwardIterator, class Size,

class NoThrowForwardIterator>
NoThrowForwardIterator uninitialized_copy_n(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, Size n,
NoThrowForwardIterator result);

namespace ranges {
template<class I, class O>

using uninitialized_copy_result = in_out_result<I, O>; // freestanding
template<input_iterator I, sentinel_for<I> S1,

nothrow-forward-iterator O, nothrow-sentinel-for <O> S2>
requires constructible_from<iter_value_t<O>, iter_reference_t<I>>

uninitialized_copy_result<I, O>
uninitialized_copy(I ifirst, S1 ilast, O ofirst, S2 olast); // freestanding

template<input_range IR, nothrow-forward-range OR>
requires constructible_from<range_value_t<OR>, range_reference_t<IR>>

uninitialized_copy_result<borrowed_iterator_t<IR>, borrowed_iterator_t<OR>>
uninitialized_copy(IR&& in_range, OR&& out_range); // freestanding
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template<class I, class O>
using uninitialized_copy_n_result = in_out_result<I, O>; // freestanding

template<input_iterator I, nothrow-forward-iterator O, nothrow-sentinel-for <O> S>
requires constructible_from<iter_value_t<O>, iter_reference_t<I>>

uninitialized_copy_n_result<I, O>
uninitialized_copy_n(I ifirst, iter_difference_t<I> n, // freestanding

O ofirst, S olast);
}

template<class InputIterator, class NoThrowForwardIterator>
NoThrowForwardIterator uninitialized_move(InputIterator first, // freestanding

InputIterator last,
NoThrowForwardIterator result);

template<class ExecutionPolicy, class ForwardIterator, class NoThrowForwardIterator>
NoThrowForwardIterator uninitialized_move(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last,
NoThrowForwardIterator result);

template<class InputIterator, class Size, class NoThrowForwardIterator>
pair<InputIterator, NoThrowForwardIterator>

uninitialized_move_n(InputIterator first, Size n, // freestanding
NoThrowForwardIterator result);

template<class ExecutionPolicy, class ForwardIterator, class Size,
class NoThrowForwardIterator>

pair<ForwardIterator, NoThrowForwardIterator>
uninitialized_move_n(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, Size n, NoThrowForwardIterator result);

namespace ranges {
template<class I, class O>

using uninitialized_move_result = in_out_result<I, O>; // freestanding
template<input_iterator I, sentinel_for<I> S1,

nothrow-forward-iterator O, nothrow-sentinel-for <O> S2>
requires constructible_from<iter_value_t<O>, iter_rvalue_reference_t<I>>

uninitialized_move_result<I, O>
uninitialized_move(I ifirst, S1 ilast, O ofirst, S2 olast); // freestanding

template<input_range IR, nothrow-forward-range OR>
requires constructible_from<range_value_t<OR>, range_rvalue_reference_t<IR>>

uninitialized_move_result<borrowed_iterator_t<IR>, borrowed_iterator_t<OR>>
uninitialized_move(IR&& in_range, OR&& out_range); // freestanding

template<class I, class O>
using uninitialized_move_n_result = in_out_result<I, O>; // freestanding

template<input_iterator I,
nothrow-forward-iterator O, nothrow-sentinel-for <O> S>

requires constructible_from<iter_value_t<O>, iter_rvalue_reference_t<I>>
uninitialized_move_n_result<I, O>

uninitialized_move_n(I ifirst, iter_difference_t<I> n, // freestanding
O ofirst, S olast);

}

template<class NoThrowForwardIterator, class T>
void uninitialized_fill(NoThrowForwardIterator first, // freestanding

NoThrowForwardIterator last, const T& x);
template<class ExecutionPolicy, class NoThrowForwardIterator, class T>

void uninitialized_fill(ExecutionPolicy&& exec, // see 27.3.5
NoThrowForwardIterator first, NoThrowForwardIterator last,
const T& x);

template<class NoThrowForwardIterator, class Size, class T>
NoThrowForwardIterator

uninitialized_fill_n(NoThrowForwardIterator first, Size n, const T& x); // freestanding
template<class ExecutionPolicy, class NoThrowForwardIterator, class Size, class T>

NoThrowForwardIterator
uninitialized_fill_n(ExecutionPolicy&& exec, // see 27.3.5

NoThrowForwardIterator first, Size n, const T& x);
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namespace ranges {
template<nothrow-forward-iterator I, nothrow-sentinel-for <I> S, class T>

requires constructible_from<iter_value_t<I>, const T&>
I uninitialized_fill(I first, S last, const T& x); // freestanding

template<nothrow-forward-range R, class T>
requires constructible_from<range_value_t<R>, const T&>

borrowed_iterator_t<R> uninitialized_fill(R&& r, const T& x); // freestanding

template<nothrow-forward-iterator I, class T>
requires constructible_from<iter_value_t<I>, const T&>

I uninitialized_fill_n(I first, iter_difference_t<I> n, const T& x); // freestanding
}

// 27.11.8, construct_at
template<class T, class... Args>

constexpr T* construct_at(T* location, Args&&... args); // freestanding

namespace ranges {
template<class T, class... Args>

constexpr T* construct_at(T* location, Args&&... args); // freestanding
}

// 27.11.9, destroy
template<class T>

constexpr void destroy_at(T* location); // freestanding
template<class NoThrowForwardIterator>

constexpr void destroy(NoThrowForwardIterator first, // freestanding
NoThrowForwardIterator last);

template<class ExecutionPolicy, class NoThrowForwardIterator>
void destroy(ExecutionPolicy&& exec, // see 27.3.5

NoThrowForwardIterator first, NoThrowForwardIterator last);
template<class NoThrowForwardIterator, class Size>

constexpr NoThrowForwardIterator destroy_n(NoThrowForwardIterator first, // freestanding
Size n);

template<class ExecutionPolicy, class NoThrowForwardIterator, class Size>
NoThrowForwardIterator destroy_n(ExecutionPolicy&& exec, // see 27.3.5

NoThrowForwardIterator first, Size n);

namespace ranges {
template<destructible T>

constexpr void destroy_at(T* location) noexcept; // freestanding

template<nothrow-input-iterator I, nothrow-sentinel-for <I> S>
requires destructible<iter_value_t<I>>

constexpr I destroy(I first, S last) noexcept; // freestanding
template<nothrow-input-range R>

requires destructible<range_value_t<R>>
constexpr borrowed_iterator_t<R> destroy(R&& r) noexcept; // freestanding

template<nothrow-input-iterator I>
requires destructible<iter_value_t<I>>

constexpr I destroy_n(I first, iter_difference_t<I> n) noexcept; // freestanding
}

// 20.3.1, class template unique_ptr
template<class T> struct default_delete; // freestanding
template<class T> struct default_delete<T[]>; // freestanding
template<class T, class D = default_delete<T>> class unique_ptr; // freestanding
template<class T, class D> class unique_ptr<T[], D>; // freestanding

template<class T, class... Args>
constexpr unique_ptr<T> make_unique(Args&&... args); // T is not array

template<class T>
constexpr unique_ptr<T> make_unique(size_t n); // T is U[]
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template<class T, class... Args>
unspecified make_unique(Args&&...) = delete; // T is U[N]

template<class T>
constexpr unique_ptr<T> make_unique_for_overwrite(); // T is not array

template<class T>
constexpr unique_ptr<T> make_unique_for_overwrite(size_t n); // T is U[]

template<class T, class... Args>
unspecified make_unique_for_overwrite(Args&&...) = delete; // T is U[N]

template<class T, class D>
constexpr void swap(unique_ptr<T, D>& x, unique_ptr<T, D>& y) noexcept; // freestanding

template<class T1, class D1, class T2, class D2>
constexpr bool operator==(const unique_ptr<T1, D1>& x, // freestanding

const unique_ptr<T2, D2>& y);
template<class T1, class D1, class T2, class D2>

bool operator<(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); // freestanding
template<class T1, class D1, class T2, class D2>

bool operator>(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); // freestanding
template<class T1, class D1, class T2, class D2>

bool operator<=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); // freestanding
template<class T1, class D1, class T2, class D2>

bool operator>=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); // freestanding
template<class T1, class D1, class T2, class D2>

requires three_way_comparable_with<typename unique_ptr<T1, D1>::pointer,
typename unique_ptr<T2, D2>::pointer>

compare_three_way_result_t<typename unique_ptr<T1, D1>::pointer,
typename unique_ptr<T2, D2>::pointer>

operator<=>(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); // freestanding

template<class T, class D>
constexpr bool operator==(const unique_ptr<T, D>& x, nullptr_t) noexcept; // freestanding

template<class T, class D>
constexpr bool operator<(const unique_ptr<T, D>& x, nullptr_t); // freestanding

template<class T, class D>
constexpr bool operator<(nullptr_t, const unique_ptr<T, D>& y); // freestanding

template<class T, class D>
constexpr bool operator>(const unique_ptr<T, D>& x, nullptr_t); // freestanding

template<class T, class D>
constexpr bool operator>(nullptr_t, const unique_ptr<T, D>& y); // freestanding

template<class T, class D>
constexpr bool operator<=(const unique_ptr<T, D>& x, nullptr_t); // freestanding

template<class T, class D>
constexpr bool operator<=(nullptr_t, const unique_ptr<T, D>& y); // freestanding

template<class T, class D>
constexpr bool operator>=(const unique_ptr<T, D>& x, nullptr_t); // freestanding

template<class T, class D>
constexpr bool operator>=(nullptr_t, const unique_ptr<T, D>& y); // freestanding

template<class T, class D>
requires three_way_comparable<typename unique_ptr<T, D>::pointer>
constexpr compare_three_way_result_t<typename unique_ptr<T, D>::pointer>

operator<=>(const unique_ptr<T, D>& x, nullptr_t); // freestanding

template<class E, class T, class Y, class D>
basic_ostream<E, T>& operator<<(basic_ostream<E, T>& os, const unique_ptr<Y, D>& p);

// 20.3.2.1, class bad_weak_ptr
class bad_weak_ptr;

// 20.3.2.2, class template shared_ptr
template<class T> class shared_ptr;
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// 20.3.2.2.7, shared_ptr creation
template<class T, class... Args>

shared_ptr<T> make_shared(Args&&... args); // T is not array
template<class T, class A, class... Args>

shared_ptr<T> allocate_shared(const A& a, Args&&... args); // T is not array

template<class T>
shared_ptr<T> make_shared(size_t N); // T is U[]

template<class T, class A>
shared_ptr<T> allocate_shared(const A& a, size_t N); // T is U[]

template<class T>
shared_ptr<T> make_shared(); // T is U[N]

template<class T, class A>
shared_ptr<T> allocate_shared(const A& a); // T is U[N]

template<class T>
shared_ptr<T> make_shared(size_t N, const remove_extent_t<T>& u); // T is U[]

template<class T, class A>
shared_ptr<T> allocate_shared(const A& a, size_t N,

const remove_extent_t<T>& u); // T is U[]

template<class T>
shared_ptr<T> make_shared(const remove_extent_t<T>& u); // T is U[N]

template<class T, class A>
shared_ptr<T> allocate_shared(const A& a, const remove_extent_t<T>& u); // T is U[N]

template<class T>
shared_ptr<T> make_shared_for_overwrite(); // T is not U[]

template<class T, class A>
shared_ptr<T> allocate_shared_for_overwrite(const A& a); // T is not U[]

template<class T>
shared_ptr<T> make_shared_for_overwrite(size_t N); // T is U[]

template<class T, class A>
shared_ptr<T> allocate_shared_for_overwrite(const A& a, size_t N); // T is U[]

// 20.3.2.2.8, shared_ptr comparisons
template<class T, class U>

bool operator==(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept;
template<class T, class U>

strong_ordering operator<=>(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept;

template<class T>
bool operator==(const shared_ptr<T>& x, nullptr_t) noexcept;

template<class T>
strong_ordering operator<=>(const shared_ptr<T>& x, nullptr_t) noexcept;

// 20.3.2.2.9, shared_ptr specialized algorithms
template<class T>

void swap(shared_ptr<T>& a, shared_ptr<T>& b) noexcept;

// 20.3.2.2.10, shared_ptr casts
template<class T, class U>

shared_ptr<T> static_pointer_cast(const shared_ptr<U>& r) noexcept;
template<class T, class U>

shared_ptr<T> static_pointer_cast(shared_ptr<U>&& r) noexcept;
template<class T, class U>

shared_ptr<T> dynamic_pointer_cast(const shared_ptr<U>& r) noexcept;
template<class T, class U>

shared_ptr<T> dynamic_pointer_cast(shared_ptr<U>&& r) noexcept;
template<class T, class U>

shared_ptr<T> const_pointer_cast(const shared_ptr<U>& r) noexcept;
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template<class T, class U>
shared_ptr<T> const_pointer_cast(shared_ptr<U>&& r) noexcept;

template<class T, class U>
shared_ptr<T> reinterpret_pointer_cast(const shared_ptr<U>& r) noexcept;

template<class T, class U>
shared_ptr<T> reinterpret_pointer_cast(shared_ptr<U>&& r) noexcept;

// 20.3.2.2.11, shared_ptr get_deleter
template<class D, class T>

D* get_deleter(const shared_ptr<T>& p) noexcept;

// 20.3.2.2.12, shared_ptr I/O
template<class E, class T, class Y>

basic_ostream<E, T>& operator<<(basic_ostream<E, T>& os, const shared_ptr<Y>& p);

// 20.3.2.3, class template weak_ptr
template<class T> class weak_ptr;

// 20.3.2.3.7, weak_ptr specialized algorithms
template<class T> void swap(weak_ptr<T>& a, weak_ptr<T>& b) noexcept;

// 20.3.2.4, class template owner_less
template<class T = void> struct owner_less;

// 20.3.2.5, class template enable_shared_from_this
template<class T> class enable_shared_from_this;

// 20.3.3, hash support
template<class T> struct hash; // freestanding
template<class T, class D> struct hash<unique_ptr<T, D>>; // freestanding
template<class T> struct hash<shared_ptr<T>>;

// 33.5.8.7, atomic smart pointers
template<class T> struct atomic; // freestanding
template<class T> struct atomic<shared_ptr<T>>;
template<class T> struct atomic<weak_ptr<T>>;

// 20.3.4.1, class template out_ptr_t
template<class Smart, class Pointer, class... Args>

class out_ptr_t;

// 20.3.4.2, function template out_ptr
template<class Pointer = void, class Smart, class... Args>

auto out_ptr(Smart& s, Args&&... args);

// 20.3.4.3, class template inout_ptr_t
template<class Smart, class Pointer, class... Args>

class inout_ptr_t;

// 20.3.4.4, function template inout_ptr
template<class Pointer = void, class Smart, class... Args>

auto inout_ptr(Smart& s, Args&&... args);
}

20.2.3 Pointer traits [pointer.traits]
20.2.3.1 General [pointer.traits.general]

1 The class template pointer_traits supplies a uniform interface to certain attributes of pointer-like types.
namespace std {

template<class Ptr> struct pointer_traits {
see below ;

};
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template<class T> struct pointer_traits<T*> {
using pointer = T*;
using element_type = T;
using difference_type = ptrdiff_t;

template<class U> using rebind = U*;

static constexpr pointer pointer_to(see below r) noexcept;
};

}

20.2.3.2 Member types [pointer.traits.types]
1 The definitions in this subclause make use of the following exposition-only class template and concept:

template<class T>
struct ptr-traits-elem // exposition only
{ };

template<class T> requires requires { typename T::element_type; }
struct ptr-traits-elem <T>
{ using type = typename T::element_type; };

template<template<class...> class SomePointer, class T, class... Args>
requires (!requires { typename SomePointer<T, Args...>::element_type; })

struct ptr-traits-elem <SomePointer<T, Args...>>
{ using type = T; };

template<class Ptr>
concept has-elem-type = // exposition only

requires { typename ptr-traits-elem <Ptr>::type; }

2 If Ptr satisfies has-elem-type , a specialization pointer_traits<Ptr> generated from the pointer_traits
primary template has the following members as well as those described in 20.2.3.3; otherwise, such a
specialization has no members by any of those names.

using pointer = see below ;

3 Type: Ptr.

using element_type = see below ;

4 Type: typename ptr-traits-elem <Ptr>::type.

using difference_type = see below ;

5 Type: Ptr::difference_type if the qualified-id Ptr::difference_type is valid and denotes a type
(13.10.3); otherwise, ptrdiff_t.

template<class U> using rebind = see below ;

6 Alias template: Ptr::rebind<U> if the qualified-id Ptr::rebind<U> is valid and denotes a type (13.10.3);
otherwise, SomePointer<U, Args> if Ptr is a class template instantiation of the form SomePointer<T,
Args>, where Args is zero or more type arguments; otherwise, the instantiation of rebind is ill-formed.

20.2.3.3 Member functions [pointer.traits.functions]

static pointer pointer_traits::pointer_to(see below r);
static constexpr pointer pointer_traits<T*>::pointer_to(see below r) noexcept;

1 Mandates: For the first member function, Ptr::pointer_to(r) is well-formed.
2 Preconditions: For the first member function, Ptr::pointer_to(r) returns a pointer to r through

which indirection is valid.
3 Returns: The first member function returns Ptr::pointer_to(r). The second member function

returns addressof(r).
4 Remarks: If element_type is cv void, the type of r is unspecified; otherwise, it is element_type&.
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20.2.3.4 Optional members [pointer.traits.optmem]
1 Specializations of pointer_traits may define the member declared in this subclause to customize the

behavior of the standard library. A specialization generated from the pointer_traits primary template has
no member by this name.

static element_type* to_address(pointer p) noexcept;

2 Returns: A pointer of type element_type* that references the same location as the argument p.
3 [Note 1 : This function is intended to be the inverse of pointer_to. If defined, it customizes the behavior of the

non-member function to_address (20.2.4). — end note ]

20.2.4 Pointer conversion [pointer.conversion]
template<class T> constexpr T* to_address(T* p) noexcept;

1 Mandates: T is not a function type.
2 Returns: p.

template<class Ptr> constexpr auto to_address(const Ptr& p) noexcept;

3 Returns: pointer_traits<Ptr>::to_address(p) if that expression is well-formed (see 20.2.3.4),
otherwise to_address(p.operator->()).

20.2.5 Pointer alignment [ptr.align]
void* align(size_t alignment, size_t size, void*& ptr, size_t& space);

1 Preconditions:
—(1.1) alignment is a power of two
—(1.2) ptr represents the address of contiguous storage of at least space bytes

2 Effects: If it is possible to fit size bytes of storage aligned by alignment into the buffer pointed to by
ptr with length space, the function updates ptr to represent the first possible address of such storage
and decreases space by the number of bytes used for alignment. Otherwise, the function does nothing.

3 Returns: A null pointer if the requested aligned buffer would not fit into the available space, otherwise
the adjusted value of ptr.

4 [Note 1 : The function updates its ptr and space arguments so that it can be called repeatedly with possibly
different alignment and size arguments for the same buffer. — end note ]

template<size_t N, class T>
[[nodiscard]] constexpr T* assume_aligned(T* ptr);

5 Mandates: N is a power of two.
6 Preconditions: ptr points to an object X of a type similar (7.3.6) to T, where X has alignment N (6.7.6).
7 Returns: ptr.
8 Throws: Nothing.
9 [Note 2 : The alignment assumption on an object X expressed by a call to assume_aligned might result in

generation of more efficient code. It is up to the program to ensure that the assumption actually holds. The
call does not cause the implementation to verify or enforce this. An implementation might only make the
assumption for those operations on X that access X through the pointer returned by assume_aligned. — end
note ]

20.2.6 Explicit lifetime management [obj.lifetime]
template<class T>

T* start_lifetime_as(void* p) noexcept;
template<class T>

const T* start_lifetime_as(const void* p) noexcept;
template<class T>

volatile T* start_lifetime_as(volatile void* p) noexcept;
template<class T>

const volatile T* start_lifetime_as(const volatile void* p) noexcept;

1 Mandates: T is an implicit-lifetime type (6.8.1) and not an incomplete type (6.8.1).
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2 Preconditions: [p, (char*)p + sizeof(T)) denotes a region of allocated storage that is a subset of the
region of storage reachable through (6.8.4) p and suitably aligned for the type T.

3 Effects: Implicitly creates objects (6.7.2) within the denoted region consisting of an object a of type
T whose address is p, and objects nested within a, as follows: The object representation of a is the
contents of the storage prior to the call to start_lifetime_as. The value of each created object o of
trivially-copyable type U is determined in the same manner as for a call to bit_cast<U>(E) (22.15.3),
where E is an lvalue of type U denoting o, except that the storage is not accessed. The value of any
other created object is unspecified.
[Note 1 : The unspecified value can be indeterminate. — end note ]

4 Returns: A pointer to the a defined in the Effects paragraph.

template<class T>
T* start_lifetime_as_array(void* p, size_t n) noexcept;

template<class T>
const T* start_lifetime_as_array(const void* p, size_t n) noexcept;

template<class T>
volatile T* start_lifetime_as_array(volatile void* p, size_t n) noexcept;

template<class T>
const volatile T* start_lifetime_as_array(const volatile void* p, size_t n) noexcept;

5 Mandates: T is a complete type.
6 Preconditions: p is suitably aligned for an array of T or is null. n <= size_t(-1) / sizeof(T) is true.

If n > 0 is true, [(char*)p, (char*)p + (n * sizeof(T))) denotes a region of allocated storage that
is a subset of the region of storage reachable through (6.8.4) p.

7 Effects: If n > 0 is true, equivalent to start_lifetime_as<U>(p) where U is the type “array of n T”.
Otherwise, there are no effects.

8 Returns: A pointer to the first element of the created array, if any; otherwise, a pointer that compares
equal to p (7.6.10).

20.2.7 Allocator argument tag [allocator.tag]
namespace std {

struct allocator_arg_t { explicit allocator_arg_t() = default; };
inline constexpr allocator_arg_t allocator_arg{};

}

1 The allocator_arg_t struct is an empty class type used as a unique type to disambiguate constructor and
function overloading. Specifically, several types (see tuple 22.4) have constructors with allocator_arg_t
as the first argument, immediately followed by an argument of a type that meets the Cpp17Allocator
requirements (16.4.4.6.1).

20.2.8 uses_allocator [allocator.uses]
20.2.8.1 uses_allocator trait [allocator.uses.trait]

template<class T, class Alloc> struct uses_allocator;

1 Remarks: Automatically detects whether T has a nested allocator_type that is convertible from
Alloc. Meets the Cpp17BinaryTypeTrait requirements (21.3.2). The implementation shall provide a
definition that is derived from true_type if the qualified-id T::allocator_type is valid and denotes
a type (13.10.3) and is_convertible_v<Alloc, T::allocator_type> != false, otherwise it shall
be derived from false_type. A program may specialize this template to derive from true_type
for a program-defined type T that does not have a nested allocator_type but nonetheless can be
constructed with an allocator where either:

—(1.1) the first argument of a constructor has type allocator_arg_t and the second argument has type
Alloc or

—(1.2) the last argument of a constructor has type Alloc.

20.2.8.2 Uses-allocator construction [allocator.uses.construction]
1 Uses-allocator construction with allocator alloc and constructor arguments args... refers to the construction

of an object of type T such that alloc is passed to the constructor of T if T uses an allocator type compatible
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with alloc. When applied to the construction of an object of type T, it is equivalent to initializing it with
the value of the expression make_obj_using_allocator<T>(alloc, args...), described below.

2 The following utility functions support three conventions for passing alloc to a constructor:
—(2.1) If T does not use an allocator compatible with alloc, then alloc is ignored.
—(2.2) Otherwise, if T has a constructor invocable as T(allocator_arg, alloc, args...) (leading-allocator

convention), then uses-allocator construction chooses this constructor form.
—(2.3) Otherwise, if T has a constructor invocable as T(args..., alloc) (trailing-allocator convention), then

uses-allocator construction chooses this constructor form.
3 The uses_allocator_construction_args function template takes an allocator and argument list and

produces (as a tuple) a new argument list matching one of the above conventions. Additionally, overloads are
provided that treat specializations of pair such that uses-allocator construction is applied individually to
the first and second data members. The make_obj_using_allocator and uninitialized_construct_-
using_allocator function templates apply the modified constructor arguments to construct an object of
type T as a return value or in-place, respectively.
[Note 1 : For uses_allocator_construction_args and make_obj_using_allocator, type T is not deduced and must
therefore be specified explicitly by the caller. — end note ]

template<class T, class Alloc, class... Args>
constexpr auto uses_allocator_construction_args(const Alloc& alloc,

Args&&... args) noexcept;

4 Constraints: remove_cv_t<T> is not a specialization of pair.
5 Returns: A tuple value determined as follows:

—(5.1) If uses_allocator_v<remove_cv_t<T>, Alloc> is false and is_constructible_v<T,
Args...> is true, return forward_as_tuple(std::forward<Args>(args)...).

—(5.2) Otherwise, if uses_allocator_v<remove_cv_t<T>, Alloc> is true and is_constructible_v<T,
allocator_arg_t, const Alloc&, Args...> is true, return

tuple<allocator_arg_t, const Alloc&, Args&&...>(
allocator_arg, alloc, std::forward<Args>(args)...)

—(5.3) Otherwise, if uses_allocator_v<remove_cv_t<T>, Alloc> is true and is_constructible_v<T,
Args..., const Alloc&> is true, return forward_as_tuple(std::forward<Args>(args)...,
alloc).

—(5.4) Otherwise, the program is ill-formed.
[Note 2 : This definition prevents a silent failure to pass the allocator to a constructor of a type for which
uses_allocator_v<T, Alloc> is true. — end note ]

template<class T, class Alloc, class Tuple1, class Tuple2>
constexpr auto uses_allocator_construction_args(const Alloc& alloc, piecewise_construct_t,

Tuple1&& x, Tuple2&& y) noexcept;

6 Let T1 be T::first_type. Let T2 be T::second_type.
7 Constraints: remove_cv_t<T> is a specialization of pair.
8 Effects: Equivalent to:

return make_tuple(
piecewise_construct,
apply([&alloc](auto&&... args1) {

return uses_allocator_construction_args<T1>(
alloc, std::forward<decltype(args1)>(args1)...);

}, std::forward<Tuple1>(x)),
apply([&alloc](auto&&... args2) {

return uses_allocator_construction_args<T2>(
alloc, std::forward<decltype(args2)>(args2)...);

}, std::forward<Tuple2>(y)));

template<class T, class Alloc>
constexpr auto uses_allocator_construction_args(const Alloc& alloc) noexcept;

9 Constraints: remove_cv_t<T> is a specialization of pair.
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10 Effects: Equivalent to:
return uses_allocator_construction_args<T>(alloc, piecewise_construct,

tuple<>{}, tuple<>{});

template<class T, class Alloc, class U, class V>
constexpr auto uses_allocator_construction_args(const Alloc& alloc,

U&& u, V&& v) noexcept;

11 Constraints: remove_cv_t<T> is a specialization of pair.
12 Effects: Equivalent to:

return uses_allocator_construction_args<T>(alloc, piecewise_construct,
forward_as_tuple(std::forward<U>(u)),
forward_as_tuple(std::forward<V>(v)));

template<class T, class Alloc, class U, class V>
constexpr auto uses_allocator_construction_args(const Alloc& alloc,

pair<U, V>& pr) noexcept;
template<class T, class Alloc, class U, class V>

constexpr auto uses_allocator_construction_args(const Alloc& alloc,
const pair<U, V>& pr) noexcept;

13 Constraints: remove_cv_t<T> is a specialization of pair.
14 Effects: Equivalent to:

return uses_allocator_construction_args<T>(alloc, piecewise_construct,
forward_as_tuple(pr.first),
forward_as_tuple(pr.second));

template<class T, class Alloc, class U, class V>
constexpr auto uses_allocator_construction_args(const Alloc& alloc,

pair<U, V>&& pr) noexcept;
template<class T, class Alloc, class U, class V>

constexpr auto uses_allocator_construction_args(const Alloc& alloc,
const pair<U, V>&& pr) noexcept;

15 Constraints: remove_cv_t<T> is a specialization of pair.
16 Effects: Equivalent to:

return uses_allocator_construction_args<T>(alloc, piecewise_construct,
forward_as_tuple(get<0>(std::move(pr))),
forward_as_tuple(get<1>(std::move(pr))));

template<class T, class Alloc, pair-like P>
constexpr auto uses_allocator_construction_args(const Alloc& alloc, P&& p) noexcept;

17 Constraints: remove_cv_t<T> is a specialization of pair and remove_cvref_t<P> is not a specialization
of ranges::subrange.

18 Effects: Equivalent to:
return uses_allocator_construction_args<T>(alloc, piecewise_construct,

forward_as_tuple(get<0>(std::forward<P>(p))),
forward_as_tuple(get<1>(std::forward<P>(p))));

template<class T, class Alloc, class U>
constexpr auto uses_allocator_construction_args(const Alloc& alloc, U&& u) noexcept;

19 Let FUN be the function template:
template<class A, class B>

void FUN (const pair<A, B>&);

20 Constraints: remove_cv_t<T> is a specialization of pair, and either:
—(20.1) remove_cvref_t<U> is a specialization of ranges::subrange, or
—(20.2) U does not satisfy pair-like and the expression FUN (u) is not well-formed when considered as

an unevaluated operand.
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21 Let pair-constructor be an exposition-only class defined as follows:
class pair-constructor {

using pair-type = remove_cv_t<T>; // exposition only

constexpr auto do-construct (const pair-type & p) const { // exposition only
return make_obj_using_allocator<pair-type >(alloc_, p);

}
constexpr auto do-construct (pair-type && p) const { // exposition only

return make_obj_using_allocator<pair-type >(alloc_, std::move(p));
}

const Alloc& alloc_; // exposition only
U& u_; // exposition only

public:
constexpr operator pair-type () const {

return do-construct (std::forward<U>(u_));
}

};

22 Returns: make_tuple(pc), where pc is a pair-constructor object whose alloc_ member is initialized
with alloc and whose u_ member is initialized with u.

template<class T, class Alloc, class... Args>
constexpr T make_obj_using_allocator(const Alloc& alloc, Args&&... args);

23 Effects: Equivalent to:
return make_from_tuple<T>(uses_allocator_construction_args<T>(

alloc, std::forward<Args>(args)...));

template<class T, class Alloc, class... Args>
constexpr T* uninitialized_construct_using_allocator(T* p, const Alloc& alloc, Args&&... args);

24 Effects: Equivalent to:
return apply([&]<class... U>(U&&... xs) {

return construct_at(p, std::forward<U>(xs)...);
}, uses_allocator_construction_args<T>(alloc, std::forward<Args>(args)...));

20.2.9 Allocator traits [allocator.traits]
20.2.9.1 General [allocator.traits.general]

1 The class template allocator_traits supplies a uniform interface to all allocator types. An allocator cannot
be a non-class type, however, even if allocator_traits supplies the entire required interface.
[Note 1 : Thus, it is always possible to create a derived class from an allocator. — end note ]

If a program declares an explicit or partial specialization of allocator_traits, the program is ill-formed,
no diagnostic required.

namespace std {
template<class Alloc> struct allocator_traits {

using allocator_type = Alloc;

using value_type = typename Alloc::value_type;

using pointer = see below ;
using const_pointer = see below ;
using void_pointer = see below ;
using const_void_pointer = see below ;

using difference_type = see below ;
using size_type = see below ;

using propagate_on_container_copy_assignment = see below ;
using propagate_on_container_move_assignment = see below ;
using propagate_on_container_swap = see below ;
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using is_always_equal = see below ;

template<class T> using rebind_alloc = see below ;
template<class T> using rebind_traits = allocator_traits<rebind_alloc<T>>;

[[nodiscard]] static constexpr pointer allocate(Alloc& a, size_type n);
[[nodiscard]] static constexpr pointer allocate(Alloc& a, size_type n,

const_void_pointer hint);
[[nodiscard]] static constexpr allocation_result<pointer, size_type>

allocate_at_least(Alloc& a, size_type n);

static constexpr void deallocate(Alloc& a, pointer p, size_type n);

template<class T, class... Args>
static constexpr void construct(Alloc& a, T* p, Args&&... args);

template<class T>
static constexpr void destroy(Alloc& a, T* p);

static constexpr size_type max_size(const Alloc& a) noexcept;

static constexpr Alloc select_on_container_copy_construction(const Alloc& rhs);
};

}

20.2.9.2 Member types [allocator.traits.types]

using pointer = see below ;

1 Type: Alloc::pointer if the qualified-id Alloc::pointer is valid and denotes a type (13.10.3);
otherwise, value_type*.

using const_pointer = see below ;

2 Type: Alloc::const_pointer if the qualified-id Alloc::const_pointer is valid and denotes a type
(13.10.3); otherwise, pointer_traits<pointer>::rebind<const value_type>.

using void_pointer = see below ;

3 Type: Alloc::void_pointer if the qualified-id Alloc::void_pointer is valid and denotes a type
(13.10.3); otherwise, pointer_traits<pointer>::rebind<void>.

using const_void_pointer = see below ;

4 Type: Alloc::const_void_pointer if the qualified-id Alloc::const_void_pointer is valid and de-
notes a type (13.10.3); otherwise, pointer_traits<pointer>::rebind<const void>.

using difference_type = see below ;

5 Type: Alloc::difference_type if the qualified-id Alloc::difference_type is valid and denotes a
type (13.10.3); otherwise, pointer_traits<pointer>::difference_type.

using size_type = see below ;

6 Type: Alloc::size_type if the qualified-id Alloc::size_type is valid and denotes a type (13.10.3);
otherwise, make_unsigned_t<difference_type>.

using propagate_on_container_copy_assignment = see below ;

7 Type: Alloc::propagate_on_container_copy_assignment if the qualified-id Alloc::propagate_-
on_container_copy_assignment is valid and denotes a type (13.10.3); otherwise false_type.

using propagate_on_container_move_assignment = see below ;

8 Type: Alloc::propagate_on_container_move_assignment if the qualified-id Alloc::propagate_-
on_container_move_assignment is valid and denotes a type (13.10.3); otherwise false_type.
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using propagate_on_container_swap = see below ;

9 Type: Alloc::propagate_on_container_swap if the qualified-id Alloc::propagate_on_container_-
swap is valid and denotes a type (13.10.3); otherwise false_type.

using is_always_equal = see below ;

10 Type: Alloc::is_always_equal if the qualified-id Alloc::is_always_equal is valid and denotes a
type (13.10.3); otherwise is_empty<Alloc>::type.

template<class T> using rebind_alloc = see below ;

11 Alias template: Alloc::rebind<T>::other if the qualified-id Alloc::rebind<T>::other is valid and
denotes a type (13.10.3); otherwise, Alloc<T, Args> if Alloc is a class template instantiation of the
form Alloc<U, Args>, where Args is zero or more type arguments; otherwise, the instantiation of
rebind_alloc is ill-formed.

20.2.9.3 Static member functions [allocator.traits.members]

[[nodiscard]] static constexpr pointer allocate(Alloc& a, size_type n);

1 Returns: a.allocate(n).

[[nodiscard]] static constexpr pointer allocate(Alloc& a, size_type n, const_void_pointer hint);

2 Returns: a.allocate(n, hint) if that expression is well-formed; otherwise, a.allocate(n).

[[nodiscard]] static constexpr allocation_result<pointer, size_type>
allocate_at_least(Alloc& a, size_type n);

3 Returns: a.allocate_at_least(n) if that expression is well-formed; otherwise, {a.allocate(n), n}.

static constexpr void deallocate(Alloc& a, pointer p, size_type n);

4 Effects: Calls a.deallocate(p, n).
5 Throws: Nothing.

template<class T, class... Args>
static constexpr void construct(Alloc& a, T* p, Args&&... args);

6 Effects: Calls a.construct(p, std::forward<Args>(args)...) if that call is well-formed; otherwise,
invokes construct_at(p, std::forward<Args>(args)...).

template<class T>
static constexpr void destroy(Alloc& a, T* p);

7 Effects: Calls a.destroy(p) if that call is well-formed; otherwise, invokes destroy_at(p).

static constexpr size_type max_size(const Alloc& a) noexcept;

8 Returns: a.max_size() if that expression is well-formed; otherwise, numeric_limits<size_type>::
max()/sizeof(value_type).

static constexpr Alloc select_on_container_copy_construction(const Alloc& rhs);

9 Returns: rhs.select_on_container_copy_construction() if that expression is well-formed; other-
wise, rhs.

20.2.9.4 Other [allocator.traits.other]
1 The class template allocation_result has the template parameters, data members, and special members

specified above. It has no base classes or members other than those specified.

20.2.10 The default allocator [default.allocator]
20.2.10.1 General [default.allocator.general]

1 All specializations of the default allocator meet the allocator completeness requirements (16.4.4.6.2).
namespace std {

template<class T> class allocator {
public:
using value_type = T;
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using size_type = size_t;
using difference_type = ptrdiff_t;
using propagate_on_container_move_assignment = true_type;

constexpr allocator() noexcept;
constexpr allocator(const allocator&) noexcept;
template<class U> constexpr allocator(const allocator<U>&) noexcept;
constexpr ~allocator();
constexpr allocator& operator=(const allocator&) = default;

[[nodiscard]] constexpr T* allocate(size_t n);
[[nodiscard]] constexpr allocation_result<T*> allocate_at_least(size_t n);
constexpr void deallocate(T* p, size_t n);

};
}

2 allocator_traits<allocator<T>>::is_always_equal::value is true for any T.

20.2.10.2 Members [allocator.members]
1 Except for the destructor, member functions of the default allocator shall not introduce data races (6.9.2)

as a result of concurrent calls to those member functions from different threads. Calls to these functions
that allocate or deallocate a particular unit of storage shall occur in a single total order, and each such
deallocation call shall happen before the next allocation (if any) in this order.

[[nodiscard]] constexpr T* allocate(size_t n);

2 Mandates: T is not an incomplete type (6.8.1).
3 Returns: A pointer to the initial element of an array of n T.
4 Throws: bad_array_new_length if numeric_limits<size_t>::max() / sizeof(T) < n, or bad_-

alloc if the storage cannot be obtained.
5 Remarks: The storage for the array is obtained by calling ::operator new (17.6.3), but it is unspecified

when or how often this function is called. This function starts the lifetime of the array object, but not
that of any of the array elements.

[[nodiscard]] constexpr allocation_result<T*> allocate_at_least(size_t n);

6 Mandates: T is not an incomplete type (6.8.1).
7 Returns: allocation_result<T*>{ptr, count}, where ptr is a pointer to the initial element of an

array of count T and count ≥ n.
8 Throws: bad_array_new_length if numeric_limits<size_t>::max() / sizeof(T) < n, or bad_-

alloc if the storage cannot be obtained.
9 Remarks: The storage for the array is obtained by calling ::operator new, but it is unspecified when

or how often this function is called. This function starts the lifetime of the array object, but not that
of any of the array elements.

constexpr void deallocate(T* p, size_t n);

10 Preconditions:
—(10.1) If p is memory that was obtained by a call to allocate_at_least, let ret be the value returned

and req be the value passed as the first argument to that call. p is equal to ret.ptr and n is a
value such that req ≤ n ≤ ret.count.

—(10.2) Otherwise, p is a pointer value obtained from allocate. n equals the value passed as the first
argument to the invocation of allocate which returned p.

11 Effects: Deallocates the storage referenced by p.
12 Remarks: Uses ::operator delete (17.6.3), but it is unspecified when this function is called.

20.2.10.3 Operators [allocator.globals]

template<class T, class U>
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constexpr bool operator==(const allocator<T>&, const allocator<U>&) noexcept;

1 Returns: true.

20.2.11 addressof [specialized.addressof]
template<class T> constexpr T* addressof(T& r) noexcept;

1 Returns: The actual address of the object or function referenced by r, even in the presence of an
overloaded operator&.

2 Remarks: An expression addressof(E) is a constant subexpression (3.14) if E is an lvalue constant
subexpression.

20.2.12 C library memory allocation [c.malloc]
1 [Note 1 : The header <cstdlib> (17.2.2) declares the functions described in this subclause. — end note ]

void* aligned_alloc(size_t alignment, size_t size);
void* calloc(size_t nmemb, size_t size);
void* malloc(size_t size);
void* realloc(void* ptr, size_t size);

2 Effects: These functions have the semantics specified in the C standard library.
3 Remarks: These functions do not attempt to allocate storage by calling ::operator new() (17.6.3).
4 These functions implicitly create objects (6.7.2) in the returned region of storage and return a pointer

to a suitable created object. In the case of calloc and realloc, the objects are created before the
storage is zeroed or copied, respectively.

void free(void* ptr);

5 Effects: This function has the semantics specified in the C standard library.
6 Remarks: This function does not attempt to deallocate storage by calling ::operator delete().

See also: ISO/IEC 9899:2018, 7.22.3

20.3 Smart pointers [smartptr]
20.3.1 Unique-ownership pointers [unique.ptr]
20.3.1.1 General [unique.ptr.general]

1 A unique pointer is an object that owns another object and manages that other object through a pointer.
More precisely, a unique pointer is an object u that stores a pointer to a second object p and will dispose of
p when u is itself destroyed (e.g., when leaving block scope (8.8)). In this context, u is said to own p.

2 The mechanism by which u disposes of p is known as p’s associated deleter, a function object whose correct
invocation results in p’s appropriate disposition (typically its deletion).

3 Let the notation u.p denote the pointer stored by u, and let u.d denote the associated deleter. Upon request,
u can reset (replace) u.p and u.d with another pointer and deleter, but properly disposes of its owned object
via the associated deleter before such replacement is considered completed.

4 Each object of a type U instantiated from the unique_ptr template specified in 20.3.1 has the strict
ownership semantics, specified above, of a unique pointer. In partial satisfaction of these semantics, each
such U is Cpp17MoveConstructible and Cpp17MoveAssignable, but is not Cpp17CopyConstructible nor
Cpp17CopyAssignable. The template parameter T of unique_ptr may be an incomplete type.

5 [Note 1 : The uses of unique_ptr include providing exception safety for dynamically allocated memory, passing
ownership of dynamically allocated memory to a function, and returning dynamically allocated memory from a
function. — end note ]

20.3.1.2 Default deleters [unique.ptr.dltr]
20.3.1.2.1 In general [unique.ptr.dltr.general]

1 The class template default_delete serves as the default deleter (destruction policy) for the class template
unique_ptr.

2 The template parameter T of default_delete may be an incomplete type.
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20.3.1.2.2 default_delete [unique.ptr.dltr.dflt]
namespace std {

template<class T> struct default_delete {
constexpr default_delete() noexcept = default;
template<class U> constexpr default_delete(const default_delete<U>&) noexcept;
constexpr void operator()(T*) const;

};
}

template<class U> constexpr default_delete(const default_delete<U>& other) noexcept;

1 Constraints: U* is implicitly convertible to T*.
2 Effects: Constructs a default_delete object from another default_delete<U> object.

constexpr void operator()(T* ptr) const;

3 Mandates: T is a complete type.
4 Effects: Calls delete on ptr.

20.3.1.2.3 default_delete<T[]> [unique.ptr.dltr.dflt1]
namespace std {

template<class T> struct default_delete<T[]> {
constexpr default_delete() noexcept = default;
template<class U> constexpr default_delete(const default_delete<U[]>&) noexcept;
template<class U> constexpr void operator()(U* ptr) const;

};
}

template<class U> constexpr default_delete(const default_delete<U[]>& other) noexcept;

1 Constraints: U(*)[] is convertible to T(*)[].
2 Effects: Constructs a default_delete object from another default_delete<U[]> object.

template<class U> constexpr void operator()(U* ptr) const;

3 Constraints: U(*)[] is convertible to T(*)[].
4 Mandates: U is a complete type.
5 Effects: Calls delete[] on ptr.

20.3.1.3 unique_ptr for single objects [unique.ptr.single]
20.3.1.3.1 General [unique.ptr.single.general]

namespace std {
template<class T, class D = default_delete<T>> class unique_ptr {
public:

using pointer = see below ;
using element_type = T;
using deleter_type = D;

// 20.3.1.3.2, constructors
constexpr unique_ptr() noexcept;
constexpr explicit unique_ptr(type_identity_t<pointer> p) noexcept;
constexpr unique_ptr(type_identity_t<pointer> p, see below d1) noexcept;
constexpr unique_ptr(type_identity_t<pointer> p, see below d2) noexcept;
constexpr unique_ptr(unique_ptr&& u) noexcept;
constexpr unique_ptr(nullptr_t) noexcept;
template<class U, class E>

constexpr unique_ptr(unique_ptr<U, E>&& u) noexcept;

// 20.3.1.3.3, destructor
constexpr ~unique_ptr();

// 20.3.1.3.4, assignment
constexpr unique_ptr& operator=(unique_ptr&& u) noexcept;

§ 20.3.1.3.1 611



© ISO/IEC N4950

template<class U, class E>
constexpr unique_ptr& operator=(unique_ptr<U, E>&& u) noexcept;

constexpr unique_ptr& operator=(nullptr_t) noexcept;

// 20.3.1.3.5, observers
constexpr add_lvalue_reference_t<T> operator*() const noexcept(see below );
constexpr pointer operator->() const noexcept;
constexpr pointer get() const noexcept;
constexpr deleter_type& get_deleter() noexcept;
constexpr const deleter_type& get_deleter() const noexcept;
constexpr explicit operator bool() const noexcept;

// 20.3.1.3.6, modifiers
constexpr pointer release() noexcept;
constexpr void reset(pointer p = pointer()) noexcept;
constexpr void swap(unique_ptr& u) noexcept;

// disable copy from lvalue
unique_ptr(const unique_ptr&) = delete;
unique_ptr& operator=(const unique_ptr&) = delete;

};
}

1 The default type for the template parameter D is default_delete. A client-supplied template argument D
shall be a function object type (22.10), lvalue reference to function, or lvalue reference to function object type
for which, given a value d of type D and a value ptr of type unique_ptr<T, D>::pointer, the expression
d(ptr) is valid and has the effect of disposing of the pointer as appropriate for that deleter.

2 If the deleter’s type D is not a reference type, D shall meet the Cpp17Destructible requirements (Table 35).
3 If the qualified-id remove_reference_t<D>::pointer is valid and denotes a type (13.10.3), then unique_-

ptr<T, D>::pointer shall be a synonym for remove_reference_t<D>::pointer. Otherwise unique_ptr<T,
D>::pointer shall be a synonym for element_type*. The type unique_ptr<T, D>::pointer shall meet
the Cpp17NullablePointer requirements (Table 36).

4 [Example 1 : Given an allocator type X (16.4.4.6.1) and letting A be a synonym for allocator_traits<X>, the types
A::pointer, A::const_pointer, A::void_pointer, and A::const_void_pointer may be used as unique_ptr<T,
D>::pointer. — end example ]

20.3.1.3.2 Constructors [unique.ptr.single.ctor]

constexpr unique_ptr() noexcept;
constexpr unique_ptr(nullptr_t) noexcept;

1 Constraints: is_pointer_v<deleter_type> is false and is_default_constructible_v<deleter_-
type> is true.

2 Preconditions: D meets the Cpp17DefaultConstructible requirements (Table 30), and that construction
does not throw an exception.

3 Effects: Constructs a unique_ptr object that owns nothing, value-initializing the stored pointer and
the stored deleter.

4 Postconditions: get() == nullptr. get_deleter() returns a reference to the stored deleter.

constexpr explicit unique_ptr(type_identity_t<pointer> p) noexcept;

5 Constraints: is_pointer_v<deleter_type> is false and is_default_constructible_v<deleter_-
type> is true.

6 Preconditions: D meets the Cpp17DefaultConstructible requirements (Table 30), and that construction
does not throw an exception.

7 Effects: Constructs a unique_ptr which owns p, initializing the stored pointer with p and value-
initializing the stored deleter.

8 Postconditions: get() == p. get_deleter() returns a reference to the stored deleter.

constexpr unique_ptr(type_identity_t<pointer> p, const D& d) noexcept;
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constexpr unique_ptr(type_identity_t<pointer> p, remove_reference_t<D>&& d) noexcept;

9 Constraints: is_constructible_v<D, decltype(d)> is true.
10 Preconditions: For the first constructor, if D is not a reference type, D meets the Cpp17CopyConstructible

requirements and such construction does not exit via an exception. For the second constructor, if D is
not a reference type, D meets the Cpp17MoveConstructible requirements and such construction does
not exit via an exception.

11 Effects: Constructs a unique_ptr object which owns p, initializing the stored pointer with p and
initializing the deleter from std::forward<decltype(d)>(d).

12 Postconditions: get() == p. get_deleter() returns a reference to the stored deleter. If D is a
reference type then get_deleter() returns a reference to the lvalue d.

13 Remarks: If D is a reference type, the second constructor is defined as deleted.
14 [Example 1 :

D d;
unique_ptr<int, D> p1(new int, D()); // D must be Cpp17MoveConstructible
unique_ptr<int, D> p2(new int, d); // D must be Cpp17CopyConstructible
unique_ptr<int, D&> p3(new int, d); // p3 holds a reference to d
unique_ptr<int, const D&> p4(new int, D()); // error: rvalue deleter object combined

// with reference deleter type
— end example ]

constexpr unique_ptr(unique_ptr&& u) noexcept;

15 Constraints: is_move_constructible_v<D> is true.
16 Preconditions: If D is not a reference type, D meets the Cpp17MoveConstructible requirements (Table 31).

Construction of the deleter from an rvalue of type D does not throw an exception.
17 Effects: Constructs a unique_ptr from u. If D is a reference type, this deleter is copy constructed from

u’s deleter; otherwise, this deleter is move constructed from u’s deleter.
[Note 1 : The construction of the deleter can be implemented with std::forward<D>. — end note ]

18 Postconditions: get() yields the value u.get() yielded before the construction. u.get() == nullptr.
get_deleter() returns a reference to the stored deleter that was constructed from u.get_deleter().
If D is a reference type then get_deleter() and u.get_deleter() both reference the same lvalue
deleter.

template<class U, class E> constexpr unique_ptr(unique_ptr<U, E>&& u) noexcept;

19 Constraints:
—(19.1) unique_ptr<U, E>::pointer is implicitly convertible to pointer,
—(19.2) U is not an array type, and
—(19.3) either D is a reference type and E is the same type as D, or D is not a reference type and E is

implicitly convertible to D.
20 Preconditions: If E is not a reference type, construction of the deleter from an rvalue of type E is

well-formed and does not throw an exception. Otherwise, E is a reference type and construction of the
deleter from an lvalue of type E is well-formed and does not throw an exception.

21 Effects: Constructs a unique_ptr from u. If E is a reference type, this deleter is copy constructed from
u’s deleter; otherwise, this deleter is move constructed from u’s deleter.
[Note 2 : The deleter constructor can be implemented with std::forward<E>. — end note ]

22 Postconditions: get() yields the value u.get() yielded before the construction. u.get() == nullptr.
get_deleter() returns a reference to the stored deleter that was constructed from u.get_deleter().

20.3.1.3.3 Destructor [unique.ptr.single.dtor]

constexpr ~unique_ptr();

1 Effects: Equivalent to: if (get()) get_deleter()(get());
[Note 1 : The use of default_delete requires T to be a complete type. — end note ]
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2 Remarks: The behavior is undefined if the evaluation of get_deleter()(get()) throws an exception.

20.3.1.3.4 Assignment [unique.ptr.single.asgn]

constexpr unique_ptr& operator=(unique_ptr&& u) noexcept;

1 Constraints: is_move_assignable_v<D> is true.
2 Preconditions: If D is not a reference type, D meets the Cpp17MoveAssignable requirements (Table 33)

and assignment of the deleter from an rvalue of type D does not throw an exception. Otherwise, D is a
reference type; remove_reference_t<D> meets the Cpp17CopyAssignable requirements and assignment
of the deleter from an lvalue of type D does not throw an exception.

3 Effects: Calls reset(u.release()) followed by get_deleter() = std::forward<D>(u.get_dele-
ter()).

4 Postconditions: If this != addressof(u), u.get() == nullptr, otherwise u.get() is unchanged.
5 Returns: *this.

template<class U, class E> constexpr unique_ptr& operator=(unique_ptr<U, E>&& u) noexcept;

6 Constraints:
—(6.1) unique_ptr<U, E>::pointer is implicitly convertible to pointer, and
—(6.2) U is not an array type, and
—(6.3) is_assignable_v<D&, E&&> is true.

7 Preconditions: If E is not a reference type, assignment of the deleter from an rvalue of type E is
well-formed and does not throw an exception. Otherwise, E is a reference type and assignment of the
deleter from an lvalue of type E is well-formed and does not throw an exception.

8 Effects: Calls reset(u.release()) followed by get_deleter() = std::forward<E>(u.get_dele-
ter()).

9 Postconditions: u.get() == nullptr.
10 Returns: *this.

constexpr unique_ptr& operator=(nullptr_t) noexcept;

11 Effects: As if by reset().
12 Postconditions: get() == nullptr.
13 Returns: *this.

20.3.1.3.5 Observers [unique.ptr.single.observers]

constexpr add_lvalue_reference_t<T> operator*() const noexcept(noexcept(*declval<pointer>()));

1 Preconditions: get() != nullptr.
2 Returns: *get().

constexpr pointer operator->() const noexcept;

3 Preconditions: get() != nullptr.
4 Returns: get().
5 [Note 1 : The use of this function typically requires that T be a complete type. — end note ]

constexpr pointer get() const noexcept;

6 Returns: The stored pointer.

constexpr deleter_type& get_deleter() noexcept;
constexpr const deleter_type& get_deleter() const noexcept;

7 Returns: A reference to the stored deleter.

constexpr explicit operator bool() const noexcept;

8 Returns: get() != nullptr.
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20.3.1.3.6 Modifiers [unique.ptr.single.modifiers]

constexpr pointer release() noexcept;

1 Postconditions: get() == nullptr.
2 Returns: The value get() had at the start of the call to release.

constexpr void reset(pointer p = pointer()) noexcept;

3 Effects: Assigns p to the stored pointer, and then, with the old value of the stored pointer, old_p,
evaluates if (old_p) get_deleter()(old_p);
[Note 1 : The order of these operations is significant because the call to get_deleter() might destroy *this.

— end note ]
4 Postconditions: get() == p.

[Note 2 : The postcondition does not hold if the call to get_deleter() destroys *this since this->get() is no
longer a valid expression. — end note ]

5 Remarks: The behavior is undefined if the evaluation of get_deleter()(old_p) throws an exception.

constexpr void swap(unique_ptr& u) noexcept;

6 Preconditions: get_deleter() is swappable (16.4.4.3) and does not throw an exception under swap.
7 Effects: Invokes swap on the stored pointers and on the stored deleters of *this and u.

20.3.1.4 unique_ptr for array objects with a runtime length [unique.ptr.runtime]
20.3.1.4.1 General [unique.ptr.runtime.general]

namespace std {
template<class T, class D> class unique_ptr<T[], D> {
public:

using pointer = see below ;
using element_type = T;
using deleter_type = D;

// 20.3.1.4.2, constructors
constexpr unique_ptr() noexcept;
template<class U> constexpr explicit unique_ptr(U p) noexcept;
template<class U> constexpr unique_ptr(U p, see below d) noexcept;
template<class U> constexpr unique_ptr(U p, see below d) noexcept;
constexpr unique_ptr(unique_ptr&& u) noexcept;
template<class U, class E>

constexpr unique_ptr(unique_ptr<U, E>&& u) noexcept;
constexpr unique_ptr(nullptr_t) noexcept;

// destructor
constexpr ~unique_ptr();

// assignment
constexpr unique_ptr& operator=(unique_ptr&& u) noexcept;
template<class U, class E>

constexpr unique_ptr& operator=(unique_ptr<U, E>&& u) noexcept;
constexpr unique_ptr& operator=(nullptr_t) noexcept;

// 20.3.1.4.4, observers
constexpr T& operator[](size_t i) const;
constexpr pointer get() const noexcept;
constexpr deleter_type& get_deleter() noexcept;
constexpr const deleter_type& get_deleter() const noexcept;
constexpr explicit operator bool() const noexcept;

// 20.3.1.4.5, modifiers
constexpr pointer release() noexcept;
template<class U> constexpr void reset(U p) noexcept;
constexpr void reset(nullptr_t = nullptr) noexcept;
constexpr void swap(unique_ptr& u) noexcept;
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// disable copy from lvalue
unique_ptr(const unique_ptr&) = delete;
unique_ptr& operator=(const unique_ptr&) = delete;

};
}

1 A specialization for array types is provided with a slightly altered interface.
—(1.1) Conversions between different types of unique_ptr<T[], D> that would be disallowed for the cor-

responding pointer-to-array types, and conversions to or from the non-array forms of unique_ptr,
produce an ill-formed program.

—(1.2) Pointers to types derived from T are rejected by the constructors, and by reset.
—(1.3) The observers operator* and operator-> are not provided.
—(1.4) The indexing observer operator[] is provided.
—(1.5) The default deleter will call delete[].

2 Descriptions are provided below only for members that differ from the primary template.
3 The template argument T shall be a complete type.

20.3.1.4.2 Constructors [unique.ptr.runtime.ctor]

template<class U> constexpr explicit unique_ptr(U p) noexcept;

1 This constructor behaves the same as the constructor in the primary template that takes a single
parameter of type pointer.

2 Constraints:
—(2.1) U is the same type as pointer, or
—(2.2) pointer is the same type as element_type*, U is a pointer type V*, and V(*)[] is convertible to

element_type(*)[].

template<class U> constexpr unique_ptr(U p, see below d) noexcept;
template<class U> constexpr unique_ptr(U p, see below d) noexcept;

3 These constructors behave the same as the constructors in the primary template that take a parameter
of type pointer and a second parameter.

4 Constraints:
—(4.1) U is the same type as pointer,
—(4.2) U is nullptr_t, or
—(4.3) pointer is the same type as element_type*, U is a pointer type V*, and V(*)[] is convertible to

element_type(*)[].

template<class U, class E> constexpr unique_ptr(unique_ptr<U, E>&& u) noexcept;

5 This constructor behaves the same as in the primary template.
6 Constraints: Where UP is unique_ptr<U, E>:

—(6.1) U is an array type, and
—(6.2) pointer is the same type as element_type*, and
—(6.3) UP::pointer is the same type as UP::element_type*, and
—(6.4) UP::element_type(*)[] is convertible to element_type(*)[], and
—(6.5) either D is a reference type and E is the same type as D, or D is not a reference type and E is

implicitly convertible to D.
[Note 1 : This replaces the Constraints: specification of the primary template. — end note ]

20.3.1.4.3 Assignment [unique.ptr.runtime.asgn]

template<class U, class E> constexpr unique_ptr& operator=(unique_ptr<U, E>&& u) noexcept;

1 This operator behaves the same as in the primary template.
2 Constraints: Where UP is unique_ptr<U, E>:
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—(2.1) U is an array type, and
—(2.2) pointer is the same type as element_type*, and
—(2.3) UP::pointer is the same type as UP::element_type*, and
—(2.4) UP::element_type(*)[] is convertible to element_type(*)[], and
—(2.5) is_assignable_v<D&, E&&> is true.

[Note 1 : This replaces the Constraints: specification of the primary template. — end note ]

20.3.1.4.4 Observers [unique.ptr.runtime.observers]

constexpr T& operator[](size_t i) const;

1 Preconditions: i < the number of elements in the array to which the stored pointer points.
2 Returns: get()[i].

20.3.1.4.5 Modifiers [unique.ptr.runtime.modifiers]

constexpr void reset(nullptr_t p = nullptr) noexcept;

1 Effects: Equivalent to reset(pointer()).

template<class U> constexpr void reset(U p) noexcept;

2 This function behaves the same as the reset member of the primary template.
3 Constraints:

—(3.1) U is the same type as pointer, or
—(3.2) pointer is the same type as element_type*, U is a pointer type V*, and V(*)[] is convertible to

element_type(*)[].

20.3.1.5 Creation [unique.ptr.create]

template<class T, class... Args> constexpr unique_ptr<T> make_unique(Args&&... args);

1 Constraints: T is not an array type.
2 Returns: unique_ptr<T>(new T(std::forward<Args>(args)...)).

template<class T> constexpr unique_ptr<T> make_unique(size_t n);

3 Constraints: T is an array of unknown bound.
4 Returns: unique_ptr<T>(new remove_extent_t<T>[n]()).

template<class T, class... Args> unspecified make_unique(Args&&...) = delete;

5 Constraints: T is an array of known bound.

template<class T> constexpr unique_ptr<T> make_unique_for_overwrite();

6 Constraints: T is not an array type.
7 Returns: unique_ptr<T>(new T).

template<class T> constexpr unique_ptr<T> make_unique_for_overwrite(size_t n);

8 Constraints: T is an array of unknown bound.
9 Returns: unique_ptr<T>(new remove_extent_t<T>[n]).

template<class T, class... Args> unspecified make_unique_for_overwrite(Args&&...) = delete;

10 Constraints: T is an array of known bound.

20.3.1.6 Specialized algorithms [unique.ptr.special]

template<class T, class D> constexpr void swap(unique_ptr<T, D>& x, unique_ptr<T, D>& y) noexcept;

1 Constraints: is_swappable_v<D> is true.
2 Effects: Calls x.swap(y).
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template<class T1, class D1, class T2, class D2>
constexpr bool operator==(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);

3 Returns: x.get() == y.get().

template<class T1, class D1, class T2, class D2>
bool operator<(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);

4 Let CT denote
common_type_t<typename unique_ptr<T1, D1>::pointer,

typename unique_ptr<T2, D2>::pointer>

5 Mandates:
—(5.1) unique_ptr<T1, D1>::pointer is implicitly convertible to CT and
—(5.2) unique_ptr<T2, D2>::pointer is implicitly convertible to CT.

6 Preconditions: The specialization less<CT> is a function object type (22.10) that induces a strict weak
ordering (27.8) on the pointer values.

7 Returns: less<CT>()(x.get(), y.get()).

template<class T1, class D1, class T2, class D2>
bool operator>(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);

8 Returns: y < x.

template<class T1, class D1, class T2, class D2>
bool operator<=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);

9 Returns: !(y < x).

template<class T1, class D1, class T2, class D2>
bool operator>=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);

10 Returns: !(x < y).

template<class T1, class D1, class T2, class D2>
requires three_way_comparable_with<typename unique_ptr<T1, D1>::pointer,

typename unique_ptr<T2, D2>::pointer>
compare_three_way_result_t<typename unique_ptr<T1, D1>::pointer,

typename unique_ptr<T2, D2>::pointer>
operator<=>(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);

11 Returns: compare_three_way()(x.get(), y.get()).

template<class T, class D>
constexpr bool operator==(const unique_ptr<T, D>& x, nullptr_t) noexcept;

12 Returns: !x.

template<class T, class D>
constexpr bool operator<(const unique_ptr<T, D>& x, nullptr_t);

template<class T, class D>
constexpr bool operator<(nullptr_t, const unique_ptr<T, D>& x);

13 Preconditions: The specialization less<unique_ptr<T, D>::pointer> is a function object type (22.10)
that induces a strict weak ordering (27.8) on the pointer values.

14 Returns: The first function template returns
less<unique_ptr<T, D>::pointer>()(x.get(), nullptr)

The second function template returns
less<unique_ptr<T, D>::pointer>()(nullptr, x.get())

template<class T, class D>
constexpr bool operator>(const unique_ptr<T, D>& x, nullptr_t);

template<class T, class D>
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constexpr bool operator>(nullptr_t, const unique_ptr<T, D>& x);

15 Returns: The first function template returns nullptr < x. The second function template returns x <
nullptr.

template<class T, class D>
constexpr bool operator<=(const unique_ptr<T, D>& x, nullptr_t);

template<class T, class D>
constexpr bool operator<=(nullptr_t, const unique_ptr<T, D>& x);

16 Returns: The first function template returns !(nullptr < x). The second function template returns
!(x < nullptr).

template<class T, class D>
constexpr bool operator>=(const unique_ptr<T, D>& x, nullptr_t);

template<class T, class D>
constexpr bool operator>=(nullptr_t, const unique_ptr<T, D>& x);

17 Returns: The first function template returns !(x < nullptr). The second function template returns
!(nullptr < x).

template<class T, class D>
requires three_way_comparable<typename unique_ptr<T, D>::pointer>
constexpr compare_three_way_result_t<typename unique_ptr<T, D>::pointer>

operator<=>(const unique_ptr<T, D>& x, nullptr_t);

18 Returns:
compare_three_way()(x.get(), static_cast<typename unique_ptr<T, D>::pointer>(nullptr)).

20.3.1.7 I/O [unique.ptr.io]

template<class E, class T, class Y, class D>
basic_ostream<E, T>& operator<<(basic_ostream<E, T>& os, const unique_ptr<Y, D>& p);

1 Constraints: os << p.get() is a valid expression.
2 Effects: Equivalent to: os << p.get();
3 Returns: os.

20.3.2 Shared-ownership pointers [util.sharedptr]
20.3.2.1 Class bad_weak_ptr [util.smartptr.weak.bad]

namespace std {
class bad_weak_ptr : public exception {
public:

// see 17.9.3 for the specification of the special member functions
const char* what() const noexcept override;

};
}

1 An exception of type bad_weak_ptr is thrown by the shared_ptr constructor taking a weak_ptr.

const char* what() const noexcept override;

2 Returns: An implementation-defined ntbs.

20.3.2.2 Class template shared_ptr [util.smartptr.shared]
20.3.2.2.1 General [util.smartptr.shared.general]

1 The shared_ptr class template stores a pointer, usually obtained via new. shared_ptr implements semantics
of shared ownership; the last remaining owner of the pointer is responsible for destroying the object, or
otherwise releasing the resources associated with the stored pointer. A shared_ptr is said to be empty if it
does not own a pointer.

namespace std {
template<class T> class shared_ptr {
public:

using element_type = remove_extent_t<T>;
using weak_type = weak_ptr<T>;
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// 20.3.2.2.2, constructors
constexpr shared_ptr() noexcept;
constexpr shared_ptr(nullptr_t) noexcept : shared_ptr() { }
template<class Y>

explicit shared_ptr(Y* p);
template<class Y, class D>

shared_ptr(Y* p, D d);
template<class Y, class D, class A>

shared_ptr(Y* p, D d, A a);
template<class D>

shared_ptr(nullptr_t p, D d);
template<class D, class A>

shared_ptr(nullptr_t p, D d, A a);
template<class Y>

shared_ptr(const shared_ptr<Y>& r, element_type* p) noexcept;
template<class Y>

shared_ptr(shared_ptr<Y>&& r, element_type* p) noexcept;
shared_ptr(const shared_ptr& r) noexcept;
template<class Y>

shared_ptr(const shared_ptr<Y>& r) noexcept;
shared_ptr(shared_ptr&& r) noexcept;
template<class Y>

shared_ptr(shared_ptr<Y>&& r) noexcept;
template<class Y>

explicit shared_ptr(const weak_ptr<Y>& r);
template<class Y, class D>

shared_ptr(unique_ptr<Y, D>&& r);

// 20.3.2.2.3, destructor
~shared_ptr();

// 20.3.2.2.4, assignment
shared_ptr& operator=(const shared_ptr& r) noexcept;
template<class Y>

shared_ptr& operator=(const shared_ptr<Y>& r) noexcept;
shared_ptr& operator=(shared_ptr&& r) noexcept;
template<class Y>

shared_ptr& operator=(shared_ptr<Y>&& r) noexcept;
template<class Y, class D>

shared_ptr& operator=(unique_ptr<Y, D>&& r);

// 20.3.2.2.5, modifiers
void swap(shared_ptr& r) noexcept;
void reset() noexcept;
template<class Y>

void reset(Y* p);
template<class Y, class D>

void reset(Y* p, D d);
template<class Y, class D, class A>

void reset(Y* p, D d, A a);

// 20.3.2.2.6, observers
element_type* get() const noexcept;
T& operator*() const noexcept;
T* operator->() const noexcept;
element_type& operator[](ptrdiff_t i) const;
long use_count() const noexcept;
explicit operator bool() const noexcept;
template<class U>

bool owner_before(const shared_ptr<U>& b) const noexcept;
template<class U>

bool owner_before(const weak_ptr<U>& b) const noexcept;
};
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template<class T>
shared_ptr(weak_ptr<T>) -> shared_ptr<T>;

template<class T, class D>
shared_ptr(unique_ptr<T, D>) -> shared_ptr<T>;

}

2 Specializations of shared_ptr shall be Cpp17CopyConstructible, Cpp17CopyAssignable, and Cpp17LessThan-
Comparable, allowing their use in standard containers. Specializations of shared_ptr shall be contextually
convertible to bool, allowing their use in boolean expressions and declarations in conditions.

3 The template parameter T of shared_ptr may be an incomplete type.
[Note 1 : T can be a function type. — end note ]

4 [Example 1 :
if (shared_ptr<X> px = dynamic_pointer_cast<X>(py)) {

// do something with px
}

— end example ]
5 For purposes of determining the presence of a data race, member functions shall access and modify only the

shared_ptr and weak_ptr objects themselves and not objects they refer to. Changes in use_count() do
not reflect modifications that can introduce data races.

6 For the purposes of subclause 20.3, a pointer type Y* is said to be compatible with a pointer type T* when
either Y* is convertible to T* or Y is U[N] and T is cv U[].

20.3.2.2.2 Constructors [util.smartptr.shared.const]
1 In the constructor definitions below, enables shared_from_this with p, for a pointer p of type Y*, means

that if Y has an unambiguous and accessible base class that is a specialization of enable_shared_from_-
this (20.3.2.5), then remove_cv_t<Y>* shall be implicitly convertible to T* and the constructor evaluates
the statement:

if (p != nullptr && p->weak_this.expired())
p->weak_this = shared_ptr<remove_cv_t<Y>>(*this, const_cast<remove_cv_t<Y>*>(p));

The assignment to the weak_this member is not atomic and conflicts with any potentially concurrent access
to the same object (6.9.2).

constexpr shared_ptr() noexcept;

2 Postconditions: use_count() == 0 && get() == nullptr.

template<class Y> explicit shared_ptr(Y* p);

3 Constraints: When T is an array type, the expression delete[] p is well-formed and either T is U[N]
and Y(*)[N] is convertible to T*, or T is U[] and Y(*)[] is convertible to T*. When T is not an array
type, the expression delete p is well-formed and Y* is convertible to T*.

4 Mandates: Y is a complete type.
5 Preconditions: The expression delete[] p, when T is an array type, or delete p, when T is not an

array type, has well-defined behavior, and does not throw exceptions.
6 Effects: When T is not an array type, constructs a shared_ptr object that owns the pointer p. Otherwise,

constructs a shared_ptr that owns p and a deleter of an unspecified type that calls delete[] p. When
T is not an array type, enables shared_from_this with p. If an exception is thrown, delete p is called
when T is not an array type, delete[] p otherwise.

7 Postconditions: use_count() == 1 && get() == p.
8 Throws: bad_alloc, or an implementation-defined exception when a resource other than memory

cannot be obtained.

template<class Y, class D> shared_ptr(Y* p, D d);
template<class Y, class D, class A> shared_ptr(Y* p, D d, A a);
template<class D> shared_ptr(nullptr_t p, D d);
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template<class D, class A> shared_ptr(nullptr_t p, D d, A a);

9 Constraints: is_move_constructible_v<D> is true, and d(p) is a well-formed expression. For the
first two overloads:

—(9.1) If T is an array type, then either T is U[N] and Y(*)[N] is convertible to T*, or T is U[] and
Y(*)[] is convertible to T*.

—(9.2) If T is not an array type, then Y* is convertible to T*.
10 Preconditions: Construction of d and a deleter of type D initialized with std::move(d) do not throw

exceptions. The expression d(p) has well-defined behavior and does not throw exceptions. A meets the
Cpp17Allocator requirements (16.4.4.6.1).

11 Effects: Constructs a shared_ptr object that owns the object p and the deleter d. When T is not an
array type, the first and second constructors enable shared_from_this with p. The second and fourth
constructors shall use a copy of a to allocate memory for internal use. If an exception is thrown, d(p)
is called.

12 Postconditions: use_count() == 1 && get() == p.
13 Throws: bad_alloc, or an implementation-defined exception when a resource other than memory

cannot be obtained.

template<class Y> shared_ptr(const shared_ptr<Y>& r, element_type* p) noexcept;
template<class Y> shared_ptr(shared_ptr<Y>&& r, element_type* p) noexcept;

14 Effects: Constructs a shared_ptr instance that stores p and shares ownership with the initial value of
r.

15 Postconditions: get() == p. For the second overload, r is empty and r.get() == nullptr.
16 [Note 1 : Use of this constructor leads to a dangling pointer unless p remains valid at least until the ownership

group of r is destroyed. — end note ]
17 [Note 2 : This constructor allows creation of an empty shared_ptr instance with a non-null stored pointer.

— end note ]

shared_ptr(const shared_ptr& r) noexcept;
template<class Y> shared_ptr(const shared_ptr<Y>& r) noexcept;

18 Constraints: For the second constructor, Y* is compatible with T*.
19 Effects: If r is empty, constructs an empty shared_ptr object; otherwise, constructs a shared_ptr

object that shares ownership with r.
20 Postconditions: get() == r.get() && use_count() == r.use_count().

shared_ptr(shared_ptr&& r) noexcept;
template<class Y> shared_ptr(shared_ptr<Y>&& r) noexcept;

21 Constraints: For the second constructor, Y* is compatible with T*.
22 Effects: Move constructs a shared_ptr instance from r.
23 Postconditions: *this contains the old value of r. r is empty, and r.get() == nullptr.

template<class Y> explicit shared_ptr(const weak_ptr<Y>& r);

24 Constraints: Y* is compatible with T*.
25 Effects: Constructs a shared_ptr object that shares ownership with r and stores a copy of the pointer

stored in r. If an exception is thrown, the constructor has no effect.
26 Postconditions: use_count() == r.use_count().
27 Throws: bad_weak_ptr when r.expired().

template<class Y, class D> shared_ptr(unique_ptr<Y, D>&& r);

28 Constraints: Y* is compatible with T* and unique_ptr<Y, D>::pointer is convertible to element_-
type*.

29 Effects: If r.get() == nullptr, equivalent to shared_ptr(). Otherwise, if D is not a reference type,
equivalent to shared_ptr(r.release(), std::move(r.get_deleter())). Otherwise, equivalent to
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shared_ptr(r.release(), ref(r.get_deleter())). If an exception is thrown, the constructor has
no effect.

20.3.2.2.3 Destructor [util.smartptr.shared.dest]

~shared_ptr();

1 Effects:
—(1.1) If *this is empty or shares ownership with another shared_ptr instance (use_count() > 1),

there are no side effects.
—(1.2) Otherwise, if *this owns an object p and a deleter d, d(p) is called.
—(1.3) Otherwise, *this owns a pointer p, and delete p is called.

2 [Note 1 : Since the destruction of *this decreases the number of instances that share ownership with *this by one,
after *this has been destroyed all shared_ptr instances that shared ownership with *this will report a use_count()
that is one less than its previous value. — end note ]

20.3.2.2.4 Assignment [util.smartptr.shared.assign]

shared_ptr& operator=(const shared_ptr& r) noexcept;
template<class Y> shared_ptr& operator=(const shared_ptr<Y>& r) noexcept;

1 Effects: Equivalent to shared_ptr(r).swap(*this).
2 Returns: *this.
3 [Note 1 : The use count updates caused by the temporary object construction and destruction are not observable

side effects, so the implementation can meet the effects (and the implied guarantees) via different means, without
creating a temporary. In particular, in the example:

shared_ptr<int> p(new int);
shared_ptr<void> q(p);
p = p;
q = p;

both assignments can be no-ops. — end note ]

shared_ptr& operator=(shared_ptr&& r) noexcept;
template<class Y> shared_ptr& operator=(shared_ptr<Y>&& r) noexcept;

4 Effects: Equivalent to shared_ptr(std::move(r)).swap(*this).
5 Returns: *this.

template<class Y, class D> shared_ptr& operator=(unique_ptr<Y, D>&& r);

6 Effects: Equivalent to shared_ptr(std::move(r)).swap(*this).
7 Returns: *this.

20.3.2.2.5 Modifiers [util.smartptr.shared.mod]

void swap(shared_ptr& r) noexcept;

1 Effects: Exchanges the contents of *this and r.

void reset() noexcept;

2 Effects: Equivalent to shared_ptr().swap(*this).

template<class Y> void reset(Y* p);

3 Effects: Equivalent to shared_ptr(p).swap(*this).

template<class Y, class D> void reset(Y* p, D d);

4 Effects: Equivalent to shared_ptr(p, d).swap(*this).

template<class Y, class D, class A> void reset(Y* p, D d, A a);

5 Effects: Equivalent to shared_ptr(p, d, a).swap(*this).
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20.3.2.2.6 Observers [util.smartptr.shared.obs]

element_type* get() const noexcept;

1 Returns: The stored pointer.

T& operator*() const noexcept;

2 Preconditions: get() != nullptr.
3 Returns: *get().
4 Remarks: When T is an array type or cv void, it is unspecified whether this member function is

declared. If it is declared, it is unspecified what its return type is, except that the declaration (although
not necessarily the definition) of the function shall be well-formed.

T* operator->() const noexcept;

5 Preconditions: get() != nullptr.
6 Returns: get().
7 Remarks: When T is an array type, it is unspecified whether this member function is declared. If it is

declared, it is unspecified what its return type is, except that the declaration (although not necessarily
the definition) of the function shall be well-formed.

element_type& operator[](ptrdiff_t i) const;

8 Preconditions: get() != nullptr && i >= 0. If T is U[N], i < N.
9 Returns: get()[i].

10 Throws: Nothing.
11 Remarks: When T is not an array type, it is unspecified whether this member function is declared.

If it is declared, it is unspecified what its return type is, except that the declaration (although not
necessarily the definition) of the function shall be well-formed.

long use_count() const noexcept;

12 Synchronization: None.
13 Returns: The number of shared_ptr objects, *this included, that share ownership with *this, or 0

when *this is empty.
14 [Note 1 : get() == nullptr does not imply a specific return value of use_count(). — end note ]
15 [Note 2 : weak_ptr<T>::lock() can affect the return value of use_count(). — end note ]
16 [Note 3 : When multiple threads might affect the return value of use_count(), the result is approximate. In

particular, use_count() == 1 does not imply that accesses through a previously destroyed shared_ptr have in
any sense completed. — end note ]

explicit operator bool() const noexcept;

17 Returns: get() != nullptr.

template<class U> bool owner_before(const shared_ptr<U>& b) const noexcept;
template<class U> bool owner_before(const weak_ptr<U>& b) const noexcept;

18 Returns: An unspecified value such that
—(18.1) x.owner_before(y) defines a strict weak ordering as defined in 27.8;
—(18.2) under the equivalence relation defined by owner_before, !a.owner_before(b) && !b.owner_-

before(a), two shared_ptr or weak_ptr instances are equivalent if and only if they share
ownership or are both empty.

20.3.2.2.7 Creation [util.smartptr.shared.create]
1 The common requirements that apply to all make_shared, allocate_shared, make_shared_for_overwrite,

and allocate_shared_for_overwrite overloads, unless specified otherwise, are described below.

template<class T, ...>
shared_ptr<T> make_shared(args);
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template<class T, class A, ...>
shared_ptr<T> allocate_shared(const A& a, args);

template<class T, ...>
shared_ptr<T> make_shared_for_overwrite(args);

template<class T, class A, ...>
shared_ptr<T> allocate_shared_for_overwrite(const A& a, args);

2 Preconditions: A meets the Cpp17Allocator requirements (16.4.4.6.1).
3 Effects: Allocates memory for an object of type T (or U[N] when T is U[], where N is determined

from args as specified by the concrete overload). The object is initialized from args as specified by
the concrete overload. The allocate_shared and allocate_shared_for_overwrite templates use a
copy of a (rebound for an unspecified value_type) to allocate memory. If an exception is thrown, the
functions have no effect.

4 Postconditions: r.get() != nullptr && r.use_count() == 1, where r is the return value.
5 Returns: A shared_ptr instance that stores and owns the address of the newly constructed object.
6 Throws: bad_alloc, or an exception thrown from allocate or from the initialization of the object.
7 Remarks:

—(7.1) Implementations should perform no more than one memory allocation.
[Note 1 : This provides efficiency equivalent to an intrusive smart pointer. — end note ]

—(7.2) When an object of an array type U is specified to have an initial value of u (of the same type),
this shall be interpreted to mean that each array element of the object has as its initial value the
corresponding element from u.

—(7.3) When an object of an array type is specified to have a default initial value, this shall be interpreted
to mean that each array element of the object has a default initial value.

—(7.4) When a (sub)object of a non-array type U is specified to have an initial value of v, or U(l...),
where l... is a list of constructor arguments, make_shared shall initialize this (sub)object via the
expression ::new(pv) U(v) or ::new(pv) U(l...) respectively, where pv has type void* and
points to storage suitable to hold an object of type U.

—(7.5) When a (sub)object of a non-array type U is specified to have an initial value of v, or U(l...),
where l... is a list of constructor arguments, allocate_shared shall initialize this (sub)object
via the expression
—(7.5.1) allocator_traits<A2>::construct(a2, pv, v) or
—(7.5.2) allocator_traits<A2>::construct(a2, pv, l...)

respectively, where pv points to storage suitable to hold an object of type U and a2 of type A2
is a rebound copy of the allocator a passed to allocate_shared such that its value_type is
remove_cv_t<U>.

—(7.6) When a (sub)object of non-array type U is specified to have a default initial value, make_shared
shall initialize this (sub)object via the expression ::new(pv) U(), where pv has type void* and
points to storage suitable to hold an object of type U.

—(7.7) When a (sub)object of non-array type U is specified to have a default initial value, allocate_shared
shall initialize this (sub)object via the expression allocator_traits<A2>::construct(a2, pv),
where pv points to storage suitable to hold an object of type U and a2 of type A2 is a rebound
copy of the allocator a passed to allocate_shared such that its value_type is remove_cv_t<U>.

—(7.8) When a (sub)object of non-array type U is initialized by make_shared_for_overwrite or
allocate_shared_for_overwrite, it is initialized via the expression ::new(pv) U, where pv
has type void* and points to storage suitable to hold an object of type U.

—(7.9) Array elements are initialized in ascending order of their addresses.
—(7.10) When the lifetime of the object managed by the return value ends, or when the initialization of an

array element throws an exception, the initialized elements are destroyed in the reverse order of
their original construction.

—(7.11) When a (sub)object of non-array type U that was initialized by make_shared is to be destroyed, it
is destroyed via the expression pv->~U() where pv points to that object of type U.
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—(7.12) When a (sub)object of non-array type U that was initialized by allocate_shared is to be destroyed,
it is destroyed via the expression allocator_traits<A2>::destroy(a2, pv) where pv points to
that object of type remove_cv_t<U> and a2 of type A2 is a rebound copy of the allocator a passed
to allocate_shared such that its value_type is remove_cv_t<U>.

[Note 2 : These functions will typically allocate more memory than sizeof(T) to allow for internal bookkeeping
structures such as reference counts. — end note ]

template<class T, class... Args>
shared_ptr<T> make_shared(Args&&... args); // T is not array

template<class T, class A, class... Args>
shared_ptr<T> allocate_shared(const A& a, Args&&... args); // T is not array

8 Constraints: T is not an array type.
9 Returns: A shared_ptr to an object of type T with an initial value T(std::forward<Args>(args)...).

10 Remarks: The shared_ptr constructors called by these functions enable shared_from_this with the
address of the newly constructed object of type T.

11 [Example 1 :
shared_ptr<int> p = make_shared<int>(); // shared_ptr to int()
shared_ptr<vector<int>> q = make_shared<vector<int>>(16, 1);

// shared_ptr to vector of 16 elements with value 1

— end example ]

template<class T> shared_ptr<T>
make_shared(size_t N); // T is U[]

template<class T, class A>
shared_ptr<T> allocate_shared(const A& a, size_t N); // T is U[]

12 Constraints: T is of the form U[].
13 Returns: A shared_ptr to an object of type U[N] with a default initial value, where U is remove_-

extent_t<T>.
14 [Example 2 :

shared_ptr<double[]> p = make_shared<double[]>(1024);
// shared_ptr to a value-initialized double[1024]

shared_ptr<double[][2][2]> q = make_shared<double[][2][2]>(6);
// shared_ptr to a value-initialized double[6][2][2]

— end example ]

template<class T>
shared_ptr<T> make_shared(); // T is U[N]

template<class T, class A>
shared_ptr<T> allocate_shared(const A& a); // T is U[N]

15 Constraints: T is of the form U[N].
16 Returns: A shared_ptr to an object of type T with a default initial value.
17 [Example 3 :

shared_ptr<double[1024]> p = make_shared<double[1024]>();
// shared_ptr to a value-initialized double[1024]

shared_ptr<double[6][2][2]> q = make_shared<double[6][2][2]>();
// shared_ptr to a value-initialized double[6][2][2]

— end example ]

template<class T>
shared_ptr<T> make_shared(size_t N,

const remove_extent_t<T>& u); // T is U[]
template<class T, class A>

shared_ptr<T> allocate_shared(const A& a, size_t N,
const remove_extent_t<T>& u); // T is U[]

18 Constraints: T is of the form U[].
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19 Returns: A shared_ptr to an object of type U[N], where U is remove_extent_t<T> and each array
element has an initial value of u.

20 [Example 4 :
shared_ptr<double[]> p = make_shared<double[]>(1024, 1.0);

// shared_ptr to a double[1024], where each element is 1.0
shared_ptr<double[][2]> q = make_shared<double[][2]>(6, {1.0, 0.0});

// shared_ptr to a double[6][2], where each double[2] element is {1.0, 0.0}
shared_ptr<vector<int>[]> r = make_shared<vector<int>[]>(4, {1, 2});

// shared_ptr to a vector<int>[4], where each vector has contents {1, 2}

— end example ]

template<class T>
shared_ptr<T> make_shared(const remove_extent_t<T>& u); // T is U[N]

template<class T, class A>
shared_ptr<T> allocate_shared(const A& a,

const remove_extent_t<T>& u); // T is U[N]

21 Constraints: T is of the form U[N].
22 Returns: A shared_ptr to an object of type T, where each array element of type remove_extent_t<T>

has an initial value of u.
23 [Example 5 :

shared_ptr<double[1024]> p = make_shared<double[1024]>(1.0);
// shared_ptr to a double[1024], where each element is 1.0

shared_ptr<double[6][2]> q = make_shared<double[6][2]>({1.0, 0.0});
// shared_ptr to a double[6][2], where each double[2] element is {1.0, 0.0}

shared_ptr<vector<int>[4]> r = make_shared<vector<int>[4]>({1, 2});
// shared_ptr to a vector<int>[4], where each vector has contents {1, 2}

— end example ]

template<class T>
shared_ptr<T> make_shared_for_overwrite();

template<class T, class A>
shared_ptr<T> allocate_shared_for_overwrite(const A& a);

24 Constraints: T is not an array of unknown bound.
25 Returns: A shared_ptr to an object of type T.
26 [Example 6 :

struct X { double data[1024]; };
shared_ptr<X> p = make_shared_for_overwrite<X>();

// shared_ptr to a default-initialized X, where each element in X::data has an indeterminate value

shared_ptr<double[1024]> q = make_shared_for_overwrite<double[1024]>();
// shared_ptr to a default-initialized double[1024], where each element has an indeterminate value

— end example ]

template<class T>
shared_ptr<T> make_shared_for_overwrite(size_t N);

template<class T, class A>
shared_ptr<T> allocate_shared_for_overwrite(const A& a, size_t N);

27 Constraints: T is an array of unknown bound.
28 Returns: A shared_ptr to an object of type U[N], where U is remove_extent_t<T>.
29 [Example 7 :

shared_ptr<double[]> p = make_shared_for_overwrite<double[]>(1024);
// shared_ptr to a default-initialized double[1024], where each element has an indeterminate value

— end example ]

20.3.2.2.8 Comparison [util.smartptr.shared.cmp]

template<class T, class U>
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bool operator==(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept;

1 Returns: a.get() == b.get().

template<class T>
bool operator==(const shared_ptr<T>& a, nullptr_t) noexcept;

2 Returns: !a.

template<class T, class U>
strong_ordering operator<=>(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept;

3 Returns: compare_three_way()(a.get(), b.get()).
4 [Note 1 : Defining a comparison operator function allows shared_ptr objects to be used as keys in associative

containers. — end note ]

template<class T>
strong_ordering operator<=>(const shared_ptr<T>& a, nullptr_t) noexcept;

5 Returns:
compare_three_way()(a.get(), static_cast<typename shared_ptr<T>::element_type*>(nullptr))

20.3.2.2.9 Specialized algorithms [util.smartptr.shared.spec]

template<class T>
void swap(shared_ptr<T>& a, shared_ptr<T>& b) noexcept;

1 Effects: Equivalent to a.swap(b).

20.3.2.2.10 Casts [util.smartptr.shared.cast]

template<class T, class U>
shared_ptr<T> static_pointer_cast(const shared_ptr<U>& r) noexcept;

template<class T, class U>
shared_ptr<T> static_pointer_cast(shared_ptr<U>&& r) noexcept;

1 Mandates: The expression static_cast<T*>((U*)nullptr) is well-formed.
2 Returns:

shared_ptr<T>(R , static_cast<typename shared_ptr<T>::element_type*>(r.get()))

where R is r for the first overload, and std::move(r) for the second.
3 [Note 1 : The seemingly equivalent expression shared_ptr<T>(static_cast<T*>(r.get())) will eventually

result in undefined behavior, attempting to delete the same object twice. — end note ]

template<class T, class U>
shared_ptr<T> dynamic_pointer_cast(const shared_ptr<U>& r) noexcept;

template<class T, class U>
shared_ptr<T> dynamic_pointer_cast(shared_ptr<U>&& r) noexcept;

4 Mandates: The expression dynamic_cast<T*>((U*)nullptr) is well-formed. The expression dynamic_-
cast<typename shared_ptr<T>::element_type*>(r.get()) is well-formed.

5 Preconditions: The expression dynamic_cast<typename shared_ptr<T>::element_type*>(r.get())
has well-defined behavior.

6 Returns:
—(6.1) When dynamic_cast<typename shared_ptr<T>::element_type*>(r.get()) returns a non-null

value p, shared_ptr<T>(R, p), where R is r for the first overload, and std::move(r) for the
second.

—(6.2) Otherwise, shared_ptr<T>().
7 [Note 2 : The seemingly equivalent expression shared_ptr<T>(dynamic_cast<T*>(r.get())) will eventually

result in undefined behavior, attempting to delete the same object twice. — end note ]

template<class T, class U>
shared_ptr<T> const_pointer_cast(const shared_ptr<U>& r) noexcept;
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template<class T, class U>
shared_ptr<T> const_pointer_cast(shared_ptr<U>&& r) noexcept;

8 Mandates: The expression const_cast<T*>((U*)nullptr) is well-formed.
9 Returns:

shared_ptr<T>(R , const_cast<typename shared_ptr<T>::element_type*>(r.get()))

where R is r for the first overload, and std::move(r) for the second.
10 [Note 3 : The seemingly equivalent expression shared_ptr<T>(const_cast<T*>(r.get())) will eventually result

in undefined behavior, attempting to delete the same object twice. — end note ]

template<class T, class U>
shared_ptr<T> reinterpret_pointer_cast(const shared_ptr<U>& r) noexcept;

template<class T, class U>
shared_ptr<T> reinterpret_pointer_cast(shared_ptr<U>&& r) noexcept;

11 Mandates: The expression reinterpret_cast<T*>((U*)nullptr) is well-formed.
12 Returns:

shared_ptr<T>(R , reinterpret_cast<typename shared_ptr<T>::element_type*>(r.get()))

where R is r for the first overload, and std::move(r) for the second.
13 [Note 4 : The seemingly equivalent expression shared_ptr<T>(reinterpret_cast<T*>(r.get())) will eventu-

ally result in undefined behavior, attempting to delete the same object twice. — end note ]

20.3.2.2.11 get_deleter [util.smartptr.getdeleter]

template<class D, class T>
D* get_deleter(const shared_ptr<T>& p) noexcept;

1 Returns: If p owns a deleter d of type cv-unqualified D, returns addressof(d); otherwise returns
nullptr. The returned pointer remains valid as long as there exists a shared_ptr instance that owns
d.
[Note 1 : It is unspecified whether the pointer remains valid longer than that. This can happen if the
implementation doesn’t destroy the deleter until all weak_ptr instances that share ownership with p have been
destroyed. — end note ]

20.3.2.2.12 I/O [util.smartptr.shared.io]

template<class E, class T, class Y>
basic_ostream<E, T>& operator<<(basic_ostream<E, T>& os, const shared_ptr<Y>& p);

1 Effects: As if by: os << p.get();
2 Returns: os.

20.3.2.3 Class template weak_ptr [util.smartptr.weak]
20.3.2.3.1 General [util.smartptr.weak.general]

1 The weak_ptr class template stores a weak reference to an object that is already managed by a shared_ptr.
To access the object, a weak_ptr can be converted to a shared_ptr using the member function lock.

namespace std {
template<class T> class weak_ptr {
public:

using element_type = remove_extent_t<T>;

// 20.3.2.3.2, constructors
constexpr weak_ptr() noexcept;
template<class Y>

weak_ptr(const shared_ptr<Y>& r) noexcept;
weak_ptr(const weak_ptr& r) noexcept;
template<class Y>

weak_ptr(const weak_ptr<Y>& r) noexcept;
weak_ptr(weak_ptr&& r) noexcept;
template<class Y>

weak_ptr(weak_ptr<Y>&& r) noexcept;
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// 20.3.2.3.3, destructor
~weak_ptr();

// 20.3.2.3.4, assignment
weak_ptr& operator=(const weak_ptr& r) noexcept;
template<class Y>

weak_ptr& operator=(const weak_ptr<Y>& r) noexcept;
template<class Y>

weak_ptr& operator=(const shared_ptr<Y>& r) noexcept;
weak_ptr& operator=(weak_ptr&& r) noexcept;
template<class Y>

weak_ptr& operator=(weak_ptr<Y>&& r) noexcept;

// 20.3.2.3.5, modifiers
void swap(weak_ptr& r) noexcept;
void reset() noexcept;

// 20.3.2.3.6, observers
long use_count() const noexcept;
bool expired() const noexcept;
shared_ptr<T> lock() const noexcept;
template<class U>

bool owner_before(const shared_ptr<U>& b) const noexcept;
template<class U>

bool owner_before(const weak_ptr<U>& b) const noexcept;
};

template<class T>
weak_ptr(shared_ptr<T>) -> weak_ptr<T>;

}

2 Specializations of weak_ptr shall be Cpp17CopyConstructible and Cpp17CopyAssignable, allowing their use
in standard containers. The template parameter T of weak_ptr may be an incomplete type.

20.3.2.3.2 Constructors [util.smartptr.weak.const]

constexpr weak_ptr() noexcept;

1 Effects: Constructs an empty weak_ptr object that stores a null pointer value.
2 Postconditions: use_count() == 0.

weak_ptr(const weak_ptr& r) noexcept;
template<class Y> weak_ptr(const weak_ptr<Y>& r) noexcept;
template<class Y> weak_ptr(const shared_ptr<Y>& r) noexcept;

3 Constraints: For the second and third constructors, Y* is compatible with T*.
4 Effects: If r is empty, constructs an empty weak_ptr object that stores a null pointer value; otherwise,

constructs a weak_ptr object that shares ownership with r and stores a copy of the pointer stored in r.
5 Postconditions: use_count() == r.use_count().

weak_ptr(weak_ptr&& r) noexcept;
template<class Y> weak_ptr(weak_ptr<Y>&& r) noexcept;

6 Constraints: For the second constructor, Y* is compatible with T*.
7 Effects: Move constructs a weak_ptr instance from r.
8 Postconditions: *this contains the old value of r. r is empty, stores a null pointer value, and

r.use_count() == 0.

20.3.2.3.3 Destructor [util.smartptr.weak.dest]

~weak_ptr();

1 Effects: Destroys this weak_ptr object but has no effect on the object its stored pointer points to.
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20.3.2.3.4 Assignment [util.smartptr.weak.assign]

weak_ptr& operator=(const weak_ptr& r) noexcept;
template<class Y> weak_ptr& operator=(const weak_ptr<Y>& r) noexcept;
template<class Y> weak_ptr& operator=(const shared_ptr<Y>& r) noexcept;

1 Effects: Equivalent to weak_ptr(r).swap(*this).
2 Returns: *this.
3 Remarks: The implementation may meet the effects (and the implied guarantees) via different means,

without creating a temporary object.

weak_ptr& operator=(weak_ptr&& r) noexcept;
template<class Y> weak_ptr& operator=(weak_ptr<Y>&& r) noexcept;

4 Effects: Equivalent to weak_ptr(std::move(r)).swap(*this).
5 Returns: *this.

20.3.2.3.5 Modifiers [util.smartptr.weak.mod]

void swap(weak_ptr& r) noexcept;

1 Effects: Exchanges the contents of *this and r.

void reset() noexcept;

2 Effects: Equivalent to weak_ptr().swap(*this).

20.3.2.3.6 Observers [util.smartptr.weak.obs]

long use_count() const noexcept;

1 Returns: 0 if *this is empty; otherwise, the number of shared_ptr instances that share ownership
with *this.

bool expired() const noexcept;

2 Returns: use_count() == 0.

shared_ptr<T> lock() const noexcept;

3 Returns: expired() ? shared_ptr<T>() : shared_ptr<T>(*this), executed atomically.

template<class U> bool owner_before(const shared_ptr<U>& b) const noexcept;
template<class U> bool owner_before(const weak_ptr<U>& b) const noexcept;

4 Returns: An unspecified value such that
—(4.1) x.owner_before(y) defines a strict weak ordering as defined in 27.8;
—(4.2) under the equivalence relation defined by owner_before, !a.owner_before(b) && !b.owner_-

before(a), two shared_ptr or weak_ptr instances are equivalent if and only if they share
ownership or are both empty.

20.3.2.3.7 Specialized algorithms [util.smartptr.weak.spec]

template<class T>
void swap(weak_ptr<T>& a, weak_ptr<T>& b) noexcept;

1 Effects: Equivalent to a.swap(b).

20.3.2.4 Class template owner_less [util.smartptr.ownerless]
1 The class template owner_less allows ownership-based mixed comparisons of shared and weak pointers.

namespace std {
template<class T = void> struct owner_less;

template<class T> struct owner_less<shared_ptr<T>> {
bool operator()(const shared_ptr<T>&, const shared_ptr<T>&) const noexcept;
bool operator()(const shared_ptr<T>&, const weak_ptr<T>&) const noexcept;
bool operator()(const weak_ptr<T>&, const shared_ptr<T>&) const noexcept;

};
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template<class T> struct owner_less<weak_ptr<T>> {
bool operator()(const weak_ptr<T>&, const weak_ptr<T>&) const noexcept;
bool operator()(const shared_ptr<T>&, const weak_ptr<T>&) const noexcept;
bool operator()(const weak_ptr<T>&, const shared_ptr<T>&) const noexcept;

};

template<> struct owner_less<void> {
template<class T, class U>

bool operator()(const shared_ptr<T>&, const shared_ptr<U>&) const noexcept;
template<class T, class U>

bool operator()(const shared_ptr<T>&, const weak_ptr<U>&) const noexcept;
template<class T, class U>

bool operator()(const weak_ptr<T>&, const shared_ptr<U>&) const noexcept;
template<class T, class U>

bool operator()(const weak_ptr<T>&, const weak_ptr<U>&) const noexcept;

using is_transparent = unspecified ;
};

}

2 operator()(x, y) returns x.owner_before(y).
[Note 1 : Note that

—(2.1) operator() defines a strict weak ordering as defined in 27.8;
—(2.2) two shared_ptr or weak_ptr instances are equivalent under the equivalence relation defined by operator(),

!operator()(a, b) && !operator()(b, a), if and only if they share ownership or are both empty.
— end note ]

20.3.2.5 Class template enable_shared_from_this [util.smartptr.enab]
1 A class T can inherit from enable_shared_from_this<T> to inherit the shared_from_this member functions

that obtain a shared_ptr instance pointing to *this.
2 [Example 1 :

struct X: public enable_shared_from_this<X> { };

int main() {
shared_ptr<X> p(new X);
shared_ptr<X> q = p->shared_from_this();
assert(p == q);
assert(!p.owner_before(q) && !q.owner_before(p)); // p and q share ownership

}

— end example ]
namespace std {

template<class T> class enable_shared_from_this {
protected:

constexpr enable_shared_from_this() noexcept;
enable_shared_from_this(const enable_shared_from_this&) noexcept;
enable_shared_from_this& operator=(const enable_shared_from_this&) noexcept;
~enable_shared_from_this();

public:
shared_ptr<T> shared_from_this();
shared_ptr<T const> shared_from_this() const;
weak_ptr<T> weak_from_this() noexcept;
weak_ptr<T const> weak_from_this() const noexcept;

private:
mutable weak_ptr<T> weak_this; // exposition only

};
}

3 The template parameter T of enable_shared_from_this may be an incomplete type.

constexpr enable_shared_from_this() noexcept;
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enable_shared_from_this(const enable_shared_from_this<T>&) noexcept;

4 Effects: Value-initializes weak_this.

enable_shared_from_this<T>& operator=(const enable_shared_from_this<T>&) noexcept;

5 Returns: *this.
6 [Note 1 : weak_this is not changed. — end note ]

shared_ptr<T> shared_from_this();
shared_ptr<T const> shared_from_this() const;

7 Returns: shared_ptr<T>(weak_this).

weak_ptr<T> weak_from_this() noexcept;
weak_ptr<T const> weak_from_this() const noexcept;

8 Returns: weak_this.

20.3.3 Smart pointer hash support [util.smartptr.hash]
template<class T, class D> struct hash<unique_ptr<T, D>>;

1 Letting UP be unique_ptr<T, D>, the specialization hash<UP> is enabled (22.10.19) if and only if
hash<typename UP::pointer> is enabled. When enabled, for an object p of type UP, hash<UP>()(p)
evaluates to the same value as hash<typename UP::pointer>()(p.get()). The member functions
are not guaranteed to be noexcept.

template<class T> struct hash<shared_ptr<T>>;

2 For an object p of type shared_ptr<T>, hash<shared_ptr<T>>()(p) evaluates to the same value as
hash<typename shared_ptr<T>::element_type*>()(p.get()).

20.3.4 Smart pointer adaptors [smartptr.adapt]
20.3.4.1 Class template out_ptr_t [out.ptr.t]

1 out_ptr_t is a class template used to adapt types such as smart pointers (20.3) for functions that use output
pointer parameters.

2 [Example 1 :
#include <memory>
#include <cstdio>

int fopen_s(std::FILE** f, const char* name, const char* mode);

struct fclose_deleter {
void operator()(std::FILE* f) const noexcept {

std::fclose(f);
}

};

int main(int, char*[]) {
constexpr const char* file_name = "ow.o";
std::unique_ptr<std::FILE, fclose_deleter> file_ptr;
int err = fopen_s(std::out_ptr<std::FILE*>(file_ptr), file_name, "r+b");
if (err != 0)

return 1;
// *file_ptr is valid
return 0;

}

unique_ptr can be used with out_ptr to be passed into an output pointer-style function, without needing to hold
onto an intermediate pointer value and manually delete it on error or failure. — end example ]

namespace std {
template<class Smart, class Pointer, class... Args>
class out_ptr_t {
public:

explicit out_ptr_t(Smart&, Args...);
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out_ptr_t(const out_ptr_t&) = delete;

~out_ptr_t();

operator Pointer*() const noexcept;
operator void**() const noexcept;

private:
Smart& s; // exposition only
tuple<Args...> a; // exposition only
Pointer p; // exposition only

};
}

3 Pointer shall meet the Cpp17NullablePointer requirements. If Smart is a specialization of shared_ptr and
sizeof...(Args) == 0, the program is ill-formed.
[Note 1 : It is typically a user error to reset a shared_ptr without specifying a deleter, as shared_ptr will replace a
custom deleter upon usage of reset, as specified in 20.3.2.2.5. — end note ]

4 Program-defined specializations of out_ptr_t that depend on at least one program-defined type need not
meet the requirements for the primary template.

5 Evaluations of the conversion functions on the same object may conflict (6.9.2.2).

explicit out_ptr_t(Smart& smart, Args... args);

6 Effects: Initializes s with smart, a with std::forward<Args>(args)..., and value-initializes p. Then,
equivalent to:

—(6.1) s.reset();

if the expression s.reset() is well-formed;
—(6.2) otherwise,

s = Smart();

if is_constructible_v<Smart> is true;
—(6.3) otherwise, the program is ill-formed.

7 [Note 2 : The constructor is not noexcept to allow for a variety of non-terminating and safe implementation
strategies. For example, an implementation can allocate a shared_ptr’s internal node in the constructor and
let implementation-defined exceptions escape safely. The destructor can then move the allocated control block
in directly and avoid any other exceptions. — end note ]

~out_ptr_t();

8 Let SP be POINTER_OF_OR (Smart, Pointer) (20.2.1).
9 Effects: Equivalent to:

—(9.1) if (p) {
apply([&](auto&&... args) {

s.reset(static_cast<SP>(p), std::forward<Args>(args)...); }, std::move(a));
}

if the expression s.reset(static_cast<SP>(p), std::forward<Args>(args)...) is well-
formed;

—(9.2) otherwise,
if (p) {

apply([&](auto&&... args) {
s = Smart(static_cast<SP>(p), std::forward<Args>(args)...); }, std::move(a));

}

if is_constructible_v<Smart, SP, Args...> is true;
—(9.3) otherwise, the program is ill-formed.

operator Pointer*() const noexcept;

10 Preconditions: operator void**() has not been called on *this.
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11 Returns: addressof(const_cast<Pointer&>(p)).

operator void**() const noexcept;

12 Constraints: is_same_v<Pointer, void*> is false.
13 Mandates: is_pointer_v<Pointer> is true.
14 Preconditions: operator Pointer*() has not been called on *this.
15 Returns: A pointer value v such that:

—(15.1) the initial value *v is equivalent to static_cast<void*>(p) and
—(15.2) any modification of *v that is not followed by a subsequent modification of *this affects the value

of p during the destruction of *this, such that static_cast<void*>(p) == *v.
16 Remarks: Accessing *v outside the lifetime of *this has undefined behavior.
17 [Note 3 : reinterpret_cast<void**>(static_cast<Pointer*>(*this)) can be a viable implementation strat-

egy for some implementations. — end note ]

20.3.4.2 Function template out_ptr [out.ptr]

template<class Pointer = void, class Smart, class... Args>
auto out_ptr(Smart& s, Args&&... args);

1 Let P be Pointer if is_void_v<Pointer> is false, otherwise POINTER_OF (Smart).
2 Returns: out_ptr_t<Smart, P, Args&&...>(s, std::forward<Args>(args)...)

20.3.4.3 Class template inout_ptr_t [inout.ptr.t]
1 inout_ptr_t is a class template used to adapt types such as smart pointers (20.3) for functions that use

output pointer parameters whose dereferenced values may first be deleted before being set to another allocated
value.

2 [Example 1 :
#include <memory>

struct star_fish* star_fish_alloc();
int star_fish_populate(struct star_fish** ps, const char* description);

struct star_fish_deleter {
void operator() (struct star_fish* c) const noexcept;

};

using star_fish_ptr = std::unique_ptr<star_fish, star_fish_deleter>;

int main(int, char*[]) {
star_fish_ptr peach(star_fish_alloc());
// ...
// used, need to re-make
int err = star_fish_populate(std::inout_ptr(peach), "caring clown-fish liker");
return err;

}

A unique_ptr can be used with inout_ptr to be passed into an output pointer-style function. The original value will
be properly deleted according to the function it is used with and a new value reset in its place. — end example ]

namespace std {
template<class Smart, class Pointer, class... Args>
class inout_ptr_t {
public:

explicit inout_ptr_t(Smart&, Args...);
inout_ptr_t(const inout_ptr_t&) = delete;

~inout_ptr_t();

operator Pointer*() const noexcept;
operator void**() const noexcept;
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private:
Smart& s; // exposition only
tuple<Args...> a; // exposition only
Pointer p; // exposition only

};
}

3 Pointer shall meet the Cpp17NullablePointer requirements. If Smart is a specialization of shared_ptr, the
program is ill-formed.
[Note 1 : It is impossible to properly acquire unique ownership of the managed resource from a shared_ptr given its
shared ownership model. — end note ]

4 Program-defined specializations of inout_ptr_t that depend on at least one program-defined type need not
meet the requirements for the primary template.

5 Evaluations of the conversion functions on the same object may conflict (6.9.2.2).

explicit inout_ptr_t(Smart& smart, Args... args);

6 Effects: Initializes s with smart, a with std::forward<Args>(args)..., and p to either
—(6.1) smart if is_pointer_v<Smart> is true,
—(6.2) otherwise, smart.get().

7 Remarks: An implementation can call s.release().
8 [Note 2 : The constructor is not noexcept to allow for a variety of non-terminating and safe implementation

strategies. For example, an intrusive pointer implementation with a control block can allocate in the constructor
and safely fail with an exception. — end note ]

~inout_ptr_t();

9 Let SP be POINTER_OF_OR (Smart, Pointer) (20.2.1).
10 Let release-statement be s.release(); if an implementation does not call s.release() in the

constructor. Otherwise, it is empty.
11 Effects: Equivalent to:

—(11.1) if (p) {
apply([&](auto&&... args) {

s = Smart( static_cast<SP>(p), std::forward<Args>(args)...); }, std::move(a));
}

if is_pointer_v<Smart> is true;
—(11.2) otherwise,

release-statement ;
if (p) {

apply([&](auto&&... args) {
s.reset(static_cast<SP>(p), std::forward<Args>(args)...); }, std::move(a));

}

if the expression s.reset(static_cast<SP>(p), std::forward<Args>(args)...) is well-
formed;

—(11.3) otherwise,
release-statement ;
if (p) {

apply([&](auto&&... args) {
s = Smart(static_cast<SP>(p), std::forward<Args>(args)...); }, std::move(a));

}

if is_constructible_v<Smart, SP, Args...> is true;
—(11.4) otherwise, the program is ill-formed.

operator Pointer*() const noexcept;

12 Preconditions: operator void**() has not been called on *this.
13 Returns: addressof(const_cast<Pointer&>(p)).
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operator void**() const noexcept;

14 Constraints: is_same_v<Pointer, void*> is false.
15 Mandates: is_pointer_v<Pointer> is true.
16 Preconditions: operator Pointer*() has not been called on *this.
17 Returns: A pointer value v such that:

—(17.1) the initial value *v is equivalent to static_cast<void*>(p) and
—(17.2) any modification of *v that is not followed by subsequent modification of *this affects the value

of p during the destruction of *this, such that static_cast<void*>(p) == *v.
18 Remarks: Accessing *v outside the lifetime of *this has undefined behavior.
19 [Note 3 : reinterpret_cast<void**>(static_cast<Pointer*>(*this)) can be a viable implementation strat-

egy for some implementations. — end note ]

20.3.4.4 Function template inout_ptr [inout.ptr]

template<class Pointer = void, class Smart, class... Args>
auto inout_ptr(Smart& s, Args&&... args);

1 Let P be Pointer if is_void_v<Pointer> is false, otherwise POINTER_OF (Smart).
2 Returns: inout_ptr_t<Smart, P, Args&&...>(s, std::forward<Args>(args)...).

20.4 Memory resources [mem.res]
20.4.1 Header <memory_resource> synopsis [mem.res.syn]

namespace std::pmr {
// 20.4.2, class memory_resource
class memory_resource;

bool operator==(const memory_resource& a, const memory_resource& b) noexcept;

// 20.4.3, class template polymorphic_allocator
template<class Tp = byte> class polymorphic_allocator;

template<class T1, class T2>
bool operator==(const polymorphic_allocator<T1>& a,

const polymorphic_allocator<T2>& b) noexcept;

// 20.4.4, global memory resources
memory_resource* new_delete_resource() noexcept;
memory_resource* null_memory_resource() noexcept;
memory_resource* set_default_resource(memory_resource* r) noexcept;
memory_resource* get_default_resource() noexcept;

// 20.4.5, pool resource classes
struct pool_options;
class synchronized_pool_resource;
class unsynchronized_pool_resource;
class monotonic_buffer_resource;

}

20.4.2 Class memory_resource [mem.res.class]
20.4.2.1 General [mem.res.class.general]

1 The memory_resource class is an abstract interface to an unbounded set of classes encapsulating memory
resources.

namespace std::pmr {
class memory_resource {

static constexpr size_t max_align = alignof(max_align_t); // exposition only
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public:
memory_resource() = default;
memory_resource(const memory_resource&) = default;
virtual ~memory_resource();

memory_resource& operator=(const memory_resource&) = default;

[[nodiscard]] void* allocate(size_t bytes, size_t alignment = max_align);
void deallocate(void* p, size_t bytes, size_t alignment = max_align);

bool is_equal(const memory_resource& other) const noexcept;

private:
virtual void* do_allocate(size_t bytes, size_t alignment) = 0;
virtual void do_deallocate(void* p, size_t bytes, size_t alignment) = 0;

virtual bool do_is_equal(const memory_resource& other) const noexcept = 0;
};

}

20.4.2.2 Public member functions [mem.res.public]

~memory_resource();

1 Effects: Destroys this memory_resource.

[[nodiscard]] void* allocate(size_t bytes, size_t alignment = max_align);

2 Effects: Allocates storage by calling do_allocate(bytes, alignment) and implicitly creates objects
within the allocated region of storage.

3 Returns: A pointer to a suitable created object (6.7.2) in the allocated region of storage.
4 Throws: What and when the call to do_allocate throws.

void deallocate(void* p, size_t bytes, size_t alignment = max_align);

5 Effects: Equivalent to do_deallocate(p, bytes, alignment).

bool is_equal(const memory_resource& other) const noexcept;

6 Effects: Equivalent to: return do_is_equal(other);

20.4.2.3 Private virtual member functions [mem.res.private]

virtual void* do_allocate(size_t bytes, size_t alignment) = 0;

1 Preconditions: alignment is a power of two.
2 Returns: A derived class shall implement this function to return a pointer to allocated storage (6.7.5.5.2)

with a size of at least bytes, aligned to the specified alignment.
3 Throws: A derived class implementation shall throw an appropriate exception if it is unable to allocate

memory with the requested size and alignment.

virtual void do_deallocate(void* p, size_t bytes, size_t alignment) = 0;

4 Preconditions: p was returned from a prior call to allocate(bytes, alignment) on a memory resource
equal to *this, and the storage at p has not yet been deallocated.

5 Effects: A derived class shall implement this function to dispose of allocated storage.
6 Throws: Nothing.

virtual bool do_is_equal(const memory_resource& other) const noexcept = 0;

7 Returns: A derived class shall implement this function to return true if memory allocated from this
can be deallocated from other and vice-versa, otherwise false.
[Note 1 : It is possible that the most-derived type of other does not match the type of this. For a derived
class D, an implementation of this function can immediately return false if dynamic_cast<const D*>(&other)
== nullptr. — end note ]
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20.4.2.4 Equality [mem.res.eq]

bool operator==(const memory_resource& a, const memory_resource& b) noexcept;

1 Returns: &a == &b || a.is_equal(b).

20.4.3 Class template polymorphic_allocator [mem.poly.allocator.class]
20.4.3.1 General [mem.poly.allocator.class.general]

1 A specialization of class template pmr::polymorphic_allocator meets the Cpp17Allocator requirements
(16.4.4.6.1) if its template argument is a cv-unqualified object type. Constructed with different memory
resources, different instances of the same specialization of pmr::polymorphic_allocator can exhibit entirely
different allocation behavior. This runtime polymorphism allows objects that use polymorphic_allocator
to behave as if they used different allocator types at run time even though they use the same static allocator
type.

2 A specialization of class template pmr::polymorphic_allocator meets the allocator completeness require-
ments (16.4.4.6.2) if its template argument is a cv-unqualified object type.

namespace std::pmr {
template<class Tp = byte> class polymorphic_allocator {

memory_resource* memory_rsrc; // exposition only

public:
using value_type = Tp;

// 20.4.3.2, constructors
polymorphic_allocator() noexcept;
polymorphic_allocator(memory_resource* r);

polymorphic_allocator(const polymorphic_allocator& other) = default;

template<class U>
polymorphic_allocator(const polymorphic_allocator<U>& other) noexcept;

polymorphic_allocator& operator=(const polymorphic_allocator&) = delete;

// 20.4.3.3, member functions
[[nodiscard]] Tp* allocate(size_t n);
void deallocate(Tp* p, size_t n);

[[nodiscard]] void* allocate_bytes(size_t nbytes, size_t alignment = alignof(max_align_t));
void deallocate_bytes(void* p, size_t nbytes, size_t alignment = alignof(max_align_t));
template<class T> [[nodiscard]] T* allocate_object(size_t n = 1);
template<class T> void deallocate_object(T* p, size_t n = 1);
template<class T, class... CtorArgs> [[nodiscard]] T* new_object(CtorArgs&&... ctor_args);
template<class T> void delete_object(T* p);

template<class T, class... Args>
void construct(T* p, Args&&... args);

polymorphic_allocator select_on_container_copy_construction() const;

memory_resource* resource() const;

// friends
friend bool operator==(const polymorphic_allocator& a,

const polymorphic_allocator& b) noexcept {
return *a.resource() == *b.resource();

}
};

}
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20.4.3.2 Constructors [mem.poly.allocator.ctor]

polymorphic_allocator() noexcept;

1 Effects: Sets memory_rsrc to get_default_resource().

polymorphic_allocator(memory_resource* r);

2 Preconditions: r is non-null.
3 Effects: Sets memory_rsrc to r.
4 Throws: Nothing.
5 [Note 1 : This constructor provides an implicit conversion from memory_resource*. — end note ]

template<class U> polymorphic_allocator(const polymorphic_allocator<U>& other) noexcept;

6 Effects: Sets memory_rsrc to other.resource().

20.4.3.3 Member functions [mem.poly.allocator.mem]

[[nodiscard]] Tp* allocate(size_t n);

1 Effects: If numeric_limits<size_t>::max() / sizeof(Tp) < n, throws bad_array_new_length.
Otherwise equivalent to:

return static_cast<Tp*>(memory_rsrc->allocate(n * sizeof(Tp), alignof(Tp)));

void deallocate(Tp* p, size_t n);

2 Preconditions: p was allocated from a memory resource x, equal to *memory_rsrc, using x.allocate(n
* sizeof(Tp), alignof(Tp)).

3 Effects: Equivalent to memory_rsrc->deallocate(p, n * sizeof(Tp), alignof(Tp)).
4 Throws: Nothing.

[[nodiscard]] void* allocate_bytes(size_t nbytes, size_t alignment = alignof(max_align_t));

5 Effects: Equivalent to: return memory_rsrc->allocate(nbytes, alignment);
6 [Note 1 : The return type is void* (rather than, e.g., byte*) to support conversion to an arbitrary pointer type

U* by static_cast<U*>, thus facilitating construction of a U object in the allocated memory. — end note ]

void deallocate_bytes(void* p, size_t nbytes, size_t alignment = alignof(max_align_t));

7 Effects: Equivalent to memory_rsrc->deallocate(p, nbytes, alignment).

template<class T>
[[nodiscard]] T* allocate_object(size_t n = 1);

8 Effects: Allocates memory suitable for holding an array of n objects of type T, as follows:
—(8.1) if numeric_limits<size_t>::max() / sizeof(T) < n, throws bad_array_new_length,
—(8.2) otherwise equivalent to:

return static_cast<T*>(allocate_bytes(n*sizeof(T), alignof(T)));
9 [Note 2 : T is not deduced and must therefore be provided as a template argument. — end note ]

template<class T>
void deallocate_object(T* p, size_t n = 1);

10 Effects: Equivalent to deallocate_bytes(p, n*sizeof(T), alignof(T)).

template<class T, class... CtorArgs>
[[nodiscard]] T* new_object(CtorArgs&&... ctor_args);

11 Effects: Allocates and constructs an object of type T, as follows.
Equivalent to:

T* p = allocate_object<T>();
try {

construct(p, std::forward<CtorArgs>(ctor_args)...);
} catch (...) {

deallocate_object(p);
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throw;
}
return p;

12 [Note 3 : T is not deduced and must therefore be provided as a template argument. — end note ]

template<class T>
void delete_object(T* p);

13 Effects: Equivalent to:
allocator_traits<polymorphic_allocator>::destroy(*this, p);
deallocate_object(p);

template<class T, class... Args>
void construct(T* p, Args&&... args);

14 Mandates: Uses-allocator construction of T with allocator *this (see 20.2.8.2) and constructor arguments
std::forward<Args>(args)... is well-formed.

15 Effects: Construct a T object in the storage whose address is represented by p by uses-allocator
construction with allocator *this and constructor arguments std::forward<Args>(args)....

16 Throws: Nothing unless the constructor for T throws.

polymorphic_allocator select_on_container_copy_construction() const;

17 Returns: polymorphic_allocator().
18 [Note 4 : The memory resource is not propagated. — end note ]

memory_resource* resource() const;

19 Returns: memory_rsrc.

20.4.3.4 Equality [mem.poly.allocator.eq]

template<class T1, class T2>
bool operator==(const polymorphic_allocator<T1>& a,

const polymorphic_allocator<T2>& b) noexcept;

1 Returns: *a.resource() == *b.resource().

20.4.4 Access to program-wide memory_resource objects [mem.res.global]
memory_resource* new_delete_resource() noexcept;

1 Returns: A pointer to a static-duration object of a type derived from memory_resource that can
serve as a resource for allocating memory using ::operator new and ::operator delete. The same
value is returned every time this function is called. For a return value p and a memory resource r,
p->is_equal(r) returns &r == p.

memory_resource* null_memory_resource() noexcept;

2 Returns: A pointer to a static-duration object of a type derived from memory_resource for which
allocate() always throws bad_alloc and for which deallocate() has no effect. The same value is
returned every time this function is called. For a return value p and a memory resource r, p->is_-
equal(r) returns &r == p.

3 The default memory resource pointer is a pointer to a memory resource that is used by certain facilities when
an explicit memory resource is not supplied through the interface. Its initial value is the return value of
new_delete_resource().

memory_resource* set_default_resource(memory_resource* r) noexcept;

4 Effects: If r is non-null, sets the value of the default memory resource pointer to r, otherwise sets the
default memory resource pointer to new_delete_resource().

5 Returns: The previous value of the default memory resource pointer.
6 Remarks: Calling the set_default_resource and get_default_resource functions shall not incur a

data race. A call to the set_default_resource function shall synchronize with subsequent calls to
the set_default_resource and get_default_resource functions.
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memory_resource* get_default_resource() noexcept;

7 Returns: The current value of the default memory resource pointer.

20.4.5 Pool resource classes [mem.res.pool]
20.4.5.1 Classes synchronized_pool_resource and unsynchronized_pool_resource

[mem.res.pool.overview]
1 The synchronized_pool_resource and unsynchronized_pool_resource classes (collectively called pool

resource classes) are general-purpose memory resources having the following qualities:
—(1.1) Each resource frees its allocated memory on destruction, even if deallocate has not been called for

some of the allocated blocks.
—(1.2) A pool resource consists of a collection of pools, serving requests for different block sizes. Each individual

pool manages a collection of chunks that are in turn divided into blocks of uniform size, returned via
calls to do_allocate. Each call to do_allocate(size, alignment) is dispatched to the pool serving
the smallest blocks accommodating at least size bytes.

—(1.3) When a particular pool is exhausted, allocating a block from that pool results in the allocation of an
additional chunk of memory from the upstream allocator (supplied at construction), thus replenishing
the pool. With each successive replenishment, the chunk size obtained increases geometrically.
[Note 1 : By allocating memory in chunks, the pooling strategy increases the chance that consecutive allocations
will be close together in memory. — end note ]

—(1.4) Allocation requests that exceed the largest block size of any pool are fulfilled directly from the upstream
allocator.

—(1.5) A pool_options struct may be passed to the pool resource constructors to tune the largest block size
and the maximum chunk size.

2 A synchronized_pool_resource may be accessed from multiple threads without external synchronization
and may have thread-specific pools to reduce synchronization costs. An unsynchronized_pool_resource
class may not be accessed from multiple threads simultaneously and thus avoids the cost of synchronization
entirely in single-threaded applications.

namespace std::pmr {
struct pool_options {

size_t max_blocks_per_chunk = 0;
size_t largest_required_pool_block = 0;

};

class synchronized_pool_resource : public memory_resource {
public:

synchronized_pool_resource(const pool_options& opts, memory_resource* upstream);

synchronized_pool_resource()
: synchronized_pool_resource(pool_options(), get_default_resource()) {}

explicit synchronized_pool_resource(memory_resource* upstream)
: synchronized_pool_resource(pool_options(), upstream) {}

explicit synchronized_pool_resource(const pool_options& opts)
: synchronized_pool_resource(opts, get_default_resource()) {}

synchronized_pool_resource(const synchronized_pool_resource&) = delete;
virtual ~synchronized_pool_resource();

synchronized_pool_resource& operator=(const synchronized_pool_resource&) = delete;

void release();
memory_resource* upstream_resource() const;
pool_options options() const;

protected:
void* do_allocate(size_t bytes, size_t alignment) override;
void do_deallocate(void* p, size_t bytes, size_t alignment) override;
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bool do_is_equal(const memory_resource& other) const noexcept override;
};

class unsynchronized_pool_resource : public memory_resource {
public:

unsynchronized_pool_resource(const pool_options& opts, memory_resource* upstream);

unsynchronized_pool_resource()
: unsynchronized_pool_resource(pool_options(), get_default_resource()) {}

explicit unsynchronized_pool_resource(memory_resource* upstream)
: unsynchronized_pool_resource(pool_options(), upstream) {}

explicit unsynchronized_pool_resource(const pool_options& opts)
: unsynchronized_pool_resource(opts, get_default_resource()) {}

unsynchronized_pool_resource(const unsynchronized_pool_resource&) = delete;
virtual ~unsynchronized_pool_resource();

unsynchronized_pool_resource& operator=(const unsynchronized_pool_resource&) = delete;

void release();
memory_resource* upstream_resource() const;
pool_options options() const;

protected:
void* do_allocate(size_t bytes, size_t alignment) override;
void do_deallocate(void* p, size_t bytes, size_t alignment) override;

bool do_is_equal(const memory_resource& other) const noexcept override;
};

}

20.4.5.2 pool_options data members [mem.res.pool.options]
1 The members of pool_options comprise a set of constructor options for pool resources. The effect of each

option on the pool resource behavior is described below:

size_t max_blocks_per_chunk;

2 The maximum number of blocks that will be allocated at once from the upstream memory resource
(20.4.6) to replenish a pool. If the value of max_blocks_per_chunk is zero or is greater than an
implementation-defined limit, that limit is used instead. The implementation may choose to use a
smaller value than is specified in this field and may use different values for different pools.

size_t largest_required_pool_block;

3 The largest allocation size that is required to be fulfilled using the pooling mechanism. Attempts to
allocate a single block larger than this threshold will be allocated directly from the upstream memory
resource. If largest_required_pool_block is zero or is greater than an implementation-defined limit,
that limit is used instead. The implementation may choose a pass-through threshold larger than
specified in this field.

20.4.5.3 Constructors and destructors [mem.res.pool.ctor]

synchronized_pool_resource(const pool_options& opts, memory_resource* upstream);
unsynchronized_pool_resource(const pool_options& opts, memory_resource* upstream);

1 Preconditions: upstream is the address of a valid memory resource.
2 Effects: Constructs a pool resource object that will obtain memory from upstream whenever the pool

resource is unable to satisfy a memory request from its own internal data structures. The resulting
object will hold a copy of upstream, but will not own the resource to which upstream points.
[Note 1 : The intention is that calls to upstream->allocate() will be substantially fewer than calls to
this->allocate() in most cases. — end note ]

The behavior of the pooling mechanism is tuned according to the value of the opts argument.
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3 Throws: Nothing unless upstream->allocate() throws. It is unspecified if, or under what conditions,
this constructor calls upstream->allocate().

virtual ~synchronized_pool_resource();
virtual ~unsynchronized_pool_resource();

4 Effects: Calls release().

20.4.5.4 Members [mem.res.pool.mem]

void release();

1 Effects: Calls upstream_resource()->deallocate() as necessary to release all allocated memory.
[Note 1 : The memory is released back to upstream_resource() even if deallocate has not been called for
some of the allocated blocks. — end note ]

memory_resource* upstream_resource() const;

2 Returns: The value of the upstream argument provided to the constructor of this object.

pool_options options() const;

3 Returns: The options that control the pooling behavior of this resource. The values in the returned
struct may differ from those supplied to the pool resource constructor in that values of zero will be
replaced with implementation-defined defaults, and sizes may be rounded to unspecified granularity.

void* do_allocate(size_t bytes, size_t alignment) override;

4 Effects: If the pool selected for a block of size bytes is unable to satisfy the memory request from its
own internal data structures, it will call upstream_resource()->allocate() to obtain more memory.
If bytes is larger than that which the largest pool can handle, then memory will be allocated using
upstream_resource()->allocate().

5 Returns: A pointer to allocated storage (6.7.5.5.2) with a size of at least bytes. The size and alignment
of the allocated memory shall meet the requirements for a class derived from memory_resource (20.4.2).

6 Throws: Nothing unless upstream_resource()->allocate() throws.

void do_deallocate(void* p, size_t bytes, size_t alignment) override;

7 Effects: Returns the memory at p to the pool. It is unspecified if, or under what circumstances, this
operation will result in a call to upstream_resource()->deallocate().

8 Throws: Nothing.

bool do_is_equal(const memory_resource& other) const noexcept override;

9 Returns: this == &other.

20.4.6 Class monotonic_buffer_resource [mem.res.monotonic.buffer]
20.4.6.1 General [mem.res.monotonic.buffer.general]

1 A monotonic_buffer_resource is a special-purpose memory resource intended for very fast memory alloca-
tions in situations where memory is used to build up a few objects and then is released all at once when the
memory resource object is destroyed.

namespace std::pmr {
class monotonic_buffer_resource : public memory_resource {

memory_resource* upstream_rsrc; // exposition only
void* current_buffer; // exposition only
size_t next_buffer_size; // exposition only

public:
explicit monotonic_buffer_resource(memory_resource* upstream);
monotonic_buffer_resource(size_t initial_size, memory_resource* upstream);
monotonic_buffer_resource(void* buffer, size_t buffer_size, memory_resource* upstream);

monotonic_buffer_resource()
: monotonic_buffer_resource(get_default_resource()) {}
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explicit monotonic_buffer_resource(size_t initial_size)
: monotonic_buffer_resource(initial_size, get_default_resource()) {}

monotonic_buffer_resource(void* buffer, size_t buffer_size)
: monotonic_buffer_resource(buffer, buffer_size, get_default_resource()) {}

monotonic_buffer_resource(const monotonic_buffer_resource&) = delete;

virtual ~monotonic_buffer_resource();

monotonic_buffer_resource& operator=(const monotonic_buffer_resource&) = delete;

void release();
memory_resource* upstream_resource() const;

protected:
void* do_allocate(size_t bytes, size_t alignment) override;
void do_deallocate(void* p, size_t bytes, size_t alignment) override;

bool do_is_equal(const memory_resource& other) const noexcept override;
};

}

20.4.6.2 Constructors and destructor [mem.res.monotonic.buffer.ctor]

explicit monotonic_buffer_resource(memory_resource* upstream);
monotonic_buffer_resource(size_t initial_size, memory_resource* upstream);

1 Preconditions: upstream is the address of a valid memory resource. initial_size, if specified, is
greater than zero.

2 Effects: Sets upstream_rsrc to upstream and current_buffer to nullptr. If initial_size is
specified, sets next_buffer_size to at least initial_size; otherwise sets next_buffer_size to an
implementation-defined size.

monotonic_buffer_resource(void* buffer, size_t buffer_size, memory_resource* upstream);

3 Preconditions: upstream is the address of a valid memory resource. buffer_size is no larger than the
number of bytes in buffer.

4 Effects: Sets upstream_rsrc to upstream, current_buffer to buffer, and next_buffer_size to
buffer_size (but not less than 1), then increases next_buffer_size by an implementation-defined
growth factor (which need not be integral).

~monotonic_buffer_resource();

5 Effects: Calls release().

20.4.6.3 Members [mem.res.monotonic.buffer.mem]

void release();

1 Effects: Calls upstream_rsrc->deallocate() as necessary to release all allocated memory. Resets
current_buffer and next_buffer_size to their initial values at construction.

2 [Note 1 : The memory is released back to upstream_rsrc even if some blocks that were allocated from this
have not been deallocated from this. — end note ]

memory_resource* upstream_resource() const;

3 Returns: The value of upstream_rsrc.

void* do_allocate(size_t bytes, size_t alignment) override;

4 Effects: If the unused space in current_buffer can fit a block with the specified bytes and alignment,
then allocate the return block from current_buffer; otherwise set current_buffer to upstream_-
rsrc->allocate(n, m), where n is not less than max(bytes, next_buffer_size) and m is not less
than alignment, and increase next_buffer_size by an implementation-defined growth factor (which
need not be integral), then allocate the return block from the newly-allocated current_buffer.
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5 Returns: A pointer to allocated storage (6.7.5.5.2) with a size of at least bytes. The size and alignment
of the allocated memory shall meet the requirements for a class derived from memory_resource (20.4.2).

6 Throws: Nothing unless upstream_rsrc->allocate() throws.

void do_deallocate(void* p, size_t bytes, size_t alignment) override;

7 Effects: None.
8 Throws: Nothing.
9 Remarks: Memory used by this resource increases monotonically until its destruction.

bool do_is_equal(const memory_resource& other) const noexcept override;

10 Returns: this == &other.

20.5 Class template scoped_allocator_adaptor [allocator.adaptor]
20.5.1 Header <scoped_allocator> synopsis [allocator.adaptor.syn]

namespace std {
// class template scoped_allocator_adaptor
template<class OuterAlloc, class... InnerAlloc>

class scoped_allocator_adaptor;

// 20.5.5, scoped allocator operators
template<class OuterA1, class OuterA2, class... InnerAllocs>

bool operator==(const scoped_allocator_adaptor<OuterA1, InnerAllocs...>& a,
const scoped_allocator_adaptor<OuterA2, InnerAllocs...>& b) noexcept;

}

1 The class template scoped_allocator_adaptor is an allocator template that specifies an allocator resource
(the outer allocator) to be used by a container (as any other allocator does) and also specifies an inner allocator
resource to be passed to the constructor of every element within the container. This adaptor is instantiated
with one outer and zero or more inner allocator types. If instantiated with only one allocator type, the inner
allocator becomes the scoped_allocator_adaptor itself, thus using the same allocator resource for the
container and every element within the container and, if the elements themselves are containers, each of their
elements recursively. If instantiated with more than one allocator, the first allocator is the outer allocator for
use by the container, the second allocator is passed to the constructors of the container’s elements, and, if
the elements themselves are containers, the third allocator is passed to the elements’ elements, and so on. If
containers are nested to a depth greater than the number of allocators, the last allocator is used repeatedly,
as in the single-allocator case, for any remaining recursions.
[Note 1 : The scoped_allocator_adaptor is derived from the outer allocator type so it can be substituted for the
outer allocator type in most expressions. — end note ]

namespace std {
template<class OuterAlloc, class... InnerAllocs>
class scoped_allocator_adaptor : public OuterAlloc {
private:

using OuterTraits = allocator_traits<OuterAlloc>; // exposition only
scoped_allocator_adaptor<InnerAllocs...> inner; // exposition only

public:
using outer_allocator_type = OuterAlloc;
using inner_allocator_type = see below ;

using value_type = typename OuterTraits::value_type;
using size_type = typename OuterTraits::size_type;
using difference_type = typename OuterTraits::difference_type;
using pointer = typename OuterTraits::pointer;
using const_pointer = typename OuterTraits::const_pointer;
using void_pointer = typename OuterTraits::void_pointer;
using const_void_pointer = typename OuterTraits::const_void_pointer;

using propagate_on_container_copy_assignment = see below ;
using propagate_on_container_move_assignment = see below ;
using propagate_on_container_swap = see below ;
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using is_always_equal = see below ;

template<class Tp> struct rebind {
using other = scoped_allocator_adaptor<

OuterTraits::template rebind_alloc<Tp>, InnerAllocs...>;
};

scoped_allocator_adaptor();
template<class OuterA2>

scoped_allocator_adaptor(OuterA2&& outerAlloc,
const InnerAllocs&... innerAllocs) noexcept;

scoped_allocator_adaptor(const scoped_allocator_adaptor& other) noexcept;
scoped_allocator_adaptor(scoped_allocator_adaptor&& other) noexcept;

template<class OuterA2>
scoped_allocator_adaptor(

const scoped_allocator_adaptor<OuterA2, InnerAllocs...>& other) noexcept;
template<class OuterA2>

scoped_allocator_adaptor(
scoped_allocator_adaptor<OuterA2, InnerAllocs...>&& other) noexcept;

scoped_allocator_adaptor& operator=(const scoped_allocator_adaptor&) = default;
scoped_allocator_adaptor& operator=(scoped_allocator_adaptor&&) = default;

~scoped_allocator_adaptor();

inner_allocator_type& inner_allocator() noexcept;
const inner_allocator_type& inner_allocator() const noexcept;
outer_allocator_type& outer_allocator() noexcept;
const outer_allocator_type& outer_allocator() const noexcept;

[[nodiscard]] pointer allocate(size_type n);
[[nodiscard]] pointer allocate(size_type n, const_void_pointer hint);
void deallocate(pointer p, size_type n);
size_type max_size() const;

template<class T, class... Args>
void construct(T* p, Args&&... args);

template<class T>
void destroy(T* p);

scoped_allocator_adaptor select_on_container_copy_construction() const;
};

template<class OuterAlloc, class... InnerAllocs>
scoped_allocator_adaptor(OuterAlloc, InnerAllocs...)

-> scoped_allocator_adaptor<OuterAlloc, InnerAllocs...>;
}

20.5.2 Member types [allocator.adaptor.types]
using inner_allocator_type = see below ;

1 Type: scoped_allocator_adaptor<OuterAlloc> if sizeof...(InnerAllocs) is zero; otherwise,
scoped_allocator_adaptor<InnerAllocs...>.

using propagate_on_container_copy_assignment = see below ;

2 Type: true_type if allocator_traits<A>::propagate_on_container_copy_assignment::value is
true for any A in the set of OuterAlloc and InnerAllocs...; otherwise, false_type.
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using propagate_on_container_move_assignment = see below ;

3 Type: true_type if allocator_traits<A>::propagate_on_container_move_assignment::value is
true for any A in the set of OuterAlloc and InnerAllocs...; otherwise, false_type.

using propagate_on_container_swap = see below ;

4 Type: true_type if allocator_traits<A>::propagate_on_container_swap::value is true for any
A in the set of OuterAlloc and InnerAllocs...; otherwise, false_type.

using is_always_equal = see below ;

5 Type: true_type if allocator_traits<A>::is_always_equal::value is true for every A in the set
of OuterAlloc and InnerAllocs...; otherwise, false_type.

20.5.3 Constructors [allocator.adaptor.cnstr]
scoped_allocator_adaptor();

1 Effects: Value-initializes the OuterAlloc base class and the inner allocator object.

template<class OuterA2>
scoped_allocator_adaptor(OuterA2&& outerAlloc, const InnerAllocs&... innerAllocs) noexcept;

2 Constraints: is_constructible_v<OuterAlloc, OuterA2> is true.
3 Effects: Initializes the OuterAlloc base class with std::forward<OuterA2>(outerAlloc) and inner

with innerAllocs... (hence recursively initializing each allocator within the adaptor with the corre-
sponding allocator from the argument list).

scoped_allocator_adaptor(const scoped_allocator_adaptor& other) noexcept;

4 Effects: Initializes each allocator within the adaptor with the corresponding allocator from other.

scoped_allocator_adaptor(scoped_allocator_adaptor&& other) noexcept;

5 Effects: Move constructs each allocator within the adaptor with the corresponding allocator from
other.

template<class OuterA2>
scoped_allocator_adaptor(

const scoped_allocator_adaptor<OuterA2, InnerAllocs...>& other) noexcept;

6 Constraints: is_constructible_v<OuterAlloc, const OuterA2&> is true.
7 Effects: Initializes each allocator within the adaptor with the corresponding allocator from other.

template<class OuterA2>
scoped_allocator_adaptor(scoped_allocator_adaptor<OuterA2, InnerAllocs...>&& other) noexcept;

8 Constraints: is_constructible_v<OuterAlloc, OuterA2> is true.
9 Effects: Initializes each allocator within the adaptor with the corresponding allocator rvalue from

other.

20.5.4 Members [allocator.adaptor.members]
1 In the construct member functions, OUTERMOST(x) is OUTERMOST(x.outer_allocator()) if the expression

x.outer_allocator() is valid (13.10.3) and x otherwise; OUTERMOST_ALLOC_TRAITS(x) is allocator_-
traits<remove_reference_t<decltype(OUTERMOST(x))>>.
[Note 1 : OUTERMOST(x) and OUTERMOST_ALLOC_TRAITS(x) are recursive operations. It is incumbent upon the definition
of outer_allocator() to ensure that the recursion terminates. It will terminate for all instantiations of scoped_-
allocator_adaptor. — end note ]

inner_allocator_type& inner_allocator() noexcept;
const inner_allocator_type& inner_allocator() const noexcept;

2 Returns: *this if sizeof...(InnerAllocs) is zero; otherwise, inner.

outer_allocator_type& outer_allocator() noexcept;

3 Returns: static_cast<OuterAlloc&>(*this).
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const outer_allocator_type& outer_allocator() const noexcept;

4 Returns: static_cast<const OuterAlloc&>(*this).

[[nodiscard]] pointer allocate(size_type n);

5 Returns: allocator_traits<OuterAlloc>::allocate(outer_allocator(), n).

[[nodiscard]] pointer allocate(size_type n, const_void_pointer hint);

6 Returns: allocator_traits<OuterAlloc>::allocate(outer_allocator(), n, hint).

void deallocate(pointer p, size_type n) noexcept;

7 Effects: As if by: allocator_traits<OuterAlloc>::deallocate(outer_allocator(), p, n);

size_type max_size() const;

8 Returns: allocator_traits<OuterAlloc>::max_size(outer_allocator()).

template<class T, class... Args>
void construct(T* p, Args&&... args);

9 Effects: Equivalent to:
apply([p, this](auto&&... newargs) {

OUTERMOST_ALLOC_TRAITS(*this)::construct(
OUTERMOST(*this), p,
std::forward<decltype(newargs)>(newargs)...);

},
uses_allocator_construction_args<T>(inner_allocator(),

std::forward<Args>(args)...));

template<class T>
void destroy(T* p);

10 Effects: Calls OUTERMOST_ALLOC_TRAITS(*this)::destroy(OUTERMOST(*this), p).

scoped_allocator_adaptor select_on_container_copy_construction() const;

11 Returns: A new scoped_allocator_adaptor object where each allocator a1 within the adaptor is
initialized with allocator_traits<A1>::select_on_container_copy_construction(a2), where A1
is the type of a1 and a2 is the corresponding allocator in *this.

20.5.5 Operators [scoped.adaptor.operators]
template<class OuterA1, class OuterA2, class... InnerAllocs>

bool operator==(const scoped_allocator_adaptor<OuterA1, InnerAllocs...>& a,
const scoped_allocator_adaptor<OuterA2, InnerAllocs...>& b) noexcept;

1 Returns: If sizeof...(InnerAllocs) is zero,
a.outer_allocator() == b.outer_allocator()

otherwise
a.outer_allocator() == b.outer_allocator() && a.inner_allocator() == b.inner_allocator()
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21 Metaprogramming library [meta]
21.1 General [meta.general]

1 This Clause describes metaprogramming facilities. These facilities are summarized in Table 44.

Table 44: Metaprogramming library summary [tab:meta.summary]

Subclause Header
21.2 Integer sequences <utility>
21.3 Type traits <type_traits>
21.4 Rational arithmetic <ratio>

21.2 Compile-time integer sequences [intseq]
21.2.1 In general [intseq.general]

1 The library provides a class template that can represent an integer sequence. When used as an argument to
a function template the template parameter pack defining the sequence can be deduced and used in a pack
expansion.
[Note 1 : The index_sequence alias template is provided for the common case of an integer sequence of type size_t;
see also 22.4.6. — end note ]

21.2.2 Class template integer_sequence [intseq.intseq]
namespace std {

template<class T, T... I> struct integer_sequence {
using value_type = T;
static constexpr size_t size() noexcept { return sizeof...(I); }

};
}

1 Mandates: T is an integer type.

21.2.3 Alias template make_integer_sequence [intseq.make]
template<class T, T N>

using make_integer_sequence = integer_sequence<T, see below >;

1 Mandates: N ≥ 0.
2 The alias template make_integer_sequence denotes a specialization of integer_sequence with N

non-type template arguments. The type make_integer_sequence<T, N> is an alias for the type
integer_sequence<T, 0, 1, ..., N-1>.
[Note 1 : make_integer_sequence<int, 0> is an alias for the type integer_sequence<int>. — end note ]

21.3 Metaprogramming and type traits [type.traits]
21.3.1 General [type.traits.general]

1 Subclause 21.3 describes components used by C++ programs, particularly in templates, to support the widest
possible range of types, optimize template code usage, detect type related user errors, and perform type
inference and transformation at compile time. It includes type classification traits, type property inspection
traits, and type transformations. The type classification traits describe a complete taxonomy of all possible
C++ types, and state where in that taxonomy a given type belongs. The type property inspection traits allow
important characteristics of types or of combinations of types to be inspected. The type transformations
allow certain properties of types to be manipulated.

2 All functions specified in 21.3 are signal-safe (17.13.5).
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21.3.2 Requirements [meta.rqmts]
1 A Cpp17UnaryTypeTrait describes a property of a type. It shall be a class template that takes one template

type argument and, optionally, additional arguments that help define the property being described. It shall
be Cpp17DefaultConstructible, Cpp17CopyConstructible, and publicly and unambiguously derived, directly or
indirectly, from its base characteristic, which is a specialization of the template integral_constant (21.3.4),
with the arguments to the template integral_constant determined by the requirements for the particular
property being described. The member names of the base characteristic shall not be hidden and shall be
unambiguously available in the Cpp17UnaryTypeTrait.

2 A Cpp17BinaryTypeTrait describes a relationship between two types. It shall be a class template that takes
two template type arguments and, optionally, additional arguments that help define the relationship being
described. It shall be Cpp17DefaultConstructible, Cpp17CopyConstructible, and publicly and unambiguously
derived, directly or indirectly, from its base characteristic, which is a specialization of the template integral_-
constant (21.3.4), with the arguments to the template integral_constant determined by the requirements
for the particular relationship being described. The member names of the base characteristic shall not be
hidden and shall be unambiguously available in the Cpp17BinaryTypeTrait.

3 A Cpp17TransformationTrait modifies a property of a type. It shall be a class template that takes one
template type argument and, optionally, additional arguments that help define the modification. It shall
define a publicly accessible nested type named type, which shall be a synonym for the modified type.

4 Unless otherwise specified, the behavior of a program that adds specializations for any of the templates
specified in 21.3 is undefined.

5 Unless otherwise specified, an incomplete type may be used to instantiate a template specified in 21.3. The
behavior of a program is undefined if:

—(5.1) an instantiation of a template specified in 21.3 directly or indirectly depends on an incompletely-defined
object type T, and

—(5.2) that instantiation could yield a different result were T hypothetically completed.

21.3.3 Header <type_traits> synopsis [meta.type.synop]
// all freestanding
namespace std {

// 21.3.4, helper class
template<class T, T v> struct integral_constant;

template<bool B>
using bool_constant = integral_constant<bool, B>;

using true_type = bool_constant<true>;
using false_type = bool_constant<false>;

// 21.3.5.2, primary type categories
template<class T> struct is_void;
template<class T> struct is_null_pointer;
template<class T> struct is_integral;
template<class T> struct is_floating_point;
template<class T> struct is_array;
template<class T> struct is_pointer;
template<class T> struct is_lvalue_reference;
template<class T> struct is_rvalue_reference;
template<class T> struct is_member_object_pointer;
template<class T> struct is_member_function_pointer;
template<class T> struct is_enum;
template<class T> struct is_union;
template<class T> struct is_class;
template<class T> struct is_function;

// 21.3.5.3, composite type categories
template<class T> struct is_reference;
template<class T> struct is_arithmetic;
template<class T> struct is_fundamental;
template<class T> struct is_object;
template<class T> struct is_scalar;
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template<class T> struct is_compound;
template<class T> struct is_member_pointer;

// 21.3.5.4, type properties
template<class T> struct is_const;
template<class T> struct is_volatile;
template<class T> struct is_trivial;
template<class T> struct is_trivially_copyable;
template<class T> struct is_standard_layout;
template<class T> struct is_empty;
template<class T> struct is_polymorphic;
template<class T> struct is_abstract;
template<class T> struct is_final;
template<class T> struct is_aggregate;

template<class T> struct is_signed;
template<class T> struct is_unsigned;
template<class T> struct is_bounded_array;
template<class T> struct is_unbounded_array;
template<class T> struct is_scoped_enum;

template<class T, class... Args> struct is_constructible;
template<class T> struct is_default_constructible;
template<class T> struct is_copy_constructible;
template<class T> struct is_move_constructible;

template<class T, class U> struct is_assignable;
template<class T> struct is_copy_assignable;
template<class T> struct is_move_assignable;

template<class T, class U> struct is_swappable_with;
template<class T> struct is_swappable;

template<class T> struct is_destructible;

template<class T, class... Args> struct is_trivially_constructible;
template<class T> struct is_trivially_default_constructible;
template<class T> struct is_trivially_copy_constructible;
template<class T> struct is_trivially_move_constructible;

template<class T, class U> struct is_trivially_assignable;
template<class T> struct is_trivially_copy_assignable;
template<class T> struct is_trivially_move_assignable;
template<class T> struct is_trivially_destructible;

template<class T, class... Args> struct is_nothrow_constructible;
template<class T> struct is_nothrow_default_constructible;
template<class T> struct is_nothrow_copy_constructible;
template<class T> struct is_nothrow_move_constructible;

template<class T, class U> struct is_nothrow_assignable;
template<class T> struct is_nothrow_copy_assignable;
template<class T> struct is_nothrow_move_assignable;

template<class T, class U> struct is_nothrow_swappable_with;
template<class T> struct is_nothrow_swappable;

template<class T> struct is_nothrow_destructible;

template<class T> struct is_implicit_lifetime;

template<class T> struct has_virtual_destructor;

template<class T> struct has_unique_object_representations;
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template<class T, class U> struct reference_constructs_from_temporary;
template<class T, class U> struct reference_converts_from_temporary;

// 21.3.6, type property queries
template<class T> struct alignment_of;
template<class T> struct rank;
template<class T, unsigned I = 0> struct extent;

// 21.3.7, type relations
template<class T, class U> struct is_same;
template<class Base, class Derived> struct is_base_of;
template<class From, class To> struct is_convertible;
template<class From, class To> struct is_nothrow_convertible;
template<class T, class U> struct is_layout_compatible;
template<class Base, class Derived> struct is_pointer_interconvertible_base_of;

template<class Fn, class... ArgTypes> struct is_invocable;
template<class R, class Fn, class... ArgTypes> struct is_invocable_r;

template<class Fn, class... ArgTypes> struct is_nothrow_invocable;
template<class R, class Fn, class... ArgTypes> struct is_nothrow_invocable_r;

// 21.3.8.2, const-volatile modifications
template<class T> struct remove_const;
template<class T> struct remove_volatile;
template<class T> struct remove_cv;
template<class T> struct add_const;
template<class T> struct add_volatile;
template<class T> struct add_cv;

template<class T>
using remove_const_t = typename remove_const<T>::type;

template<class T>
using remove_volatile_t = typename remove_volatile<T>::type;

template<class T>
using remove_cv_t = typename remove_cv<T>::type;

template<class T>
using add_const_t = typename add_const<T>::type;

template<class T>
using add_volatile_t = typename add_volatile<T>::type;

template<class T>
using add_cv_t = typename add_cv<T>::type;

// 21.3.8.3, reference modifications
template<class T> struct remove_reference;
template<class T> struct add_lvalue_reference;
template<class T> struct add_rvalue_reference;

template<class T>
using remove_reference_t = typename remove_reference<T>::type;

template<class T>
using add_lvalue_reference_t = typename add_lvalue_reference<T>::type;

template<class T>
using add_rvalue_reference_t = typename add_rvalue_reference<T>::type;

// 21.3.8.4, sign modifications
template<class T> struct make_signed;
template<class T> struct make_unsigned;

template<class T>
using make_signed_t = typename make_signed<T>::type;

template<class T>
using make_unsigned_t = typename make_unsigned<T>::type;
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// 21.3.8.5, array modifications
template<class T> struct remove_extent;
template<class T> struct remove_all_extents;

template<class T>
using remove_extent_t = typename remove_extent<T>::type;

template<class T>
using remove_all_extents_t = typename remove_all_extents<T>::type;

// 21.3.8.6, pointer modifications
template<class T> struct remove_pointer;
template<class T> struct add_pointer;

template<class T>
using remove_pointer_t = typename remove_pointer<T>::type;

template<class T>
using add_pointer_t = typename add_pointer<T>::type;

// 21.3.8.7, other transformations
template<class T> struct type_identity;
template<class T> struct remove_cvref;
template<class T> struct decay;
template<bool, class T = void> struct enable_if;
template<bool, class T, class F> struct conditional;
template<class... T> struct common_type;
template<class T, class U, template<class> class TQual, template<class> class UQual>

struct basic_common_reference { };
template<class... T> struct common_reference;
template<class T> struct underlying_type;
template<class Fn, class... ArgTypes> struct invoke_result;
template<class T> struct unwrap_reference;
template<class T> struct unwrap_ref_decay;

template<class T>
using type_identity_t = typename type_identity<T>::type;

template<class T>
using remove_cvref_t = typename remove_cvref<T>::type;

template<class T>
using decay_t = typename decay<T>::type;

template<bool B, class T = void>
using enable_if_t = typename enable_if<B, T>::type;

template<bool B, class T, class F>
using conditional_t = typename conditional<B, T, F>::type;

template<class... T>
using common_type_t = typename common_type<T...>::type;

template<class... T>
using common_reference_t = typename common_reference<T...>::type;

template<class T>
using underlying_type_t = typename underlying_type<T>::type;

template<class Fn, class... ArgTypes>
using invoke_result_t = typename invoke_result<Fn, ArgTypes...>::type;

template<class T>
using unwrap_reference_t = typename unwrap_reference<T>::type;

template<class T>
using unwrap_ref_decay_t = typename unwrap_ref_decay<T>::type;

template<class...>
using void_t = void;

// 21.3.9, logical operator traits
template<class... B> struct conjunction;
template<class... B> struct disjunction;
template<class B> struct negation;
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// 21.3.5.2, primary type categories
template<class T>

constexpr bool is_void_v = is_void<T>::value;
template<class T>

constexpr bool is_null_pointer_v = is_null_pointer<T>::value;
template<class T>

constexpr bool is_integral_v = is_integral<T>::value;
template<class T>

constexpr bool is_floating_point_v = is_floating_point<T>::value;
template<class T>

constexpr bool is_array_v = is_array<T>::value;
template<class T>

constexpr bool is_pointer_v = is_pointer<T>::value;
template<class T>

constexpr bool is_lvalue_reference_v = is_lvalue_reference<T>::value;
template<class T>

constexpr bool is_rvalue_reference_v = is_rvalue_reference<T>::value;
template<class T>

constexpr bool is_member_object_pointer_v = is_member_object_pointer<T>::value;
template<class T>

constexpr bool is_member_function_pointer_v = is_member_function_pointer<T>::value;
template<class T>

constexpr bool is_enum_v = is_enum<T>::value;
template<class T>

constexpr bool is_union_v = is_union<T>::value;
template<class T>

constexpr bool is_class_v = is_class<T>::value;
template<class T>

constexpr bool is_function_v = is_function<T>::value;

// 21.3.5.3, composite type categories
template<class T>

constexpr bool is_reference_v = is_reference<T>::value;
template<class T>

constexpr bool is_arithmetic_v = is_arithmetic<T>::value;
template<class T>

constexpr bool is_fundamental_v = is_fundamental<T>::value;
template<class T>

constexpr bool is_object_v = is_object<T>::value;
template<class T>

constexpr bool is_scalar_v = is_scalar<T>::value;
template<class T>

constexpr bool is_compound_v = is_compound<T>::value;
template<class T>

constexpr bool is_member_pointer_v = is_member_pointer<T>::value;

// 21.3.5.4, type properties
template<class T>

constexpr bool is_const_v = is_const<T>::value;
template<class T>

constexpr bool is_volatile_v = is_volatile<T>::value;
template<class T>

constexpr bool is_trivial_v = is_trivial<T>::value;
template<class T>

constexpr bool is_trivially_copyable_v = is_trivially_copyable<T>::value;
template<class T>

constexpr bool is_standard_layout_v = is_standard_layout<T>::value;
template<class T>

constexpr bool is_empty_v = is_empty<T>::value;
template<class T>

constexpr bool is_polymorphic_v = is_polymorphic<T>::value;
template<class T>

constexpr bool is_abstract_v = is_abstract<T>::value;
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template<class T>
constexpr bool is_final_v = is_final<T>::value;

template<class T>
constexpr bool is_aggregate_v = is_aggregate<T>::value;

template<class T>
constexpr bool is_signed_v = is_signed<T>::value;

template<class T>
constexpr bool is_unsigned_v = is_unsigned<T>::value;

template<class T>
constexpr bool is_bounded_array_v = is_bounded_array<T>::value;

template<class T>
constexpr bool is_unbounded_array_v = is_unbounded_array<T>::value;

template<class T>
constexpr bool is_scoped_enum_v = is_scoped_enum<T>::value;

template<class T, class... Args>
constexpr bool is_constructible_v = is_constructible<T, Args...>::value;

template<class T>
constexpr bool is_default_constructible_v = is_default_constructible<T>::value;

template<class T>
constexpr bool is_copy_constructible_v = is_copy_constructible<T>::value;

template<class T>
constexpr bool is_move_constructible_v = is_move_constructible<T>::value;

template<class T, class U>
constexpr bool is_assignable_v = is_assignable<T, U>::value;

template<class T>
constexpr bool is_copy_assignable_v = is_copy_assignable<T>::value;

template<class T>
constexpr bool is_move_assignable_v = is_move_assignable<T>::value;

template<class T, class U>
constexpr bool is_swappable_with_v = is_swappable_with<T, U>::value;

template<class T>
constexpr bool is_swappable_v = is_swappable<T>::value;

template<class T>
constexpr bool is_destructible_v = is_destructible<T>::value;

template<class T, class... Args>
constexpr bool is_trivially_constructible_v

= is_trivially_constructible<T, Args...>::value;
template<class T>

constexpr bool is_trivially_default_constructible_v
= is_trivially_default_constructible<T>::value;

template<class T>
constexpr bool is_trivially_copy_constructible_v

= is_trivially_copy_constructible<T>::value;
template<class T>

constexpr bool is_trivially_move_constructible_v
= is_trivially_move_constructible<T>::value;

template<class T, class U>
constexpr bool is_trivially_assignable_v = is_trivially_assignable<T, U>::value;

template<class T>
constexpr bool is_trivially_copy_assignable_v

= is_trivially_copy_assignable<T>::value;
template<class T>

constexpr bool is_trivially_move_assignable_v
= is_trivially_move_assignable<T>::value;

template<class T>
constexpr bool is_trivially_destructible_v = is_trivially_destructible<T>::value;

template<class T, class... Args>
constexpr bool is_nothrow_constructible_v

= is_nothrow_constructible<T, Args...>::value;
template<class T>

constexpr bool is_nothrow_default_constructible_v
= is_nothrow_default_constructible<T>::value;

§ 21.3.3 656



© ISO/IEC N4950

template<class T>
constexpr bool is_nothrow_copy_constructible_v

= is_nothrow_copy_constructible<T>::value;
template<class T>

constexpr bool is_nothrow_move_constructible_v
= is_nothrow_move_constructible<T>::value;

template<class T, class U>
constexpr bool is_nothrow_assignable_v = is_nothrow_assignable<T, U>::value;

template<class T>
constexpr bool is_nothrow_copy_assignable_v = is_nothrow_copy_assignable<T>::value;

template<class T>
constexpr bool is_nothrow_move_assignable_v = is_nothrow_move_assignable<T>::value;

template<class T, class U>
constexpr bool is_nothrow_swappable_with_v = is_nothrow_swappable_with<T, U>::value;

template<class T>
constexpr bool is_nothrow_swappable_v = is_nothrow_swappable<T>::value;

template<class T>
constexpr bool is_nothrow_destructible_v = is_nothrow_destructible<T>::value;

template<class T>
constexpr bool is_implicit_lifetime_v = is_implicit_lifetime<T>::value;

template<class T>
constexpr bool has_virtual_destructor_v = has_virtual_destructor<T>::value;

template<class T>
constexpr bool has_unique_object_representations_v

= has_unique_object_representations<T>::value;
template<class T, class U>

constexpr bool reference_constructs_from_temporary_v
= reference_constructs_from_temporary<T, U>::value;

template<class T, class U>
constexpr bool reference_converts_from_temporary_v

= reference_converts_from_temporary<T, U>::value;

// 21.3.6, type property queries
template<class T>

constexpr size_t alignment_of_v = alignment_of<T>::value;
template<class T>

constexpr size_t rank_v = rank<T>::value;
template<class T, unsigned I = 0>

constexpr size_t extent_v = extent<T, I>::value;

// 21.3.7, type relations
template<class T, class U>

constexpr bool is_same_v = is_same<T, U>::value;
template<class Base, class Derived>

constexpr bool is_base_of_v = is_base_of<Base, Derived>::value;
template<class From, class To>

constexpr bool is_convertible_v = is_convertible<From, To>::value;
template<class From, class To>

constexpr bool is_nothrow_convertible_v = is_nothrow_convertible<From, To>::value;
template<class T, class U>

constexpr bool is_layout_compatible_v = is_layout_compatible<T, U>::value;
template<class Base, class Derived>

constexpr bool is_pointer_interconvertible_base_of_v
= is_pointer_interconvertible_base_of<Base, Derived>::value;

template<class Fn, class... ArgTypes>
constexpr bool is_invocable_v = is_invocable<Fn, ArgTypes...>::value;

template<class R, class Fn, class... ArgTypes>
constexpr bool is_invocable_r_v = is_invocable_r<R, Fn, ArgTypes...>::value;

template<class Fn, class... ArgTypes>
constexpr bool is_nothrow_invocable_v = is_nothrow_invocable<Fn, ArgTypes...>::value;

template<class R, class Fn, class... ArgTypes>
constexpr bool is_nothrow_invocable_r_v

= is_nothrow_invocable_r<R, Fn, ArgTypes...>::value;
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// 21.3.9, logical operator traits
template<class... B>

constexpr bool conjunction_v = conjunction<B...>::value;
template<class... B>

constexpr bool disjunction_v = disjunction<B...>::value;
template<class B>

constexpr bool negation_v = negation<B>::value;

// 21.3.10, member relationships
template<class S, class M>

constexpr bool is_pointer_interconvertible_with_class(M S::*m) noexcept;
template<class S1, class S2, class M1, class M2>

constexpr bool is_corresponding_member(M1 S1::*m1, M2 S2::*m2) noexcept;

// 21.3.11, constant evaluation context
constexpr bool is_constant_evaluated() noexcept;

}

21.3.4 Helper classes [meta.help]
namespace std {

template<class T, T v> struct integral_constant {
static constexpr T value = v;

using value_type = T;
using type = integral_constant<T, v>;

constexpr operator value_type() const noexcept { return value; }
constexpr value_type operator()() const noexcept { return value; }

};
}

1 The class template integral_constant, alias template bool_constant, and its associated typedef-names
true_type and false_type are used as base classes to define the interface for various type traits.

21.3.5 Unary type traits [meta.unary]
21.3.5.1 General [meta.unary.general]

1 Subclause 21.3.5 contains templates that may be used to query the properties of a type at compile time.
2 Each of these templates shall be a Cpp17UnaryTypeTrait (21.3.2) with a base characteristic of true_type if

the corresponding condition is true, otherwise false_type.

21.3.5.2 Primary type categories [meta.unary.cat]
1 The primary type categories specified in Table 45 correspond to the descriptions given in subclause 6.8 of the

C++ standard.
2 For any given type T, the result of applying one of these templates to T and to cv T shall yield the same

result.
3 [Note 1 : For any given type T, exactly one of the primary type categories has a value member that evaluates to true.

— end note ]

Table 45: Primary type category predicates [tab:meta.unary.cat]

Template Condition Comments
template<class T>
struct is_void;

T is void

template<class T>
struct is_null_pointer;

T is nullptr_t (6.8.2)

template<class T>
struct is_integral;

T is an integral type (6.8.2)

template<class T>
struct is_floating_point;

T is a floating-point
type (6.8.2)
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Table 45: Primary type category predicates (continued)

Template Condition Comments
template<class T>
struct is_array;

T is an array type (6.8.4) of
known or unknown extent

Class template
array (24.3.7) is not an
array type.

template<class T>
struct is_pointer;

T is a pointer type (6.8.4) Includes pointers to
functions but not pointers
to non-static members.

template<class T>
struct is_lvalue_reference;

T is an lvalue reference
type (9.3.4.3)

template<class T>
struct is_rvalue_reference;

T is an rvalue reference
type (9.3.4.3)

template<class T>
struct is_member_object_pointer;

T is a pointer to data
member

template<class T>
struct
is_member_function_pointer;

T is a pointer to member
function

template<class T>
struct is_enum;

T is an enumeration
type (6.8.4)

template<class T>
struct is_union;

T is a union type (6.8.4)

template<class T>
struct is_class;

T is a non-union class
type (6.8.4)

template<class T>
struct is_function;

T is a function type (6.8.4)

21.3.5.3 Composite type traits [meta.unary.comp]
1 The templates specified in Table 46 provide convenient compositions of the primary type categories, corre-

sponding to the descriptions given in subclause 6.8.
2 For any given type T, the result of applying one of these templates to T and to cv T shall yield the same

result.

Table 46: Composite type category predicates [tab:meta.unary.comp]

Template Condition Comments
template<class T>
struct is_reference;

T is an lvalue reference or
an rvalue reference

template<class T>
struct is_arithmetic;

T is an arithmetic
type (6.8.2)

template<class T>
struct is_fundamental;

T is a fundamental
type (6.8.2)

template<class T>
struct is_object;

T is an object type (6.8.1)

template<class T>
struct is_scalar;

T is a scalar type (6.8.1)

template<class T>
struct is_compound;

T is a compound
type (6.8.4)

template<class T>
struct is_member_pointer;

T is a pointer-to-member
type (6.8.4)

21.3.5.4 Type properties [meta.unary.prop]
1 The templates specified in Table 47 provide access to some of the more important properties of types.
2 It is unspecified whether the library defines any full or partial specializations of any of these templates.
3 For all of the class templates X declared in this subclause, instantiating that template with a template-

argument that is a class template specialization may result in the implicit instantiation of the template
argument if and only if the semantics of X require that the argument is a complete type.
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4 For the purpose of defining the templates in this subclause, a function call expression declval<T>() for any
type T is considered to be a trivial (6.8.1, 11.4.4) function call that is not an odr-use (6.3) of declval in the
context of the corresponding definition notwithstanding the restrictions of 22.2.6.

5 For the purpose of defining the templates in this subclause, let VAL<T> for some type T be an expression
defined as follows:

—(5.1) If T is a reference or function type, VAL<T> is an expression with the same type and value category as
declval<T>().

—(5.2) Otherwise, VAL<T> is a prvalue that initially has type T.
[Note 1 : If T is cv-qualified, the cv-qualification is subject to adjustment (7.2.2). — end note ]

Table 47: Type property predicates [tab:meta.unary.prop]

Template Condition Preconditions
template<class T>
struct is_const;

T is const-qualified (6.8.5)

template<class T>
struct is_volatile;

T is
volatile-qualified (6.8.5)

template<class T>
struct is_trivial;

T is a trivial type (6.8.1) remove_all_extents_-
t<T> shall be a complete
type or cv void.

template<class T>
struct is_trivially_copyable;

T is a trivially copyable
type (6.8.1)

remove_all_extents_-
t<T> shall be a complete
type or cv void.

template<class T>
struct is_standard_layout;

T is a standard-layout
type (6.8.1)

remove_all_extents_-
t<T> shall be a complete
type or cv void.

template<class T>
struct is_empty;

T is a class type, but not a
union type, with no
non-static data members
other than subobjects of
zero size, no virtual
member functions, no
virtual base classes, and no
base class B for which
is_empty_v<B> is false.

If T is a non-union class
type, T shall be a complete
type.

template<class T>
struct is_polymorphic;

T is a polymorphic
class (11.7.3)

If T is a non-union class
type, T shall be a complete
type.

template<class T>
struct is_abstract;

T is an abstract
class (11.7.4)

If T is a non-union class
type, T shall be a complete
type.

template<class T>
struct is_final;

T is a class type marked
with the class-virt-specifier
final (11.1).
[Note 2 : A union is a class
type that can be marked
with final. — end note ]

If T is a class type, T shall
be a complete type.

template<class T>
struct is_aggregate;

T is an aggregate
type (9.4.2)

T shall be an array type, a
complete type, or cv void.

template<class T>
struct is_signed;

If is_arithmetic_v<T> is
true, the same result as
T(-1) < T(0); otherwise,
false

template<class T>
struct is_unsigned;

If is_arithmetic_v<T> is
true, the same result as
T(0) < T(-1); otherwise,
false
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Table 47: Type property predicates (continued)

Template Condition Preconditions
template<class T>
struct is_bounded_array;

T is an array type of
known bound (9.3.4.5)

template<class T>
struct is_unbounded_array;

T is an array type of
unknown bound (9.3.4.5)

template<class T>
struct is_scoped_enum;

T is a scoped
enumeration (9.7.1)

template<class T, class... Args>
struct is_constructible;

For a function type T or
for a cv void type T,
is_constructible_v<T,
Args...> is false,
otherwise see below

T and all types in the
template parameter pack
Args shall be complete
types, cv void, or arrays
of unknown bound.

template<class T>
struct is_default_constructible;

is_constructible_v<T>
is true.

T shall be a complete type,
cv void, or an array of
unknown bound.

template<class T>
struct is_copy_constructible;

For a referenceable type
T (3.43), the same result as
is_constructible_v<T,
const T&>, otherwise
false.

T shall be a complete type,
cv void, or an array of
unknown bound.

template<class T>
struct is_move_constructible;

For a referenceable type T,
the same result as
is_constructible_v<T,
T&&>, otherwise false.

T shall be a complete type,
cv void, or an array of
unknown bound.

template<class T, class U>
struct is_assignable;

The expression
declval<T>() =
declval<U>() is
well-formed when treated
as an unevaluated
operand (7.2.3). Access
checking is performed as if
in a context unrelated to T
and U. Only the validity of
the immediate context of
the assignment expression
is considered.
[Note 3 : The compilation of
the expression can result in
side effects such as the
instantiation of class
template specializations and
function template
specializations, the
generation of
implicitly-defined functions,
and so on. Such side effects
are not in the “immediate
context” and can result in
the program being ill-formed.

— end note ]

T and U shall be complete
types, cv void, or arrays
of unknown bound.

template<class T>
struct is_copy_assignable;

For a referenceable type T,
the same result as
is_assignable_v<T&,
const T&>, otherwise
false.

T shall be a complete type,
cv void, or an array of
unknown bound.
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Table 47: Type property predicates (continued)

Template Condition Preconditions
template<class T>
struct is_move_assignable;

For a referenceable type T,
the same result as
is_assignable_v<T&,
T&&>, otherwise false.

T shall be a complete type,
cv void, or an array of
unknown bound.

template<class T, class U>
struct is_swappable_with;

The expressions
swap(declval<T>(),
declval<U>()) and
swap(declval<U>(),
declval<T>()) are each
well-formed when treated
as an unevaluated
operand (7.2.3) in an
overload-resolution context
for swappable
values (16.4.4.3). Access
checking is performed as if
in a context unrelated to T
and U. Only the validity of
the immediate context of
the swap expressions is
considered.
[Note 4 : The compilation of
the expressions can result in
side effects such as the
instantiation of class
template specializations and
function template
specializations, the
generation of
implicitly-defined functions,
and so on. Such side effects
are not in the “immediate
context” and can result in
the program being ill-formed.

— end note ]

T and U shall be complete
types, cv void, or arrays
of unknown bound.

template<class T>
struct is_swappable;

For a referenceable type T,
the same result as is_-
swappable_with_v<T&,
T&>, otherwise false.

T shall be a complete type,
cv void, or an array of
unknown bound.

template<class T>
struct is_destructible;

Either T is a reference
type, or T is a complete
object type for which the
expression
declval<U&>().~U() is
well-formed when treated
as an unevaluated
operand (7.2.3), where U is
remove_all_extents_-
t<T>.

T shall be a complete type,
cv void, or an array of
unknown bound.
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Table 47: Type property predicates (continued)

Template Condition Preconditions
template<class T, class... Args>
struct
is_trivially_constructible;

is_constructible_v<T,
Args...> is true and the
variable definition for
is_constructible, as
defined below, is known to
call no operation that is
not trivial (6.8.1, 11.4.4).

T and all types in the
template parameter pack
Args shall be complete
types, cv void, or arrays
of unknown bound.

template<class T>
struct
is_trivially_default_constructible;

is_trivially_-
constructible_v<T> is
true.

T shall be a complete type,
cv void, or an array of
unknown bound.

template<class T>
struct
is_trivially_copy_constructible;

For a referenceable type T,
the same result as
is_trivially_-
constructible_v<T,
const T&>, otherwise
false.

T shall be a complete type,
cv void, or an array of
unknown bound.

template<class T>
struct
is_trivially_move_constructible;

For a referenceable type T,
the same result as
is_trivially_-
constructible_v<T,
T&&>, otherwise false.

T shall be a complete type,
cv void, or an array of
unknown bound.

template<class T, class U>
struct is_trivially_assignable;

is_assignable_v<T, U>
is true and the
assignment, as defined by
is_assignable, is known
to call no operation that is
not trivial (6.8.1, 11.4.4).

T and U shall be complete
types, cv void, or arrays
of unknown bound.

template<class T>
struct
is_trivially_copy_assignable;

For a referenceable type T,
the same result as
is_trivially_-
assignable_v<T&, const
T&>, otherwise false.

T shall be a complete type,
cv void, or an array of
unknown bound.

template<class T>
struct
is_trivially_move_assignable;

For a referenceable type T,
the same result as
is_trivially_-
assignable_v<T&, T&&>,
otherwise false.

T shall be a complete type,
cv void, or an array of
unknown bound.

template<class T>
struct is_trivially_destructible;

is_destructible_v<T> is
true and remove_all_-
extents_t<T> is either a
non-class type or a class
type with a trivial
destructor.

T shall be a complete type,
cv void, or an array of
unknown bound.

template<class T, class... Args>
struct is_nothrow_constructible;

is_constructible_v<T,
Args...> is true and the
variable definition for
is_constructible, as
defined below, is known
not to throw any
exceptions (7.6.2.7).

T and all types in the
template parameter pack
Args shall be complete
types, cv void, or arrays
of unknown bound.

template<class T>
struct
is_nothrow_default_constructible;

is_nothrow_-
constructible_v<T> is
true.

T shall be a complete type,
cv void, or an array of
unknown bound.
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Table 47: Type property predicates (continued)

Template Condition Preconditions
template<class T>
struct
is_nothrow_copy_constructible;

For a referenceable type T,
the same result as
is_nothrow_-
constructible_v<T,
const T&>, otherwise
false.

T shall be a complete type,
cv void, or an array of
unknown bound.

template<class T>
struct
is_nothrow_move_constructible;

For a referenceable type T,
the same result as
is_nothrow_-
constructible_v<T,
T&&>, otherwise false.

T shall be a complete type,
cv void, or an array of
unknown bound.

template<class T, class U>
struct is_nothrow_assignable;

is_assignable_v<T, U>
is true and the assignment
is known not to throw any
exceptions (7.6.2.7).

T and U shall be complete
types, cv void, or arrays
of unknown bound.

template<class T>
struct is_nothrow_copy_assignable;

For a referenceable type T,
the same result as
is_nothrow_-
assignable_v<T&, const
T&>, otherwise false.

T shall be a complete type,
cv void, or an array of
unknown bound.

template<class T>
struct is_nothrow_move_assignable;

For a referenceable type T,
the same result as
is_nothrow_-
assignable_v<T&, T&&>,
otherwise false.

T shall be a complete type,
cv void, or an array of
unknown bound.

template<class T, class U>
struct is_nothrow_swappable_with;

is_swappable_with_v<T,
U> is true and each swap
expression of the definition
of is_swappable_with<T,
U> is known not to throw
any exceptions (7.6.2.7).

T and U shall be complete
types, cv void, or arrays
of unknown bound.

template<class T>
struct is_nothrow_swappable;

For a referenceable type T,
the same result as
is_nothrow_swappable_-
with_v<T&, T&>,
otherwise false.

T shall be a complete type,
cv void, or an array of
unknown bound.

template<class T>
struct is_nothrow_destructible;

is_destructible_v<T> is
true and the indicated
destructor is known not to
throw any
exceptions (7.6.2.7).

T shall be a complete type,
cv void, or an array of
unknown bound.

template<class T>
struct is_implicit_lifetime;

T is an implicit-lifetime
type (6.8.1).

T shall be an array type, a
complete type, or cv void.

template<class T>
struct has_virtual_destructor;

T has a virtual
destructor (11.4.7)

If T is a non-union class
type, T shall be a complete
type.

template<class T>
struct
has_unique_object_representations;

For an array type T, the
same result as
has_unique_object_-
representations_-
v<remove_all_extents_-
t<T>>, otherwise see
below.

T shall be a complete type,
cv void, or an array of
unknown bound.
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Table 47: Type property predicates (continued)

Template Condition Preconditions
template<class T, class U>
struct reference_constructs_from_-
temporary;

T is a reference type, and
the initialization T
t(VAL<U>); is well-formed
and binds t to a temporary
object whose lifetime is
extended (6.7.7). Access
checking is performed as if
in a context unrelated to T
and U. Only the validity of
the immediate context of
the variable initialization is
considered.
[Note 5 : The initialization
can result in effects such as
the instantiation of class
template specializations and
function template
specializations, the
generation of
implicitly-defined functions,
and so on. Such effects are
not in the “immediate
context” and can result in
the program being ill-formed.

— end note ]

T and U shall be complete
types, cv void, or arrays
of unknown bound.

template<class T, class U>
struct
reference_converts_from_temporary;

T is a reference type, and
the initialization T t =
VAL<U>; is well-formed
and binds t to a temporary
object whose lifetime is
extended (6.7.7). Access
checking is performed as if
in a context unrelated to T
and U. Only the validity of
the immediate context of
the variable initialization is
considered.
[Note 6 : The initialization
can result in effects such as
the instantiation of class
template specializations and
function template
specializations, the
generation of
implicitly-defined functions,
and so on. Such effects are
not in the “immediate
context” and can result in
the program being ill-formed.

— end note ]

T and U shall be complete
types, cv void, or arrays
of unknown bound.

6 [Example 1 :
is_const_v<const volatile int> // true
is_const_v<const int*> // false
is_const_v<const int&> // false
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is_const_v<int[3]> // false
is_const_v<const int[3]> // true

— end example ]
7 [Example 2 :

remove_const_t<const volatile int> // volatile int
remove_const_t<const int* const> // const int*
remove_const_t<const int&> // const int&
remove_const_t<const int[3]> // int[3]

— end example ]
8 [Example 3 :

// Given:
struct P final { };
union U1 { };
union U2 final { };

// the following assertions hold:
static_assert(!is_final_v<int>);
static_assert(is_final_v<P>);
static_assert(!is_final_v<U1>);
static_assert(is_final_v<U2>);

— end example ]
9 The predicate condition for a template specialization is_constructible<T, Args...> shall be satisfied if

and only if the following variable definition would be well-formed for some invented variable t:
T t(declval<Args>()...);

[Note 7 : These tokens are never interpreted as a function declaration. — end note ]

Access checking is performed as if in a context unrelated to T and any of the Args. Only the validity of the
immediate context of the variable initialization is considered.
[Note 8 : The evaluation of the initialization can result in side effects such as the instantiation of class template
specializations and function template specializations, the generation of implicitly-defined functions, and so on. Such
side effects are not in the “immediate context” and can result in the program being ill-formed. — end note ]

10 The predicate condition for a template specialization has_unique_object_representations<T> shall be
satisfied if and only if:

—(10.1) T is trivially copyable, and
—(10.2) any two objects of type T with the same value have the same object representation, where two objects

of array or non-union class type are considered to have the same value if their respective sequences of
direct subobjects have the same values, and two objects of union type are considered to have the same
value if they have the same active member and the corresponding members have the same value.

The set of scalar types for which this condition holds is implementation-defined.
[Note 9 : If a type has padding bits, the condition does not hold; otherwise, the condition holds true for integral types.

— end note ]

21.3.6 Type property queries [meta.unary.prop.query]
1 The templates specified in Table 48 may be used to query properties of types at compile time.

Table 48: Type property queries [tab:meta.unary.prop.query]

Template Value
template<class T>
struct alignment_of;

alignof(T).
Mandates: alignof(T) is a valid expression (7.6.2.6)

template<class T>
struct rank;

If T is an array type, an integer value representing the number of
dimensions of T; otherwise, 0.

template<class T,
unsigned I = 0>
struct extent;

If T is not an array type, or if it has rank less than or equal to I, or if
I is 0 and T has type “array of unknown bound of U”, then 0;
otherwise, the bound (9.3.4.5) of the Ith dimension of T, where
indexing of I is zero-based
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2 Each of these templates shall be a Cpp17UnaryTypeTrait (21.3.2) with a base characteristic of integral_-
constant<size_t, Value>.

3 [Example 1 :
// the following assertions hold:
assert(rank_v<int> == 0);
assert(rank_v<int[2]> == 1);
assert(rank_v<int[][4]> == 2);

— end example ]
4 [Example 2 :

// the following assertions hold:
assert(extent_v<int> == 0);
assert(extent_v<int[2]> == 2);
assert(extent_v<int[2][4]> == 2);
assert(extent_v<int[][4]> == 0);
assert((extent_v<int, 1>) == 0);
assert((extent_v<int[2], 1>) == 0);
assert((extent_v<int[2][4], 1>) == 4);
assert((extent_v<int[][4], 1>) == 4);

— end example ]

21.3.7 Relationships between types [meta.rel]
1 The templates specified in Table 49 may be used to query relationships between types at compile time.
2 Each of these templates shall be a Cpp17BinaryTypeTrait (21.3.2) with a base characteristic of true_type if

the corresponding condition is true, otherwise false_type.

Table 49: Type relationship predicates [tab:meta.rel]

Template Condition Comments
template<class T, class U>
struct is_same;

T and U name the same type
with the same
cv-qualifications

template<class Base, class
Derived>
struct is_base_of;

Base is a base class of
Derived (11.7) without
regard to cv-qualifiers or Base
and Derived are not unions
and name the same class type
without regard to cv-qualifiers

If Base and Derived are
non-union class types and are
not (possibly cv-qualified
versions of) the same type,
Derived shall be a complete
type.
[Note 1 : Base classes that are
private, protected, or ambiguous
are, nonetheless, base classes.

— end note ]
template<class From, class To>
struct is_convertible;

see below From and To shall be complete
types, cv void, or arrays of
unknown bound.

template<class From, class To>
struct is_nothrow_convertible;

is_convertible_v<From,
To> is true and the
conversion, as defined by
is_convertible, is known
not to throw any
exceptions (7.6.2.7)

From and To shall be complete
types, cv void, or arrays of
unknown bound.

template<class T, class U>
struct is_layout_compatible;

T and U are
layout-compatible (6.8.1)

T and U shall be complete
types, cv void, or arrays of
unknown bound.
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Table 49: Type relationship predicates (continued)

Template Condition Comments
template<class Base, class
Derived>
struct is_pointer_-
interconvertible_base_of;

Derived is unambiguously
derived from Base without
regard to cv-qualifiers, and
each object of type Derived is
pointer-interconvertible (6.8.4)
with its Base subobject, or
Base and Derived are not
unions and name the same
class type without regard to
cv-qualifiers.

If Base and Derived are
non-union class types and are
not (possibly cv-qualified
versions of) the same type,
Derived shall be a complete
type.

template<class Fn, class...
ArgTypes>
struct is_invocable;

The expression
INVOKE(declval<Fn>(),
declval<ArgTypes>()...)
(22.10.4) is well-formed when
treated as an unevaluated
operand (7.2.3)

Fn and all types in the
template parameter pack
ArgTypes shall be complete
types, cv void, or arrays of
unknown bound.

template<class R, class Fn,
class... ArgTypes>
struct is_invocable_r;

The expression
INVOKE<R>(declval<Fn>(),
declval<ArgTypes>()...) is
well-formed when treated as
an unevaluated operand

Fn, R, and all types in the
template parameter pack
ArgTypes shall be complete
types, cv void, or arrays of
unknown bound.

template<class Fn, class...
ArgTypes>
struct is_nothrow_invocable;

is_invocable_v<
Fn, ArgTypes...> is true
and the expression
INVOKE(declval<Fn>(),
declval<ArgTypes>()...) is
known not to throw any
exceptions (7.6.2.7)

Fn and all types in the
template parameter pack
ArgTypes shall be complete
types, cv void, or arrays of
unknown bound.

template<class R, class Fn,
class... ArgTypes>
struct is_nothrow_invocable_r;

is_invocable_r_v<
R, Fn, ArgTypes...> is
true and the expression
INVOKE<R>(declval<Fn>(),
declval<ArgTypes>()...) is
known not to throw any
exceptions (7.6.2.7)

Fn, R, and all types in the
template parameter pack
ArgTypes shall be complete
types, cv void, or arrays of
unknown bound.

3 For the purpose of defining the templates in this subclause, a function call expression declval<T>() for any
type T is considered to be a trivial (6.8.1, 11.4.4) function call that is not an odr-use (6.3) of declval in the
context of the corresponding definition notwithstanding the restrictions of 22.2.6.

4 [Example 1 :
struct B {};
struct B1 : B {};
struct B2 : B {};
struct D : private B1, private B2 {};

is_base_of_v<B, D> // true
is_base_of_v<const B, D> // true
is_base_of_v<B, const D> // true
is_base_of_v<B, const B> // true
is_base_of_v<D, B> // false
is_base_of_v<B&, D&> // false
is_base_of_v<B[3], D[3]> // false
is_base_of_v<int, int> // false

— end example ]
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5 The predicate condition for a template specialization is_convertible<From, To> shall be satisfied if and
only if the return expression in the following code would be well-formed, including any implicit conversions
to the return type of the function:

To test() {
return declval<From>();

}

[Note 2 : This requirement gives well-defined results for reference types, array types, function types, and cv void.
— end note ]

Access checking is performed in a context unrelated to To and From. Only the validity of the immediate
context of the expression of the return statement (8.7.4) (including initialization of the returned object or
reference) is considered.
[Note 3 : The initialization can result in side effects such as the instantiation of class template specializations and
function template specializations, the generation of implicitly-defined functions, and so on. Such side effects are not in
the “immediate context” and can result in the program being ill-formed. — end note ]

21.3.8 Transformations between types [meta.trans]
21.3.8.1 General [meta.trans.general]

1 Subclause 21.3.8 contains templates that may be used to transform one type to another following some
predefined rule.

2 Each of the templates in 21.3.8 shall be a Cpp17TransformationTrait (21.3.2).

21.3.8.2 Const-volatile modifications [meta.trans.cv]
1 The templates specified in Table 50 add or remove cv-qualifications (6.8.5).

Table 50: Const-volatile modifications [tab:meta.trans.cv]

Template Comments
template<class T>
struct remove_const;

The member typedef type denotes the type formed by removing any
top-level const-qualifier from T.
[Example 1 : remove_const_t<const volatile int> evaluates to
volatile int, whereas remove_const_t<const int*> evaluates to const
int*. — end example ]

template<class T>
struct remove_volatile;

The member typedef type denotes the type formed by removing any
top-level volatile-qualifier from T.
[Example 2 : remove_volatile_t<const volatile int> evaluates to
const int, whereas remove_volatile_t<volatile int*> evaluates to
volatile int*. — end example ]

template<class T>
struct remove_cv;

The member typedef type denotes the type formed by removing any
top-level cv-qualifiers from T.
[Example 3 : remove_cv_t<const volatile int> evaluates to int,
whereas remove_cv_t<const volatile int*> evaluates to const
volatile int*. — end example ]

template<class T>
struct add_const;

If T is a reference, function, or top-level const-qualified type, then
type denotes T, otherwise T const.

template<class T>
struct add_volatile;

If T is a reference, function, or top-level volatile-qualified type, then
type denotes T, otherwise T volatile.

template<class T>
struct add_cv;

The member typedef type denotes
add_const_t<add_volatile_t<T>>.

21.3.8.3 Reference modifications [meta.trans.ref]
1 The templates specified in Table 51 add or remove references.
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Table 51: Reference modifications [tab:meta.trans.ref]

Template Comments
template<class T>
struct remove_reference;

If T has type “reference to T1” then the member typedef type
denotes T1; otherwise, type denotes T.

template<class T>
struct
add_lvalue_reference;

If T is a referenceable type (3.43) then the member typedef type
denotes T&; otherwise, type denotes T.
[Note 1 : This rule reflects the semantics of reference collapsing (9.3.4.3).

— end note ]
template<class T>
struct
add_rvalue_reference;

If T is a referenceable type then the member typedef type denotes
T&&; otherwise, type denotes T.
[Note 2 : This rule reflects the semantics of reference collapsing (9.3.4.3).
For example, when a type T is a reference type T1&, the type
add_rvalue_reference_t<T> is not an rvalue reference. — end note ]

21.3.8.4 Sign modifications [meta.trans.sign]
1 The templates specified in Table 52 convert an integer type to its corresponding signed or unsigned type.

Table 52: Sign modifications [tab:meta.trans.sign]

Template Comments
template<class T>
struct make_signed;

If T is a (possibly cv-qualified) signed integer type (6.8.2) then the
member typedef type denotes T; otherwise, if T is a (possibly
cv-qualified) unsigned integer type then type denotes the
corresponding signed integer type, with the same cv-qualifiers as T;
otherwise, type denotes the signed integer type with smallest
rank (6.8.6) for which sizeof(T) == sizeof(type), with the same
cv-qualifiers as T.
Mandates: T is an integral or enumeration type other than cv bool.

template<class T>
struct make_unsigned;

If T is a (possibly cv-qualified) unsigned integer type (6.8.2) then the
member typedef type denotes T; otherwise, if T is a (possibly
cv-qualified) signed integer type then type denotes the corresponding
unsigned integer type, with the same cv-qualifiers as T; otherwise,
type denotes the unsigned integer type with smallest rank (6.8.6) for
which sizeof(T) == sizeof(type), with the same cv-qualifiers as
T.
Mandates: T is an integral or enumeration type other than cv bool.

21.3.8.5 Array modifications [meta.trans.arr]
1 The templates specified in Table 53 modify array types.

Table 53: Array modifications [tab:meta.trans.arr]

Template Comments
template<class T>
struct remove_extent;

If T is a type “array of U”, the member typedef type denotes U,
otherwise T.
[Note 1 : For multidimensional arrays, only the first array dimension is
removed. For a type “array of const U”, the resulting type is const U.

— end note ]
template<class T>
struct remove_all_extents;

If T is “multidimensional array of U”, the resulting member typedef
type denotes U, otherwise T.

2 [Example 1 :
// the following assertions hold:
assert((is_same_v<remove_extent_t<int>, int>));
assert((is_same_v<remove_extent_t<int[2]>, int>));
assert((is_same_v<remove_extent_t<int[2][3]>, int[3]>));
assert((is_same_v<remove_extent_t<int[][3]>, int[3]>));

— end example ]
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3 [Example 2 :
// the following assertions hold:
assert((is_same_v<remove_all_extents_t<int>, int>));
assert((is_same_v<remove_all_extents_t<int[2]>, int>));
assert((is_same_v<remove_all_extents_t<int[2][3]>, int>));
assert((is_same_v<remove_all_extents_t<int[][3]>, int>));

— end example ]

21.3.8.6 Pointer modifications [meta.trans.ptr]
1 The templates specified in Table 54 add or remove pointers.

Table 54: Pointer modifications [tab:meta.trans.ptr]

Template Comments
template<class T>
struct remove_pointer;

If T has type “(possibly cv-qualified) pointer to T1” then the member
typedef type denotes T1; otherwise, it denotes T.

template<class T>
struct add_pointer;

If T is a referenceable type (3.43) or a cv void type then the member
typedef type denotes remove_reference_t<T>*; otherwise, type
denotes T.

21.3.8.7 Other transformations [meta.trans.other]
1 The templates specified in Table 55 perform other modifications of a type.

Table 55: Other transformations [tab:meta.trans.other]

Template Comments
template<class T>
struct type_identity;

The member typedef type denotes T.

template<class T>
struct remove_cvref;

The member typedef type denotes
remove_cv_t<remove_reference_t<T>>.

template<class T>
struct decay;

Let U be remove_reference_t<T>. If is_array_v<U> is true, the
member typedef type denotes remove_extent_t<U>*. If
is_function_v<U> is true, the member typedef type denotes
add_pointer_t<U>. Otherwise the member typedef type denotes
remove_cv_t<U>.
[Note 1 : This behavior is similar to the lvalue-to-rvalue (7.3.2),
array-to-pointer (7.3.3), and function-to-pointer (7.3.4) conversions applied
when an lvalue is used as an rvalue, but also strips cv-qualifiers from class
types in order to more closely model by-value argument passing. — end
note ]

template<bool B, class T =
void> struct enable_if;

If B is true, the member typedef type denotes T; otherwise, there
shall be no member type.

template<bool B, class T,
class F>
struct conditional;

If B is true, the member typedef type denotes T. If B is false, the
member typedef type denotes F.

template<class... T> struct
common_type;

Unless this trait is specialized (as specified in Note B, below), the
member type is defined or omitted as specified in Note A, below. If it
is omitted, there shall be no member type. Each type in the
template parameter pack T shall be complete, cv void, or an array of
unknown bound.

template<class, class,
template<class> class,
template<class> class>

struct
basic_common_reference;

Unless this trait is specialized (as specified in Note D, below), there
shall be no member type.

template<class... T> struct
common_reference;

The member typedef-name type is defined or omitted as specified in
Note C, below. Each type in the parameter pack T shall be complete
or cv void.
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Table 55: Other transformations (continued)

Template Comments
template<class T>
struct underlying_type;

If T is an enumeration type, the member typedef type denotes the
underlying type of T (9.7.1); otherwise, there is no member type.
Mandates: T is not an incomplete enumeration type.

template<class Fn,
class... ArgTypes>
struct invoke_result;

If the expression INVOKE(declval<Fn>(),
declval<ArgTypes>()...) (22.10.4) is well-formed when treated as
an unevaluated operand (7.2.3), the member typedef type denotes
the type decltype(INVOKE(declval<Fn>(),
declval<ArgTypes>()...)); otherwise, there shall be no member
type. Access checking is performed as if in a context unrelated to Fn
and ArgTypes. Only the validity of the immediate context of the
expression is considered.
[Note 2 : The compilation of the expression can result in side effects such as
the instantiation of class template specializations and function template
specializations, the generation of implicitly-defined functions, and so on.
Such side effects are not in the “immediate context” and can result in the
program being ill-formed. — end note ]
Preconditions: Fn and all types in the template parameter pack
ArgTypes are complete types, cv void, or arrays of unknown bound.

template<class T> struct
unwrap_reference;

If T is a specialization reference_wrapper<X> for some type X, the
member typedef type of unwrap_reference<T> denotes X&,
otherwise type denotes T.

template<class T>
unwrap_ref_decay;

The member typedef type of unwrap_ref_decay<T> denotes the
type unwrap_reference_t<decay_t<T>>.

2 In addition to being available via inclusion of the <type_traits> header, the templates unwrap_reference,
unwrap_ref_decay, unwrap_reference_t, and unwrap_ref_decay_t are available when the header <func-
tional> (22.10.2) is included.

3 Let:
—(3.1) CREF(A) be add_lvalue_reference_t<const remove_reference_t<A>>,
—(3.2) XREF(A) denote a unary alias template T such that T<U> denotes the same type as U with the addition

of A’s cv and reference qualifiers, for a non-reference cv-unqualified type U,
—(3.3) COPYCV(FROM, TO) be an alias for type TO with the addition of FROM’s top-level cv-qualifiers,

[Example 1 : COPYCV(const int, volatile short) is an alias for const volatile short. — end example ]

—(3.4) COND-RES(X, Y) be decltype(false ? declval<X(&)()>()() : declval<Y(&)()>()()).
Given types A and B, let X be remove_reference_t<A>, let Y be remove_reference_t<B>, and let COMMON-
REF(A, B) be:

—(3.5) If A and B are both lvalue reference types, COMMON-REF(A, B) is COND-RES(COPYCV(X, Y) &, COPYCV(
Y, X) &) if that type exists and is a reference type.

—(3.6) Otherwise, let C be remove_reference_t<COMMON-REF(X&, Y&)>&&. If A and B are both rvalue reference
types, C is well-formed, and is_convertible_v<A, C> && is_convertible_v<B, C> is true, then
COMMON-REF(A, B) is C.

—(3.7) Otherwise, let D be COMMON-REF(const X&, Y&). If A is an rvalue reference and B is an lvalue reference
and D is well-formed and is_convertible_v<A, D> is true, then COMMON-REF(A, B) is D.

—(3.8) Otherwise, if A is an lvalue reference and B is an rvalue reference, then COMMON-REF(A, B) is
COMMON-REF(B, A).

—(3.9) Otherwise, COMMON-REF(A, B) is ill-formed.
If any of the types computed above is ill-formed, then COMMON-REF(A, B) is ill-formed.

4 Note A: For the common_type trait applied to a template parameter pack T of types, the member type shall
be either defined or not present as follows:

—(4.1) If sizeof...(T) is zero, there shall be no member type.
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—(4.2) If sizeof...(T) is one, let T0 denote the sole type constituting the pack T. The member typedef-name
type shall denote the same type, if any, as common_type_t<T0, T0>; otherwise there shall be no
member type.

—(4.3) If sizeof...(T) is two, let the first and second types constituting T be denoted by T1 and T2,
respectively, and let D1 and D2 denote the same types as decay_t<T1> and decay_t<T2>, respectively.

—(4.3.1) If is_same_v<T1, D1> is false or is_same_v<T2, D2> is false, let C denote the same type, if
any, as common_type_t<D1, D2>.

—(4.3.2) [Note 3 : None of the following will apply if there is a specialization common_type<D1, D2>. — end note ]

—(4.3.3) Otherwise, if
decay_t<decltype(false ? declval<D1>() : declval<D2>())>

denotes a valid type, let C denote that type.
—(4.3.4) Otherwise, if COND-RES(CREF(D1), CREF(D2)) denotes a type, let C denote the type decay_-

t<COND-RES(CREF(D1), CREF(D2))>.
In either case, the member typedef-name type shall denote the same type, if any, as C. Otherwise, there
shall be no member type.

—(4.4) If sizeof...(T) is greater than two, let T1, T2, and R, respectively, denote the first, second, and
(pack of) remaining types constituting T. Let C denote the same type, if any, as common_type_t<T1,
T2>. If there is such a type C, the member typedef-name type shall denote the same type, if any, as
common_type_t<C, R...>. Otherwise, there shall be no member type.

5 Note B: Notwithstanding the provisions of 21.3.3, and pursuant to 16.4.5.2.1, a program may specialize
common_type<T1, T2> for types T1 and T2 such that is_same_v<T1, decay_t<T1>> and is_same_v<T2,
decay_t<T2>> are each true.
[Note 4 : Such specializations are needed when only explicit conversions are desired between the template arguments.

— end note ]

Such a specialization need not have a member named type, but if it does, the qualified-id common_type<T1,
T2>::type shall denote a cv-unqualified non-reference type to which each of the types T1 and T2 is explicitly
convertible. Moreover, common_type_t<T1, T2> shall denote the same type, if any, as does common_type_-
t<T2, T1>. No diagnostic is required for a violation of this Note’s rules.

6 Note C: For the common_reference trait applied to a parameter pack T of types, the member type shall be
either defined or not present as follows:

—(6.1) If sizeof...(T) is zero, there shall be no member type.
—(6.2) Otherwise, if sizeof...(T) is one, let T0 denote the sole type in the pack T. The member typedef

type shall denote the same type as T0.
—(6.3) Otherwise, if sizeof...(T) is two, let T1 and T2 denote the two types in the pack T. Then

—(6.3.1) Let R be COMMON-REF(T1, T2). If T1 and T2 are reference types, R is well-formed, and is_-
convertible_v<add_pointer_t<T1>, add_pointer_t<R>> && is_convertible_v<add_poin
ter_t<T2>, add_pointer_t<R>> is true, then the member typedef type denotes R.

—(6.3.2) Otherwise, if basic_common_reference<remove_cvref_t<T1>, remove_cvref_t<T2>, XREF(
T1), XREF(T2)>::type is well-formed, then the member typedef type denotes that type.

—(6.3.3) Otherwise, if COND-RES(T1, T2) is well-formed, then the member typedef type denotes that type.
—(6.3.4) Otherwise, if common_type_t<T1, T2> is well-formed, then the member typedef type denotes

that type.
—(6.3.5) Otherwise, there shall be no member type.

—(6.4) Otherwise, if sizeof...(T) is greater than two, let T1, T2, and Rest, respectively, denote the first,
second, and (pack of) remaining types comprising T. Let C be the type common_reference_t<T1, T2>.
Then:

—(6.4.1) If there is such a type C, the member typedef type shall denote the same type, if any, as
common_reference_t<C, Rest...>.

—(6.4.2) Otherwise, there shall be no member type.
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7 Note D: Notwithstanding the provisions of 21.3.3, and pursuant to 16.4.5.2.1, a program may partially specialize
basic_common_reference<T, U, TQual, UQual> for types T and U such that is_same_v<T, decay_t<T>>
and is_same_v<U, decay_t<U>> are each true.
[Note 5 : Such specializations can be used to influence the result of common_reference, and are needed when only
explicit conversions are desired between the template arguments. — end note ]

Such a specialization need not have a member named type, but if it does, the qualified-id basic_common_-
reference<T, U, TQual, UQual>::type shall denote a type to which each of the types TQual<T> and
UQual<U> is convertible. Moreover, basic_common_reference<T, U, TQual, UQual>::type shall denote
the same type, if any, as does basic_common_reference<U, T, UQual, TQual>::type. No diagnostic is
required for a violation of these rules.

8 [Example 2 : Given these definitions:
using PF1 = bool (&)();
using PF2 = short (*)(long);

struct S {
operator PF2() const;
double operator()(char, int&);
void fn(long) const;
char data;

};

using PMF = void (S::*)(long) const;
using PMD = char S::*;

the following assertions will hold:
static_assert(is_same_v<invoke_result_t<S, int>, short>);
static_assert(is_same_v<invoke_result_t<S&, unsigned char, int&>, double>);
static_assert(is_same_v<invoke_result_t<PF1>, bool>);
static_assert(is_same_v<invoke_result_t<PMF, unique_ptr<S>, int>, void>);
static_assert(is_same_v<invoke_result_t<PMD, S>, char&&>);
static_assert(is_same_v<invoke_result_t<PMD, const S*>, const char&>);

— end example ]

21.3.9 Logical operator traits [meta.logical]
1 This subclause describes type traits for applying logical operators to other type traits.

template<class... B> struct conjunction : see below { };

2 The class template conjunction forms the logical conjunction of its template type arguments.
3 For a specialization conjunction<B1, . . . , BN >, if there is a template type argument Bi for which

bool(Bi::value) is false, then instantiating conjunction<B1, . . . , BN >::value does not require
the instantiation of Bj::value for j > i.
[Note 1 : This is analogous to the short-circuiting behavior of the built-in operator &&. — end note ]

4 Every template type argument for which Bi::value is instantiated shall be usable as a base class and
shall have a member value which is convertible to bool, is not hidden, and is unambiguously available
in the type.

5 The specialization conjunction<B1, . . . , BN > has a public and unambiguous base that is either
—(5.1) the first type Bi in the list true_type, B1, . . . , BN for which bool(Bi::value) is false, or
—(5.2) if there is no such Bi, the last type in the list.

[Note 2 : This means a specialization of conjunction does not necessarily inherit from either true_type or
false_type. — end note ]

6 The member names of the base class, other than conjunction and operator=, shall not be hidden
and shall be unambiguously available in conjunction.

template<class... B> struct disjunction : see below { };

7 The class template disjunction forms the logical disjunction of its template type arguments.
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8 For a specialization disjunction<B1, . . . , BN >, if there is a template type argument Bi for which
bool(Bi::value) is true, then instantiating disjunction<B1, . . . , BN >::value does not require
the instantiation of Bj::value for j > i.
[Note 3 : This is analogous to the short-circuiting behavior of the built-in operator ||. — end note ]

9 Every template type argument for which Bi::value is instantiated shall be usable as a base class and
shall have a member value which is convertible to bool, is not hidden, and is unambiguously available
in the type.

10 The specialization disjunction<B1, . . . , BN > has a public and unambiguous base that is either
—(10.1) the first type Bi in the list false_type, B1, . . . , BN for which bool(Bi::value) is true, or
—(10.2) if there is no such Bi, the last type in the list.

[Note 4 : This means a specialization of disjunction does not necessarily inherit from either true_type or
false_type. — end note ]

11 The member names of the base class, other than disjunction and operator=, shall not be hidden
and shall be unambiguously available in disjunction.

template<class B> struct negation : see below { };

12 The class template negation forms the logical negation of its template type argument. The type
negation<B> is a Cpp17UnaryTypeTrait with a base characteristic of bool_constant<!bool(B::
value)>.

21.3.10 Member relationships [meta.member]
template<class S, class M>

constexpr bool is_pointer_interconvertible_with_class(M S::*m) noexcept;

1 Mandates: S is a complete type.
2 Returns: true if and only if S is a standard-layout type, M is an object type, m is not null, and each

object s of type S is pointer-interconvertible (6.8.4) with its subobject s.*m.

template<class S1, class S2, class M1, class M2>
constexpr bool is_corresponding_member(M1 S1::*m1, M2 S2::*m2) noexcept;

3 Mandates: S1 and S2 are complete types.
4 Returns: true if and only if S1 and S2 are standard-layout struct (11.2) types, M1 and M2 are object

types, m1 and m2 are not null, and m1 and m2 point to corresponding members of the common initial
sequence (11.4) of S1 and S2.

5 [Note 1 : The type of a pointer-to-member expression &C::b is not always a pointer to member of C, leading to
potentially surprising results when using these functions in conjunction with inheritance.
[Example 1 :

struct A { int a; }; // a standard-layout class
struct B { int b; }; // a standard-layout class
struct C: public A, public B { }; // not a standard-layout class

static_assert( is_pointer_interconvertible_with_class( &C::b ) );
// Succeeds because, despite its appearance, &C::b has type
// “pointer to member of B of type int”.

static_assert( is_pointer_interconvertible_with_class<C>( &C::b ) );
// Forces the use of class C, and fails.

static_assert( is_corresponding_member( &C::a, &C::b ) );
// Succeeds because, despite its appearance, &C::a and &C::b have types
// “pointer to member of A of type int” and
// “pointer to member of B of type int”, respectively.

static_assert( is_corresponding_member<C, C>( &C::a, &C::b ) );
// Forces the use of class C, and fails.

— end example ]
— end note ]
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21.3.11 Constant evaluation context [meta.const.eval]
constexpr bool is_constant_evaluated() noexcept;

1 Effects: Equivalent to:
if consteval {

return true;
} else {

return false;
}

2 [Example 1 :
constexpr void f(unsigned char *p, int n) {

if (std::is_constant_evaluated()) { // should not be a constexpr if statement
for (int k = 0; k<n; ++k) p[k] = 0;

} else {
memset(p, 0, n); // not a core constant expression

}
}

— end example ]

21.4 Compile-time rational arithmetic [ratio]
21.4.1 In general [ratio.general]

1 Subclause 21.4 describes the ratio library. It provides a class template ratio which exactly represents any
finite rational number with a numerator and denominator representable by compile-time constants of type
intmax_t.

2 Throughout subclause 21.4, the names of template parameters are used to express type requirements. If
a template parameter is named R1 or R2, and the template argument is not a specialization of the ratio
template, the program is ill-formed.

21.4.2 Header <ratio> synopsis [ratio.syn]
// all freestanding
namespace std {

// 21.4.3, class template ratio
template<intmax_t N, intmax_t D = 1> class ratio;

// 21.4.4, ratio arithmetic
template<class R1, class R2> using ratio_add = see below ;
template<class R1, class R2> using ratio_subtract = see below ;
template<class R1, class R2> using ratio_multiply = see below ;
template<class R1, class R2> using ratio_divide = see below ;

// 21.4.5, ratio comparison
template<class R1, class R2> struct ratio_equal;
template<class R1, class R2> struct ratio_not_equal;
template<class R1, class R2> struct ratio_less;
template<class R1, class R2> struct ratio_less_equal;
template<class R1, class R2> struct ratio_greater;
template<class R1, class R2> struct ratio_greater_equal;

template<class R1, class R2>
constexpr bool ratio_equal_v = ratio_equal<R1, R2>::value;

template<class R1, class R2>
constexpr bool ratio_not_equal_v = ratio_not_equal<R1, R2>::value;

template<class R1, class R2>
constexpr bool ratio_less_v = ratio_less<R1, R2>::value;

template<class R1, class R2>
constexpr bool ratio_less_equal_v = ratio_less_equal<R1, R2>::value;

template<class R1, class R2>
constexpr bool ratio_greater_v = ratio_greater<R1, R2>::value;

template<class R1, class R2>
constexpr bool ratio_greater_equal_v = ratio_greater_equal<R1, R2>::value;
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// 21.4.6, convenience SI typedefs
using yocto = ratio<1, 1'000'000'000'000'000'000'000'000>; // see below
using zepto = ratio<1, 1'000'000'000'000'000'000'000>; // see below
using atto = ratio<1, 1'000'000'000'000'000'000>;
using femto = ratio<1, 1'000'000'000'000'000>;
using pico = ratio<1, 1'000'000'000'000>;
using nano = ratio<1, 1'000'000'000>;
using micro = ratio<1, 1'000'000>;
using milli = ratio<1, 1'000>;
using centi = ratio<1, 100>;
using deci = ratio<1, 10>;
using deca = ratio< 10, 1>;
using hecto = ratio< 100, 1>;
using kilo = ratio< 1'000, 1>;
using mega = ratio< 1'000'000, 1>;
using giga = ratio< 1'000'000'000, 1>;
using tera = ratio< 1'000'000'000'000, 1>;
using peta = ratio< 1'000'000'000'000'000, 1>;
using exa = ratio< 1'000'000'000'000'000'000, 1>;
using zetta = ratio< 1'000'000'000'000'000'000'000, 1>; // see below
using yotta = ratio<1'000'000'000'000'000'000'000'000, 1>; // see below

}

21.4.3 Class template ratio [ratio.ratio]
namespace std {

template<intmax_t N, intmax_t D = 1> class ratio {
public:

static constexpr intmax_t num;
static constexpr intmax_t den;
using type = ratio<num, den>;

};
}

1 If the template argument D is zero or the absolute values of either of the template arguments N and D is not
representable by type intmax_t, the program is ill-formed.
[Note 1 : These rules ensure that infinite ratios are avoided and that for any negative input, there exists a representable
value of its absolute value which is positive. This excludes the most negative value. — end note ]

2 The static data members num and den shall have the following values, where gcd represents the greatest
common divisor of the absolute values of N and D:

—(2.1) num shall have the value sgn(N) * sgn(D) * abs(N) / gcd.
—(2.2) den shall have the value abs(D) / gcd.

21.4.4 Arithmetic on ratios [ratio.arithmetic]
1 Each of the alias templates ratio_add, ratio_subtract, ratio_multiply, and ratio_divide denotes the

result of an arithmetic computation on two ratios R1 and R2. With X and Y computed (in the absence of
arithmetic overflow) as specified by Table 56, each alias denotes a ratio<U, V> such that U is the same as
ratio<X, Y>::num and V is the same as ratio<X, Y>::den.

2 If it is not possible to represent U or V with intmax_t, the program is ill-formed. Otherwise, an implementation
should yield correct values of U and V. If it is not possible to represent X or Y with intmax_t, the program is
ill-formed unless the implementation yields correct values of U and V.

3 [Example 1 :
static_assert(ratio_add<ratio<1, 3>, ratio<1, 6>>::num == 1, "1/3+1/6 == 1/2");
static_assert(ratio_add<ratio<1, 3>, ratio<1, 6>>::den == 2, "1/3+1/6 == 1/2");
static_assert(ratio_multiply<ratio<1, 3>, ratio<3, 2>>::num == 1, "1/3*3/2 == 1/2");
static_assert(ratio_multiply<ratio<1, 3>, ratio<3, 2>>::den == 2, "1/3*3/2 == 1/2");

// The following cases may cause the program to be ill-formed under some implementations
static_assert(ratio_add<ratio<1, INT_MAX>, ratio<1, INT_MAX>>::num == 2,

"1/MAX+1/MAX == 2/MAX");

§ 21.4.4 677



© ISO/IEC N4950

Table 56: Expressions used to perform ratio arithmetic [tab:ratio.arithmetic]

Type Value of X Value of Y
ratio_add<R1, R2> R1::num * R2::den + R1::den * R2::den

R2::num * R1::den
ratio_subtract<R1, R2> R1::num * R2::den - R1::den * R2::den

R2::num * R1::den
ratio_multiply<R1, R2> R1::num * R2::num R1::den * R2::den
ratio_divide<R1, R2> R1::num * R2::den R1::den * R2::num

static_assert(ratio_add<ratio<1, INT_MAX>, ratio<1, INT_MAX>>::den == INT_MAX,
"1/MAX+1/MAX == 2/MAX");

static_assert(ratio_multiply<ratio<1, INT_MAX>, ratio<INT_MAX, 2>>::num == 1,
"1/MAX * MAX/2 == 1/2");

static_assert(ratio_multiply<ratio<1, INT_MAX>, ratio<INT_MAX, 2>>::den == 2,
"1/MAX * MAX/2 == 1/2");

— end example ]

21.4.5 Comparison of ratios [ratio.comparison]
template<class R1, class R2>

struct ratio_equal : bool_constant<R1::num == R2::num && R1::den == R2::den> { };

template<class R1, class R2>
struct ratio_not_equal : bool_constant<!ratio_equal_v<R1, R2>> { };

template<class R1, class R2>
struct ratio_less : bool_constant<see below > { };

1 If R1::num × R2::den is less than R2::num × R1::den, ratio_less<R1, R2> shall be derived from
bool_constant<true>; otherwise it shall be derived from bool_constant<false>. Implementations
may use other algorithms to compute this relationship to avoid overflow. If overflow occurs, the program
is ill-formed.

template<class R1, class R2>
struct ratio_less_equal : bool_constant<!ratio_less_v<R2, R1>> { };

template<class R1, class R2>
struct ratio_greater : bool_constant<ratio_less_v<R2, R1>> { };

template<class R1, class R2>
struct ratio_greater_equal : bool_constant<!ratio_less_v<R1, R2>> { };

21.4.6 SI types for ratio [ratio.si]
1 For each of the typedef-names yocto, zepto, zetta, and yotta, if both of the constants used in its specification

are representable by intmax_t, the typedef is defined; if either of the constants is not representable by
intmax_t, the typedef is not defined.
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22 General utilities library [utilities]
22.1 General [utilities.general]

1 This Clause describes utilities that are generally useful in C++ programs; some of these utilities are used by
other elements of the C++ standard library. These utilities are summarized in Table 57.

Table 57: General utilities library summary [tab:utilities.summary]

Subclause Header
22.2 Utility components <utility>
22.3 Pairs
22.4 Tuples <tuple>
22.5 Optional objects <optional>
22.6 Variants <variant>
22.7 Storage for any type <any>
22.8 Expected objects <expected>
22.9 Fixed-size sequences of bits <bitset>
22.10 Function objects <functional>
22.11 Type indexes <typeindex>
22.12 Execution policies <execution>
22.13 Primitive numeric conversions <charconv>
22.14 Formatting <format>
22.15 Bit manipulation <bit>

22.2 Utility components [utility]
22.2.1 Header <utility> synopsis [utility.syn]

1 The header <utility> contains some basic function and class templates that are used throughout the rest of
the library.

// all freestanding
#include <compare> // see 17.11.1
#include <initializer_list> // see 17.10.2

namespace std {
// 22.2.2, swap
template<class T>

constexpr void swap(T& a, T& b) noexcept(see below );
template<class T, size_t N>

constexpr void swap(T (&a)[N], T (&b)[N]) noexcept(is_nothrow_swappable_v<T>);

// 22.2.3, exchange
template<class T, class U = T>

constexpr T exchange(T& obj, U&& new_val) noexcept(see below );

// 22.2.4, forward/move
template<class T>

constexpr T&& forward(remove_reference_t<T>& t) noexcept;
template<class T>

constexpr T&& forward(remove_reference_t<T>&& t) noexcept;
template<class T, class U>

[[nodiscard]] constexpr auto forward_like(U&& x) noexcept -> see below ;
template<class T>

constexpr remove_reference_t<T>&& move(T&&) noexcept;
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template<class T>
constexpr conditional_t<

!is_nothrow_move_constructible_v<T> && is_copy_constructible_v<T>, const T&, T&&>
move_if_noexcept(T& x) noexcept;

// 22.2.5, as_const
template<class T>

constexpr add_const_t<T>& as_const(T& t) noexcept;
template<class T>

void as_const(const T&&) = delete;

// 22.2.6, declval
template<class T>

add_rvalue_reference_t<T> declval() noexcept; // as unevaluated operand

// 22.2.7, integer comparison functions
template<class T, class U>

constexpr bool cmp_equal(T t, U u) noexcept;
template<class T, class U>

constexpr bool cmp_not_equal(T t, U u) noexcept;

template<class T, class U>
constexpr bool cmp_less(T t, U u) noexcept;

template<class T, class U>
constexpr bool cmp_greater(T t, U u) noexcept;

template<class T, class U>
constexpr bool cmp_less_equal(T t, U u) noexcept;

template<class T, class U>
constexpr bool cmp_greater_equal(T t, U u) noexcept;

template<class R, class T>
constexpr bool in_range(T t) noexcept;

// 22.2.8, to_underlying
template<class T>

constexpr underlying_type_t<T> to_underlying(T value) noexcept;

// 22.2.9, unreachable
[[noreturn]] void unreachable();

// 21.2, compile-time integer sequences
template<class T, T...>

struct integer_sequence;
template<size_t... I>

using index_sequence = integer_sequence<size_t, I...>;

template<class T, T N>
using make_integer_sequence = integer_sequence<T, see below >;

template<size_t N>
using make_index_sequence = make_integer_sequence<size_t, N>;

template<class... T>
using index_sequence_for = make_index_sequence<sizeof...(T)>;

// 22.3, class template pair
template<class T1, class T2>

struct pair;

template<class T1, class T2, class U1, class U2,
template<class> class TQual, template<class> class UQual>

requires requires { typename pair<common_reference_t<TQual<T1>, UQual<U1>>,
common_reference_t<TQual<T2>, UQual<U2>>>; }
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struct basic_common_reference<pair<T1, T2>, pair<U1, U2>, TQual, UQual> {
using type = pair<common_reference_t<TQual<T1>, UQual<U1>>,

common_reference_t<TQual<T2>, UQual<U2>>>;
};

template<class T1, class T2, class U1, class U2>
requires requires { typename pair<common_type_t<T1, U1>, common_type_t<T2, U2>>; }

struct common_type<pair<T1, T2>, pair<U1, U2>> {
using type = pair<common_type_t<T1, U1>, common_type_t<T2, U2>>;

};

// 22.3.3, pair specialized algorithms
template<class T1, class T2, class U1, class U2>

constexpr bool operator==(const pair<T1, T2>&, const pair<U1, U2>&);
template<class T1, class T2, class U1, class U2>

constexpr common_comparison_category_t<synth-three-way-result <T1, U1>,
synth-three-way-result <T2, U2>>

operator<=>(const pair<T1, T2>&, const pair<U1, U2>&);

template<class T1, class T2>
constexpr void swap(pair<T1, T2>& x, pair<T1, T2>& y) noexcept(noexcept(x.swap(y)));

template<class T1, class T2>
constexpr void swap(const pair<T1, T2>& x, const pair<T1, T2>& y)

noexcept(noexcept(x.swap(y)));

template<class T1, class T2>
constexpr see below make_pair(T1&&, T2&&);

// 22.3.4, tuple-like access to pair
template<class T> struct tuple_size;
template<size_t I, class T> struct tuple_element;

template<class T1, class T2> struct tuple_size<pair<T1, T2>>;
template<size_t I, class T1, class T2> struct tuple_element<I, pair<T1, T2>>;

template<size_t I, class T1, class T2>
constexpr tuple_element_t<I, pair<T1, T2>>& get(pair<T1, T2>&) noexcept;

template<size_t I, class T1, class T2>
constexpr tuple_element_t<I, pair<T1, T2>>&& get(pair<T1, T2>&&) noexcept;

template<size_t I, class T1, class T2>
constexpr const tuple_element_t<I, pair<T1, T2>>& get(const pair<T1, T2>&) noexcept;

template<size_t I, class T1, class T2>
constexpr const tuple_element_t<I, pair<T1, T2>>&& get(const pair<T1, T2>&&) noexcept;

template<class T1, class T2>
constexpr T1& get(pair<T1, T2>& p) noexcept;

template<class T1, class T2>
constexpr const T1& get(const pair<T1, T2>& p) noexcept;

template<class T1, class T2>
constexpr T1&& get(pair<T1, T2>&& p) noexcept;

template<class T1, class T2>
constexpr const T1&& get(const pair<T1, T2>&& p) noexcept;

template<class T2, class T1>
constexpr T2& get(pair<T1, T2>& p) noexcept;

template<class T2, class T1>
constexpr const T2& get(const pair<T1, T2>& p) noexcept;

template<class T2, class T1>
constexpr T2&& get(pair<T1, T2>&& p) noexcept;

template<class T2, class T1>
constexpr const T2&& get(const pair<T1, T2>&& p) noexcept;

// 22.3.5, pair piecewise construction
struct piecewise_construct_t {

explicit piecewise_construct_t() = default;
};
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inline constexpr piecewise_construct_t piecewise_construct{};
template<class... Types> class tuple; // defined in <tuple> (22.4.2)

// in-place construction
struct in_place_t {

explicit in_place_t() = default;
};
inline constexpr in_place_t in_place{};

template<class T>
struct in_place_type_t {

explicit in_place_type_t() = default;
};

template<class T> constexpr in_place_type_t<T> in_place_type{};

template<size_t I>
struct in_place_index_t {

explicit in_place_index_t() = default;
};

template<size_t I> constexpr in_place_index_t<I> in_place_index{};
}

22.2.2 swap [utility.swap]
template<class T>

constexpr void swap(T& a, T& b) noexcept(see below );

1 Constraints: is_move_constructible_v<T> is true and is_move_assignable_v<T> is true.
2 Preconditions: Type T meets the Cpp17MoveConstructible (Table 31) and Cpp17MoveAssignable

(Table 33) requirements.
3 Effects: Exchanges values stored in two locations.
4 Remarks: The exception specification is equivalent to:

is_nothrow_move_constructible_v<T> && is_nothrow_move_assignable_v<T>

template<class T, size_t N>
constexpr void swap(T (&a)[N], T (&b)[N]) noexcept(is_nothrow_swappable_v<T>);

5 Constraints: is_swappable_v<T> is true.
6 Preconditions: a[i] is swappable with (16.4.4.3) b[i] for all i in the range [0, N).
7 Effects: As if by swap_ranges(a, a + N, b).

22.2.3 exchange [utility.exchange]
template<class T, class U = T>

constexpr T exchange(T& obj, U&& new_val) noexcept(see below );

1 Effects: Equivalent to:
T old_val = std::move(obj);
obj = std::forward<U>(new_val);
return old_val;

2 Remarks: The exception specification is equivalent to:
is_nothrow_move_constructible_v<T> && is_nothrow_assignable_v<T&, U>

22.2.4 Forward/move helpers [forward]
1 The library provides templated helper functions to simplify applying move semantics to an lvalue and to

simplify the implementation of forwarding functions. All functions specified in this subclause are signal-
safe (17.13.5).

template<class T> constexpr T&& forward(remove_reference_t<T>& t) noexcept;
template<class T> constexpr T&& forward(remove_reference_t<T>&& t) noexcept;

2 Mandates: For the second overload, is_lvalue_reference_v<T> is false.
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3 Returns: static_cast<T&&>(t).
4 [Example 1 :

template<class T, class A1, class A2>
shared_ptr<T> factory(A1&& a1, A2&& a2) {

return shared_ptr<T>(new T(std::forward<A1>(a1), std::forward<A2>(a2)));
}

struct A {
A(int&, const double&);

};

void g() {
shared_ptr<A> sp1 = factory<A>(2, 1.414); // error: 2 will not bind to int&
int i = 2;
shared_ptr<A> sp2 = factory<A>(i, 1.414); // OK

}

In the first call to factory, A1 is deduced as int, so 2 is forwarded to A’s constructor as an rvalue. In the
second call to factory, A1 is deduced as int&, so i is forwarded to A’s constructor as an lvalue. In both cases,
A2 is deduced as double, so 1.414 is forwarded to A’s constructor as an rvalue. — end example ]

template<class T, class U>
[[nodiscard]] constexpr auto forward_like(U&& x) noexcept -> see below ;

5 Mandates: T is a referenceable type (3.43).
—(5.1) Let COPY_CONST (A, B) be const B if A is a const type, otherwise B.
—(5.2) Let OVERRIDE_REF (A, B) be remove_reference_t<B>&& if A is an rvalue reference type, otherwise

B&.
—(5.3) Let V be

OVERRIDE_REF (T&&, COPY_CONST (remove_reference_t<T>, remove_reference_t<U>))

6 Returns: static_cast<V>(x).
7 Remarks: The return type is V.
8 [Example 2 :

struct accessor {
vector<string>* container;
decltype(auto) operator[](this auto&& self, size_t i) {

return std::forward_like<decltype(self)>((*container)[i]);
}

};
void g() {

vector v{"a"s, "b"s};
accessor a{&v};
string& x = a[0]; // OK, binds to lvalue reference
string&& y = std::move(a)[0]; // OK, is rvalue reference
string const&& z = std::move(as_const(a))[1]; // OK, is const&&
string& w = as_const(a)[1]; // error: will not bind to non-const

}

— end example ]

template<class T> constexpr remove_reference_t<T>&& move(T&& t) noexcept;

9 Returns: static_cast<remove_reference_t<T>&&>(t).
10 [Example 3 :

template<class T, class A1>
shared_ptr<T> factory(A1&& a1) {

return shared_ptr<T>(new T(std::forward<A1>(a1)));
}

struct A {
A();
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A(const A&); // copies from lvalues
A(A&&); // moves from rvalues

};

void g() {
A a;
shared_ptr<A> sp1 = factory<A>(a); // “a” binds to A(const A&)
shared_ptr<A> sp2 = factory<A>(std::move(a)); // “a” binds to A(A&&)

}

In the first call to factory, A1 is deduced as A&, so a is forwarded as a non-const lvalue. This binds to the
constructor A(const A&), which copies the value from a. In the second call to factory, because of the call
std::move(a), A1 is deduced as A, so a is forwarded as an rvalue. This binds to the constructor A(A&&), which
moves the value from a. — end example ]

template<class T> constexpr conditional_t<
!is_nothrow_move_constructible_v<T> && is_copy_constructible_v<T>, const T&, T&&>

move_if_noexcept(T& x) noexcept;

11 Returns: std::move(x).

22.2.5 Function template as_const [utility.as.const]
template<class T> constexpr add_const_t<T>& as_const(T& t) noexcept;

1 Returns: t.

22.2.6 Function template declval [declval]
1 The library provides the function template declval to simplify the definition of expressions which occur as

unevaluated operands (7.2.3).

template<class T> add_rvalue_reference_t<T> declval() noexcept; // as unevaluated operand
2 Mandates: This function is not odr-used (6.3).
3 Remarks: The template parameter T of declval may be an incomplete type.
4 [Example 1 :

template<class To, class From> decltype(static_cast<To>(declval<From>())) convert(From&&);

declares a function template convert which only participates in overload resolution if the type From can be
explicitly converted to type To. For another example see class template common_type (21.3.8.7). — end example ]

22.2.7 Integer comparison functions [utility.intcmp]
template<class T, class U>

constexpr bool cmp_equal(T t, U u) noexcept;

1 Mandates: Both T and U are standard integer types or extended integer types (6.8.2).
2 Effects: Equivalent to:

using UT = make_unsigned_t<T>;
using UU = make_unsigned_t<U>;
if constexpr (is_signed_v<T> == is_signed_v<U>)

return t == u;
else if constexpr (is_signed_v<T>)

return t < 0 ? false : UT(t) == u;
else

return u < 0 ? false : t == UU(u);

template<class T, class U>
constexpr bool cmp_not_equal(T t, U u) noexcept;

3 Effects: Equivalent to: return !cmp_equal(t, u);

template<class T, class U>
constexpr bool cmp_less(T t, U u) noexcept;

4 Mandates: Both T and U are standard integer types or extended integer types (6.8.2).
5 Effects: Equivalent to:
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using UT = make_unsigned_t<T>;
using UU = make_unsigned_t<U>;
if constexpr (is_signed_v<T> == is_signed_v<U>)

return t < u;
else if constexpr (is_signed_v<T>)

return t < 0 ? true : UT(t) < u;
else

return u < 0 ? false : t < UU(u);

template<class T, class U>
constexpr bool cmp_greater(T t, U u) noexcept;

6 Effects: Equivalent to: return cmp_less(u, t);

template<class T, class U>
constexpr bool cmp_less_equal(T t, U u) noexcept;

7 Effects: Equivalent to: return !cmp_greater(t, u);

template<class T, class U>
constexpr bool cmp_greater_equal(T t, U u) noexcept;

8 Effects: Equivalent to: return !cmp_less(t, u);

template<class R, class T>
constexpr bool in_range(T t) noexcept;

9 Mandates: Both T and R are standard integer types or extended integer types (6.8.2).
10 Effects: Equivalent to:

return cmp_greater_equal(t, numeric_limits<R>::min()) &&
cmp_less_equal(t, numeric_limits<R>::max());

11 [Note 1 : These function templates cannot be used to compare byte, char, char8_t, char16_t, char32_t, wchar_t,
and bool. — end note ]

22.2.8 Function template to_underlying [utility.underlying]
template<class T>

constexpr underlying_type_t<T> to_underlying(T value) noexcept;

1 Returns: static_cast<underlying_type_t<T>>(value).

22.2.9 Function unreachable [utility.unreachable]
[[noreturn]] void unreachable();

1 Preconditions: false is true.
[Note 1 : This precondition cannot be satisfied, thus the behavior of calling unreachable is undefined. — end
note ]

2 [Example 1 :
int f(int x) {

switch (x) {
case 0:
case 1:

return x;
default:

std::unreachable();
}

}
int a = f(1); // OK, a has value 1
int b = f(3); // undefined behavior

— end example ]
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22.3 Pairs [pairs]
22.3.1 In general [pairs.general]

1 The library provides a template for heterogeneous pairs of values. The library also provides a matching
function template to simplify their construction and several templates that provide access to pair objects as
if they were tuple objects (see 22.4.7 and 22.4.8).

22.3.2 Class template pair [pairs.pair]
namespace std {

template<class T1, class T2>
struct pair {

using first_type = T1;
using second_type = T2;

T1 first;
T2 second;

pair(const pair&) = default;
pair(pair&&) = default;
constexpr explicit(see below ) pair();
constexpr explicit(see below ) pair(const T1& x, const T2& y);
template<class U1 = T1, class U2 = T2>

constexpr explicit(see below ) pair(U1&& x, U2&& y);
template<class U1, class U2>

constexpr explicit(see below ) pair(pair<U1, U2>& p);
template<class U1, class U2>

constexpr explicit(see below ) pair(const pair<U1, U2>& p);
template<class U1, class U2>

constexpr explicit(see below ) pair(pair<U1, U2>&& p);
template<class U1, class U2>

constexpr explicit(see below ) pair(const pair<U1, U2>&& p);
template<pair-like P>

constexpr explicit(see below ) pair(P&& p);
template<class... Args1, class... Args2>

constexpr pair(piecewise_construct_t,
tuple<Args1...> first_args, tuple<Args2...> second_args);

constexpr pair& operator=(const pair& p);
constexpr const pair& operator=(const pair& p) const;
template<class U1, class U2>

constexpr pair& operator=(const pair<U1, U2>& p);
template<class U1, class U2>

constexpr const pair& operator=(const pair<U1, U2>& p) const;
constexpr pair& operator=(pair&& p) noexcept(see below );
constexpr const pair& operator=(pair&& p) const;
template<class U1, class U2>

constexpr pair& operator=(pair<U1, U2>&& p);
template<class U1, class U2>

constexpr const pair& operator=(pair<U1, U2>&& p) const;
template<pair-like P>

constexpr pair& operator=(P&& p);
template<pair-like P>

constexpr const pair& operator=(P&& p) const;

constexpr void swap(pair& p) noexcept(see below );
constexpr void swap(const pair& p) const noexcept(see below );

};

template<class T1, class T2>
pair(T1, T2) -> pair<T1, T2>;

}

1 Constructors and member functions of pair do not throw exceptions unless one of the element-wise operations
specified to be called for that operation throws an exception.
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2 The defaulted move and copy constructor, respectively, of pair is a constexpr function if and only if all
required element-wise initializations for move and copy, respectively, would be constexpr-suitable (9.2.6).

3 If (is_trivially_destructible_v<T1> && is_trivially_destructible_v<T2>) is true, then the de-
structor of pair is trivial.

4 pair<T, U> is a structural type (13.2) if T and U are both structural types. Two values p1 and p2 of type
pair<T, U> are template-argument-equivalent (13.6) if and only if p1.first and p2.first are template-
argument-equivalent and p1.second and p2.second are template-argument-equivalent.

constexpr explicit(see below ) pair();

5 Constraints:
—(5.1) is_default_constructible_v<T1> is true and
—(5.2) is_default_constructible_v<T2> is true.

6 Effects: Value-initializes first and second.
7 Remarks: The expression inside explicit evaluates to true if and only if either T1 or T2 is not

implicitly default-constructible.
[Note 1 : This behavior can be implemented with a trait that checks whether a const T1& or a const T2& can
be initialized with {}. — end note ]

constexpr explicit(see below ) pair(const T1& x, const T2& y);

8 Constraints:
—(8.1) is_copy_constructible_v<T1> is true and
—(8.2) is_copy_constructible_v<T2> is true.

9 Effects: Initializes first with x and second with y.
10 Remarks: The expression inside explicit is equivalent to:

!is_convertible_v<const T1&, T1> || !is_convertible_v<const T2&, T2>

template<class U1 = T1, class U2 = T2> constexpr explicit(see below ) pair(U1&& x, U2&& y);

11 Constraints:
—(11.1) is_constructible_v<T1, U1> is true and
—(11.2) is_constructible_v<T2, U2> is true.

12 Effects: Initializes first with std::forward<U1>(x) and second with std::forward<U2>(y).
13 Remarks: The expression inside explicit is equivalent to:

!is_convertible_v<U1, T1> || !is_convertible_v<U2, T2>

This constructor is defined as deleted if reference_constructs_from_temporary_v<first_type,
U1&&> is true or reference_constructs_from_temporary_v<second_type, U2&&> is true.

template<class U1, class U2> constexpr explicit(see below ) pair(pair<U1, U2>& p);
template<class U1, class U2> constexpr explicit(see below ) pair(const pair<U1, U2>& p);
template<class U1, class U2> constexpr explicit(see below ) pair(pair<U1, U2>&& p);
template<class U1, class U2> constexpr explicit(see below ) pair(const pair<U1, U2>&& p);
template<pair-like P> constexpr explicit(see below ) pair(P&& p);

14 Let FWD (u) be static_cast<decltype(u)>(u).
15 Constraints:

—(15.1) For the last overload, remove_cvref_t<P> is not a specialization of ranges::subrange,
—(15.2) is_constructible_v<T1, decltype(get<0>(FWD (p)))> is true, and
—(15.3) is_constructible_v<T2, decltype(get<1>(FWD (p)))> is true.

16 Effects: Initializes first with get<0>(FWD (p)) and second with get<1>(FWD (p)).
17 Remarks: The expression inside explicit is equivalent to:

!is_convertible_v<decltype(get<0>(FWD (p))), T1> ||
!is_convertible_v<decltype(get<1>(FWD (p))), T2>
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The constructor is defined as deleted if
reference_constructs_from_temporary_v<first_type, decltype(get<0>(FWD (p)))> ||
reference_constructs_from_temporary_v<second_type, decltype(get<1>(FWD (p)))>

is true.

template<class... Args1, class... Args2>
constexpr pair(piecewise_construct_t,

tuple<Args1...> first_args, tuple<Args2...> second_args);

18 Mandates:
—(18.1) is_constructible_v<T1, Args1...> is true and
—(18.2) is_constructible_v<T2, Args2...> is true.

19 Effects: Initializes first with arguments of types Args1... obtained by forwarding the elements of
first_args and initializes second with arguments of types Args2... obtained by forwarding the
elements of second_args. (Here, forwarding an element x of type U within a tuple object means
calling std::forward<U>(x).) This form of construction, whereby constructor arguments for first
and second are each provided in a separate tuple object, is called piecewise construction.
[Note 2 : If a data member of pair is of reference type and its initialization binds it to a temporary object, the
program is ill-formed (11.9.3). — end note ]

constexpr pair& operator=(const pair& p);

20 Effects: Assigns p.first to first and p.second to second.
21 Returns: *this.
22 Remarks: This operator is defined as deleted unless is_copy_assignable_v<T1> is true and is_-

copy_assignable_v<T2> is true.

constexpr const pair& operator=(const pair& p) const;

23 Constraints:
—(23.1) is_copy_assignable_v<const T1> is true and
—(23.2) is_copy_assignable_v<const T2> is true.

24 Effects: Assigns p.first to first and p.second to second.
25 Returns: *this.

template<class U1, class U2> constexpr pair& operator=(const pair<U1, U2>& p);

26 Constraints:
—(26.1) is_assignable_v<T1&, const U1&> is true and
—(26.2) is_assignable_v<T2&, const U2&> is true.

27 Effects: Assigns p.first to first and p.second to second.
28 Returns: *this.

template<class U1, class U2> constexpr const pair& operator=(const pair<U1, U2>& p) const;

29 Constraints:
—(29.1) is_assignable_v<const T1&, const U1&> is true, and
—(29.2) is_assignable_v<const T2&, const U2&> is true.

30 Effects: Assigns p.first to first and p.second to second.
31 Returns: *this.

constexpr pair& operator=(pair&& p) noexcept(see below );

32 Constraints:
—(32.1) is_move_assignable_v<T1> is true and
—(32.2) is_move_assignable_v<T2> is true.
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33 Effects: Assigns to first with std::forward<T1>(p.first) and to second with std::forward<T2>(
p.second).

34 Returns: *this.
35 Remarks: The exception specification is equivalent to:

is_nothrow_move_assignable_v<T1> && is_nothrow_move_assignable_v<T2>

constexpr const pair& operator=(pair&& p) const;

36 Constraints:
—(36.1) is_assignable_v<const T1&, T1> is true and
—(36.2) is_assignable_v<const T2&, T2> is true.

37 Effects: Assigns std::forward<T1>(p.first) to first and std::forward<T2>(p.second) to second.
38 Returns: *this.

template<class U1, class U2> constexpr pair& operator=(pair<U1, U2>&& p);

39 Constraints:
—(39.1) is_assignable_v<T1&, U1> is true and
—(39.2) is_assignable_v<T2&, U2> is true.

40 Effects: Assigns to first with std::forward<U1>(p.first) and to second with
std::forward<U2>(p.second).

41 Returns: *this.

template<pair-like P> constexpr pair& operator=(P&& p);

42 Constraints:
—(42.1) different-from <P, pair> (26.5.2) is true,
—(42.2) remove_cvref_t<P> is not a specialization of ranges::subrange,
—(42.3) is_assignable_v<T1&, decltype(get<0>(std::forward<P>(p)))> is true, and
—(42.4) is_assignable_v<T2&, decltype(get<1>(std::forward<P>(p)))> is true.

43 Effects: Assigns get<0>(std::forward<P>(p)) to first and get<1>(std::forward<P>(p)) to sec-
ond.

44 Returns: *this.

template<pair-like P> constexpr const pair& operator=(P&& p) const;

45 Constraints:
—(45.1) different-from <P, pair> (26.5.2) is true,
—(45.2) remove_cvref_t<P> is not a specialization of ranges::subrange,
—(45.3) is_assignable_v<const T1&, decltype(get<0>(std::forward<P>(p)))> is true, and
—(45.4) is_assignable_v<const T2&, decltype(get<1>(std::forward<P>(p)))> is true.

46 Effects: Assigns get<0>(std::forward<P>(p)) to first and get<1>(std::forward<P>(p)) to sec-
ond.

47 Returns: *this.

template<class U1, class U2> constexpr const pair& operator=(pair<U1, U2>&& p) const;

48 Constraints:
—(48.1) is_assignable_v<const T1&, U1> is true, and
—(48.2) is_assignable_v<const T2&, U2> is true.

49 Effects: Assigns std::forward<U1>(p.first) to first and std::forward<U2>(u.second) to second.
50 Returns: *this.

constexpr void swap(pair& p) noexcept(see below );
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constexpr void swap(const pair& p) const noexcept(see below );

51 Mandates:
—(51.1) For the first overload, is_swappable_v<T1> is true and is_swappable_v<T2> is true.
—(51.2) For the second overload, is_swappable_v<const T1> is true and is_swappable_v<const T2>

is true.
52 Preconditions: first is swappable with (16.4.4.3) p.first and second is swappable with p.second.
53 Effects: Swaps first with p.first and second with p.second.
54 Remarks: The exception specification is equivalent to:

—(54.1) is_nothrow_swappable_v<T1> && is_nothrow_swappable_v<T2> for the first overload, and
—(54.2) is_nothrow_swappable_v<const T1> && is_nothrow_swappable_v<const T2> for the second

overload.

22.3.3 Specialized algorithms [pairs.spec]
template<class T1, class T2, class U1, class U2>

constexpr bool operator==(const pair<T1, T2>& x, const pair<U1, U2>& y);

1 Preconditions: Each of decltype(x.first == y.first) and decltype(x.second == y.second)
models boolean-testable .

2 Returns: x.first == y.first && x.second == y.second.

template<class T1, class T2, class U1, class U2>
constexpr common_comparison_category_t<synth-three-way-result <T1, U1>,

synth-three-way-result <T2, U2>>
operator<=>(const pair<T1, T2>& x, const pair<U1, U2>& y);

3 Effects: Equivalent to:
if (auto c = synth-three-way(x.first, y.first); c != 0) return c;
return synth-three-way(x.second, y.second);

template<class T1, class T2>
constexpr void swap(pair<T1, T2>& x, pair<T1, T2>& y) noexcept(noexcept(x.swap(y)));

template<class T1, class T2>
constexpr void swap(const pair<T1, T2>& x, const pair<T1, T2>& y) noexcept(noexcept(x.swap(y)));

4 Constraints:
—(4.1) For the first overload, is_swappable_v<T1> is true and is_swappable_v<T2> is true.
—(4.2) For the second overload, is_swappable_v<const T1> is true and is_swappable_v<const T2>

is true.
5 Effects: Equivalent to x.swap(y).

template<class T1, class T2>
constexpr pair<unwrap_ref_decay_t<T1>, unwrap_ref_decay_t<T2>> make_pair(T1&& x, T2&& y);

6 Returns:
pair<unwrap_ref_decay_t<T1>,

unwrap_ref_decay_t<T2>>(std::forward<T1>(x), std::forward<T2>(y))
7 [Example 1 : In place of:

return pair<int, double>(5, 3.1415926); // explicit types
a C++ program may contain:

return make_pair(5, 3.1415926); // types are deduced
— end example ]

22.3.4 Tuple-like access to pair [pair.astuple]
template<class T1, class T2>

struct tuple_size<pair<T1, T2>> : integral_constant<size_t, 2> { };
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template<size_t I, class T1, class T2>
struct tuple_element<I, pair<T1, T2>> {

using type = see below ;
};

1 Mandates: I < 2.
2 Type: The type T1 if I is 0, otherwise the type T2.

template<size_t I, class T1, class T2>
constexpr tuple_element_t<I, pair<T1, T2>>& get(pair<T1, T2>& p) noexcept;

template<size_t I, class T1, class T2>
constexpr const tuple_element_t<I, pair<T1, T2>>& get(const pair<T1, T2>& p) noexcept;

template<size_t I, class T1, class T2>
constexpr tuple_element_t<I, pair<T1, T2>>&& get(pair<T1, T2>&& p) noexcept;

template<size_t I, class T1, class T2>
constexpr const tuple_element_t<I, pair<T1, T2>>&& get(const pair<T1, T2>&& p) noexcept;

3 Mandates: I < 2.
4 Returns:

—(4.1) If I is 0, returns a reference to p.first.
—(4.2) If I is 1, returns a reference to p.second.

template<class T1, class T2>
constexpr T1& get(pair<T1, T2>& p) noexcept;

template<class T1, class T2>
constexpr const T1& get(const pair<T1, T2>& p) noexcept;

template<class T1, class T2>
constexpr T1&& get(pair<T1, T2>&& p) noexcept;

template<class T1, class T2>
constexpr const T1&& get(const pair<T1, T2>&& p) noexcept;

5 Mandates: T1 and T2 are distinct types.
6 Returns: A reference to p.first.

template<class T2, class T1>
constexpr T2& get(pair<T1, T2>& p) noexcept;

template<class T2, class T1>
constexpr const T2& get(const pair<T1, T2>& p) noexcept;

template<class T2, class T1>
constexpr T2&& get(pair<T1, T2>&& p) noexcept;

template<class T2, class T1>
constexpr const T2&& get(const pair<T1, T2>&& p) noexcept;

7 Mandates: T1 and T2 are distinct types.
8 Returns: A reference to p.second.

22.3.5 Piecewise construction [pair.piecewise]
struct piecewise_construct_t {

explicit piecewise_construct_t() = default;
};
inline constexpr piecewise_construct_t piecewise_construct{};

1 The struct piecewise_construct_t is an empty class type used as a unique type to disambiguate constructor
and function overloading. Specifically, pair has a constructor with piecewise_construct_t as the first
argument, immediately followed by two tuple (22.4) arguments used for piecewise construction of the
elements of the pair object.

22.4 Tuples [tuple]
22.4.1 In general [tuple.general]

1 Subclause 22.4 describes the tuple library that provides a tuple type as the class template tuple that can be
instantiated with any number of arguments. Each template argument specifies the type of an element in the
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tuple. Consequently, tuples are heterogeneous, fixed-size collections of values. An instantiation of tuple
with two arguments is similar to an instantiation of pair with the same two arguments. See 22.3.

22.4.2 Header <tuple> synopsis [tuple.syn]
// all freestanding
#include <compare> // see 17.11.1

namespace std {
// 22.4.4, class template tuple
template<class... Types>

class tuple;

// 22.4.3, concept tuple-like
template<class T>

concept tuple-like = see below; // exposition only
template<class T>

concept pair-like = // exposition only
tuple-like <T> && tuple_size_v<remove_cvref_t<T>> == 2;

// 22.4.10, common_reference related specializations
template<tuple-like TTuple, tuple-like UTuple,

template<class> class TQual, template<class> class UQual>
struct basic_common_reference<TTuple, UTuple, TQual, UQual>;

template<tuple-like TTuple, tuple-like UTuple>
struct common_type<TTuple, UTuple>;

// 22.4.5, tuple creation functions
inline constexpr unspecified ignore;

template<class... TTypes>
constexpr tuple<unwrap_ref_decay_t<TTypes>...> make_tuple(TTypes&&...);

template<class... TTypes>
constexpr tuple<TTypes&&...> forward_as_tuple(TTypes&&...) noexcept;

template<class... TTypes>
constexpr tuple<TTypes&...> tie(TTypes&...) noexcept;

template<tuple-like... Tuples>
constexpr tuple<CTypes...> tuple_cat(Tuples&&...);

// 22.4.6, calling a function with a tuple of arguments
template<class F, tuple-like Tuple>

constexpr decltype(auto) apply(F&& f, Tuple&& t) noexcept(see below );

template<class T, tuple-like Tuple>
constexpr T make_from_tuple(Tuple&& t);

// 22.4.7, tuple helper classes
template<class T> struct tuple_size; // not defined
template<class T> struct tuple_size<const T>;

template<class... Types> struct tuple_size<tuple<Types...>>;

template<size_t I, class T> struct tuple_element; // not defined
template<size_t I, class T> struct tuple_element<I, const T>;

template<size_t I, class... Types>
struct tuple_element<I, tuple<Types...>>;

template<size_t I, class T>
using tuple_element_t = typename tuple_element<I, T>::type;
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// 22.4.8, element access
template<size_t I, class... Types>

constexpr tuple_element_t<I, tuple<Types...>>& get(tuple<Types...>&) noexcept;
template<size_t I, class... Types>

constexpr tuple_element_t<I, tuple<Types...>>&& get(tuple<Types...>&&) noexcept;
template<size_t I, class... Types>

constexpr const tuple_element_t<I, tuple<Types...>>& get(const tuple<Types...>&) noexcept;
template<size_t I, class... Types>

constexpr const tuple_element_t<I, tuple<Types...>>&& get(const tuple<Types...>&&) noexcept;
template<class T, class... Types>

constexpr T& get(tuple<Types...>& t) noexcept;
template<class T, class... Types>

constexpr T&& get(tuple<Types...>&& t) noexcept;
template<class T, class... Types>

constexpr const T& get(const tuple<Types...>& t) noexcept;
template<class T, class... Types>

constexpr const T&& get(const tuple<Types...>&& t) noexcept;

// 22.4.9, relational operators
template<class... TTypes, class... UTypes>

constexpr bool operator==(const tuple<TTypes...>&, const tuple<UTypes...>&);
template<class... TTypes, tuple-like UTuple>

constexpr bool operator==(const tuple<TTypes...>&, const UTuple&);
template<class... TTypes, class... UTypes>

constexpr common_comparison_category_t<synth-three-way-result<TTypes, UTypes>...>
operator<=>(const tuple<TTypes...>&, const tuple<UTypes...>&);

template<class... TTypes, tuple-like UTuple>
constexpr see below operator<=>(const tuple<TTypes...>&, const UTuple&);

// 22.4.11, allocator-related traits
template<class... Types, class Alloc>

struct uses_allocator<tuple<Types...>, Alloc>;

// 22.4.12, specialized algorithms
template<class... Types>

constexpr void swap(tuple<Types...>& x, tuple<Types...>& y) noexcept(see below );
template<class... Types>

constexpr void swap(const tuple<Types...>& x, const tuple<Types...>& y) noexcept(see below );

// 22.4.7, tuple helper classes
template<class T>

constexpr size_t tuple_size_v = tuple_size<T>::value;
}

22.4.3 Concept tuple-like [tuple.like]
template<class T>

concept tuple-like = see below; // exposition only
1 A type T models and satisfies the exposition-only concept tuple-like if remove_cvref_t<T> is a

specialization of array, pair, tuple, or ranges::subrange.

22.4.4 Class template tuple [tuple.tuple]
namespace std {

template<class... Types>
class tuple {
public:

// 22.4.4.1, tuple construction
constexpr explicit(see below ) tuple();
constexpr explicit(see below ) tuple(const Types&...); // only if sizeof...(Types) >= 1
template<class... UTypes>

constexpr explicit(see below ) tuple(UTypes&&...); // only if sizeof...(Types) >= 1
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tuple(const tuple&) = default;
tuple(tuple&&) = default;

template<class... UTypes>
constexpr explicit(see below ) tuple(tuple<UTypes...>&);

template<class... UTypes>
constexpr explicit(see below ) tuple(const tuple<UTypes...>&);

template<class... UTypes>
constexpr explicit(see below ) tuple(tuple<UTypes...>&&);

template<class... UTypes>
constexpr explicit(see below ) tuple(const tuple<UTypes...>&&);

template<class U1, class U2>
constexpr explicit(see below ) tuple(pair<U1, U2>&); // only if sizeof...(Types) == 2

template<class U1, class U2>
constexpr explicit(see below ) tuple(const pair<U1, U2>&); // only if sizeof...(Types) == 2

template<class U1, class U2>
constexpr explicit(see below ) tuple(pair<U1, U2>&&); // only if sizeof...(Types) == 2

template<class U1, class U2>
constexpr explicit(see below ) tuple(const pair<U1, U2>&&); // only if sizeof...(Types) == 2

template<tuple-like UTuple>
constexpr explicit(see below ) tuple(UTuple&&);

// allocator-extended constructors
template<class Alloc>

constexpr explicit(see below )
tuple(allocator_arg_t, const Alloc& a);

template<class Alloc>
constexpr explicit(see below )

tuple(allocator_arg_t, const Alloc& a, const Types&...);
template<class Alloc, class... UTypes>

constexpr explicit(see below )
tuple(allocator_arg_t, const Alloc& a, UTypes&&...);

template<class Alloc>
constexpr tuple(allocator_arg_t, const Alloc& a, const tuple&);

template<class Alloc>
constexpr tuple(allocator_arg_t, const Alloc& a, tuple&&);

template<class Alloc, class... UTypes>
constexpr explicit(see below )

tuple(allocator_arg_t, const Alloc& a, tuple<UTypes...>&);
template<class Alloc, class... UTypes>

constexpr explicit(see below )
tuple(allocator_arg_t, const Alloc& a, const tuple<UTypes...>&);

template<class Alloc, class... UTypes>
constexpr explicit(see below )

tuple(allocator_arg_t, const Alloc& a, tuple<UTypes...>&&);
template<class Alloc, class... UTypes>

constexpr explicit(see below )
tuple(allocator_arg_t, const Alloc& a, const tuple<UTypes...>&&);

template<class Alloc, class U1, class U2>
constexpr explicit(see below )

tuple(allocator_arg_t, const Alloc& a, pair<U1, U2>&);
template<class Alloc, class U1, class U2>

constexpr explicit(see below )
tuple(allocator_arg_t, const Alloc& a, const pair<U1, U2>&);

template<class Alloc, class U1, class U2>
constexpr explicit(see below )

tuple(allocator_arg_t, const Alloc& a, pair<U1, U2>&&);
template<class Alloc, class U1, class U2>

constexpr explicit(see below )
tuple(allocator_arg_t, const Alloc& a, const pair<U1, U2>&&);
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template<class Alloc, tuple-like UTuple>
constexpr explicit(see below ) tuple(allocator_arg_t, const Alloc& a, UTuple&&);

// 22.4.4.2, tuple assignment
constexpr tuple& operator=(const tuple&);
constexpr const tuple& operator=(const tuple&) const;
constexpr tuple& operator=(tuple&&) noexcept(see below );
constexpr const tuple& operator=(tuple&&) const;

template<class... UTypes>
constexpr tuple& operator=(const tuple<UTypes...>&);

template<class... UTypes>
constexpr const tuple& operator=(const tuple<UTypes...>&) const;

template<class... UTypes>
constexpr tuple& operator=(tuple<UTypes...>&&);

template<class... UTypes>
constexpr const tuple& operator=(tuple<UTypes...>&&) const;

template<class U1, class U2>
constexpr tuple& operator=(const pair<U1, U2>&); // only if sizeof...(Types) == 2

template<class U1, class U2>
constexpr const tuple& operator=(const pair<U1, U2>&) const;

// only if sizeof...(Types) == 2
template<class U1, class U2>

constexpr tuple& operator=(pair<U1, U2>&&); // only if sizeof...(Types) == 2
template<class U1, class U2>

constexpr const tuple& operator=(pair<U1, U2>&&) const; // only if sizeof...(Types) == 2

template<tuple-like UTuple>
constexpr tuple& operator=(UTuple&&);

template<tuple-like UTuple>
constexpr const tuple& operator=(UTuple&&) const;

// 22.4.4.3, tuple swap
constexpr void swap(tuple&) noexcept(see below );
constexpr void swap(const tuple&) const noexcept(see below );

};

template<class... UTypes>
tuple(UTypes...) -> tuple<UTypes...>;

template<class T1, class T2>
tuple(pair<T1, T2>) -> tuple<T1, T2>;

template<class Alloc, class... UTypes>
tuple(allocator_arg_t, Alloc, UTypes...) -> tuple<UTypes...>;

template<class Alloc, class T1, class T2>
tuple(allocator_arg_t, Alloc, pair<T1, T2>) -> tuple<T1, T2>;

template<class Alloc, class... UTypes>
tuple(allocator_arg_t, Alloc, tuple<UTypes...>) -> tuple<UTypes...>;

}

22.4.4.1 Construction [tuple.cnstr]
1 In the descriptions that follow, let i be in the range [0, sizeof...(Types)) in order, Ti be the ith type in

Types, and Ui be the ith type in a template parameter pack named UTypes, where indexing is zero-based.
2 For each tuple constructor, an exception is thrown only if the construction of one of the types in Types

throws an exception.
3 The defaulted move and copy constructor, respectively, of tuple is a constexpr function if and only if all

required element-wise initializations for move and copy, respectively, would be constexpr-suitable (9.2.6). The
defaulted move and copy constructor of tuple<> are constexpr functions.

4 If is_trivially_destructible_v<Ti> is true for all Ti, then the destructor of tuple is trivial.
5 The default constructor of tuple<> is trivial.
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constexpr explicit(see below ) tuple();

6 Constraints: is_default_constructible_v<Ti> is true for all i.
7 Effects: Value-initializes each element.
8 Remarks: The expression inside explicit evaluates to true if and only if Ti is not copy-list-initializable

from an empty list for at least one i.
[Note 1 : This behavior can be implemented with a trait that checks whether a const Ti& can be initialized
with {}. — end note ]

constexpr explicit(see below ) tuple(const Types&...);

9 Constraints: sizeof...(Types) ≥ 1 and is_copy_constructible_v<Ti> is true for all i.
10 Effects: Initializes each element with the value of the corresponding parameter.
11 Remarks: The expression inside explicit is equivalent to:

!conjunction_v<is_convertible<const Types&, Types>...>

template<class... UTypes> constexpr explicit(see below ) tuple(UTypes&&... u);

12 Let disambiguating-constraint be:
—(12.1) negation<is_same<remove_cvref_t<U0>, tuple>> if sizeof...(Types) is 1;
—(12.2) otherwise, bool_constant<!is_same_v<remove_cvref_t<U0>, allocator_arg_t> || is_-

same_v<remove_cvref_t<T0>, allocator_arg_t>> if sizeof...(Types) is 2 or 3;
—(12.3) otherwise, true_type.

13 Constraints:
—(13.1) sizeof...(Types) equals sizeof...(UTypes),
—(13.2) sizeof...(Types) ≥ 1, and
—(13.3) conjunction_v<disambiguating-constraint , is_constructible<Types, UTypes>...> is

true.
14 Effects: Initializes the elements in the tuple with the corresponding value in std::forward<UTypes>(u).
15 Remarks: The expression inside explicit is equivalent to:

!conjunction_v<is_convertible<UTypes, Types>...>

This constructor is defined as deleted if
(reference_constructs_from_temporary_v<Types, UTypes&&> || ...)

is true.

tuple(const tuple& u) = default;

16 Mandates: is_copy_constructible_v<Ti> is true for all i.
17 Effects: Initializes each element of *this with the corresponding element of u.

tuple(tuple&& u) = default;

18 Constraints: is_move_constructible_v<Ti> is true for all i.
19 Effects: For all i, initializes the ith element of *this with std::forward<Ti>(get<i>(u)).

template<class... UTypes> constexpr explicit(see below ) tuple(tuple<UTypes...>& u);
template<class... UTypes> constexpr explicit(see below ) tuple(const tuple<UTypes...>& u);
template<class... UTypes> constexpr explicit(see below ) tuple(tuple<UTypes...>&& u);
template<class... UTypes> constexpr explicit(see below ) tuple(const tuple<UTypes...>&& u);

20 Let I be the pack 0, 1, ..., (sizeof...(Types) - 1).
Let FWD (u) be static_cast<decltype(u)>(u).

21 Constraints:
—(21.1) sizeof...(Types) equals sizeof...(UTypes), and
—(21.2) (is_constructible_v<Types, decltype(get<I>(FWD (u)))> && ...) is true, and
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—(21.3) either sizeof...(Types) is not 1, or (when Types... expands to T and UTypes... expands to U)
is_convertible_v<decltype(u), T>, is_constructible_v<T, decltype(u)>, and is_same_-
v<T, U> are all false.

22 Effects: For all i, initializes the ith element of *this with get<i>(FWD (u)).
23 Remarks: The expression inside explicit is equivalent to:

!(is_convertible_v<decltype(get<I>(FWD (u))), Types> && ...)

The constructor is defined as deleted if
(reference_constructs_from_temporary_v<Types, decltype(get<I>(FWD (u)))> || ...)

is true.

template<class U1, class U2> constexpr explicit(see below ) tuple(pair<U1, U2>& u);
template<class U1, class U2> constexpr explicit(see below ) tuple(const pair<U1, U2>& u);
template<class U1, class U2> constexpr explicit(see below ) tuple(pair<U1, U2>&& u);
template<class U1, class U2> constexpr explicit(see below ) tuple(const pair<U1, U2>&& u);

24 Let FWD (u) be static_cast<decltype(u)>(u).
25 Constraints:

—(25.1) sizeof...(Types) is 2,
—(25.2) is_constructible_v<T0, decltype(get<0>(FWD (u)))> is true, and
—(25.3) is_constructible_v<T1, decltype(get<1>(FWD (u)))> is true.

26 Effects: Initializes the first element with get<0>(FWD (u)) and the second element with get<1>(FWD (
u)).

27 Remarks: The expression inside explicit is equivalent to:
!is_convertible_v<decltype(get<0>(FWD (u))), T0> ||
!is_convertible_v<decltype(get<1>(FWD (u))), T1>

The constructor is defined as deleted if
reference_constructs_from_temporary_v<T0, decltype(get<0>(FWD (u)))> ||
reference_constructs_from_temporary_v<T1, decltype(get<1>(FWD (u)))>

is true.

template<tuple-like UTuple>
constexpr explicit(see below ) tuple(UTuple&& u);

28 Let I be the pack 0, 1, ..., (sizeof...(Types) - 1).
29 Constraints:

—(29.1) different-from <UTuple, tuple> (26.5.2) is true,
—(29.2) remove_cvref_t<UTuple> is not a specialization of ranges::subrange,
—(29.3) sizeof...(Types) equals tuple_size_v<remove_cvref_t<UTuple>>,
—(29.4) (is_constructible_v<Types, decltype(get<I>(std::forward<UTuple>(u)))> && ...) is

true, and
—(29.5) either sizeof...(Types) is not 1, or (when Types... expands to T) is_convertible_v<UTuple,

T> and is_constructible_v<T, UTuple> are both false.
30 Effects: For all i, initializes the ith element of *this with get<i>(std::forward<UTuple>(u)).
31 Remarks: The expression inside explicit is equivalent to:

!(is_convertible_v<decltype(get<I>(std::forward<UTuple>(u))), Types> && ...)

template<class Alloc>
constexpr explicit(see below )

tuple(allocator_arg_t, const Alloc& a);
template<class Alloc>

constexpr explicit(see below )
tuple(allocator_arg_t, const Alloc& a, const Types&...);
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template<class Alloc, class... UTypes>
constexpr explicit(see below )

tuple(allocator_arg_t, const Alloc& a, UTypes&&...);
template<class Alloc>

constexpr tuple(allocator_arg_t, const Alloc& a, const tuple&);
template<class Alloc>

constexpr tuple(allocator_arg_t, const Alloc& a, tuple&&);
template<class Alloc, class... UTypes>

constexpr explicit(see below )
tuple(allocator_arg_t, const Alloc& a, tuple<UTypes...>&);

template<class Alloc, class... UTypes>
constexpr explicit(see below )

tuple(allocator_arg_t, const Alloc& a, const tuple<UTypes...>&);
template<class Alloc, class... UTypes>

constexpr explicit(see below )
tuple(allocator_arg_t, const Alloc& a, tuple<UTypes...>&&);

template<class Alloc, class... UTypes>
constexpr explicit(see below )

tuple(allocator_arg_t, const Alloc& a, const tuple<UTypes...>&&);
template<class Alloc, class U1, class U2>

constexpr explicit(see below )
tuple(allocator_arg_t, const Alloc& a, pair<U1, U2>&);

template<class Alloc, class U1, class U2>
constexpr explicit(see below )

tuple(allocator_arg_t, const Alloc& a, const pair<U1, U2>&);
template<class Alloc, class U1, class U2>

constexpr explicit(see below )
tuple(allocator_arg_t, const Alloc& a, pair<U1, U2>&&);

template<class Alloc, class U1, class U2>
constexpr explicit(see below )

tuple(allocator_arg_t, const Alloc& a, const pair<U1, U2>&&);
template<class Alloc, tuple-like UTuple>

constexpr explicit(see below )
tuple(allocator_arg_t, const Alloc& a, UTuple&&);

32 Preconditions: Alloc meets the Cpp17Allocator requirements (16.4.4.6.1).
33 Effects: Equivalent to the preceding constructors except that each element is constructed with uses-

allocator construction (20.2.8.2).

22.4.4.2 Assignment [tuple.assign]
1 For each tuple assignment operator, an exception is thrown only if the assignment of one of the types in Types

throws an exception. In the function descriptions that follow, let i be in the range [0, sizeof...(Types))
in order, Ti be the ith type in Types, and Ui be the ith type in a template parameter pack named UTypes,
where indexing is zero-based.

constexpr tuple& operator=(const tuple& u);

2 Effects: Assigns each element of u to the corresponding element of *this.
3 Returns: *this.
4 Remarks: This operator is defined as deleted unless is_copy_assignable_v<Ti> is true for all i.

constexpr const tuple& operator=(const tuple& u) const;

5 Constraints: (is_copy_assignable_v<const Types> && ...) is true.
6 Effects: Assigns each element of u to the corresponding element of *this.
7 Returns: *this.

constexpr tuple& operator=(tuple&& u) noexcept(see below );

8 Constraints: is_move_assignable_v<Ti> is true for all i.
9 Effects: For all i, assigns std::forward<Ti>(get<i>(u)) to get<i>(*this).

10 Returns: *this.
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11 Remarks: The exception specification is equivalent to the logical and of the following expressions:
is_nothrow_move_assignable_v<Ti>

where Ti is the ith type in Types.

constexpr const tuple& operator=(tuple&& u) const;

12 Constraints: (is_assignable_v<const Types&, Types> && ...) is true.
13 Effects: For all i, assigns std::forward<Ti>(get<i>(u)) to get<i>(*this).
14 Returns: *this.

template<class... UTypes> constexpr tuple& operator=(const tuple<UTypes...>& u);

15 Constraints:
—(15.1) sizeof...(Types) equals sizeof...(UTypes) and
—(15.2) is_assignable_v<Ti&, const Ui&> is true for all i.

16 Effects: Assigns each element of u to the corresponding element of *this.
17 Returns: *this.

template<class... UTypes> constexpr const tuple& operator=(const tuple<UTypes...>& u) const;

18 Constraints:
—(18.1) sizeof...(Types) equals sizeof...(UTypes) and
—(18.2) (is_assignable_v<const Types&, const UTypes&> && ...) is true.

19 Effects: Assigns each element of u to the corresponding element of *this.
20 Returns: *this.

template<class... UTypes> constexpr tuple& operator=(tuple<UTypes...>&& u);

21 Constraints:
—(21.1) sizeof...(Types) equals sizeof...(UTypes) and
—(21.2) is_assignable_v<Ti&, Ui> is true for all i.

22 Effects: For all i, assigns std::forward<Ui>(get<i>(u)) to get<i>(*this).
23 Returns: *this.

template<class... UTypes> constexpr const tuple& operator=(tuple<UTypes...>&& u) const;

24 Constraints:
—(24.1) sizeof...(Types) equals sizeof...(UTypes) and
—(24.2) (is_assignable_v<const Types&, UTypes> && ...) is true.

25 Effects: For all i, assigns std::forward<Ui>(get<i>(u)) to get<i>(*this).
26 Returns: *this.

template<class U1, class U2> constexpr tuple& operator=(const pair<U1, U2>& u);

27 Constraints:
—(27.1) sizeof...(Types) is 2 and
—(27.2) is_assignable_v<T0&, const U1&> is true, and
—(27.3) is_assignable_v<T1&, const U2&> is true.

28 Effects: Assigns u.first to the first element of *this and u.second to the second element of *this.
29 Returns: *this.

template<class U1, class U2> constexpr const tuple& operator=(const pair<U1, U2>& u) const;

30 Constraints:
—(30.1) sizeof...(Types) is 2,
—(30.2) is_assignable_v<const T0&, const U1&> is true, and
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—(30.3) is_assignable_v<const T1&, const U2&> is true.
31 Effects: Assigns u.first to the first element and u.second to the second element.
32 Returns: *this.

template<class U1, class U2> constexpr tuple& operator=(pair<U1, U2>&& u);

33 Constraints:
—(33.1) sizeof...(Types) is 2 and
—(33.2) is_assignable_v<T0&, U1> is true, and
—(33.3) is_assignable_v<T1&, U2> is true.

34 Effects: Assigns std::forward<U1>(u.first) to the first element of *this and
std::forward<U2>(u.second) to the second element of *this.

35 Returns: *this.

template<class U1, class U2> constexpr const tuple& operator=(pair<U1, U2>&& u) const;

36 Constraints:
—(36.1) sizeof...(Types) is 2,
—(36.2) is_assignable_v<const T0&, U1> is true, and
—(36.3) is_assignable_v<const T1&, U2> is true.

37 Effects: Assigns std::forward<U1>(u.first) to the first element and
std::forward<U2>(u.second) to the second element.

38 Returns: *this.

template<tuple-like UTuple>
constexpr tuple& operator=(UTuple&& u);

39 Constraints:
—(39.1) different-from <UTuple, tuple> (26.5.2) is true,
—(39.2) remove_cvref_t<UTuple> is not a specialization of ranges::subrange,
—(39.3) sizeof...(Types) equals tuple_size_v<remove_cvref_t<UTuple>>, and,
—(39.4) is_assignable_v<Ti&, decltype(get<i>(std::forward<UTuple>(u)))> is true for all i.

40 Effects: For all i, assigns get<i>(std::forward<UTuple>(u)) to get<i>(*this).
41 Returns: *this.

template<tuple-like UTuple>
constexpr const tuple& operator=(UTuple&& u) const;

42 Constraints:
—(42.1) different-from <UTuple, tuple> (26.5.2) is true,
—(42.2) remove_cvref_t<UTuple> is not a specialization of ranges::subrange,
—(42.3) sizeof...(Types) equals tuple_size_v<remove_cvref_t<UTuple>>, and,
—(42.4) is_assignable_v<const Ti&, decltype(get<i>(std::forward<UTuple>(u)))> is true for all

i.
43 Effects: For all i, assigns get<i>(std::forward<UTuple>(u)) to get<i>(*this).
44 Returns: *this.

22.4.4.3 swap [tuple.swap]

constexpr void swap(tuple& rhs) noexcept(see below );
constexpr void swap(const tuple& rhs) const noexcept(see below );

1 Let i be in the range [0, sizeof...(Types)) in order.
2 Mandates:

—(2.1) For the first overload, (is_swappable_v<Types> && ...) is true.
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—(2.2) For the second overload, (is_swappable_v<const Types> && ...) is true.
3 Preconditions: For all i, get<i>(*this) is swappable with (16.4.4.3) get<i>(rhs).
4 Effects: For each i, calls swap for get<i>(*this) with get<i>(rhs).
5 Throws: Nothing unless one of the element-wise swap calls throws an exception.
6 Remarks: The exception specification is equivalent to

—(6.1) (is_nothrow_swappable_v<Types> && ...) for the first overload and
—(6.2) (is_nothrow_swappable_v<const Types> && ...) for the second overload.

22.4.5 Tuple creation functions [tuple.creation]
template<class... TTypes>

constexpr tuple<unwrap_ref_decay_t<TTypes>...> make_tuple(TTypes&&... t);

1 Returns: tuple<unwrap_ref_decay_t<TTypes>...>(std::forward<TTypes>(t)...).
2 [Example 1 :

int i; float j;
make_tuple(1, ref(i), cref(j));

creates a tuple of type tuple<int, int&, const float&>. — end example ]

template<class... TTypes>
constexpr tuple<TTypes&&...> forward_as_tuple(TTypes&&... t) noexcept;

3 Effects: Constructs a tuple of references to the arguments in t suitable for forwarding as arguments to
a function. Because the result may contain references to temporary objects, a program shall ensure
that the return value of this function does not outlive any of its arguments (e.g., the program should
typically not store the result in a named variable).

4 Returns: tuple<TTypes&&...>(std::forward<TTypes>(t)...).

template<class... TTypes>
constexpr tuple<TTypes&...> tie(TTypes&... t) noexcept;

5 Returns: tuple<TTypes&...>(t...). When an argument in t is ignore, assigning any value to the
corresponding tuple element has no effect.

6 [Example 2 : tie functions allow one to create tuples that unpack tuples into variables. ignore can be used for
elements that are not needed:

int i; std::string s;
tie(i, ignore, s) = make_tuple(42, 3.14, "C++");
// i == 42, s == "C++"

— end example ]

template<tuple-like ... Tuples>
constexpr tuple<CTypes...> tuple_cat(Tuples&&... tpls);

7 Let n be sizeof...(Tuples). For every integer 0 ≤ i < n:
—(7.1) Let Ti be the ith type in Tuples.
—(7.2) Let Ui be remove_cvref_t<Ti>.
—(7.3) Let tpi be the ith element in the function parameter pack tpls.
—(7.4) Let Si be tuple_size_v<Ui>.
—(7.5) Let Ek

i be tuple_element_t<k, Ui>.
—(7.6) Let ek

i be get<k>(std::forward<Ti>(tpi)).

—(7.7) Let Elemsi be a pack of the types E0
i , . . . , E

Si−1
i .

—(7.8) Let elemsi be a pack of the expressions e0
i , . . . , e

Si−1
i .

The types in CTypes are equal to the ordered sequence of the expanded packs of types Elems0...,
Elems1..., . . . , Elemsn−1.... Let celems be the ordered sequence of the expanded packs of expres-
sions elems0..., . . . , elemsn−1....
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8 Mandates: (is_constructible_v<CTypes, decltype(celems)> && ...) is true.
9 Returns: tuple<CTypes...>(celems...).

22.4.6 Calling a function with a tuple of arguments [tuple.apply]
template<class F, tuple-like Tuple>

constexpr decltype(auto) apply(F&& f, Tuple&& t) noexcept(see below );

1 Effects: Given the exposition-only function:
namespace std {

template<class F, tuple-like Tuple, size_t... I>
constexpr decltype(auto) apply-impl(F&& f, Tuple&& t, index_sequence<I...>) {

// exposition only
return INVOKE(std::forward<F>(f), get<I>(std::forward<Tuple>(t))...); // see 22.10.4

}
}

Equivalent to:
return apply-impl(std::forward<F>(f), std::forward<Tuple>(t),

make_index_sequence<tuple_size_v<remove_reference_t<Tuple>>>{});

2 Remarks: Let I be the pack 0, 1, ..., (tuple_size_v<remove_reference_t<Tuple>> - 1). The
exception specification is equivalent to:

noexcept(invoke(std::forward<F>(f), get<I>(std::forward<Tuple>(t))...))

template<class T, tuple-like Tuple>
constexpr T make_from_tuple(Tuple&& t);

3 Mandates: If tuple_size_v<remove_reference_t<Tuple>> is 1, then reference_constructs_from_-
temporary_v<T, decltype(get<0>(declval<Tuple>()))> is false.

4 Effects: Given the exposition-only function:
namespace std {

template<class T, tuple-like Tuple, size_t... I>
requires is_constructible_v<T, decltype(get<I>(declval<Tuple>()))...>

constexpr T make-from-tuple-impl(Tuple&& t, index_sequence<I...>) { // exposition only
return T(get<I>(std::forward<Tuple>(t))...);

}
}

Equivalent to:
return make-from-tuple-impl<T>(

std::forward<Tuple>(t),
make_index_sequence<tuple_size_v<remove_reference_t<Tuple>>>{});

[Note 1 : The type of T must be supplied as an explicit template parameter, as it cannot be deduced from the
argument list. — end note ]

22.4.7 Tuple helper classes [tuple.helper]
template<class T> struct tuple_size;

1 All specializations of tuple_size meet the Cpp17UnaryTypeTrait requirements (21.3.2) with a base
characteristic of integral_constant<size_t, N> for some N.

template<class... Types>
struct tuple_size<tuple<Types...>> : public integral_constant<size_t, sizeof...(Types)> { };

template<size_t I, class... Types>
struct tuple_element<I, tuple<Types...>> {

using type = TI;
};

2 Mandates: I < sizeof...(Types).
3 Type: TI is the type of the Ith element of Types, where indexing is zero-based.
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template<class T> struct tuple_size<const T>;

4 Let TS denote tuple_size<T> of the cv-unqualified type T. If the expression TS::value is well-formed
when treated as an unevaluated operand (7.2.3), then each specialization of the template meets the
Cpp17UnaryTypeTrait requirements (21.3.2) with a base characteristic of

integral_constant<size_t, TS::value>

Otherwise, it has no member value.
5 Access checking is performed as if in a context unrelated to TS and T. Only the validity of the immediate

context of the expression is considered.
[Note 1 : The compilation of the expression can result in side effects such as the instantiation of class template
specializations and function template specializations, the generation of implicitly-defined functions, and so on.
Such side effects are not in the “immediate context” and can result in the program being ill-formed. — end
note ]

6 In addition to being available via inclusion of the <tuple> header, the template is available when any
of the headers <array> (24.3.2), <ranges> (26.2), or <utility> (22.2.1) are included.

template<size_t I, class T> struct tuple_element<I, const T>;

7 Let TE denote tuple_element_t<I, T> of the cv-unqualified type T. Then each specialization of the
template meets the Cpp17TransformationTrait requirements (21.3.2) with a member typedef type that
names the type add_const_t<TE>.

8 In addition to being available via inclusion of the <tuple> header, the template is available when any
of the headers <array> (24.3.2), <ranges> (26.2), or <utility> (22.2.1) are included.

22.4.8 Element access [tuple.elem]
template<size_t I, class... Types>

constexpr tuple_element_t<I, tuple<Types...>>&
get(tuple<Types...>& t) noexcept;

template<size_t I, class... Types>
constexpr tuple_element_t<I, tuple<Types...>>&&

get(tuple<Types...>&& t) noexcept; // Note A
template<size_t I, class... Types>

constexpr const tuple_element_t<I, tuple<Types...>>&
get(const tuple<Types...>& t) noexcept; // Note B

template<size_t I, class... Types>
constexpr const tuple_element_t<I, tuple<Types...>>&& get(const tuple<Types...>&& t) noexcept;

1 Mandates: I < sizeof...(Types).
2 Returns: A reference to the Ith element of t, where indexing is zero-based.
3 [Note 1 : [Note A] If a type T in Types is some reference type X&, the return type is X&, not X&&. However, if the

element type is a non-reference type T, the return type is T&&. — end note ]
4 [Note 2 : [Note B] Constness is shallow. If a type T in Types is some reference type X&, the return type is X&,

not const X&. However, if the element type is a non-reference type T, the return type is const T&. This is
consistent with how constness is defined to work for non-static data members of reference type. — end note ]

template<class T, class... Types>
constexpr T& get(tuple<Types...>& t) noexcept;

template<class T, class... Types>
constexpr T&& get(tuple<Types...>&& t) noexcept;

template<class T, class... Types>
constexpr const T& get(const tuple<Types...>& t) noexcept;

template<class T, class... Types>
constexpr const T&& get(const tuple<Types...>&& t) noexcept;

5 Mandates: The type T occurs exactly once in Types.
6 Returns: A reference to the element of t corresponding to the type T in Types.
7 [Example 1 :

const tuple<int, const int, double, double> t(1, 2, 3.4, 5.6);
const int& i1 = get<int>(t); // OK, i1 has value 1
const int& i2 = get<const int>(t); // OK, i2 has value 2
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const double& d = get<double>(t); // error: type double is not unique within t

— end example ]
8 [Note 3 : The reason get is a non-member function is that if this functionality had been provided as a member

function, code where the type depended on a template parameter would have required using the template keyword.
— end note ]

22.4.9 Relational operators [tuple.rel]
template<class... TTypes, class... UTypes>

constexpr bool operator==(const tuple<TTypes...>& t, const tuple<UTypes...>& u);
template<class... TTypes, tuple-like UTuple>

constexpr bool operator==(const tuple<TTypes...>& t, const UTuple& u);

1 For the first overload let UTuple be tuple<UTypes...>.
2 Mandates: For all i, where 0 ≤ i < sizeof...(TTypes), get<i>(t) == get<i>(u) is a valid expres-

sion. sizeof...(TTypes) equals tuple_size_v<UTuple>.
3 Preconditions: For all i, decltype(get<i>(t) == get<i>(u)) models boolean-testable .
4 Returns: true if get<i>(t) == get<i>(u) for all i, otherwise false.

[Note 1 : If sizeof...(TTypes) equals zero, returns true. — end note ]
5 Remarks:

—(5.1) The elementary comparisons are performed in order from the zeroth index upwards. No comparisons
or element accesses are performed after the first equality comparison that evaluates to false.

—(5.2) The second overload is to be found via argument-dependent lookup (6.5.4) only.

template<class... TTypes, class... UTypes>
constexpr common_comparison_category_t<synth-three-way-result <TTypes, UTypes>...>

operator<=>(const tuple<TTypes...>& t, const tuple<UTypes...>& u);
template<class... TTypes, tuple-like UTuple>

constexpr common_comparison_category_t<synth-three-way-result <TTypes, Elems>...>
operator<=>(const tuple<TTypes...>& t, const UTuple& u);

6 For the second overload, Elems denotes the pack of types tuple_element_t<0, UTuple>, tuple_-
element_t<1, UTuple>, . . . , tuple_element_t<tuple_size_v<UTuple> - 1, UTuple>.

7 Effects: Performs a lexicographical comparison between t and u. If sizeof...(TTypes) equals zero,
returns strong_ordering::equal. Otherwise, equivalent to:

if (auto c = synth-three-way (get<0>(t), get<0>(u)); c != 0) return c;
return ttail <=> utail;

where rtail for some r is a tuple containing all but the first element of r.
8 Remarks: The second overload is to be found via argument-dependent lookup (6.5.4) only.
9 [Note 2 : The above definition does not require ttail (or utail) to be constructed. It might not even be possible, as t

and u are not required to be copy constructible. Also, all comparison operator functions are short circuited; they do
not perform element accesses beyond what is required to determine the result of the comparison. — end note ]

22.4.10 common_reference related specializations [tuple.common.ref]
1 In the descriptions that follow:

—(1.1) Let TTypes be a pack formed by the sequence of tuple_element_t<i, TTuple> for every integer
0 ≤ i < tuple_size_v<TTuple>.

—(1.2) Let UTypes be a pack formed by the sequence of tuple_element_t<i, UTuple> for every integer
0 ≤ i < tuple_size_v<UTuple>.

template<tuple-like TTuple, tuple-like UTuple,
template<class> class TQual, template<class> class UQual>

struct basic_common_reference<TTuple, UTuple, TQual, UQual> {
using type = see below ;

};

2 Constraints:
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—(2.1) TTuple is a specialization of tuple or UTuple is a specialization of tuple.
—(2.2) is_same_v<TTuple, decay_t<TTuple>> is true.
—(2.3) is_same_v<UTuple, decay_t<UTuple>> is true.
—(2.4) tuple_size_v<TTuple> equals tuple_size_v<UTuple>.
—(2.5) tuple<common_reference_t<TQual<TTypes>, UQual<UTypes>>...> denotes a type.

The member typedef-name type denotes the type tuple<common_reference_t<TQual<TTypes>,
UQual<UTypes>>...>.

template<tuple-like TTuple, tuple-like UTuple>
struct common_type<TTuple, UTuple> {

using type = see below ;
};

3 Constraints:
—(3.1) TTuple is a specialization of tuple or UTuple is a specialization of tuple.
—(3.2) is_same_v<TTuple, decay_t<TTuple>> is true.
—(3.3) is_same_v<UTuple, decay_t<UTuple>> is true.
—(3.4) tuple_size_v<TTuple> equals tuple_size_v<UTuple>.
—(3.5) tuple<common_type_t<TTypes, UTypes>...> denotes a type.

The member typedef-name type denotes the type tuple<common_type_t<TTypes, UTypes>...>.

22.4.11 Tuple traits [tuple.traits]
template<class... Types, class Alloc>

struct uses_allocator<tuple<Types...>, Alloc> : true_type { };

1 Preconditions: Alloc meets the Cpp17Allocator requirements (16.4.4.6.1).
2 [Note 1 : Specialization of this trait informs other library components that tuple can be constructed with an

allocator, even though it does not have a nested allocator_type. — end note ]

22.4.12 Tuple specialized algorithms [tuple.special]
template<class... Types>

constexpr void swap(tuple<Types...>& x, tuple<Types...>& y) noexcept(see below );
template<class... Types>

constexpr void swap(const tuple<Types...>& x, const tuple<Types...>& y) noexcept(see below );

1 Constraints:
—(1.1) For the first overload, (is_swappable_v<Types> && ...) is true.
—(1.2) For the second overload, (is_swappable_v<const Types> && ...) is true.

2 Effects: As if by x.swap(y).
3 Remarks: The exception specification is equivalent to:

noexcept(x.swap(y))

22.5 Optional objects [optional]
22.5.1 In general [optional.general]

1 Subclause 22.5 describes class template optional that represents optional objects. An optional object is an
object that contains the storage for another object and manages the lifetime of this contained object, if any.
The contained object may be initialized after the optional object has been initialized, and may be destroyed
before the optional object has been destroyed. The initialization state of the contained object is tracked by
the optional object.

22.5.2 Header <optional> synopsis [optional.syn]
#include <compare> // see 17.11.1
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namespace std {
// 22.5.3, class template optional
template<class T>

class optional;

template<class T>
concept is-derived-from-optional = requires(const T& t) { // exposition only

[]<class U>(const optional<U>&){ }(t);
};

// 22.5.4, no-value state indicator
struct nullopt_t{see below };
inline constexpr nullopt_t nullopt(unspecified );

// 22.5.5, class bad_optional_access
class bad_optional_access;

// 22.5.6, relational operators
template<class T, class U>

constexpr bool operator==(const optional<T>&, const optional<U>&);
template<class T, class U>

constexpr bool operator!=(const optional<T>&, const optional<U>&);
template<class T, class U>

constexpr bool operator<(const optional<T>&, const optional<U>&);
template<class T, class U>

constexpr bool operator>(const optional<T>&, const optional<U>&);
template<class T, class U>

constexpr bool operator<=(const optional<T>&, const optional<U>&);
template<class T, class U>

constexpr bool operator>=(const optional<T>&, const optional<U>&);
template<class T, three_way_comparable_with<T> U>

constexpr compare_three_way_result_t<T, U>
operator<=>(const optional<T>&, const optional<U>&);

// 22.5.7, comparison with nullopt
template<class T> constexpr bool operator==(const optional<T>&, nullopt_t) noexcept;
template<class T>

constexpr strong_ordering operator<=>(const optional<T>&, nullopt_t) noexcept;

// 22.5.8, comparison with T
template<class T, class U> constexpr bool operator==(const optional<T>&, const U&);
template<class T, class U> constexpr bool operator==(const T&, const optional<U>&);
template<class T, class U> constexpr bool operator!=(const optional<T>&, const U&);
template<class T, class U> constexpr bool operator!=(const T&, const optional<U>&);
template<class T, class U> constexpr bool operator<(const optional<T>&, const U&);
template<class T, class U> constexpr bool operator<(const T&, const optional<U>&);
template<class T, class U> constexpr bool operator>(const optional<T>&, const U&);
template<class T, class U> constexpr bool operator>(const T&, const optional<U>&);
template<class T, class U> constexpr bool operator<=(const optional<T>&, const U&);
template<class T, class U> constexpr bool operator<=(const T&, const optional<U>&);
template<class T, class U> constexpr bool operator>=(const optional<T>&, const U&);
template<class T, class U> constexpr bool operator>=(const T&, const optional<U>&);
template<class T, class U>

requires (!is-derived-from-optional <U>) && three_way_comparable_with<T, U>
constexpr compare_three_way_result_t<T, U>

operator<=>(const optional<T>&, const U&);

// 22.5.9, specialized algorithms
template<class T>

constexpr void swap(optional<T>&, optional<T>&) noexcept(see below );

template<class T>
constexpr optional<see below > make_optional(T&&);
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template<class T, class... Args>
constexpr optional<T> make_optional(Args&&... args);

template<class T, class U, class... Args>
constexpr optional<T> make_optional(initializer_list<U> il, Args&&... args);

// 22.5.10, hash support
template<class T> struct hash;
template<class T> struct hash<optional<T>>;

}

22.5.3 Class template optional [optional.optional]
22.5.3.1 General [optional.optional.general]

namespace std {
template<class T>
class optional {
public:

using value_type = T;

// 22.5.3.2, constructors
constexpr optional() noexcept;
constexpr optional(nullopt_t) noexcept;
constexpr optional(const optional&);
constexpr optional(optional&&) noexcept(see below );
template<class... Args>

constexpr explicit optional(in_place_t, Args&&...);
template<class U, class... Args>

constexpr explicit optional(in_place_t, initializer_list<U>, Args&&...);
template<class U = T>

constexpr explicit(see below ) optional(U&&);
template<class U>

constexpr explicit(see below ) optional(const optional<U>&);
template<class U>

constexpr explicit(see below ) optional(optional<U>&&);

// 22.5.3.3, destructor
constexpr ~optional();

// 22.5.3.4, assignment
constexpr optional& operator=(nullopt_t) noexcept;
constexpr optional& operator=(const optional&);
constexpr optional& operator=(optional&&) noexcept(see below );
template<class U = T> constexpr optional& operator=(U&&);
template<class U> constexpr optional& operator=(const optional<U>&);
template<class U> constexpr optional& operator=(optional<U>&&);
template<class... Args> constexpr T& emplace(Args&&...);
template<class U, class... Args> constexpr T& emplace(initializer_list<U>, Args&&...);

// 22.5.3.5, swap
constexpr void swap(optional&) noexcept(see below );

// 22.5.3.6, observers
constexpr const T* operator->() const noexcept;
constexpr T* operator->() noexcept;
constexpr const T& operator*() const & noexcept;
constexpr T& operator*() & noexcept;
constexpr T&& operator*() && noexcept;
constexpr const T&& operator*() const && noexcept;
constexpr explicit operator bool() const noexcept;
constexpr bool has_value() const noexcept;
constexpr const T& value() const &;
constexpr T& value() &;
constexpr T&& value() &&;
constexpr const T&& value() const &&;
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template<class U> constexpr T value_or(U&&) const &;
template<class U> constexpr T value_or(U&&) &&;

// 22.5.3.7, monadic operations
template<class F> constexpr auto and_then(F&& f) &;
template<class F> constexpr auto and_then(F&& f) &&;
template<class F> constexpr auto and_then(F&& f) const &;
template<class F> constexpr auto and_then(F&& f) const &&;
template<class F> constexpr auto transform(F&& f) &;
template<class F> constexpr auto transform(F&& f) &&;
template<class F> constexpr auto transform(F&& f) const &;
template<class F> constexpr auto transform(F&& f) const &&;
template<class F> constexpr optional or_else(F&& f) &&;
template<class F> constexpr optional or_else(F&& f) const &;

// 22.5.3.8, modifiers
constexpr void reset() noexcept;

private:
T *val; // exposition only

};

template<class T>
optional(T) -> optional<T>;

}

1 Any instance of optional<T> at any given time either contains a value or does not contain a value. When
an instance of optional<T> contains a value, it means that an object of type T, referred to as the optional
object’s contained value, is allocated within the storage of the optional object. Implementations are not
permitted to use additional storage, such as dynamic memory, to allocate its contained value. When an
object of type optional<T> is contextually converted to bool, the conversion returns true if the object
contains a value; otherwise the conversion returns false.

2 When an optional<T> object contains a value, member val points to the contained value.
3 T shall be a type other than cv in_place_t or cv nullopt_t that meets the Cpp17Destructible requirements

(Table 35).

22.5.3.2 Constructors [optional.ctor]
1 The exposition-only variable template converts-from-any-cvref is used by some constructors for optional.

template<class T, class W>
constexpr bool converts-from-any-cvref = // exposition only

disjunction_v<is_constructible<T, W&>, is_convertible<W&, T>,
is_constructible<T, W>, is_convertible<W, T>,
is_constructible<T, const W&>, is_convertible<const W&, T>,
is_constructible<T, const W>, is_convertible<const W, T>>;

constexpr optional() noexcept;
constexpr optional(nullopt_t) noexcept;

2 Postconditions: *this does not contain a value.
3 Remarks: No contained value is initialized. For every object type T these constructors are constexpr

constructors (9.2.6).

constexpr optional(const optional& rhs);

4 Effects: If rhs contains a value, direct-non-list-initializes the contained value with *rhs.
5 Postconditions: rhs.has_value() == this->has_value().
6 Throws: Any exception thrown by the selected constructor of T.
7 Remarks: This constructor is defined as deleted unless is_copy_constructible_v<T> is true. If

is_trivially_copy_constructible_v<T> is true, this constructor is trivial.
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constexpr optional(optional&& rhs) noexcept(see below );

8 Constraints: is_move_constructible_v<T> is true.
9 Effects: If rhs contains a value, direct-non-list-initializes the contained value with std::move(*rhs).

rhs.has_value() is unchanged.
10 Postconditions: rhs.has_value() == this->has_value().
11 Throws: Any exception thrown by the selected constructor of T.
12 Remarks: The exception specification is equivalent to is_nothrow_move_constructible_v<T>. If

is_trivially_move_constructible_v<T> is true, this constructor is trivial.

template<class... Args> constexpr explicit optional(in_place_t, Args&&... args);

13 Constraints: is_constructible_v<T, Args...> is true.
14 Effects: Direct-non-list-initializes the contained value with std::forward<Args>(args)....
15 Postconditions: *this contains a value.
16 Throws: Any exception thrown by the selected constructor of T.
17 Remarks: If T’s constructor selected for the initialization is a constexpr constructor, this constructor is

a constexpr constructor.

template<class U, class... Args>
constexpr explicit optional(in_place_t, initializer_list<U> il, Args&&... args);

18 Constraints: is_constructible_v<T, initializer_list<U>&, Args...> is true.
19 Effects: Direct-non-list-initializes the contained value with il, std::forward<Args>(args)....
20 Postconditions: *this contains a value.
21 Throws: Any exception thrown by the selected constructor of T.
22 Remarks: If T’s constructor selected for the initialization is a constexpr constructor, this constructor is

a constexpr constructor.

template<class U = T> constexpr explicit(see below ) optional(U&& v);

23 Constraints:
—(23.1) is_constructible_v<T, U> is true,
—(23.2) is_same_v<remove_cvref_t<U>, in_place_t> is false,
—(23.3) is_same_v<remove_cvref_t<U>, optional> is false, and
—(23.4) if T is cv bool, remove_cvref_t<U> is not a specialization of optional.

24 Effects: Direct-non-list-initializes the contained value with std::forward<U>(v).
25 Postconditions: *this contains a value.
26 Throws: Any exception thrown by the selected constructor of T.
27 Remarks: If T’s selected constructor is a constexpr constructor, this constructor is a constexpr

constructor. The expression inside explicit is equivalent to:
!is_convertible_v<U, T>

template<class U> constexpr explicit(see below ) optional(const optional<U>& rhs);

28 Constraints:
—(28.1) is_constructible_v<T, const U&> is true, and
—(28.2) if T is not cv bool, converts-from-any-cvref <T, optional<U>> is false.

29 Effects: If rhs contains a value, direct-non-list-initializes the contained value with *rhs.
30 Postconditions: rhs.has_value() == this->has_value().
31 Throws: Any exception thrown by the selected constructor of T.
32 Remarks: The expression inside explicit is equivalent to:

!is_convertible_v<const U&, T>

§ 22.5.3.2 709



© ISO/IEC N4950

template<class U> constexpr explicit(see below ) optional(optional<U>&& rhs);

33 Constraints:
—(33.1) is_constructible_v<T, U> is true, and
—(33.2) if T is not cv bool, converts-from-any-cvref <T, optional<U>> is false.

34 Effects: If rhs contains a value, direct-non-list-initializes the contained value with std::move(*rhs).
rhs.has_value() is unchanged.

35 Postconditions: rhs.has_value() == this->has_value().
36 Throws: Any exception thrown by the selected constructor of T.
37 Remarks: The expression inside explicit is equivalent to:

!is_convertible_v<U, T>

22.5.3.3 Destructor [optional.dtor]

constexpr ~optional();

1 Effects: If is_trivially_destructible_v<T> != true and *this contains a value, calls
val->T::~T()

2 Remarks: If is_trivially_destructible_v<T> is true, then this destructor is trivial.

22.5.3.4 Assignment [optional.assign]

constexpr optional<T>& operator=(nullopt_t) noexcept;

1 Effects: If *this contains a value, calls val->T::~T() to destroy the contained value; otherwise no
effect.

2 Postconditions: *this does not contain a value.
3 Returns: *this.

constexpr optional<T>& operator=(const optional& rhs);

4 Effects: See Table 58.

Table 58: optional::operator=(const optional&) effects [tab:optional.assign.copy]

*this contains a value *this does not contain a
value

rhs contains a
value

assigns *rhs to the contained
value

direct-non-list-initializes the
contained value with *rhs

rhs does not
contain a value

destroys the contained value
by calling val->T::~T() no effect

5 Postconditions: rhs.has_value() == this->has_value().
6 Returns: *this.
7 Remarks: If any exception is thrown, the result of the expression this->has_value() remains un-

changed. If an exception is thrown during the call to T’s copy constructor, no effect. If an exception
is thrown during the call to T’s copy assignment, the state of its contained value is as defined by the
exception safety guarantee of T’s copy assignment. This operator is defined as deleted unless is_-
copy_constructible_v<T> is true and is_copy_assignable_v<T> is true. If is_trivially_copy_-
constructible_v<T> && is_trivially_copy_assignable_v<T> && is_trivially_destructible_-
v<T> is true, this assignment operator is trivial.

constexpr optional& operator=(optional&& rhs) noexcept(see below );

8 Constraints: is_move_constructible_v<T> is true and is_move_assignable_v<T> is true.
9 Effects: See Table 59. The result of the expression rhs.has_value() remains unchanged.

10 Postconditions: rhs.has_value() == this->has_value().
11 Returns: *this.
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Table 59: optional::operator=(optional&&) effects [tab:optional.assign.move]

*this contains a value *this does not contain a
value

rhs contains a
value

assigns std::move(*rhs) to
the contained value

direct-non-list-initializes
the contained value with
std::move(*rhs)

rhs does not
contain a value

destroys the contained value
by calling val->T::~T() no effect

12 Remarks: The exception specification is equivalent to:
is_nothrow_move_assignable_v<T> && is_nothrow_move_constructible_v<T>

13 If any exception is thrown, the result of the expression this->has_value() remains unchanged. If an
exception is thrown during the call to T’s move constructor, the state of *rhs.val is determined by the
exception safety guarantee of T’s move constructor. If an exception is thrown during the call to T’s move
assignment, the state of *val and *rhs.val is determined by the exception safety guarantee of T’s move
assignment. If is_trivially_move_constructible_v<T> && is_trivially_move_assignable_v<T>
&& is_trivially_destructible_v<T> is true, this assignment operator is trivial.

template<class U = T> constexpr optional<T>& operator=(U&& v);

14 Constraints: is_same_v<remove_cvref_t<U>, optional> is false, conjunction_v<is_scalar<T>,
is_same<T, decay_t<U>>> is false, is_constructible_v<T, U> is true, and is_assignable_v<T&,
U> is true.

15 Effects: If *this contains a value, assigns std::forward<U>(v) to the contained value; otherwise
direct-non-list-initializes the contained value with std::forward<U>(v).

16 Postconditions: *this contains a value.
17 Returns: *this.
18 Remarks: If any exception is thrown, the result of the expression this->has_value() remains un-

changed. If an exception is thrown during the call to T’s constructor, the state of v is determined
by the exception safety guarantee of T’s constructor. If an exception is thrown during the call to T’s
assignment, the state of *val and v is determined by the exception safety guarantee of T’s assignment.

template<class U> constexpr optional<T>& operator=(const optional<U>& rhs);

19 Constraints:
—(19.1) is_constructible_v<T, const U&> is true,
—(19.2) is_assignable_v<T&, const U&> is true,
—(19.3) converts-from-any-cvref <T, optional<U>> is false,
—(19.4) is_assignable_v<T&, optional<U>&> is false,
—(19.5) is_assignable_v<T&, optional<U>&&> is false,
—(19.6) is_assignable_v<T&, const optional<U>&> is false, and
—(19.7) is_assignable_v<T&, const optional<U>&&> is false.

20 Effects: See Table 60.

Table 60: optional::operator=(const optional<U>&) effects [tab:optional.assign.copy.templ]

*this contains a value *this does not contain a
value

rhs contains a
value

assigns *rhs to the contained
value

direct-non-list-initializes the
contained value with *rhs

rhs does not
contain a value

destroys the contained value
by calling val->T::~T() no effect
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21 Postconditions: rhs.has_value() == this->has_value().
22 Returns: *this.
23 Remarks: If any exception is thrown, the result of the expression this->has_value() remains un-

changed. If an exception is thrown during the call to T’s constructor, the state of *rhs.val is determined
by the exception safety guarantee of T’s constructor. If an exception is thrown during the call to T’s
assignment, the state of *val and *rhs.val is determined by the exception safety guarantee of T’s
assignment.

template<class U> constexpr optional<T>& operator=(optional<U>&& rhs);

24 Constraints:
—(24.1) is_constructible_v<T, U> is true,
—(24.2) is_assignable_v<T&, U> is true,
—(24.3) converts-from-any-cvref <T, optional<U>> is false,
—(24.4) is_assignable_v<T&, optional<U>&> is false,
—(24.5) is_assignable_v<T&, optional<U>&&> is false,
—(24.6) is_assignable_v<T&, const optional<U>&> is false, and
—(24.7) is_assignable_v<T&, const optional<U>&&> is false.

25 Effects: See Table 61. The result of the expression rhs.has_value() remains unchanged.

Table 61: optional::operator=(optional<U>&&) effects [tab:optional.assign.move.templ]

*this contains a value *this does not contain a
value

rhs contains a
value

assigns std::move(*rhs) to
the contained value

direct-non-list-initializes
the contained value with
std::move(*rhs)

rhs does not
contain a value

destroys the contained value
by calling val->T::~T() no effect

26 Postconditions: rhs.has_value() == this->has_value().
27 Returns: *this.
28 Remarks: If any exception is thrown, the result of the expression this->has_value() remains un-

changed. If an exception is thrown during the call to T’s constructor, the state of *rhs.val is determined
by the exception safety guarantee of T’s constructor. If an exception is thrown during the call to T’s
assignment, the state of *val and *rhs.val is determined by the exception safety guarantee of T’s
assignment.

template<class... Args> constexpr T& emplace(Args&&... args);

29 Mandates: is_constructible_v<T, Args...> is true.
30 Effects: Calls *this = nullopt. Then direct-non-list-initializes the contained value with std::forward

<Args>(args)....
31 Postconditions: *this contains a value.
32 Returns: A reference to the new contained value.
33 Throws: Any exception thrown by the selected constructor of T.
34 Remarks: If an exception is thrown during the call to T’s constructor, *this does not contain a value,

and the previous *val (if any) has been destroyed.

template<class U, class... Args> constexpr T& emplace(initializer_list<U> il, Args&&... args);

35 Constraints: is_constructible_v<T, initializer_list<U>&, Args...> is true.
36 Effects: Calls *this = nullopt. Then direct-non-list-initializes the contained value with il, std::

forward<Args>(args)....
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37 Postconditions: *this contains a value.
38 Returns: A reference to the new contained value.
39 Throws: Any exception thrown by the selected constructor of T.
40 Remarks: If an exception is thrown during the call to T’s constructor, *this does not contain a value,

and the previous *val (if any) has been destroyed.

22.5.3.5 Swap [optional.swap]

constexpr void swap(optional& rhs) noexcept(see below );

1 Mandates: is_move_constructible_v<T> is true.
2 Preconditions: T meets the Cpp17Swappable requirements (16.4.4.3).
3 Effects: See Table 62.

Table 62: optional::swap(optional&) effects [tab:optional.swap]

*this contains a value *this does not contain a
value

rhs contains a
value calls swap(*(*this), *rhs)

direct-non-list-initializes the
contained value of *this
with std::move(*rhs), fol-
lowed by rhs.val->T::~T();
postcondition is that *this
contains a value and rhs does
not contain a value

rhs does not
contain a value

direct-non-list-initializes
the contained value of rhs
with std::move(*(*this)),
followed by val->T::~T();
postcondition is that *this
does not contain a value and
rhs contains a value

no effect

4 Throws: Any exceptions thrown by the operations in the relevant part of Table 62.
5 Remarks: The exception specification is equivalent to:

is_nothrow_move_constructible_v<T> && is_nothrow_swappable_v<T>

6 If any exception is thrown, the results of the expressions this->has_value() and rhs.has_value()
remain unchanged. If an exception is thrown during the call to function swap, the state of *val and
*rhs.val is determined by the exception safety guarantee of swap for lvalues of T. If an exception is
thrown during the call to T’s move constructor, the state of *val and *rhs.val is determined by the
exception safety guarantee of T’s move constructor.

22.5.3.6 Observers [optional.observe]

constexpr const T* operator->() const noexcept;
constexpr T* operator->() noexcept;

1 Preconditions: *this contains a value.
2 Returns: val.
3 Remarks: These functions are constexpr functions.

constexpr const T& operator*() const & noexcept;
constexpr T& operator*() & noexcept;

4 Preconditions: *this contains a value.
5 Returns: *val.
6 Remarks: These functions are constexpr functions.
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constexpr T&& operator*() && noexcept;
constexpr const T&& operator*() const && noexcept;

7 Preconditions: *this contains a value.
8 Effects: Equivalent to: return std::move(*val);

constexpr explicit operator bool() const noexcept;

9 Returns: true if and only if *this contains a value.
10 Remarks: This function is a constexpr function.

constexpr bool has_value() const noexcept;

11 Returns: true if and only if *this contains a value.
12 Remarks: This function is a constexpr function.

constexpr const T& value() const &;
constexpr T& value() &;

13 Effects: Equivalent to:
return has_value() ? *val : throw bad_optional_access();

constexpr T&& value() &&;
constexpr const T&& value() const &&;

14 Effects: Equivalent to:
return has_value() ? std::move(*val) : throw bad_optional_access();

template<class U> constexpr T value_or(U&& v) const &;

15 Mandates: is_copy_constructible_v<T> && is_convertible_v<U&&, T> is true.
16 Effects: Equivalent to:

return has_value() ? **this : static_cast<T>(std::forward<U>(v));

template<class U> constexpr T value_or(U&& v) &&;

17 Mandates: is_move_constructible_v<T> && is_convertible_v<U&&, T> is true.
18 Effects: Equivalent to:

return has_value() ? std::move(**this) : static_cast<T>(std::forward<U>(v));

22.5.3.7 Monadic operations [optional.monadic]

template<class F> constexpr auto and_then(F&& f) &;
template<class F> constexpr auto and_then(F&& f) const &;

1 Let U be invoke_result_t<F, decltype(value())>.
2 Mandates: remove_cvref_t<U> is a specialization of optional.
3 Effects: Equivalent to:

if (*this) {
return invoke(std::forward<F>(f), value());

} else {
return remove_cvref_t<U>();

}

template<class F> constexpr auto and_then(F&& f) &&;
template<class F> constexpr auto and_then(F&& f) const &&;

4 Let U be invoke_result_t<F, decltype(std::move(value()))>.
5 Mandates: remove_cvref_t<U> is a specialization of optional.
6 Effects: Equivalent to:

if (*this) {
return invoke(std::forward<F>(f), std::move(value()));

} else {
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return remove_cvref_t<U>();
}

template<class F> constexpr auto transform(F&& f) &;
template<class F> constexpr auto transform(F&& f) const &;

7 Let U be remove_cv_t<invoke_result_t<F, decltype(value())>>.
8 Mandates: U is a non-array object type other than in_place_t or nullopt_t. The declaration

U u(invoke(std::forward<F>(f), value()));

is well-formed for some invented variable u.
[Note 1 : There is no requirement that U is movable (9.4.1). — end note ]

9 Returns: If *this contains a value, an optional<U> object whose contained value is direct-non-list-
initialized with invoke(std::forward<F>(f), value()); otherwise, optional<U>().

template<class F> constexpr auto transform(F&& f) &&;
template<class F> constexpr auto transform(F&& f) const &&;

10 Let U be remove_cv_t<invoke_result_t<F, decltype(std::move(value()))>>.
11 Mandates: U is a non-array object type other than in_place_t or nullopt_t. The declaration

U u(invoke(std::forward<F>(f), std::move(value())));

is well-formed for some invented variable u.
[Note 2 : There is no requirement that U is movable (9.4.1). — end note ]

12 Returns: If *this contains a value, an optional<U> object whose contained value is direct-non-list-
initialized with invoke(std::forward<F>(f), std::move(value())); otherwise, optional<U>().

template<class F> constexpr optional or_else(F&& f) const &;

13 Constraints: F models invocable<> and T models copy_constructible.
14 Mandates: is_same_v<remove_cvref_t<invoke_result_t<F>>, optional> is true.
15 Effects: Equivalent to:

if (*this) {
return *this;

} else {
return std::forward<F>(f)();

}

template<class F> constexpr optional or_else(F&& f) &&;

16 Constraints: F models invocable<> and T models move_constructible.
17 Mandates: is_same_v<remove_cvref_t<invoke_result_t<F>>, optional> is true.
18 Effects: Equivalent to:

if (*this) {
return std::move(*this);

} else {
return std::forward<F>(f)();

}

22.5.3.8 Modifiers [optional.mod]

constexpr void reset() noexcept;

1 Effects: If *this contains a value, calls val->T::~T() to destroy the contained value; otherwise no
effect.

2 Postconditions: *this does not contain a value.

22.5.4 No-value state indicator [optional.nullopt]
struct nullopt_t{see below };
inline constexpr nullopt_t nullopt(unspecified );
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1 The struct nullopt_t is an empty class type used as a unique type to indicate the state of not containing
a value for optional objects. In particular, optional<T> has a constructor with nullopt_t as a single
argument; this indicates that an optional object not containing a value shall be constructed.

2 Type nullopt_t shall not have a default constructor or an initializer-list constructor, and shall not be an
aggregate.

22.5.5 Class bad_optional_access [optional.bad.access]
namespace std {

class bad_optional_access : public exception {
public:

// see 17.9.3 for the specification of the special member functions
const char* what() const noexcept override;

};
}

1 The class bad_optional_access defines the type of objects thrown as exceptions to report the situation
where an attempt is made to access the value of an optional object that does not contain a value.

const char* what() const noexcept override;

2 Returns: An implementation-defined ntbs.

22.5.6 Relational operators [optional.relops]
template<class T, class U> constexpr bool operator==(const optional<T>& x, const optional<U>& y);

1 Mandates: The expression *x == *y is well-formed and its result is convertible to bool.
[Note 1 : T need not be Cpp17EqualityComparable. — end note ]

2 Returns: If x.has_value() != y.has_value(), false; otherwise if x.has_value() == false, true;
otherwise *x == *y.

3 Remarks: Specializations of this function template for which *x == *y is a core constant expression
are constexpr functions.

template<class T, class U> constexpr bool operator!=(const optional<T>& x, const optional<U>& y);

4 Mandates: The expression *x != *y is well-formed and its result is convertible to bool.
5 Returns: If x.has_value() != y.has_value(), true; otherwise, if x.has_value() == false, false;

otherwise *x != *y.
6 Remarks: Specializations of this function template for which *x != *y is a core constant expression

are constexpr functions.

template<class T, class U> constexpr bool operator<(const optional<T>& x, const optional<U>& y);

7 Mandates: *x < *y is well-formed and its result is convertible to bool.
8 Returns: If !y, false; otherwise, if !x, true; otherwise *x < *y.
9 Remarks: Specializations of this function template for which *x < *y is a core constant expression are

constexpr functions.

template<class T, class U> constexpr bool operator>(const optional<T>& x, const optional<U>& y);

10 Mandates: The expression *x > *y is well-formed and its result is convertible to bool.
11 Returns: If !x, false; otherwise, if !y, true; otherwise *x > *y.
12 Remarks: Specializations of this function template for which *x > *y is a core constant expression are

constexpr functions.

template<class T, class U> constexpr bool operator<=(const optional<T>& x, const optional<U>& y);

13 Mandates: The expression *x <= *y is well-formed and its result is convertible to bool.
14 Returns: If !x, true; otherwise, if !y, false; otherwise *x <= *y.
15 Remarks: Specializations of this function template for which *x <= *y is a core constant expression

are constexpr functions.
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template<class T, class U> constexpr bool operator>=(const optional<T>& x, const optional<U>& y);

16 Mandates: The expression *x >= *y is well-formed and its result is convertible to bool.
17 Returns: If !y, true; otherwise, if !x, false; otherwise *x >= *y.
18 Remarks: Specializations of this function template for which *x >= *y is a core constant expression

are constexpr functions.

template<class T, three_way_comparable_with<T> U>
constexpr compare_three_way_result_t<T, U>

operator<=>(const optional<T>& x, const optional<U>& y);

19 Returns: If x && y, *x <=> *y; otherwise x.has_value() <=> y.has_value().
20 Remarks: Specializations of this function template for which *x <=> *y is a core constant expression

are constexpr functions.

22.5.7 Comparison with nullopt [optional.nullops]
template<class T> constexpr bool operator==(const optional<T>& x, nullopt_t) noexcept;

1 Returns: !x.

template<class T> constexpr strong_ordering operator<=>(const optional<T>& x, nullopt_t) noexcept;

2 Returns: x.has_value() <=> false.

22.5.8 Comparison with T [optional.comp.with.t]
template<class T, class U> constexpr bool operator==(const optional<T>& x, const U& v);

1 Mandates: The expression *x == v is well-formed and its result is convertible to bool.
[Note 1 : T need not be Cpp17EqualityComparable. — end note ]

2 Effects: Equivalent to: return x.has_value() ? *x == v : false;

template<class T, class U> constexpr bool operator==(const T& v, const optional<U>& x);

3 Mandates: The expression v == *x is well-formed and its result is convertible to bool.
4 Effects: Equivalent to: return x.has_value() ? v == *x : false;

template<class T, class U> constexpr bool operator!=(const optional<T>& x, const U& v);

5 Mandates: The expression *x != v is well-formed and its result is convertible to bool.
6 Effects: Equivalent to: return x.has_value() ? *x != v : true;

template<class T, class U> constexpr bool operator!=(const T& v, const optional<U>& x);

7 Mandates: The expression v != *x is well-formed and its result is convertible to bool.
8 Effects: Equivalent to: return x.has_value() ? v != *x : true;

template<class T, class U> constexpr bool operator<(const optional<T>& x, const U& v);

9 Mandates: The expression *x < v is well-formed and its result is convertible to bool.
10 Effects: Equivalent to: return x.has_value() ? *x < v : true;

template<class T, class U> constexpr bool operator<(const T& v, const optional<U>& x);

11 Mandates: The expression v < *x is well-formed and its result is convertible to bool.
12 Effects: Equivalent to: return x.has_value() ? v < *x : false;

template<class T, class U> constexpr bool operator>(const optional<T>& x, const U& v);

13 Mandates: The expression *x > v is well-formed and its result is convertible to bool.
14 Effects: Equivalent to: return x.has_value() ? *x > v : false;

template<class T, class U> constexpr bool operator>(const T& v, const optional<U>& x);

15 Mandates: The expression v > *x is well-formed and its result is convertible to bool.
16 Effects: Equivalent to: return x.has_value() ? v > *x : true;
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template<class T, class U> constexpr bool operator<=(const optional<T>& x, const U& v);

17 Mandates: The expression *x <= v is well-formed and its result is convertible to bool.
18 Effects: Equivalent to: return x.has_value() ? *x <= v : true;

template<class T, class U> constexpr bool operator<=(const T& v, const optional<U>& x);

19 Mandates: The expression v <= *x is well-formed and its result is convertible to bool.
20 Effects: Equivalent to: return x.has_value() ? v <= *x : false;

template<class T, class U> constexpr bool operator>=(const optional<T>& x, const U& v);

21 Mandates: The expression *x >= v is well-formed and its result is convertible to bool.
22 Effects: Equivalent to: return x.has_value() ? *x >= v : false;

template<class T, class U> constexpr bool operator>=(const T& v, const optional<U>& x);

23 Mandates: The expression v >= *x is well-formed and its result is convertible to bool.
24 Effects: Equivalent to: return x.has_value() ? v >= *x : true;

template<class T, class U>
requires (!is-derived-from-optional <U>) && three_way_comparable_with<T, U>

constexpr compare_three_way_result_t<T, U>
operator<=>(const optional<T>& x, const U& v);

25 Effects: Equivalent to: return x.has_value() ? *x <=> v : strong_ordering::less;

22.5.9 Specialized algorithms [optional.specalg]
template<class T>

constexpr void swap(optional<T>& x, optional<T>& y) noexcept(noexcept(x.swap(y)));

1 Constraints: is_move_constructible_v<T> is true and is_swappable_v<T> is true.
2 Effects: Calls x.swap(y).

template<class T> constexpr optional<decay_t<T>> make_optional(T&& v);

3 Returns: optional<decay_t<T>>(std::forward<T>(v)).

template<class T, class...Args>
constexpr optional<T> make_optional(Args&&... args);

4 Effects: Equivalent to: return optional<T>(in_place, std::forward<Args>(args)...);

template<class T, class U, class... Args>
constexpr optional<T> make_optional(initializer_list<U> il, Args&&... args);

5 Effects: Equivalent to: return optional<T>(in_place, il, std::forward<Args>(args)...);

22.5.10 Hash support [optional.hash]
template<class T> struct hash<optional<T>>;

1 The specialization hash<optional<T>> is enabled (22.10.19) if and only if hash<remove_const_t<T>>
is enabled. When enabled, for an object o of type optional<T>, if o.has_value() == true, then
hash<optional<T>>()(o) evaluates to the same value as hash<remove_const_t<T>>()(*o); otherwise
it evaluates to an unspecified value. The member functions are not guaranteed to be noexcept.

22.6 Variants [variant]
22.6.1 In general [variant.general]

1 A variant object holds and manages the lifetime of a value. If the variant holds a value, that value’s
type has to be one of the template argument types given to variant. These template arguments are called
alternatives.

22.6.2 Header <variant> synopsis [variant.syn]
#include <compare> // see 17.11.1
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namespace std {
// 22.6.3, class template variant
template<class... Types>

class variant;

// 22.6.4, variant helper classes
template<class T> struct variant_size; // not defined
template<class T> struct variant_size<const T>;
template<class T>

constexpr size_t variant_size_v = variant_size<T>::value;

template<class... Types>
struct variant_size<variant<Types...>>;

template<size_t I, class T> struct variant_alternative; // not defined
template<size_t I, class T> struct variant_alternative<I, const T>;
template<size_t I, class T>

using variant_alternative_t = typename variant_alternative<I, T>::type;

template<size_t I, class... Types>
struct variant_alternative<I, variant<Types...>>;

inline constexpr size_t variant_npos = -1;

// 22.6.5, value access
template<class T, class... Types>

constexpr bool holds_alternative(const variant<Types...>&) noexcept;

template<size_t I, class... Types>
constexpr variant_alternative_t<I, variant<Types...>>& get(variant<Types...>&);

template<size_t I, class... Types>
constexpr variant_alternative_t<I, variant<Types...>>&& get(variant<Types...>&&);

template<size_t I, class... Types>
constexpr const variant_alternative_t<I, variant<Types...>>& get(const variant<Types...>&);

template<size_t I, class... Types>
constexpr const variant_alternative_t<I, variant<Types...>>&& get(const variant<Types...>&&);

template<class T, class... Types>
constexpr T& get(variant<Types...>&);

template<class T, class... Types>
constexpr T&& get(variant<Types...>&&);

template<class T, class... Types>
constexpr const T& get(const variant<Types...>&);

template<class T, class... Types>
constexpr const T&& get(const variant<Types...>&&);

template<size_t I, class... Types>
constexpr add_pointer_t<variant_alternative_t<I, variant<Types...>>>

get_if(variant<Types...>*) noexcept;
template<size_t I, class... Types>

constexpr add_pointer_t<const variant_alternative_t<I, variant<Types...>>>
get_if(const variant<Types...>*) noexcept;

template<class T, class... Types>
constexpr add_pointer_t<T>

get_if(variant<Types...>*) noexcept;
template<class T, class... Types>

constexpr add_pointer_t<const T>
get_if(const variant<Types...>*) noexcept;

// 22.6.6, relational operators
template<class... Types>

constexpr bool operator==(const variant<Types...>&, const variant<Types...>&);
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template<class... Types>
constexpr bool operator!=(const variant<Types...>&, const variant<Types...>&);

template<class... Types>
constexpr bool operator<(const variant<Types...>&, const variant<Types...>&);

template<class... Types>
constexpr bool operator>(const variant<Types...>&, const variant<Types...>&);

template<class... Types>
constexpr bool operator<=(const variant<Types...>&, const variant<Types...>&);

template<class... Types>
constexpr bool operator>=(const variant<Types...>&, const variant<Types...>&);

template<class... Types> requires (three_way_comparable<Types> && ...)
constexpr common_comparison_category_t<compare_three_way_result_t<Types>...>

operator<=>(const variant<Types...>&, const variant<Types...>&);

// 22.6.7, visitation
template<class Visitor, class... Variants>

constexpr see below visit(Visitor&&, Variants&&...);
template<class R, class Visitor, class... Variants>

constexpr R visit(Visitor&&, Variants&&...);

// 22.6.8, class monostate
struct monostate;

// 22.6.9, monostate relational operators
constexpr bool operator==(monostate, monostate) noexcept;
constexpr strong_ordering operator<=>(monostate, monostate) noexcept;

// 22.6.10, specialized algorithms
template<class... Types>

constexpr void swap(variant<Types...>&, variant<Types...>&) noexcept(see below );

// 22.6.11, class bad_variant_access
class bad_variant_access;

// 22.6.12, hash support
template<class T> struct hash;
template<class... Types> struct hash<variant<Types...>>;
template<> struct hash<monostate>;

}

22.6.3 Class template variant [variant.variant]
22.6.3.1 General [variant.variant.general]

namespace std {
template<class... Types>
class variant {
public:

// 22.6.3.2, constructors
constexpr variant() noexcept(see below );
constexpr variant(const variant&);
constexpr variant(variant&&) noexcept(see below );

template<class T>
constexpr variant(T&&) noexcept(see below );

template<class T, class... Args>
constexpr explicit variant(in_place_type_t<T>, Args&&...);

template<class T, class U, class... Args>
constexpr explicit variant(in_place_type_t<T>, initializer_list<U>, Args&&...);

template<size_t I, class... Args>
constexpr explicit variant(in_place_index_t<I>, Args&&...);

template<size_t I, class U, class... Args>
constexpr explicit variant(in_place_index_t<I>, initializer_list<U>, Args&&...);
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// 22.6.3.3, destructor
constexpr ~variant();

// 22.6.3.4, assignment
constexpr variant& operator=(const variant&);
constexpr variant& operator=(variant&&) noexcept(see below );

template<class T> constexpr variant& operator=(T&&) noexcept(see below );

// 22.6.3.5, modifiers
template<class T, class... Args>

constexpr T& emplace(Args&&...);
template<class T, class U, class... Args>

constexpr T& emplace(initializer_list<U>, Args&&...);
template<size_t I, class... Args>

constexpr variant_alternative_t<I, variant<Types...>>& emplace(Args&&...);
template<size_t I, class U, class... Args>

constexpr variant_alternative_t<I, variant<Types...>>&
emplace(initializer_list<U>, Args&&...);

// 22.6.3.6, value status
constexpr bool valueless_by_exception() const noexcept;
constexpr size_t index() const noexcept;

// 22.6.3.7, swap
constexpr void swap(variant&) noexcept(see below );

};
}

1 Any instance of variant at any given time either holds a value of one of its alternative types or holds no
value. When an instance of variant holds a value of alternative type T, it means that a value of type T,
referred to as the variant object’s contained value, is allocated within the storage of the variant object.
Implementations are not permitted to use additional storage, such as dynamic memory, to allocate the
contained value.

2 All types in Types shall meet the Cpp17Destructible requirements (Table 35).
3 A program that instantiates the definition of variant with no template arguments is ill-formed.

22.6.3.2 Constructors [variant.ctor]
1 In the descriptions that follow, let i be in the range [0, sizeof...(Types)), and Ti be the ith type in Types.

constexpr variant() noexcept(see below );

2 Constraints: is_default_constructible_v<T0> is true.
3 Effects: Constructs a variant holding a value-initialized value of type T0.
4 Postconditions: valueless_by_exception() is false and index() is 0.
5 Throws: Any exception thrown by the value-initialization of T0.
6 Remarks: This function is constexpr if and only if the value-initialization of the alternative type T0

would be constexpr-suitable (9.2.6). The exception specification is equivalent to is_nothrow_default_-
constructible_v<T0>.
[Note 1 : See also class monostate. — end note ]

constexpr variant(const variant& w);

7 Effects: If w holds a value, initializes the variant to hold the same alternative as w and direct-initializes
the contained value with get<j>(w), where j is w.index(). Otherwise, initializes the variant to not
hold a value.

8 Throws: Any exception thrown by direct-initializing any Ti for all i.
9 Remarks: This constructor is defined as deleted unless is_copy_constructible_v<Ti> is true for all

i. If is_trivially_copy_constructible_v<Ti> is true for all i, this constructor is trivial.
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constexpr variant(variant&& w) noexcept(see below );

10 Constraints: is_move_constructible_v<Ti> is true for all i.
11 Effects: If w holds a value, initializes the variant to hold the same alternative as w and direct-initializes

the contained value with get<j>(std::move(w)), where j is w.index(). Otherwise, initializes the
variant to not hold a value.

12 Throws: Any exception thrown by move-constructing any Ti for all i.
13 Remarks: The exception specification is equivalent to the logical and of is_nothrow_move_con-

structible_v<Ti> for all i. If is_trivially_move_constructible_v<Ti> is true for all i, this
constructor is trivial.

template<class T> constexpr variant(T&& t) noexcept(see below );

14 Let Tj be a type that is determined as follows: build an imaginary function FUN(Ti) for each alternative
type Ti for which Ti x[] = {std::forward<T>(t)}; is well-formed for some invented variable x. The
overload FUN(Tj) selected by overload resolution for the expression FUN(std::forward<T>(t)) defines
the alternative Tj which is the type of the contained value after construction.

15 Constraints:
—(15.1) sizeof...(Types) is nonzero,
—(15.2) is_same_v<remove_cvref_t<T>, variant> is false,
—(15.3) remove_cvref_t<T> is neither a specialization of in_place_type_t nor a specialization of in_-

place_index_t,
—(15.4) is_constructible_v<Tj, T> is true, and
—(15.5) the expression FUN(std::forward<T>(t)) (with FUN being the above-mentioned set of imaginary

functions) is well-formed.
[Note 2 :

variant<string, string> v("abc");

is ill-formed, as both alternative types have an equally viable constructor for the argument. — end note ]
16 Effects: Initializes *this to hold the alternative type Tj and direct-non-list-initializes the contained

value with std::forward<T>(t).
17 Postconditions: holds_alternative<Tj>(*this) is true.
18 Throws: Any exception thrown by the initialization of the selected alternative Tj .
19 Remarks: The exception specification is equivalent to is_nothrow_constructible_v<Tj, T>. If Tj ’s

selected constructor is a constexpr constructor, this constructor is a constexpr constructor.

template<class T, class... Args> constexpr explicit variant(in_place_type_t<T>, Args&&... args);

20 Constraints:
—(20.1) There is exactly one occurrence of T in Types... and
—(20.2) is_constructible_v<T, Args...> is true.

21 Effects: Direct-non-list-initializes the contained value of type T with std::forward<Args>(args)....
22 Postconditions: holds_alternative<T>(*this) is true.
23 Throws: Any exception thrown by calling the selected constructor of T.
24 Remarks: If T’s selected constructor is a constexpr constructor, this constructor is a constexpr

constructor.

template<class T, class U, class... Args>
constexpr explicit variant(in_place_type_t<T>, initializer_list<U> il, Args&&... args);

25 Constraints:
—(25.1) There is exactly one occurrence of T in Types... and
—(25.2) is_constructible_v<T, initializer_list<U>&, Args...> is true.

§ 22.6.3.2 722



© ISO/IEC N4950

26 Effects: Direct-non-list-initializes the contained value of type T with il, std::forward<Args>(
args)....

27 Postconditions: holds_alternative<T>(*this) is true.
28 Throws: Any exception thrown by calling the selected constructor of T.
29 Remarks: If T’s selected constructor is a constexpr constructor, this constructor is a constexpr

constructor.

template<size_t I, class... Args> constexpr explicit variant(in_place_index_t<I>, Args&&... args);

30 Constraints:
—(30.1) I is less than sizeof...(Types) and
—(30.2) is_constructible_v<TI, Args...> is true.

31 Effects: Direct-non-list-initializes the contained value of type TI with std::forward<Args>(args)....
32 Postconditions: index() is I.
33 Throws: Any exception thrown by calling the selected constructor of TI .
34 Remarks: If TI ’s selected constructor is a constexpr constructor, this constructor is a constexpr

constructor.

template<size_t I, class U, class... Args>
constexpr explicit variant(in_place_index_t<I>, initializer_list<U> il, Args&&... args);

35 Constraints:
—(35.1) I is less than sizeof...(Types) and
—(35.2) is_constructible_v<TI, initializer_list<U>&, Args...> is true.

36 Effects: Direct-non-list-initializes the contained value of type TI with il, std::forward<Args>(
args)....

37 Postconditions: index() is I.
38 Remarks: If TI ’s selected constructor is a constexpr constructor, this constructor is a constexpr

constructor.

22.6.3.3 Destructor [variant.dtor]

constexpr ~variant();

1 Effects: If valueless_by_exception() is false, destroys the currently contained value.
2 Remarks: If is_trivially_destructible_v<Ti> is true for all Ti, then this destructor is trivial.

22.6.3.4 Assignment [variant.assign]

constexpr variant& operator=(const variant& rhs);

1 Let j be rhs.index().
2 Effects:

—(2.1) If neither *this nor rhs holds a value, there is no effect.
—(2.2) Otherwise, if *this holds a value but rhs does not, destroys the value contained in *this and

sets *this to not hold a value.
—(2.3) Otherwise, if index() == j, assigns the value contained in rhs to the value contained in *this.
—(2.4) Otherwise, if either is_nothrow_copy_constructible_v<Tj> is true or is_nothrow_move_con-

structible_v<Tj> is false, equivalent to emplace<j>(get<j>(rhs)).
—(2.5) Otherwise, equivalent to operator=(variant(rhs)).

3 Postconditions: index() == rhs.index().
4 Returns: *this.
5 Remarks: This operator is defined as deleted unless is_copy_constructible_v<Ti> && is_copy_-

assignable_v<Ti> is true for all i. If is_trivially_copy_constructible_v<Ti> && is_trivially_-

§ 22.6.3.4 723



© ISO/IEC N4950

copy_assignable_v<Ti> && is_trivially_destructible_v<Ti> is true for all i, this assignment
operator is trivial.

constexpr variant& operator=(variant&& rhs) noexcept(see below );

6 Let j be rhs.index().
7 Constraints: is_move_constructible_v<Ti> && is_move_assignable_v<Ti> is true for all i.
8 Effects:

—(8.1) If neither *this nor rhs holds a value, there is no effect.
—(8.2) Otherwise, if *this holds a value but rhs does not, destroys the value contained in *this and

sets *this to not hold a value.
—(8.3) Otherwise, if index() == j, assigns get<j>(std::move(rhs)) to the value contained in *this.
—(8.4) Otherwise, equivalent to emplace<j>(get<j>(std::move(rhs))).

9 Returns: *this.
10 Remarks: If is_trivially_move_constructible_v<Ti> && is_trivially_move_assignable_v<Ti>

&& is_trivially_destructible_v<Ti> is true for all i, this assignment operator is trivial. The
exception specification is equivalent to is_nothrow_move_constructible_v<Ti> && is_nothrow_-
move_assignable_v<Ti> for all i.

—(10.1) If an exception is thrown during the call to Tj ’s move construction (with j being rhs.index()),
the variant will hold no value.

—(10.2) If an exception is thrown during the call to Tj ’s move assignment, the state of the contained value
is as defined by the exception safety guarantee of Tj ’s move assignment; index() will be j.

template<class T> constexpr variant& operator=(T&& t) noexcept(see below );

11 Let Tj be a type that is determined as follows: build an imaginary function FUN(Ti) for each alternative
type Ti for which Ti x[] = {std::forward<T>(t)}; is well-formed for some invented variable x. The
overload FUN(Tj) selected by overload resolution for the expression FUN(std::forward<T>(t)) defines
the alternative Tj which is the type of the contained value after assignment.

12 Constraints:
—(12.1) is_same_v<remove_cvref_t<T>, variant> is false,
—(12.2) is_assignable_v<Tj&, T> && is_constructible_v<Tj, T> is true, and
—(12.3) the expression FUN(std::forward<T>(t)) (with FUN being the above-mentioned set of imaginary

functions) is well-formed.
[Note 1 :

variant<string, string> v;
v = "abc";

is ill-formed, as both alternative types have an equally viable constructor for the argument. — end note ]
13 Effects:

—(13.1) If *this holds a Tj , assigns std::forward<T>(t) to the value contained in *this.
—(13.2) Otherwise, if is_nothrow_constructible_v<Tj, T> || !is_nothrow_move_constructible_-

v<Tj> is true, equivalent to emplace<j>(std::forward<T>(t)).
—(13.3) Otherwise, equivalent to emplace<j>(Tj(std::forward<T>(t))).

14 Postconditions: holds_alternative<Tj>(*this) is true, with Tj selected by the imaginary function
overload resolution described above.

15 Returns: *this.
16 Remarks: The exception specification is equivalent to:

is_nothrow_assignable_v<Tj&, T> && is_nothrow_constructible_v<Tj, T>

—(16.1) If an exception is thrown during the assignment of std::forward<T>(t) to the value contained
in *this, the state of the contained value and t are as defined by the exception safety guarantee
of the assignment expression; valueless_by_exception() will be false.
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—(16.2) If an exception is thrown during the initialization of the contained value, the variant object is
permitted to not hold a value.

22.6.3.5 Modifiers [variant.mod]

template<class T, class... Args> constexpr T& emplace(Args&&... args);

1 Constraints: is_constructible_v<T, Args...> is true, and T occurs exactly once in Types.
2 Effects: Equivalent to:

return emplace<I>(std::forward<Args>(args)...);

where I is the zero-based index of T in Types.

template<class T, class U, class... Args>
constexpr T& emplace(initializer_list<U> il, Args&&... args);

3 Constraints: is_constructible_v<T, initializer_list<U>&, Args...> is true, and T occurs ex-
actly once in Types.

4 Effects: Equivalent to:
return emplace<I>(il, std::forward<Args>(args)...);

where I is the zero-based index of T in Types.

template<size_t I, class... Args>
constexpr variant_alternative_t<I, variant<Types...>>& emplace(Args&&... args);

5 Mandates: I < sizeof...(Types).
6 Constraints: is_constructible_v<TI, Args...> is true.
7 Effects: Destroys the currently contained value if valueless_by_exception() is false. Then direct-

non-list-initializes the contained value of type TI with the arguments std::forward<Args>(args)....
8 Postconditions: index() is I.
9 Returns: A reference to the new contained value.

10 Throws: Any exception thrown during the initialization of the contained value.
11 Remarks: If an exception is thrown during the initialization of the contained value, the variant is

permitted to not hold a value.

template<size_t I, class U, class... Args>
constexpr variant_alternative_t<I, variant<Types...>>&

emplace(initializer_list<U> il, Args&&... args);

12 Mandates: I < sizeof...(Types).
13 Constraints: is_constructible_v<TI, initializer_list<U>&, Args...> is true.
14 Effects: Destroys the currently contained value if valueless_by_exception() is false. Then direct-

non-list-initializes the contained value of type TI with il, std::forward<Args>(args)....
15 Postconditions: index() is I.
16 Returns: A reference to the new contained value.
17 Throws: Any exception thrown during the initialization of the contained value.
18 Remarks: If an exception is thrown during the initialization of the contained value, the variant is

permitted to not hold a value.

22.6.3.6 Value status [variant.status]

constexpr bool valueless_by_exception() const noexcept;

1 Effects: Returns false if and only if the variant holds a value.
2 [Note 1 : It is possible for a variant to hold no value if an exception is thrown during a type-changing assignment

or emplacement. The latter means that even a variant<float, int> can become valueless_by_exception(),
for instance by

struct S { operator int() { throw 42; }};
variant<float, int> v{12.f};
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v.emplace<1>(S());

— end note ]

constexpr size_t index() const noexcept;

3 Effects: If valueless_by_exception() is true, returns variant_npos. Otherwise, returns the zero-
based index of the alternative of the contained value.

22.6.3.7 Swap [variant.swap]

constexpr void swap(variant& rhs) noexcept(see below );

1 Mandates: is_move_constructible_v<Ti> is true for all i.
2 Preconditions: Each Ti meets the Cpp17Swappable requirements (16.4.4.3).
3 Effects:

—(3.1) If valueless_by_exception() && rhs.valueless_by_exception() no effect.
—(3.2) Otherwise, if index() == rhs.index(), calls swap(get<i>(*this), get<i>(rhs)) where i is

index().
—(3.3) Otherwise, exchanges values of rhs and *this.

4 Throws: If index() == rhs.index(), any exception thrown by swap(get<i>(*this), get<i>(rhs))
with i being index(). Otherwise, any exception thrown by the move constructor of Ti or Tj with i
being index() and j being rhs.index().

5 Remarks: If an exception is thrown during the call to function swap(get<i>(*this), get<i>(rhs)),
the states of the contained values of *this and of rhs are determined by the exception safety guarantee
of swap for lvalues of Ti with i being index(). If an exception is thrown during the exchange of the
values of *this and rhs, the states of the values of *this and of rhs are determined by the exception
safety guarantee of variant’s move constructor. The exception specification is equivalent to the logical
and of is_nothrow_move_constructible_v<Ti> && is_nothrow_swappable_v<Ti> for all i.

22.6.4 variant helper classes [variant.helper]
template<class T> struct variant_size;

1 All specializations of variant_size meet the Cpp17UnaryTypeTrait requirements (21.3.2) with a base
characteristic of integral_constant<size_t, N> for some N.

template<class T> struct variant_size<const T>;

2 Let VS denote variant_size<T> of the cv-unqualified type T. Then each specialization of the tem-
plate meets the Cpp17UnaryTypeTrait requirements (21.3.2) with a base characteristic of integral_-
constant<size_t, VS::value>.

template<class... Types>
struct variant_size<variant<Types...>> : integral_constant<size_t, sizeof...(Types)> { };

template<size_t I, class T> struct variant_alternative<I, const T>;

3 Let VA denote variant_alternative<I, T> of the cv-unqualified type T. Then each specialization of
the template meets the Cpp17TransformationTrait requirements (21.3.2) with a member typedef type
that names the type add_const_t<VA::type>.

variant_alternative<I, variant<Types...>>::type

4 Mandates: I < sizeof...(Types).
5 Type: The type TI .

22.6.5 Value access [variant.get]
template<class T, class... Types>

constexpr bool holds_alternative(const variant<Types...>& v) noexcept;

1 Mandates: The type T occurs exactly once in Types.
2 Returns: true if index() is equal to the zero-based index of T in Types.
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template<size_t I, class... Types>
constexpr variant_alternative_t<I, variant<Types...>>& get(variant<Types...>& v);

template<size_t I, class... Types>
constexpr variant_alternative_t<I, variant<Types...>>&& get(variant<Types...>&& v);

template<size_t I, class... Types>
constexpr const variant_alternative_t<I, variant<Types...>>& get(const variant<Types...>& v);

template<size_t I, class... Types>
constexpr const variant_alternative_t<I, variant<Types...>>&& get(const variant<Types...>&& v);

3 Mandates: I < sizeof...(Types).
4 Effects: If v.index() is I, returns a reference to the object stored in the variant. Otherwise, throws

an exception of type bad_variant_access.

template<class T, class... Types> constexpr T& get(variant<Types...>& v);
template<class T, class... Types> constexpr T&& get(variant<Types...>&& v);
template<class T, class... Types> constexpr const T& get(const variant<Types...>& v);
template<class T, class... Types> constexpr const T&& get(const variant<Types...>&& v);

5 Mandates: The type T occurs exactly once in Types.
6 Effects: If v holds a value of type T, returns a reference to that value. Otherwise, throws an exception

of type bad_variant_access.

template<size_t I, class... Types>
constexpr add_pointer_t<variant_alternative_t<I, variant<Types...>>>

get_if(variant<Types...>* v) noexcept;
template<size_t I, class... Types>

constexpr add_pointer_t<const variant_alternative_t<I, variant<Types...>>>
get_if(const variant<Types...>* v) noexcept;

7 Mandates: I < sizeof...(Types).
8 Returns: A pointer to the value stored in the variant, if v != nullptr and v->index() == I.

Otherwise, returns nullptr.

template<class T, class... Types>
constexpr add_pointer_t<T>

get_if(variant<Types...>* v) noexcept;
template<class T, class... Types>

constexpr add_pointer_t<const T>
get_if(const variant<Types...>* v) noexcept;

9 Mandates: The type T occurs exactly once in Types.
10 Effects: Equivalent to: return get_if<i>(v); with i being the zero-based index of T in Types.

22.6.6 Relational operators [variant.relops]
template<class... Types>

constexpr bool operator==(const variant<Types...>& v, const variant<Types...>& w);

1 Mandates: get<i>(v) == get<i>(w) is a valid expression that is convertible to bool, for all i.
2 Returns: If v.index() != w.index(), false; otherwise if v.valueless_by_exception(), true; oth-

erwise get<i>(v) == get<i>(w) with i being v.index().

template<class... Types>
constexpr bool operator!=(const variant<Types...>& v, const variant<Types...>& w);

3 Mandates: get<i>(v) != get<i>(w) is a valid expression that is convertible to bool, for all i.
4 Returns: If v.index() != w.index(), true; otherwise if v.valueless_by_exception(), false; oth-

erwise get<i>(v) != get<i>(w) with i being v.index().

template<class... Types>
constexpr bool operator<(const variant<Types...>& v, const variant<Types...>& w);

5 Mandates: get<i>(v) < get<i>(w) is a valid expression that is convertible to bool, for all i.
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6 Returns: If w.valueless_by_exception(), false; otherwise if v.valueless_by_exception(), true;
otherwise, if v.index() < w.index(), true; otherwise if v.index() > w.index(), false; otherwise
get<i>(v) < get<i>(w) with i being v.index().

template<class... Types>
constexpr bool operator>(const variant<Types...>& v, const variant<Types...>& w);

7 Mandates: get<i>(v) > get<i>(w) is a valid expression that is convertible to bool, for all i.
8 Returns: If v.valueless_by_exception(), false; otherwise if w.valueless_by_exception(), true;

otherwise, if v.index() > w.index(), true; otherwise if v.index() < w.index(), false; otherwise
get<i>(v) > get<i>(w) with i being v.index().

template<class... Types>
constexpr bool operator<=(const variant<Types...>& v, const variant<Types...>& w);

9 Mandates: get<i>(v) <= get<i>(w) is a valid expression that is convertible to bool, for all i.
10 Returns: If v.valueless_by_exception(), true; otherwise if w.valueless_by_exception(), false;

otherwise, if v.index() < w.index(), true; otherwise if v.index() > w.index(), false; otherwise
get<i>(v) <= get<i>(w) with i being v.index().

template<class... Types>
constexpr bool operator>=(const variant<Types...>& v, const variant<Types...>& w);

11 Mandates: get<i>(v) >= get<i>(w) is a valid expression that is convertible to bool, for all i.
12 Returns: If w.valueless_by_exception(), true; otherwise if v.valueless_by_exception(), false;

otherwise, if v.index() > w.index(), true; otherwise if v.index() < w.index(), false; otherwise
get<i>(v) >= get<i>(w) with i being v.index().

template<class... Types> requires (three_way_comparable<Types> && ...)
constexpr common_comparison_category_t<compare_three_way_result_t<Types>...>

operator<=>(const variant<Types...>& v, const variant<Types...>& w);

13 Effects: Equivalent to:
if (v.valueless_by_exception() && w.valueless_by_exception())

return strong_ordering::equal;
if (v.valueless_by_exception()) return strong_ordering::less;
if (w.valueless_by_exception()) return strong_ordering::greater;
if (auto c = v.index() <=> w.index(); c != 0) return c;
return get<i>(v) <=> get<i>(w);

with i being v.index().

22.6.7 Visitation [variant.visit]
template<class Visitor, class... Variants>

constexpr see below visit(Visitor&& vis, Variants&&... vars);
template<class R, class Visitor, class... Variants>

constexpr R visit(Visitor&& vis, Variants&&... vars);

1 Let as-variant denote the following exposition-only function templates:
template<class... Ts>

auto&& as-variant (variant<Ts...>& var) { return var; }
template<class... Ts>

auto&& as-variant (const variant<Ts...>& var) { return var; }
template<class... Ts>

auto&& as-variant (variant<Ts...>&& var) { return std::move(var); }
template<class... Ts>

auto&& as-variant (const variant<Ts...>&& var) { return std::move(var); }

Let n be sizeof...(Variants). For each 0 ≤ i < n, let Vi denote the type
decltype(as-variant (std::forward<Variantsi>(varsi))).

2 Constraints: Vi is a valid type for all 0 ≤ i < n.
3 Let V denote the pack of types Vi.
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4 Let m be a pack of n values of type size_t. Such a pack is valid if
0 ≤ mi < variant_size_v<remove_reference_t<Vi>> for all 0 ≤ i < n. For each valid pack m, let
e(m) denote the expression:

INVOKE (std::forward<Visitor>(vis), get<m>(std::forward<V>(vars))...) // see 22.10.4

for the first form and
INVOKE <R>(std::forward<Visitor>(vis), get<m>(std::forward<V>(vars))...) // see 22.10.4

for the second form.
5 Mandates: For each valid pack m, e(m) is a valid expression. All such expressions are of the same type

and value category.
6 Returns: e(m), where m is the pack for which mi is as-variant (varsi).index() for all 0 ≤ i < n.

The return type is decltype(e(m)) for the first form.
7 Throws: bad_variant_access if (as-variant (vars).valueless_by_exception() || ...) is true.
8 Complexity: For n ≤ 1, the invocation of the callable object is implemented in constant time, i.e., for

n = 1, it does not depend on the number of alternative types of V0. For n > 1, the invocation of the
callable object has no complexity requirements.

22.6.8 Class monostate [variant.monostate]
struct monostate{};

1 The class monostate can serve as a first alternative type for a variant to make the variant type
default constructible.

22.6.9 monostate relational operators [variant.monostate.relops]
constexpr bool operator==(monostate, monostate) noexcept { return true; }
constexpr strong_ordering operator<=>(monostate, monostate) noexcept
{ return strong_ordering::equal; }

1 [Note 1 : monostate objects have only a single state; they thus always compare equal. — end note ]

22.6.10 Specialized algorithms [variant.specalg]
template<class... Types>

constexpr void swap(variant<Types...>& v, variant<Types...>& w) noexcept(see below );

1 Constraints: is_move_constructible_v<Ti> && is_swappable_v<Ti> is true for all i.
2 Effects: Equivalent to v.swap(w).
3 Remarks: The exception specification is equivalent to noexcept(v.swap(w)).

22.6.11 Class bad_variant_access [variant.bad.access]
namespace std {

class bad_variant_access : public exception {
public:

// see 17.9.3 for the specification of the special member functions
const char* what() const noexcept override;

};
}

1 Objects of type bad_variant_access are thrown to report invalid accesses to the value of a variant object.

const char* what() const noexcept override;

2 Returns: An implementation-defined ntbs.

22.6.12 Hash support [variant.hash]
template<class... Types> struct hash<variant<Types...>>;

1 The specialization hash<variant<Types...>> is enabled (22.10.19) if and only if every specialization
in hash<remove_const_t<Types>>... is enabled. The member functions are not guaranteed to be
noexcept.
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template<> struct hash<monostate>;

2 The specialization is enabled (22.10.19).

22.7 Storage for any type [any]
22.7.1 General [any.general]

1 Subclause 22.7 describes components that C++ programs may use to perform operations on objects of a
discriminated type.

2 [Note 1 : The discriminated type can contain values of different types but does not attempt conversion between
them, i.e., 5 is held strictly as an int and is not implicitly convertible either to "5" or to 5.0. This indifference to
interpretation but awareness of type effectively allows safe, generic containers of single values, with no scope for
surprises from ambiguous conversions. — end note ]

22.7.2 Header <any> synopsis [any.synop]
namespace std {

// 22.7.3, class bad_any_cast
class bad_any_cast;

// 22.7.4, class any
class any;

// 22.7.5, non-member functions
void swap(any& x, any& y) noexcept;

template<class T, class... Args>
any make_any(Args&&... args);

template<class T, class U, class... Args>
any make_any(initializer_list<U> il, Args&&... args);

template<class T>
T any_cast(const any& operand);

template<class T>
T any_cast(any& operand);

template<class T>
T any_cast(any&& operand);

template<class T>
const T* any_cast(const any* operand) noexcept;

template<class T>
T* any_cast(any* operand) noexcept;

}

22.7.3 Class bad_any_cast [any.bad.any.cast]
namespace std {

class bad_any_cast : public bad_cast {
public:

// see 17.9.3 for the specification of the special member functions
const char* what() const noexcept override;

};
}

1 Objects of type bad_any_cast are thrown by a failed any_cast (22.7.5).

const char* what() const noexcept override;

2 Returns: An implementation-defined ntbs.

22.7.4 Class any [any.class]
22.7.4.1 General [any.class.general]

namespace std {
class any {
public:

// 22.7.4.2, construction and destruction

§ 22.7.4.1 730



© ISO/IEC N4950

constexpr any() noexcept;

any(const any& other);
any(any&& other) noexcept;

template<class T>
any(T&& value);

template<class T, class... Args>
explicit any(in_place_type_t<T>, Args&&...);

template<class T, class U, class... Args>
explicit any(in_place_type_t<T>, initializer_list<U>, Args&&...);

~any();

// 22.7.4.3, assignments
any& operator=(const any& rhs);
any& operator=(any&& rhs) noexcept;

template<class T>
any& operator=(T&& rhs);

// 22.7.4.4, modifiers
template<class T, class... Args>

decay_t<T>& emplace(Args&&...);
template<class T, class U, class... Args>

decay_t<T>& emplace(initializer_list<U>, Args&&...);
void reset() noexcept;
void swap(any& rhs) noexcept;

// 22.7.4.5, observers
bool has_value() const noexcept;
const type_info& type() const noexcept;

};
}

1 An object of class any stores an instance of any type that meets the constructor requirements or it has no
value, and this is referred to as the state of the class any object. The stored instance is called the contained
value. Two states are equivalent if either they both have no value, or they both have a value and the contained
values are equivalent.

2 The non-member any_cast functions provide type-safe access to the contained value.
3 Implementations should avoid the use of dynamically allocated memory for a small contained value. How-

ever, any such small-object optimization shall only be applied to types T for which is_nothrow_move_-
constructible_v<T> is true.
[Example 1 : A contained value of type int could be stored in an internal buffer, not in separately-allocated memory.

— end example ]

22.7.4.2 Construction and destruction [any.cons]

constexpr any() noexcept;

1 Postconditions: has_value() is false.

any(const any& other);

2 Effects: If other.has_value() is false, constructs an object that has no value. Otherwise, equivalent
to any(in_place_type<T>, any_cast<const T&>(other)) where T is the type of the contained value.

3 Throws: Any exceptions arising from calling the selected constructor for the contained value.

any(any&& other) noexcept;

4 Effects: If other.has_value() is false, constructs an object that has no value. Otherwise, constructs
an object of type any that contains either the contained value of other, or contains an object of the
same type constructed from the contained value of other considering that contained value as an rvalue.
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template<class T>
any(T&& value);

5 Let VT be decay_t<T>.
6 Constraints: VT is not the same type as any, VT is not a specialization of in_place_type_t, and

is_copy_constructible_v<VT> is true.
7 Preconditions: VT meets the Cpp17CopyConstructible requirements.
8 Effects: Constructs an object of type any that contains an object of type VT direct-initialized with

std::forward<T>(value).
9 Throws: Any exception thrown by the selected constructor of VT.

template<class T, class... Args>
explicit any(in_place_type_t<T>, Args&&... args);

10 Let VT be decay_t<T>.
11 Constraints: is_copy_constructible_v<VT> is true and is_constructible_v<VT, Args...> is

true.
12 Preconditions: VT meets the Cpp17CopyConstructible requirements.
13 Effects: Direct-non-list-initializes the contained value of type VT with std::forward<Args>(args)....
14 Postconditions: *this contains a value of type VT.
15 Throws: Any exception thrown by the selected constructor of VT.

template<class T, class U, class... Args>
explicit any(in_place_type_t<T>, initializer_list<U> il, Args&&... args);

16 Let VT be decay_t<T>.
17 Constraints: is_copy_constructible_v<VT> is true and is_constructible_v<VT, initializer_-

list<U>&, Args...> is true.
18 Preconditions: VT meets the Cpp17CopyConstructible requirements.
19 Effects: Direct-non-list-initializes the contained value of type VT with il, std::forward<Args>(

args)....
20 Postconditions: *this contains a value.
21 Throws: Any exception thrown by the selected constructor of VT.

~any();

22 Effects: As if by reset().

22.7.4.3 Assignment [any.assign]

any& operator=(const any& rhs);

1 Effects: As if by any(rhs).swap(*this). No effects if an exception is thrown.
2 Returns: *this.
3 Throws: Any exceptions arising from the copy constructor for the contained value.

any& operator=(any&& rhs) noexcept;

4 Effects: As if by any(std::move(rhs)).swap(*this).
5 Postconditions: The state of *this is equivalent to the original state of rhs.
6 Returns: *this.

template<class T>
any& operator=(T&& rhs);

7 Let VT be decay_t<T>.
8 Constraints: VT is not the same type as any and is_copy_constructible_v<VT> is true.
9 Preconditions: VT meets the Cpp17CopyConstructible requirements.
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10 Effects: Constructs an object tmp of type any that contains an object of type VT direct-initialized with
std::forward<T>(rhs), and tmp.swap(*this). No effects if an exception is thrown.

11 Returns: *this.
12 Throws: Any exception thrown by the selected constructor of VT.

22.7.4.4 Modifiers [any.modifiers]

template<class T, class... Args>
decay_t<T>& emplace(Args&&... args);

1 Let VT be decay_t<T>.
2 Constraints: is_copy_constructible_v<VT> is true and is_constructible_v<VT, Args...> is

true.
3 Preconditions: VT meets the Cpp17CopyConstructible requirements.
4 Effects: Calls reset(). Then direct-non-list-initializes the contained value of type VT with std::for-

ward<Args>(args)....
5 Postconditions: *this contains a value.
6 Returns: A reference to the new contained value.
7 Throws: Any exception thrown by the selected constructor of VT.
8 Remarks: If an exception is thrown during the call to VT’s constructor, *this does not contain a value,

and any previously contained value has been destroyed.

template<class T, class U, class... Args>
decay_t<T>& emplace(initializer_list<U> il, Args&&... args);

9 Let VT be decay_t<T>.
10 Constraints: is_copy_constructible_v<VT> is true and is_constructible_v<VT, initializer_-

list<U>&, Args...> is true.
11 Preconditions: VT meets the Cpp17CopyConstructible requirements.
12 Effects: Calls reset(). Then direct-non-list-initializes the contained value of type VT with il,

std::forward<Args>(args)....
13 Postconditions: *this contains a value.
14 Returns: A reference to the new contained value.
15 Throws: Any exception thrown by the selected constructor of VT.
16 Remarks: If an exception is thrown during the call to VT’s constructor, *this does not contain a value,

and any previously contained value has been destroyed.

void reset() noexcept;

17 Effects: If has_value() is true, destroys the contained value.
18 Postconditions: has_value() is false.

void swap(any& rhs) noexcept;

19 Effects: Exchanges the states of *this and rhs.

22.7.4.5 Observers [any.observers]

bool has_value() const noexcept;

1 Returns: true if *this contains an object, otherwise false.

const type_info& type() const noexcept;

2 Returns: typeid(T) if *this has a contained value of type T, otherwise typeid(void).
3 [Note 1 : Useful for querying against types known either at compile time or only at runtime. — end note ]
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22.7.5 Non-member functions [any.nonmembers]
void swap(any& x, any& y) noexcept;

1 Effects: Equivalent to x.swap(y).

template<class T, class... Args>
any make_any(Args&&... args);

2 Effects: Equivalent to: return any(in_place_type<T>, std::forward<Args>(args)...);

template<class T, class U, class... Args>
any make_any(initializer_list<U> il, Args&&... args);

3 Effects: Equivalent to: return any(in_place_type<T>, il, std::forward<Args>(args)...);

template<class T>
T any_cast(const any& operand);

template<class T>
T any_cast(any& operand);

template<class T>
T any_cast(any&& operand);

4 Let U be the type remove_cvref_t<T>.
5 Mandates: For the first overload, is_constructible_v<T, const U&> is true. For the second overload,

is_constructible_v<T, U&> is true. For the third overload, is_constructible_v<T, U> is true.
6 Returns: For the first and second overload, static_cast<T>(*any_cast<U>(&operand)). For the

third overload, static_cast<T>(std::move(*any_cast<U>(&operand))).
7 Throws: bad_any_cast if operand.type() != typeid(remove_reference_t<T>).
8 [Example 1 :

any x(5); // x holds int
assert(any_cast<int>(x) == 5); // cast to value
any_cast<int&>(x) = 10; // cast to reference
assert(any_cast<int>(x) == 10);

x = "Meow"; // x holds const char*
assert(strcmp(any_cast<const char*>(x), "Meow") == 0);
any_cast<const char*&>(x) = "Harry";
assert(strcmp(any_cast<const char*>(x), "Harry") == 0);

x = string("Meow"); // x holds string
string s, s2("Jane");
s = move(any_cast<string&>(x)); // move from any
assert(s == "Meow");
any_cast<string&>(x) = move(s2); // move to any
assert(any_cast<const string&>(x) == "Jane");

string cat("Meow");
const any y(cat); // const y holds string
assert(any_cast<const string&>(y) == cat);

any_cast<string&>(y); // error: cannot any_cast away const
— end example ]

template<class T>
const T* any_cast(const any* operand) noexcept;

template<class T>
T* any_cast(any* operand) noexcept;

9 Returns: If operand != nullptr && operand->type() == typeid(T), a pointer to the object con-
tained by operand; otherwise, nullptr.

10 [Example 2 :
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bool is_string(const any& operand) {
return any_cast<string>(&operand) != nullptr;

}

— end example ]

22.8 Expected objects [expected]
22.8.1 In general [expected.general]

1 Subclause 22.8 describes the class template expected that represents expected objects. An expected<T,
E> object holds an object of type T or an object of type unexpected<E> and manages the lifetime of the
contained objects.

22.8.2 Header <expected> synopsis [expected.syn]
namespace std {

// 22.8.3, class template unexpected
template<class E> class unexpected;

// 22.8.4, class template bad_expected_access
template<class E> class bad_expected_access;

// 22.8.5, specialization for void
template<> class bad_expected_access<void>;

// in-place construction of unexpected values
struct unexpect_t {

explicit unexpect_t() = default;
};
inline constexpr unexpect_t unexpect{};

// 22.8.6, class template expected
template<class T, class E> class expected;

// 22.8.7, partial specialization of expected for void types
template<class T, class E> requires is_void_v<T> class expected<T, E>;

}

22.8.3 Class template unexpected [expected.unexpected]
22.8.3.1 General [expected.un.general]

1 Subclause 22.8.3 describes the class template unexpected that represents unexpected objects stored in
expected objects.

namespace std {
template<class E>
class unexpected {
public:

// 22.8.3.2, constructors
constexpr unexpected(const unexpected&) = default;
constexpr unexpected(unexpected&&) = default;
template<class Err = E>

constexpr explicit unexpected(Err&&);
template<class... Args>

constexpr explicit unexpected(in_place_t, Args&&...);
template<class U, class... Args>

constexpr explicit unexpected(in_place_t, initializer_list<U>, Args&&...);

constexpr unexpected& operator=(const unexpected&) = default;
constexpr unexpected& operator=(unexpected&&) = default;

constexpr const E& error() const & noexcept;
constexpr E& error() & noexcept;
constexpr const E&& error() const && noexcept;
constexpr E&& error() && noexcept;
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constexpr void swap(unexpected& other) noexcept(see below );

template<class E2>
friend constexpr bool operator==(const unexpected&, const unexpected<E2>&);

friend constexpr void swap(unexpected& x, unexpected& y) noexcept(noexcept(x.swap(y)));

private:
E unex; // exposition only

};

template<class E> unexpected(E) -> unexpected<E>;
}

2 A program that instantiates the definition of unexpected for a non-object type, an array type, a specialization
of unexpected, or a cv-qualified type is ill-formed.

22.8.3.2 Constructors [expected.un.cons]

template<class Err = E>
constexpr explicit unexpected(Err&& e);

1 Constraints:
—(1.1) is_same_v<remove_cvref_t<Err>, unexpected> is false; and
—(1.2) is_same_v<remove_cvref_t<Err>, in_place_t> is false; and
—(1.3) is_constructible_v<E, Err> is true.

2 Effects: Direct-non-list-initializes unex with std::forward<Err>(e).
3 Throws: Any exception thrown by the initialization of unex .

template<class... Args>
constexpr explicit unexpected(in_place_t, Args&&... args);

4 Constraints: is_constructible_v<E, Args...> is true.
5 Effects: Direct-non-list-initializes unex with std::forward<Args>(args)....
6 Throws: Any exception thrown by the initialization of unex .

template<class U, class... Args>
constexpr explicit unexpected(in_place_t, initializer_list<U> il, Args&&... args);

7 Constraints: is_constructible_v<E, initializer_list<U>&, Args...> is true.
8 Effects: Direct-non-list-initializes unex with il, std::forward<Args>(args)....
9 Throws: Any exception thrown by the initialization of unex .

22.8.3.3 Observers [expected.un.obs]

constexpr const E& error() const & noexcept;
constexpr E& error() & noexcept;

1 Returns: unex .

constexpr E&& error() && noexcept;
constexpr const E&& error() const && noexcept;

2 Returns: std::move(unex ).

22.8.3.4 Swap [expected.un.swap]

constexpr void swap(unexpected& other) noexcept(is_nothrow_swappable_v<E>);

1 Mandates: is_swappable_v<E> is true.
2 Effects: Equivalent to: using std::swap; swap(unex , other.unex );
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friend constexpr void swap(unexpected& x, unexpected& y) noexcept(noexcept(x.swap(y)));

3 Constraints: is_swappable_v<E> is true.
4 Effects: Equivalent to x.swap(y).

22.8.3.5 Equality operator [expected.un.eq]

template<class E2>
friend constexpr bool operator==(const unexpected& x, const unexpected<E2>& y);

1 Mandates: The expression x.error() == y.error() is well-formed and its result is convertible to
bool.

2 Returns: x.error() == y.error().

22.8.4 Class template bad_expected_access [expected.bad]
namespace std {

template<class E>
class bad_expected_access : public bad_expected_access<void> {
public:

explicit bad_expected_access(E);
const char* what() const noexcept override;
E& error() & noexcept;
const E& error() const & noexcept;
E&& error() && noexcept;
const E&& error() const && noexcept;

private:
E unex; // exposition only

};
}

1 The class template bad_expected_access defines the type of objects thrown as exceptions to report the
situation where an attempt is made to access the value of an expected<T, E> object for which has_value()
is false.

explicit bad_expected_access(E e);

2 Effects: Initializes unex with std::move(e).

const E& error() const & noexcept;
E& error() & noexcept;

3 Returns: unex .

E&& error() && noexcept;
const E&& error() const && noexcept;

4 Returns: std::move(unex ).

const char* what() const noexcept override;

5 Returns: An implementation-defined ntbs.

22.8.5 Class template specialization bad_expected_access<void> [expected.bad.void]
namespace std {

template<>
class bad_expected_access<void> : public exception {
protected:

bad_expected_access() noexcept;
bad_expected_access(const bad_expected_access&);
bad_expected_access(bad_expected_access&&);
bad_expected_access& operator=(const bad_expected_access&);
bad_expected_access& operator=(bad_expected_access&&);
~bad_expected_access();
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public:
const char* what() const noexcept override;

};
}

const char* what() const noexcept override;

1 Returns: An implementation-defined ntbs.

22.8.6 Class template expected [expected.expected]
22.8.6.1 General [expected.object.general]

namespace std {
template<class T, class E>
class expected {
public:

using value_type = T;
using error_type = E;
using unexpected_type = unexpected<E>;

template<class U>
using rebind = expected<U, error_type>;

// 22.8.6.2, constructors
constexpr expected();
constexpr expected(const expected&);
constexpr expected(expected&&) noexcept(see below );
template<class U, class G>

constexpr explicit(see below ) expected(const expected<U, G>&);
template<class U, class G>

constexpr explicit(see below ) expected(expected<U, G>&&);

template<class U = T>
constexpr explicit(see below ) expected(U&& v);

template<class G>
constexpr explicit(see below ) expected(const unexpected<G>&);

template<class G>
constexpr explicit(see below ) expected(unexpected<G>&&);

template<class... Args>
constexpr explicit expected(in_place_t, Args&&...);

template<class U, class... Args>
constexpr explicit expected(in_place_t, initializer_list<U>, Args&&...);

template<class... Args>
constexpr explicit expected(unexpect_t, Args&&...);

template<class U, class... Args>
constexpr explicit expected(unexpect_t, initializer_list<U>, Args&&...);

// 22.8.6.3, destructor
constexpr ~expected();

// 22.8.6.4, assignment
constexpr expected& operator=(const expected&);
constexpr expected& operator=(expected&&) noexcept(see below );
template<class U = T> constexpr expected& operator=(U&&);
template<class G>

constexpr expected& operator=(const unexpected<G>&);
template<class G>

constexpr expected& operator=(unexpected<G>&&);

template<class... Args>
constexpr T& emplace(Args&&...) noexcept;

template<class U, class... Args>
constexpr T& emplace(initializer_list<U>, Args&&...) noexcept;
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// 22.8.6.5, swap
constexpr void swap(expected&) noexcept(see below );
friend constexpr void swap(expected& x, expected& y) noexcept(noexcept(x.swap(y)));

// 22.8.6.6, observers
constexpr const T* operator->() const noexcept;
constexpr T* operator->() noexcept;
constexpr const T& operator*() const & noexcept;
constexpr T& operator*() & noexcept;
constexpr const T&& operator*() const && noexcept;
constexpr T&& operator*() && noexcept;
constexpr explicit operator bool() const noexcept;
constexpr bool has_value() const noexcept;
constexpr const T& value() const &;
constexpr T& value() &;
constexpr const T&& value() const &&;
constexpr T&& value() &&;
constexpr const E& error() const & noexcept;
constexpr E& error() & noexcept;
constexpr const E&& error() const && noexcept;
constexpr E&& error() && noexcept;
template<class U> constexpr T value_or(U&&) const &;
template<class U> constexpr T value_or(U&&) &&;
template<class G = E> constexpr E error_or(G&&) const &;
template<class G = E> constexpr E error_or(G&&) &&;

// 22.8.6.7, monadic operations
template<class F> constexpr auto and_then(F&& f) &;
template<class F> constexpr auto and_then(F&& f) &&;
template<class F> constexpr auto and_then(F&& f) const &;
template<class F> constexpr auto and_then(F&& f) const &&;
template<class F> constexpr auto or_else(F&& f) &;
template<class F> constexpr auto or_else(F&& f) &&;
template<class F> constexpr auto or_else(F&& f) const &;
template<class F> constexpr auto or_else(F&& f) const &&;
template<class F> constexpr auto transform(F&& f) &;
template<class F> constexpr auto transform(F&& f) &&;
template<class F> constexpr auto transform(F&& f) const &;
template<class F> constexpr auto transform(F&& f) const &&;
template<class F> constexpr auto transform_error(F&& f) &;
template<class F> constexpr auto transform_error(F&& f) &&;
template<class F> constexpr auto transform_error(F&& f) const &;
template<class F> constexpr auto transform_error(F&& f) const &&;

// 22.8.6.8, equality operators
template<class T2, class E2> requires (!is_void_v<T2>)

friend constexpr bool operator==(const expected& x, const expected<T2, E2>& y);
template<class T2>

friend constexpr bool operator==(const expected&, const T2&);
template<class E2>

friend constexpr bool operator==(const expected&, const unexpected<E2>&);

private:
bool has_val ; // exposition only
union {

T val ; // exposition only
E unex ; // exposition only

};
};

}

1 Any object of type expected<T, E> either contains a value of type T or a value of type E within its own
storage. Implementations are not permitted to use additional storage, such as dynamic memory, to allocate
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the object of type T or the object of type E. Member has_val indicates whether the expected<T, E> object
contains an object of type T.

2 A type T is a valid value type for expected, if remove_cv_t<T> is void or a complete non-array object type
that is not in_place_t, unexpect_t, or a specialization of unexpected. A program which instantiates class
template expected<T, E> with an argument T that is not a valid value type for expected is ill-formed. A
program that instantiates the definition of the template expected<T, E> with a type for the E parameter
that is not a valid template argument for unexpected is ill-formed.

3 When T is not cv void, it shall meet the Cpp17Destructible requirements (Table 35). E shall meet the
Cpp17Destructible requirements.

22.8.6.2 Constructors [expected.object.cons]
1 The exposition-only variable template converts-from-any-cvref defined in 22.5.3.2 is used by some

constructors for expected.

constexpr expected();

2 Constraints: is_default_constructible_v<T> is true.
3 Effects: Value-initializes val .
4 Postconditions: has_value() is true.
5 Throws: Any exception thrown by the initialization of val .

constexpr expected(const expected& rhs);

6 Effects: If rhs.has_value() is true, direct-non-list-initializes val with *rhs. Otherwise, direct-non-
list-initializes unex with rhs.error().

7 Postconditions: rhs.has_value() == this->has_value().
8 Throws: Any exception thrown by the initialization of val or unex .
9 Remarks: This constructor is defined as deleted unless

—(9.1) is_copy_constructible_v<T> is true and
—(9.2) is_copy_constructible_v<E> is true.

10 This constructor is trivial if
—(10.1) is_trivially_copy_constructible_v<T> is true and
—(10.2) is_trivially_copy_constructible_v<E> is true.

constexpr expected(expected&& rhs) noexcept(see below );

11 Constraints:
—(11.1) is_move_constructible_v<T> is true and
—(11.2) is_move_constructible_v<E> is true.

12 Effects: If rhs.has_value() is true, direct-non-list-initializes val with std::move(*rhs). Otherwise,
direct-non-list-initializes unex with std::move(rhs.error()).

13 Postconditions: rhs.has_value() is unchanged; rhs.has_value() == this->has_value() is true.
14 Throws: Any exception thrown by the initialization of val or unex .
15 Remarks: The exception specification is equivalent to is_nothrow_move_constructible_v<T> &&

is_nothrow_move_constructible_v<E>.
16 This constructor is trivial if

—(16.1) is_trivially_move_constructible_v<T> is true and
—(16.2) is_trivially_move_constructible_v<E> is true.

template<class U, class G>
constexpr explicit(see below ) expected(const expected<U, G>& rhs);

template<class U, class G>
constexpr explicit(see below ) expected(expected<U, G>&& rhs);

17 Let:

§ 22.8.6.2 740



© ISO/IEC N4950

—(17.1) UF be const U& for the first overload and U for the second overload.
—(17.2) GF be const G& for the first overload and G for the second overload.

18 Constraints:
—(18.1) is_constructible_v<T, UF> is true; and
—(18.2) is_constructible_v<E, GF> is true; and
—(18.3) if T is not cv bool, converts-from-any-cvref <T, expected<U, G>> is false; and
—(18.4) is_constructible_v<unexpected<E>, expected<U, G>&> is false; and
—(18.5) is_constructible_v<unexpected<E>, expected<U, G>> is false; and
—(18.6) is_constructible_v<unexpected<E>, const expected<U, G>&> is false; and
—(18.7) is_constructible_v<unexpected<E>, const expected<U, G>> is false.

19 Effects: If rhs.has_value(), direct-non-list-initializes val with std::forward<UF>(*rhs). Otherwise,
direct-non-list-initializes unex with std::forward<GF>(rhs.error()).

20 Postconditions: rhs.has_value() is unchanged; rhs.has_value() == this->has_value() is true.
21 Throws: Any exception thrown by the initialization of val or unex .
22 Remarks: The expression inside explicit is equivalent to !is_convertible_v<UF, T> || !is_-

convertible_v<GF, E>.

template<class U = T>
constexpr explicit(!is_convertible_v<U, T>) expected(U&& v);

23 Constraints:
—(23.1) is_same_v<remove_cvref_t<U>, in_place_t> is false; and
—(23.2) is_same_v<expected, remove_cvref_t<U>> is false; and
—(23.3) remove_cvref_t<U> is not a specialization of unexpected; and
—(23.4) is_constructible_v<T, U> is true; and
—(23.5) if T is cv bool, remove_cvref_t<U> is not a specialization of expected.

24 Effects: Direct-non-list-initializes val with std::forward<U>(v).
25 Postconditions: has_value() is true.
26 Throws: Any exception thrown by the initialization of val .

template<class G>
constexpr explicit(!is_convertible_v<const G&, E>) expected(const unexpected<G>& e);

template<class G>
constexpr explicit(!is_convertible_v<G, E>) expected(unexpected<G>&& e);

27 Let GF be const G& for the first overload and G for the second overload.
28 Constraints: is_constructible_v<E, GF> is true.
29 Effects: Direct-non-list-initializes unex with std::forward<GF>(e.error()).
30 Postconditions: has_value() is false.
31 Throws: Any exception thrown by the initialization of unex .

template<class... Args>
constexpr explicit expected(in_place_t, Args&&... args);

32 Constraints: is_constructible_v<T, Args...> is true.
33 Effects: Direct-non-list-initializes val with std::forward<Args>(args)....
34 Postconditions: has_value() is true.
35 Throws: Any exception thrown by the initialization of val .

template<class U, class... Args>
constexpr explicit expected(in_place_t, initializer_list<U> il, Args&&... args);

36 Constraints: is_constructible_v<T, initializer_list<U>&, Args...> is true.
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37 Effects: Direct-non-list-initializes val with il, std::forward<Args>(args)....
38 Postconditions: has_value() is true.
39 Throws: Any exception thrown by the initialization of val .

template<class... Args>
constexpr explicit expected(unexpect_t, Args&&... args);

40 Constraints: is_constructible_v<E, Args...> is true.
41 Effects: Direct-non-list-initializes unex with std::forward<Args>(args)....
42 Postconditions: has_value() is false.
43 Throws: Any exception thrown by the initialization of unex .

template<class U, class... Args>
constexpr explicit expected(unexpect_t, initializer_list<U> il, Args&&... args);

44 Constraints: is_constructible_v<E, initializer_list<U>&, Args...> is true.
45 Effects: Direct-non-list-initializes unex with il, std::forward<Args>(args)....
46 Postconditions: has_value() is false.
47 Throws: Any exception thrown by the initialization of unex .

22.8.6.3 Destructor [expected.object.dtor]

constexpr ~expected();

1 Effects: If has_value() is true, destroys val , otherwise destroys unex .
2 Remarks: If is_trivially_destructible_v<T> is true, and is_trivially_destructible_v<E> is

true, then this destructor is a trivial destructor.

22.8.6.4 Assignment [expected.object.assign]
1 This subclause makes use of the following exposition-only function:

template<class T, class U, class... Args>
constexpr void reinit-expected (T& newval, U& oldval, Args&&... args) { // exposition only

if constexpr (is_nothrow_constructible_v<T, Args...>) {
destroy_at(addressof(oldval));
construct_at(addressof(newval), std::forward<Args>(args)...);

} else if constexpr (is_nothrow_move_constructible_v<T>) {
T tmp(std::forward<Args>(args)...);
destroy_at(addressof(oldval));
construct_at(addressof(newval), std::move(tmp));

} else {
U tmp(std::move(oldval));
destroy_at(addressof(oldval));
try {

construct_at(addressof(newval), std::forward<Args>(args)...);
} catch (...) {

construct_at(addressof(oldval), std::move(tmp));
throw;

}
}

}

constexpr expected& operator=(const expected& rhs);

2 Effects:
—(2.1) If this->has_value() && rhs.has_value() is true, equivalent to val = *rhs.
—(2.2) Otherwise, if this->has_value() is true, equivalent to:

reinit-expected (unex , val , rhs.error())

—(2.3) Otherwise, if rhs.has_value() is true, equivalent to:
reinit-expected (val , unex , *rhs)
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—(2.4) Otherwise, equivalent to unex = rhs.error().
Then, if no exception was thrown, equivalent to: has_val = rhs.has_value(); return *this;

3 Returns: *this.
4 Remarks: This operator is defined as deleted unless:

—(4.1) is_copy_assignable_v<T> is true and
—(4.2) is_copy_constructible_v<T> is true and
—(4.3) is_copy_assignable_v<E> is true and
—(4.4) is_copy_constructible_v<E> is true and
—(4.5) is_nothrow_move_constructible_v<T> || is_nothrow_move_constructible_v<E> is true.

constexpr expected& operator=(expected&& rhs) noexcept(see below );

5 Constraints:
—(5.1) is_move_constructible_v<T> is true and
—(5.2) is_move_assignable_v<T> is true and
—(5.3) is_move_constructible_v<E> is true and
—(5.4) is_move_assignable_v<E> is true and
—(5.5) is_nothrow_move_constructible_v<T> || is_nothrow_move_constructible_v<E> is true.

6 Effects:
—(6.1) If this->has_value() && rhs.has_value() is true, equivalent to val = std::move(*rhs).
—(6.2) Otherwise, if this->has_value() is true, equivalent to:

reinit-expected (unex , val , std::move(rhs.error()))

—(6.3) Otherwise, if rhs.has_value() is true, equivalent to:
reinit-expected (val , unex , std::move(*rhs))

—(6.4) Otherwise, equivalent to unex = std::move(rhs.error()).
Then, if no exception was thrown, equivalent to: has_val = rhs.has_value(); return *this;

7 Returns: *this.
8 Remarks: The exception specification is equivalent to:

is_nothrow_move_assignable_v<T> && is_nothrow_move_constructible_v<T> &&
is_nothrow_move_assignable_v<E> && is_nothrow_move_constructible_v<E>

template<class U = T>
constexpr expected& operator=(U&& v);

9 Constraints:
—(9.1) is_same_v<expected, remove_cvref_t<U>> is false; and
—(9.2) remove_cvref_t<U> is not a specialization of unexpected; and
—(9.3) is_constructible_v<T, U> is true; and
—(9.4) is_assignable_v<T&, U> is true; and
—(9.5) is_nothrow_constructible_v<T, U> || is_nothrow_move_constructible_v<T> ||

is_nothrow_move_constructible_v<E> is true.
10 Effects:

—(10.1) If has_value() is true, equivalent to: val = std::forward<U>(v);
—(10.2) Otherwise, equivalent to:

reinit-expected (val , unex , std::forward<U>(v));
has_val = true;

11 Returns: *this.

§ 22.8.6.4 743



© ISO/IEC N4950

template<class G>
constexpr expected& operator=(const unexpected<G>& e);

template<class G>
constexpr expected& operator=(unexpected<G>&& e);

12 Let GF be const G& for the first overload and G for the second overload.
13 Constraints:

—(13.1) is_constructible_v<E, GF> is true; and
—(13.2) is_assignable_v<E&, GF> is true; and
—(13.3) is_nothrow_constructible_v<E, GF> || is_nothrow_move_constructible_v<T> ||

is_nothrow_move_constructible_v<E> is true.
14 Effects:

—(14.1) If has_value() is true, equivalent to:
reinit-expected (unex , val , std::forward<GF>(e.error()));
has_val = false;

—(14.2) Otherwise, equivalent to: unex = std::forward<GF>(e.error());
15 Returns: *this.

template<class... Args>
constexpr T& emplace(Args&&... args) noexcept;

16 Constraints: is_nothrow_constructible_v<T, Args...> is true.
17 Effects: Equivalent to:

if (has_value()) {
destroy_at(addressof(val ));

} else {
destroy_at(addressof(unex ));
has_val = true;

}
return *construct_at(addressof(val ), std::forward<Args>(args)...);

template<class U, class... Args>
constexpr T& emplace(initializer_list<U> il, Args&&... args) noexcept;

18 Constraints: is_nothrow_constructible_v<T, initializer_list<U>&, Args...> is true.
19 Effects: Equivalent to:

if (has_value()) {
destroy_at(addressof(val ));

} else {
destroy_at(addressof(unex ));
has_val = true;

}
return *construct_at(addressof(val ), il, std::forward<Args>(args)...);

22.8.6.5 Swap [expected.object.swap]

constexpr void swap(expected& rhs) noexcept(see below );

1 Constraints:
—(1.1) is_swappable_v<T> is true and
—(1.2) is_swappable_v<E> is true and
—(1.3) is_move_constructible_v<T> && is_move_constructible_v<E> is true, and
—(1.4) is_nothrow_move_constructible_v<T> || is_nothrow_move_constructible_v<E> is true.

2 Effects: See Table 63.
For the case where rhs.value() is false and this->has_value() is true, equivalent to:

if constexpr (is_nothrow_move_constructible_v<E>) {
E tmp(std::move(rhs.unex ));
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Table 63: swap(expected&) effects [tab:expected.object.swap]

this->has_value() !this->has_value()
rhs.has_value() equivalent to: using std::swap;

swap(val , rhs.val );
calls rhs.swap(*this)

!rhs.has_value() see below equivalent to: using std::swap;
swap(unex , rhs.unex );

destroy_at(addressof(rhs.unex ));
try {

construct_at(addressof(rhs.val ), std::move(val ));
destroy_at(addressof(val ));
construct_at(addressof(unex ), std::move(tmp));

} catch(...) {
construct_at(addressof(rhs.unex ), std::move(tmp));
throw;

}
} else {

T tmp(std::move(val ));
destroy_at(addressof(val ));
try {

construct_at(addressof(unex ), std::move(rhs.unex ));
destroy_at(addressof(rhs.unex ));
construct_at(addressof(rhs.val ), std::move(tmp));

} catch (...) {
construct_at(addressof(val ), std::move(tmp));
throw;

}
}
has_val = false;
rhs.has_val = true;

3 Throws: Any exception thrown by the expressions in the Effects.
4 Remarks: The exception specification is equivalent to:

is_nothrow_move_constructible_v<T> && is_nothrow_swappable_v<T> &&
is_nothrow_move_constructible_v<E> && is_nothrow_swappable_v<E>

friend constexpr void swap(expected& x, expected& y) noexcept(noexcept(x.swap(y)));

5 Effects: Equivalent to x.swap(y).

22.8.6.6 Observers [expected.object.obs]

constexpr const T* operator->() const noexcept;
constexpr T* operator->() noexcept;

1 Preconditions: has_value() is true.
2 Returns: addressof(val ).

constexpr const T& operator*() const & noexcept;
constexpr T& operator*() & noexcept;

3 Preconditions: has_value() is true.
4 Returns: val .

constexpr T&& operator*() && noexcept;
constexpr const T&& operator*() const && noexcept;

5 Preconditions: has_value() is true.
6 Returns: std::move(val ).

constexpr explicit operator bool() const noexcept;
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constexpr bool has_value() const noexcept;

7 Returns: has_val .

constexpr const T& value() const &;
constexpr T& value() &;

8 Mandates: is_copy_constructible_v<E> is true.
9 Returns: val , if has_value() is true.

10 Throws: bad_expected_access(as_const(error())) if has_value() is false.

constexpr T&& value() &&;
constexpr const T&& value() const &&;

11 Mandates: is_copy_constructible_v<E> is true and is_constructible_v<E, decltype(std::
move(error()))> is true.

12 Returns: std::move(val ), if has_value() is true.
13 Throws: bad_expected_access(std::move(error())) if has_value() is false.

constexpr const E& error() const & noexcept;
constexpr E& error() & noexcept;

14 Preconditions: has_value() is false.
15 Returns: unex .

constexpr E&& error() && noexcept;
constexpr const E&& error() const && noexcept;

16 Preconditions: has_value() is false.
17 Returns: std::move(unex ).

template<class U> constexpr T value_or(U&& v) const &;

18 Mandates: is_copy_constructible_v<T> is true and is_convertible_v<U, T> is true.
19 Returns: has_value() ? **this : static_cast<T>(std::forward<U>(v)).

template<class U> constexpr T value_or(U&& v) &&;

20 Mandates: is_move_constructible_v<T> is true and is_convertible_v<U, T> is true.
21 Returns: has_value() ? std::move(**this) : static_cast<T>(std::forward<U>(v)).

template<class G = E> constexpr E error_or(G&& e) const &;

22 Mandates: is_copy_constructible_v<E> is true and is_convertible_v<G, E> is true.
23 Returns: std::forward<G>(e) if has_value() is true, error() otherwise.

template<class G = E> constexpr E error_or(G&& e) &&;

24 Mandates: is_move_constructible_v<E> is true and is_convertible_v<G, E> is true.
25 Returns: std::forward<G>(e) if has_value() is true, std::move(error()) otherwise.

22.8.6.7 Monadic operations [expected.object.monadic]

template<class F> constexpr auto and_then(F&& f) &;
template<class F> constexpr auto and_then(F&& f) const &;

1 Let U be remove_cvref_t<invoke_result_t<F, decltype(value())>>.
2 Constraints: is_constructible_v<E, decltype(error())> is true.
3 Mandates: U is a specialization of expected and is_same_v<U::error_type, E> is true.
4 Effects: Equivalent to:

if (has_value())
return invoke(std::forward<F>(f), value());

else
return U(unexpect, error());
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template<class F> constexpr auto and_then(F&& f) &&;
template<class F> constexpr auto and_then(F&& f) const &&;

5 Let U be remove_cvref_t<invoke_result_t<F, decltype(std::move(value()))>>.
6 Constraints: is_constructible_v<E, decltype(std::move(error()))> is true.
7 Mandates: U is a specialization of expected and is_same_v<U::error_type, E> is true.
8 Effects: Equivalent to:

if (has_value())
return invoke(std::forward<F>(f), std::move(value()));

else
return U(unexpect, std::move(error()));

template<class F> constexpr auto or_else(F&& f) &;
template<class F> constexpr auto or_else(F&& f) const &;

9 Let G be remove_cvref_t<invoke_result_t<F, decltype(error())>>.
10 Constraints: is_constructible_v<T, decltype(value())> is true.
11 Mandates: G is a specialization of expected and is_same_v<G::value_type, T> is true.
12 Effects: Equivalent to:

if (has_value())
return G(in_place, value());

else
return invoke(std::forward<F>(f), error());

template<class F> constexpr auto or_else(F&& f) &&;
template<class F> constexpr auto or_else(F&& f) const &&;

13 Let G be remove_cvref_t<invoke_result_t<F, decltype(std::move(error()))>>.
14 Constraints: is_constructible_v<T, decltype(std::move(value()))> is true.
15 Mandates: G is a specialization of expected and is_same_v<G::value_type, T> is true.
16 Effects: Equivalent to:

if (has_value())
return G(in_place, std::move(value()));

else
return invoke(std::forward<F>(f), std::move(error()));

template<class F> constexpr auto transform(F&& f) &;
template<class F> constexpr auto transform(F&& f) const &;

17 Let U be remove_cv_t<invoke_result_t<F, decltype(value())>>.
18 Constraints: is_constructible_v<E, decltype(error())> is true.
19 Mandates: U is a valid value type for expected. If is_void_v<U> is false, the declaration

U u(invoke(std::forward<F>(f), value()));

is well-formed.
20 Effects:

—(20.1) If has_value() is false, returns expected<U, E>(unexpect, error()).
—(20.2) Otherwise, if is_void_v<U> is false, returns an expected<U, E> object whose has_val mem-

ber is true and val member is direct-non-list-initialized with invoke(std::forward<F>(f),
value()).

—(20.3) Otherwise, evaluates invoke(std::forward<F>(f), value()) and then returns expected<U,
E>().

template<class F> constexpr auto transform(F&& f) &&;
template<class F> constexpr auto transform(F&& f) const &&;

21 Let U be remove_cv_t<invoke_result_t<F, decltype(std::move(value()))>>.
22 Constraints: is_constructible_v<E, decltype(std::move(error()))> is true.

§ 22.8.6.7 747



© ISO/IEC N4950

23 Mandates: U is a valid value type for expected. If is_void_v<U> is false, the declaration
U u(invoke(std::forward<F>(f), std::move(value())));

is well-formed for some invented variable u.
24 Effects:

—(24.1) If has_value() is false, returns expected<U, E>(unexpect, std::move(error())).
—(24.2) Otherwise, if is_void_v<U> is false, returns an expected<U, E> object whose has_val mem-

ber is true and val member is direct-non-list-initialized with invoke(std::forward<F>(f),
std::move(value())).

—(24.3) Otherwise, evaluates invoke(std::forward<F>(f), std::move(value())) and then returns
expected<U, E>().

template<class F> constexpr auto transform_error(F&& f) &;
template<class F> constexpr auto transform_error(F&& f) const &;

25 Let G be remove_cv_t<invoke_result_t<F, decltype(error())>>.
26 Constraints: is_constructible_v<T, decltype(value())> is true.
27 Mandates: G is a valid template argument for unexpected (22.8.3.1) and the declaration

G g(invoke(std::forward<F>(f), error()));

is well-formed.
28 Returns: If has_value() is true, expected<T, G>(in_place, value()); otherwise, an expected<T,

G> object whose has_val member is false and unex member is direct-non-list-initialized with
invoke(std::forward<F>(f), error()).

template<class F> constexpr auto transform_error(F&& f) &&;
template<class F> constexpr auto transform_error(F&& f) const &&;

29 Let G be remove_cv_t<invoke_result_t<F, decltype(std::move(error()))>>.
30 Constraints: is_constructible_v<T, decltype(std::move(value()))> is true.
31 Mandates: G is a valid template argument for unexpected (22.8.3.1) and the declaration

G g(invoke(std::forward<F>(f), std::move(error())));

is well-formed.
32 Returns: If has_value() is true, expected<T, G>(in_place, std::move(value())); otherwise, an

expected<T, G> object whose has_val member is false and unex member is direct-non-list-initialized
with invoke(std::forward<F>(f), std::move(error())).

22.8.6.8 Equality operators [expected.object.eq]

template<class T2, class E2> requires (!is_void_v<T2>)
friend constexpr bool operator==(const expected& x, const expected<T2, E2>& y);

1 Mandates: The expressions *x == *y and x.error() == y.error() are well-formed and their results
are convertible to bool.

2 Returns: If x.has_value() does not equal y.has_value(), false; otherwise if x.has_value() is
true, *x == *y; otherwise x.error() == y.error().

template<class T2> friend constexpr bool operator==(const expected& x, const T2& v);

3 Mandates: The expression *x == v is well-formed and its result is convertible to bool.
[Note 1 : T need not be Cpp17EqualityComparable. — end note ]

4 Returns: x.has_value() && static_cast<bool>(*x == v).

template<class E2> friend constexpr bool operator==(const expected& x, const unexpected<E2>& e);

5 Mandates: The expression x.error() == e.error() is well-formed and its result is convertible to
bool.

6 Returns: !x.has_value() && static_cast<bool>(x.error() == e.error()).
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22.8.7 Partial specialization of expected for void types [expected.void]
22.8.7.1 General [expected.void.general]

template<class T, class E> requires is_void_v<T>
class expected<T, E> {
public:

using value_type = T;
using error_type = E;
using unexpected_type = unexpected<E>;

template<class U>
using rebind = expected<U, error_type>;

// 22.8.7.2, constructors
constexpr expected() noexcept;
constexpr expected(const expected&);
constexpr expected(expected&&) noexcept(see below );
template<class U, class G>

constexpr explicit(see below ) expected(const expected<U, G>&);
template<class U, class G>

constexpr explicit(see below ) expected(expected<U, G>&&);

template<class G>
constexpr explicit(see below ) expected(const unexpected<G>&);

template<class G>
constexpr explicit(see below ) expected(unexpected<G>&&);

constexpr explicit expected(in_place_t) noexcept;
template<class... Args>

constexpr explicit expected(unexpect_t, Args&&...);
template<class U, class... Args>

constexpr explicit expected(unexpect_t, initializer_list<U>, Args&&...);

// 22.8.7.3, destructor
constexpr ~expected();

// 22.8.7.4, assignment
constexpr expected& operator=(const expected&);
constexpr expected& operator=(expected&&) noexcept(see below );
template<class G>

constexpr expected& operator=(const unexpected<G>&);
template<class G>

constexpr expected& operator=(unexpected<G>&&);
constexpr void emplace() noexcept;

// 22.8.7.5, swap
constexpr void swap(expected&) noexcept(see below );
friend constexpr void swap(expected& x, expected& y) noexcept(noexcept(x.swap(y)));

// 22.8.7.6, observers
constexpr explicit operator bool() const noexcept;
constexpr bool has_value() const noexcept;
constexpr void operator*() const noexcept;
constexpr void value() const &;
constexpr void value() &&;
constexpr const E& error() const & noexcept;
constexpr E& error() & noexcept;
constexpr const E&& error() const && noexcept;
constexpr E&& error() && noexcept;
template<class G = E> constexpr E error_or(G&&) const &;
template<class G = E> constexpr E error_or(G&&) &&;
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// 22.8.7.7, monadic operations
template<class F> constexpr auto and_then(F&& f) &;
template<class F> constexpr auto and_then(F&& f) &&;
template<class F> constexpr auto and_then(F&& f) const &;
template<class F> constexpr auto and_then(F&& f) const &&;
template<class F> constexpr auto or_else(F&& f) &;
template<class F> constexpr auto or_else(F&& f) &&;
template<class F> constexpr auto or_else(F&& f) const &;
template<class F> constexpr auto or_else(F&& f) const &&;
template<class F> constexpr auto transform(F&& f) &;
template<class F> constexpr auto transform(F&& f) &&;
template<class F> constexpr auto transform(F&& f) const &;
template<class F> constexpr auto transform(F&& f) const &&;
template<class F> constexpr auto transform_error(F&& f) &;
template<class F> constexpr auto transform_error(F&& f) &&;
template<class F> constexpr auto transform_error(F&& f) const &;
template<class F> constexpr auto transform_error(F&& f) const &&;

// 22.8.7.8, equality operators
template<class T2, class E2> requires is_void_v<T2>

friend constexpr bool operator==(const expected& x, const expected<T2, E2>& y);
template<class E2>

friend constexpr bool operator==(const expected&, const unexpected<E2>&);

private:
bool has_val ; // exposition only
union {

E unex ; // exposition only
};

};

1 Any object of type expected<T, E> either represents a value of type T, or contains a value of type E within
its own storage. Implementations are not permitted to use additional storage, such as dynamic memory, to
allocate the object of type E. Member has_val indicates whether the expected<T, E> object represents a
value of type T.

2 A program that instantiates the definition of the template expected<T, E> with a type for the E parameter
that is not a valid template argument for unexpected is ill-formed.

3 E shall meet the requirements of Cpp17Destructible (Table 35).

22.8.7.2 Constructors [expected.void.cons]

constexpr expected() noexcept;

1 Postconditions: has_value() is true.

constexpr expected(const expected& rhs);

2 Effects: If rhs.has_value() is false, direct-non-list-initializes unex with rhs.error().
3 Postconditions: rhs.has_value() == this->has_value().
4 Throws: Any exception thrown by the initialization of unex .
5 Remarks: This constructor is defined as deleted unless is_copy_constructible_v<E> is true.
6 This constructor is trivial if is_trivially_copy_constructible_v<E> is true.

constexpr expected(expected&& rhs) noexcept(is_nothrow_move_constructible_v<E>);

7 Constraints: is_move_constructible_v<E> is true.
8 Effects: If rhs.has_value() is false, direct-non-list-initializes unex with std::move(rhs.error()).
9 Postconditions: rhs.has_value() is unchanged; rhs.has_value() == this->has_value() is true.

10 Throws: Any exception thrown by the initialization of unex .
11 Remarks: This constructor is trivial if is_trivially_move_constructible_v<E> is true.
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template<class U, class G>
constexpr explicit(!is_convertible_v<const G&, E>) expected(const expected<U, G>& rhs);

template<class U, class G>
constexpr explicit(!is_convertible_v<G, E>) expected(expected<U, G>&& rhs);

12 Let GF be const G& for the first overload and G for the second overload.
13 Constraints:

—(13.1) is_void_v<U> is true; and
—(13.2) is_constructible_v<E, GF> is true; and
—(13.3) is_constructible_v<unexpected<E>, expected<U, G>&> is false; and
—(13.4) is_constructible_v<unexpected<E>, expected<U, G>> is false; and
—(13.5) is_constructible_v<unexpected<E>, const expected<U, G>&> is false; and
—(13.6) is_constructible_v<unexpected<E>, const expected<U, G>> is false.

14 Effects: If rhs.has_value() is false, direct-non-list-initializes unex with std::forward<GF>(rhs.er-
ror()).

15 Postconditions: rhs.has_value() is unchanged; rhs.has_value() == this->has_value() is true.
16 Throws: Any exception thrown by the initialization of unex .

template<class G>
constexpr explicit(!is_convertible_v<const G&, E>) expected(const unexpected<G>& e);

template<class G>
constexpr explicit(!is_convertible_v<G, E>) expected(unexpected<G>&& e);

17 Let GF be const G& for the first overload and G for the second overload.
18 Constraints: is_constructible_v<E, GF> is true.
19 Effects: Direct-non-list-initializes unex with std::forward<GF>(e.error()).
20 Postconditions: has_value() is false.
21 Throws: Any exception thrown by the initialization of unex .

constexpr explicit expected(in_place_t) noexcept;

22 Postconditions: has_value() is true.

template<class... Args>
constexpr explicit expected(unexpect_t, Args&&... args);

23 Constraints: is_constructible_v<E, Args...> is true.
24 Effects: Direct-non-list-initializes unex with std::forward<Args>(args)....
25 Postconditions: has_value() is false.
26 Throws: Any exception thrown by the initialization of unex .

template<class U, class... Args>
constexpr explicit expected(unexpect_t, initializer_list<U> il, Args&&... args);

27 Constraints: is_constructible_v<E, initializer_list<U>&, Args...> is true.
28 Effects: Direct-non-list-initializes unex with il, std::forward<Args>(args)....
29 Postconditions: has_value() is false.
30 Throws: Any exception thrown by the initialization of unex .

22.8.7.3 Destructor [expected.void.dtor]

constexpr ~expected();

1 Effects: If has_value() is false, destroys unex .
2 Remarks: If is_trivially_destructible_v<E> is true, then this destructor is a trivial destructor.
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22.8.7.4 Assignment [expected.void.assign]

constexpr expected& operator=(const expected& rhs);

1 Effects:
—(1.1) If this->has_value() && rhs.has_value() is true, no effects.
—(1.2) Otherwise, if this->has_value() is true, equivalent to: construct_at(addressof(unex ),

rhs.unex ); has_val = false;
—(1.3) Otherwise, if rhs.has_value() is true, destroys unex and sets has_val to true.
—(1.4) Otherwise, equivalent to unex = rhs.error().

2 Returns: *this.
3 Remarks: This operator is defined as deleted unless is_copy_assignable_v<E> is true and is_copy_-

constructible_v<E> is true.

constexpr expected& operator=(expected&& rhs) noexcept(see below );

4 Effects:
—(4.1) If this->has_value() && rhs.has_value() is true, no effects.
—(4.2) Otherwise, if this->has_value() is true, equivalent to:

construct_at(addressof(unex ), std::move(rhs.unex ));
has_val = false;

—(4.3) Otherwise, if rhs.has_value() is true, destroys unex and sets has_val to true.
—(4.4) Otherwise, equivalent to unex = std::move(rhs.error()).

5 Returns: *this.
6 Remarks: The exception specification is equivalent to is_nothrow_move_constructible_v<E> &&

is_nothrow_move_assignable_v<E>.
7 This operator is defined as deleted unless is_move_constructible_v<E> is true and is_move_-

assignable_v<E> is true.

template<class G>
constexpr expected& operator=(const unexpected<G>& e);

template<class G>
constexpr expected& operator=(unexpected<G>&& e);

8 Let GF be const G& for the first overload and G for the second overload.
9 Constraints: is_constructible_v<E, GF> is true and is_assignable_v<E&, GF> is true.

10 Effects:
—(10.1) If has_value() is true, equivalent to:

construct_at(addressof(unex ), std::forward<GF>(e.error()));
has_val = false;

—(10.2) Otherwise, equivalent to: unex = std::forward<GF>(e.error());
11 Returns: *this.

constexpr void emplace() noexcept;

12 Effects: If has_value() is false, destroys unex and sets has_val to true.

22.8.7.5 Swap [expected.void.swap]

constexpr void swap(expected& rhs) noexcept(see below );

1 Constraints: is_swappable_v<E> is true and is_move_constructible_v<E> is true.
2 Effects: See Table 64.

For the case where rhs.value() is false and this->has_value() is true, equivalent to:
construct_at(addressof(unex ), std::move(rhs.unex ));
destroy_at(addressof(rhs.unex ));
has_val = false;
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Table 64: swap(expected&) effects [tab:expected.void.swap]

this->has_value() !this->has_value()
rhs.has_value() no effects calls rhs.swap(*this)
!rhs.has_value() see below equivalent to: using std::swap;

swap(unex , rhs.unex );

rhs.has_val = true;

3 Throws: Any exception thrown by the expressions in the Effects.
4 Remarks: The exception specification is equivalent to is_nothrow_move_constructible_v<E> &&

is_nothrow_swappable_v<E>.

friend constexpr void swap(expected& x, expected& y) noexcept(noexcept(x.swap(y)));

5 Effects: Equivalent to x.swap(y).

22.8.7.6 Observers [expected.void.obs]

constexpr explicit operator bool() const noexcept;
constexpr bool has_value() const noexcept;

1 Returns: has_val .

constexpr void operator*() const noexcept;

2 Preconditions: has_value() is true.

constexpr void value() const &;

3 Throws: bad_expected_access(error()) if has_value() is false.

constexpr void value() &&;

4 Throws: bad_expected_access(std::move(error())) if has_value() is false.

constexpr const E& error() const & noexcept;
constexpr E& error() & noexcept;

5 Preconditions: has_value() is false.
6 Returns: unex .

constexpr E&& error() && noexcept;
constexpr const E&& error() const && noexcept;

7 Preconditions: has_value() is false.
8 Returns: std::move(unex ).

template<class G = E> constexpr E error_or(G&& e) const &;

9 Mandates: is_copy_constructible_v<E> is true and is_convertible_v<G, E> is true.
10 Returns: std::forward<G>(e) if has_value() is true, error() otherwise.

template<class G = E> constexpr E error_or(G&& e) &&;

11 Mandates: is_move_constructible_v<E> is true and is_convertible_v<G, E> is true.
12 Returns: std::forward<G>(e) if has_value() is true, std::move(error()) otherwise.

22.8.7.7 Monadic operations [expected.void.monadic]

template<class F> constexpr auto and_then(F&& f) &;
template<class F> constexpr auto and_then(F&& f) const &;

1 Let U be remove_cvref_t<invoke_result_t<F>>.
2 Constraints: is_constructible_v<E, decltype(error())>> is true.
3 Mandates: U is a specialization of expected and is_same_v<U::error_type, E> is true.
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4 Effects: Equivalent to:
if (has_value())

return invoke(std::forward<F>(f));
else

return U(unexpect, error());

template<class F> constexpr auto and_then(F&& f) &&;
template<class F> constexpr auto and_then(F&& f) const &&;

5 Let U be remove_cvref_t<invoke_result_t<F>>.
6 Constraints: is_constructible_v<E, decltype(std::move(error()))> is true.
7 Mandates: U is a specialization of expected and is_same_v<U::error_type, E> is true.
8 Effects: Equivalent to:

if (has_value())
return invoke(std::forward<F>(f));

else
return U(unexpect, std::move(error()));

template<class F> constexpr auto or_else(F&& f) &;
template<class F> constexpr auto or_else(F&& f) const &;

9 Let G be remove_cvref_t<invoke_result_t<F, decltype(error())>>.
10 Mandates: G is a specialization of expected and is_same_v<G::value_type, T> is true.
11 Effects: Equivalent to:

if (has_value())
return G();

else
return invoke(std::forward<F>(f), error());

template<class F> constexpr auto or_else(F&& f) &&;
template<class F> constexpr auto or_else(F&& f) const &&;

12 Let G be remove_cvref_t<invoke_result_t<F, decltype(std::move(error()))>>.
13 Mandates: G is a specialization of expected and is_same_v<G::value_type, T> is true.
14 Effects: Equivalent to:

if (has_value())
return G();

else
return invoke(std::forward<F>(f), std::move(error()));

template<class F> constexpr auto transform(F&& f) &;
template<class F> constexpr auto transform(F&& f) const &;

15 Let U be remove_cv_t<invoke_result_t<F>>.
16 Constraints: is_constructible_v<E, decltype(error())> is true.
17 Mandates: U is a valid value type for expected. If is_void_v<U> is false, the declaration

U u(invoke(std::forward<F>(f)));

is well-formed.
18 Effects:

—(18.1) If has_value() is false, returns expected<U, E>(unexpect, error()).
—(18.2) Otherwise, if is_void_v<U> is false, returns an expected<U, E> object whose has_val member

is true and val member is direct-non-list-initialized with invoke(std::forward<F>(f)).
—(18.3) Otherwise, evaluates invoke(std::forward<F>(f)) and then returns expected<U, E>().

template<class F> constexpr auto transform(F&& f) &&;
template<class F> constexpr auto transform(F&& f) const &&;

19 Let U be remove_cv_t<invoke_result_t<F>>.
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20 Constraints: is_constructible_v<E, decltype(std::move(error()))> is true.
21 Mandates: U is a valid value type for expected. If is_void_v<U> is false, the declaration

U u(invoke(std::forward<F>(f)));

is well-formed.
22 Effects:

—(22.1) If has_value() is false, returns expected<U, E>(unexpect, std::move(error())).
—(22.2) Otherwise, if is_void_v<U> is false, returns an expected<U, E> object whose has_val member

is true and val member is direct-non-list-initialized with invoke(std::forward<F>(f)).
—(22.3) Otherwise, evaluates invoke(std::forward<F>(f)) and then returns expected<U, E>().

template<class F> constexpr auto transform_error(F&& f) &;
template<class F> constexpr auto transform_error(F&& f) const &;

23 Let G be remove_cv_t<invoke_result_t<F, decltype(error())>>.
24 Mandates: G is a valid template argument for unexpected (22.8.3.1) and the declaration

G g(invoke(std::forward<F>(f), error()));

is well-formed.
25 Returns: If has_value() is true, expected<T, G>(); otherwise, an expected<T, G> object whose

has_val member is false and unex member is direct-non-list-initialized with invoke(std::for-
ward<F>(f), error()).

template<class F> constexpr auto transform_error(F&& f) &&;
template<class F> constexpr auto transform_error(F&& f) const &&;

26 Let G be remove_cv_t<invoke_result_t<F, decltype(std::move(error()))>>.
27 Mandates: G is a valid template argument for unexpected (22.8.3.1) and the declaration

G g(invoke(std::forward<F>(f), std::move(error())));

is well-formed.
28 Returns: If has_value() is true, expected<T, G>(); otherwise, an expected<T, G> object whose

has_val member is false and unex member is direct-non-list-initialized with invoke(std::for-
ward<F>(f), std::move(error())).

22.8.7.8 Equality operators [expected.void.eq]

template<class T2, class E2> requires is_void_v<T2>
friend constexpr bool operator==(const expected& x, const expected<T2, E2>& y);

1 Mandates: The expression x.error() == y.error() is well-formed and its result is convertible to
bool.

2 Returns: If x.has_value() does not equal y.has_value(), false; otherwise x.has_value() ||
static_cast<bool>(x.error() == y.error()).

template<class E2>
friend constexpr bool operator==(const expected& x, const unexpected<E2>& e);

3 Mandates: The expression x.error() == e.error() is well-formed and its result is convertible to
bool.

4 Returns: !x.has_value() && static_cast<bool>(x.error() == e.error()).

22.9 Bitsets [bitset]
22.9.1 Header <bitset> synopsis [bitset.syn]

1 The header <bitset> defines a class template and several related functions for representing and manipulating
fixed-size sequences of bits.

#include <string> // see 23.4.2
#include <iosfwd> // for istream (31.7.1), ostream (31.7.2), see 31.3.1
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namespace std {
template<size_t N> class bitset;

// 22.9.4, bitset operators
template<size_t N>

constexpr bitset<N> operator&(const bitset<N>&, const bitset<N>&) noexcept;
template<size_t N>

constexpr bitset<N> operator|(const bitset<N>&, const bitset<N>&) noexcept;
template<size_t N>

constexpr bitset<N> operator^(const bitset<N>&, const bitset<N>&) noexcept;
template<class charT, class traits, size_t N>

basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is, bitset<N>& x);

template<class charT, class traits, size_t N>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const bitset<N>& x);
}

22.9.2 Class template bitset [template.bitset]
22.9.2.1 General [template.bitset.general]

namespace std {
template<size_t N> class bitset {
public:

// bit reference
class reference {

friend class bitset;
constexpr reference() noexcept;

public:
constexpr reference(const reference&) = default;
constexpr ~reference();
constexpr reference& operator=(bool x) noexcept; // for b[i] = x;
constexpr reference& operator=(const reference&) noexcept; // for b[i] = b[j];
constexpr bool operator~() const noexcept; // flips the bit
constexpr operator bool() const noexcept; // for x = b[i];
constexpr reference& flip() noexcept; // for b[i].flip();

};

// 22.9.2.2, constructors
constexpr bitset() noexcept;
constexpr bitset(unsigned long long val) noexcept;
template<class charT, class traits, class Allocator>

constexpr explicit bitset(
const basic_string<charT, traits, Allocator>& str,
typename basic_string<charT, traits, Allocator>::size_type pos = 0,
typename basic_string<charT, traits, Allocator>::size_type n

= basic_string<charT, traits, Allocator>::npos,
charT zero = charT('0'),
charT one = charT('1'));

template<class charT>
constexpr explicit bitset(

const charT* str,
typename basic_string<charT>::size_type n = basic_string<charT>::npos,
charT zero = charT('0'),
charT one = charT('1'));

// 22.9.2.3, bitset operations
constexpr bitset& operator&=(const bitset& rhs) noexcept;
constexpr bitset& operator|=(const bitset& rhs) noexcept;
constexpr bitset& operator^=(const bitset& rhs) noexcept;
constexpr bitset& operator<<=(size_t pos) noexcept;
constexpr bitset& operator>>=(size_t pos) noexcept;
constexpr bitset operator<<(size_t pos) const noexcept;
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constexpr bitset operator>>(size_t pos) const noexcept;
constexpr bitset& set() noexcept;
constexpr bitset& set(size_t pos, bool val = true);
constexpr bitset& reset() noexcept;
constexpr bitset& reset(size_t pos);
constexpr bitset operator~() const noexcept;
constexpr bitset& flip() noexcept;
constexpr bitset& flip(size_t pos);

// element access
constexpr bool operator[](size_t pos) const;
constexpr reference operator[](size_t pos);

constexpr unsigned long to_ulong() const;
constexpr unsigned long long to_ullong() const;
template<class charT = char,

class traits = char_traits<charT>,
class Allocator = allocator<charT>>

constexpr basic_string<charT, traits, Allocator>
to_string(charT zero = charT('0'), charT one = charT('1')) const;

// observers
constexpr size_t count() const noexcept;
constexpr size_t size() const noexcept;
constexpr bool operator==(const bitset& rhs) const noexcept;
constexpr bool test(size_t pos) const;
constexpr bool all() const noexcept;
constexpr bool any() const noexcept;
constexpr bool none() const noexcept;

};

// 22.9.3, hash support
template<class T> struct hash;
template<size_t N> struct hash<bitset<N>>;

}

1 The class template bitset<N> describes an object that can store a sequence consisting of a fixed number of
bits, N.

2 Each bit represents either the value zero (reset) or one (set). To toggle a bit is to change the value zero to
one, or the value one to zero. Each bit has a non-negative position pos. When converting between an object
of class bitset<N> and a value of some integral type, bit position pos corresponds to the bit value 1 << pos.
The integral value corresponding to two or more bits is the sum of their bit values.

3 The functions described in 22.9.2 can report three kinds of errors, each associated with a distinct exception:
—(3.1) an invalid-argument error is associated with exceptions of type invalid_argument (19.2.5);
—(3.2) an out-of-range error is associated with exceptions of type out_of_range (19.2.7);
—(3.3) an overflow error is associated with exceptions of type overflow_error (19.2.10).

22.9.2.2 Constructors [bitset.cons]

constexpr bitset() noexcept;

1 Effects: Initializes all bits in *this to zero.

constexpr bitset(unsigned long long val) noexcept;

2 Effects: Initializes the first M bit positions to the corresponding bit values in val. M is the smaller of
N and the number of bits in the value representation (6.8.1) of unsigned long long. If M < N, the
remaining bit positions are initialized to zero.

template<class charT, class traits, class Allocator>
constexpr explicit bitset(

const basic_string<charT, traits, Allocator>& str,
typename basic_string<charT, traits, Allocator>::size_type pos = 0,
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typename basic_string<charT, traits, Allocator>::size_type n
= basic_string<charT, traits, Allocator>::npos,

charT zero = charT(’0’),
charT one = charT(’1’));

3 Effects: Determines the effective length rlen of the initializing string as the smaller of n and str.size()
- pos. Initializes the first M bit positions to values determined from the corresponding characters in the
string str. M is the smaller of N and rlen.

4 An element of the constructed object has value zero if the corresponding character in str, beginning
at position pos, is zero. Otherwise, the element has the value one. Character position pos + M - 1
corresponds to bit position zero. Subsequent decreasing character positions correspond to increasing
bit positions.

5 If M < N, remaining bit positions are initialized to zero.
6 The function uses traits::eq to compare the character values.
7 Throws: out_of_range if pos > str.size() or invalid_argument if any of the rlen characters in

str beginning at position pos is other than zero or one.

template<class charT>
constexpr explicit bitset(

const charT* str,
typename basic_string<charT>::size_type n = basic_string<charT>::npos,
charT zero = charT(’0’),
charT one = charT(’1’));

8 Effects: As if by:
bitset(n == basic_string<charT>::npos

? basic_string<charT>(str)
: basic_string<charT>(str, n),

0, n, zero, one)

22.9.2.3 Members [bitset.members]

constexpr bitset& operator&=(const bitset& rhs) noexcept;

1 Effects: Clears each bit in *this for which the corresponding bit in rhs is clear, and leaves all other
bits unchanged.

2 Returns: *this.

constexpr bitset& operator|=(const bitset& rhs) noexcept;

3 Effects: Sets each bit in *this for which the corresponding bit in rhs is set, and leaves all other bits
unchanged.

4 Returns: *this.

constexpr bitset& operator^=(const bitset& rhs) noexcept;

5 Effects: Toggles each bit in *this for which the corresponding bit in rhs is set, and leaves all other
bits unchanged.

6 Returns: *this.

constexpr bitset& operator<<=(size_t pos) noexcept;

7 Effects: Replaces each bit at position I in *this with a value determined as follows:
—(7.1) If I < pos, the new value is zero;
—(7.2) If I >= pos, the new value is the previous value of the bit at position I - pos.

8 Returns: *this.

constexpr bitset& operator>>=(size_t pos) noexcept;

9 Effects: Replaces each bit at position I in *this with a value determined as follows:
—(9.1) If pos >= N - I, the new value is zero;
—(9.2) If pos < N - I, the new value is the previous value of the bit at position I + pos.
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10 Returns: *this.

constexpr bitset operator<<(size_t pos) const noexcept;

11 Returns: bitset(*this) <<= pos.

constexpr bitset operator>>(size_t pos) const noexcept;

12 Returns: bitset(*this) >>= pos.

constexpr bitset& set() noexcept;

13 Effects: Sets all bits in *this.
14 Returns: *this.

constexpr bitset& set(size_t pos, bool val = true);

15 Effects: Stores a new value in the bit at position pos in *this. If val is true, the stored value is one,
otherwise it is zero.

16 Returns: *this.
17 Throws: out_of_range if pos does not correspond to a valid bit position.

constexpr bitset& reset() noexcept;

18 Effects: Resets all bits in *this.
19 Returns: *this.

constexpr bitset& reset(size_t pos);

20 Effects: Resets the bit at position pos in *this.
21 Returns: *this.
22 Throws: out_of_range if pos does not correspond to a valid bit position.

constexpr bitset operator~() const noexcept;

23 Effects: Constructs an object x of class bitset and initializes it with *this.
24 Returns: x.flip().

constexpr bitset& flip() noexcept;

25 Effects: Toggles all bits in *this.
26 Returns: *this.

constexpr bitset& flip(size_t pos);

27 Effects: Toggles the bit at position pos in *this.
28 Returns: *this.
29 Throws: out_of_range if pos does not correspond to a valid bit position.

constexpr bool operator[](size_t pos) const;

30 Preconditions: pos is valid.
31 Returns: true if the bit at position pos in *this has the value one, otherwise false.
32 Throws: Nothing.

constexpr bitset::reference operator[](size_t pos);

33 Preconditions: pos is valid.
34 Returns: An object of type bitset::reference such that (*this)[pos] == this->test(pos), and

such that (*this)[pos] = val is equivalent to this->set(pos, val).
35 Throws: Nothing.
36 Remarks: For the purpose of determining the presence of a data race (6.9.2), any access or update

through the resulting reference potentially accesses or modifies, respectively, the entire underlying
bitset.
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constexpr unsigned long to_ulong() const;

37 Returns: x.
38 Throws: overflow_error if the integral value x corresponding to the bits in *this cannot be represented

as type unsigned long.

constexpr unsigned long long to_ullong() const;

39 Returns: x.
40 Throws: overflow_error if the integral value x corresponding to the bits in *this cannot be represented

as type unsigned long long.

template<class charT = char,
class traits = char_traits<charT>,
class Allocator = allocator<charT>>

constexpr basic_string<charT, traits, Allocator>
to_string(charT zero = charT(’0’), charT one = charT(’1’)) const;

41 Effects: Constructs a string object of the appropriate type and initializes it to a string of length
N characters. Each character is determined by the value of its corresponding bit position in *this.
Character position N - 1 corresponds to bit position zero. Subsequent decreasing character positions
correspond to increasing bit positions. Bit value zero becomes the character zero, bit value one becomes
the character one.

42 Returns: The created object.

constexpr size_t count() const noexcept;

43 Returns: A count of the number of bits set in *this.

constexpr size_t size() const noexcept;

44 Returns: N.

constexpr bool operator==(const bitset& rhs) const noexcept;

45 Returns: true if the value of each bit in *this equals the value of the corresponding bit in rhs.

constexpr bool test(size_t pos) const;

46 Returns: true if the bit at position pos in *this has the value one.
47 Throws: out_of_range if pos does not correspond to a valid bit position.

constexpr bool all() const noexcept;

48 Returns: count() == size().

constexpr bool any() const noexcept;

49 Returns: count() != 0.

constexpr bool none() const noexcept;

50 Returns: count() == 0.

22.9.3 bitset hash support [bitset.hash]
template<size_t N> struct hash<bitset<N>>;

1 The specialization is enabled (22.10.19).

22.9.4 bitset operators [bitset.operators]
template<size_t N>

constexpr bitset<N> operator&(const bitset<N>& lhs, const bitset<N>& rhs) noexcept;

1 Returns: bitset<N>(lhs) &= rhs.

template<size_t N>
constexpr bitset<N> operator|(const bitset<N>& lhs, const bitset<N>& rhs) noexcept;

2 Returns: bitset<N>(lhs) |= rhs.
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template<size_t N>
constexpr bitset<N> operator^(const bitset<N>& lhs, const bitset<N>& rhs) noexcept;

3 Returns: bitset<N>(lhs) ^= rhs.

template<class charT, class traits, size_t N>
basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, bitset<N>& x);

4 A formatted input function (31.7.5.3).
5 Effects: Extracts up to N characters from is. Stores these characters in a temporary object str of type

basic_string<charT, traits>, then evaluates the expression x = bitset<N>(str). Characters are
extracted and stored until any of the following occurs:

—(5.1) N characters have been extracted and stored;
—(5.2) end-of-file occurs on the input sequence;
—(5.3) the next input character is neither is.widen(’0’) nor is.widen(’1’) (in which case the input

character is not extracted).
6 If N > 0 and no characters are stored in str, ios_base::failbit is set in the input function’s local

error state before setstate is called.
7 Returns: is.

template<class charT, class traits, size_t N>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const bitset<N>& x);

8 Returns:
os << x.template to_string<charT, traits, allocator<charT>>(

use_facet<ctype<charT>>(os.getloc()).widen('0'),
use_facet<ctype<charT>>(os.getloc()).widen('1'))

(see 31.7.6.3).

22.10 Function objects [function.objects]
22.10.1 General [function.objects.general]

1 A function object type is an object type (6.8.1) that can be the type of the postfix-expression in a function
call (7.6.1.3, 12.2.2.2).203 A function object is an object of a function object type. In the places where one
would expect to pass a pointer to a function to an algorithmic template (Clause 27), the interface is specified
to accept a function object. This not only makes algorithmic templates work with pointers to functions, but
also enables them to work with arbitrary function objects.

22.10.2 Header <functional> synopsis [functional.syn]
namespace std {

// 22.10.5, invoke
template<class F, class... Args>

constexpr invoke_result_t<F, Args...> invoke(F&& f, Args&&... args) // freestanding
noexcept(is_nothrow_invocable_v<F, Args...>);

template<class R, class F, class... Args>
constexpr R invoke_r(F&& f, Args&&... args) // freestanding

noexcept(is_nothrow_invocable_r_v<R, F, Args...>);

// 22.10.6, reference_wrapper
template<class T> class reference_wrapper; // freestanding

template<class T> constexpr reference_wrapper<T> ref(T&) noexcept; // freestanding
template<class T> constexpr reference_wrapper<const T> cref(const T&) noexcept; // freestanding
template<class T> void ref(const T&&) = delete; // freestanding
template<class T> void cref(const T&&) = delete; // freestanding

203) Such a type is a function pointer or a class type which has a member operator() or a class type which has a conversion to
a pointer to function.
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template<class T>
constexpr reference_wrapper<T> ref(reference_wrapper<T>) noexcept; // freestanding

template<class T>
constexpr reference_wrapper<const T> cref(reference_wrapper<T>) noexcept; // freestanding

// 22.10.6.7, common_reference related specializations
template<class R, class T, template<class> class RQual, template<class> class TQual>

requires see below
struct basic_common_reference<R, T, RQual, TQual>;

template<class T, class R, template<class> class TQual, template<class> class RQual>
requires see below

struct basic_common_reference<T, R, TQual, RQual>;

// 22.10.7, arithmetic operations
template<class T = void> struct plus; // freestanding
template<class T = void> struct minus; // freestanding
template<class T = void> struct multiplies; // freestanding
template<class T = void> struct divides; // freestanding
template<class T = void> struct modulus; // freestanding
template<class T = void> struct negate; // freestanding
template<> struct plus<void>; // freestanding
template<> struct minus<void>; // freestanding
template<> struct multiplies<void>; // freestanding
template<> struct divides<void>; // freestanding
template<> struct modulus<void>; // freestanding
template<> struct negate<void>; // freestanding

// 22.10.8, comparisons
template<class T = void> struct equal_to; // freestanding
template<class T = void> struct not_equal_to; // freestanding
template<class T = void> struct greater; // freestanding
template<class T = void> struct less; // freestanding
template<class T = void> struct greater_equal; // freestanding
template<class T = void> struct less_equal; // freestanding
template<> struct equal_to<void>; // freestanding
template<> struct not_equal_to<void>; // freestanding
template<> struct greater<void>; // freestanding
template<> struct less<void>; // freestanding
template<> struct greater_equal<void>; // freestanding
template<> struct less_equal<void>; // freestanding

// 22.10.8.8, class compare_three_way
struct compare_three_way; // freestanding

// 22.10.10, logical operations
template<class T = void> struct logical_and; // freestanding
template<class T = void> struct logical_or; // freestanding
template<class T = void> struct logical_not; // freestanding
template<> struct logical_and<void>; // freestanding
template<> struct logical_or<void>; // freestanding
template<> struct logical_not<void>; // freestanding

// 22.10.11, bitwise operations
template<class T = void> struct bit_and; // freestanding
template<class T = void> struct bit_or; // freestanding
template<class T = void> struct bit_xor; // freestanding
template<class T = void> struct bit_not; // freestanding
template<> struct bit_and<void>; // freestanding
template<> struct bit_or<void>; // freestanding
template<> struct bit_xor<void>; // freestanding
template<> struct bit_not<void>; // freestanding
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// 22.10.12, identity
struct identity; // freestanding

// 22.10.13, function template not_fn
template<class F> constexpr unspecified not_fn(F&& f); // freestanding

// 22.10.14, function templates bind_front and bind_back
template<class F, class... Args>

constexpr unspecified bind_front(F&&, Args&&...); // freestanding
template<class F, class... Args>

constexpr unspecified bind_back(F&&, Args&&...); // freestanding

// 22.10.15, bind
template<class T> struct is_bind_expression; // freestanding
template<class T>

constexpr bool is_bind_expression_v = // freestanding
is_bind_expression<T>::value;

template<class T> struct is_placeholder; // freestanding
template<class T>

constexpr int is_placeholder_v = // freestanding
is_placeholder<T>::value;

template<class F, class... BoundArgs>
constexpr unspecified bind(F&&, BoundArgs&&...); // freestanding

template<class R, class F, class... BoundArgs>
constexpr unspecified bind(F&&, BoundArgs&&...); // freestanding

namespace placeholders {
// M is the implementation-defined number of placeholders
see below _1; // freestanding
see below _2; // freestanding

.

.

.
see below _M; // freestanding

}

// 22.10.16, member function adaptors
template<class R, class T>

constexpr unspecified mem_fn(R T::*) noexcept; // freestanding

// 22.10.17, polymorphic function wrappers
class bad_function_call;

template<class> class function; // not defined
template<class R, class... ArgTypes> class function<R(ArgTypes...)>;

// 22.10.17.3.8, specialized algorithms
template<class R, class... ArgTypes>

void swap(function<R(ArgTypes...)>&, function<R(ArgTypes...)>&) noexcept;

// 22.10.17.3.7, null pointer comparison operator functions
template<class R, class... ArgTypes>

bool operator==(const function<R(ArgTypes...)>&, nullptr_t) noexcept;

// 22.10.17.4, move only wrapper
template<class... S> class move_only_function; // not defined
template<class R, class... ArgTypes>

class move_only_function<R(ArgTypes...) cv ref noexcept(noex )>; // see below

// 22.10.18, searchers
template<class ForwardIterator1, class BinaryPredicate = equal_to<>>

class default_searcher; // freestanding
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template<class RandomAccessIterator,
class Hash = hash<typename iterator_traits<RandomAccessIterator>::value_type>,
class BinaryPredicate = equal_to<>>

class boyer_moore_searcher;

template<class RandomAccessIterator,
class Hash = hash<typename iterator_traits<RandomAccessIterator>::value_type>,
class BinaryPredicate = equal_to<>>

class boyer_moore_horspool_searcher;

// 22.10.19, class template hash
template<class T>

struct hash; // freestanding

namespace ranges {
// 22.10.9, concept-constrained comparisons
struct equal_to; // freestanding
struct not_equal_to; // freestanding
struct greater; // freestanding
struct less; // freestanding
struct greater_equal; // freestanding
struct less_equal; // freestanding

}
}

1 [Example 1 : If a C++ program wants to have a by-element addition of two vectors a and b containing double and put
the result into a, it can do:

transform(a.begin(), a.end(), b.begin(), a.begin(), plus<double>());

— end example ]
2 [Example 2 : To negate every element of a:

transform(a.begin(), a.end(), a.begin(), negate<double>());

— end example ]

22.10.3 Definitions [func.def]
1 The following definitions apply to this Clause:
2 A call signature is the name of a return type followed by a parenthesized comma-separated list of zero or

more argument types.
3 A callable type is a function object type (22.10) or a pointer to member.
4 A callable object is an object of a callable type.
5 A call wrapper type is a type that holds a callable object and supports a call operation that forwards to that

object.
6 A call wrapper is an object of a call wrapper type.
7 A target object is the callable object held by a call wrapper.
8 A call wrapper type may additionally hold a sequence of objects and references that may be passed as

arguments to the target object. These entities are collectively referred to as bound argument entities.
9 The target object and bound argument entities of the call wrapper are collectively referred to as state entities.

22.10.4 Requirements [func.require]
1 Define INVOKE(f, t1, t2, . . . , tN ) as follows:

—(1.1) (t1.*f)(t2, . . . , tN ) when f is a pointer to a member function of a class T and is_same_v<T,
remove_cvref_t<decltype(t1)>> || is_base_of_v<T, remove_cvref_t<decltype(t1)>> is true;

—(1.2) (t1.get().*f)(t2, . . . , tN ) when f is a pointer to a member function of a class T and remove_-
cvref_t<decltype(t1)> is a specialization of reference_wrapper;

—(1.3) ((*t1).*f)(t2, . . . , tN ) when f is a pointer to a member function of a class T and t1 does not
satisfy the previous two items;
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—(1.4) t1.*f when N = 1 and f is a pointer to data member of a class T and is_same_v<T, remove_cvref_-
t<decltype(t1)>> || is_base_of_v<T, remove_cvref_t<decltype(t1)>> is true;

—(1.5) t1.get().*f when N = 1 and f is a pointer to data member of a class T and remove_cvref_-
t<decltype(t1)> is a specialization of reference_wrapper;

—(1.6) (*t1).*f when N = 1 and f is a pointer to data member of a class T and t1 does not satisfy the
previous two items;

—(1.7) f(t1, t2, . . . , tN ) in all other cases.
2 Define INVOKE<R>(f, t1, t2, . . . , tN ) as static_cast<void>(INVOKE(f, t1, t2, . . . , tN )) if R is

cv void, otherwise INVOKE(f, t1, t2, . . . , tN ) implicitly converted to R. If reference_converts_from_-
temporary_v<R, decltype(INVOKE(f, t1, t2, . . . , tN ))> is true, INVOKE<R>(f, t1, t2, . . . , tN ) is
ill-formed.

3 Every call wrapper (22.10.3) meets the Cpp17MoveConstructible and Cpp17Destructible requirements. An
argument forwarding call wrapper is a call wrapper that can be called with an arbitrary argument list and
delivers the arguments to the target object as references. This forwarding step delivers rvalue arguments as
rvalue references and lvalue arguments as lvalue references.
[Note 1 : In a typical implementation, argument forwarding call wrappers have an overloaded function call operator of
the form

template<class... UnBoundArgs>
constexpr R operator()(UnBoundArgs&&... unbound_args) cv-qual ;

— end note ]
4 A perfect forwarding call wrapper is an argument forwarding call wrapper that forwards its state entities

to the underlying call expression. This forwarding step delivers a state entity of type T as cv T& when the
call is performed on an lvalue of the call wrapper type and as cv T&& otherwise, where cv represents the
cv-qualifiers of the call wrapper and where cv shall be neither volatile nor const volatile.

5 A call pattern defines the semantics of invoking a perfect forwarding call wrapper. A postfix call performed
on a perfect forwarding call wrapper is expression-equivalent (3.20) to an expression e determined from its
call pattern cp by replacing all occurrences of the arguments of the call wrapper and its state entities with
references as described in the corresponding forwarding steps.

6 A simple call wrapper is a perfect forwarding call wrapper that meets the Cpp17CopyConstructible and
Cpp17CopyAssignable requirements and whose copy constructor, move constructor, and assignment operators
are constexpr functions that do not throw exceptions.

7 The copy/move constructor of an argument forwarding call wrapper has the same apparent semantics as if
memberwise copy/move of its state entities were performed (11.4.5.3).
[Note 2 : This implies that each of the copy/move constructors has the same exception-specification as the corresponding
implicit definition and is declared as constexpr if the corresponding implicit definition would be considered to be
constexpr. — end note ]

8 Argument forwarding call wrappers returned by a given standard library function template have the same
type if the types of their corresponding state entities are the same.

22.10.5 invoke functions [func.invoke]
template<class F, class... Args>

constexpr invoke_result_t<F, Args...> invoke(F&& f, Args&&... args)
noexcept(is_nothrow_invocable_v<F, Args...>);

1 Constraints: is_invocable_v<F, Args...> is true.
2 Returns: INVOKE(std::forward<F>(f), std::forward<Args>(args)...) (22.10.4).

template<class R, class F, class... Args>
constexpr R invoke_r(F&& f, Args&&... args)

noexcept(is_nothrow_invocable_r_v<R, F, Args...>);

3 Constraints: is_invocable_r_v<R, F, Args...> is true.
4 Returns: INVOKE<R>(std::forward<F>(f), std::forward<Args>(args)...) (22.10.4).
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22.10.6 Class template reference_wrapper [refwrap]
22.10.6.1 General [refwrap.general]

namespace std {
template<class T> class reference_wrapper {
public:

// types
using type = T;

// 22.10.6.2, constructors
template<class U>

constexpr reference_wrapper(U&&) noexcept(see below );
constexpr reference_wrapper(const reference_wrapper& x) noexcept;

// 22.10.6.3, assignment
constexpr reference_wrapper& operator=(const reference_wrapper& x) noexcept;

// 22.10.6.4, access
constexpr operator T& () const noexcept;
constexpr T& get() const noexcept;

// 22.10.6.5, invocation
template<class... ArgTypes>

constexpr invoke_result_t<T&, ArgTypes...> operator()(ArgTypes&&...) const
noexcept(is_nothrow_invocable_v<T&, ArgTypes...>);

};

template<class T>
reference_wrapper(T&) -> reference_wrapper<T>;

}

1 reference_wrapper<T> is a Cpp17CopyConstructible and Cpp17CopyAssignable wrapper around a reference
to an object or function of type T.

2 reference_wrapper<T> is a trivially copyable type (6.8.1).
3 The template parameter T of reference_wrapper may be an incomplete type.

22.10.6.2 Constructors [refwrap.const]

template<class U>
constexpr reference_wrapper(U&& u) noexcept(see below );

1 Let FUN denote the exposition-only functions
void FUN(T&) noexcept;
void FUN(T&&) = delete;

2 Constraints: The expression FUN(declval<U>()) is well-formed and is_same_v<remove_cvref_t<U>,
reference_wrapper> is false.

3 Effects: Creates a variable r as if by T& r = std::forward<U>(u), then constructs a reference_-
wrapper object that stores a reference to r.

4 Remarks: The exception specification is equivalent to noexcept(FUN(declval<U>())).

constexpr reference_wrapper(const reference_wrapper& x) noexcept;

5 Effects: Constructs a reference_wrapper object that stores a reference to x.get().

22.10.6.3 Assignment [refwrap.assign]

constexpr reference_wrapper& operator=(const reference_wrapper& x) noexcept;

1 Postconditions: *this stores a reference to x.get().

22.10.6.4 Access [refwrap.access]

constexpr operator T& () const noexcept;

1 Returns: The stored reference.
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constexpr T& get() const noexcept;

2 Returns: The stored reference.

22.10.6.5 Invocation [refwrap.invoke]

template<class... ArgTypes>
constexpr invoke_result_t<T&, ArgTypes...>

operator()(ArgTypes&&... args) const noexcept(is_nothrow_invocable_v<T&, ArgTypes...>);

1 Mandates: T is a complete type.
2 Returns: INVOKE(get(), std::forward<ArgTypes>(args)...). (22.10.4)

22.10.6.6 Helper functions [refwrap.helpers]
1 The template parameter T of the following ref and cref function templates may be an incomplete type.

template<class T> constexpr reference_wrapper<T> ref(T& t) noexcept;

2 Returns: reference_wrapper<T>(t).

template<class T> constexpr reference_wrapper<T> ref(reference_wrapper<T> t) noexcept;

3 Returns: t.

template<class T> constexpr reference_wrapper<const T> cref(const T& t) noexcept;

4 Returns: reference_wrapper<const T>(t).

template<class T> constexpr reference_wrapper<const T> cref(reference_wrapper<T> t) noexcept;

5 Returns: t.

22.10.6.7 common_reference related specializations [refwrap.common.ref]
namespace std {

template<class T>
constexpr bool is-ref-wrapper = false; // exposition only

template<class T>
constexpr bool is-ref-wrapper <reference_wrapper<T>> = true;

template<class R, class T, class RQ, class TQ>
concept ref-wrap-common-reference-exists-with = // exposition only

is-ref-wrapper <R> &&
requires { typename common_reference_t<typename R::type&, TQ>; } &&
convertible_to<RQ, common_reference_t<typename R::type&, TQ>>;

template<class R, class T, template<class> class RQual, template<class> class TQual>
requires (ref-wrap-common-reference-exists-with <R, T, RQual<R>, TQual<T>> &&

!ref-wrap-common-reference-exists-with <T, R, TQual<T>, RQual<R>>)
struct basic_common_reference<R, T, RQual, TQual> {

using type = common_reference_t<typename R::type&, TQual<T>>;
};

template<class T, class R, template<class> class TQual, template<class> class RQual>
requires (ref-wrap-common-reference-exists-with <R, T, RQual<R>, TQual<T>> &&

!ref-wrap-common-reference-exists-with <T, R, TQual<T>, RQual<R>>)
struct basic_common_reference<T, R, TQual, RQual> {

using type = common_reference_t<typename R::type&, TQual<T>>;
};

}

22.10.7 Arithmetic operations [arithmetic.operations]
22.10.7.1 General [arithmetic.operations.general]

1 The library provides basic function object classes for all of the arithmetic operators in the language (7.6.5,
7.6.6).
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22.10.7.2 Class template plus [arithmetic.operations.plus]

template<class T = void> struct plus {
constexpr T operator()(const T& x, const T& y) const;

};

constexpr T operator()(const T& x, const T& y) const;

1 Returns: x + y.

template<> struct plus<void> {
template<class T, class U> constexpr auto operator()(T&& t, U&& u) const

-> decltype(std::forward<T>(t) + std::forward<U>(u));

using is_transparent = unspecified ;
};

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) + std::forward<U>(u));

2 Returns: std::forward<T>(t) + std::forward<U>(u).

22.10.7.3 Class template minus [arithmetic.operations.minus]

template<class T = void> struct minus {
constexpr T operator()(const T& x, const T& y) const;

};

constexpr T operator()(const T& x, const T& y) const;

1 Returns: x - y.

template<> struct minus<void> {
template<class T, class U> constexpr auto operator()(T&& t, U&& u) const

-> decltype(std::forward<T>(t) - std::forward<U>(u));

using is_transparent = unspecified ;
};

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) - std::forward<U>(u));

2 Returns: std::forward<T>(t) - std::forward<U>(u).

22.10.7.4 Class template multiplies [arithmetic.operations.multiplies]

template<class T = void> struct multiplies {
constexpr T operator()(const T& x, const T& y) const;

};

constexpr T operator()(const T& x, const T& y) const;

1 Returns: x * y.

template<> struct multiplies<void> {
template<class T, class U> constexpr auto operator()(T&& t, U&& u) const

-> decltype(std::forward<T>(t) * std::forward<U>(u));

using is_transparent = unspecified ;
};

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) * std::forward<U>(u));

2 Returns: std::forward<T>(t) * std::forward<U>(u).

22.10.7.5 Class template divides [arithmetic.operations.divides]

template<class T = void> struct divides {
constexpr T operator()(const T& x, const T& y) const;

§ 22.10.7.5 768



© ISO/IEC N4950

};

constexpr T operator()(const T& x, const T& y) const;

1 Returns: x / y.

template<> struct divides<void> {
template<class T, class U> constexpr auto operator()(T&& t, U&& u) const

-> decltype(std::forward<T>(t) / std::forward<U>(u));

using is_transparent = unspecified ;
};

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) / std::forward<U>(u));

2 Returns: std::forward<T>(t) / std::forward<U>(u).

22.10.7.6 Class template modulus [arithmetic.operations.modulus]

template<class T = void> struct modulus {
constexpr T operator()(const T& x, const T& y) const;

};

constexpr T operator()(const T& x, const T& y) const;

1 Returns: x % y.

template<> struct modulus<void> {
template<class T, class U> constexpr auto operator()(T&& t, U&& u) const

-> decltype(std::forward<T>(t) % std::forward<U>(u));

using is_transparent = unspecified ;
};

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) % std::forward<U>(u));

2 Returns: std::forward<T>(t) % std::forward<U>(u).

22.10.7.7 Class template negate [arithmetic.operations.negate]

template<class T = void> struct negate {
constexpr T operator()(const T& x) const;

};

constexpr T operator()(const T& x) const;

1 Returns: -x.

template<> struct negate<void> {
template<class T> constexpr auto operator()(T&& t) const

-> decltype(-std::forward<T>(t));

using is_transparent = unspecified ;
};

template<class T> constexpr auto operator()(T&& t) const
-> decltype(-std::forward<T>(t));

2 Returns: -std::forward<T>(t).

22.10.8 Comparisons [comparisons]
22.10.8.1 General [comparisons.general]

1 The library provides basic function object classes for all of the comparison operators in the language (7.6.9,
7.6.10).

2 For templates less, greater, less_equal, and greater_equal, the specializations for any pointer type
yield a result consistent with the implementation-defined strict total order over pointers (3.26).
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[Note 1 : If a < b is well-defined for pointers a and b of type P, then (a < b) == less<P>()(a, b), (a > b) ==
greater<P>()(a, b), and so forth. — end note ]

For template specializations less<void>, greater<void>, less_equal<void>, and greater_equal<void>,
if the call operator calls a built-in operator comparing pointers, the call operator yields a result consistent
with the implementation-defined strict total order over pointers.

22.10.8.2 Class template equal_to [comparisons.equal.to]

template<class T = void> struct equal_to {
constexpr bool operator()(const T& x, const T& y) const;

};

constexpr bool operator()(const T& x, const T& y) const;

1 Returns: x == y.

template<> struct equal_to<void> {
template<class T, class U> constexpr auto operator()(T&& t, U&& u) const

-> decltype(std::forward<T>(t) == std::forward<U>(u));

using is_transparent = unspecified ;
};

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) == std::forward<U>(u));

2 Returns: std::forward<T>(t) == std::forward<U>(u).

22.10.8.3 Class template not_equal_to [comparisons.not.equal.to]

template<class T = void> struct not_equal_to {
constexpr bool operator()(const T& x, const T& y) const;

};

constexpr bool operator()(const T& x, const T& y) const;

1 Returns: x != y.

template<> struct not_equal_to<void> {
template<class T, class U> constexpr auto operator()(T&& t, U&& u) const

-> decltype(std::forward<T>(t) != std::forward<U>(u));

using is_transparent = unspecified ;
};

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) != std::forward<U>(u));

2 Returns: std::forward<T>(t) != std::forward<U>(u).

22.10.8.4 Class template greater [comparisons.greater]

template<class T = void> struct greater {
constexpr bool operator()(const T& x, const T& y) const;

};

constexpr bool operator()(const T& x, const T& y) const;

1 Returns: x > y.

template<> struct greater<void> {
template<class T, class U> constexpr auto operator()(T&& t, U&& u) const

-> decltype(std::forward<T>(t) > std::forward<U>(u));

using is_transparent = unspecified ;
};
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template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) > std::forward<U>(u));

2 Returns: std::forward<T>(t) > std::forward<U>(u).

22.10.8.5 Class template less [comparisons.less]

template<class T = void> struct less {
constexpr bool operator()(const T& x, const T& y) const;

};

constexpr bool operator()(const T& x, const T& y) const;

1 Returns: x < y.

template<> struct less<void> {
template<class T, class U> constexpr auto operator()(T&& t, U&& u) const

-> decltype(std::forward<T>(t) < std::forward<U>(u));

using is_transparent = unspecified ;
};

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) < std::forward<U>(u));

2 Returns: std::forward<T>(t) < std::forward<U>(u).

22.10.8.6 Class template greater_equal [comparisons.greater.equal]

template<class T = void> struct greater_equal {
constexpr bool operator()(const T& x, const T& y) const;

};

constexpr bool operator()(const T& x, const T& y) const;

1 Returns: x >= y.

template<> struct greater_equal<void> {
template<class T, class U> constexpr auto operator()(T&& t, U&& u) const

-> decltype(std::forward<T>(t) >= std::forward<U>(u));

using is_transparent = unspecified ;
};

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) >= std::forward<U>(u));

2 Returns: std::forward<T>(t) >= std::forward<U>(u).

22.10.8.7 Class template less_equal [comparisons.less.equal]

template<class T = void> struct less_equal {
constexpr bool operator()(const T& x, const T& y) const;

};

constexpr bool operator()(const T& x, const T& y) const;

1 Returns: x <= y.

template<> struct less_equal<void> {
template<class T, class U> constexpr auto operator()(T&& t, U&& u) const

-> decltype(std::forward<T>(t) <= std::forward<U>(u));

using is_transparent = unspecified ;
};

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) <= std::forward<U>(u));

2 Returns: std::forward<T>(t) <= std::forward<U>(u).
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22.10.8.8 Class compare_three_way [comparisons.three.way]
namespace std {

struct compare_three_way {
template<class T, class U>

constexpr auto operator()(T&& t, U&& u) const;

using is_transparent = unspecified ;
};

}

template<class T, class U>
constexpr auto operator()(T&& t, U&& u) const;

1 Constraints: T and U satisfy three_way_comparable_with.
2 Preconditions: If the expression std::forward<T>(t) <=> std::forward<U>(u) results in a call to a

built-in operator <=> comparing pointers of type P, the conversion sequences from both T and U to P
are equality-preserving (18.2); otherwise, T and U model three_way_comparable_with.

3 Effects:
—(3.1) If the expression std::forward<T>(t) <=> std::forward<U>(u) results in a call to a built-in

operator <=> comparing pointers of type P, returns strong_ordering::less if (the converted
value of) t precedes u in the implementation-defined strict total order over pointers (3.26),
strong_ordering::greater if u precedes t, and otherwise strong_ordering::equal.

—(3.2) Otherwise, equivalent to: return std::forward<T>(t) <=> std::forward<U>(u);

22.10.9 Concept-constrained comparisons [range.cmp]
struct ranges::equal_to {

template<class T, class U>
constexpr bool operator()(T&& t, U&& u) const;

using is_transparent = unspecified;
};

template<class T, class U>
constexpr bool operator()(T&& t, U&& u) const;

1 Constraints: T and U satisfy equality_comparable_with.
2 Preconditions: If the expression std::forward<T>(t) == std::forward<U>(u) results in a call to a

built-in operator == comparing pointers of type P, the conversion sequences from both T and U to P are
equality-preserving (18.2); otherwise, T and U model equality_comparable_with.

3 Effects:
—(3.1) If the expression std::forward<T>(t) == std::forward<U>(u) results in a call to a built-in

operator == comparing pointers: returns false if either (the converted value of) t precedes u or
u precedes t in the implementation-defined strict total order over pointers (3.26) and otherwise
true.

—(3.2) Otherwise, equivalent to: return std::forward<T>(t) == std::forward<U>(u);
struct ranges::not_equal_to {

template<class T, class U>
constexpr bool operator()(T&& t, U&& u) const;

using is_transparent = unspecified;
};

template<class T, class U>
constexpr bool operator()(T&& t, U&& u) const;

4 Constraints: T and U satisfy equality_comparable_with.
5 Effects: Equivalent to:

return !ranges::equal_to{}(std::forward<T>(t), std::forward<U>(u));
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struct ranges::greater {
template<class T, class U>
constexpr bool operator()(T&& t, U&& u) const;

using is_transparent = unspecified;
};

template<class T, class U>
constexpr bool operator()(T&& t, U&& u) const;

6 Constraints: T and U satisfy totally_ordered_with.
7 Effects: Equivalent to:

return ranges::less{}(std::forward<U>(u), std::forward<T>(t));

struct ranges::less {
template<class T, class U>

constexpr bool operator()(T&& t, U&& u) const;

using is_transparent = unspecified;
};

template<class T, class U>
constexpr bool operator()(T&& t, U&& u) const;

8 Constraints: T and U satisfy totally_ordered_with.
9 Preconditions: If the expression std::forward<T>(t) < std::forward<U>(u) results in a call to a

built-in operator < comparing pointers of type P, the conversion sequences from both T and U to P are
equality-preserving (18.2); otherwise, T and U model totally_ordered_with. For any expressions ET
and EU such that decltype((ET)) is T and decltype((EU)) is U, exactly one of ranges::less{}(ET,
EU), ranges::less{}(EU, ET), or ranges::equal_to{}(ET, EU) is true.

10 Effects:
—(10.1) If the expression std::forward<T>(t) < std::forward<U>(u) results in a call to a built-in

operator < comparing pointers: returns true if (the converted value of) t precedes u in the
implementation-defined strict total order over pointers (3.26) and otherwise false.

—(10.2) Otherwise, equivalent to: return std::forward<T>(t) < std::forward<U>(u);
struct ranges::greater_equal {

template<class T, class U>
constexpr bool operator()(T&& t, U&& u) const;

using is_transparent = unspecified;
};

template<class T, class U>
constexpr bool operator()(T&& t, U&& u) const;

11 Constraints: T and U satisfy totally_ordered_with.
12 Effects: Equivalent to:

return !ranges::less{}(std::forward<T>(t), std::forward<U>(u));

struct ranges::less_equal {
template<class T, class U>

constexpr bool operator()(T&& t, U&& u) const;

using is_transparent = unspecified;
};

template<class T, class U>
constexpr bool operator()(T&& t, U&& u) const;

13 Constraints: T and U satisfy totally_ordered_with.
14 Effects: Equivalent to:

return !ranges::less{}(std::forward<U>(u), std::forward<T>(t));
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22.10.10 Logical operations [logical.operations]
22.10.10.1 General [logical.operations.general]

1 The library provides basic function object classes for all of the logical operators in the language (7.6.14,
7.6.15, 7.6.2.2).

22.10.10.2 Class template logical_and [logical.operations.and]

template<class T = void> struct logical_and {
constexpr bool operator()(const T& x, const T& y) const;

};

constexpr bool operator()(const T& x, const T& y) const;

1 Returns: x && y.

template<> struct logical_and<void> {
template<class T, class U> constexpr auto operator()(T&& t, U&& u) const

-> decltype(std::forward<T>(t) && std::forward<U>(u));

using is_transparent = unspecified ;
};

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) && std::forward<U>(u));

2 Returns: std::forward<T>(t) && std::forward<U>(u).

22.10.10.3 Class template logical_or [logical.operations.or]

template<class T = void> struct logical_or {
constexpr bool operator()(const T& x, const T& y) const;

};

constexpr bool operator()(const T& x, const T& y) const;

1 Returns: x || y.

template<> struct logical_or<void> {
template<class T, class U> constexpr auto operator()(T&& t, U&& u) const

-> decltype(std::forward<T>(t) || std::forward<U>(u));

using is_transparent = unspecified ;
};

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) || std::forward<U>(u));

2 Returns: std::forward<T>(t) || std::forward<U>(u).

22.10.10.4 Class template logical_not [logical.operations.not]

template<class T = void> struct logical_not {
constexpr bool operator()(const T& x) const;

};

constexpr bool operator()(const T& x) const;

1 Returns: !x.

template<> struct logical_not<void> {
template<class T> constexpr auto operator()(T&& t) const

-> decltype(!std::forward<T>(t));

using is_transparent = unspecified ;
};

template<class T> constexpr auto operator()(T&& t) const
-> decltype(!std::forward<T>(t));

2 Returns: !std::forward<T>(t).

§ 22.10.10.4 774



© ISO/IEC N4950

22.10.11 Bitwise operations [bitwise.operations]
22.10.11.1 General [bitwise.operations.general]

1 The library provides basic function object classes for all of the bitwise operators in the language (7.6.11,
7.6.13, 7.6.12, 7.6.2.2).

22.10.11.2 Class template bit_and [bitwise.operations.and]

template<class T = void> struct bit_and {
constexpr T operator()(const T& x, const T& y) const;

};

constexpr T operator()(const T& x, const T& y) const;

1 Returns: x & y.

template<> struct bit_and<void> {
template<class T, class U> constexpr auto operator()(T&& t, U&& u) const

-> decltype(std::forward<T>(t) & std::forward<U>(u));

using is_transparent = unspecified ;
};

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) & std::forward<U>(u));

2 Returns: std::forward<T>(t) & std::forward<U>(u).

22.10.11.3 Class template bit_or [bitwise.operations.or]

template<class T = void> struct bit_or {
constexpr T operator()(const T& x, const T& y) const;

};

constexpr T operator()(const T& x, const T& y) const;

1 Returns: x | y.

template<> struct bit_or<void> {
template<class T, class U> constexpr auto operator()(T&& t, U&& u) const

-> decltype(std::forward<T>(t) | std::forward<U>(u));

using is_transparent = unspecified ;
};

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) | std::forward<U>(u));

2 Returns: std::forward<T>(t) | std::forward<U>(u).

22.10.11.4 Class template bit_xor [bitwise.operations.xor]

template<class T = void> struct bit_xor {
constexpr T operator()(const T& x, const T& y) const;

};

constexpr T operator()(const T& x, const T& y) const;

1 Returns: x ^ y.

template<> struct bit_xor<void> {
template<class T, class U> constexpr auto operator()(T&& t, U&& u) const

-> decltype(std::forward<T>(t) ^ std::forward<U>(u));

using is_transparent = unspecified ;
};

template<class T, class U> constexpr auto operator()(T&& t, U&& u) const
-> decltype(std::forward<T>(t) ^ std::forward<U>(u));

2 Returns: std::forward<T>(t) ^ std::forward<U>(u).
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22.10.11.5 Class template bit_not [bitwise.operations.not]

template<class T = void> struct bit_not {
constexpr T operator()(const T& x) const;

};

constexpr T operator()(const T& x) const;

1 Returns: ~x.

template<> struct bit_not<void> {
template<class T> constexpr auto operator()(T&& t) const

-> decltype(~std::forward<T>(t));

using is_transparent = unspecified ;
};

template<class T> constexpr auto operator()(T&& t) const
-> decltype(~std::forward<T>(t));

2 Returns: ~std::forward<T>(t).

22.10.12 Class identity [func.identity]
struct identity {

template<class T>
constexpr T&& operator()(T&& t) const noexcept;

using is_transparent = unspecified ;
};

template<class T>
constexpr T&& operator()(T&& t) const noexcept;

1 Effects: Equivalent to: return std::forward<T>(t);

22.10.13 Function template not_fn [func.not.fn]
template<class F> constexpr unspecified not_fn(F&& f);

1 In the text that follows:
—(1.1) g is a value of the result of a not_fn invocation,
—(1.2) FD is the type decay_t<F>,
—(1.3) fd is the target object of g (22.10.3) of type FD, direct-non-list-initialized with std::forward<F

>(f),
—(1.4) call_args is an argument pack used in a function call expression (7.6.1.3) of g.

2 Mandates: is_constructible_v<FD, F> && is_move_constructible_v<FD> is true.
3 Preconditions: FD meets the Cpp17MoveConstructible requirements.
4 Returns: A perfect forwarding call wrapper (22.10.4) g with call pattern !invoke(fd, call_args...).
5 Throws: Any exception thrown by the initialization of fd.

22.10.14 Function templates bind_front and bind_back [func.bind.partial]
template<class F, class... Args>

constexpr unspecified bind_front(F&& f, Args&&... args);
template<class F, class... Args>

constexpr unspecified bind_back(F&& f, Args&&... args);

1 Within this subclause:
—(1.1) g is a value of the result of a bind_front or bind_back invocation,
—(1.2) FD is the type decay_t<F>,
—(1.3) fd is the target object of g (22.10.3) of type FD, direct-non-list-initialized with std::forward<F

>(f),
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—(1.4) BoundArgs is a pack that denotes decay_t<Args>...,
—(1.5) bound_args is a pack of bound argument entities of g (22.10.3) of types BoundArgs..., direct-

non-list-initialized with std::forward<Args>(args)..., respectively, and
—(1.6) call_args is an argument pack used in a function call expression (7.6.1.3) of g.

2 Mandates:
is_constructible_v<FD, F> &&
is_move_constructible_v<FD> &&
(is_constructible_v<BoundArgs, Args> && ...) &&
(is_move_constructible_v<BoundArgs> && ...)

is true.
3 Preconditions: FD meets the Cpp17MoveConstructible requirements. For each Ti in BoundArgs, if Ti is

an object type, Ti meets the Cpp17MoveConstructible requirements.
4 Returns: A perfect forwarding call wrapper (22.10.4) g with call pattern:

—(4.1) invoke(fd, bound_args..., call_args...) for a bind_front invocation, or
—(4.2) invoke(fd, call_args..., bound_args...) for a bind_back invocation.

5 Throws: Any exception thrown by the initialization of the state entities of g (22.10.3).

22.10.15 Function object binders [func.bind]
22.10.15.1 General [func.bind.general]

1 Subclause 22.10.15 describes a uniform mechanism for binding arguments of callable objects.

22.10.15.2 Class template is_bind_expression [func.bind.isbind]
namespace std {

template<class T> struct is_bind_expression; // see below
}

1 The class template is_bind_expression can be used to detect function objects generated by bind. The
function template bind uses is_bind_expression to detect subexpressions.

2 Specializations of the is_bind_expression template shall meet the Cpp17UnaryTypeTrait requirements
(21.3.2). The implementation provides a definition that has a base characteristic of true_type if T is a type
returned from bind, otherwise it has a base characteristic of false_type. A program may specialize this
template for a program-defined type T to have a base characteristic of true_type to indicate that T should
be treated as a subexpression in a bind call.

22.10.15.3 Class template is_placeholder [func.bind.isplace]
namespace std {

template<class T> struct is_placeholder; // see below
}

1 The class template is_placeholder can be used to detect the standard placeholders _1, _2, and so on
(22.10.15.5). The function template bind uses is_placeholder to detect placeholders.

2 Specializations of the is_placeholder template shall meet the Cpp17UnaryTypeTrait requirements (21.3.2).
The implementation provides a definition that has the base characteristic of integral_constant<int, J > if
T is the type of std::placeholders::_J , otherwise it has a base characteristic of integral_constant<int,
0>. A program may specialize this template for a program-defined type T to have a base characteristic of
integral_constant<int, N> with N > 0 to indicate that T should be treated as a placeholder type.

22.10.15.4 Function template bind [func.bind.bind]
1 In the text that follows:

—(1.1) g is a value of the result of a bind invocation,
—(1.2) FD is the type decay_t<F>,
—(1.3) fd is an lvalue that is a target object of g (22.10.3) of type FD direct-non-list-initialized with

std::forward<F>(f),
—(1.4) Ti is the ith type in the template parameter pack BoundArgs,
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—(1.5) TDi is the type decay_t<Ti>,
—(1.6) ti is the ith argument in the function parameter pack bound_args,
—(1.7) tdi is a bound argument entity of g (22.10.3) of type TDi direct-non-list-initialized with std::forward<

Ti>(ti),
—(1.8) Uj is the jth deduced type of the UnBoundArgs&&... parameter of the argument forwarding call wrapper,

and
—(1.9) uj is the jth argument associated with Uj .

template<class F, class... BoundArgs>
constexpr unspecified bind(F&& f, BoundArgs&&... bound_args);

template<class R, class F, class... BoundArgs>
constexpr unspecified bind(F&& f, BoundArgs&&... bound_args);

2 Mandates: is_constructible_v<FD, F> is true. For each Ti in BoundArgs, is_constructible_-
v<TDi, Ti> is true.

3 Preconditions: FD and each TDi meet the Cpp17MoveConstructible and Cpp17Destructible requirements.
INVOKE(fd, w1, w2, . . . , wN ) (22.10.4) is a valid expression for some values w1, w2, . . . , wN , where
N has the value sizeof...(bound_args).

4 Returns: An argument forwarding call wrapper g (22.10.4). A program that attempts to invoke a
volatile-qualified g is ill-formed. When g is not volatile-qualified, invocation of g(u1, u2, . . . , uM ) is
expression-equivalent (3.20) to

INVOKE(static_cast<Vfd>(vfd),
static_cast<V1>(v1), static_cast<V2>(v2), . . . , static_cast<VN >(vN ))

for the first overload, and
INVOKE<R>(static_cast<Vfd>(vfd),

static_cast<V1>(v1), static_cast<V2>(v2), . . . , static_cast<VN >(vN ))

for the second overload, where the values and types of the target argument vfd and of the bound
arguments v1, v2, . . . , vN are determined as specified below.

5 Throws: Any exception thrown by the initialization of the state entities of g.
6 [Note 1 : If all of FD and TDi meet the requirements of Cpp17CopyConstructible, then the return type meets the

requirements of Cpp17CopyConstructible. — end note ]
7 The values of the bound arguments v1, v2, . . . , vN and their corresponding types V1, V2, . . . , VN depend on

the types TDi derived from the call to bind and the cv-qualifiers cv of the call wrapper g as follows:
—(7.1) if TDi is reference_wrapper<T>, the argument is tdi.get() and its type Vi is T&;
—(7.2) if the value of is_bind_expression_v<TDi> is true, the argument is

static_cast<cv TDi&>(tdi)(std::forward<Uj>(uj)...)

and its type Vi is invoke_result_t<cv TDi&, Uj...>&&;
—(7.3) if the value j of is_placeholder_v<TDi> is not zero, the argument is std::forward<Uj>(uj) and its

type Vi is Uj&&;
—(7.4) otherwise, the value is tdi and its type Vi is cv TDi&.

8 The value of the target argument vfd is fd and its corresponding type Vfd is cv FD&.

22.10.15.5 Placeholders [func.bind.place]
namespace std::placeholders {

// M is the number of placeholders
see below _1;
see below _2;

.

.

.
see below _M;

}

1 The number M of placeholders is implementation-defined.
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2 All placeholder types meet the Cpp17DefaultConstructible and Cpp17CopyConstructible requirements, and
their default constructors and copy/move constructors are constexpr functions that do not throw exceptions.
It is implementation-defined whether placeholder types meet the Cpp17CopyAssignable requirements, but if
so, their copy assignment operators are constexpr functions that do not throw exceptions.

3 Placeholders should be defined as:
inline constexpr unspecified _1{};

If they are not, they are declared as:
extern unspecified _1;

4 Placeholders are freestanding items (16.3.3.6).

22.10.16 Function template mem_fn [func.memfn]
template<class R, class T> constexpr unspecified mem_fn(R T::* pm) noexcept;

1 Returns: A simple call wrapper (22.10.4) fn with call pattern invoke(pmd, call_args...), where
pmd is the target object of fn of type R T::* direct-non-list-initialized with pm, and call_args is an
argument pack used in a function call expression (7.6.1.3) of fn.

22.10.17 Polymorphic function wrappers [func.wrap]
22.10.17.1 General [func.wrap.general]

1 Subclause 22.10.17 describes polymorphic wrapper classes that encapsulate arbitrary callable objects.

22.10.17.2 Class bad_function_call [func.wrap.badcall]
1 An exception of type bad_function_call is thrown by function::operator() (22.10.17.3.5) when the

function wrapper object has no target.
namespace std {

class bad_function_call : public exception {
public:

// see 17.9.3 for the specification of the special member functions
const char* what() const noexcept override;

};
}

const char* what() const noexcept override;

2 Returns: An implementation-defined ntbs.

22.10.17.3 Class template function [func.wrap.func]
22.10.17.3.1 General [func.wrap.func.general]

namespace std {
template<class> class function; // not defined

template<class R, class... ArgTypes>
class function<R(ArgTypes...)> {
public:

using result_type = R;

// 22.10.17.3.2, construct/copy/destroy
function() noexcept;
function(nullptr_t) noexcept;
function(const function&);
function(function&&) noexcept;
template<class F> function(F&&);

function& operator=(const function&);
function& operator=(function&&);
function& operator=(nullptr_t) noexcept;
template<class F> function& operator=(F&&);
template<class F> function& operator=(reference_wrapper<F>) noexcept;

~function();
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// 22.10.17.3.3, function modifiers
void swap(function&) noexcept;

// 22.10.17.3.4, function capacity
explicit operator bool() const noexcept;

// 22.10.17.3.5, function invocation
R operator()(ArgTypes...) const;

// 22.10.17.3.6, function target access
const type_info& target_type() const noexcept;
template<class T> T* target() noexcept;
template<class T> const T* target() const noexcept;

};

template<class R, class... ArgTypes>
function(R(*)(ArgTypes...)) -> function<R(ArgTypes...)>;

template<class F> function(F) -> function<see below >;
}

1 The function class template provides polymorphic wrappers that generalize the notion of a function pointer.
Wrappers can store, copy, and call arbitrary callable objects (22.10.3), given a call signature (22.10.3).

2 A callable type (22.10.3) F is Lvalue-Callable for argument types ArgTypes and return type R if the expression
INVOKE<R>(declval<F&>(), declval<ArgTypes>()...), considered as an unevaluated operand (7.2.3), is
well-formed (22.10.4).

3 The function class template is a call wrapper (22.10.3) whose call signature (22.10.3) is R(ArgTypes...).
4 [Note 1 : The types deduced by the deduction guides for function might change in future revisions of C++. — end

note ]

22.10.17.3.2 Constructors and destructor [func.wrap.func.con]

function() noexcept;

1 Postconditions: !*this.

function(nullptr_t) noexcept;

2 Postconditions: !*this.

function(const function& f);

3 Postconditions: !*this if !f; otherwise, the target object of *this is a copy of f.target().
4 Throws: Nothing if f’s target is a specialization of reference_wrapper or a function pointer. Otherwise,

may throw bad_alloc or any exception thrown by the copy constructor of the stored callable object.
5 Recommended practice: Implementations should avoid the use of dynamically allocated memory for

small callable objects, for example, where f’s target is an object holding only a pointer or reference to
an object and a member function pointer.

function(function&& f) noexcept;

6 Postconditions: If !f, *this has no target; otherwise, the target of *this is equivalent to the target of
f before the construction, and f is in a valid state with an unspecified value.

7 Recommended practice: Implementations should avoid the use of dynamically allocated memory for
small callable objects, for example, where f’s target is an object holding only a pointer or reference to
an object and a member function pointer.

template<class F> function(F&& f);

8 Let FD be decay_t<F>.
9 Constraints:

—(9.1) is_same_v<remove_cvref_t<F>, function> is false, and
—(9.2) FD is Lvalue-Callable (22.10.17.3) for argument types ArgTypes... and return type R.
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10 Mandates:
—(10.1) is_copy_constructible_v<FD> is true, and
—(10.2) is_constructible_v<FD, F> is true.

11 Preconditions: FD meets the Cpp17CopyConstructible requirements.
12 Postconditions: !*this is true if any of the following hold:

—(12.1) f is a null function pointer value.
—(12.2) f is a null member pointer value.
—(12.3) remove_cvref_t<F> is a specialization of the function class template, and !f is true.

13 Otherwise, *this has a target object of type FD direct-non-list-initialized with std::forward<F>(f).
14 Throws: Nothing if FD is a specialization of reference_wrapper or a function pointer type. Otherwise,

may throw bad_alloc or any exception thrown by the initialization of the target object.
15 Recommended practice: Implementations should avoid the use of dynamically allocated memory for

small callable objects, for example, where f refers to an object holding only a pointer or reference to an
object and a member function pointer.

template<class F> function(F) -> function<see below >;

16 Constraints: &F::operator() is well-formed when treated as an unevaluated operand and either
—(16.1) F::operator() is a non-static member function and decltype(&F::operator()) is either of the

form R(G::*)(A...) cv &opt noexceptopt or of the form R(*)(G, A...) noexceptopt for a type
G, or

—(16.2) F::operator() is a static member function and decltype(&F::operator()) is of the form
R(*)(A...) noexceptopt .

17 Remarks: The deduced type is function<R(A...)>.
18 [Example 1 :

void f() {
int i{5};
function g = [&](double) { return i; }; // deduces function<int(double)>

}

— end example ]

function& operator=(const function& f);

19 Effects: As if by function(f).swap(*this);
20 Returns: *this.

function& operator=(function&& f);

21 Effects: Replaces the target of *this with the target of f.
22 Returns: *this.

function& operator=(nullptr_t) noexcept;

23 Effects: If *this != nullptr, destroys the target of this.
24 Postconditions: !(*this).
25 Returns: *this.

template<class F> function& operator=(F&& f);

26 Constraints: decay_t<F> is Lvalue-Callable (22.10.17.3) for argument types ArgTypes... and return
type R.

27 Effects: As if by: function(std::forward<F>(f)).swap(*this);
28 Returns: *this.

template<class F> function& operator=(reference_wrapper<F> f) noexcept;

29 Effects: As if by: function(f).swap(*this);
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30 Returns: *this.

~function();

31 Effects: If *this != nullptr, destroys the target of this.

22.10.17.3.3 Modifiers [func.wrap.func.mod]

void swap(function& other) noexcept;

1 Effects: Interchanges the target objects of *this and other.

22.10.17.3.4 Capacity [func.wrap.func.cap]

explicit operator bool() const noexcept;

1 Returns: true if *this has a target, otherwise false.

22.10.17.3.5 Invocation [func.wrap.func.inv]

R operator()(ArgTypes... args) const;

1 Returns: INVOKE<R>(f, std::forward<ArgTypes>(args)...) (22.10.4), where f is the target object
(22.10.3) of *this.

2 Throws: bad_function_call if !*this; otherwise, any exception thrown by the target object.

22.10.17.3.6 Target access [func.wrap.func.targ]

const type_info& target_type() const noexcept;

1 Returns: If *this has a target of type T, typeid(T); otherwise, typeid(void).

template<class T> T* target() noexcept;
template<class T> const T* target() const noexcept;

2 Returns: If target_type() == typeid(T) a pointer to the stored function target; otherwise a null
pointer.

22.10.17.3.7 Null pointer comparison operator functions [func.wrap.func.nullptr]

template<class R, class... ArgTypes>
bool operator==(const function<R(ArgTypes...)>& f, nullptr_t) noexcept;

1 Returns: !f.

22.10.17.3.8 Specialized algorithms [func.wrap.func.alg]

template<class R, class... ArgTypes>
void swap(function<R(ArgTypes...)>& f1, function<R(ArgTypes...)>& f2) noexcept;

1 Effects: As if by: f1.swap(f2);

22.10.17.4 Move only wrapper [func.wrap.move]
22.10.17.4.1 General [func.wrap.move.general]

1 The header provides partial specializations of move_only_function for each combination of the possible
replacements of the placeholders cv, ref, and noex where

—(1.1) cv is either const or empty,
—(1.2) ref is either &, &&, or empty, and
—(1.3) noex is either true or false.

2 For each of the possible combinations of the placeholders mentioned above, there is a placeholder inv-quals
defined as follows:

—(2.1) If ref is empty, let inv-quals be cv&,
—(2.2) otherwise, let inv-quals be cv ref.

22.10.17.4.2 Class template move_only_function [func.wrap.move.class]
namespace std {

template<class... S> class move_only_function; // not defined
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template<class R, class... ArgTypes>
class move_only_function<R(ArgTypes...) cv ref noexcept(noex )> {
public:

using result_type = R;

// 22.10.17.4.3, constructors, assignment, and destructor
move_only_function() noexcept;
move_only_function(nullptr_t) noexcept;
move_only_function(move_only_function&&) noexcept;
template<class F> move_only_function(F&&);
template<class T, class... Args>

explicit move_only_function(in_place_type_t<T>, Args&&...);
template<class T, class U, class... Args>

explicit move_only_function(in_place_type_t<T>, initializer_list<U>, Args&&...);

move_only_function& operator=(move_only_function&&);
move_only_function& operator=(nullptr_t) noexcept;
template<class F> move_only_function& operator=(F&&);

~move_only_function();

// 22.10.17.4.4, invocation
explicit operator bool() const noexcept;
R operator()(ArgTypes...) cv ref noexcept(noex );

// 22.10.17.4.5, utility
void swap(move_only_function&) noexcept;
friend void swap(move_only_function&, move_only_function&) noexcept;
friend bool operator==(const move_only_function&, nullptr_t) noexcept;

private:
template<class VT>

static constexpr bool is-callable-from = see below ; // exposition only
};

}

1 The move_only_function class template provides polymorphic wrappers that generalize the notion of a
callable object (22.10.3). These wrappers can store, move, and call arbitrary callable objects, given a call
signature.

2 Recommended practice: Implementations should avoid the use of dynamically allocated memory for a small
contained value.
[Note 1 : Such small-object optimization can only be applied to a type T for which is_nothrow_move_constructible_-
v<T> is true. — end note ]

22.10.17.4.3 Constructors, assignment, and destructor [func.wrap.move.ctor]

template<class VT>
static constexpr bool is-callable-from = see below ;

1 If noex is true, is-callable-from <VT> is equal to:
is_nothrow_invocable_r_v<R, VT cv ref , ArgTypes...> &&
is_nothrow_invocable_r_v<R, VT inv-quals , ArgTypes...>

Otherwise, is-callable-from <VT> is equal to:
is_invocable_r_v<R, VT cv ref , ArgTypes...> &&
is_invocable_r_v<R, VT inv-quals , ArgTypes...>

move_only_function() noexcept;
move_only_function(nullptr_t) noexcept;

2 Postconditions: *this has no target object.
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move_only_function(move_only_function&& f) noexcept;

3 Postconditions: The target object of *this is the target object f had before construction, and f is in a
valid state with an unspecified value.

template<class F> move_only_function(F&& f);

4 Let VT be decay_t<F>.
5 Constraints:

—(5.1) remove_cvref_t<F> is not the same type as move_only_function, and
—(5.2) remove_cvref_t<F> is not a specialization of in_place_type_t, and
—(5.3) is-callable-from <VT> is true.

6 Mandates: is_constructible_v<VT, F> is true.
7 Preconditions: VT meets the Cpp17Destructible requirements, and if is_move_constructible_v<VT>

is true, VT meets the Cpp17MoveConstructible requirements.
8 Postconditions: *this has no target object if any of the following hold:

—(8.1) f is a null function pointer value, or
—(8.2) f is a null member pointer value, or
—(8.3) remove_cvref_t<F> is a specialization of the move_only_function class template, and f has no

target object.
Otherwise, *this has a target object of type VT direct-non-list-initialized with std::forward<F>(f).

9 Throws: Any exception thrown by the initialization of the target object. May throw bad_alloc unless
VT is a function pointer or a specialization of reference_wrapper.

template<class T, class... Args>
explicit move_only_function(in_place_type_t<T>, Args&&... args);

10 Let VT be decay_t<T>.
11 Constraints:

—(11.1) is_constructible_v<VT, Args...> is true, and
—(11.2) is-callable-from <VT> is true.

12 Mandates: VT is the same type as T.
13 Preconditions: VT meets the Cpp17Destructible requirements, and if is_move_constructible_v<VT>

is true, VT meets the Cpp17MoveConstructible requirements.
14 Postconditions: *this has a target object of type VT direct-non-list-initialized with std::forward<Args>

(args)....
15 Throws: Any exception thrown by the initialization of the target object. May throw bad_alloc unless

VT is a function pointer or a specialization of reference_wrapper.

template<class T, class U, class... Args>
explicit move_only_function(in_place_type_t<T>, initializer_list<U> ilist, Args&&... args);

16 Let VT be decay_t<T>.
17 Constraints:

—(17.1) is_constructible_v<VT, initializer_list<U>&, Args...> is true, and
—(17.2) is-callable-from <VT> is true.

18 Mandates: VT is the same type as T.
19 Preconditions: VT meets the Cpp17Destructible requirements, and if is_move_constructible_v<VT>

is true, VT meets the Cpp17MoveConstructible requirements.
20 Postconditions: *this has a target object of type VT direct-non-list-initialized with ilist, std::for-

ward<Args>(args)....
21 Throws: Any exception thrown by the initialization of the target object. May throw bad_alloc unless

VT is a function pointer or a specialization of reference_wrapper.
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move_only_function& operator=(move_only_function&& f);

22 Effects: Equivalent to: move_only_function(std::move(f)).swap(*this);
23 Returns: *this.

move_only_function& operator=(nullptr_t) noexcept;

24 Effects: Destroys the target object of *this, if any.
25 Returns: *this.

template<class F> move_only_function& operator=(F&& f);

26 Effects: Equivalent to: move_only_function(std::forward<F>(f)).swap(*this);
27 Returns: *this.

~move_only_function();

28 Effects: Destroys the target object of *this, if any.

22.10.17.4.4 Invocation [func.wrap.move.inv]

explicit operator bool() const noexcept;

1 Returns: true if *this has a target object, otherwise false.

R operator()(ArgTypes... args) cv ref noexcept(noex );

2 Preconditions: *this has a target object.
3 Effects: Equivalent to:

return INVOKE <R>(static_cast<F inv-quals >(f), std::forward<ArgTypes>(args)...);

where f is an lvalue designating the target object of *this and F is the type of f.

22.10.17.4.5 Utility [func.wrap.move.util]

void swap(move_only_function& other) noexcept;

1 Effects: Exchanges the target objects of *this and other.

friend void swap(move_only_function& f1, move_only_function& f2) noexcept;

2 Effects: Equivalent to f1.swap(f2).

friend bool operator==(const move_only_function& f, nullptr_t) noexcept;

3 Returns: true if f has no target object, otherwise false.

22.10.18 Searchers [func.search]
22.10.18.1 General [func.search.general]

1 Subclause 22.10.18 provides function object types (22.10) for operations that search for a sequence [pat_first,
pat_last) in another sequence [first, last) that is provided to the object’s function call operator. The
first sequence (the pattern to be searched for) is provided to the object’s constructor, and the second (the
sequence to be searched) is provided to the function call operator.

2 Each specialization of a class template specified in 22.10.18 shall meet the Cpp17CopyConstructible and
Cpp17CopyAssignable requirements. Template parameters named

—(2.1) ForwardIterator,
—(2.2) ForwardIterator1,
—(2.3) ForwardIterator2,
—(2.4) RandomAccessIterator,
—(2.5) RandomAccessIterator1,
—(2.6) RandomAccessIterator2, and
—(2.7) BinaryPredicate
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of templates specified in 22.10.18 shall meet the same requirements and semantics as specified in 27.1.
Template parameters named Hash shall meet the Cpp17Hash requirements (Table 37).

3 The Boyer-Moore searcher implements the Boyer-Moore search algorithm. The Boyer-Moore-Horspool
searcher implements the Boyer-Moore-Horspool search algorithm. In general, the Boyer-Moore searcher will
use more memory and give better runtime performance than Boyer-Moore-Horspool.

22.10.18.2 Class template default_searcher [func.search.default]
namespace std {

template<class ForwardIterator1, class BinaryPredicate = equal_to<>>
class default_searcher {
public:

constexpr default_searcher(ForwardIterator1 pat_first, ForwardIterator1 pat_last,
BinaryPredicate pred = BinaryPredicate());

template<class ForwardIterator2>
constexpr pair<ForwardIterator2, ForwardIterator2>

operator()(ForwardIterator2 first, ForwardIterator2 last) const;

private:
ForwardIterator1 pat_first_; // exposition only
ForwardIterator1 pat_last_; // exposition only
BinaryPredicate pred_; // exposition only

};
}

constexpr default_searcher(ForwardIterator1 pat_first, ForwardIterator1 pat_last,
BinaryPredicate pred = BinaryPredicate());

1 Effects: Constructs a default_searcher object, initializing pat_first_ with pat_first, pat_last_
with pat_last, and pred_ with pred.

2 Throws: Any exception thrown by the copy constructor of BinaryPredicate or ForwardIterator1.

template<class ForwardIterator2>
constexpr pair<ForwardIterator2, ForwardIterator2>

operator()(ForwardIterator2 first, ForwardIterator2 last) const;

3 Effects: Returns a pair of iterators i and j such that
—(3.1) i == search(first, last, pat_first_, pat_last_, pred_), and
—(3.2) if i == last, then j == last, otherwise j == next(i, distance(pat_first_, pat_last_)).

22.10.18.3 Class template boyer_moore_searcher [func.search.bm]
namespace std {

template<class RandomAccessIterator1,
class Hash = hash<typename iterator_traits<RandomAccessIterator1>::value_type>,
class BinaryPredicate = equal_to<>>

class boyer_moore_searcher {
public:

boyer_moore_searcher(RandomAccessIterator1 pat_first,
RandomAccessIterator1 pat_last,
Hash hf = Hash(),
BinaryPredicate pred = BinaryPredicate());

template<class RandomAccessIterator2>
pair<RandomAccessIterator2, RandomAccessIterator2>

operator()(RandomAccessIterator2 first, RandomAccessIterator2 last) const;

private:
RandomAccessIterator1 pat_first_; // exposition only
RandomAccessIterator1 pat_last_; // exposition only
Hash hash_; // exposition only
BinaryPredicate pred_; // exposition only

};
}

§ 22.10.18.3 786



© ISO/IEC N4950

boyer_moore_searcher(RandomAccessIterator1 pat_first,
RandomAccessIterator1 pat_last,
Hash hf = Hash(),
BinaryPredicate pred = BinaryPredicate());

1 Preconditions: The value type of RandomAccessIterator1 meets the Cpp17DefaultConstructible, the
Cpp17CopyConstructible, and the Cpp17CopyAssignable requirements.

2 Let V be iterator_traits<RandomAccessIterator1>::value_type. For any two values A and B of
type V, if pred(A, B) == true, then hf(A) == hf(B) is true.

3 Effects: Initializes pat_first_ with pat_first, pat_last_ with pat_last, hash_ with hf, and pred_
with pred.

4 Throws: Any exception thrown by the copy constructor of RandomAccessIterator1, or by the default
constructor, copy constructor, or the copy assignment operator of the value type of RandomAccess-
Iterator1, or the copy constructor or operator() of BinaryPredicate or Hash. May throw bad_alloc
if additional memory needed for internal data structures cannot be allocated.

template<class RandomAccessIterator2>
pair<RandomAccessIterator2, RandomAccessIterator2>

operator()(RandomAccessIterator2 first, RandomAccessIterator2 last) const;

5 Mandates: RandomAccessIterator1 and RandomAccessIterator2 have the same value type.
6 Effects: Finds a subsequence of equal values in a sequence.
7 Returns: A pair of iterators i and j such that

—(7.1) i is the first iterator in the range [first, last - (pat_last_ - pat_first_)) such that for
every non-negative integer n less than pat_last_ - pat_first_ the following condition holds:
pred(*(i + n), *(pat_first_ + n)) != false, and

—(7.2) j == next(i, distance(pat_first_, pat_last_)).
Returns make_pair(first, first) if [pat_first_, pat_last_) is empty, otherwise returns make_-
pair(last, last) if no such iterator is found.

8 Complexity: At most (last - first) * (pat_last_ - pat_first_) applications of the predicate.

22.10.18.4 Class template boyer_moore_horspool_searcher [func.search.bmh]
namespace std {

template<class RandomAccessIterator1,
class Hash = hash<typename iterator_traits<RandomAccessIterator1>::value_type>,
class BinaryPredicate = equal_to<>>

class boyer_moore_horspool_searcher {
public:

boyer_moore_horspool_searcher(RandomAccessIterator1 pat_first,
RandomAccessIterator1 pat_last,
Hash hf = Hash(),
BinaryPredicate pred = BinaryPredicate());

template<class RandomAccessIterator2>
pair<RandomAccessIterator2, RandomAccessIterator2>

operator()(RandomAccessIterator2 first, RandomAccessIterator2 last) const;

private:
RandomAccessIterator1 pat_first_; // exposition only
RandomAccessIterator1 pat_last_; // exposition only
Hash hash_; // exposition only
BinaryPredicate pred_; // exposition only

};
}

boyer_moore_horspool_searcher(RandomAccessIterator1 pat_first,
RandomAccessIterator1 pat_last,
Hash hf = Hash(),
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BinaryPredicate pred = BinaryPredicate());

1 Preconditions: The value type of RandomAccessIterator1 meets the Cpp17DefaultConstructible,
Cpp17CopyConstructible, and Cpp17CopyAssignable requirements.

2 Let V be iterator_traits<RandomAccessIterator1>::value_type. For any two values A and B of
type V, if pred(A, B) == true, then hf(A) == hf(B) is true.

3 Effects: Initializes pat_first_ with pat_first, pat_last_ with pat_last, hash_ with hf, and pred_
with pred.

4 Throws: Any exception thrown by the copy constructor of RandomAccessIterator1, or by the default
constructor, copy constructor, or the copy assignment operator of the value type of RandomAccess-
Iterator1, or the copy constructor or operator() of BinaryPredicate or Hash. May throw bad_alloc
if additional memory needed for internal data structures cannot be allocated.

template<class RandomAccessIterator2>
pair<RandomAccessIterator2, RandomAccessIterator2>

operator()(RandomAccessIterator2 first, RandomAccessIterator2 last) const;

5 Mandates: RandomAccessIterator1 and RandomAccessIterator2 have the same value type.
6 Effects: Finds a subsequence of equal values in a sequence.
7 Returns: A pair of iterators i and j such that

—(7.1) i is the first iterator in the range [first, last - (pat_last_ - pat_first_)) such that for
every non-negative integer n less than pat_last_ - pat_first_ the following condition holds:
pred(*(i + n), *(pat_first_ + n)) != false, and

—(7.2) j == next(i, distance(pat_first_, pat_last_)).
Returns make_pair(first, first) if [pat_first_, pat_last_) is empty, otherwise returns make_-
pair(last, last) if no such iterator is found.

8 Complexity: At most (last - first) * (pat_last_ - pat_first_) applications of the predicate.

22.10.19 Class template hash [unord.hash]
1 The unordered associative containers defined in 24.5 use specializations of the class template hash (22.10.2)

as the default hash function.
2 Each specialization of hash is either enabled or disabled, as described below.

[Note 1 : Enabled specializations meet the Cpp17Hash requirements, and disabled specializations do not. — end note ]

Each header that declares the template hash provides enabled specializations of hash for nullptr_t and all
cv-unqualified arithmetic, enumeration, and pointer types. For any type Key for which neither the library
nor the user provides an explicit or partial specialization of the class template hash, hash<Key> is disabled.

3 If the library provides an explicit or partial specialization of hash<Key>, that specialization is enabled except
as noted otherwise, and its member functions are noexcept except as noted otherwise.

4 If H is a disabled specialization of hash, these values are false: is_default_constructible_v<H>, is_-
copy_constructible_v<H>, is_move_constructible_v<H>, is_copy_assignable_v<H>, and is_move_-
assignable_v<H>. Disabled specializations of hash are not function object types (22.10).
[Note 2 : This means that the specialization of hash exists, but any attempts to use it as a Cpp17Hash will be
ill-formed. — end note ]

5 An enabled specialization hash<Key> will:
—(5.1) meet the Cpp17Hash requirements (Table 37), with Key as the function call argument type, the

Cpp17DefaultConstructible requirements (Table 30), the Cpp17CopyAssignable requirements (Table 34),
the Cpp17Swappable requirements (16.4.4.3),

—(5.2) meet the requirement that if k1 == k2 is true, h(k1) == h(k2) is also true, where h is an object of
type hash<Key> and k1 and k2 are objects of type Key;

—(5.3) meet the requirement that the expression h(k), where h is an object of type hash<Key> and k is an
object of type Key, shall not throw an exception unless hash<Key> is a program-defined specialization.
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22.11 Class type_index [type.index]
22.11.1 Header <typeindex> synopsis [type.index.synopsis]

#include <compare> // see 17.11.1

namespace std {
class type_index;
template<class T> struct hash;
template<> struct hash<type_index>;

}

22.11.2 type_index overview [type.index.overview]
namespace std {

class type_index {
public:

type_index(const type_info& rhs) noexcept;
bool operator==(const type_index& rhs) const noexcept;
bool operator< (const type_index& rhs) const noexcept;
bool operator> (const type_index& rhs) const noexcept;
bool operator<=(const type_index& rhs) const noexcept;
bool operator>=(const type_index& rhs) const noexcept;
strong_ordering operator<=>(const type_index& rhs) const noexcept;
size_t hash_code() const noexcept;
const char* name() const noexcept;

private:
const type_info* target; // exposition only
// Note that the use of a pointer here, rather than a reference,
// means that the default copy/move constructor and assignment
// operators will be provided and work as expected.

};
}

1 The class type_index provides a simple wrapper for type_info which can be used as an index type in
associative containers (24.4) and in unordered associative containers (24.5).

22.11.3 type_index members [type.index.members]
type_index(const type_info& rhs) noexcept;

1 Effects: Constructs a type_index object, the equivalent of target = &rhs.

bool operator==(const type_index& rhs) const noexcept;

2 Returns: *target == *rhs.target.

bool operator<(const type_index& rhs) const noexcept;

3 Returns: target->before(*rhs.target).

bool operator>(const type_index& rhs) const noexcept;

4 Returns: rhs.target->before(*target).

bool operator<=(const type_index& rhs) const noexcept;

5 Returns: !rhs.target->before(*target).

bool operator>=(const type_index& rhs) const noexcept;

6 Returns: !target->before(*rhs.target).

strong_ordering operator<=>(const type_index& rhs) const noexcept;

7 Effects: Equivalent to:
if (*target == *rhs.target) return strong_ordering::equal;
if (target->before(*rhs.target)) return strong_ordering::less;
return strong_ordering::greater;
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size_t hash_code() const noexcept;

8 Returns: target->hash_code().

const char* name() const noexcept;

9 Returns: target->name().

22.11.4 Hash support [type.index.hash]
template<> struct hash<type_index>;

1 For an object index of type type_index, hash<type_index>()(index) shall evaluate to the same
result as index.hash_code().

22.12 Execution policies [execpol]
22.12.1 In general [execpol.general]

1 Subclause 22.12 describes classes that are execution policy types. An object of an execution policy type
indicates the kinds of parallelism allowed in the execution of an algorithm and expresses the consequent
requirements on the element access functions.
[Example 1 :

using namespace std;
vector<int> v = /* ... */;

// standard sequential sort
sort(v.begin(), v.end());

// explicitly sequential sort
sort(execution::seq, v.begin(), v.end());

// permitting parallel execution
sort(execution::par, v.begin(), v.end());

// permitting vectorization as well
sort(execution::par_unseq, v.begin(), v.end());

— end example ]
[Note 1 : Implementations can provide additional execution policies to those described in this standard as extensions
to address parallel architectures that require idiosyncratic parameters for efficient execution. — end note ]

22.12.2 Header <execution> synopsis [execution.syn]
namespace std {

// 22.12.3, execution policy type trait
template<class T> struct is_execution_policy;
template<class T> constexpr bool is_execution_policy_v = is_execution_policy<T>::value;

}

namespace std::execution {
// 22.12.4, sequenced execution policy
class sequenced_policy;

// 22.12.5, parallel execution policy
class parallel_policy;

// 22.12.6, parallel and unsequenced execution policy
class parallel_unsequenced_policy;

// 22.12.7, unsequenced execution policy
class unsequenced_policy;

// 22.12.8, execution policy objects
inline constexpr sequenced_policy seq{ unspecified };
inline constexpr parallel_policy par{ unspecified };
inline constexpr parallel_unsequenced_policy par_unseq{ unspecified };
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inline constexpr unsequenced_policy unseq{ unspecified };
}

22.12.3 Execution policy type trait [execpol.type]
template<class T> struct is_execution_policy { see below };

1 is_execution_policy can be used to detect execution policies for the purpose of excluding function
signatures from otherwise ambiguous overload resolution participation.

2 is_execution_policy<T> is a Cpp17UnaryTypeTrait with a base characteristic of true_type if T is
the type of a standard or implementation-defined execution policy, otherwise false_type.
[Note 1 : This provision reserves the privilege of creating non-standard execution policies to the library
implementation. — end note ]

3 The behavior of a program that adds specializations for is_execution_policy is undefined.

22.12.4 Sequenced execution policy [execpol.seq]
class execution::sequenced_policy { unspecified };

1 The class execution::sequenced_policy is an execution policy type used as a unique type to disam-
biguate parallel algorithm overloading and require that a parallel algorithm’s execution may not be
parallelized.

2 During the execution of a parallel algorithm with the execution::sequenced_policy policy, if the
invocation of an element access function exits via an exception, terminate is invoked (14.6.2).

22.12.5 Parallel execution policy [execpol.par]
class execution::parallel_policy { unspecified };

1 The class execution::parallel_policy is an execution policy type used as a unique type to dis-
ambiguate parallel algorithm overloading and indicate that a parallel algorithm’s execution may be
parallelized.

2 During the execution of a parallel algorithm with the execution::parallel_policy policy, if the
invocation of an element access function exits via an exception, terminate is invoked (14.6.2).

22.12.6 Parallel and unsequenced execution policy [execpol.parunseq]
class execution::parallel_unsequenced_policy { unspecified };

1 The class execution::parallel_unsequenced_policy is an execution policy type used as a unique
type to disambiguate parallel algorithm overloading and indicate that a parallel algorithm’s execution
may be parallelized and vectorized.

2 During the execution of a parallel algorithm with the execution::parallel_unsequenced_policy
policy, if the invocation of an element access function exits via an exception, terminate is invoked
(14.6.2).

22.12.7 Unsequenced execution policy [execpol.unseq]
class execution::unsequenced_policy { unspecified };

1 The class unsequenced_policy is an execution policy type used as a unique type to disambiguate parallel
algorithm overloading and indicate that a parallel algorithm’s execution may be vectorized, e.g., executed on
a single thread using instructions that operate on multiple data items.

2 During the execution of a parallel algorithm with the execution::unsequenced_policy policy, if the
invocation of an element access function exits via an exception, terminate is invoked (14.6.2).

22.12.8 Execution policy objects [execpol.objects]
inline constexpr execution::sequenced_policy execution::seq{ unspecified };
inline constexpr execution::parallel_policy execution::par{ unspecified };
inline constexpr execution::parallel_unsequenced_policy execution::par_unseq{ unspecified };
inline constexpr execution::unsequenced_policy execution::unseq{ unspecified };

1 The header <execution> declares global objects associated with each type of execution policy.
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22.13 Primitive numeric conversions [charconv]
22.13.1 Header <charconv> synopsis [charconv.syn]

1 When a function is specified with a type placeholder of integer-type , the implementation provides overloads
for all cv-unqualified signed and unsigned integer types and char in lieu of integer-type . When a function
is specified with a type placeholder of floating-point-type , the implementation provides overloads for all
cv-unqualified floating-point types (6.8.2) in lieu of floating-point-type .

namespace std {
// floating-point format for primitive numerical conversion
enum class chars_format {

scientific = unspecified ,
fixed = unspecified ,
hex = unspecified ,
general = fixed | scientific

};

// 22.13.2, primitive numerical output conversion
struct to_chars_result {

char* ptr;
errc ec;
friend bool operator==(const to_chars_result&, const to_chars_result&) = default;

};

constexpr to_chars_result to_chars(char* first, char* last, integer-type value, int base = 10);
to_chars_result to_chars(char* first, char* last, bool value, int base = 10) = delete;

to_chars_result to_chars(char* first, char* last, floating-point-type value);
to_chars_result to_chars(char* first, char* last, floating-point-type value, chars_format fmt);
to_chars_result to_chars(char* first, char* last, floating-point-type value,

chars_format fmt, int precision);

// 22.13.3, primitive numerical input conversion
struct from_chars_result {

const char* ptr;
errc ec;
friend bool operator==(const from_chars_result&, const from_chars_result&) = default;

};

constexpr from_chars_result from_chars(const char* first, const char* last,
integer-type & value, int base = 10);

from_chars_result from_chars(const char* first, const char* last, floating-point-type & value,
chars_format fmt = chars_format::general);

}

2 The type chars_format is a bitmask type (16.3.3.3.3) with elements scientific, fixed, and hex.
3 The types to_chars_result and from_chars_result have the data members and special members specified

above. They have no base classes or members other than those specified.

22.13.2 Primitive numeric output conversion [charconv.to.chars]
1 All functions named to_chars convert value into a character string by successively filling the range

[first, last), where [first, last) is required to be a valid range. If the member ec of the return value
is such that the value is equal to the value of a value-initialized errc, the conversion was successful and
the member ptr is the one-past-the-end pointer of the characters written. Otherwise, the member ec has
the value errc::value_too_large, the member ptr has the value last, and the contents of the range
[first, last) are unspecified.

2 The functions that take a floating-point value but not a precision parameter ensure that the string
representation consists of the smallest number of characters such that there is at least one digit before the
radix point (if present) and parsing the representation using the corresponding from_chars function recovers
value exactly.
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[Note 1 : This guarantee applies only if to_chars and from_chars are executed on the same implementation. — end
note ]

If there are several such representations, the representation with the smallest difference from the floating-
point argument value is chosen, resolving any remaining ties using rounding according to round_to_-
nearest (17.3.4).

3 The functions taking a chars_format parameter determine the conversion specifier for printf as follows:
The conversion specifier is f if fmt is chars_format::fixed, e if fmt is chars_format::scientific, a
(without leading "0x" in the result) if fmt is chars_format::hex, and g if fmt is chars_format::general.

constexpr to_chars_result to_chars(char* first, char* last, integer-type value, int base = 10);

4 Preconditions: base has a value between 2 and 36 (inclusive).
5 Effects: The value of value is converted to a string of digits in the given base (with no redundant

leading zeroes). Digits in the range 10..35 (inclusive) are represented as lowercase characters a..z. If
value is less than zero, the representation starts with ’-’.

6 Throws: Nothing.

to_chars_result to_chars(char* first, char* last, floating-point-type value);

7 Effects: value is converted to a string in the style of printf in the "C" locale. The conversion specifier
is f or e, chosen according to the requirement for a shortest representation (see above); a tie is resolved
in favor of f.

8 Throws: Nothing.

to_chars_result to_chars(char* first, char* last, floating-point-type value, chars_format fmt);

9 Preconditions: fmt has the value of one of the enumerators of chars_format.
10 Effects: value is converted to a string in the style of printf in the "C" locale.
11 Throws: Nothing.

to_chars_result to_chars(char* first, char* last, floating-point-type value,
chars_format fmt, int precision);

12 Preconditions: fmt has the value of one of the enumerators of chars_format.
13 Effects: value is converted to a string in the style of printf in the "C" locale with the given precision.
14 Throws: Nothing.

See also: ISO/IEC 9899:2018, 7.21.6.1

22.13.3 Primitive numeric input conversion [charconv.from.chars]
1 All functions named from_chars analyze the string [first, last) for a pattern, where [first, last) is

required to be a valid range. If no characters match the pattern, value is unmodified, the member ptr of
the return value is first and the member ec is equal to errc::invalid_argument.
[Note 1 : If the pattern allows for an optional sign, but the string has no digit characters following the sign, no
characters match the pattern. — end note ]

Otherwise, the characters matching the pattern are interpreted as a representation of a value of the type of
value. The member ptr of the return value points to the first character not matching the pattern, or has
the value last if all characters match. If the parsed value is not in the range representable by the type of
value, value is unmodified and the member ec of the return value is equal to errc::result_out_of_range.
Otherwise, value is set to the parsed value, after rounding according to round_to_nearest (17.3.4), and
the member ec is value-initialized.

constexpr from_chars_result from_chars(const char* first, const char* last,
integer-type & value, int base = 10);

2 Preconditions: base has a value between 2 and 36 (inclusive).
3 Effects: The pattern is the expected form of the subject sequence in the "C" locale for the given nonzero

base, as described for strtol, except that no "0x" or "0X" prefix shall appear if the value of base is
16, and except that ’-’ is the only sign that may appear, and only if value has a signed type.

4 Throws: Nothing.
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from_chars_result from_chars(const char* first, const char* last, floating-point-type & value,
chars_format fmt = chars_format::general);

5 Preconditions: fmt has the value of one of the enumerators of chars_format.
6 Effects: The pattern is the expected form of the subject sequence in the "C" locale, as described for

strtod, except that
—(6.1) the sign ’+’ may only appear in the exponent part;
—(6.2) if fmt has chars_format::scientific set but not chars_format::fixed, the otherwise optional

exponent part shall appear;
—(6.3) if fmt has chars_format::fixed set but not chars_format::scientific, the optional exponent

part shall not appear; and
—(6.4) if fmt is chars_format::hex, the prefix "0x" or "0X" is assumed.

[Example 1 : The string 0x123 is parsed to have the value 0 with remaining characters x123. — end
example ]

In any case, the resulting value is one of at most two floating-point values closest to the value of the
string matching the pattern.

7 Throws: Nothing.
See also: ISO/IEC 9899:2018, 7.22.1.3, 7.22.1.4

22.14 Formatting [format]
22.14.1 Header <format> synopsis [format.syn]

namespace std {
// 22.14.6.6, class template basic_format_context
template<class Out, class charT> class basic_format_context;
using format_context = basic_format_context<unspecified , char>;
using wformat_context = basic_format_context<unspecified , wchar_t>;

// 22.14.8.3, class template basic_format_args
template<class Context> class basic_format_args;
using format_args = basic_format_args<format_context>;
using wformat_args = basic_format_args<wformat_context>;

// 22.14.4, class template basic_format_string
template<class charT, class... Args>

struct basic_format_string;

template<class... Args>
using format_string = basic_format_string<char, type_identity_t<Args>...>;

template<class... Args>
using wformat_string = basic_format_string<wchar_t, type_identity_t<Args>...>;

// 22.14.5, formatting functions
template<class... Args>

string format(format_string<Args...> fmt, Args&&... args);
template<class... Args>

wstring format(wformat_string<Args...> fmt, Args&&... args);
template<class... Args>

string format(const locale& loc, format_string<Args...> fmt, Args&&... args);
template<class... Args>

wstring format(const locale& loc, wformat_string<Args...> fmt, Args&&... args);

string vformat(string_view fmt, format_args args);
wstring vformat(wstring_view fmt, wformat_args args);
string vformat(const locale& loc, string_view fmt, format_args args);
wstring vformat(const locale& loc, wstring_view fmt, wformat_args args);

template<class Out, class... Args>
Out format_to(Out out, format_string<Args...> fmt, Args&&... args);
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template<class Out, class... Args>
Out format_to(Out out, wformat_string<Args...> fmt, Args&&... args);

template<class Out, class... Args>
Out format_to(Out out, const locale& loc, format_string<Args...> fmt, Args&&... args);

template<class Out, class... Args>
Out format_to(Out out, const locale& loc, wformat_string<Args...> fmt, Args&&... args);

template<class Out>
Out vformat_to(Out out, string_view fmt, format_args args);

template<class Out>
Out vformat_to(Out out, wstring_view fmt, wformat_args args);

template<class Out>
Out vformat_to(Out out, const locale& loc, string_view fmt, format_args args);

template<class Out>
Out vformat_to(Out out, const locale& loc, wstring_view fmt, wformat_args args);

template<class Out> struct format_to_n_result {
Out out;
iter_difference_t<Out> size;

};
template<class Out, class... Args>

format_to_n_result<Out> format_to_n(Out out, iter_difference_t<Out> n,
format_string<Args...> fmt, Args&&... args);

template<class Out, class... Args>
format_to_n_result<Out> format_to_n(Out out, iter_difference_t<Out> n,

wformat_string<Args...> fmt, Args&&... args);
template<class Out, class... Args>

format_to_n_result<Out> format_to_n(Out out, iter_difference_t<Out> n,
const locale& loc, format_string<Args...> fmt,
Args&&... args);

template<class Out, class... Args>
format_to_n_result<Out> format_to_n(Out out, iter_difference_t<Out> n,

const locale& loc, wformat_string<Args...> fmt,
Args&&... args);

template<class... Args>
size_t formatted_size(format_string<Args...> fmt, Args&&... args);

template<class... Args>
size_t formatted_size(wformat_string<Args...> fmt, Args&&... args);

template<class... Args>
size_t formatted_size(const locale& loc, format_string<Args...> fmt, Args&&... args);

template<class... Args>
size_t formatted_size(const locale& loc, wformat_string<Args...> fmt, Args&&... args);

// 22.14.6, formatter
template<class T, class charT = char> struct formatter;

// 22.14.6.2, concept formattable
template<class T, class charT>

concept formattable = see below ;

template<class R, class charT>
concept const-formattable-range = // exposition only

ranges::input_range<const R> &&
formattable<ranges::range_reference_t<const R>, charT>;

template<class R, class charT>
using fmt-maybe-const = // exposition only

conditional_t<const-formattable-range <R, charT>, const R, R>;

// 22.14.6.5, class template basic_format_parse_context
template<class charT> class basic_format_parse_context;
using format_parse_context = basic_format_parse_context<char>;
using wformat_parse_context = basic_format_parse_context<wchar_t>;

§ 22.14.1 795



© ISO/IEC N4950

// 22.14.7, formatting of ranges
// 22.14.7.1, variable template format_kind
enum class range_format {

disabled,
map,
set,
sequence,
string,
debug_string

};

template<class R>
constexpr unspecified format_kind = unspecified ;

template<ranges::input_range R>
requires same_as<R, remove_cvref_t<R>>

constexpr range_format format_kind<R> = see below ;

// 22.14.7.2, class template range_formatter
template<class T, class charT = char>

requires same_as<remove_cvref_t<T>, T> && formattable<T, charT>
class range_formatter;

// 22.14.7.3, class template range-default-formatter
template<range_format K, ranges::input_range R, class charT>

struct range-default-formatter ; // exposition only

// 22.14.7.4, 22.14.7.5, 22.14.7.6, specializations for maps, sets, and strings
template<ranges::input_range R, class charT>

requires (format_kind<R> != range_format::disabled) &&
formattable<ranges::range_reference_t<R>, charT>

struct formatter<R, charT> : range-default-formatter <format_kind<R>, R, charT> { };

// 22.14.8, arguments
// 22.14.8.1, class template basic_format_arg
template<class Context> class basic_format_arg;

template<class Visitor, class Context>
decltype(auto) visit_format_arg(Visitor&& vis, basic_format_arg<Context> arg);

// 22.14.8.2, class template format-arg-store
template<class Context, class... Args> class format-arg-store; // exposition only

template<class Context = format_context, class... Args>
format-arg-store <Context, Args...>

make_format_args(Args&&... fmt_args);
template<class... Args>

format-arg-store <wformat_context, Args...>
make_wformat_args(Args&&... args);

// 22.14.10, class format_error
class format_error;

}

1 The class template format_to_n_result has the template parameters, data members, and special members
specified above. It has no base classes or members other than those specified.

22.14.2 Format string [format.string]
22.14.2.1 In general [format.string.general]

1 A format string for arguments args is a (possibly empty) sequence of replacement fields, escape sequences,
and characters other than { and }. Let charT be the character type of the format string. Each character
that is not part of a replacement field or an escape sequence is copied unchanged to the output. An escape
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sequence is one of {{ or }}. It is replaced with { or }, respectively, in the output. The syntax of replacement
fields is as follows:

replacement-field :
{ arg-idopt format-specifieropt }

arg-id :
0
positive-integer

positive-integer :
nonzero-digit
positive-integer digit

nonnegative-integer :
digit
nonnegative-integer digit

nonzero-digit : one of
1 2 3 4 5 6 7 8 9

digit : one of
0 1 2 3 4 5 6 7 8 9

format-specifier :
: format-spec

format-spec :
as specified by the formatter specialization for the argument type

2 The arg-id field specifies the index of the argument in args whose value is to be formatted and inserted
into the output instead of the replacement field. If there is no argument with the index arg-id in args, the
string is not a format string for args. The optional format-specifier field explicitly specifies a format for the
replacement value.

3 [Example 1 :
string s = format("{0}-{{", 8); // value of s is "8-{"

— end example ]
4 If all arg-ids in a format string are omitted (including those in the format-spec, as interpreted by the

corresponding formatter specialization), argument indices 0, 1, 2, . . . will automatically be used in that
order. If some arg-ids are omitted and some are present, the string is not a format string.
[Note 1 : A format string cannot contain a mixture of automatic and manual indexing. — end note ]
[Example 2 :

string s0 = format("{} to {}", "a", "b"); // OK, automatic indexing
string s1 = format("{1} to {0}", "a", "b"); // OK, manual indexing
string s2 = format("{0} to {}", "a", "b"); // not a format string (mixing automatic and manual indexing),

// ill-formed
string s3 = format("{} to {1}", "a", "b"); // not a format string (mixing automatic and manual indexing),

// ill-formed
— end example ]

5 The format-spec field contains format specifications that define how the value should be presented. Each
type can define its own interpretation of the format-spec field. If format-spec does not conform to the format
specifications for the argument type referred to by arg-id , the string is not a format string for args.
[Example 3 :

—(5.1) For arithmetic, pointer, and string types the format-spec is interpreted as a std-format-spec as described
in (22.14.2.2).

—(5.2) For chrono types the format-spec is interpreted as a chrono-format-spec as described in (29.12).
—(5.3) For user-defined formatter specializations, the behavior of the parse member function determines how the

format-spec is interpreted.
— end example ]
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22.14.2.2 Standard format specifiers [format.string.std]
1 Each formatter specialization described in 22.14.6.3 for fundamental and string types interprets format-spec

as a std-format-spec.
[Note 1 : The format specification can be used to specify such details as minimum field width, alignment, padding,
and decimal precision. Some of the formatting options are only supported for arithmetic types. — end note ]

The syntax of format specifications is as follows:
std-format-spec :

fill-and-alignopt signopt #opt 0opt widthopt precisionopt Lopt typeopt

fill-and-align :
fillopt align

fill :
any character other than { or }

align : one of
< > ^

sign : one of
+ - space

width :
positive-integer
{ arg-idopt }

precision :
. nonnegative-integer
. { arg-idopt }

type : one of
a A b B c d e E f F g G o p s x X ?

2 Field widths are specified in field width units; the number of column positions required to display a sequence
of characters in a terminal. The minimum field width is the number of field width units a replacement field
minimally requires of the formatted sequence of characters produced for a format argument. The estimated
field width is the number of field width units that are required for the formatted sequence of characters
produced for a format argument independent of the effects of the width option. The padding width is the
greater of 0 and the difference of the minimum field width and the estimated field width.
[Note 2 : The POSIX wcswidth function is an example of a function that, given a string, returns the number of column
positions required by a terminal to display the string. — end note ]

3 The fill character is the character denoted by the fill option or, if the fill option is absent, the space character.
For a format specification in UTF-8, UTF-16, or UTF-32, the fill character corresponds to a single Unicode
scalar value.
[Note 3 : The presence of a fill option is signaled by the character following it, which must be one of the alignment
options. If the second character of std-format-spec is not a valid alignment option, then it is assumed that the fill and
align options are both absent. — end note ]

4 The align option applies to all argument types. The meaning of the various alignment options is as specified
in Table 65.
[Example 1 :

char c = 120;
string s0 = format("{:6}", 42); // value of s0 is " 42"
string s1 = format("{:6}", 'x'); // value of s1 is "x "
string s2 = format("{:*<6}", 'x'); // value of s2 is "x*****"
string s3 = format("{:*>6}", 'x'); // value of s3 is "*****x"
string s4 = format("{:*^6}", 'x'); // value of s4 is "**x***"
string s5 = format("{:6d}", c); // value of s5 is " 120"
string s6 = format("{:6}", true); // value of s6 is "true "
string s7 = format("{:*<6.3}", "123456"); // value of s7 is "123***"
string s8 = format("{:02}", 1234); // value of s8 is "1234"
string s9 = format("{:*<}", "12"); // value of s9 is "12"
string sA = format("{:*<6}", "12345678"); // value of sA is "12345678"
string sB = format("{: ^6}", "x"); // value of sB is " x "
string sC = format("{:*^6}", " "); // value of sC is " "

§ 22.14.2.2 798



© ISO/IEC N4950

— end example ]
[Note 4 : The fill , align, and 0 options have no effect when the minimum field width is not greater than the estimated
field width because padding width is 0 in that case. Since fill characters are assumed to have a field width of 1, use of
a character with a different field width can produce misaligned output. The (u+1f921 clown face) character has
a field width of 2. The examples above that include that character illustrate the effect of the field width when that
character is used as a fill character as opposed to when it is used as a formatting argument. — end note ]

Table 65: Meaning of align options [tab:format.align]

Option Meaning
< Forces the formatted argument to be aligned to the start of the field by inserting n

fill characters after the formatted argument where n is the padding width. This is
the default for non-arithmetic non-pointer types, charT, and bool, unless an integer
presentation type is specified.

> Forces the formatted argument to be aligned to the end of the field by inserting n fill
characters before the formatted argument where n is the padding width. This is the
default for arithmetic types other than charT and bool, pointer types, or when an
integer presentation type is specified.

^ Forces the formatted argument to be centered within the field by inserting
⌊

n
2
⌋

fill
characters before and

⌈
n
2
⌉

fill characters after the formatted argument, where n is the
padding width.

5 The sign option is only valid for arithmetic types other than charT and bool or when an integer presentation
type is specified. The meaning of the various options is as specified in Table 66.

Table 66: Meaning of sign options [tab:format.sign]

Option Meaning
+ Indicates that a sign should be used for both non-negative and negative numbers. The

+ sign is inserted before the output of to_chars for non-negative numbers other than
negative zero.
[Note 5 : For negative numbers and negative zero the output of to_chars will already contain
the sign so no additional transformation is performed. — end note ]

- Indicates that a sign should be used for negative numbers and negative zero only (this
is the default behavior).

space Indicates that a leading space should be used for non-negative numbers other than
negative zero, and a minus sign for negative numbers and negative zero.

6 The sign option applies to floating-point infinity and NaN.
[Example 2 :

double inf = numeric_limits<double>::infinity();
double nan = numeric_limits<double>::quiet_NaN();
string s0 = format("{0:},{0:+},{0:-},{0: }", 1); // value of s0 is "1,+1,1, 1"
string s1 = format("{0:},{0:+},{0:-},{0: }", -1); // value of s1 is "-1,-1,-1,-1"
string s2 = format("{0:},{0:+},{0:-},{0: }", inf); // value of s2 is "inf,+inf,inf, inf"
string s3 = format("{0:},{0:+},{0:-},{0: }", nan); // value of s3 is "nan,+nan,nan, nan"

— end example ]
7 The # option causes the alternate form to be used for the conversion. This option is valid for arithmetic types

other than charT and bool or when an integer presentation type is specified, and not otherwise. For integral
types, the alternate form inserts the base prefix (if any) specified in Table 68 into the output after the sign
character (possibly space) if there is one, or before the output of to_chars otherwise. For floating-point
types, the alternate form causes the result of the conversion of finite values to always contain a decimal-point
character, even if no digits follow it. Normally, a decimal-point character appears in the result of these
conversions only if a digit follows it. In addition, for g and G conversions, trailing zeros are not removed from
the result.

8 The 0 option is valid for arithmetic types other than charT and bool or when an integer presentation type is
specified. For formatting arguments that have a value other than an infinity or a NaN, this option pads the
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formatted argument by inserting the 0 character n times following the sign or base prefix indicators (if any)
where n is 0 if the align option is present and is the padding width otherwise.
[Example 3 :

char c = 120;
string s1 = format("{:+06d}", c); // value of s1 is "+00120"
string s2 = format("{:#06x}", 0xa); // value of s2 is "0x000a"
string s3 = format("{:<06}", -42); // value of s3 is "-42 " (0 has no effect)
string s4 = format("{:06}", inf); // value of s4 is " inf" (0 has no effect)

— end example ]
9 The width option specifies the minimum field width. If the width option is absent, the minimum field width

is 0.
10 If { arg-idopt } is used in a width or precision option, the value of the corresponding formatting argument

is used as the value of the option. If the corresponding formatting argument is not of standard signed or
unsigned integer type, or its value is negative, an exception of type format_error is thrown.

11 If positive-integer is used in a width option, the value of the positive-integer is interpreted as a decimal integer
and used as the value of the option.

12 For the purposes of width computation, a string is assumed to be in a locale-independent, implementation-
defined encoding. Implementations should use either UTF-8, UTF-16, or UTF-32, on platforms capable of
displaying Unicode text in a terminal.
[Note 6 : This is the case for Windows204-based and many POSIX-based operating systems. — end note ]

13 For a sequence of characters in UTF-8, UTF-16, or UTF-32, an implementation should use as its field width
the sum of the field widths of the first code point of each extended grapheme cluster. Extended grapheme
clusters are defined by UAX #29 of the Unicode Standard. The following code points have a field width of 2:

—(13.1) any code point with the East_Asian_Width="W" or East_Asian_Width="F" Derived Extracted Property
as described by UAX #44 of the Unicode Standard

—(13.2) u+4dc0 – u+4dff (Yijing Hexagram Symbols)
—(13.3) u+1f300 – u+1f5ff (Miscellaneous Symbols and Pictographs)
—(13.4) u+1f900 – u+1f9ff (Supplemental Symbols and Pictographs)

The field width of all other code points is 1.
14 For a sequence of characters in neither UTF-8, UTF-16, nor UTF-32, the field width is unspecified.
15 The precision option is valid for floating-point and string types. For floating-point types, the value of this

option specifies the precision to be used for the floating-point presentation type. For string types, this option
specifies the longest prefix of the formatted argument to be included in the replacement field such that the
field width of the prefix is no greater than the value of this option.

16 If nonnegative-integer is used in a precision option, the value of the decimal integer is used as the value of the
option.

17 When the L option is used, the form used for the conversion is called the locale-specific form. The L option is
only valid for arithmetic types, and its effect depends upon the type.

—(17.1) For integral types, the locale-specific form causes the context’s locale to be used to insert the appropriate
digit group separator characters.

—(17.2) For floating-point types, the locale-specific form causes the context’s locale to be used to insert the
appropriate digit group and radix separator characters.

—(17.3) For the textual representation of bool, the locale-specific form causes the context’s locale to be used to
insert the appropriate string as if obtained with numpunct::truename or numpunct::falsename.

18 The type determines how the data should be presented.
19 The available string presentation types are specified in Table 67.
20 The meaning of some non-string presentation types is defined in terms of a call to to_chars. In such cases, let

[first, last) be a range large enough to hold the to_chars output and value be the formatting argument

204) Windows® is a registered trademark of Microsoft Corporation. This information is given for the convenience of users of this
document and does not constitute an endorsement by ISO or IEC of this product.
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Table 67: Meaning of type options for strings [tab:format.type.string]

Type Meaning
none, s Copies the string to the output.
? Copies the escaped string (22.14.6.4) to the output.

value. Formatting is done as if by calling to_chars as specified and copying the output through the output
iterator of the format context.
[Note 7 : Additional padding and adjustments are performed prior to copying the output through the output iterator
as specified by the format specifiers. — end note ]

21 The available integer presentation types for integral types other than bool and charT are specified in Table 68.
[Example 4 :

string s0 = format("{}", 42); // value of s0 is "42"
string s1 = format("{0:b} {0:d} {0:o} {0:x}", 42); // value of s1 is "101010 42 52 2a"
string s2 = format("{0:#x} {0:#X}", 42); // value of s2 is "0x2a 0X2A"
string s3 = format("{:L}", 1234); // value of s3 can be "1,234"

// (depending on the locale)
— end example ]

Table 68: Meaning of type options for integer types [tab:format.type.int]

Type Meaning
b to_chars(first, last, value, 2); the base prefix is 0b.
B The same as b, except that the base prefix is 0B.
c Copies the character static_cast<charT>(value) to the output. Throws format_-

error if value is not in the range of representable values for charT.
d to_chars(first, last, value).
o to_chars(first, last, value, 8); the base prefix is 0 if value is nonzero and is

empty otherwise.
x to_chars(first, last, value, 16); the base prefix is 0x.
X The same as x, except that it uses uppercase letters for digits above 9 and the base

prefix is 0X.
none The same as d.

[Note 8 : If the formatting argument type is charT or bool, the default is instead c or s,
respectively. — end note ]

22 The available charT presentation types are specified in Table 69.

Table 69: Meaning of type options for charT [tab:format.type.char]

Type Meaning
none, c Copies the character to the output.
b, B, d, o, x, X As specified in Table 68.
? Copies the escaped character (22.14.6.4) to the output.

23 The available bool presentation types are specified in Table 70.

Table 70: Meaning of type options for bool [tab:format.type.bool]

Type Meaning
none, s Copies textual representation, either true or false, to the output.
b, B, d, o, x, X As specified in Table 68 for the value static_cast<unsigned char>(value).
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24 The available floating-point presentation types and their meanings for values other than infinity and NaN are
specified in Table 71. For lower-case presentation types, infinity and NaN are formatted as inf and nan,
respectively. For upper-case presentation types, infinity and NaN are formatted as INF and NAN, respectively.
[Note 9 : In either case, a sign is included if indicated by the sign option. — end note ]

Table 71: Meaning of type options for floating-point types [tab:format.type.float]

Type Meaning
a If precision is specified, equivalent to

to_chars(first, last, value, chars_format::hex, precision)
where precision is the specified formatting precision; equivalent to

to_chars(first, last, value, chars_format::hex)
otherwise.

A The same as a, except that it uses uppercase letters for digits above 9 and P to indicate
the exponent.

e Equivalent to
to_chars(first, last, value, chars_format::scientific, precision)

where precision is the specified formatting precision, or 6 if precision is not specified.
E The same as e, except that it uses E to indicate exponent.
f, F Equivalent to

to_chars(first, last, value, chars_format::fixed, precision)
where precision is the specified formatting precision, or 6 if precision is not specified.

g Equivalent to
to_chars(first, last, value, chars_format::general, precision)

where precision is the specified formatting precision, or 6 if precision is not specified.
G The same as g, except that it uses E to indicate exponent.
none If precision is specified, equivalent to

to_chars(first, last, value, chars_format::general, precision)
where precision is the specified formatting precision; equivalent to

to_chars(first, last, value)
otherwise.

25 The available pointer presentation types and their mapping to to_chars are specified in Table 72.
[Note 10 : Pointer presentation types also apply to nullptr_t. — end note ]

Table 72: Meaning of type options for pointer types [tab:format.type.ptr]

Type Meaning
none, p If uintptr_t is defined,

to_chars(first, last, reinterpret_cast<uintptr_t>(value), 16)
with the prefix 0x inserted immediately before the output of to_chars; otherwise,
implementation-defined.

22.14.3 Error reporting [format.err.report]
1 Formatting functions throw format_error if an argument fmt is passed that is not a format string for args.

They propagate exceptions thrown by operations of formatter specializations and iterators. Failure to
allocate storage is reported by throwing an exception as described in 16.4.6.13.

22.14.4 Class template basic_format_string [format.fmt.string]
namespace std {

template<class charT, class... Args>
struct basic_format_string {
private:

basic_string_view<charT> str; // exposition only

public:
template<class T> consteval basic_format_string(const T& s);
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constexpr basic_string_view<charT> get() const noexcept { return str ; }
};

}

template<class T> consteval basic_format_string(const T& s);

1 Constraints: const T& models convertible_to<basic_string_view<charT>>.
2 Effects: Direct-non-list-initializes str with s.
3 Remarks: A call to this function is not a core constant expression (7.7) unless there exist args of types

Args such that str is a format string for args.

22.14.5 Formatting functions [format.functions]
1 In the description of the functions, operator + is used for some of the iterator categories for which it does not

have to be defined. In these cases the semantics of a + n are the same as in 27.2.

template<class... Args>
string format(format_string<Args...> fmt, Args&&... args);

2 Effects: Equivalent to:
return vformat(fmt.str , make_format_args(args...));

template<class... Args>
wstring format(wformat_string<Args...> fmt, Args&&... args);

3 Effects: Equivalent to:
return vformat(fmt.str , make_wformat_args(args...));

template<class... Args>
string format(const locale& loc, format_string<Args...> fmt, Args&&... args);

4 Effects: Equivalent to:
return vformat(loc, fmt.str , make_format_args(args...));

template<class... Args>
wstring format(const locale& loc, wformat_string<Args...> fmt, Args&&... args);

5 Effects: Equivalent to:
return vformat(loc, fmt.str , make_wformat_args(args...));

string vformat(string_view fmt, format_args args);
wstring vformat(wstring_view fmt, wformat_args args);
string vformat(const locale& loc, string_view fmt, format_args args);
wstring vformat(const locale& loc, wstring_view fmt, wformat_args args);

6 Returns: A string object holding the character representation of formatting arguments provided by args
formatted according to specifications given in fmt. If present, loc is used for locale-specific formatting.

7 Throws: As specified in 22.14.3.

template<class Out, class... Args>
Out format_to(Out out, format_string<Args...> fmt, Args&&... args);

8 Effects: Equivalent to:
return vformat_to(std::move(out), fmt.str , make_format_args(args...));

template<class Out, class... Args>
Out format_to(Out out, wformat_string<Args...> fmt, Args&&... args);

9 Effects: Equivalent to:
return vformat_to(std::move(out), fmt.str , make_wformat_args(args...));

template<class Out, class... Args>
Out format_to(Out out, const locale& loc, format_string<Args...> fmt, Args&&... args);

10 Effects: Equivalent to:
return vformat_to(std::move(out), loc, fmt.str , make_format_args(args...));
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template<class Out, class... Args>
Out format_to(Out out, const locale& loc, wformat_string<Args...> fmt, Args&&... args);

11 Effects: Equivalent to:
return vformat_to(std::move(out), loc, fmt.str , make_wformat_args(args...));

template<class Out>
Out vformat_to(Out out, string_view fmt, format_args args);

template<class Out>
Out vformat_to(Out out, wstring_view fmt, wformat_args args);

template<class Out>
Out vformat_to(Out out, const locale& loc, string_view fmt, format_args args);

template<class Out>
Out vformat_to(Out out, const locale& loc, wstring_view fmt, wformat_args args);

12 Let charT be decltype(fmt)::value_type.
13 Constraints: Out satisfies output_iterator<const charT&>.
14 Preconditions: Out models output_iterator<const charT&>.
15 Effects: Places the character representation of formatting the arguments provided by args, formatted

according to the specifications given in fmt, into the range [out, out + N), where N is the number of
characters in that character representation. If present, loc is used for locale-specific formatting.

16 Returns: out + N.
17 Throws: As specified in 22.14.3.

template<class Out, class... Args>
format_to_n_result<Out> format_to_n(Out out, iter_difference_t<Out> n,

format_string<Args...> fmt, Args&&... args);
template<class Out, class... Args>

format_to_n_result<Out> format_to_n(Out out, iter_difference_t<Out> n,
wformat_string<Args...> fmt, Args&&... args);

template<class Out, class... Args>
format_to_n_result<Out> format_to_n(Out out, iter_difference_t<Out> n,

const locale& loc, format_string<Args...> fmt,
Args&&... args);

template<class Out, class... Args>
format_to_n_result<Out> format_to_n(Out out, iter_difference_t<Out> n,

const locale& loc, wformat_string<Args...> fmt,
Args&&... args);

18 Let
—(18.1) charT be decltype(fmt.str )::value_type,
—(18.2) N be formatted_size(fmt, args...) for the functions without a loc parameter and formatted_-

size(loc, fmt, args...) for the functions with a loc parameter, and
—(18.3) M be clamp(n, 0, N).

19 Constraints: Out satisfies output_iterator<const charT&>.
20 Preconditions: Out models output_iterator<const charT&>, and formatter<remove_cvref_t<Ti>,

charT> meets the BasicFormatter requirements (22.14.6.1) for each Ti in Args.
21 Effects: Places the first M characters of the character representation of formatting the arguments

provided by args, formatted according to the specifications given in fmt, into the range [out, out +
M). If present, loc is used for locale-specific formatting.

22 Returns: {out + M, N}.
23 Throws: As specified in 22.14.3.

template<class... Args>
size_t formatted_size(format_string<Args...> fmt, Args&&... args);

template<class... Args>
size_t formatted_size(wformat_string<Args...> fmt, Args&&... args);

template<class... Args>
size_t formatted_size(const locale& loc, format_string<Args...> fmt, Args&&... args);
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template<class... Args>
size_t formatted_size(const locale& loc, wformat_string<Args...> fmt, Args&&... args);

24 Let charT be decltype(fmt.str )::value_type.
25 Preconditions: formatter<remove_cvref_t<Ti>, charT> meets the BasicFormatter requirements

(22.14.6.1) for each Ti in Args.
26 Returns: The number of characters in the character representation of formatting arguments args

formatted according to specifications given in fmt. If present, loc is used for locale-specific formatting.
27 Throws: As specified in 22.14.3.

22.14.6 Formatter [format.formatter]
22.14.6.1 Formatter requirements [formatter.requirements]

1 A type F meets the BasicFormatter requirements if it meets the
—(1.1) Cpp17DefaultConstructible (Table 30),
—(1.2) Cpp17CopyConstructible (Table 32),
—(1.3) Cpp17CopyAssignable (Table 34),
—(1.4) Cpp17Swappable (16.4.4.3), and
—(1.5) Cpp17Destructible (Table 35)

requirements, and the expressions shown in Table 73 are valid and have the indicated semantics.
2 A type F meets the Formatter requirements if it meets the BasicFormatter requirements and the expressions

shown in Table 74 are valid and have the indicated semantics.
3 Given character type charT, output iterator type Out, and formatting argument type T, in Table 73 and

Table 74:
—(3.1) f is a value of type (possibly const) F,
—(3.2) g is an lvalue of type F,
—(3.3) u is an lvalue of type T,
—(3.4) t is a value of a type convertible to (possibly const) T,
—(3.5) PC is basic_format_parse_context<charT>,
—(3.6) FC is basic_format_context<Out, charT>,
—(3.7) pc is an lvalue of type PC, and
—(3.8) fc is an lvalue of type FC.

pc.begin() points to the beginning of the format-spec (22.14.2) of the replacement field being formatted in
the format string. If format-spec is empty then either pc.begin() == pc.end() or *pc.begin() == ’}’.

22.14.6.2 Concept formattable [format.formattable]
1 Let fmt-iter-for <charT> be an unspecified type that models output_iterator<const charT&> (25.3.4.10).

template<class T, class Context,
class Formatter = typename Context::template formatter_type<remove_const_t<T>>>

concept formattable-with = // exposition only
semiregular<Formatter> &&
requires(Formatter& f, const Formatter& cf, T&& t, Context fc,

basic_format_parse_context<typename Context::char_type> pc)
{

{ f.parse(pc) } -> same_as<typename decltype(pc)::iterator>;
{ cf.format(t, fc) } -> same_as<typename Context::iterator>;

};

template<class T, class charT>
concept formattable =

formattable-with <remove_reference_t<T>, basic_format_context<fmt-iter-for <charT>>>;
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Table 73: BasicFormatter requirements [tab:formatter.basic]

Expression Return type Requirement
g.parse(pc) PC::iterator Parses format-spec (22.14.2) for type T in the

range [pc.begin(), pc.end()) until the first un-
matched character. Throws format_error un-
less the whole range is parsed or the unmatched
character is }.
[Note 1 : This allows formatters to emit meaningful
error messages. — end note ]
Stores the parsed format specifiers in *this and
returns an iterator past the end of the parsed
range.

f.format(u, fc) FC::iterator Formats u according to the specifiers stored in
*this, writes the output to fc.out(), and re-
turns an iterator past the end of the output range.
The output shall only depend on u, fc.locale(),
fc.arg(n) for any value n of type size_t, and
the range [pc.begin(), pc.end()) from the last
call to f.parse(pc).

Table 74: Formatter requirements [tab:formatter]

Expression Return type Requirement
f.format(t, fc) FC::iterator Formats t according to the specifiers stored in

*this, writes the output to fc.out(), and re-
turns an iterator past the end of the output range.
The output shall only depend on t, fc.locale(),
fc.arg(n) for any value n of type size_t, and
the range [pc.begin(), pc.end()) from the last
call to f.parse(pc).

f.format(u, fc) FC::iterator As above, but does not modify u.

2 A type T and a character type charT model formattable if formatter<remove_cvref_t<T>, charT> meets
the BasicFormatter requirements (22.14.6.1) and, if remove_reference_t<T> is const-qualified, the Formatter
requirements.

22.14.6.3 Formatter specializations [format.formatter.spec]
1 The functions defined in 22.14.5 use specializations of the class template formatter to format individual

arguments.
2 Let charT be either char or wchar_t. Each specialization of formatter is either enabled or disabled, as

described below. A debug-enabled specialization of formatter additionally provides a public, constexpr,
non-static member function set_debug_format() which modifies the state of the formatter to be as if the
type of the std-format-spec parsed by the last call to parse were ?. Each header that declares the template
formatter provides the following enabled specializations:

—(2.1) The debug-enabled specializations
template<> struct formatter<char, char>;
template<> struct formatter<char, wchar_t>;
template<> struct formatter<wchar_t, wchar_t>;

—(2.2) For each charT, the debug-enabled string type specializations
template<> struct formatter<charT*, charT>;
template<> struct formatter<const charT*, charT>;
template<size_t N> struct formatter<charT[N], charT>;
template<class traits, class Allocator>

struct formatter<basic_string<charT, traits, Allocator>, charT>;

§ 22.14.6.3 806



© ISO/IEC N4950

template<class traits>
struct formatter<basic_string_view<charT, traits>, charT>;

—(2.3) For each charT, for each cv-unqualified arithmetic type ArithmeticT other than char, wchar_t,
char8_t, char16_t, or char32_t, a specialization

template<> struct formatter<ArithmeticT, charT>;

—(2.4) For each charT, the pointer type specializations
template<> struct formatter<nullptr_t, charT>;
template<> struct formatter<void*, charT>;
template<> struct formatter<const void*, charT>;

The parse member functions of these formatters interpret the format specification as a std-format-spec as
described in 22.14.2.2.
[Note 1 : Specializations such as formatter<wchar_t, char> and formatter<const char*, wchar_t> that would
require implicit multibyte / wide string or character conversion are disabled. — end note ]

3 For any types T and charT for which neither the library nor the user provides an explicit or partial
specialization of the class template formatter, formatter<T, charT> is disabled.

4 If the library provides an explicit or partial specialization of formatter<T, charT>, that specialization is
enabled and meets the Formatter requirements except as noted otherwise.

5 If F is a disabled specialization of formatter, these values are false:
—(5.1) is_default_constructible_v<F>,
—(5.2) is_copy_constructible_v<F>,
—(5.3) is_move_constructible_v<F>,
—(5.4) is_copy_assignable_v<F>, and
—(5.5) is_move_assignable_v<F>.

6 An enabled specialization formatter<T, charT> meets the BasicFormatter requirements (22.14.6.1).
[Example 1 :

#include <format>

enum color { red, green, blue };
const char* color_names[] = { "red", "green", "blue" };

template<> struct std::formatter<color> : std::formatter<const char*> {
auto format(color c, format_context& ctx) const {

return formatter<const char*>::format(color_names[c], ctx);
}

};

struct err {};

std::string s0 = std::format("{}", 42); // OK, library-provided formatter
std::string s1 = std::format("{}", L"foo"); // error: disabled formatter
std::string s2 = std::format("{}", red); // OK, user-provided formatter
std::string s3 = std::format("{}", err{}); // error: disabled formatter

— end example ]

22.14.6.4 Formatting escaped characters and strings [format.string.escaped]
1 A character or string can be formatted as escaped to make it more suitable for debugging or for logging.
2 The escaped string E representation of a string S is constructed by encoding a sequence of characters as

follows. The associated character encoding CE for charT (Table 12) is used to both interpret S and construct
E.

—(2.1) u+0022 quotation mark (") is appended to E.
—(2.2) For each code unit sequence X in S that either encodes a single character, is a shift sequence, or is a

sequence of ill-formed code units, processing is in order as follows:
—(2.2.1) If X encodes a single character C, then:
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—(2.2.1.1) If C is one of the characters in Table 75, then the two characters shown as the corresponding
escape sequence are appended to E.

—(2.2.1.2) Otherwise, if C is not u+0020 space and
—(2.2.1.2) CE is UTF-8, UTF-16, or UTF-32 and C corresponds to a Unicode scalar value whose

Unicode property General_Category has a value in the groups Separator (Z) or Other
(C), as described by UAX #44 of the Unicode Standard, or

—(2.2.1.2) CE is UTF-8, UTF-16, or UTF-32 and C corresponds to a Unicode scalar value with
the Unicode property Grapheme_Extend=Yes as described by UAX #44 of the Unicode
Standard and C is not immediately preceded in S by a character P appended to E without
translation to an escape sequence, or

—(2.2.1.2) CE is neither UTF-8, UTF-16, nor UTF-32 and C is one of an implementation-defined
set of separator or non-printable characters

then the sequence \u{hex-digit-sequence } is appended to E, where hex-digit-sequence
is the shortest hexadecimal representation of C using lower-case hexadecimal digits.

—(2.2.1.3) Otherwise, C is appended to E.
—(2.2.2) Otherwise, if X is a shift sequence, the effect on E and further decoding of S is unspecified.

Recommended practice: A shift sequence should be represented in E such that the original code
unit sequence of S can be reconstructed.

—(2.2.3) Otherwise (X is a sequence of ill-formed code units), each code unit U is appended to E in order as
the sequence \x{hex-digit-sequence }, where hex-digit-sequence is the shortest hexadecimal
representation of U using lower-case hexadecimal digits.

—(2.3) Finally, u+0022 quotation mark (") is appended to E.

Table 75: Mapping of characters to escape sequences [tab:format.escape.sequences]

Character Escape sequence
u+0009 character tabulation \t
u+000a line feed \n
u+000d carriage return \r
u+0022 quotation mark \"
u+005c reverse solidus \\

3 The escaped string representation of a character C is equivalent to the escaped string representation of a
string of C, except that:

—(3.1) the result starts and ends with u+0027 apostrophe (’) instead of u+0022 quotation mark ("), and
—(3.2) if C is u+0027 apostrophe, the two characters \’ are appended to E, and
—(3.3) if C is u+0022 quotation mark, then C is appended unchanged.

[Example 1 :
string s0 = format("[{}]", "h\tllo"); // s0 has value: [h llo]
string s1 = format("[{:?}]", "h\tllo"); // s1 has value: ["h\tllo"]
string s2 = format("[{:?}]", "Спасибо, Виктор !"); // s2 has value: ["Спасибо, Виктор !"]
string s3 = format("[{:?}, {:?}]", '\'', '"'); // s3 has value: [’\’’, ’"’]

// The following examples assume use of the UTF-8 encoding
string s4 = format("[{:?}]", string("\0 \n \t \x02 \x1b", 9));

// s4 has value: ["\u{0} \n \t \u{2} \u{1b}"]
string s5 = format("[{:?}]", "\xc3\x28"); // invalid UTF-8, s5 has value: ["\x{c3}("]
string s6 = format("[{:?}]", " "); // s6 has value: [" \u{200d} \u{fe0f}"]
string s7 = format("[{:?}]", "\u0301"); // s7 has value: ["\u{301}"]
string s8 = format("[{:?}]", "\\\u0301"); // s8 has value: ["\\\u{301}"]
string s9 = format("[{:?}]", "e\u0301\u0323"); // s9 has value: ["ẹ"́]

— end example ]
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22.14.6.5 Class template basic_format_parse_context [format.parse.ctx]
namespace std {

template<class charT>
class basic_format_parse_context {
public:

using char_type = charT;
using const_iterator = typename basic_string_view<charT>::const_iterator;
using iterator = const_iterator;

private:
iterator begin_; // exposition only
iterator end_; // exposition only
enum indexing { unknown, manual, automatic }; // exposition only
indexing indexing_; // exposition only
size_t next_arg_id_; // exposition only
size_t num_args_; // exposition only

public:
constexpr explicit basic_format_parse_context(basic_string_view<charT> fmt,

size_t num_args = 0) noexcept;
basic_format_parse_context(const basic_format_parse_context&) = delete;
basic_format_parse_context& operator=(const basic_format_parse_context&) = delete;

constexpr const_iterator begin() const noexcept;
constexpr const_iterator end() const noexcept;
constexpr void advance_to(const_iterator it);

constexpr size_t next_arg_id();
constexpr void check_arg_id(size_t id);

};
}

1 An instance of basic_format_parse_context holds the format string parsing state consisting of the format
string range being parsed and the argument counter for automatic indexing.

constexpr explicit basic_format_parse_context(basic_string_view<charT> fmt,
size_t num_args = 0) noexcept;

2 Effects: Initializes begin_ with fmt.begin(), end_ with fmt.end(), indexing_ with unknown, next_-
arg_id_ with 0, and num_args_ with num_args.

constexpr const_iterator begin() const noexcept;

3 Returns: begin_.

constexpr const_iterator end() const noexcept;

4 Returns: end_.

constexpr void advance_to(const_iterator it);

5 Preconditions: end() is reachable from it.
6 Effects: Equivalent to: begin_ = it;

constexpr size_t next_arg_id();

7 Effects: If indexing_ != manual is true, equivalent to:
if (indexing_ == unknown)

indexing_ = automatic;
return next_arg_id_++;

8 Throws: format_error if indexing_ == manual is true which indicates mixing of automatic and
manual argument indexing.

9 Remarks: Let cur-arg-id be the value of next_arg_id_ prior to this call. Call expressions where
cur-arg-id >= num_args_ is true are not core constant expressions (7.7).
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constexpr void check_arg_id(size_t id);

10 Effects: If indexing_ != automatic is true, equivalent to:
if (indexing_ == unknown)

indexing_ = manual;

11 Throws: format_error if indexing_ == automatic is true which indicates mixing of automatic and
manual argument indexing.

12 Remarks: Call expressions where id >= num_args_ is true are not core constant expressions (7.7).

22.14.6.6 Class template basic_format_context [format.context]
namespace std {

template<class Out, class charT>
class basic_format_context {

basic_format_args<basic_format_context> args_; // exposition only
Out out_; // exposition only

public:
using iterator = Out;
using char_type = charT;
template<class T> using formatter_type = formatter<T, charT>;

basic_format_arg<basic_format_context> arg(size_t id) const noexcept;
std::locale locale();

iterator out();
void advance_to(iterator it);

};
}

1 An instance of basic_format_context holds formatting state consisting of the formatting arguments and
the output iterator.

2 Out shall model output_iterator<const charT&>.
3 format_context is an alias for a specialization of basic_format_context with an output iterator that

appends to string, such as back_insert_iterator<string>. Similarly, wformat_context is an alias for a
specialization of basic_format_context with an output iterator that appends to wstring.

4 Recommended practice: For a given type charT, implementations should provide a single instantiation of
basic_format_context for appending to basic_string<charT>, vector<charT>, or any other container
with contiguous storage by wrapping those in temporary objects with a uniform interface (such as a
span<charT>) and polymorphic reallocation.

basic_format_arg<basic_format_context> arg(size_t id) const noexcept;

5 Returns: args_.get(id).

std::locale locale();

6 Returns: The locale passed to the formatting function if the latter takes one, and std::locale()
otherwise.

iterator out();

7 Effects: Equivalent to: return std::move(out_);

void advance_to(iterator it);

8 Effects: Equivalent to: out_ = std::move(it);
[Example 1 :

struct S { int value; };

template<> struct std::formatter<S> {
size_t width_arg_id = 0;
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// Parses a width argument id in the format { digit }.
constexpr auto parse(format_parse_context& ctx) {

auto iter = ctx.begin();
auto get_char = [&]() { return iter != ctx.end() ? *iter : 0; };
if (get_char() != '{')

return iter;
++iter;
char c = get_char();
if (!isdigit(c) || (++iter, get_char()) != '}')

throw format_error("invalid format");
width_arg_id = c - '0';
ctx.check_arg_id(width_arg_id);
return ++iter;

}

// Formats an S with width given by the argument width_arg_id.
auto format(S s, format_context& ctx) const {

int width = visit_format_arg([](auto value) -> int {
if constexpr (!is_integral_v<decltype(value)>)

throw format_error("width is not integral");
else if (value < 0 || value > numeric_limits<int>::max())

throw format_error("invalid width");
else

return value;
}, ctx.arg(width_arg_id));

return format_to(ctx.out(), "{0:x<{1}}", s.value, width);
}

};

std::string s = std::format("{0:{1}}", S{42}, 10); // value of s is "xxxxxxxx42"

— end example ]

22.14.7 Formatting of ranges [format.range]
22.14.7.1 Variable template format_kind [format.range.fmtkind]

template<ranges::input_range R>
requires same_as<R, remove_cvref_t<R>>

constexpr range_format format_kind<R> = see below ;

1 A program that instantiates the primary template of format_kind is ill-formed.
2 For a type R, format_kind<R> is defined as follows:

—(2.1) If same_as<remove_cvref_t<ranges::range_reference_t<R>>, R> is true, format_kind<R>
is range_format::disabled.
[Note 1 : This prevents constraint recursion for ranges whose reference type is the same range type. For
example, std::filesystem::path is a range of std::filesystem::path. — end note ]

—(2.2) Otherwise, if the qualified-id R::key_type is valid and denotes a type:
—(2.2.1) If the qualified-id R::mapped_type is valid and denotes a type, let U be remove_cvref_-

t<ranges::range_reference_t<R>>. If either U is a specialization of pair or U is a special-
ization of tuple and tuple_size_v<U> == 2, format_kind<R> is range_format::map.

—(2.2.2) Otherwise, format_kind<R> is range_format::set.
—(2.3) Otherwise, format_kind<R> is range_format::sequence.

3 Remarks: Pursuant to 16.4.5.2.1, users may specialize format_kind for cv-unqualified program-defined
types that model ranges::input_range. Such specializations shall be usable in constant expressions
(7.7) and have type const range_format.

22.14.7.2 Class template range_formatter [format.range.formatter]
namespace std {

template<class T, class charT = char>
requires same_as<remove_cvref_t<T>, T> && formattable<T, charT>
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class range_formatter {
formatter<T, charT> underlying_; // exposition only
basic_string_view<charT> separator_ = STATICALLY-WIDEN <charT>(", "); // exposition only
basic_string_view<charT> opening-bracket_ = STATICALLY-WIDEN <charT>("["); // exposition only
basic_string_view<charT> closing-bracket_ = STATICALLY-WIDEN <charT>("]"); // exposition only

public:
constexpr void set_separator(basic_string_view<charT> sep) noexcept;
constexpr void set_brackets(basic_string_view<charT> opening,

basic_string_view<charT> closing) noexcept;
constexpr formatter<T, charT>& underlying() noexcept { return underlying_; }
constexpr const formatter<T, charT>& underlying() const noexcept { return underlying_; }

template<class ParseContext>
constexpr typename ParseContext::iterator

parse(ParseContext& ctx);

template<ranges::input_range R, class FormatContext>
requires formattable<ranges::range_reference_t<R>, charT> &&

same_as<remove_cvref_t<ranges::range_reference_t<R>>, T>
typename FormatContext::iterator

format(R&& r, FormatContext& ctx) const;
};

}

1 The class template range_formatter is a utility for implementing formatter specializations for range types.
2 range_formatter interprets format-spec as a range-format-spec. The syntax of format specifications is as

follows:
range-format-spec :

range-fill-and-alignopt widthopt nopt range-typeopt range-underlying-specopt

range-fill-and-align :
range-fillopt align

range-fill :
any character other than { or } or :

range-type :
m
s
?s

range-underlying-spec :
: format-spec

3 For range_formatter<T, charT>, the format-spec in a range-underlying-spec, if any, is interpreted by
formatter<T, charT>.

4 The range-fill-and-align is interpreted the same way as a fill-and-align (22.14.2.2). The productions align and
width are described in 22.14.2.

5 The n option causes the range to be formatted without the opening and closing brackets.
[Note 1 : This is equivalent to invoking set_brackets({}, {}). — end note ]

6 The range-type specifier changes the way a range is formatted, with certain options only valid with certain
argument types. The meaning of the various type options is as specified in Table 76.
If the range-type is s or ?s, then there shall be no n option and no range-underlying-spec .

constexpr void set_separator(basic_string_view<charT> sep) noexcept;

7 Effects: Equivalent to: separator_ = sep;

constexpr void set_brackets(basic_string_view<charT> opening,
basic_string_view<charT> closing) noexcept;

8 Effects: Equivalent to:
opening-bracket_ = opening;
closing-bracket_ = closing;
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Table 76: Meaning of range-type options [tab:formatter.range.type]

Option Requirements Meaning
m T shall be either a

specialization of pair
or a specialization
of tuple such that
tuple_size_v<T> is 2.

Indicates that the opening bracket should be
"{", the closing bracket should be "}", the
separator should be ", ", and each range
element should be formatted as if m were spec-
ified for its tuple-type.
[Note 2 : If the n option is provided in addition
to the m option, both the opening and closing
brackets are still empty. — end note ]

s T shall be charT. Indicates that the range should be formatted
as a string.

?s T shall be charT. Indicates that the range should be formatted
as an escaped string (22.14.6.4).

template<class ParseContext>
constexpr typename ParseContext::iterator

parse(ParseContext& ctx);

9 Effects: Parses the format specifier as a range-format-spec and stores the parsed specifiers in *this.
The values of opening-bracket_, closing-bracket_, and separator_ are modified if and only if
required by the range-type or the n option, if present. If:

—(9.1) the range-type is neither s nor ?s,
—(9.2) underlying_.set_debug_format() is a valid expression, and
—(9.3) there is no range-underlying-spec ,

then calls underlying_.set_debug_format().
10 Returns: An iterator past the end of the range-format-spec.

template<ranges::input_range R, class FormatContext>
requires formattable<ranges::range_reference_t<R>, charT> &&

same_as<remove_cvref_t<ranges::range_reference_t<R>>, T>
typename FormatContext::iterator

format(R&& r, FormatContext& ctx) const;

11 Effects: Writes the following into ctx.out(), adjusted according to the range-format-spec:
—(11.1) If the range-type was s, then as if by formatting basic_string<charT>(from_range, r).
—(11.2) Otherwise, if the range-type was ?s, then as if by formatting basic_string<charT>(from_range,

r) as an escaped string (22.14.6.4).
—(11.3) Otherwise,

—(11.3.1) opening-bracket_,
—(11.3.2) for each element e of the range r:

—(11.3.2.1) the result of writing e via underlying_ and
—(11.3.2.2) separator_, unless e is the last element of r, and

—(11.3.3) closing-bracket_.
12 Returns: An iterator past the end of the output range.

22.14.7.3 Class template range-default-formatter [format.range.fmtdef]
namespace std {

template<ranges::input_range R, class charT>
struct range-default-formatter<range_format::sequence, R, charT> { // exposition only
private:

using maybe-const-r = fmt-maybe-const<R, charT>; // exposition only
range_formatter<remove_cvref_t<ranges::range_reference_t<maybe-const-r >>,

charT> underlying_; // exposition only
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public:
constexpr void set_separator(basic_string_view<charT> sep) noexcept;
constexpr void set_brackets(basic_string_view<charT> opening,

basic_string_view<charT> closing) noexcept;

template<class ParseContext>
constexpr typename ParseContext::iterator

parse(ParseContext& ctx);

template<class FormatContext>
typename FormatContext::iterator

format(maybe-const-r & elems, FormatContext& ctx) const;
};

}

constexpr void set_separator(basic_string_view<charT> sep) noexcept;

1 Effects: Equivalent to: underlying_.set_separator(sep);

constexpr void set_brackets(basic_string_view<charT> opening,
basic_string_view<charT> closing) noexcept;

2 Effects: Equivalent to: underlying_.set_brackets(opening, closing);

template<class ParseContext>
constexpr typename ParseContext::iterator

parse(ParseContext& ctx);

3 Effects: Equivalent to: return underlying_.parse(ctx);

template<class FormatContext>
typename FormatContext::iterator

format(maybe-const-r & elems, FormatContext& ctx) const;

4 Effects: Equivalent to: return underlying_.format(elems, ctx);

22.14.7.4 Specialization of range-default-formatter for maps [format.range.fmtmap]
namespace std {

template<ranges::input_range R, class charT>
struct range-default-formatter <range_format::map, R, charT> {
private:

using maybe-const-map = fmt-maybe-const<R, charT>; // exposition only
using element-type = // exposition only

remove_cvref_t<ranges::range_reference_t<maybe-const-map >>;
range_formatter<element-type, charT> underlying_; // exposition only

public:
constexpr range-default-formatter ();

template<class ParseContext>
constexpr typename ParseContext::iterator

parse(ParseContext& ctx);

template<class FormatContext>
typename FormatContext::iterator

format(maybe-const-map & r, FormatContext& ctx) const;
};

}

constexpr range-default-formatter ();

1 Mandates: Either:
—(1.1) element-type is a specialization of pair, or
—(1.2) element-type is a specialization of tuple and tuple_size_v<element-type > == 2.
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2 Effects: Equivalent to:
underlying_.set_brackets(STATICALLY-WIDEN <charT>("{"), STATICALLY-WIDEN <charT>("}"));
underlying_.underlying().set_brackets({}, {});
underlying_.underlying().set_separator(STATICALLY-WIDEN <charT>(": "));

template<class ParseContext>
constexpr typename ParseContext::iterator

parse(ParseContext& ctx);

3 Effects: Equivalent to: return underlying_.parse(ctx);

template<class FormatContext>
typename FormatContext::iterator

format(maybe-const-map & r, FormatContext& ctx) const;

4 Effects: Equivalent to: return underlying_.format(r, ctx);

22.14.7.5 Specialization of range-default-formatter for sets [format.range.fmtset]
namespace std {

template<ranges::input_range R, class charT>
struct range-default-formatter <range_format::set, R, charT> {
private:

using maybe-const-set = fmt-maybe-const<R, charT>; // exposition only
range_formatter<remove_cvref_t<ranges::range_reference_t<maybe-const-set >>,

charT> underlying_; // exposition only

public:
constexpr range-default-formatter ();

template<class ParseContext>
constexpr typename ParseContext::iterator

parse(ParseContext& ctx);

template<class FormatContext>
typename FormatContext::iterator

format(maybe-const-set & r, FormatContext& ctx) const;
};

}

constexpr range-default-formatter ();

1 Effects: Equivalent to:
underlying_.set_brackets(STATICALLY-WIDEN <charT>("{"), STATICALLY-WIDEN <charT>("}"));

template<class ParseContext>
constexpr typename ParseContext::iterator

parse(ParseContext& ctx);

2 Effects: Equivalent to: return underlying_.parse(ctx);

template<class FormatContext>
typename FormatContext::iterator

format(maybe-const-set & r, FormatContext& ctx) const;

3 Effects: Equivalent to: return underlying_.format(r, ctx);

22.14.7.6 Specialization of range-default-formatter for strings [format.range.fmtstr]
namespace std {

template<range_format K, ranges::input_range R, class charT>
requires (K == range_format::string || K == range_format::debug_string)

struct range-default-formatter <K, R, charT> {
private:

formatter<basic_string<charT>, charT> underlying_; // exposition only
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public:
template<class ParseContext>

constexpr typename ParseContext::iterator
parse(ParseContext& ctx);

template<class FormatContext>
typename FormatContext::iterator

format(see below & str, FormatContext& ctx) const;
};

}

1 Mandates: same_as<remove_cvref_t<range_reference_t<R>>, charT> is true.

template<class ParseContext>
constexpr typename ParseContext::iterator

parse(ParseContext& ctx);

2 Effects: Equivalent to:
auto i = underlying_.parse(ctx);
if constexpr (K == range_format::debug_string) {

underlying_.set_debug_format();
}
return i;

template<class FormatContext>
typename FormatContext::iterator

format(see below & r, FormatContext& ctx) const;

3 The type of r is const R& if ranges::input_range<const R> is true and R& otherwise.
4 Effects: Let s be a basic_string<charT> such that ranges::equal(s, r) is true. Equivalent to:

return underlying_.format(s, ctx);

22.14.8 Arguments [format.arguments]
22.14.8.1 Class template basic_format_arg [format.arg]

namespace std {
template<class Context>
class basic_format_arg {
public:

class handle;

private:
using char_type = typename Context::char_type; // exposition only

variant<monostate, bool, char_type,
int, unsigned int, long long int, unsigned long long int,
float, double, long double,
const char_type*, basic_string_view<char_type>,
const void*, handle> value; // exposition only

template<class T> explicit basic_format_arg(T& v) noexcept; // exposition only

public:
basic_format_arg() noexcept;

explicit operator bool() const noexcept;
};

}

1 An instance of basic_format_arg provides access to a formatting argument for user-defined formatters.
2 The behavior of a program that adds specializations of basic_format_arg is undefined.

basic_format_arg() noexcept;

3 Postconditions: !(*this).
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template<class T> explicit basic_format_arg(T& v) noexcept;

4 Constraints: T satisfies formattable-with <Context>.
5 Preconditions: If decay_t<T> is char_type* or const char_type*, static_cast<const char_

type*>(v) points to a NTCTS (3.34).
6 Effects: Let TD be remove_const_t<T>.

—(6.1) If TD is bool or char_type, initializes value with v;
—(6.2) otherwise, if TD is char and char_type is wchar_t, initializes value with static_cast<wchar_-

t>(v);
—(6.3) otherwise, if TD is a signed integer type (6.8.2) and sizeof(TD) <= sizeof(int), initializes

value with static_cast<int>(v);
—(6.4) otherwise, if TD is an unsigned integer type and sizeof(TD) <= sizeof(unsigned int), initial-

izes value with static_cast<unsigned int>(v);
—(6.5) otherwise, if TD is a signed integer type and sizeof(TD) <= sizeof(long long int), initializes

value with static_cast<long long int>(v);
—(6.6) otherwise, if TD is an unsigned integer type and sizeof(TD) <= sizeof(unsigned long long

int), initializes value with static_cast<unsigned long long int>(v);
—(6.7) otherwise, if TD is a standard floating-point type, initializes value with v;
—(6.8) otherwise, if TD is a specialization of basic_string_view or basic_string and TD::value_type

is char_type, initializes value with basic_string_view<char_type>(v.data(), v.size());
—(6.9) otherwise, if decay_t<TD> is char_type* or const char_type*, initializes value with static_-

cast<const char_type*>(v);
—(6.10) otherwise, if is_void_v<remove_pointer_t<TD>> is true or is_null_pointer_v<TD> is true,

initializes value with static_cast<const void*>(v);
—(6.11) otherwise, initializes value with handle(v).

[Note 1 : Constructing basic_format_arg from a pointer to a member is ill-formed unless the user provides an
enabled specialization of formatter for that pointer to member type. — end note ]

explicit operator bool() const noexcept;

7 Returns: !holds_alternative<monostate>(value).
8 The class handle allows formatting an object of a user-defined type.

namespace std {
template<class Context>
class basic_format_arg<Context>::handle {

const void* ptr_; // exposition only
void (*format_)(basic_format_parse_context<char_type>&,

Context&, const void*); // exposition only

template<class T> explicit handle(T& val) noexcept; // exposition only

friend class basic_format_arg<Context>; // exposition only

public:
void format(basic_format_parse_context<char_type>&, Context& ctx) const;

};
}

template<class T> explicit handle(T& val) noexcept;

9 Let
—(9.1) TD be remove_const_t<T>,
—(9.2) TQ be const TD if const TD satisfies formattable-with <Context> and TD otherwise.

10 Mandates: TQ satisfies formattable-with <Context>.
11 Effects: Initializes ptr_ with addressof(val) and format_ with
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[](basic_format_parse_context<char_type>& parse_ctx,
Context& format_ctx, const void* ptr) {

typename Context::template formatter_type<TD> f;
parse_ctx.advance_to(f.parse(parse_ctx));
format_ctx.advance_to(f.format(*const_cast<TQ*>(static_cast<const TD*>(ptr)),

format_ctx));
}

void format(basic_format_parse_context<char_type>& parse_ctx, Context& format_ctx) const;

12 Effects: Equivalent to: format_(parse_ctx, format_ctx, ptr_);

template<class Visitor, class Context>
decltype(auto) visit_format_arg(Visitor&& vis, basic_format_arg<Context> arg);

13 Effects: Equivalent to: return visit(std::forward<Visitor>(vis), arg.value);

22.14.8.2 Class template format-arg-store [format.arg.store]
namespace std {

template<class Context, class... Args>
class format-arg-store { // exposition only

array<basic_format_arg<Context>, sizeof...(Args)> args; // exposition only
};

}

1 An instance of format-arg-store stores formatting arguments.

template<class Context = format_context, class... Args>
format-arg-store <Context, Args...> make_format_args(Args&&... fmt_args);

2 Preconditions: The type typename Context::template formatter_type<remove_cvref_t<Ti>>
meets the BasicFormatter requirements (22.14.6.1) for each Ti in Args.

3 Returns: An object of type format-arg-store <Context, Args...> whose args data member is
initialized with {basic_format_arg<Context>(fmt_args)...}.

template<class... Args>
format-arg-store <wformat_context, Args...> make_wformat_args(Args&&... args);

4 Effects: Equivalent to: return make_format_args<wformat_context>(args...);

22.14.8.3 Class template basic_format_args [format.args]
namespace std {

template<class Context>
class basic_format_args {

size_t size_; // exposition only
const basic_format_arg<Context>* data_; // exposition only

public:
basic_format_args() noexcept;

template<class... Args>
basic_format_args(const format-arg-store <Context, Args...>& store) noexcept;

basic_format_arg<Context> get(size_t i) const noexcept;
};

template<class Context, class... Args>
basic_format_args(format-arg-store <Context, Args...>) -> basic_format_args<Context>;

}

1 An instance of basic_format_args provides access to formatting arguments. Implementations should
optimize the representation of basic_format_args for a small number of formatting arguments.
[Note 1 : For example, by storing indices of type alternatives separately from values and packing the former. — end
note ]
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basic_format_args() noexcept;

2 Effects: Initializes size_ with 0.

template<class... Args>
basic_format_args(const format-arg-store <Context, Args...>& store) noexcept;

3 Effects: Initializes size_ with sizeof...(Args) and data_ with store.args.data().

basic_format_arg<Context> get(size_t i) const noexcept;

4 Returns: i < size_ ? data_[i] : basic_format_arg<Context>().

22.14.9 Tuple formatter [format.tuple]
1 For each of pair and tuple, the library provides the following formatter specialization where pair-or-tuple

is the name of the template:
namespace std {

template<class charT, formattable<charT>... Ts>
struct formatter<pair-or-tuple <Ts...>, charT> {
private:

tuple<formatter<remove_cvref_t<Ts>, charT>...> underlying_; // exposition only
basic_string_view<charT> separator_ = STATICALLY-WIDEN <charT>(", "); // exposition only
basic_string_view<charT> opening-bracket_ = STATICALLY-WIDEN <charT>("("); // exposition only
basic_string_view<charT> closing-bracket_ = STATICALLY-WIDEN <charT>(")"); // exposition only

public:
constexpr void set_separator(basic_string_view<charT> sep) noexcept;
constexpr void set_brackets(basic_string_view<charT> opening,

basic_string_view<charT> closing) noexcept;

template<class ParseContext>
constexpr typename ParseContext::iterator

parse(ParseContext& ctx);

template<class FormatContext>
typename FormatContext::iterator

format(see below & elems, FormatContext& ctx) const;
};

}

2 The parse member functions of these formatters interpret the format specification as a tuple-format-spec
according to the following syntax:

tuple-format-spec :
tuple-fill-and-alignopt widthopt tuple-typeopt

tuple-fill-and-align :
tuple-fillopt align

tuple-fill :
any character other than { or } or :

tuple-type :
m
n

3 The tuple-fill-and-align is interpreted the same way as a fill-and-align (22.14.2.2). The productions align and
width are described in 22.14.2.

4 The tuple-type specifier changes the way a pair or tuple is formatted, with certain options only valid with
certain argument types. The meaning of the various type options is as specified in Table 77.

constexpr void set_separator(basic_string_view<charT> sep) noexcept;

5 Effects: Equivalent to: separator_ = sep;

constexpr void set_brackets(basic_string_view<charT> opening,
basic_string_view<charT> closing) noexcept;

6 Effects: Equivalent to:
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Table 77: Meaning of tuple-type options [tab:formatter.tuple.type]

Option Requirements Meaning
m sizeof...(Ts) == 2 Equivalent to:

set_separator(STATICALLY-WIDEN <charT>(": "));
set_brackets({}, {});

n none Equivalent to: set_brackets({}, {});
none none No effects

opening-bracket_ = opening;
closing-bracket_ = closing;

template<class ParseContext>
constexpr typename ParseContext::iterator

parse(ParseContext& ctx);

7 Effects: Parses the format specifier as a tuple-format-spec and stores the parsed specifiers in *this. The
values of opening-bracket_, closing-bracket_, and separator_ are modified if and only if required
by the tuple-type, if present. For each element e in underlying_, if e.set_debug_format() is a valid
expression, calls e.set_debug_format().

8 Returns: An iterator past the end of the tuple-format-spec.

template<class FormatContext>
typename FormatContext::iterator

format(see below & elems, FormatContext& ctx) const;

9 The type of elems is:
—(9.1) If (formattable<const Ts, charT> && ...) is true, const pair-or-tuple <Ts...>&.
—(9.2) Otherwise pair-or-tuple <Ts...>&.

10 Effects: Writes the following into ctx.out(), adjusted according to the tuple-format-spec:
—(10.1) opening-bracket_,
—(10.2) for each index I in the [0, sizeof...(Ts)):

—(10.2.1) if I != 0, separator_,
—(10.2.2) the result of writing get<I>(elems) via get<I>(underlying_), and

—(10.3) closing-bracket_.
11 Returns: An iterator past the end of the output range.

22.14.10 Class format_error [format.error]
namespace std {

class format_error : public runtime_error {
public:

explicit format_error(const string& what_arg);
explicit format_error(const char* what_arg);

};
}

1 The class format_error defines the type of objects thrown as exceptions to report errors from the formatting
library.

format_error(const string& what_arg);

2 Postconditions: strcmp(what(), what_arg.c_str()) == 0.

format_error(const char* what_arg);

3 Postconditions: strcmp(what(), what_arg) == 0.
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22.15 Bit manipulation [bit]
22.15.1 General [bit.general]

1 The header <bit> provides components to access, manipulate and process both individual bits and bit
sequences.

22.15.2 Header <bit> synopsis [bit.syn]
// all freestanding
namespace std {

// 22.15.3, bit_cast
template<class To, class From>

constexpr To bit_cast(const From& from) noexcept;

// 22.15.4, byteswap
template<class T>

constexpr T byteswap(T value) noexcept;

// 22.15.5, integral powers of 2
template<class T>

constexpr bool has_single_bit(T x) noexcept;
template<class T>

constexpr T bit_ceil(T x);
template<class T>

constexpr T bit_floor(T x) noexcept;
template<class T>

constexpr int bit_width(T x) noexcept;

// 22.15.6, rotating
template<class T>

[[nodiscard]] constexpr T rotl(T x, int s) noexcept;
template<class T>

[[nodiscard]] constexpr T rotr(T x, int s) noexcept;

// 22.15.7, counting
template<class T>

constexpr int countl_zero(T x) noexcept;
template<class T>

constexpr int countl_one(T x) noexcept;
template<class T>

constexpr int countr_zero(T x) noexcept;
template<class T>

constexpr int countr_one(T x) noexcept;
template<class T>

constexpr int popcount(T x) noexcept;

// 22.15.8, endian
enum class endian {

little = see below ,
big = see below ,
native = see below

};
}

22.15.3 Function template bit_cast [bit.cast]
template<class To, class From>

constexpr To bit_cast(const From& from) noexcept;

1 Constraints:
—(1.1) sizeof(To) == sizeof(From) is true;
—(1.2) is_trivially_copyable_v<To> is true; and
—(1.3) is_trivially_copyable_v<From> is true.
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2 Returns: An object of type To. Implicitly creates objects nested within the result (6.7.2). Each bit
of the value representation of the result is equal to the corresponding bit in the object representation
of from. Padding bits of the result are unspecified. For the result and each object created within
it, if there is no value of the object’s type corresponding to the value representation produced, the
behavior is undefined. If there are multiple such values, which value is produced is unspecified. A bit
in the value representation of the result is indeterminate if it does not correspond to a bit in the value
representation of from or corresponds to a bit of an object that is not within its lifetime or has an
indeterminate value (6.7.4). For each bit in the value representation of the result that is indeterminate,
the smallest object containing that bit has an indeterminate value; the behavior is undefined unless
that object is of unsigned ordinary character type or std::byte type. The result does not otherwise
contain any indeterminate values.

3 Remarks: This function is constexpr if and only if To, From, and the types of all subobjects of To and
From are types T such that:

—(3.1) is_union_v<T> is false;
—(3.2) is_pointer_v<T> is false;
—(3.3) is_member_pointer_v<T> is false;
—(3.4) is_volatile_v<T> is false; and
—(3.5) T has no non-static data members of reference type.

22.15.4 byteswap [bit.byteswap]
template<class T>

constexpr T byteswap(T value) noexcept;

1 Constraints: T models integral.
2 Mandates: T does not have padding bits (6.8.1).
3 Let the sequence R comprise the bytes of the object representation of value in reverse order.
4 Returns: An object v of type T such that each byte in the object representation of v is equal to the

byte in the corresponding position in R.

22.15.5 Integral powers of 2 [bit.pow.two]
template<class T>

constexpr bool has_single_bit(T x) noexcept;

1 Constraints: T is an unsigned integer type (6.8.2).
2 Returns: true if x is an integral power of two; false otherwise.

template<class T>
constexpr T bit_ceil(T x);

3 Let N be the smallest power of 2 greater than or equal to x.
4 Constraints: T is an unsigned integer type (6.8.2).
5 Preconditions: N is representable as a value of type T.
6 Returns: N .
7 Throws: Nothing.
8 Remarks: A function call expression that violates the precondition in the Preconditions: element is not

a core constant expression (7.7).

template<class T>
constexpr T bit_floor(T x) noexcept;

9 Constraints: T is an unsigned integer type (6.8.2).
10 Returns: If x == 0, 0; otherwise the maximal value y such that has_single_bit(y) is true and y <=

x.
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template<class T>
constexpr int bit_width(T x) noexcept;

11 Constraints: T is an unsigned integer type (6.8.2).
12 Returns: If x == 0, 0; otherwise one plus the base-2 logarithm of x, with any fractional part discarded.

22.15.6 Rotating [bit.rotate]
1 In the following descriptions, let N denote numeric_limits<T>::digits.

template<class T>
[[nodiscard]] constexpr T rotl(T x, int s) noexcept;

2 Constraints: T is an unsigned integer type (6.8.2).
3 Let r be s % N.
4 Returns: If r is 0, x; if r is positive, (x << r) | (x >> (N - r)); if r is negative, rotr(x, -r).

template<class T>
[[nodiscard]] constexpr T rotr(T x, int s) noexcept;

5 Constraints: T is an unsigned integer type (6.8.2).
6 Let r be s % N.
7 Returns: If r is 0, x; if r is positive, (x >> r) | (x << (N - r)); if r is negative, rotl(x, -r).

22.15.7 Counting [bit.count]
1 In the following descriptions, let N denote numeric_limits<T>::digits.

template<class T>
constexpr int countl_zero(T x) noexcept;

2 Constraints: T is an unsigned integer type (6.8.2).
3 Returns: The number of consecutive 0 bits in the value of x, starting from the most significant bit.

[Note 1 : Returns N if x == 0. — end note ]

template<class T>
constexpr int countl_one(T x) noexcept;

4 Constraints: T is an unsigned integer type (6.8.2).
5 Returns: The number of consecutive 1 bits in the value of x, starting from the most significant bit.

[Note 2 : Returns N if x == numeric_limits<T>::max(). — end note ]

template<class T>
constexpr int countr_zero(T x) noexcept;

6 Constraints: T is an unsigned integer type (6.8.2).
7 Returns: The number of consecutive 0 bits in the value of x, starting from the least significant bit.

[Note 3 : Returns N if x == 0. — end note ]

template<class T>
constexpr int countr_one(T x) noexcept;

8 Constraints: T is an unsigned integer type (6.8.2).
9 Returns: The number of consecutive 1 bits in the value of x, starting from the least significant bit.

[Note 4 : Returns N if x == numeric_limits<T>::max(). — end note ]

template<class T>
constexpr int popcount(T x) noexcept;

10 Constraints: T is an unsigned integer type (6.8.2).
11 Returns: The number of 1 bits in the value of x.
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22.15.8 Endian [bit.endian]
1 Two common methods of byte ordering in multibyte scalar types are big-endian and little-endian in the

execution environment. Big-endian is a format for storage of binary data in which the most significant byte
is placed first, with the rest in descending order. Little-endian is a format for storage of binary data in
which the least significant byte is placed first, with the rest in ascending order. This subclause describes the
endianness of the scalar types of the execution environment.

enum class endian {
little = see below ,
big = see below ,
native = see below

};

2 If all scalar types have size 1 byte, then all of endian::little, endian::big, and endian::native
have the same value. Otherwise, endian::little is not equal to endian::big. If all scalar types are big-
endian, endian::native is equal to endian::big. If all scalar types are little-endian, endian::native
is equal to endian::little. Otherwise, endian::native is not equal to either endian::big or
endian::little.
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23 Strings library [strings]
23.1 General [strings.general]

1 This Clause describes components for manipulating sequences of any non-array trivial standard-layout (6.8.1)
type. Such types are called char-like types, and objects of char-like types are called char-like objects or simply
characters.

2 The following subclauses describe a character traits class, string classes, and null-terminated sequence utilities,
as summarized in Table 78.

Table 78: Strings library summary [tab:strings.summary]

Subclause Header
23.2 Character traits <string>
23.3 String view classes <string_view>
23.4 String classes <string>
23.5 Null-terminated sequence utilities <cctype>, <cstdlib>, <cstring>,

<cuchar>, <cwchar>, <cwctype>

23.2 Character traits [char.traits]
23.2.1 General [char.traits.general]

1 Subclause 23.2 defines requirements on classes representing character traits, and defines a class template
char_traits<charT>, along with five specializations, char_traits<char>, char_traits<char8_t>, char_-
traits<char16_t>, char_traits<char32_t>, and char_traits<wchar_t>, that meet those requirements.

2 Most classes specified in 23.4, 23.3, and Clause 31 need a set of related types and functions to complete
the definition of their semantics. These types and functions are provided as a set of member typedef-names
and functions in the template parameter traits used by each such template. Subclause 23.2 defines the
semantics of these members.

3 To specialize those templates to generate a string, string view, or iostream class to handle a particular
character container type (3.10) C, that and its related character traits class X are passed as a pair of parameters
to the string, string view, or iostream template as parameters charT and traits. If X::char_type is not
the same type as C, the program is ill-formed.

23.2.2 Character traits requirements [char.traits.require]
1 In Table 79, X denotes a traits class defining types and functions for the character container type C; c

and d denote values of type C; p and q denote values of type const C*; s denotes a value of type C*; n, i
and j denote values of type size_t; e and f denote values of type X::int_type; pos denotes a value of
type X::pos_type; and r denotes an lvalue of type C. No expression which is part of the character traits
requirements specified in this subclause 23.2.2 shall exit via an exception.

Table 79: Character traits requirements [tab:char.traits.req]

Expression Return type Assertion/note Complexity
pre-/post-condition

X::char_type C compile-time
X::int_type (described in 23.2.3) compile-time
X::off_type (described in 31.2.3 and 31.3) compile-time
X::pos_type (described in 31.2.3 and 31.3) compile-time
X::state_type (described in 23.2.3) compile-time
X::eq(c,d) bool Returns: whether c is to be

treated as equal to d.
constant

§ 23.2.2 825



© ISO/IEC N4950

Table 79: Character traits requirements (continued)

Expression Return type Assertion/note Complexity
pre-/post-condition

X::lt(c,d) bool Returns: whether c is to be
treated as less than d.

constant

X::compare(p,q,n) int Returns: 0 if for each i in
[0,n), X::eq(p[i],q[i]) is
true; else, a negative value if,
for some j in [0,n),
X::lt(p[j],q[j]) is true and
for each i in [0,j)
X::eq(p[i],q[i]) is true; else
a positive value.

linear

X::length(p) size_t Returns: the smallest i such
that X::eq(p[i],charT()) is
true.

linear

X::find(p,n,c) const X::char_type* Returns: the smallest q in
[p,p+n) such that X::eq(*q,c)
is true, nullptr otherwise.

linear

X::move(s,p,n) X::char_type* for each i in [0,n), performs
X::assign(s[i],p[i]). Copies
correctly even where the ranges
[p,p+n) and [s,s+n) overlap.
Returns: s.

linear

X::copy(s,p,n) X::char_type* Preconditions: The ranges
[p, p+n) and [s, s+n) do not
overlap.
Returns: s.
for each i in [0,n), performs
X::assign(s[i],p[i]).

linear

X::assign(r,d) (not used) assigns r=d. constant
X::assign(s,n,c) X::char_type* for each i in [0,n), performs

X::assign(s[i],c).
Returns: s.

linear

X::not_eof(e) int_type Returns: e if
X::eq_int_type(e,X::eof())
is false, otherwise a value f
such that
X::eq_int_type(f,X::eof())
is false.

constant

X::to_char_type(e) X::char_type Returns: if for some c,
X::eq_int_type(e,X::to_-
int_type(c)) is true, c; else
some unspecified value.

constant

X::to_int_type(c) X::int_type Returns: some value e,
constrained by the definitions of
to_char_type and
eq_int_type.

constant

§ 23.2.2 826



© ISO/IEC N4950

Table 79: Character traits requirements (continued)

Expression Return type Assertion/note Complexity
pre-/post-condition

X::eq_int_type(e,f) bool Returns: for all c and d,
X::eq(c,d) is equal to X::eq_-
int_type(X::to_int_type(c),
X::to_int_type(d));
otherwise, yields true if e and f
are both copies of X::eof();
otherwise, yields false if one of
e and f is a copy of X::eof()
and the other is not; otherwise
the value is unspecified.

constant

X::eof() X::int_type Returns: a value e such that
X::eq_int_type(e,X::to_-
int_type(c)) is false for all
values c.

constant

2 The class template
template<class charT> struct char_traits;

is provided in the header <string> as a basis for explicit specializations.

23.2.3 Traits typedefs [char.traits.typedefs]
using int_type = see below ;

1 Preconditions: int_type shall be able to represent all of the valid characters converted from the
corresponding char_type values, as well as an end-of-file value, eof().205

using state_type = see below ;

2 Preconditions: state_type meets the Cpp17Destructible (Table 35), Cpp17CopyAssignable (Table 34),
Cpp17CopyConstructible (Table 32), and Cpp17DefaultConstructible (Table 30) requirements.

23.2.4 char_traits specializations [char.traits.specializations]
23.2.4.1 General [char.traits.specializations.general]

namespace std {
template<> struct char_traits<char>;
template<> struct char_traits<char8_t>;
template<> struct char_traits<char16_t>;
template<> struct char_traits<char32_t>;
template<> struct char_traits<wchar_t>;

}

1 The header <string> defines five specializations of the class template char_traits: char_traits<char>,
char_traits<char8_t>, char_traits<char16_t>, char_traits<char32_t>, and char_traits<wchar_t>.

23.2.4.2 struct char_traits<char> [char.traits.specializations.char]
namespace std {

template<> struct char_traits<char> {
using char_type = char;
using int_type = int;
using off_type = streamoff;
using pos_type = streampos;
using state_type = mbstate_t;
using comparison_category = strong_ordering;

static constexpr void assign(char_type& c1, const char_type& c2) noexcept;
static constexpr bool eq(char_type c1, char_type c2) noexcept;
static constexpr bool lt(char_type c1, char_type c2) noexcept;

205) If eof() can be held in char_type then some iostreams operations can give surprising results.
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static constexpr int compare(const char_type* s1, const char_type* s2, size_t n);
static constexpr size_t length(const char_type* s);
static constexpr const char_type* find(const char_type* s, size_t n,

const char_type& a);
static constexpr char_type* move(char_type* s1, const char_type* s2, size_t n);
static constexpr char_type* copy(char_type* s1, const char_type* s2, size_t n);
static constexpr char_type* assign(char_type* s, size_t n, char_type a);

static constexpr int_type not_eof(int_type c) noexcept;
static constexpr char_type to_char_type(int_type c) noexcept;
static constexpr int_type to_int_type(char_type c) noexcept;
static constexpr bool eq_int_type(int_type c1, int_type c2) noexcept;
static constexpr int_type eof() noexcept;

};
}

1 The type mbstate_t is defined in <cwchar> and can represent any of the conversion states that can occur in
an implementation-defined set of supported multibyte character encoding rules.

2 The two-argument member assign is defined identically to the built-in operator =. The two-argument
members eq and lt are defined identically to the built-in operators == and < for type unsigned char.

3 The member eof() returns EOF.

23.2.4.3 struct char_traits<char8_t> [char.traits.specializations.char8.t]
namespace std {

template<> struct char_traits<char8_t> {
using char_type = char8_t;
using int_type = unsigned int;
using off_type = streamoff;
using pos_type = u8streampos;
using state_type = mbstate_t;
using comparison_category = strong_ordering;

static constexpr void assign(char_type& c1, const char_type& c2) noexcept;
static constexpr bool eq(char_type c1, char_type c2) noexcept;
static constexpr bool lt(char_type c1, char_type c2) noexcept;

static constexpr int compare(const char_type* s1, const char_type* s2, size_t n);
static constexpr size_t length(const char_type* s);
static constexpr const char_type* find(const char_type* s, size_t n,

const char_type& a);
static constexpr char_type* move(char_type* s1, const char_type* s2, size_t n);
static constexpr char_type* copy(char_type* s1, const char_type* s2, size_t n);
static constexpr char_type* assign(char_type* s, size_t n, char_type a);
static constexpr int_type not_eof(int_type c) noexcept;
static constexpr char_type to_char_type(int_type c) noexcept;
static constexpr int_type to_int_type(char_type c) noexcept;
static constexpr bool eq_int_type(int_type c1, int_type c2) noexcept;
static constexpr int_type eof() noexcept;

};
}

1 The two-argument members assign, eq, and lt are defined identically to the built-in operators =, ==, and <
respectively.

2 The member eof() returns an implementation-defined constant that cannot appear as a valid UTF-8 code
unit.

23.2.4.4 struct char_traits<char16_t> [char.traits.specializations.char16.t]
namespace std {

template<> struct char_traits<char16_t> {
using char_type = char16_t;
using int_type = uint_least16_t;
using off_type = streamoff;
using pos_type = u16streampos;
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using state_type = mbstate_t;
using comparison_category = strong_ordering;

static constexpr void assign(char_type& c1, const char_type& c2) noexcept;
static constexpr bool eq(char_type c1, char_type c2) noexcept;
static constexpr bool lt(char_type c1, char_type c2) noexcept;

static constexpr int compare(const char_type* s1, const char_type* s2, size_t n);
static constexpr size_t length(const char_type* s);
static constexpr const char_type* find(const char_type* s, size_t n,

const char_type& a);
static constexpr char_type* move(char_type* s1, const char_type* s2, size_t n);
static constexpr char_type* copy(char_type* s1, const char_type* s2, size_t n);
static constexpr char_type* assign(char_type* s, size_t n, char_type a);

static constexpr int_type not_eof(int_type c) noexcept;
static constexpr char_type to_char_type(int_type c) noexcept;
static constexpr int_type to_int_type(char_type c) noexcept;
static constexpr bool eq_int_type(int_type c1, int_type c2) noexcept;
static constexpr int_type eof() noexcept;

};
}

1 The two-argument members assign, eq, and lt are defined identically to the built-in operators =, ==, and <,
respectively.

2 The member eof() returns an implementation-defined constant that cannot appear as a valid UTF-16 code
unit.

23.2.4.5 struct char_traits<char32_t> [char.traits.specializations.char32.t]
namespace std {

template<> struct char_traits<char32_t> {
using char_type = char32_t;
using int_type = uint_least32_t;
using off_type = streamoff;
using pos_type = u32streampos;
using state_type = mbstate_t;
using comparison_category = strong_ordering;

static constexpr void assign(char_type& c1, const char_type& c2) noexcept;
static constexpr bool eq(char_type c1, char_type c2) noexcept;
static constexpr bool lt(char_type c1, char_type c2) noexcept;

static constexpr int compare(const char_type* s1, const char_type* s2, size_t n);
static constexpr size_t length(const char_type* s);
static constexpr const char_type* find(const char_type* s, size_t n,

const char_type& a);
static constexpr char_type* move(char_type* s1, const char_type* s2, size_t n);
static constexpr char_type* copy(char_type* s1, const char_type* s2, size_t n);
static constexpr char_type* assign(char_type* s, size_t n, char_type a);

static constexpr int_type not_eof(int_type c) noexcept;
static constexpr char_type to_char_type(int_type c) noexcept;
static constexpr int_type to_int_type(char_type c) noexcept;
static constexpr bool eq_int_type(int_type c1, int_type c2) noexcept;
static constexpr int_type eof() noexcept;

};
}

1 The two-argument members assign, eq, and lt are defined identically to the built-in operators =, ==, and <,
respectively.

2 The member eof() returns an implementation-defined constant that cannot appear as a Unicode code point.
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23.2.4.6 struct char_traits<wchar_t> [char.traits.specializations.wchar.t]
namespace std {

template<> struct char_traits<wchar_t> {
using char_type = wchar_t;
using int_type = wint_t;
using off_type = streamoff;
using pos_type = wstreampos;
using state_type = mbstate_t;
using comparison_category = strong_ordering;

static constexpr void assign(char_type& c1, const char_type& c2) noexcept;
static constexpr bool eq(char_type c1, char_type c2) noexcept;
static constexpr bool lt(char_type c1, char_type c2) noexcept;

static constexpr int compare(const char_type* s1, const char_type* s2, size_t n);
static constexpr size_t length(const char_type* s);
static constexpr const char_type* find(const char_type* s, size_t n,

const char_type& a);
static constexpr char_type* move(char_type* s1, const char_type* s2, size_t n);
static constexpr char_type* copy(char_type* s1, const char_type* s2, size_t n);
static constexpr char_type* assign(char_type* s, size_t n, char_type a);

static constexpr int_type not_eof(int_type c) noexcept;
static constexpr char_type to_char_type(int_type c) noexcept;
static constexpr int_type to_int_type(char_type c) noexcept;
static constexpr bool eq_int_type(int_type c1, int_type c2) noexcept;
static constexpr int_type eof() noexcept;

};
}

1 The two-argument members assign, eq, and lt are defined identically to the built-in operators =, ==, and <,
respectively.

2 The member eof() returns WEOF.

23.3 String view classes [string.view]
23.3.1 General [string.view.general]

1 The class template basic_string_view describes an object that can refer to a constant contiguous sequence
of char-like (23.1) objects with the first element of the sequence at position zero. In the rest of 23.3, the type
of the char-like objects held in a basic_string_view object is designated by charT.

2 [Note 1 : The library provides implicit conversions from const charT* and std::basic_string<charT, ...> to
std::basic_string_view<charT, ...> so that user code can accept just std::basic_string_view<charT> as a
non-templated parameter wherever a sequence of characters is expected. User-defined types can define their own
implicit conversions to std::basic_string_view<charT> in order to interoperate with these functions. — end note ]

23.3.2 Header <string_view> synopsis [string.view.synop]
#include <compare> // see 17.11.1

namespace std {
// 23.3.3, class template basic_string_view
template<class charT, class traits = char_traits<charT>>
class basic_string_view;

template<class charT, class traits>
constexpr bool ranges::enable_view<basic_string_view<charT, traits>> = true;

template<class charT, class traits>
constexpr bool ranges::enable_borrowed_range<basic_string_view<charT, traits>> = true;

// 23.3.4, non-member comparison functions
template<class charT, class traits>

constexpr bool operator==(basic_string_view<charT, traits> x,
basic_string_view<charT, traits> y) noexcept;
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template<class charT, class traits>
constexpr see below operator<=>(basic_string_view<charT, traits> x,

basic_string_view<charT, traits> y) noexcept;

// see 23.3.4, sufficient additional overloads of comparison functions

// 23.3.5, inserters and extractors
template<class charT, class traits>

basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os,

basic_string_view<charT, traits> str);

// basic_string_view typedef-names
using string_view = basic_string_view<char>;
using u8string_view = basic_string_view<char8_t>;
using u16string_view = basic_string_view<char16_t>;
using u32string_view = basic_string_view<char32_t>;
using wstring_view = basic_string_view<wchar_t>;

// 23.3.6, hash support
template<class T> struct hash;
template<> struct hash<string_view>;
template<> struct hash<u8string_view>;
template<> struct hash<u16string_view>;
template<> struct hash<u32string_view>;
template<> struct hash<wstring_view>;

inline namespace literals {
inline namespace string_view_literals {

// 23.3.7, suffix for basic_string_view literals
constexpr string_view operator""sv(const char* str, size_t len) noexcept;
constexpr u8string_view operator""sv(const char8_t* str, size_t len) noexcept;
constexpr u16string_view operator""sv(const char16_t* str, size_t len) noexcept;
constexpr u32string_view operator""sv(const char32_t* str, size_t len) noexcept;
constexpr wstring_view operator""sv(const wchar_t* str, size_t len) noexcept;

}
}

}

1 The function templates defined in 22.2.2 and 25.7 are available when <string_view> is included.

23.3.3 Class template basic_string_view [string.view.template]
23.3.3.1 General [string.view.template.general]

namespace std {
template<class charT, class traits = char_traits<charT>>
class basic_string_view {
public:

// types
using traits_type = traits;
using value_type = charT;
using pointer = value_type*;
using const_pointer = const value_type*;
using reference = value_type&;
using const_reference = const value_type&;
using const_iterator = implementation-defined ; // see 23.3.3.4
using iterator = const_iterator;206

using const_reverse_iterator = reverse_iterator<const_iterator>;
using reverse_iterator = const_reverse_iterator;
using size_type = size_t;
using difference_type = ptrdiff_t;
static constexpr size_type npos = size_type(-1);

206) Because basic_string_view refers to a constant sequence, iterator and const_iterator are the same type.
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// 23.3.3.2, construction and assignment
constexpr basic_string_view() noexcept;
constexpr basic_string_view(const basic_string_view&) noexcept = default;
constexpr basic_string_view& operator=(const basic_string_view&) noexcept = default;
constexpr basic_string_view(const charT* str);
basic_string_view(nullptr_t) = delete;
constexpr basic_string_view(const charT* str, size_type len);
template<class It, class End>

constexpr basic_string_view(It begin, End end);
template<class R>

constexpr explicit basic_string_view(R&& r);

// 23.3.3.4, iterator support
constexpr const_iterator begin() const noexcept;
constexpr const_iterator end() const noexcept;
constexpr const_iterator cbegin() const noexcept;
constexpr const_iterator cend() const noexcept;
constexpr const_reverse_iterator rbegin() const noexcept;
constexpr const_reverse_iterator rend() const noexcept;
constexpr const_reverse_iterator crbegin() const noexcept;
constexpr const_reverse_iterator crend() const noexcept;

// 23.3.3.5, capacity
constexpr size_type size() const noexcept;
constexpr size_type length() const noexcept;
constexpr size_type max_size() const noexcept;
[[nodiscard]] constexpr bool empty() const noexcept;

// 23.3.3.6, element access
constexpr const_reference operator[](size_type pos) const;
constexpr const_reference at(size_type pos) const;
constexpr const_reference front() const;
constexpr const_reference back() const;
constexpr const_pointer data() const noexcept;

// 23.3.3.7, modifiers
constexpr void remove_prefix(size_type n);
constexpr void remove_suffix(size_type n);
constexpr void swap(basic_string_view& s) noexcept;

// 23.3.3.8, string operations
constexpr size_type copy(charT* s, size_type n, size_type pos = 0) const;

constexpr basic_string_view substr(size_type pos = 0, size_type n = npos) const;

constexpr int compare(basic_string_view s) const noexcept;
constexpr int compare(size_type pos1, size_type n1, basic_string_view s) const;
constexpr int compare(size_type pos1, size_type n1, basic_string_view s,

size_type pos2, size_type n2) const;
constexpr int compare(const charT* s) const;
constexpr int compare(size_type pos1, size_type n1, const charT* s) const;
constexpr int compare(size_type pos1, size_type n1, const charT* s, size_type n2) const;

constexpr bool starts_with(basic_string_view x) const noexcept;
constexpr bool starts_with(charT x) const noexcept;
constexpr bool starts_with(const charT* x) const;
constexpr bool ends_with(basic_string_view x) const noexcept;
constexpr bool ends_with(charT x) const noexcept;
constexpr bool ends_with(const charT* x) const;

constexpr bool contains(basic_string_view x) const noexcept;
constexpr bool contains(charT x) const noexcept;
constexpr bool contains(const charT* x) const;
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// 23.3.3.9, searching
constexpr size_type find(basic_string_view s, size_type pos = 0) const noexcept;
constexpr size_type find(charT c, size_type pos = 0) const noexcept;
constexpr size_type find(const charT* s, size_type pos, size_type n) const;
constexpr size_type find(const charT* s, size_type pos = 0) const;
constexpr size_type rfind(basic_string_view s, size_type pos = npos) const noexcept;
constexpr size_type rfind(charT c, size_type pos = npos) const noexcept;
constexpr size_type rfind(const charT* s, size_type pos, size_type n) const;
constexpr size_type rfind(const charT* s, size_type pos = npos) const;

constexpr size_type find_first_of(basic_string_view s, size_type pos = 0) const noexcept;
constexpr size_type find_first_of(charT c, size_type pos = 0) const noexcept;
constexpr size_type find_first_of(const charT* s, size_type pos, size_type n) const;
constexpr size_type find_first_of(const charT* s, size_type pos = 0) const;
constexpr size_type find_last_of(basic_string_view s, size_type pos = npos) const noexcept;
constexpr size_type find_last_of(charT c, size_type pos = npos) const noexcept;
constexpr size_type find_last_of(const charT* s, size_type pos, size_type n) const;
constexpr size_type find_last_of(const charT* s, size_type pos = npos) const;
constexpr size_type find_first_not_of(basic_string_view s, size_type pos = 0) const noexcept;
constexpr size_type find_first_not_of(charT c, size_type pos = 0) const noexcept;
constexpr size_type find_first_not_of(const charT* s, size_type pos,

size_type n) const;
constexpr size_type find_first_not_of(const charT* s, size_type pos = 0) const;
constexpr size_type find_last_not_of(basic_string_view s,

size_type pos = npos) const noexcept;
constexpr size_type find_last_not_of(charT c, size_type pos = npos) const noexcept;
constexpr size_type find_last_not_of(const charT* s, size_type pos,

size_type n) const;
constexpr size_type find_last_not_of(const charT* s, size_type pos = npos) const;

private:
const_pointer data_; // exposition only
size_type size_; // exposition only

};

// 23.3.3.3, deduction guides
template<class It, class End>

basic_string_view(It, End) -> basic_string_view<iter_value_t<It>>;
template<class R>

basic_string_view(R&&) -> basic_string_view<ranges::range_value_t<R>>;
}

1 In every specialization basic_string_view<charT, traits>, the type traits shall meet the character
traits requirements (23.2).
[Note 1 : The program is ill-formed if traits::char_type is not the same type as charT. — end note ]

2 For a basic_string_view str, any operation that invalidates a pointer in the range
[str.data(), str.data() + str.size())

invalidates pointers, iterators, and references returned from str’s member functions.
3 The complexity of basic_string_view member functions is O(1) unless otherwise specified.
4 basic_string_view<charT, traits> is a trivially copyable type (6.8.1).

23.3.3.2 Construction and assignment [string.view.cons]

constexpr basic_string_view() noexcept;

1 Postconditions: size_ == 0 and data_ == nullptr.

constexpr basic_string_view(const charT* str);

2 Preconditions: [str, str + traits::length(str)) is a valid range.
3 Effects: Constructs a basic_string_view, initializing data_ with str and initializing size_ with

traits::length(str).
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4 Complexity: O(traits::length(str)).

constexpr basic_string_view(const charT* str, size_type len);

5 Preconditions: [str, str + len) is a valid range.
6 Effects: Constructs a basic_string_view, initializing data_ with str and initializing size_ with len.

template<class It, class End>
constexpr basic_string_view(It begin, End end);

7 Constraints:
—(7.1) It satisfies contiguous_iterator.
—(7.2) End satisfies sized_sentinel_for<It>.
—(7.3) is_same_v<iter_value_t<It>, charT> is true.
—(7.4) is_convertible_v<End, size_type> is false.

8 Preconditions:
—(8.1) [begin, end) is a valid range.
—(8.2) It models contiguous_iterator.
—(8.3) End models sized_sentinel_for<It>.

9 Effects: Initializes data_ with to_address(begin) and initializes size_ with end - begin.
10 Throws: When and what end - begin throws.

template<class R>
constexpr explicit basic_string_view(R&& r);

11 Let d be an lvalue of type remove_cvref_t<R>.
12 Constraints:

—(12.1) remove_cvref_t<R> is not the same type as basic_string_view,
—(12.2) R models ranges::contiguous_range and ranges::sized_range,
—(12.3) is_same_v<ranges::range_value_t<R>, charT> is true,
—(12.4) is_convertible_v<R, const charT*> is false, and
—(12.5) d.operator ::std::basic_string_view<charT, traits>() is not a valid expression.

13 Effects: Initializes data_ with ranges::data(r) and size_ with ranges::size(r).
14 Throws: Any exception thrown by ranges::data(r) and ranges::size(r).

23.3.3.3 Deduction guides [string.view.deduct]

template<class It, class End>
basic_string_view(It, End) -> basic_string_view<iter_value_t<It>>;

1 Constraints:
—(1.1) It satisfies contiguous_iterator.
—(1.2) End satisfies sized_sentinel_for<It>.

template<class R>
basic_string_view(R&&) -> basic_string_view<ranges::range_value_t<R>>;

2 Constraints: R satisfies ranges::contiguous_range.

23.3.3.4 Iterator support [string.view.iterators]

using const_iterator = implementation-defined ;

1 A type that meets the requirements of a constant Cpp17RandomAccessIterator (25.3.5.7), models
contiguous_iterator (25.3.4.14), and meets the constexpr iterator requirements (25.3.1), whose
value_type is the template parameter charT.

2 All requirements on container iterators (24.2) apply to basic_string_view::const_iterator as well.
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constexpr const_iterator begin() const noexcept;
constexpr const_iterator cbegin() const noexcept;

3 Returns: An iterator such that
—(3.1) if !empty(), addressof(*begin()) == data_,
—(3.2) otherwise, an unspecified value such that [begin(), end()) is a valid range.

constexpr const_iterator end() const noexcept;
constexpr const_iterator cend() const noexcept;

4 Returns: begin() + size().

constexpr const_reverse_iterator rbegin() const noexcept;
constexpr const_reverse_iterator crbegin() const noexcept;

5 Returns: const_reverse_iterator(end()).

constexpr const_reverse_iterator rend() const noexcept;
constexpr const_reverse_iterator crend() const noexcept;

6 Returns: const_reverse_iterator(begin()).

23.3.3.5 Capacity [string.view.capacity]

constexpr size_type size() const noexcept;
constexpr size_type length() const noexcept;

1 Returns: size_.

constexpr size_type max_size() const noexcept;

2 Returns: The largest possible number of char-like objects that can be referred to by a basic_string_-
view.

[[nodiscard]] constexpr bool empty() const noexcept;

3 Returns: size_ == 0.

23.3.3.6 Element access [string.view.access]

constexpr const_reference operator[](size_type pos) const;

1 Preconditions: pos < size().
2 Returns: data_[pos].
3 Throws: Nothing.
4 [Note 1 : Unlike basic_string::operator[], basic_string_view::operator[](size()) has undefined behav-

ior instead of returning charT(). — end note ]

constexpr const_reference at(size_type pos) const;

5 Returns: data_[pos].
6 Throws: out_of_range if pos >= size().

constexpr const_reference front() const;

7 Preconditions: !empty().
8 Returns: data_[0].
9 Throws: Nothing.

constexpr const_reference back() const;

10 Preconditions: !empty().
11 Returns: data_[size() - 1].
12 Throws: Nothing.
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constexpr const_pointer data() const noexcept;

13 Returns: data_.
14 [Note 2 : Unlike basic_string::data() and string-literals, data() can return a pointer to a buffer that is not

null-terminated. Therefore it is typically a mistake to pass data() to a function that takes just a const charT*
and expects a null-terminated string. — end note ]

23.3.3.7 Modifiers [string.view.modifiers]

constexpr void remove_prefix(size_type n);

1 Preconditions: n <= size().
2 Effects: Equivalent to: data_ += n; size_ -= n;

constexpr void remove_suffix(size_type n);

3 Preconditions: n <= size().
4 Effects: Equivalent to: size_ -= n;

constexpr void swap(basic_string_view& s) noexcept;

5 Effects: Exchanges the values of *this and s.

23.3.3.8 String operations [string.view.ops]

constexpr size_type copy(charT* s, size_type n, size_type pos = 0) const;

1 Let rlen be the smaller of n and size() - pos.
2 Preconditions: [s, s + rlen) is a valid range.
3 Effects: Equivalent to traits::copy(s, data() + pos, rlen).
4 Returns: rlen.
5 Throws: out_of_range if pos > size().
6 Complexity: O(rlen).

constexpr basic_string_view substr(size_type pos = 0, size_type n = npos) const;

7 Let rlen be the smaller of n and size() - pos.
8 Effects: Determines rlen, the effective length of the string to reference.
9 Returns: basic_string_view(data() + pos, rlen).

10 Throws: out_of_range if pos > size().

constexpr int compare(basic_string_view str) const noexcept;

11 Let rlen be the smaller of size() and str.size().
12 Effects: Determines rlen, the effective length of the strings to compare. The function then compares

the two strings by calling traits::compare(data(), str.data(), rlen).
13 Returns: The nonzero result if the result of the comparison is nonzero. Otherwise, returns a value as

indicated in Table 80.

Table 80: compare() results [tab:string.view.compare]

Condition Return Value
size() < str.size() < 0
size() == str.size() 0
size() > str.size() > 0

14 Complexity: O(rlen).

constexpr int compare(size_type pos1, size_type n1, basic_string_view str) const;

15 Effects: Equivalent to: return substr(pos1, n1).compare(str);
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constexpr int compare(size_type pos1, size_type n1, basic_string_view str,
size_type pos2, size_type n2) const;

16 Effects: Equivalent to: return substr(pos1, n1).compare(str.substr(pos2, n2));

constexpr int compare(const charT* s) const;

17 Effects: Equivalent to: return compare(basic_string_view(s));

constexpr int compare(size_type pos1, size_type n1, const charT* s) const;

18 Effects: Equivalent to: return substr(pos1, n1).compare(basic_string_view(s));

constexpr int compare(size_type pos1, size_type n1, const charT* s, size_type n2) const;

19 Effects: Equivalent to: return substr(pos1, n1).compare(basic_string_view(s, n2));

constexpr bool starts_with(basic_string_view x) const noexcept;

20 Effects: Equivalent to: return substr(0, x.size()) == x;

constexpr bool starts_with(charT x) const noexcept;

21 Effects: Equivalent to: return !empty() && traits::eq(front(), x);

constexpr bool starts_with(const charT* x) const;

22 Effects: Equivalent to: return starts_with(basic_string_view(x));

constexpr bool ends_with(basic_string_view x) const noexcept;

23 Effects: Equivalent to:
return size() >= x.size() && compare(size() - x.size(), npos, x) == 0;

constexpr bool ends_with(charT x) const noexcept;

24 Effects: Equivalent to: return !empty() && traits::eq(back(), x);

constexpr bool ends_with(const charT* x) const;

25 Effects: Equivalent to: return ends_with(basic_string_view(x));

constexpr bool contains(basic_string_view x) const noexcept;
constexpr bool contains(charT x) const noexcept;
constexpr bool contains(const charT* x) const;

26 Effects: Equivalent to: return find(x) != npos;

23.3.3.9 Searching [string.view.find]
1 Member functions in this subclause have complexity O(size() * str.size()) at worst, although imple-

mentations should do better.
2 Let F be one of find, rfind, find_first_of, find_last_of, find_first_not_of, and find_last_not_of.

—(2.1) Each member function of the form
constexpr return-type F (const charT* s, size_type pos) const;

has effects equivalent to: return F (basic_string_view(s), pos);
—(2.2) Each member function of the form

constexpr return-type F (const charT* s, size_type pos, size_type n) const;

has effects equivalent to: return F (basic_string_view(s, n), pos);
—(2.3) Each member function of the form

constexpr return-type F (charT c, size_type pos) const noexcept;

has effects equivalent to: return F (basic_string_view(addressof(c), 1), pos);

constexpr size_type find(basic_string_view str, size_type pos = 0) const noexcept;

3 Let xpos be the lowest position, if possible, such that the following conditions hold:
—(3.1) pos <= xpos
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—(3.2) xpos + str.size() <= size()
—(3.3) traits::eq(at(xpos + I), str.at(I)) for all elements I of the string referenced by str.

4 Effects: Determines xpos.
5 Returns: xpos if the function can determine such a value for xpos. Otherwise, returns npos.

constexpr size_type rfind(basic_string_view str, size_type pos = npos) const noexcept;

6 Let xpos be the highest position, if possible, such that the following conditions hold:
—(6.1) xpos <= pos
—(6.2) xpos + str.size() <= size()
—(6.3) traits::eq(at(xpos + I), str.at(I)) for all elements I of the string referenced by str.

7 Effects: Determines xpos.
8 Returns: xpos if the function can determine such a value for xpos. Otherwise, returns npos.

constexpr size_type find_first_of(basic_string_view str, size_type pos = 0) const noexcept;

9 Let xpos be the lowest position, if possible, such that the following conditions hold:
—(9.1) pos <= xpos
—(9.2) xpos < size()
—(9.3) traits::eq(at(xpos), str.at(I)) for some element I of the string referenced by str.

10 Effects: Determines xpos.
11 Returns: xpos if the function can determine such a value for xpos. Otherwise, returns npos.

constexpr size_type find_last_of(basic_string_view str, size_type pos = npos) const noexcept;

12 Let xpos be the highest position, if possible, such that the following conditions hold:
—(12.1) xpos <= pos
—(12.2) xpos < size()
—(12.3) traits::eq(at(xpos), str.at(I)) for some element I of the string referenced by str.

13 Effects: Determines xpos.
14 Returns: xpos if the function can determine such a value for xpos. Otherwise, returns npos.

constexpr size_type find_first_not_of(basic_string_view str, size_type pos = 0) const noexcept;

15 Let xpos be the lowest position, if possible, such that the following conditions hold:
—(15.1) pos <= xpos
—(15.2) xpos < size()
—(15.3) traits::eq(at(xpos), str.at(I)) for no element I of the string referenced by str.

16 Effects: Determines xpos.
17 Returns: xpos if the function can determine such a value for xpos. Otherwise, returns npos.

constexpr size_type find_last_not_of(basic_string_view str, size_type pos = npos) const noexcept;

18 Let xpos be the highest position, if possible, such that the following conditions hold:
—(18.1) xpos <= pos
—(18.2) xpos < size()
—(18.3) traits::eq(at(xpos), str.at(I)) for no element I of the string referenced by str.

19 Effects: Determines xpos.
20 Returns: xpos if the function can determine such a value for xpos. Otherwise, returns npos.

23.3.4 Non-member comparison functions [string.view.comparison]
1 Let S be basic_string_view<charT, traits>, and sv be an instance of S. Implementations shall provide

sufficient additional overloads marked constexpr and noexcept so that an object t with an implicit conversion
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to S can be compared according to Table 81.

Table 81: Additional basic_string_view comparison overloads [tab:string.view.comparison.overloads]

Expression Equivalent to
t == sv S(t) == sv
sv == t sv == S(t)
t != sv S(t) != sv
sv != t sv != S(t)
t < sv S(t) < sv
sv < t sv < S(t)
t > sv S(t) > sv
sv > t sv > S(t)
t <= sv S(t) <= sv
sv <= t sv <= S(t)
t >= sv S(t) >= sv
sv >= t sv >= S(t)
t <=> sv S(t) <=> sv
sv <=> t sv <=> S(t)

[Example 1 : A sample conforming implementation for operator== would be:
template<class charT, class traits>

constexpr bool operator==(basic_string_view<charT, traits> lhs,
basic_string_view<charT, traits> rhs) noexcept {

return lhs.compare(rhs) == 0;
}

template<class charT, class traits>
constexpr bool operator==(basic_string_view<charT, traits> lhs,

type_identity_t<basic_string_view<charT, traits>> rhs) noexcept {
return lhs.compare(rhs) == 0;

}

— end example ]

template<class charT, class traits>
constexpr bool operator==(basic_string_view<charT, traits> lhs,

basic_string_view<charT, traits> rhs) noexcept;

2 Returns: lhs.compare(rhs) == 0.

template<class charT, class traits>
constexpr see below operator<=>(basic_string_view<charT, traits> lhs,

basic_string_view<charT, traits> rhs) noexcept;

3 Let R denote the type traits::comparison_category if that qualified-id is valid and denotes a
type (13.10.3), otherwise R is weak_ordering.

4 Mandates: R denotes a comparison category type (17.11.2).
5 Returns: static_cast<R>(lhs.compare(rhs) <=> 0).

23.3.5 Inserters and extractors [string.view.io]
template<class charT, class traits>

basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, basic_string_view<charT, traits> str);

1 Effects: Behaves as a formatted output function (31.7.6.3.1) of os. Forms a character sequence seq,
initially consisting of the elements defined by the range [str.begin(), str.end()). Determines padding
for seq as described in 31.7.6.3.1. Then inserts seq as if by calling os.rdbuf()->sputn(seq, n),
where n is the larger of os.width() and str.size(); then calls os.width(0).

2 Returns: os
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23.3.6 Hash support [string.view.hash]
template<> struct hash<string_view>;
template<> struct hash<u8string_view>;
template<> struct hash<u16string_view>;
template<> struct hash<u32string_view>;
template<> struct hash<wstring_view>;

1 The specialization is enabled (22.10.19).
[Note 1 : The hash value of a string view object is equal to the hash value of the corresponding string
object (23.4.6). — end note ]

23.3.7 Suffix for basic_string_view literals [string.view.literals]
constexpr string_view operator""sv(const char* str, size_t len) noexcept;

1 Returns: string_view{str, len}.

constexpr u8string_view operator""sv(const char8_t* str, size_t len) noexcept;

2 Returns: u8string_view{str, len}.

constexpr u16string_view operator""sv(const char16_t* str, size_t len) noexcept;

3 Returns: u16string_view{str, len}.

constexpr u32string_view operator""sv(const char32_t* str, size_t len) noexcept;

4 Returns: u32string_view{str, len}.

constexpr wstring_view operator""sv(const wchar_t* str, size_t len) noexcept;

5 Returns: wstring_view{str, len}.

23.4 String classes [string.classes]
23.4.1 General [string.classes.general]

1 The header <string> defines the basic_string class template for manipulating varying-length sequences
of char-like objects and five typedef-names, string, u8string, u16string, u32string, and wstring,
that name the specializations basic_string<char>, basic_string<char8_t>, basic_string<char16_t>,
basic_string<char32_t>, and basic_string<wchar_t>, respectively.

23.4.2 Header <string> synopsis [string.syn]
#include <compare> // see 17.11.1
#include <initializer_list> // see 17.10.2

namespace std {
// 23.2, character traits
template<class charT> struct char_traits;
template<> struct char_traits<char>;
template<> struct char_traits<char8_t>;
template<> struct char_traits<char16_t>;
template<> struct char_traits<char32_t>;
template<> struct char_traits<wchar_t>;

// 23.4.3, basic_string
template<class charT, class traits = char_traits<charT>, class Allocator = allocator<charT>>

class basic_string;

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>

operator+(const basic_string<charT, traits, Allocator>& lhs,
const basic_string<charT, traits, Allocator>& rhs);

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>

operator+(basic_string<charT, traits, Allocator>&& lhs,
const basic_string<charT, traits, Allocator>& rhs);
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template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>

operator+(const basic_string<charT, traits, Allocator>& lhs,
basic_string<charT, traits, Allocator>&& rhs);

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>

operator+(basic_string<charT, traits, Allocator>&& lhs,
basic_string<charT, traits, Allocator>&& rhs);

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>

operator+(const charT* lhs,
const basic_string<charT, traits, Allocator>& rhs);

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>

operator+(const charT* lhs,
basic_string<charT, traits, Allocator>&& rhs);

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>

operator+(charT lhs,
const basic_string<charT, traits, Allocator>& rhs);

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>

operator+(charT lhs,
basic_string<charT, traits, Allocator>&& rhs);

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>

operator+(const basic_string<charT, traits, Allocator>& lhs,
const charT* rhs);

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>

operator+(basic_string<charT, traits, Allocator>&& lhs,
const charT* rhs);

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>

operator+(const basic_string<charT, traits, Allocator>& lhs,
charT rhs);

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>

operator+(basic_string<charT, traits, Allocator>&& lhs,
charT rhs);

template<class charT, class traits, class Allocator>
constexpr bool

operator==(const basic_string<charT, traits, Allocator>& lhs,
const basic_string<charT, traits, Allocator>& rhs) noexcept;

template<class charT, class traits, class Allocator>
constexpr bool operator==(const basic_string<charT, traits, Allocator>& lhs,

const charT* rhs);

template<class charT, class traits, class Allocator>
constexpr see below operator<=>(const basic_string<charT, traits, Allocator>& lhs,

const basic_string<charT, traits, Allocator>& rhs) noexcept;
template<class charT, class traits, class Allocator>

constexpr see below operator<=>(const basic_string<charT, traits, Allocator>& lhs,
const charT* rhs);

// 23.4.4.3, swap
template<class charT, class traits, class Allocator>

constexpr void
swap(basic_string<charT, traits, Allocator>& lhs,

basic_string<charT, traits, Allocator>& rhs)
noexcept(noexcept(lhs.swap(rhs)));
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// 23.4.4.4, inserters and extractors
template<class charT, class traits, class Allocator>

basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is,

basic_string<charT, traits, Allocator>& str);
template<class charT, class traits, class Allocator>

basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os,

const basic_string<charT, traits, Allocator>& str);
template<class charT, class traits, class Allocator>

basic_istream<charT, traits>&
getline(basic_istream<charT, traits>& is,

basic_string<charT, traits, Allocator>& str,
charT delim);

template<class charT, class traits, class Allocator>
basic_istream<charT, traits>&

getline(basic_istream<charT, traits>&& is,
basic_string<charT, traits, Allocator>& str,
charT delim);

template<class charT, class traits, class Allocator>
basic_istream<charT, traits>&

getline(basic_istream<charT, traits>& is,
basic_string<charT, traits, Allocator>& str);

template<class charT, class traits, class Allocator>
basic_istream<charT, traits>&

getline(basic_istream<charT, traits>&& is,
basic_string<charT, traits, Allocator>& str);

// 23.4.4.5, erasure
template<class charT, class traits, class Allocator, class U>

constexpr typename basic_string<charT, traits, Allocator>::size_type
erase(basic_string<charT, traits, Allocator>& c, const U& value);

template<class charT, class traits, class Allocator, class Predicate>
constexpr typename basic_string<charT, traits, Allocator>::size_type

erase_if(basic_string<charT, traits, Allocator>& c, Predicate pred);

// basic_string typedef-names
using string = basic_string<char>;
using u8string = basic_string<char8_t>;
using u16string = basic_string<char16_t>;
using u32string = basic_string<char32_t>;
using wstring = basic_string<wchar_t>;

// 23.4.5, numeric conversions
int stoi(const string& str, size_t* idx = nullptr, int base = 10);
long stol(const string& str, size_t* idx = nullptr, int base = 10);
unsigned long stoul(const string& str, size_t* idx = nullptr, int base = 10);
long long stoll(const string& str, size_t* idx = nullptr, int base = 10);
unsigned long long stoull(const string& str, size_t* idx = nullptr, int base = 10);
float stof(const string& str, size_t* idx = nullptr);
double stod(const string& str, size_t* idx = nullptr);
long double stold(const string& str, size_t* idx = nullptr);
string to_string(int val);
string to_string(unsigned val);
string to_string(long val);
string to_string(unsigned long val);
string to_string(long long val);
string to_string(unsigned long long val);
string to_string(float val);
string to_string(double val);
string to_string(long double val);

int stoi(const wstring& str, size_t* idx = nullptr, int base = 10);
long stol(const wstring& str, size_t* idx = nullptr, int base = 10);
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unsigned long stoul(const wstring& str, size_t* idx = nullptr, int base = 10);
long long stoll(const wstring& str, size_t* idx = nullptr, int base = 10);
unsigned long long stoull(const wstring& str, size_t* idx = nullptr, int base = 10);
float stof(const wstring& str, size_t* idx = nullptr);
double stod(const wstring& str, size_t* idx = nullptr);
long double stold(const wstring& str, size_t* idx = nullptr);
wstring to_wstring(int val);
wstring to_wstring(unsigned val);
wstring to_wstring(long val);
wstring to_wstring(unsigned long val);
wstring to_wstring(long long val);
wstring to_wstring(unsigned long long val);
wstring to_wstring(float val);
wstring to_wstring(double val);
wstring to_wstring(long double val);

namespace pmr {
template<class charT, class traits = char_traits<charT>>

using basic_string = std::basic_string<charT, traits, polymorphic_allocator<charT>>;

using string = basic_string<char>;
using u8string = basic_string<char8_t>;
using u16string = basic_string<char16_t>;
using u32string = basic_string<char32_t>;
using wstring = basic_string<wchar_t>;

}

// 23.4.6, hash support
template<class T> struct hash;
template<class A> struct hash<basic_string<char, char_traits<char>, A>>;
template<class A> struct hash<basic_string<char8_t, char_traits<char8_t>, A>>;
template<class A> struct hash<basic_string<char16_t, char_traits<char16_t>, A>>;
template<class A> struct hash<basic_string<char32_t, char_traits<char32_t>, A>>;
template<class A> struct hash<basic_string<wchar_t, char_traits<wchar_t>, A>>;

inline namespace literals {
inline namespace string_literals {

// 23.4.7, suffix for basic_string literals
constexpr string operator""s(const char* str, size_t len);
constexpr u8string operator""s(const char8_t* str, size_t len);
constexpr u16string operator""s(const char16_t* str, size_t len);
constexpr u32string operator""s(const char32_t* str, size_t len);
constexpr wstring operator""s(const wchar_t* str, size_t len);

}
}

}

23.4.3 Class template basic_string [basic.string]
23.4.3.1 General [basic.string.general]

1 The class template basic_string describes objects that can store a sequence consisting of a varying number
of arbitrary char-like objects with the first element of the sequence at position zero. Such a sequence is also
called a “string” if the type of the char-like objects that it holds is clear from context. In the rest of 23.4.3,
the type of the char-like objects held in a basic_string object is designated by charT.

2 A specialization of basic_string is a contiguous container (24.2.2.2).
3 In all cases, [data(), data() + size()] is a valid range, data() + size() points at an object with value

charT() (a “null terminator”), and size() <= capacity() is true.
namespace std {

template<class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT>>

class basic_string {
public:
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// types
using traits_type = traits;
using value_type = charT;
using allocator_type = Allocator;
using size_type = typename allocator_traits<Allocator>::size_type;
using difference_type = typename allocator_traits<Allocator>::difference_type;
using pointer = typename allocator_traits<Allocator>::pointer;
using const_pointer = typename allocator_traits<Allocator>::const_pointer;
using reference = value_type&;
using const_reference = const value_type&;

using iterator = implementation-defined ; // see 24.2
using const_iterator = implementation-defined ; // see 24.2
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
static constexpr size_type npos = size_type(-1);

// 23.4.3.3, construct/copy/destroy
constexpr basic_string() noexcept(noexcept(Allocator())) : basic_string(Allocator()) { }
constexpr explicit basic_string(const Allocator& a) noexcept;
constexpr basic_string(const basic_string& str);
constexpr basic_string(basic_string&& str) noexcept;
constexpr basic_string(const basic_string& str, size_type pos,

const Allocator& a = Allocator());
constexpr basic_string(const basic_string& str, size_type pos, size_type n,

const Allocator& a = Allocator());
constexpr basic_string(basic_string&& str, size_type pos,

const Allocator& a = Allocator());
constexpr basic_string(basic_string&& str, size_type pos, size_type n,

const Allocator& a = Allocator());
template<class T>

constexpr basic_string(const T& t, size_type pos, size_type n,
const Allocator& a = Allocator());

template<class T>
constexpr explicit basic_string(const T& t, const Allocator& a = Allocator());

constexpr basic_string(const charT* s, size_type n, const Allocator& a = Allocator());
constexpr basic_string(const charT* s, const Allocator& a = Allocator());
basic_string(nullptr_t) = delete;
constexpr basic_string(size_type n, charT c, const Allocator& a = Allocator());
template<class InputIterator>

constexpr basic_string(InputIterator begin, InputIterator end,
const Allocator& a = Allocator());

template<container-compatible-range <charT> R>
constexpr basic_string(from_range_t, R&& rg, const Allocator& a = Allocator());

constexpr basic_string(initializer_list<charT>, const Allocator& = Allocator());
constexpr basic_string(const basic_string&, const Allocator&);
constexpr basic_string(basic_string&&, const Allocator&);
constexpr ~basic_string();

constexpr basic_string& operator=(const basic_string& str);
constexpr basic_string& operator=(basic_string&& str)

noexcept(allocator_traits<Allocator>::propagate_on_container_move_assignment::value ||
allocator_traits<Allocator>::is_always_equal::value);

template<class T>
constexpr basic_string& operator=(const T& t);

constexpr basic_string& operator=(const charT* s);
basic_string& operator=(nullptr_t) = delete;
constexpr basic_string& operator=(charT c);
constexpr basic_string& operator=(initializer_list<charT>);

// 23.4.3.4, iterators
constexpr iterator begin() noexcept;
constexpr const_iterator begin() const noexcept;
constexpr iterator end() noexcept;
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constexpr const_iterator end() const noexcept;

constexpr reverse_iterator rbegin() noexcept;
constexpr const_reverse_iterator rbegin() const noexcept;
constexpr reverse_iterator rend() noexcept;
constexpr const_reverse_iterator rend() const noexcept;

constexpr const_iterator cbegin() const noexcept;
constexpr const_iterator cend() const noexcept;
constexpr const_reverse_iterator crbegin() const noexcept;
constexpr const_reverse_iterator crend() const noexcept;

// 23.4.3.5, capacity
constexpr size_type size() const noexcept;
constexpr size_type length() const noexcept;
constexpr size_type max_size() const noexcept;
constexpr void resize(size_type n, charT c);
constexpr void resize(size_type n);
template<class Operation> constexpr void resize_and_overwrite(size_type n, Operation op);
constexpr size_type capacity() const noexcept;
constexpr void reserve(size_type res_arg);
constexpr void shrink_to_fit();
constexpr void clear() noexcept;
[[nodiscard]] constexpr bool empty() const noexcept;

// 23.4.3.6, element access
constexpr const_reference operator[](size_type pos) const;
constexpr reference operator[](size_type pos);
constexpr const_reference at(size_type n) const;
constexpr reference at(size_type n);

constexpr const charT& front() const;
constexpr charT& front();
constexpr const charT& back() const;
constexpr charT& back();

// 23.4.3.7, modifiers
constexpr basic_string& operator+=(const basic_string& str);
template<class T>

constexpr basic_string& operator+=(const T& t);
constexpr basic_string& operator+=(const charT* s);
constexpr basic_string& operator+=(charT c);
constexpr basic_string& operator+=(initializer_list<charT>);
constexpr basic_string& append(const basic_string& str);
constexpr basic_string& append(const basic_string& str, size_type pos, size_type n = npos);
template<class T>

constexpr basic_string& append(const T& t);
template<class T>

constexpr basic_string& append(const T& t, size_type pos, size_type n = npos);
constexpr basic_string& append(const charT* s, size_type n);
constexpr basic_string& append(const charT* s);
constexpr basic_string& append(size_type n, charT c);
template<class InputIterator>

constexpr basic_string& append(InputIterator first, InputIterator last);
template<container-compatible-range <charT> R>

constexpr basic_string& append_range(R&& rg);
constexpr basic_string& append(initializer_list<charT>);

constexpr void push_back(charT c);

constexpr basic_string& assign(const basic_string& str);
constexpr basic_string& assign(basic_string&& str)

noexcept(allocator_traits<Allocator>::propagate_on_container_move_assignment::value ||
allocator_traits<Allocator>::is_always_equal::value);

§ 23.4.3.1 845



© ISO/IEC N4950

constexpr basic_string& assign(const basic_string& str, size_type pos, size_type n = npos);
template<class T>

constexpr basic_string& assign(const T& t);
template<class T>

constexpr basic_string& assign(const T& t, size_type pos, size_type n = npos);
constexpr basic_string& assign(const charT* s, size_type n);
constexpr basic_string& assign(const charT* s);
constexpr basic_string& assign(size_type n, charT c);
template<class InputIterator>

constexpr basic_string& assign(InputIterator first, InputIterator last);
template<container-compatible-range <charT> R>

constexpr basic_string& assign_range(R&& rg);
constexpr basic_string& assign(initializer_list<charT>);

constexpr basic_string& insert(size_type pos, const basic_string& str);
constexpr basic_string& insert(size_type pos1, const basic_string& str,

size_type pos2, size_type n = npos);
template<class T>

constexpr basic_string& insert(size_type pos, const T& t);
template<class T>

constexpr basic_string& insert(size_type pos1, const T& t,
size_type pos2, size_type n = npos);

constexpr basic_string& insert(size_type pos, const charT* s, size_type n);
constexpr basic_string& insert(size_type pos, const charT* s);
constexpr basic_string& insert(size_type pos, size_type n, charT c);
constexpr iterator insert(const_iterator p, charT c);
constexpr iterator insert(const_iterator p, size_type n, charT c);
template<class InputIterator>

constexpr iterator insert(const_iterator p, InputIterator first, InputIterator last);
template<container-compatible-range <charT> R>

constexpr iterator insert_range(const_iterator p, R&& rg);
constexpr iterator insert(const_iterator p, initializer_list<charT>);

constexpr basic_string& erase(size_type pos = 0, size_type n = npos);
constexpr iterator erase(const_iterator p);
constexpr iterator erase(const_iterator first, const_iterator last);

constexpr void pop_back();

constexpr basic_string& replace(size_type pos1, size_type n1, const basic_string& str);
constexpr basic_string& replace(size_type pos1, size_type n1, const basic_string& str,

size_type pos2, size_type n2 = npos);
template<class T>

constexpr basic_string& replace(size_type pos1, size_type n1, const T& t);
template<class T>

constexpr basic_string& replace(size_type pos1, size_type n1, const T& t,
size_type pos2, size_type n2 = npos);

constexpr basic_string& replace(size_type pos, size_type n1, const charT* s, size_type n2);
constexpr basic_string& replace(size_type pos, size_type n1, const charT* s);
constexpr basic_string& replace(size_type pos, size_type n1, size_type n2, charT c);
constexpr basic_string& replace(const_iterator i1, const_iterator i2,

const basic_string& str);
template<class T>

constexpr basic_string& replace(const_iterator i1, const_iterator i2, const T& t);
constexpr basic_string& replace(const_iterator i1, const_iterator i2, const charT* s,

size_type n);
constexpr basic_string& replace(const_iterator i1, const_iterator i2, const charT* s);
constexpr basic_string& replace(const_iterator i1, const_iterator i2, size_type n, charT c);
template<class InputIterator>

constexpr basic_string& replace(const_iterator i1, const_iterator i2,
InputIterator j1, InputIterator j2);

template<container-compatible-range <charT> R>
constexpr basic_string& replace_with_range(const_iterator i1, const_iterator i2, R&& rg);

constexpr basic_string& replace(const_iterator, const_iterator, initializer_list<charT>);
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constexpr size_type copy(charT* s, size_type n, size_type pos = 0) const;

constexpr void swap(basic_string& str)
noexcept(allocator_traits<Allocator>::propagate_on_container_swap::value ||

allocator_traits<Allocator>::is_always_equal::value);

// 23.4.3.8, string operations
constexpr const charT* c_str() const noexcept;
constexpr const charT* data() const noexcept;
constexpr charT* data() noexcept;
constexpr operator basic_string_view<charT, traits>() const noexcept;
constexpr allocator_type get_allocator() const noexcept;

template<class T>
constexpr size_type find(const T& t, size_type pos = 0) const noexcept(see below );

constexpr size_type find(const basic_string& str, size_type pos = 0) const noexcept;
constexpr size_type find(const charT* s, size_type pos, size_type n) const;
constexpr size_type find(const charT* s, size_type pos = 0) const;
constexpr size_type find(charT c, size_type pos = 0) const noexcept;
template<class T>

constexpr size_type rfind(const T& t, size_type pos = npos) const noexcept(see below );
constexpr size_type rfind(const basic_string& str, size_type pos = npos) const noexcept;
constexpr size_type rfind(const charT* s, size_type pos, size_type n) const;
constexpr size_type rfind(const charT* s, size_type pos = npos) const;
constexpr size_type rfind(charT c, size_type pos = npos) const noexcept;

template<class T>
constexpr size_type find_first_of(const T& t, size_type pos = 0) const noexcept(see below );

constexpr size_type find_first_of(const basic_string& str, size_type pos = 0) const noexcept;
constexpr size_type find_first_of(const charT* s, size_type pos, size_type n) const;
constexpr size_type find_first_of(const charT* s, size_type pos = 0) const;
constexpr size_type find_first_of(charT c, size_type pos = 0) const noexcept;
template<class T>

constexpr size_type find_last_of(const T& t,
size_type pos = npos) const noexcept(see below );

constexpr size_type find_last_of(const basic_string& str,
size_type pos = npos) const noexcept;

constexpr size_type find_last_of(const charT* s, size_type pos, size_type n) const;
constexpr size_type find_last_of(const charT* s, size_type pos = npos) const;
constexpr size_type find_last_of(charT c, size_type pos = npos) const noexcept;

template<class T>
constexpr size_type find_first_not_of(const T& t,

size_type pos = 0) const noexcept(see below );
constexpr size_type find_first_not_of(const basic_string& str,

size_type pos = 0) const noexcept;
constexpr size_type find_first_not_of(const charT* s, size_type pos, size_type n) const;
constexpr size_type find_first_not_of(const charT* s, size_type pos = 0) const;
constexpr size_type find_first_not_of(charT c, size_type pos = 0) const noexcept;
template<class T>

constexpr size_type find_last_not_of(const T& t,
size_type pos = npos) const noexcept(see below );

constexpr size_type find_last_not_of(const basic_string& str,
size_type pos = npos) const noexcept;

constexpr size_type find_last_not_of(const charT* s, size_type pos, size_type n) const;
constexpr size_type find_last_not_of(const charT* s, size_type pos = npos) const;
constexpr size_type find_last_not_of(charT c, size_type pos = npos) const noexcept;

constexpr basic_string substr(size_type pos = 0, size_type n = npos) const &;
constexpr basic_string substr(size_type pos = 0, size_type n = npos) &&;

template<class T>
constexpr int compare(const T& t) const noexcept(see below );
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template<class T>
constexpr int compare(size_type pos1, size_type n1, const T& t) const;

template<class T>
constexpr int compare(size_type pos1, size_type n1, const T& t,

size_type pos2, size_type n2 = npos) const;
constexpr int compare(const basic_string& str) const noexcept;
constexpr int compare(size_type pos1, size_type n1, const basic_string& str) const;
constexpr int compare(size_type pos1, size_type n1, const basic_string& str,

size_type pos2, size_type n2 = npos) const;
constexpr int compare(const charT* s) const;
constexpr int compare(size_type pos1, size_type n1, const charT* s) const;
constexpr int compare(size_type pos1, size_type n1, const charT* s, size_type n2) const;

constexpr bool starts_with(basic_string_view<charT, traits> x) const noexcept;
constexpr bool starts_with(charT x) const noexcept;
constexpr bool starts_with(const charT* x) const;
constexpr bool ends_with(basic_string_view<charT, traits> x) const noexcept;
constexpr bool ends_with(charT x) const noexcept;
constexpr bool ends_with(const charT* x) const;

constexpr bool contains(basic_string_view<charT, traits> x) const noexcept;
constexpr bool contains(charT x) const noexcept;
constexpr bool contains(const charT* x) const;

};

template<class InputIterator,
class Allocator = allocator<typename iterator_traits<InputIterator>::value_type>>

basic_string(InputIterator, InputIterator, Allocator = Allocator())
-> basic_string<typename iterator_traits<InputIterator>::value_type,

char_traits<typename iterator_traits<InputIterator>::value_type>,
Allocator>;

template<ranges::input_range R,
class Allocator = allocator<ranges::range_value_t<R>>>

basic_string(from_range_t, R&&, Allocator = Allocator())
-> basic_string<ranges::range_value_t<R>, char_traits<ranges::range_value_t<R>>,

Allocator>;

template<class charT,
class traits,
class Allocator = allocator<charT>>

explicit basic_string(basic_string_view<charT, traits>, const Allocator& = Allocator())
-> basic_string<charT, traits, Allocator>;

template<class charT,
class traits,
class Allocator = allocator<charT>>

basic_string(basic_string_view<charT, traits>,
typename see below ::size_type, typename see below ::size_type,
const Allocator& = Allocator())

-> basic_string<charT, traits, Allocator>;
}

4 A size_type parameter type in a basic_string deduction guide refers to the size_type member type of
the type deduced by the deduction guide.

5 The types iterator and const_iterator meet the constexpr iterator requirements (25.3.1).

23.4.3.2 General requirements [string.require]
1 If any operation would cause size() to exceed max_size(), that operation throws an exception object of

type length_error.
2 If any member function or operator of basic_string throws an exception, that function or operator has no

other effect on the basic_string object.

§ 23.4.3.2 848



© ISO/IEC N4950

3 In every specialization basic_string<charT, traits, Allocator>, the type allocator_traits<All-
ocator>::value_type shall name the same type as charT. Every object of type basic_string<charT,
traits, Allocator> uses an object of type Allocator to allocate and free storage for the contained
charT objects as needed. The Allocator object used is obtained as described in 24.2.2.2. In every spe-
cialization basic_string<charT, traits, Allocator>, the type traits shall meet the character traits
requirements (23.2).
[Note 1 : Every specialization basic_string<charT, traits, Allocator> is an allocator-aware container, but does
not use the allocator’s construct and destroy member functions (24.2.1). — end note ]
[Note 2 : The program is ill-formed if traits::char_type is not the same type as charT. — end note ]

4 References, pointers, and iterators referring to the elements of a basic_string sequence may be invalidated
by the following uses of that basic_string object:

—(4.1) Passing as an argument to any standard library function taking a reference to non-const basic_string
as an argument.207

—(4.2) Calling non-const member functions, except operator[], at, data, front, back, begin, rbegin, end,
and rend.

23.4.3.3 Constructors and assignment operators [string.cons]

constexpr explicit basic_string(const Allocator& a) noexcept;

1 Postconditions: size() is equal to 0.

constexpr basic_string(const basic_string& str);
constexpr basic_string(basic_string&& str) noexcept;

2 Effects: Constructs an object whose value is that of str prior to this call.
3 Remarks: In the second form, str is left in a valid but unspecified state.

constexpr basic_string(const basic_string& str, size_type pos,
const Allocator& a = Allocator());

constexpr basic_string(const basic_string& str, size_type pos, size_type n,
const Allocator& a = Allocator());

constexpr basic_string(basic_string&& str, size_type pos,
const Allocator& a = Allocator());

constexpr basic_string(basic_string&& str, size_type pos, size_type n,
const Allocator& a = Allocator());

4 Let
—(4.1) s be the value of str prior to this call and
—(4.2) rlen be pos + min(n, s.size() - pos) for the overloads with parameter n, and s.size()

otherwise.
5 Effects: Constructs an object whose initial value is the range [s.data() + pos, s.data() + rlen).
6 Throws: out_of_range if pos > s.size().
7 Remarks: For the overloads with a basic_string&& parameter, str is left in a valid but unspecified

state.
8 Recommended practice: For the overloads with a basic_string&& parameter, implementations should

avoid allocation if s.get_allocator() == a is true.

template<class T>
constexpr basic_string(const T& t, size_type pos, size_type n, const Allocator& a = Allocator());

9 Constraints: is_convertible_v<const T&, basic_string_view<charT, traits>> is true.
10 Effects: Creates a variable, sv, as if by basic_string_view<charT, traits> sv = t; and then

behaves the same as:
basic_string(sv.substr(pos, n), a);

207) For example, as an argument to non-member functions swap() (23.4.4.3), operator>>() (23.4.4.4), and getline() (23.4.4.4),
or as an argument to basic_string::swap().
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template<class T>
constexpr explicit basic_string(const T& t, const Allocator& a = Allocator());

11 Constraints:
—(11.1) is_convertible_v<const T&, basic_string_view<charT, traits>> is true and
—(11.2) is_convertible_v<const T&, const charT*> is false.

12 Effects: Creates a variable, sv, as if by basic_string_view<charT, traits> sv = t; and then
behaves the same as basic_string(sv.data(), sv.size(), a).

constexpr basic_string(const charT* s, size_type n, const Allocator& a = Allocator());

13 Preconditions: [s, s + n) is a valid range.
14 Effects: Constructs an object whose initial value is the range [s, s + n).
15 Postconditions: size() is equal to n, and traits::compare(data(), s, n) is equal to 0.

constexpr basic_string(const charT* s, const Allocator& a = Allocator());

16 Constraints: Allocator is a type
that qualifies as an allocator (24.2.2.2).
[Note 1 : This affects class template argument deduction. — end note ]

17 Effects: Equivalent to: basic_string(s, traits::length(s), a).

constexpr basic_string(size_type n, charT c, const Allocator& a = Allocator());

18 Constraints: Allocator is a type that qualifies as an allocator (24.2.2.2).
[Note 2 : This affects class template argument deduction. — end note ]

19 Effects: Constructs an object whose value consists of n copies of c.

template<class InputIterator>
constexpr basic_string(InputIterator begin, InputIterator end, const Allocator& a = Allocator());

20 Constraints: InputIterator is a type that qualifies as an input iterator (24.2.2.2).
21 Effects: Constructs a string from the values in the range [begin, end), as specified in 24.2.4.

template<container-compatible-range <charT> R>
constexpr basic_string(from_range_t, R&& rg, const Allocator& = Allocator());

22 Effects: Constructs a string from the values in the range rg, as specified in 24.2.4.

constexpr basic_string(initializer_list<charT> il, const Allocator& a = Allocator());

23 Effects: Equivalent to basic_string(il.begin(), il.end(), a).

constexpr basic_string(const basic_string& str, const Allocator& alloc);
constexpr basic_string(basic_string&& str, const Allocator& alloc);

24 Effects: Constructs an object whose value is that of str prior to this call. The stored allocator is
constructed from alloc. In the second form, str is left in a valid but unspecified state.

25 Throws: The second form throws nothing if alloc == str.get_allocator().

template<class InputIterator,
class Allocator = allocator<typename iterator_traits<InputIterator>::value_type>>

basic_string(InputIterator, InputIterator, Allocator = Allocator())
-> basic_string<typename iterator_traits<InputIterator>::value_type,

char_traits<typename iterator_traits<InputIterator>::value_type>,
Allocator>;

26 Constraints: InputIterator is a type that qualifies as an input iterator, and Allocator is a type that
qualifies as an allocator (24.2.2.2).

template<class charT,
class traits,
class Allocator = allocator<charT>>

explicit basic_string(basic_string_view<charT, traits>, const Allocator& = Allocator())
-> basic_string<charT, traits, Allocator>;
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template<class charT,
class traits,
class Allocator = allocator<charT>>

basic_string(basic_string_view<charT, traits>,
typename see below ::size_type, typename see below ::size_type,
const Allocator& = Allocator())

-> basic_string<charT, traits, Allocator>;

27 Constraints: Allocator is a type that qualifies as an allocator (24.2.2.2).

constexpr basic_string& operator=(const basic_string& str);

28 Effects: If *this and str are the same object, has no effect. Otherwise, replaces the value of *this
with a copy of str.

29 Returns: *this.

constexpr basic_string& operator=(basic_string&& str)
noexcept(allocator_traits<Allocator>::propagate_on_container_move_assignment::value ||

allocator_traits<Allocator>::is_always_equal::value);

30 Effects: Move assigns as a sequence container (24.2.4), except that iterators, pointers and references
may be invalidated.

31 Returns: *this.

template<class T>
constexpr basic_string& operator=(const T& t);

32 Constraints:
—(32.1) is_convertible_v<const T&, basic_string_view<charT, traits>> is true and
—(32.2) is_convertible_v<const T&, const charT*> is false.

33 Effects: Equivalent to:
basic_string_view<charT, traits> sv = t;
return assign(sv);

constexpr basic_string& operator=(const charT* s);

34 Effects: Equivalent to: return *this = basic_string_view<charT, traits>(s);

constexpr basic_string& operator=(charT c);

35 Effects: Equivalent to:
return *this = basic_string_view<charT, traits>(addressof(c), 1);

constexpr basic_string& operator=(initializer_list<charT> il);

36 Effects: Equivalent to:
return *this = basic_string_view<charT, traits>(il.begin(), il.size());

23.4.3.4 Iterator support [string.iterators]

constexpr iterator begin() noexcept;
constexpr const_iterator begin() const noexcept;
constexpr const_iterator cbegin() const noexcept;

1 Returns: An iterator referring to the first character in the string.

constexpr iterator end() noexcept;
constexpr const_iterator end() const noexcept;
constexpr const_iterator cend() const noexcept;

2 Returns: An iterator which is the past-the-end value.

constexpr reverse_iterator rbegin() noexcept;
constexpr const_reverse_iterator rbegin() const noexcept;
constexpr const_reverse_iterator crbegin() const noexcept;

3 Returns: An iterator which is semantically equivalent to reverse_iterator(end()).
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constexpr reverse_iterator rend() noexcept;
constexpr const_reverse_iterator rend() const noexcept;
constexpr const_reverse_iterator crend() const noexcept;

4 Returns: An iterator which is semantically equivalent to reverse_iterator(begin()).

23.4.3.5 Capacity [string.capacity]

constexpr size_type size() const noexcept;
constexpr size_type length() const noexcept;

1 Returns: A count of the number of char-like objects currently in the string.
2 Complexity: Constant time.

constexpr size_type max_size() const noexcept;

3 Returns: The largest possible number of char-like objects that can be stored in a basic_string.
4 Complexity: Constant time.

constexpr void resize(size_type n, charT c);

5 Effects: Alters the value of *this as follows:
—(5.1) If n <= size(), erases the last size() - n elements.
—(5.2) If n > size(), appends n - size() copies of c.

constexpr void resize(size_type n);

6 Effects: Equivalent to resize(n, charT()).

template<class Operation> constexpr void resize_and_overwrite(size_type n, Operation op);

7 Let
—(7.1) o = size() before the call to resize_and_overwrite.
—(7.2) k be min(o, n).
—(7.3) p be a value of type charT* or charT* const, such that the range [p, p + n] is valid and

this->compare(0, k, p, k) == 0 is true before the call. The values in the range [p + k, p +
n] may be indeterminate (6.7.4).

—(7.4) m be a value of type size_type or const size_type equal to n.
—(7.5) OP be the expression std::move(op)(p, m).
—(7.6) r = OP .

8 Mandates: OP has an integer-like type (25.3.4.4).
9 Preconditions:

—(9.1) OP does not throw an exception or modify p or m.
—(9.2) r ≥ 0.
—(9.3) r ≤ m.
—(9.4) After evaluating OP there are no indeterminate values in the range [p, p + r).

10 Effects: Evaluates OP , replaces the contents of *this with [p, p + r), and invalidates all pointers and
references to the range [p, p + n].

11 Recommended practice: Implementations should avoid unnecessary copies and allocations by, for example,
making p a pointer into internal storage and by restoring *(p + r) to charT() after evaluating OP .

constexpr size_type capacity() const noexcept;

12 Returns: The size of the allocated storage in the string.
13 Complexity: Constant time.

constexpr void reserve(size_type res_arg);

14 Effects: A directive that informs a basic_string of a planned change in size, so that the storage
allocation can be managed accordingly. After reserve(), capacity() is greater or equal to the
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argument of reserve if reallocation happens; and equal to the previous value of capacity() otherwise.
Reallocation happens at this point if and only if the current capacity is less than the argument of
reserve().

15 Throws: length_error if res_arg > max_size() or any exceptions thrown by allocator_traits
<Allocator>::allocate.

constexpr void shrink_to_fit();

16 Effects: shrink_to_fit is a non-binding request to reduce capacity() to size().
[Note 1 : The request is non-binding to allow latitude for implementation-specific optimizations. — end note ]

It does not increase capacity(), but may reduce capacity() by causing reallocation.
17 Complexity: If the size is not equal to the old capacity, linear in the size of the sequence; otherwise

constant.
18 Remarks: Reallocation invalidates all the references, pointers, and iterators referring to the elements in

the sequence, as well as the past-the-end iterator.
[Note 2 : If no reallocation happens, they remain valid. — end note ]

constexpr void clear() noexcept;

19 Effects: Equivalent to: erase(begin(), end());

[[nodiscard]] constexpr bool empty() const noexcept;

20 Effects: Equivalent to: return size() == 0;

23.4.3.6 Element access [string.access]

constexpr const_reference operator[](size_type pos) const;
constexpr reference operator[](size_type pos);

1 Preconditions: pos <= size().
2 Returns: *(begin() + pos) if pos < size(). Otherwise, returns a reference to an object of type

charT with value charT(), where modifying the object to any value other than charT() leads to
undefined behavior.

3 Throws: Nothing.
4 Complexity: Constant time.

constexpr const_reference at(size_type pos) const;
constexpr reference at(size_type pos);

5 Returns: operator[](pos).
6 Throws: out_of_range if pos >= size().

constexpr const charT& front() const;
constexpr charT& front();

7 Preconditions: !empty().
8 Effects: Equivalent to: return operator[](0);

constexpr const charT& back() const;
constexpr charT& back();

9 Preconditions: !empty().
10 Effects: Equivalent to: return operator[](size() - 1);

23.4.3.7 Modifiers [string.modifiers]
23.4.3.7.1 basic_string::operator+= [string.op.append]

constexpr basic_string& operator+=(const basic_string& str);

1 Effects: Equivalent to: return append(str);
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template<class T>
constexpr basic_string& operator+=(const T& t);

2 Constraints:
—(2.1) is_convertible_v<const T&, basic_string_view<charT, traits>> is true and
—(2.2) is_convertible_v<const T&, const charT*> is false.

3 Effects: Equivalent to:
basic_string_view<charT, traits> sv = t;
return append(sv);

constexpr basic_string& operator+=(const charT* s);

4 Effects: Equivalent to: return append(s);

constexpr basic_string& operator+=(charT c);

5 Effects: Equivalent to: return append(size_type{1}, c);

constexpr basic_string& operator+=(initializer_list<charT> il);

6 Effects: Equivalent to: return append(il);

23.4.3.7.2 basic_string::append [string.append]

constexpr basic_string& append(const basic_string& str);

1 Effects: Equivalent to: return append(str.data(), str.size());

constexpr basic_string& append(const basic_string& str, size_type pos, size_type n = npos);

2 Effects: Equivalent to:
return append(basic_string_view<charT, traits>(str).substr(pos, n));

template<class T>
constexpr basic_string& append(const T& t);

3 Constraints:
—(3.1) is_convertible_v<const T&, basic_string_view<charT, traits>> is true and
—(3.2) is_convertible_v<const T&, const charT*> is false.

4 Effects: Equivalent to:
basic_string_view<charT, traits> sv = t;
return append(sv.data(), sv.size());

template<class T>
constexpr basic_string& append(const T& t, size_type pos, size_type n = npos);

5 Constraints:
—(5.1) is_convertible_v<const T&, basic_string_view<charT, traits>> is true and
—(5.2) is_convertible_v<const T&, const charT*> is false.

6 Effects: Equivalent to:
basic_string_view<charT, traits> sv = t;
return append(sv.substr(pos, n));

constexpr basic_string& append(const charT* s, size_type n);

7 Preconditions: [s, s + n) is a valid range.
8 Effects: Appends a copy of the range [s, s + n) to the string.
9 Returns: *this.

constexpr basic_string& append(const charT* s);

10 Effects: Equivalent to: return append(s, traits::length(s));
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constexpr basic_string& append(size_type n, charT c);

11 Effects: Appends n copies of c to the string.
12 Returns: *this.

template<class InputIterator>
constexpr basic_string& append(InputIterator first, InputIterator last);

13 Constraints: InputIterator is a type that qualifies as an input iterator (24.2.2.2).
14 Effects: Equivalent to: return append(basic_string(first, last, get_allocator()));

template<container-compatible-range <charT> R>
constexpr basic_string& append_range(R&& rg);

15 Effects: Equivalent to: return append(basic_string(from_range, std::forward<R>(rg), get_-
allocator()));

constexpr basic_string& append(initializer_list<charT> il);

16 Effects: Equivalent to: return append(il.begin(), il.size());

constexpr void push_back(charT c);

17 Effects: Equivalent to append(size_type{1}, c).

23.4.3.7.3 basic_string::assign [string.assign]

constexpr basic_string& assign(const basic_string& str);

1 Effects: Equivalent to: return *this = str;

constexpr basic_string& assign(basic_string&& str)
noexcept(allocator_traits<Allocator>::propagate_on_container_move_assignment::value ||

allocator_traits<Allocator>::is_always_equal::value);

2 Effects: Equivalent to: return *this = std::move(str);

constexpr basic_string& assign(const basic_string& str, size_type pos, size_type n = npos);

3 Effects: Equivalent to:
return assign(basic_string_view<charT, traits>(str).substr(pos, n));

template<class T>
constexpr basic_string& assign(const T& t);

4 Constraints:
—(4.1) is_convertible_v<const T&, basic_string_view<charT, traits>> is true and
—(4.2) is_convertible_v<const T&, const charT*> is false.

5 Effects: Equivalent to:
basic_string_view<charT, traits> sv = t;
return assign(sv.data(), sv.size());

template<class T>
constexpr basic_string& assign(const T& t, size_type pos, size_type n = npos);

6 Constraints:
—(6.1) is_convertible_v<const T&, basic_string_view<charT, traits>> is true and
—(6.2) is_convertible_v<const T&, const charT*> is false.

7 Effects: Equivalent to:
basic_string_view<charT, traits> sv = t;
return assign(sv.substr(pos, n));

constexpr basic_string& assign(const charT* s, size_type n);

8 Preconditions: [s, s + n) is a valid range.
9 Effects: Replaces the string controlled by *this with a copy of the range [s, s + n).
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10 Returns: *this.

constexpr basic_string& assign(const charT* s);

11 Effects: Equivalent to: return assign(s, traits::length(s));

constexpr basic_string& assign(initializer_list<charT> il);

12 Effects: Equivalent to: return assign(il.begin(), il.size());

constexpr basic_string& assign(size_type n, charT c);

13 Effects: Equivalent to:
clear();
resize(n, c);
return *this;

template<class InputIterator>
constexpr basic_string& assign(InputIterator first, InputIterator last);

14 Constraints: InputIterator is a type that qualifies as an input iterator (24.2.2.2).
15 Effects: Equivalent to: return assign(basic_string(first, last, get_allocator()));

template<container-compatible-range <charT> R>
constexpr basic_string& assign_range(R&& rg);

16 Effects: Equivalent to: return assign(basic_string(from_range, std::forward<R>(rg), get_-
allocator()));

23.4.3.7.4 basic_string::insert [string.insert]

constexpr basic_string& insert(size_type pos, const basic_string& str);

1 Effects: Equivalent to: return insert(pos, str.data(), str.size());

constexpr basic_string& insert(size_type pos1, const basic_string& str,
size_type pos2, size_type n = npos);

2 Effects: Equivalent to:
return insert(pos1, basic_string_view<charT, traits>(str), pos2, n);

template<class T>
constexpr basic_string& insert(size_type pos, const T& t);

3 Constraints:
—(3.1) is_convertible_v<const T&, basic_string_view<charT, traits>> is true and
—(3.2) is_convertible_v<const T&, const charT*> is false.

4 Effects: Equivalent to:
basic_string_view<charT, traits> sv = t;
return insert(pos, sv.data(), sv.size());

template<class T>
constexpr basic_string& insert(size_type pos1, const T& t,

size_type pos2, size_type n = npos);

5 Constraints:
—(5.1) is_convertible_v<const T&, basic_string_view<charT, traits>> is true and
—(5.2) is_convertible_v<const T&, const charT*> is false.

6 Effects: Equivalent to:
basic_string_view<charT, traits> sv = t;
return insert(pos1, sv.substr(pos2, n));

constexpr basic_string& insert(size_type pos, const charT* s, size_type n);

7 Preconditions: [s, s + n) is a valid range.
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8 Effects: Inserts a copy of the range [s, s + n) immediately before the character at position pos if pos
< size(), or otherwise at the end of the string.

9 Returns: *this.
10 Throws:

—(10.1) out_of_range if pos > size(),
—(10.2) length_error if n > max_size() - size(), or
—(10.3) any exceptions thrown by allocator_traits<Allocator>::allocate.

constexpr basic_string& insert(size_type pos, const charT* s);

11 Effects: Equivalent to: return insert(pos, s, traits::length(s));

constexpr basic_string& insert(size_type pos, size_type n, charT c);

12 Effects: Inserts n copies of c before the character at position pos if pos < size(), or otherwise at the
end of the string.

13 Returns: *this
14 Throws:

—(14.1) out_of_range if pos > size(),
—(14.2) length_error if n > max_size() - size(), or
—(14.3) any exceptions thrown by allocator_traits<Allocator>::allocate.

constexpr iterator insert(const_iterator p, charT c);

15 Preconditions: p is a valid iterator on *this.
16 Effects: Inserts a copy of c at the position p.
17 Returns: An iterator which refers to the inserted character.

constexpr iterator insert(const_iterator p, size_type n, charT c);

18 Preconditions: p is a valid iterator on *this.
19 Effects: Inserts n copies of c at the position p.
20 Returns: An iterator which refers to the first inserted character, or p if n == 0.

template<class InputIterator>
constexpr iterator insert(const_iterator p, InputIterator first, InputIterator last);

21 Constraints: InputIterator is a type that qualifies as an input iterator (24.2.2.2).
22 Preconditions: p is a valid iterator on *this.
23 Effects: Equivalent to insert(p - begin(), basic_string(first, last, get_allocator())).
24 Returns: An iterator which refers to the first inserted character, or p if first == last.

template<container-compatible-range <charT> R>
constexpr iterator insert_range(const_iterator p, R&& rg);

25 Preconditions: p is a valid iterator on *this.
26 Effects: Equivalent to insert(p - begin(), basic_string(from_range, std::forward<R>(rg),

get_allocator())).
27 Returns: An iterator which refers to the first inserted character, or p if rg is empty.

constexpr iterator insert(const_iterator p, initializer_list<charT> il);

28 Effects: Equivalent to: return insert(p, il.begin(), il.end());

23.4.3.7.5 basic_string::erase [string.erase]

constexpr basic_string& erase(size_type pos = 0, size_type n = npos);

1 Effects: Determines the effective length xlen of the string to be removed as the smaller of n and size()
- pos. Removes the characters in the range [begin() + pos, begin() + pos + xlen).
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2 Returns: *this.
3 Throws: out_of_range if pos > size().

constexpr iterator erase(const_iterator p);

4 Preconditions: p is a valid dereferenceable iterator on *this.
5 Effects: Removes the character referred to by p.
6 Returns: An iterator which points to the element immediately following p prior to the element being

erased. If no such element exists, end() is returned.
7 Throws: Nothing.

constexpr iterator erase(const_iterator first, const_iterator last);

8 Preconditions: first and last are valid iterators on *this. [first, last) is a valid range.
9 Effects: Removes the characters in the range [first, last).

10 Returns: An iterator which points to the element pointed to by last prior to the other elements being
erased. If no such element exists, end() is returned.

11 Throws: Nothing.

constexpr void pop_back();

12 Preconditions: !empty().
13 Effects: Equivalent to erase(end() - 1).
14 Throws: Nothing.

23.4.3.7.6 basic_string::replace [string.replace]

constexpr basic_string& replace(size_type pos1, size_type n1, const basic_string& str);

1 Effects: Equivalent to: return replace(pos1, n1, str.data(), str.size());

constexpr basic_string& replace(size_type pos1, size_type n1, const basic_string& str,
size_type pos2, size_type n2 = npos);

2 Effects: Equivalent to:
return replace(pos1, n1, basic_string_view<charT, traits>(str).substr(pos2, n2));

template<class T>
constexpr basic_string& replace(size_type pos1, size_type n1, const T& t);

3 Constraints:
—(3.1) is_convertible_v<const T&, basic_string_view<charT, traits>> is true and
—(3.2) is_convertible_v<const T&, const charT*> is false.

4 Effects: Equivalent to:
basic_string_view<charT, traits> sv = t;
return replace(pos1, n1, sv.data(), sv.size());

template<class T>
constexpr basic_string& replace(size_type pos1, size_type n1, const T& t,

size_type pos2, size_type n2 = npos);

5 Constraints:
—(5.1) is_convertible_v<const T&, basic_string_view<charT, traits>> is true and
—(5.2) is_convertible_v<const T&, const charT*> is false.

6 Effects: Equivalent to:
basic_string_view<charT, traits> sv = t;
return replace(pos1, n1, sv.substr(pos2, n2));

constexpr basic_string& replace(size_type pos1, size_type n1, const charT* s, size_type n2);

7 Preconditions: [s, s + n2) is a valid range.
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8 Effects: Determines the effective length xlen of the string to be removed as the smaller of n1 and size()
- pos1. If size() - xlen >= max_size() - n2 throws length_error. Otherwise, the function
replaces the characters in the range [begin() + pos1, begin() + pos1 + xlen) with a copy of the
range [s, s + n2).

9 Returns: *this.
10 Throws:

—(10.1) out_of_range if pos1 > size(),
—(10.2) length_error if the length of the resulting string would exceed max_size(), or
—(10.3) any exceptions thrown by allocator_traits<Allocator>::allocate.

constexpr basic_string& replace(size_type pos, size_type n, const charT* s);

11 Effects: Equivalent to: return replace(pos, n, s, traits::length(s));

constexpr basic_string& replace(size_type pos1, size_type n1, size_type n2, charT c);

12 Effects: Determines the effective length xlen of the string to be removed as the smaller of n1 and size()
- pos1. If size() - xlen >= max_size() - n2 throws length_error. Otherwise, the function
replaces the characters in the range [begin() + pos1, begin() + pos1 + xlen) with n2 copies of c.

13 Returns: *this.
14 Throws:

—(14.1) out_of_range if pos1 > size(),
—(14.2) length_error if the length of the resulting string would exceedmax_size(), or
—(14.3) any exceptions thrown by allocator_traits<Allocator>::allocate.

constexpr basic_string& replace(const_iterator i1, const_iterator i2, const basic_string& str);

15 Effects: Equivalent to: return replace(i1, i2, basic_string_view<charT, traits>(str));

template<class T>
constexpr basic_string& replace(const_iterator i1, const_iterator i2, const T& t);

16 Constraints:
—(16.1) is_convertible_v<const T&, basic_string_view<charT, traits>> is true and
—(16.2) is_convertible_v<const T&, const charT*> is false.

17 Preconditions: [begin(), i1) and [i1, i2) are valid ranges.
18 Effects: Equivalent to:

basic_string_view<charT, traits> sv = t;
return replace(i1 - begin(), i2 - i1, sv.data(), sv.size());

constexpr basic_string& replace(const_iterator i1, const_iterator i2, const charT* s, size_type n);

19 Effects: Equivalent to: return replace(i1, i2, basic_string_view<charT, traits>(s, n));

constexpr basic_string& replace(const_iterator i1, const_iterator i2, const charT* s);

20 Effects: Equivalent to: return replace(i1, i2, basic_string_view<charT, traits>(s));

constexpr basic_string& replace(const_iterator i1, const_iterator i2, size_type n, charT c);

21 Preconditions: [begin(), i1) and [i1, i2) are valid ranges.
22 Effects: Equivalent to: return replace(i1 - begin(), i2 - i1, n, c);

template<class InputIterator>
constexpr basic_string& replace(const_iterator i1, const_iterator i2,

InputIterator j1, InputIterator j2);

23 Constraints: InputIterator is a type that qualifies as an input iterator (24.2.2.2).
24 Effects: Equivalent to: return replace(i1, i2, basic_string(j1, j2, get_allocator()));
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template<container-compatible-range <charT> R>
constexpr basic_string& replace_with_range(const_iterator i1, const_iterator i2, R&& rg);

25 Effects: Equivalent to:
return replace(i1, i2, basic_string(from_range, std::forward<R>(rg), get_allocator()));

constexpr basic_string& replace(const_iterator i1, const_iterator i2, initializer_list<charT> il);

26 Effects: Equivalent to: return replace(i1, i2, il.begin(), il.size());

23.4.3.7.7 basic_string::copy [string.copy]

constexpr size_type copy(charT* s, size_type n, size_type pos = 0) const;

1 Effects: Equivalent to: return basic_string_view<charT, traits>(*this).copy(s, n, pos);
[Note 1 : This does not terminate s with a null object. — end note ]

23.4.3.7.8 basic_string::swap [string.swap]

constexpr void swap(basic_string& s)
noexcept(allocator_traits<Allocator>::propagate_on_container_swap::value ||

allocator_traits<Allocator>::is_always_equal::value);

1 Preconditions: allocator_traits<Allocator>::propagate_on_container_swap::value is true or
get_allocator() == s.get_allocator().

2 Postconditions: *this contains the same sequence of characters that was in s, s contains the same
sequence of characters that was in *this.

3 Throws: Nothing.
4 Complexity: Constant time.

23.4.3.8 String operations [string.ops]
23.4.3.8.1 Accessors [string.accessors]

constexpr const charT* c_str() const noexcept;
constexpr const charT* data() const noexcept;

1 Returns: A pointer p such that p + i == addressof(operator[](i)) for each i in [0, size()].
2 Complexity: Constant time.
3 Remarks: The program shall not modify any of the values stored in the character array; otherwise, the

behavior is undefined.

constexpr charT* data() noexcept;

4 Returns: A pointer p such that p + i == addressof(operator[](i)) for each i in [0, size()].
5 Complexity: Constant time.
6 Remarks: The program shall not modify the value stored at p + size() to any value other than

charT(); otherwise, the behavior is undefined.

constexpr operator basic_string_view<charT, traits>() const noexcept;

7 Effects: Equivalent to: return basic_string_view<charT, traits>(data(), size());

constexpr allocator_type get_allocator() const noexcept;

8 Returns: A copy of the Allocator object used to construct the string or, if that allocator has been
replaced, a copy of the most recent replacement.

23.4.3.8.2 Searching [string.find]
1 Let F be one of find, rfind, find_first_of, find_last_of, find_first_not_of, and find_last_not_of.

—(1.1) Each member function of the form
constexpr size_type F (const basic_string& str, size_type pos) const noexcept;

has effects equivalent to: return F (basic_string_view<charT, traits>(str), pos);
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—(1.2) Each member function of the form
constexpr size_type F (const charT* s, size_type pos) const;

has effects equivalent to: return F (basic_string_view<charT, traits>(s), pos);
—(1.3) Each member function of the form

constexpr size_type F (const charT* s, size_type pos, size_type n) const;

has effects equivalent to: return F (basic_string_view<charT, traits>(s, n), pos);
—(1.4) Each member function of the form

constexpr size_type F (charT c, size_type pos) const noexcept;

has effects equivalent to:
return F (basic_string_view<charT, traits>(addressof(c), 1), pos);

template<class T>
constexpr size_type find(const T& t, size_type pos = 0) const noexcept(see below );

template<class T>
constexpr size_type rfind(const T& t, size_type pos = npos) const noexcept(see below );

template<class T>
constexpr size_type find_first_of(const T& t, size_type pos = 0) const noexcept(see below );

template<class T>
constexpr size_type find_last_of(const T& t, size_type pos = npos) const noexcept(see below );

template<class T>
constexpr size_type find_first_not_of(const T& t, size_type pos = 0) const noexcept(see below );

template<class T>
constexpr size_type find_last_not_of(const T& t, size_type pos = npos) const noexcept(see below );

2 Constraints:
—(2.1) is_convertible_v<const T&, basic_string_view<charT, traits>> is true and
—(2.2) is_convertible_v<const T&, const charT*> is false.

3 Effects: Let G be the name of the function. Equivalent to:
basic_string_view<charT, traits> s = *this, sv = t;
return s.G (sv, pos);

4 Remarks: The exception specification is equivalent to is_nothrow_convertible_v<const T&, basic_-
string_view<charT, traits>>.

23.4.3.8.3 basic_string::substr [string.substr]

constexpr basic_string substr(size_type pos = 0, size_type n = npos) const &;

1 Effects: Equivalent to: return basic_string(*this, pos, n);

constexpr basic_string substr(size_type pos = 0, size_type n = npos) &&;

2 Effects: Equivalent to: return basic_string(std::move(*this), pos, n);

23.4.3.8.4 basic_string::compare [string.compare]

template<class T>
constexpr int compare(const T& t) const noexcept(see below );

1 Constraints:
—(1.1) is_convertible_v<const T&, basic_string_view<charT, traits>> is true and
—(1.2) is_convertible_v<const T&, const charT*> is false.

2 Effects: Equivalent to: return basic_string_view<charT, traits>(*this).compare(t);
3 Remarks: The exception specification is equivalent to is_nothrow_convertible_v<const T&, basic_-

string_view<charT, traits>>.

template<class T>
constexpr int compare(size_type pos1, size_type n1, const T& t) const;

4 Constraints:
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—(4.1) is_convertible_v<const T&, basic_string_view<charT, traits>> is true and
—(4.2) is_convertible_v<const T&, const charT*> is false.

5 Effects: Equivalent to:
return basic_string_view<charT, traits>(*this).substr(pos1, n1).compare(t);

template<class T>
constexpr int compare(size_type pos1, size_type n1, const T& t,

size_type pos2, size_type n2 = npos) const;

6 Constraints:
—(6.1) is_convertible_v<const T&, basic_string_view<charT, traits>> is true and
—(6.2) is_convertible_v<const T&, const charT*> is false.

7 Effects: Equivalent to:
basic_string_view<charT, traits> s = *this, sv = t;
return s.substr(pos1, n1).compare(sv.substr(pos2, n2));

constexpr int compare(const basic_string& str) const noexcept;

8 Effects: Equivalent to: return compare(basic_string_view<charT, traits>(str));

constexpr int compare(size_type pos1, size_type n1, const basic_string& str) const;

9 Effects: Equivalent to: return compare(pos1, n1, basic_string_view<charT, traits>(str));

constexpr int compare(size_type pos1, size_type n1, const basic_string& str,
size_type pos2, size_type n2 = npos) const;

10 Effects: Equivalent to:
return compare(pos1, n1, basic_string_view<charT, traits>(str), pos2, n2);

constexpr int compare(const charT* s) const;

11 Effects: Equivalent to: return compare(basic_string_view<charT, traits>(s));

constexpr int compare(size_type pos, size_type n1, const charT* s) const;

12 Effects: Equivalent to: return compare(pos, n1, basic_string_view<charT, traits>(s));

constexpr int compare(size_type pos, size_type n1, const charT* s, size_type n2) const;

13 Effects: Equivalent to: return compare(pos, n1, basic_string_view<charT, traits>(s, n2));

23.4.3.8.5 basic_string::starts_with [string.starts.with]

constexpr bool starts_with(basic_string_view<charT, traits> x) const noexcept;
constexpr bool starts_with(charT x) const noexcept;
constexpr bool starts_with(const charT* x) const;

1 Effects: Equivalent to:
return basic_string_view<charT, traits>(data(), size()).starts_with(x);

23.4.3.8.6 basic_string::ends_with [string.ends.with]

constexpr bool ends_with(basic_string_view<charT, traits> x) const noexcept;
constexpr bool ends_with(charT x) const noexcept;
constexpr bool ends_with(const charT* x) const;

1 Effects: Equivalent to:
return basic_string_view<charT, traits>(data(), size()).ends_with(x);

23.4.3.8.7 basic_string::contains [string.contains]

constexpr bool contains(basic_string_view<charT, traits> x) const noexcept;
constexpr bool contains(charT x) const noexcept;
constexpr bool contains(const charT* x) const;

1 Effects: Equivalent to:
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return basic_string_view<charT, traits>(data(), size()).contains(x);

23.4.4 Non-member functions [string.nonmembers]
23.4.4.1 operator+ [string.op.plus]

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>

operator+(const basic_string<charT, traits, Allocator>& lhs,
const basic_string<charT, traits, Allocator>& rhs);

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>

operator+(const basic_string<charT, traits, Allocator>& lhs, const charT* rhs);

1 Effects: Equivalent to:
basic_string<charT, traits, Allocator> r = lhs;
r.append(rhs);
return r;

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>

operator+(basic_string<charT, traits, Allocator>&& lhs,
const basic_string<charT, traits, Allocator>& rhs);

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>

operator+(basic_string<charT, traits, Allocator>&& lhs, const charT* rhs);

2 Effects: Equivalent to:
lhs.append(rhs);
return std::move(lhs);

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>

operator+(basic_string<charT, traits, Allocator>&& lhs,
basic_string<charT, traits, Allocator>&& rhs);

3 Effects: Equivalent to:
lhs.append(rhs);
return std::move(lhs);

except that both lhs and rhs are left in valid but unspecified states.
[Note 1 : If lhs and rhs have equal allocators, the implementation can move from either. — end note ]

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>

operator+(const basic_string<charT, traits, Allocator>& lhs,
basic_string<charT, traits, Allocator>&& rhs);

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>

operator+(const charT* lhs, basic_string<charT, traits, Allocator>&& rhs);

4 Effects: Equivalent to:
rhs.insert(0, lhs);
return std::move(rhs);

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>

operator+(const charT* lhs, const basic_string<charT, traits, Allocator>& rhs);

5 Effects: Equivalent to:
basic_string<charT, traits, Allocator> r = rhs;
r.insert(0, lhs);
return r;
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template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>

operator+(charT lhs, const basic_string<charT, traits, Allocator>& rhs);

6 Effects: Equivalent to:
basic_string<charT, traits, Allocator> r = rhs;
r.insert(r.begin(), lhs);
return r;

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>

operator+(charT lhs, basic_string<charT, traits, Allocator>&& rhs);

7 Effects: Equivalent to:
rhs.insert(rhs.begin(), lhs);
return std::move(rhs);

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>

operator+(const basic_string<charT, traits, Allocator>& lhs, charT rhs);

8 Effects: Equivalent to:
basic_string<charT, traits, Allocator> r = lhs;
r.push_back(rhs);
return r;

template<class charT, class traits, class Allocator>
constexpr basic_string<charT, traits, Allocator>

operator+(basic_string<charT, traits, Allocator>&& lhs, charT rhs);

9 Effects: Equivalent to:
lhs.push_back(rhs);
return std::move(lhs);

23.4.4.2 Non-member comparison operator functions [string.cmp]

template<class charT, class traits, class Allocator>
constexpr bool

operator==(const basic_string<charT, traits, Allocator>& lhs,
const basic_string<charT, traits, Allocator>& rhs) noexcept;

template<class charT, class traits, class Allocator>
constexpr bool operator==(const basic_string<charT, traits, Allocator>& lhs,

const charT* rhs);

template<class charT, class traits, class Allocator>
constexpr see below operator<=>(const basic_string<charT, traits, Allocator>& lhs,

const basic_string<charT, traits, Allocator>& rhs) noexcept;
template<class charT, class traits, class Allocator>

constexpr see below operator<=>(const basic_string<charT, traits, Allocator>& lhs,
const charT* rhs);

1 Effects: Let op be the operator. Equivalent to:
return basic_string_view<charT, traits>(lhs) op basic_string_view<charT, traits>(rhs);

23.4.4.3 swap [string.special]

template<class charT, class traits, class Allocator>
constexpr void

swap(basic_string<charT, traits, Allocator>& lhs,
basic_string<charT, traits, Allocator>& rhs)

noexcept(noexcept(lhs.swap(rhs)));

1 Effects: Equivalent to lhs.swap(rhs).

§ 23.4.4.3 864



© ISO/IEC N4950

23.4.4.4 Inserters and extractors [string.io]

template<class charT, class traits, class Allocator>
basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, basic_string<charT, traits, Allocator>& str);

1 Effects: Behaves as a formatted input function (31.7.5.3.1). After constructing a sentry object, if
the sentry object returns true when converted to a value of type bool, calls str.erase() and then
extracts characters from is and appends them to str as if by calling str.append(1, c). If is.width()
is greater than zero, the maximum number n of characters appended is is.width(); otherwise n is
str.max_size(). Characters are extracted and appended until any of the following occurs:

—(1.1) n characters are stored;
—(1.2) end-of-file occurs on the input sequence;
—(1.3) isspace(c, is.getloc()) is true for the next available input character c.

2 After the last character (if any) is extracted, is.width(0) is called and the sentry object is destroyed.
3 If the function extracts no characters, ios_base::failbit is set in the input function’s local error

state before setstate is called.
4 Returns: is.

template<class charT, class traits, class Allocator>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os,
const basic_string<charT, traits, Allocator>& str);

5 Effects: Equivalent to: return os << basic_string_view<charT, traits>(str);

template<class charT, class traits, class Allocator>
basic_istream<charT, traits>&

getline(basic_istream<charT, traits>& is,
basic_string<charT, traits, Allocator>& str,
charT delim);

template<class charT, class traits, class Allocator>
basic_istream<charT, traits>&

getline(basic_istream<charT, traits>&& is,
basic_string<charT, traits, Allocator>& str,
charT delim);

6 Effects: Behaves as an unformatted input function (31.7.5.4), except that it does not affect the value
returned by subsequent calls to basic_istream<>::gcount(). After constructing a sentry object, if
the sentry object returns true when converted to a value of type bool, calls str.erase() and then
extracts characters from is and appends them to str as if by calling str.append(1, c) until any of
the following occurs:

—(6.1) end-of-file occurs on the input sequence;
—(6.2) traits::eq(c, delim) for the next available input character c (in which case, c is extracted but

not appended);
—(6.3) str.max_size() characters are stored (in which case, ios_base::failbit is set in the input

function’s local error state).
7 The conditions are tested in the order shown. In any case, after the last character is extracted, the

sentry object is destroyed.
8 If the function extracts no characters, ios_base::failbit is set in the input function’s local error

state before setstate is called.
9 Returns: is.

template<class charT, class traits, class Allocator>
basic_istream<charT, traits>&

getline(basic_istream<charT, traits>& is,
basic_string<charT, traits, Allocator>& str);
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template<class charT, class traits, class Allocator>
basic_istream<charT, traits>&

getline(basic_istream<charT, traits>&& is,
basic_string<charT, traits, Allocator>& str);

10 Returns: getline(is, str, is.widen(’\n’)).

23.4.4.5 Erasure [string.erasure]

template<class charT, class traits, class Allocator, class U>
constexpr typename basic_string<charT, traits, Allocator>::size_type

erase(basic_string<charT, traits, Allocator>& c, const U& value);

1 Effects: Equivalent to:
auto it = remove(c.begin(), c.end(), value);
auto r = distance(it, c.end());
c.erase(it, c.end());
return r;

template<class charT, class traits, class Allocator, class Predicate>
constexpr typename basic_string<charT, traits, Allocator>::size_type

erase_if(basic_string<charT, traits, Allocator>& c, Predicate pred);

2 Effects: Equivalent to:
auto it = remove_if(c.begin(), c.end(), pred);
auto r = distance(it, c.end());
c.erase(it, c.end());
return r;

23.4.5 Numeric conversions [string.conversions]
int stoi(const string& str, size_t* idx = nullptr, int base = 10);
long stol(const string& str, size_t* idx = nullptr, int base = 10);
unsigned long stoul(const string& str, size_t* idx = nullptr, int base = 10);
long long stoll(const string& str, size_t* idx = nullptr, int base = 10);
unsigned long long stoull(const string& str, size_t* idx = nullptr, int base = 10);

1 Effects: The first two functions call strtol(str.c_str(), ptr, base), and the last three functions call
strtoul(str.c_str(), ptr, base), strtoll(str.c_str(), ptr, base), and strtoull(str.c_-
str(), ptr, base), respectively. Each function returns the converted result, if any. The argument
ptr designates a pointer to an object internal to the function that is used to determine what to store
at *idx. If the function does not throw an exception and idx != nullptr, the function stores in *idx
the index of the first unconverted element of str.

2 Returns: The converted result.
3 Throws: invalid_argument if strtol, strtoul, strtoll, or strtoull reports that no conversion can

be performed. Throws out_of_range if strtol, strtoul, strtoll or strtoull sets errno to ERANGE,
or if the converted value is outside the range of representable values for the return type.

float stof(const string& str, size_t* idx = nullptr);
double stod(const string& str, size_t* idx = nullptr);
long double stold(const string& str, size_t* idx = nullptr);

4 Effects: These functions call strtof(str.c_str(), ptr), strtod(str.c_str(), ptr), and strtold(
str.c_str(), ptr), respectively. Each function returns the converted result, if any. The argument
ptr designates a pointer to an object internal to the function that is used to determine what to store
at *idx. If the function does not throw an exception and idx != nullptr, the function stores in *idx
the index of the first unconverted element of str.

5 Returns: The converted result.
6 Throws: invalid_argument if strtof, strtod, or strtold reports that no conversion can be performed.

Throws out_of_range if strtof, strtod, or strtold sets errno to ERANGE or if the converted value
is outside the range of representable values for the return type.
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string to_string(int val);
string to_string(unsigned val);
string to_string(long val);
string to_string(unsigned long val);
string to_string(long long val);
string to_string(unsigned long long val);
string to_string(float val);
string to_string(double val);
string to_string(long double val);

7 Returns: Each function returns a string object holding the character representation of the value of
its argument that would be generated by calling sprintf(buf, fmt, val) with a format specifier of
"%d", "%u", "%ld", "%lu", "%lld", "%llu", "%f", "%f", or "%Lf", respectively, where buf designates
an internal character buffer of sufficient size.

int stoi(const wstring& str, size_t* idx = nullptr, int base = 10);
long stol(const wstring& str, size_t* idx = nullptr, int base = 10);
unsigned long stoul(const wstring& str, size_t* idx = nullptr, int base = 10);
long long stoll(const wstring& str, size_t* idx = nullptr, int base = 10);
unsigned long long stoull(const wstring& str, size_t* idx = nullptr, int base = 10);

8 Effects: The first two functions call wcstol(str.c_str(), ptr, base), and the last three functions call
wcstoul(str.c_str(), ptr, base), wcstoll(str.c_str(), ptr, base), and wcstoull(str.c_-
str(), ptr, base), respectively. Each function returns the converted result, if any. The argument
ptr designates a pointer to an object internal to the function that is used to determine what to store
at *idx. If the function does not throw an exception and idx != nullptr, the function stores in *idx
the index of the first unconverted element of str.

9 Returns: The converted result.
10 Throws: invalid_argument if wcstol, wcstoul, wcstoll, or wcstoull reports that no conversion can

be performed. Throws out_of_range if the converted value is outside the range of representable values
for the return type.

float stof(const wstring& str, size_t* idx = nullptr);
double stod(const wstring& str, size_t* idx = nullptr);
long double stold(const wstring& str, size_t* idx = nullptr);

11 Effects: These functions call wcstof(str.c_str(), ptr), wcstod(str.c_str(), ptr), and wcstold(
str.c_str(), ptr), respectively. Each function returns the converted result, if any. The argument
ptr designates a pointer to an object internal to the function that is used to determine what to store
at *idx. If the function does not throw an exception and idx != nullptr, the function stores in *idx
the index of the first unconverted element of str.

12 Returns: The converted result.
13 Throws: invalid_argument if wcstof, wcstod, or wcstold reports that no conversion can be performed.

Throws out_of_range if wcstof, wcstod, or wcstold sets errno to ERANGE.

wstring to_wstring(int val);
wstring to_wstring(unsigned val);
wstring to_wstring(long val);
wstring to_wstring(unsigned long val);
wstring to_wstring(long long val);
wstring to_wstring(unsigned long long val);
wstring to_wstring(float val);
wstring to_wstring(double val);
wstring to_wstring(long double val);

14 Returns: Each function returns a wstring object holding the character representation of the value of
its argument that would be generated by calling swprintf(buf, buffsz, fmt, val) with a format
specifier of L"%d", L"%u", L"%ld", L"%lu", L"%lld", L"%llu", L"%f", L"%f", or L"%Lf", respectively,
where buf designates an internal character buffer of sufficient size buffsz.

23.4.6 Hash support [basic.string.hash]
template<class A> struct hash<basic_string<char, char_traits<char>, A>>;

§ 23.4.6 867



© ISO/IEC N4950

template<class A> struct hash<basic_string<char8_t, char_traits<char8_t>, A>>;
template<class A> struct hash<basic_string<char16_t, char_traits<char16_t>, A>>;
template<class A> struct hash<basic_string<char32_t, char_traits<char32_t>, A>>;
template<class A> struct hash<basic_string<wchar_t, char_traits<wchar_t>, A>>;

1 If S is one of these string types, SV is the corresponding string view type, and s is an object of type S,
then hash<S>()(s) == hash<SV>()(SV(s)).

23.4.7 Suffix for basic_string literals [basic.string.literals]
constexpr string operator""s(const char* str, size_t len);

1 Returns: string{str, len}.

constexpr u8string operator""s(const char8_t* str, size_t len);

2 Returns: u8string{str, len}.

constexpr u16string operator""s(const char16_t* str, size_t len);

3 Returns: u16string{str, len}.

constexpr u32string operator""s(const char32_t* str, size_t len);

4 Returns: u32string{str, len}.

constexpr wstring operator""s(const wchar_t* str, size_t len);

5 Returns: wstring{str, len}.
6 [Note 1 : The same suffix s is used for chrono::duration literals denoting seconds but there is no conflict, since

duration suffixes apply to numbers and string literal suffixes apply to character array literals. — end note ]

23.5 Null-terminated sequence utilities [c.strings]
23.5.1 Header <cctype> synopsis [cctype.syn]

namespace std {
int isalnum(int c);
int isalpha(int c);
int isblank(int c);
int iscntrl(int c);
int isdigit(int c);
int isgraph(int c);
int islower(int c);
int isprint(int c);
int ispunct(int c);
int isspace(int c);
int isupper(int c);
int isxdigit(int c);
int tolower(int c);
int toupper(int c);

}

1 The contents and meaning of the header <cctype> are the same as the C standard library header <ctype.h>.
See also: ISO/IEC 9899:2018, 7.4

23.5.2 Header <cwctype> synopsis [cwctype.syn]
namespace std {

using wint_t = see below ;
using wctrans_t = see below ;
using wctype_t = see below ;

int iswalnum(wint_t wc);
int iswalpha(wint_t wc);
int iswblank(wint_t wc);
int iswcntrl(wint_t wc);
int iswdigit(wint_t wc);
int iswgraph(wint_t wc);
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int iswlower(wint_t wc);
int iswprint(wint_t wc);
int iswpunct(wint_t wc);
int iswspace(wint_t wc);
int iswupper(wint_t wc);
int iswxdigit(wint_t wc);
int iswctype(wint_t wc, wctype_t desc);
wctype_t wctype(const char* property);
wint_t towlower(wint_t wc);
wint_t towupper(wint_t wc);
wint_t towctrans(wint_t wc, wctrans_t desc);
wctrans_t wctrans(const char* property);

}

#define WEOF see below

1 The contents and meaning of the header <cwctype> are the same as the C standard library header <wctype.h>.
See also: ISO/IEC 9899:2018, 7.30

23.5.3 Header <cstring> synopsis [cstring.syn]
namespace std {

using size_t = see 17.2.4;

void* memcpy(void* s1, const void* s2, size_t n);
void* memmove(void* s1, const void* s2, size_t n);
char* strcpy(char* s1, const char* s2);
char* strncpy(char* s1, const char* s2, size_t n);
char* strcat(char* s1, const char* s2);
char* strncat(char* s1, const char* s2, size_t n);
int memcmp(const void* s1, const void* s2, size_t n);
int strcmp(const char* s1, const char* s2);
int strcoll(const char* s1, const char* s2);
int strncmp(const char* s1, const char* s2, size_t n);
size_t strxfrm(char* s1, const char* s2, size_t n);
const void* memchr(const void* s, int c, size_t n); // see 16.2
void* memchr(void* s, int c, size_t n); // see 16.2
const char* strchr(const char* s, int c); // see 16.2
char* strchr(char* s, int c); // see 16.2
size_t strcspn(const char* s1, const char* s2);
const char* strpbrk(const char* s1, const char* s2); // see 16.2
char* strpbrk(char* s1, const char* s2); // see 16.2
const char* strrchr(const char* s, int c); // see 16.2
char* strrchr(char* s, int c); // see 16.2
size_t strspn(const char* s1, const char* s2);
const char* strstr(const char* s1, const char* s2); // see 16.2
char* strstr(char* s1, const char* s2); // see 16.2
char* strtok(char* s1, const char* s2);
void* memset(void* s, int c, size_t n);
char* strerror(int errnum);
size_t strlen(const char* s);

}

#define NULL see 17.2.3

1 The contents and meaning of the header <cstring> are the same as the C standard library header <string.h>.
2 The functions strerror and strtok are not required to avoid data races (16.4.6.10).
3 The functions memcpy and memmove are signal-safe (17.13.5). Both functions implicitly create objects (6.7.2)

in the destination region of storage immediately prior to copying the sequence of characters to the destination.
4 [Note 1 : The functions strchr, strpbrk, strrchr, strstr, and memchr, have different signatures in this document,

but they have the same behavior as in the C standard library (16.2). — end note ]

See also: ISO/IEC 9899:2018, 7.24
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23.5.4 Header <cwchar> synopsis [cwchar.syn]
namespace std {

using size_t = see 17.2.4;
using mbstate_t = see below ;
using wint_t = see below ;

struct tm;

int fwprintf(FILE* stream, const wchar_t* format, ...);
int fwscanf(FILE* stream, const wchar_t* format, ...);
int swprintf(wchar_t* s, size_t n, const wchar_t* format, ...);
int swscanf(const wchar_t* s, const wchar_t* format, ...);
int vfwprintf(FILE* stream, const wchar_t* format, va_list arg);
int vfwscanf(FILE* stream, const wchar_t* format, va_list arg);
int vswprintf(wchar_t* s, size_t n, const wchar_t* format, va_list arg);
int vswscanf(const wchar_t* s, const wchar_t* format, va_list arg);
int vwprintf(const wchar_t* format, va_list arg);
int vwscanf(const wchar_t* format, va_list arg);
int wprintf(const wchar_t* format, ...);
int wscanf(const wchar_t* format, ...);
wint_t fgetwc(FILE* stream);
wchar_t* fgetws(wchar_t* s, int n, FILE* stream);
wint_t fputwc(wchar_t c, FILE* stream);
int fputws(const wchar_t* s, FILE* stream);
int fwide(FILE* stream, int mode);
wint_t getwc(FILE* stream);
wint_t getwchar();
wint_t putwc(wchar_t c, FILE* stream);
wint_t putwchar(wchar_t c);
wint_t ungetwc(wint_t c, FILE* stream);
double wcstod(const wchar_t* nptr, wchar_t** endptr);
float wcstof(const wchar_t* nptr, wchar_t** endptr);
long double wcstold(const wchar_t* nptr, wchar_t** endptr);
long int wcstol(const wchar_t* nptr, wchar_t** endptr, int base);
long long int wcstoll(const wchar_t* nptr, wchar_t** endptr, int base);
unsigned long int wcstoul(const wchar_t* nptr, wchar_t** endptr, int base);
unsigned long long int wcstoull(const wchar_t* nptr, wchar_t** endptr, int base);
wchar_t* wcscpy(wchar_t* s1, const wchar_t* s2);
wchar_t* wcsncpy(wchar_t* s1, const wchar_t* s2, size_t n);
wchar_t* wmemcpy(wchar_t* s1, const wchar_t* s2, size_t n);
wchar_t* wmemmove(wchar_t* s1, const wchar_t* s2, size_t n);
wchar_t* wcscat(wchar_t* s1, const wchar_t* s2);
wchar_t* wcsncat(wchar_t* s1, const wchar_t* s2, size_t n);
int wcscmp(const wchar_t* s1, const wchar_t* s2);
int wcscoll(const wchar_t* s1, const wchar_t* s2);
int wcsncmp(const wchar_t* s1, const wchar_t* s2, size_t n);
size_t wcsxfrm(wchar_t* s1, const wchar_t* s2, size_t n);
int wmemcmp(const wchar_t* s1, const wchar_t* s2, size_t n);
const wchar_t* wcschr(const wchar_t* s, wchar_t c); // see 16.2
wchar_t* wcschr(wchar_t* s, wchar_t c); // see 16.2
size_t wcscspn(const wchar_t* s1, const wchar_t* s2);
const wchar_t* wcspbrk(const wchar_t* s1, const wchar_t* s2); // see 16.2
wchar_t* wcspbrk(wchar_t* s1, const wchar_t* s2); // see 16.2
const wchar_t* wcsrchr(const wchar_t* s, wchar_t c); // see 16.2
wchar_t* wcsrchr(wchar_t* s, wchar_t c); // see 16.2
size_t wcsspn(const wchar_t* s1, const wchar_t* s2);
const wchar_t* wcsstr(const wchar_t* s1, const wchar_t* s2); // see 16.2
wchar_t* wcsstr(wchar_t* s1, const wchar_t* s2); // see 16.2
wchar_t* wcstok(wchar_t* s1, const wchar_t* s2, wchar_t** ptr);
const wchar_t* wmemchr(const wchar_t* s, wchar_t c, size_t n); // see 16.2
wchar_t* wmemchr(wchar_t* s, wchar_t c, size_t n); // see 16.2
size_t wcslen(const wchar_t* s);
wchar_t* wmemset(wchar_t* s, wchar_t c, size_t n);
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size_t wcsftime(wchar_t* s, size_t maxsize, const wchar_t* format, const tm* timeptr);
wint_t btowc(int c);
int wctob(wint_t c);

// 23.5.6, multibyte / wide string and character conversion functions
int mbsinit(const mbstate_t* ps);
size_t mbrlen(const char* s, size_t n, mbstate_t* ps);
size_t mbrtowc(wchar_t* pwc, const char* s, size_t n, mbstate_t* ps);
size_t wcrtomb(char* s, wchar_t wc, mbstate_t* ps);
size_t mbsrtowcs(wchar_t* dst, const char** src, size_t len, mbstate_t* ps);
size_t wcsrtombs(char* dst, const wchar_t** src, size_t len, mbstate_t* ps);

}

#define NULL see 17.2.3
#define WCHAR_MAX see below
#define WCHAR_MIN see below
#define WEOF see below

1 The contents and meaning of the header <cwchar> are the same as the C standard library header <wchar.h>,
except that it does not declare a type wchar_t.

2 [Note 1 : The functions wcschr, wcspbrk, wcsrchr, wcsstr, and wmemchr have different signatures in this document,
but they have the same behavior as in the C standard library (16.2). — end note ]

See also: ISO/IEC 9899:2018, 7.29

23.5.5 Header <cuchar> synopsis [cuchar.syn]
namespace std {

using mbstate_t = see below ;
using size_t = see 17.2.4;

size_t mbrtoc8(char8_t* pc8, const char* s, size_t n, mbstate_t* ps);
size_t c8rtomb(char* s, char8_t c8, mbstate_t* ps);
size_t mbrtoc16(char16_t* pc16, const char* s, size_t n, mbstate_t* ps);
size_t c16rtomb(char* s, char16_t c16, mbstate_t* ps);
size_t mbrtoc32(char32_t* pc32, const char* s, size_t n, mbstate_t* ps);
size_t c32rtomb(char* s, char32_t c32, mbstate_t* ps);

}

1 The contents and meaning of the header <cuchar> are the same as the C standard library header <uchar.h>,
except that it declares the additional mbrtoc8 and c8rtomb functions and does not declare types char16_t
nor char32_t.
See also: ISO/IEC 9899:2018, 7.28

23.5.6 Multibyte / wide string and character conversion functions [c.mb.wcs]
1 [Note 1 : The headers <cstdlib> (17.2.2), <cuchar> (23.5.5), and <cwchar> (23.5.4) declare the functions described

in this subclause. — end note ]

int mbsinit(const mbstate_t* ps);
int mblen(const char* s, size_t n);
size_t mbstowcs(wchar_t* pwcs, const char* s, size_t n);
size_t wcstombs(char* s, const wchar_t* pwcs, size_t n);

2 Effects: These functions have the semantics specified in the C standard library.
See also: ISO/IEC 9899:2018, 7.22.7.1, 7.22.8, 7.29.6.2.1

int mbtowc(wchar_t* pwc, const char* s, size_t n);
int wctomb(char* s, wchar_t wchar);

3 Effects: These functions have the semantics specified in the C standard library.
4 Remarks: Calls to these functions may introduce a data race (16.4.6.10) with other calls to the same

function.
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See also: ISO/IEC 9899:2018, 7.22.7

size_t mbrlen(const char* s, size_t n, mbstate_t* ps);
size_t mbrtowc(wchar_t* pwc, const char* s, size_t n, mbstate_t* ps);
size_t wcrtomb(char* s, wchar_t wc, mbstate_t* ps);
size_t mbsrtowcs(wchar_t* dst, const char** src, size_t len, mbstate_t* ps);
size_t wcsrtombs(char* dst, const wchar_t** src, size_t len, mbstate_t* ps);

5 Effects: These functions have the semantics specified in the C standard library.
6 Remarks: Calling these functions with an mbstate_t* argument that is a null pointer value may

introduce a data race (16.4.6.10) with other calls to the same function with an mbstate_t* argument
that is a null pointer value.

See also: ISO/IEC 9899:2018, 7.29.6.3

size_t mbrtoc8(char8_t* pc8, const char* s, size_t n, mbstate_t* ps);

7 Effects: If s is a null pointer, equivalent to mbrtoc8(nullptr, "", 1, ps). Otherwise, the function
inspects at most n bytes beginning with the byte pointed to by s to determine the number of bytes
needed to complete the next multibyte character (including any shift sequences). If the function
determines that the next multibyte character is complete and valid, it determines the values of the
corresponding UTF-8 code units and then, if pc8 is not a null pointer, stores the value of the first (or
only) such code unit in the object pointed to by pc8. Subsequent calls will store successive UTF-8
code units without consuming any additional input until all the code units have been stored. If the
corresponding Unicode character is u+0000 null, the resulting state described is the initial conversion
state.

8 Returns: The first of the following that applies (given the current conversion state):
—(8.1) 0, if the next n or fewer bytes complete the multibyte character that corresponds to the u+0000

null Unicode character (which is the value stored).
—(8.2) between 1 and n (inclusive), if the next n or fewer bytes complete a valid multibyte character

(whose first (or only) code unit is stored); the value returned is the number of bytes that complete
the multibyte character.

—(8.3) (size_t)(-3), if the next code unit resulting from a previous call has been stored (no bytes from
the input have been consumed by this call).

—(8.4) (size_t)(-2), if the next n bytes contribute to an incomplete (but potentially valid) multibyte
character, and all n bytes have been processed (no value is stored).

—(8.5) (size_t)(-1), if an encoding error occurs, in which case the next n or fewer bytes do not contribute
to a complete and valid multibyte character (no value is stored); the value of the macro EILSEQ is
stored in errno, and the conversion state is unspecified.

size_t c8rtomb(char* s, char8_t c8, mbstate_t* ps);

9 Effects: If s is a null pointer, equivalent to c8rtomb(buf, u8’\0’, ps) where buf is an internal buffer.
Otherwise, if c8 completes a sequence of valid UTF-8 code units, determines the number of bytes
needed to represent the multibyte character (including any shift sequences), and stores the multibyte
character representation in the array whose first element is pointed to by s. At most MB_CUR_MAX bytes
are stored. If the multibyte character is a null character, a null byte is stored, preceded by any shift
sequence needed to restore the initial shift state; the resulting state described is the initial conversion
state.

10 Returns: The number of bytes stored in the array object (including any shift sequences). If c8 does
not contribute to a sequence of char8_t corresponding to a valid multibyte character, the value of the
macro EILSEQ is stored in errno, (size_t) (-1) is returned, and the conversion state is unspecified.

11 Remarks: Calls to c8rtomb with a null pointer argument for s may introduce a data race (16.4.6.10)
with other calls to c8rtomb with a null pointer argument for s.
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24 Containers library [containers]
24.1 General [containers.general]

1 This Clause describes components that C++ programs may use to organize collections of information.
2 The following subclauses describe container requirements, and components for sequence containers and

associative containers, as summarized in Table 82.

Table 82: Containers library summary [tab:containers.summary]

Subclause Header
24.2 Requirements
24.3 Sequence containers <array>, <deque>, <forward_list>, <list>, <vector>
24.4 Associative containers <map>, <set>
24.5 Unordered associative containers <unordered_map>, <unordered_set>
24.6 Container adaptors <queue>, <stack>, <flat_map>, <flat_set>
24.7 Views <span>, <mdspan>

24.2 Requirements [container.requirements]
24.2.1 Preamble [container.requirements.pre]

1 Containers are objects that store other objects. They control allocation and deallocation of these objects
through constructors, destructors, insert and erase operations.

2 All of the complexity requirements in this Clause are stated solely in terms of the number of operations on
the contained objects.
[Example 1 : The copy constructor of type vector<vector<int>> has linear complexity, even though the complexity
of copying each contained vector<int> is itself linear. — end example ]

3 Allocator-aware containers (24.2.2.5) other than basic_string construct elements using the function
allocator_traits<allocator_type>::rebind_traits<U>::construct and destroy elements using the
function allocator_traits<allocator_type>::rebind_traits<U>::destroy (20.2.9.3), where U is either
allocator_type::value_type or an internal type used by the container. These functions are called only
for the container’s element type, not for internal types used by the container.
[Note 1 : This means, for example, that a node-based container would need to construct nodes containing aligned
buffers and call construct to place the element into the buffer. — end note ]

24.2.2 General containers [container.requirements.general]
24.2.2.1 Introduction [container.intro.reqmts]

1 In subclause 24.2.2,
—(1.1) X denotes a container class containing objects of type T,
—(1.2) a denotes a value of type X,
—(1.3) b and c denote values of type (possibly const) X,
—(1.4) i and j denote values of type (possibly const) X::iterator,
—(1.5) u denotes an identifier,
—(1.6) v denotes an lvalue of type (possibly const) X or an rvalue of type const X,
—(1.7) s and t denote non-const lvalues of type X, and
—(1.8) rv denotes a non-const rvalue of type X.

2 The following exposition-only concept is used in the definition of containers:
template<class R, class T>
concept container-compatible-range = // exposition only

ranges::input_range<R> && convertible_to<ranges::range_reference_t<R>, T>;
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24.2.2.2 Container requirements [container.reqmts]
1 A type X meets the container requirements if the following types, statements, and expressions are well-formed

and have the specified semantics.

typename X::value_type

2 Result: T
3 Preconditions: T is Cpp17Erasable from X (see 24.2.2.5, below).

typename X::reference

4 Result: T&

typename X::const_reference

5 Result: const T&

typename X::iterator

6 Result: A type that meets the forward iterator requirements (25.3.5.5) with value type T. The type
X::iterator is convertible to X::const_iterator.

typename X::const_iterator

7 Result: A type that meets the requirements of a constant iterator and those of a forward iterator with
value type T.

typename X::difference_type

8 Result: A signed integer type, identical to the difference type of X::iterator and X::const_iterator.

typename X::size_type

9 Result: An unsigned integer type that can represent any non-negative value of X::difference_type.

X u;
X u = X();

10 Postconditions: u.empty()
11 Complexity: Constant.

X u(v);
X u = v;

12 Preconditions: T is Cpp17CopyInsertable into X (see below).
13 Postconditions: u == v.
14 Complexity: Linear.

X u(rv);
X u = rv;

15 Postconditions: u is equal to the value that rv had before this construction.
16 Complexity: Linear for array and constant for all other standard containers.

t = v;

17 Result: X&.
18 Postconditions: t == v.
19 Complexity: Linear.

t = rv

20 Result: X&.
21 Effects: All existing elements of t are either move assigned to or destroyed.
22 Postconditions: If t and rv do not refer to the same object, t is equal to the value that rv had before

this assignment.
23 Complexity: Linear.
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a.~X()

24 Result: void.
25 Effects: Destroys every element of a; any memory obtained is deallocated.
26 Complexity: Linear.

b.begin()

27 Result: iterator; const_iterator for constant b.
28 Returns: An iterator referring to the first element in the container.
29 Complexity: Constant.

b.end()

30 Result: iterator; const_iterator for constant b.
31 Returns: An iterator which is the past-the-end value for the container.
32 Complexity: Constant.

b.cbegin()

33 Result: const_iterator.
34 Returns: const_cast<X const&>(b).begin()
35 Complexity: Constant.

b.cend()

36 Result: const_iterator.
37 Returns: const_cast<X const&>(b).end()
38 Complexity: Constant.

i <=> j

39 Result: strong_ordering.
40 Constraints: X::iterator meets the random access iterator requirements.
41 Complexity: Constant.

c == b

42 Preconditions: T meets the Cpp17EqualityComparable requirements.
43 Result: bool.
44 Returns: equal(c.begin(), c.end(), b.begin(), b.end())

[Note 1 : The algorithm equal is defined in 27.6.13. — end note ]
45 Complexity: Constant if c.size() != b.size(), linear otherwise.
46 Remarks: == is an equivalence relation.

c != b

47 Effects: Equivalent to !(c == b).

t.swap(s)

48 Result: void.
49 Effects: Exchanges the contents of t and s.
50 Complexity: Linear for array and constant for all other standard containers.

swap(t, s)

51 Effects: Equivalent to t.swap(s).

c.size()

52 Result: size_type.
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53 Returns: distance(c.begin(), c.end()), i.e., the number of elements in the container.
54 Complexity: Constant.
55 Remarks: The number of elements is defined by the rules of constructors, inserts, and erases.

c.max_size()

56 Result: size_type.
57 Returns: distance(begin(), end()) for the largest possible container.
58 Complexity: Constant.

c.empty()

59 Result: bool.
60 Returns: c.begin() == c.end()
61 Complexity: Constant.
62 Remarks: If the container is empty, then c.empty() is true.
63 In the expressions

i == j
i != j
i < j
i <= j
i >= j
i > j
i <=> j
i - j

where i and j denote objects of a container’s iterator type, either or both may be replaced by an object of
the container’s const_iterator type referring to the same element with no change in semantics.

64 Unless otherwise specified, all containers defined in this Clause obtain memory using an allocator (see 16.4.4.6).
[Note 2 : In particular, containers and iterators do not store references to allocated elements other than through the
allocator’s pointer type, i.e., as objects of type P or pointer_traits<P>::template rebind<unspecified >, where P
is allocator_traits<allocator_type>::pointer. — end note ]

Copy constructors for these container types obtain an allocator by calling allocator_traits<allocator_-
type>::select_on_container_copy_construction on the allocator belonging to the container being copied.
Move constructors obtain an allocator by move construction from the allocator belonging to the container
being moved. Such move construction of the allocator shall not exit via an exception. All other constructors
for these container types take a const allocator_type& argument.
[Note 3 : If an invocation of a constructor uses the default value of an optional allocator argument, then the allocator
type must support value-initialization. — end note ]

A copy of this allocator is used for any memory allocation and element construction performed, by these
constructors and by all member functions, during the lifetime of each container object or until the allocator is
replaced. The allocator may be replaced only via assignment or swap(). Allocator replacement is performed
by copy assignment, move assignment, or swapping of the allocator only if

—(64.1) allocator_traits<allocator_type>::propagate_on_container_copy_assignment::value,
—(64.2) allocator_traits<allocator_type>::propagate_on_container_move_assignment::value, or
—(64.3) allocator_traits<allocator_type>::propagate_on_container_swap::value

is true within the implementation of the corresponding container operation. In all container types defined in
this Clause, the member get_allocator() returns a copy of the allocator used to construct the container or,
if that allocator has been replaced, a copy of the most recent replacement.

65 The expression a.swap(b), for containers a and b of a standard container type other than array, shall ex-
change the values of a and b without invoking any move, copy, or swap operations on the individual container
elements. Any Compare, Pred, or Hash types belonging to a and b shall meet the Cpp17Swappable require-
ments and shall be exchanged by calling swap as described in 16.4.4.3. If allocator_traits<allocator_-
type>::propagate_on_container_swap::value is true, then allocator_type shall meet the Cpp17Swap-
pable requirements and the allocators of a and b shall also be exchanged by calling swap as described in 16.4.4.3.
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Otherwise, the allocators shall not be swapped, and the behavior is undefined unless a.get_allocator()
== b.get_allocator(). Every iterator referring to an element in one container before the swap shall refer
to the same element in the other container after the swap. It is unspecified whether an iterator with value
a.end() before the swap will have value b.end() after the swap.

66 Unless otherwise specified (see 24.2.7.2, 24.2.8.2, 24.3.8.4, and 24.3.11.5) all container types defined in this
Clause meet the following additional requirements:

—(66.1) If an exception is thrown by an insert() or emplace() function while inserting a single element, that
function has no effects.

—(66.2) If an exception is thrown by a push_back(), push_front(), emplace_back(), or emplace_front()
function, that function has no effects.

—(66.3) No erase(), clear(), pop_back() or pop_front() function throws an exception.
—(66.4) No copy constructor or assignment operator of a returned iterator throws an exception.
—(66.5) No swap() function throws an exception.
—(66.6) No swap() function invalidates any references, pointers, or iterators referring to the elements of the

containers being swapped.
[Note 4 : The end() iterator does not refer to any element, so it can be invalidated. — end note ]

67 Unless otherwise specified (either explicitly or by defining a function in terms of other functions), invoking a
container member function or passing a container as an argument to a library function shall not invalidate
iterators to, or change the values of, objects within that container.

68 A contiguous container is a container whose member types iterator and const_iterator meet the
Cpp17RandomAccessIterator requirements (25.3.5.7) and model contiguous_iterator (25.3.4.14).

69 The behavior of certain container member functions and deduction guides depends on whether types qualify
as input iterators or allocators. The extent to which an implementation determines that a type cannot be an
input iterator is unspecified, except that as a minimum integral types shall not qualify as input iterators.
Likewise, the extent to which an implementation determines that a type cannot be an allocator is unspecified,
except that as a minimum a type A shall not qualify as an allocator unless it meets both of the following
conditions:

—(69.1) The qualified-id A::value_type is valid and denotes a type (13.10.3).
—(69.2) The expression declval<A&>().allocate(size_t{}) is well-formed when treated as an unevaluated

operand.

24.2.2.3 Reversible container requirements [container.rev.reqmts]
1 A type X meets the reversible container requirements if X meets the container requirements, the iterator type

of X belongs to the bidirectional or random access iterator categories (25.3), and the following types and
expressions are well-formed and have the specified semantics.

typename X::reverse_iterator

2 Result: The type reverse_iterator<X::iterator>, an iterator type whose value type is T.

typename X::const_reverse_iterator

3 Result: The type reverse_iterator<X::const_iterator>, a constant iterator type whose value type
is T.

a.rbegin()

4 Result: reverse_iterator; const_reverse_iterator for constant a.
5 Returns: reverse_iterator(end())
6 Complexity: Constant.

a.rend()

7 Result: reverse_iterator; const_reverse_iterator for constant a.
8 Returns: reverse_iterator(begin())
9 Complexity: Constant.
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a.crbegin()

10 Result: const_reverse_iterator.
11 Returns: const_cast<X const&>(a).rbegin()
12 Complexity: Constant.

a.crend()

13 Result: const_reverse_iterator.
14 Returns: const_cast<X const&>(a).rend()
15 Complexity: Constant.

24.2.2.4 Optional container requirements [container.opt.reqmts]
1 The following operations are provided for some types of containers but not others. Those containers for which

the listed operations are provided shall implement the semantics as described unless otherwise stated. If the
iterators passed to lexicographical_compare_three_way meet the constexpr iterator requirements (25.3.1)
then the operations described below are implemented by constexpr functions.

a <=> b

2 Result: synth-three-way-result <X::value_type>.
3 Preconditions: Either <=> is defined for values of type (possibly const) T, or < is defined for values of

type (possibly const) T and < is a total ordering relationship.
4 Returns: lexicographical_compare_three_way(a.begin(), a.end(), b.begin(), b.end(),

synth-three-way)
[Note 1 : The algorithm lexicographical_compare_three_way is defined in Clause 27. — end note ]

5 Complexity: Linear.

24.2.2.5 Allocator-aware containers [container.alloc.reqmts]
1 All of the containers defined in Clause 24 and in 23.4.3 except array meet the additional requirements of an

allocator-aware container, as described below.
2 Given an allocator type A and given a container type X having a value_type identical to T and an allocator_-

type identical to allocator_traits<A>::rebind_alloc<T> and given an lvalue m of type A, a pointer p of
type T*, an expression v of type T or const T, and an rvalue rv of type T, the following terms are defined.
If X is not allocator-aware or is a specialization of basic_string, the terms below are defined as if A were
allocator<T> — no allocator object needs to be created and user specializations of allocator<T> are not
instantiated:

—(2.1) T is Cpp17DefaultInsertable into X means that the following expression is well-formed:
allocator_traits<A>::construct(m, p)

—(2.2) An element of X is default-inserted if it is initialized by evaluation of the expression
allocator_traits<A>::construct(m, p)

where p is the address of the uninitialized storage for the element allocated within X.
—(2.3) T is Cpp17MoveInsertable into X means that the following expression is well-formed:

allocator_traits<A>::construct(m, p, rv)

and its evaluation causes the following postcondition to hold: The value of *p is equivalent to the value
of rv before the evaluation.
[Note 1 : rv remains a valid object. Its state is unspecified — end note ]

—(2.4) T is Cpp17CopyInsertable into X means that, in addition to T being Cpp17MoveInsertable into X, the
following expression is well-formed:

allocator_traits<A>::construct(m, p, v)

and its evaluation causes the following postcondition to hold: The value of v is unchanged and is
equivalent to *p.

—(2.5) T is Cpp17EmplaceConstructible into X from args, for zero or more arguments args, means that the
following expression is well-formed:
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allocator_traits<A>::construct(m, p, args)

—(2.6) T is Cpp17Erasable from X means that the following expression is well-formed:
allocator_traits<A>::destroy(m, p)

[Note 2 : A container calls allocator_traits<A>::construct(m, p, args) to construct an element at p using
args, with m == get_allocator(). The default construct in allocator will call ::new((void*)p) T(args), but
specialized allocators can choose a different definition. — end note ]

3 In this subclause,
—(3.1) X denotes an allocator-aware container class with a value_type of T using an allocator of type A,
—(3.2) u denotes a variable,
—(3.3) a and b denote non-const lvalues of type X,
—(3.4) c denotes an lvalue of type const X,
—(3.5) t denotes an lvalue or a const rvalue of type X,
—(3.6) rv denotes a non-const rvalue of type X, and
—(3.7) m is a value of type A.

A type X meets the allocator-aware container requirements if X meets the container requirements and the
following types, statements, and expressions are well-formed and have the specified semantics.

typename X::allocator_type

4 Result: A
5 Mandates: allocator_type::value_type is the same as X::value_type.

c.get_allocator()

6 Result: A
7 Complexity: Constant.

X u;
X u = X();

8 Preconditions: A meets the Cpp17DefaultConstructible requirements.
9 Postconditions: u.empty() returns true, u.get_allocator() == A().

10 Complexity: Constant.

X u(m);

11 Postconditions: u.empty() returns true, u.get_allocator() == m.
12 Complexity: Constant.

X u(t, m);

13 Preconditions: T is Cpp17CopyInsertable into X.
14 Postconditions: u == t, u.get_allocator() == m
15 Complexity: Linear.

X u(rv);

16 Postconditions: u has the same elements as rv had before this construction; the value of u.get_-
allocator() is the same as the value of rv.get_allocator() before this construction.

17 Complexity: Constant.

X u(rv, m);

18 Preconditions: T is Cpp17MoveInsertable into X.
19 Postconditions: u has the same elements, or copies of the elements, that rv had before this construction,

u.get_allocator() == m.
20 Complexity: Constant if m == rv.get_allocator(), otherwise linear.
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a = t

21 Result: X&.
22 Preconditions: T is Cpp17CopyInsertable into X and Cpp17CopyAssignable.
23 Postconditions: a == t is true.
24 Complexity: Linear.

a = rv

25 Result: X&.
26 Preconditions: If allocator_traits<allocator_type>::propagate_on_container_move_assign-

ment::value is false, T is Cpp17MoveInsertable into X and Cpp17MoveAssignable.
27 Effects: All existing elements of a are either move assigned to or destroyed.
28 Postconditions: If a and rv do not refer to the same object, a is equal to the value that rv had before

this assignment.
29 Complexity: Linear.

a.swap(b)

30 Result: void
31 Effects: Exchanges the contents of a and b.
32 Complexity: Constant.

24.2.3 Container data races [container.requirements.dataraces]
1 For purposes of avoiding data races (16.4.6.10), implementations shall consider the following functions to be

const: begin, end, rbegin, rend, front, back, data, find, lower_bound, upper_bound, equal_range, at
and, except in associative or unordered associative containers, operator[].

2 Notwithstanding 16.4.6.10, implementations are required to avoid data races when the contents of the contained
object in different elements in the same container, excepting vector<bool>, are modified concurrently.

3 [Note 1 : For a vector<int> x with a size greater than one, x[1] = 5 and *x.begin() = 10 can be executed
concurrently without a data race, but x[0] = 5 and *x.begin() = 10 executed concurrently can result in a data race.
As an exception to the general rule, for a vector<bool> y, y[0] = true can race with y[1] = true. — end note ]

24.2.4 Sequence containers [sequence.reqmts]
1 A sequence container organizes a finite set of objects, all of the same type, into a strictly linear arrangement.

The library provides four basic kinds of sequence containers: vector, forward_list, list, and deque. In
addition, array is provided as a sequence container which provides limited sequence operations because it
has a fixed number of elements. The library also provides container adaptors that make it easy to construct
abstract data types, such as stacks, queues, flat_maps, flat_multimaps, flat_sets, or flat_multisets,
out of the basic sequence container kinds (or out of other program-defined sequence containers).

2 [Note 1 : The sequence containers offer the programmer different complexity trade-offs. vector is appropriate in most
circumstances. array has a fixed size known during translation. list or forward_list support frequent insertions
and deletions from the middle of the sequence. deque supports efficient insertions and deletions taking place at the
beginning or at the end of the sequence. When choosing a container, remember vector is best; leave a comment to
explain if you choose from the rest! — end note ]

3 In this subclause,
—(3.1) X denotes a sequence container class,
—(3.2) a denotes a value of type X containing elements of type T,
—(3.3) u denotes the name of a variable being declared,
—(3.4) A denotes X::allocator_type if the qualified-id X::allocator_type is valid and denotes a type

(13.10.3) and allocator<T> if it doesn’t,
—(3.5) i and j denote iterators that meet the Cpp17InputIterator requirements and refer to elements implicitly

convertible to value_type,
—(3.6) [i, j) denotes a valid range,
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—(3.7) rg denotes a value of a type R that models container-compatible-range <T>,
—(3.8) il designates an object of type initializer_list<value_type>,
—(3.9) n denotes a value of type X::size_type,
—(3.10) p denotes a valid constant iterator to a,
—(3.11) q denotes a valid dereferenceable constant iterator to a,
—(3.12) [q1, q2) denotes a valid range of constant iterators in a,
—(3.13) t denotes an lvalue or a const rvalue of X::value_type, and
—(3.14) rv denotes a non-const rvalue of X::value_type.
—(3.15) Args denotes a template parameter pack;
—(3.16) args denotes a function parameter pack with the pattern Args&&.

4 The complexities of the expressions are sequence dependent.
5 A type X meets the sequence container requirements if X meets the container requirements and the following

statements and expressions are well-formed and have the specified semantics.

X u(n, t);

6 Preconditions: T is Cpp17CopyInsertable into X.
7 Effects: Constructs a sequence container with n copies of t.
8 Postconditions: distance(u.begin(), u.end()) == n is true.

X u(i, j);

9 Preconditions: T is Cpp17EmplaceConstructible into X from *i. For vector, if the iterator does not
meet the Cpp17ForwardIterator requirements (25.3.5.5), T is also Cpp17MoveInsertable into X.

10 Effects: Constructs a sequence container equal to the range [i, j). Each iterator in the range [i, j) is
dereferenced exactly once.

11 Postconditions: distance(u.begin(), u.end()) == distance(i, j) is true.

X(from_range, rg)

12 Preconditions: T is Cpp17EmplaceConstructible into X from *ranges::begin(rg). For vector, if R
models neither ranges::sized_range nor ranges::forward_range, T is also Cpp17MoveInsertable
into X.

13 Effects: Constructs a sequence container equal to the range rg. Each iterator in the range rg is
dereferenced exactly once.

14 Postconditions: distance(begin(), end()) == ranges::distance(rg) is true.

X(il)

15 Effects: Equivalent to X(il.begin(), il.end()).

a = il

16 Result: X&.
17 Preconditions: T is Cpp17CopyInsertable into X and Cpp17CopyAssignable.
18 Effects: Assigns the range [il.begin(), il.end()) into a. All existing elements of a are either assigned

to or destroyed.
19 Returns: *this.

a.emplace(p, args)

20 Result: iterator.
21 Preconditions: T is Cpp17EmplaceConstructible into X from args. For vector and deque, T is also

Cpp17MoveInsertable into X and Cpp17MoveAssignable.
22 Effects: Inserts an object of type T constructed with std::forward<Args>(args)... before p.

[Note 2 : args can directly or indirectly refer to a value in a. — end note ]
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23 Returns: An iterator that points to the new element constructed from args into a.

a.insert(p, t)

24 Result: iterator.
25 Preconditions: T is Cpp17CopyInsertable into X. For vector and deque, T is also Cpp17CopyAssignable.
26 Effects: Inserts a copy of t before p.
27 Returns: An iterator that points to the copy of t inserted into a.

a.insert(p, rv)

28 Result: iterator.
29 Preconditions: T is Cpp17MoveInsertable into X. For vector and deque, T is also Cpp17MoveAssignable.
30 Effects: Inserts a copy of rv before p.
31 Returns: An iterator that points to the copy of rv inserted into a.

a.insert(p, n, t)

32 Result: iterator.
33 Preconditions: T is Cpp17CopyInsertable into X and Cpp17CopyAssignable.
34 Effects: Inserts n copies of t before p.
35 Returns: An iterator that points to the copy of the first element inserted into a, or p if n == 0.

a.insert(p, i, j)

36 Result: iterator.
37 Preconditions: T is Cpp17EmplaceConstructible into X from *i. For vector and deque, T is also

Cpp17MoveInsertable into X, and T meets the Cpp17MoveConstructible, Cpp17MoveAssignable, and
Cpp17Swappable (16.4.4.3) requirements. Neither i nor j are iterators into a.

38 Effects: Inserts copies of elements in [i, j) before p. Each iterator in the range [i, j) shall be
dereferenced exactly once.

39 Returns: An iterator that points to the copy of the first element inserted into a, or p if i == j.

a.insert_range(p, rg)

40 Result: iterator.
41 Preconditions: T is Cpp17EmplaceConstructible into X from *ranges::begin(rg). For vector and

deque, T is also Cpp17MoveInsertable into X, and T meets the Cpp17MoveConstructible, Cpp17Move-
Assignable, and Cpp17Swappable (16.4.4.3) requirements. rg and a do not overlap.

42 Effects: Inserts copies of elements in rg before p. Each iterator in the range rg is dereferenced exactly
once.

43 Returns: An iterator that points to the copy of the first element inserted into a, or p if rg is empty.

a.insert(p, il)

44 Effects: Equivalent to a.insert(p, il.begin(), il.end()).

a.erase(q)

45 Result: iterator.
46 Preconditions: For vector and deque, T is Cpp17MoveAssignable.
47 Effects: Erases the element pointed to by q.
48 Returns: An iterator that points to the element immediately following q prior to the element being

erased. If no such element exists, a.end() is returned.

a.erase(q1, q2)

49 Result: iterator.
50 Preconditions: For vector and deque, T is Cpp17MoveAssignable.
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51 Effects: Erases the elements in the range [q1, q2).
52 Returns: An iterator that points to the element pointed to by q2 prior to any elements being erased. If

no such element exists, a.end() is returned.

a.clear()

53 Result: void
54 Effects: Destroys all elements in a. Invalidates all references, pointers, and iterators referring to the

elements of a and may invalidate the past-the-end iterator.
55 Postconditions: a.empty() is true.
56 Complexity: Linear.

a.assign(i, j)

57 Result: void
58 Preconditions: T is Cpp17EmplaceConstructible into X from *i and assignable from *i. For vector, if

the iterator does not meet the forward iterator requirements (25.3.5.5), T is also Cpp17MoveInsertable
into X. Neither i nor j are iterators into a.

59 Effects: Replaces elements in a with a copy of [i, j). Invalidates all references, pointers and iterators
referring to the elements of a. For vector and deque, also invalidates the past-the-end iterator. Each
iterator in the range [i, j) is dereferenced exactly once.

a.assign_range(rg)

60 Result: void
61 Mandates: assignable_from<T&, ranges::range_reference_t<R>> is modeled.
62 Preconditions: T is Cpp17EmplaceConstructible into X from *ranges::begin(rg). For vector, if R

models neither ranges::sized_range nor ranges::forward_range, T is also Cpp17MoveInsertable
into X. rg and a do not overlap.

63 Effects: Replaces elements in a with a copy of each element in rg. Invalidates all references, pointers,
and iterators referring to the elements of a. For vector and deque, also invalidates the past-the-end
iterator. Each iterator in the range rg is dereferenced exactly once.

a.assign(il)

64 Effects: Equivalent to a.assign(il.begin(), il.end()).

a.assign(n, t)

65 Result: void
66 Preconditions: T is Cpp17CopyInsertable into X and Cpp17CopyAssignable. t is not a reference into a.
67 Effects: Replaces elements in a with n copies of t. Invalidates all references, pointers and iterators

referring to the elements of a. For vector and deque, also invalidates the past-the-end iterator.
68 For every sequence container defined in this Clause and in Clause 23:

—(68.1) If the constructor
template<class InputIterator>

X(InputIterator first, InputIterator last,
const allocator_type& alloc = allocator_type());

is called with a type InputIterator that does not qualify as an input iterator, then the constructor
shall not participate in overload resolution.

—(68.2) If the member functions of the forms:
template<class InputIterator>

return-type F(const_iterator p,
InputIterator first, InputIterator last); // such as insert

template<class InputIterator>
return-type F(InputIterator first, InputIterator last); // such as append, assign
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template<class InputIterator>
return-type F(const_iterator i1, const_iterator i2,

InputIterator first, InputIterator last); // such as replace

are called with a type InputIterator that does not qualify as an input iterator, then these functions
shall not participate in overload resolution.

—(68.3) A deduction guide for a sequence container shall not participate in overload resolution if it has an
InputIterator template parameter and a type that does not qualify as an input iterator is deduced
for that parameter, or if it has an Allocator template parameter and a type that does not qualify as
an allocator is deduced for that parameter.

69 The following operations are provided for some types of sequence containers but not others. Operations other
than prepend_range and append_range are implemented so as to take amortized constant time.

a.front()

70 Result: reference; const_reference for constant a.
71 Returns: *a.begin()
72 Remarks: Required for basic_string, array, deque, forward_list, list, and vector.

a.back()

73 Result: reference; const_reference for constant a.
74 Effects: Equivalent to:

auto tmp = a.end();
--tmp;
return *tmp;

75 Remarks: Required for basic_string, array, deque, list, and vector.

a.emplace_front(args)

76 Result: reference
77 Preconditions: T is Cpp17EmplaceConstructible into X from args.
78 Effects: Prepends an object of type T constructed with std::forward<Args>(args)....
79 Returns: a.front().
80 Remarks: Required for deque, forward_list, and list.

a.emplace_back(args)

81 Result: reference
82 Preconditions: T is Cpp17EmplaceConstructible into X from args. For vector, T is also Cpp17MoveIn-

sertable into X.
83 Effects: Appends an object of type T constructed with std::forward<Args>(args)....
84 Returns: a.back().
85 Remarks: Required for deque, list, and vector.

a.push_front(t)

86 Result: void
87 Preconditions: T is Cpp17CopyInsertable into X.
88 Effects: Prepends a copy of t.
89 Remarks: Required for deque, forward_list, and list.

a.push_front(rv)

90 Result: void
91 Preconditions: T is Cpp17MoveInsertable into X.
92 Effects: Prepends a copy of rv.
93 Remarks: Required for deque, forward_list, and list.
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a.prepend_range(rg)

94 Result: void
95 Preconditions: T is Cpp17EmplaceConstructible into X from *ranges::begin(rg). For deque, T is also

Cpp17MoveInsertable into X, and T meets the Cpp17MoveConstructible, Cpp17MoveAssignable, and
Cpp17Swappable (16.4.4.3) requirements.

96 Effects: Inserts copies of elements in rg before begin(). Each iterator in the range rg is dereferenced
exactly once.
[Note 3 : The order of elements in rg is not reversed. — end note ]

97 Remarks: Required for deque, forward_list, and list.

a.push_back(t)

98 Result: void
99 Preconditions: T is Cpp17CopyInsertable into X.

100 Effects: Appends a copy of t.
101 Remarks: Required for basic_string, deque, list, and vector.

a.push_back(rv)

102 Result: void
103 Preconditions: T is Cpp17MoveInsertable into X.
104 Effects: Appends a copy of rv.
105 Remarks: Required for basic_string, deque, list, and vector.

a.append_range(rg)

106 Result: void
107 Preconditions: T is Cpp17EmplaceConstructible into X from *ranges::begin(rg). For vector, T is

also Cpp17MoveInsertable into X.
108 Effects: Inserts copies of elements in rg before end(). Each iterator in the range rg is dereferenced

exactly once.
109 Remarks: Required for deque, list, and vector.

a.pop_front()

110 Result: void
111 Preconditions: a.empty() is false.
112 Effects: Destroys the first element.
113 Remarks: Required for deque, forward_list, and list.

a.pop_back()

114 Result: void
115 Preconditions: a.empty() is false.
116 Effects: Destroys the last element.
117 Remarks: Required for basic_string, deque, list, and vector.

a[n]

118 Result: reference; const_reference for constant a
119 Returns: *(a.begin() + n)
120 Remarks: Required for basic_string, array, deque, and vector.

a.at(n)

121 Result: reference; const_reference for constant a
122 Returns: *(a.begin() + n)
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123 Throws: out_of_range if n >= a.size().
124 Remarks: Required for basic_string, array, deque, and vector.

24.2.5 Node handles [container.node]
24.2.5.1 Overview [container.node.overview]

1 A node handle is an object that accepts ownership of a single element from an associative container (24.2.7)
or an unordered associative container (24.2.8). It may be used to transfer that ownership to another container
with compatible nodes. Containers with compatible nodes have the same node handle type. Elements may
be transferred in either direction between container types in the same row of Table 83.

Table 83: Container types with compatible nodes [tab:container.node.compat]

map<K, T, C1, A> map<K, T, C2, A>
map<K, T, C1, A> multimap<K, T, C2, A>
set<K, C1, A> set<K, C2, A>
set<K, C1, A> multiset<K, C2, A>
unordered_map<K, T, H1, E1, A> unordered_map<K, T, H2, E2, A>
unordered_map<K, T, H1, E1, A> unordered_multimap<K, T, H2, E2, A>
unordered_set<K, H1, E1, A> unordered_set<K, H2, E2, A>
unordered_set<K, H1, E1, A> unordered_multiset<K, H2, E2, A>

2 If a node handle is not empty, then it contains an allocator that is equal to the allocator of the container
when the element was extracted. If a node handle is empty, it contains no allocator.

3 Class node-handle is for exposition only.
4 If a user-defined specialization of pair exists for pair<const Key, T> or pair<Key, T>, where Key is the

container’s key_type and T is the container’s mapped_type, the behavior of operations involving node handles
is undefined.

template<unspecified>
class node-handle {
public:

// These type declarations are described in 24.2.7 and 24.2.8.
using value_type = see below; // not present for map containers
using key_type = see below; // not present for set containers
using mapped_type = see below; // not present for set containers
using allocator_type = see below;

private:
using container_node_type = unspecified; // exposition only
using ator_traits = allocator_traits<allocator_type>; // exposition only

typename ator_traits::template
rebind_traits<container_node_type>::pointer ptr_; // exposition only

optional<allocator_type> alloc_; // exposition only

public:
// 24.2.5.2, constructors, copy, and assignment
constexpr node-handle() noexcept : ptr_(), alloc_() {}
node-handle(node-handle&&) noexcept;
node-handle& operator=(node-handle&&);

// 24.2.5.3, destructor
~node-handle();

// 24.2.5.4, observers
value_type& value() const; // not present for map containers
key_type& key() const; // not present for set containers
mapped_type& mapped() const; // not present for set containers
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allocator_type get_allocator() const;
explicit operator bool() const noexcept;
[[nodiscard]] bool empty() const noexcept;

// 24.2.5.5, modifiers
void swap(node-handle&)

noexcept(ator_traits::propagate_on_container_swap::value ||
ator_traits::is_always_equal::value);

friend void swap(node-handle& x, node-handle& y) noexcept(noexcept(x.swap(y))) {
x.swap(y);

}
};

24.2.5.2 Constructors, copy, and assignment [container.node.cons]

node-handle(node-handle&& nh) noexcept;

1 Effects: Constructs a node-handle object initializing ptr_ with nh.ptr_. Move constructs alloc_ with
nh.alloc_. Assigns nullptr to nh.ptr_ and assigns nullopt to nh.alloc_.

node-handle& operator=(node-handle&& nh);

2 Preconditions: Either !alloc_, or ator_traits::propagate_on_container_move_assignment::-
value is true, or alloc_ == nh.alloc_.

3 Effects:
—(3.1) If ptr_ != nullptr, destroys the value_type subobject in the container_node_type object

pointed to by ptr_ by calling ator_traits::destroy, then deallocates ptr_ by calling ator_-
traits::template rebind_traits<container_node_type>::deallocate.

—(3.2) Assigns nh.ptr_ to ptr_.
—(3.3) If !alloc_ or ator_traits::propagate_on_container_move_assignment::value is true,

move assigns nh.alloc_ to alloc_.
—(3.4) Assigns nullptr to nh.ptr_ and assigns nullopt to nh.alloc_.

4 Returns: *this.
5 Throws: Nothing.

24.2.5.3 Destructor [container.node.dtor]

~node-handle();

1 Effects: If ptr_ != nullptr, destroys the value_type subobject in the container_node_type ob-
ject pointed to by ptr_ by calling ator_traits::destroy, then deallocates ptr_ by calling ator_-
traits::template rebind_traits<container_node_type>::deallocate.

24.2.5.4 Observers [container.node.observers]

value_type& value() const;

1 Preconditions: empty() == false.
2 Returns: A reference to the value_type subobject in the container_node_type object pointed to by

ptr_.
3 Throws: Nothing.

key_type& key() const;

4 Preconditions: empty() == false.
5 Returns: A non-const reference to the key_type member of the value_type subobject in the contain-

er_node_type object pointed to by ptr_.
6 Throws: Nothing.
7 Remarks: Modifying the key through the returned reference is permitted.
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mapped_type& mapped() const;

8 Preconditions: empty() == false.
9 Returns: A reference to the mapped_type member of the value_type subobject in the container_-

node_type object pointed to by ptr_.
10 Throws: Nothing.

allocator_type get_allocator() const;

11 Preconditions: empty() == false.
12 Returns: *alloc_.
13 Throws: Nothing.

explicit operator bool() const noexcept;

14 Returns: ptr_ != nullptr.

[[nodiscard]] bool empty() const noexcept;

15 Returns: ptr_ == nullptr.

24.2.5.5 Modifiers [container.node.modifiers]

void swap(node-handle& nh)
noexcept(ator_traits::propagate_on_container_swap::value ||

ator_traits::is_always_equal::value);

1 Preconditions: !alloc_, or !nh.alloc_, or ator_traits::propagate_on_container_swap::value
is true, or alloc_ == nh.alloc_.

2 Effects: Calls swap(ptr_, nh.ptr_). If !alloc_, or !nh.alloc_, or ator_traits::propagate_on_-
container_swap::value is true calls swap(alloc_, nh.alloc_).

24.2.6 Insert return type [container.insert.return]
1 The associative containers with unique keys and the unordered containers with unique keys have a member

function insert that returns a nested type insert_return_type. That return type is a specialization of
the template specified in this subclause.

template<class Iterator, class NodeType>
struct insert-return-type
{

Iterator position;
bool inserted;
NodeType node;

};

2 The name insert-return-type is exposition only. insert-return-type has the template parameters,
data members, and special members specified above. It has no base classes or members other than those
specified.

24.2.7 Associative containers [associative.reqmts]
24.2.7.1 General [associative.reqmts.general]

1 Associative containers provide fast retrieval of data based on keys. The library provides four basic kinds
of associative containers: set, multiset, map and multimap. The library also provides container adaptors
that make it easy to construct abstract data types, such as flat_maps, flat_multimaps, flat_sets, or
flat_multisets, out of the basic sequence container kinds (or out of other program-defined sequence
containers).

2 Each associative container is parameterized on Key and an ordering relation Compare that induces a strict
weak ordering (27.8) on elements of Key. In addition, map and multimap associate an arbitrary mapped type
T with the Key. The object of type Compare is called the comparison object of a container.

3 The phrase “equivalence of keys” means the equivalence relation imposed by the comparison object. That
is, two keys k1 and k2 are considered to be equivalent if for the comparison object comp, comp(k1, k2) ==
false && comp(k2, k1) == false.

§ 24.2.7.1 888



© ISO/IEC N4950

[Note 1 : This is not necessarily the same as the result of k1 == k2. — end note ]

For any two keys k1 and k2 in the same container, calling comp(k1, k2) shall always return the same value.
4 An associative container supports unique keys if it may contain at most one element for each key. Otherwise,

it supports equivalent keys. The set and map classes support unique keys; the multiset and multimap
classes support equivalent keys. For multiset and multimap, insert, emplace, and erase preserve the
relative ordering of equivalent elements.

5 For set and multiset the value type is the same as the key type. For map and multimap it is equal to
pair<const Key, T>.

6 iterator of an associative container is of the bidirectional iterator category. For associative containers where
the value type is the same as the key type, both iterator and const_iterator are constant iterators. It is
unspecified whether or not iterator and const_iterator are the same type.
[Note 2 : iterator and const_iterator have identical semantics in this case, and iterator is convertible to const_-
iterator. Users can avoid violating the one-definition rule by always using const_iterator in their function
parameter lists. — end note ]

7 In this subclause,
—(7.1) X denotes an associative container class,
—(7.2) a denotes a value of type X,
—(7.3) a2 denotes a value of a type with nodes compatible with type X (Table 83),
—(7.4) b denotes a value or type X or const X,
—(7.5) u denotes the name of a variable being declared,
—(7.6) a_uniq denotes a value of type X when X supports unique keys,
—(7.7) a_eq denotes a value of type X when X supports multiple keys,
—(7.8) a_tran denotes a value of type X or const X when the qualified-id X::key_compare::is_transparent

is valid and denotes a type (13.10.3),
—(7.9) i and j meet the Cpp17InputIterator requirements and refer to elements implicitly convertible to

value_type,
—(7.10) [i, j) denotes a valid range,
—(7.11) rg denotes a value of a type R that models container-compatible-range <value_type>,
—(7.12) p denotes a valid constant iterator to a,
—(7.13) q denotes a valid dereferenceable constant iterator to a,
—(7.14) r denotes a valid dereferenceable iterator to a,
—(7.15) [q1, q2) denotes a valid range of constant iterators in a,
—(7.16) il designates an object of type initializer_list<value_type>,
—(7.17) t denotes a value of type X::value_type,
—(7.18) k denotes a value of type X::key_type, and
—(7.19) c denotes a value of type X::key_compare or const X::key_compare;
—(7.20) kl is a value such that a is partitioned (27.8) with respect to c(x, kl), with x the key value of e and

e in a;
—(7.21) ku is a value such that a is partitioned with respect to !c(ku, x), with x the key value of e and e in a;
—(7.22) ke is a value such that a is partitioned with respect to c(x, ke) and !c(ke, x), with c(x, ke)

implying !c(ke, x) and with x the key value of e and e in a;
—(7.23) kx is a value such that

—(7.23.1) a is partitioned with respect to c(x, kx) and !c(kx, x), with c(x, kx) implying !c(kx, x)
and with x the key value of e and e in a, and

—(7.23.2) kx is not convertible to either iterator or const_iterator; and
—(7.24) A denotes the storage allocator used by X, if any, or allocator<X::value_type> otherwise,
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—(7.25) m denotes an allocator of a type convertible to A, and nh denotes a non-const rvalue of type X::node_-
type.

8 A type X meets the associative container requirements if X meets all the requirements of an allocator-aware
container (24.2.2.2) and the following types, statements, and expressions are well-formed and have the
specified semantics, except that for map and multimap, the requirements placed on value_type in 24.2.2.5
apply instead to key_type and mapped_type.
[Note 3 : For example, in some cases key_type and mapped_type are required to be Cpp17CopyAssignable even though
the associated value_type, pair<const key_type, mapped_type>, is not Cpp17CopyAssignable. — end note ]

typename X::key_type

9 Result: Key.

typename X::mapped_type

10 Result: T.
11 Remarks: For map and multimap only.

typename X::value_type

12 Result: Key for set and multiset only; pair<const Key, T> for map and multimap only.
13 Preconditions: X::value_type is Cpp17Erasable from X.

typename X::key_compare

14 Result: Compare.
15 Preconditions: key_compare is Cpp17CopyConstructible.

typename X::value_compare

16 Result: A binary predicate type. It is the same as key_compare for set and multiset; is an ordering
relation on pairs induced by the first component (i.e., Key) for map and multimap.

typename X::node_type

17 Result: A specialization of the node-handle class template (24.2.5), such that the public nested types
are the same types as the corresponding types in X.

X(c)

18 Effects: Constructs an empty container. Uses a copy of c as a comparison object.
19 Complexity: Constant.

X u = X();
X u;

20 Preconditions: key_compare meets the Cpp17DefaultConstructible requirements.
21 Effects: Constructs an empty container. Uses Compare() as a comparison object.
22 Complexity: Constant.

X(i, j, c)

23 Preconditions: value_type is Cpp17EmplaceConstructible into X from *i.
24 Effects: Constructs an empty container and inserts elements from the range [i, j) into it; uses c as a

comparison object.
25 Complexity: N log N in general, where N has the value distance(i, j); linear if [i, j) is sorted with

respect to value_comp().

X(i, j)

26 Preconditions: key_compare meets the Cpp17DefaultConstructible requirements. value_type is
Cpp17EmplaceConstructible into X from *i.

27 Effects: Constructs an empty container and inserts elements from the range [i, j) into it; uses Compare()
as a comparison object.
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28 Complexity: N log N in general, where N has the value distance(i, j); linear if [i, j) is sorted with
respect to value_comp().

X(from_range, rg, c)

29 Preconditions: value_type is Cpp17EmplaceConstructible into X from *ranges::begin(rg).
30 Effects: Constructs an empty container and inserts each element from rg into it. Uses c as the

comparison object.
31 Complexity: N log N in general, where N has the value ranges::distance(rg); linear if rg is sorted

with respect to value_comp().

X(from_range, rg)

32 Preconditions: key_compare meets the Cpp17DefaultConstructible requirements. value_type is
Cpp17EmplaceConstructible into X from *ranges::begin(rg).

33 Effects: Constructs an empty container and inserts each element from rg into it. Uses Compare() as
the comparison object.

34 Complexity: Same as X(from_range, rg, c).

X(il, c)

35 Effects: Equivalent to X(il.begin(), il.end(), c).

X(il)

36 Effects: Equivalent to X(il.begin(), il.end()).

a = il

37 Result: X&
38 Preconditions: value_type is Cpp17CopyInsertable into X and Cpp17CopyAssignable.
39 Effects: Assigns the range [il.begin(), il.end()) into a. All existing elements of a are either assigned

to or destroyed.
40 Complexity: N log N in general, where N has the value il.size() + a.size(); linear if [il.begin(),

il.end()) is sorted with respect to value_comp().

b.key_comp()

41 Result: X::key_compare
42 Returns: The comparison object out of which b was constructed.
43 Complexity: Constant.

b.value_comp()

44 Result: X::value_compare
45 Returns: An object of value_compare constructed out of the comparison object.
46 Complexity: Constant.

a_uniq.emplace(args)

47 Result: pair<iterator, bool>
48 Preconditions: value_type is Cpp17EmplaceConstructible into X from args.
49 Effects: Inserts a value_type object t constructed with std::forward<Args>(args)... if and only

if there is no element in the container with key equivalent to the key of t.
50 Returns: The bool component of the returned pair is true if and only if the insertion takes place, and

the iterator component of the pair points to the element with key equivalent to the key of t.
51 Complexity: Logarithmic.

a_eq.emplace(args)

52 Result: iterator
53 Preconditions: value_type is Cpp17EmplaceConstructible into X from args.
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54 Effects: Inserts a value_type object t constructed with std::forward<Args>(args).... If a range
containing elements equivalent to t exists in a_eq, t is inserted at the end of that range.

55 Returns: An iterator pointing to the newly inserted element.
56 Complexity: Logarithmic.

a.emplace_hint(p, args)

57 Result: iterator
58 Effects: Equivalent to a.emplace(std::forward<Args>(args)...), except that the element is inserted

as close as possible to the position just prior to p.
59 Returns: An iterator pointing to the element with the key equivalent to the newly inserted element.
60 Complexity: Logarithmic in general, but amortized constant if the element is inserted right before p.

a_uniq.insert(t)

61 Result: pair<iterator, bool>
62 Preconditions: If t is a non-const rvalue, value_type is Cpp17MoveInsertable into X; otherwise,

value_type is Cpp17CopyInsertable into X.
63 Effects: Inserts t if and only if there is no element in the container with key equivalent to the key of t.
64 Returns: The bool component of the returned pair is true if and only if the insertion takes place, and

the iterator component of the pair points to the element with key equivalent to the key of t.
65 Complexity: Logarithmic.

a_eq.insert(t)

66 Result: iterator
67 Preconditions: If t is a non-const rvalue, value_type is Cpp17MoveInsertable into X; otherwise,

value_type is Cpp17CopyInsertable into X.
68 Effects: Inserts t and returns the iterator pointing to the newly inserted element. If a range containing

elements equivalent to t exists in a_eq, t is inserted at the end of that range.
69 Complexity: Logarithmic.

a.insert(p, t)

70 Result: iterator
71 Preconditions: If t is a non-const rvalue, value_type is Cpp17MoveInsertable into X; otherwise,

value_type is Cpp17CopyInsertable into X.
72 Effects: Inserts t if and only if there is no element with key equivalent to the key of t in containers

with unique keys; always inserts t in containers with equivalent keys. t is inserted as close as possible
to the position just prior to p.

73 Returns: An iterator pointing to the element with key equivalent to the key of t.
74 Complexity: Logarithmic in general, but amortized constant if t is inserted right before p.

a.insert(i, j)

75 Result: void
76 Preconditions: value_type is Cpp17EmplaceConstructible into X from *i. Neither i nor j are iterators

into a.
77 Effects: Inserts each element from the range [i, j) if and only if there is no element with key equivalent

to the key of that element in containers with unique keys; always inserts that element in containers
with equivalent keys.

78 Complexity: N log(a.size() + N), where N has the value distance(i, j).

a.insert_range(rg)

79 Result: void
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80 Preconditions: value_type is Cpp17EmplaceConstructible into X from *ranges::begin(rg). rg and a
do not overlap.

81 Effects: Inserts each element from rg if and only if there is no element with key equivalent to the key of
that element in containers with unique keys; always inserts that element in containers with equivalent
keys.

82 Complexity: N log(a.size() + N), where N has the value ranges::distance(rg).

a.insert(il)

83 Effects: Equivalent to a.insert(il.begin(), il.end()).

a_uniq.insert(nh)

84 Result: insert_return_type
85 Preconditions: nh is empty or a_uniq.get_allocator() == nh.get_allocator() is true.
86 Effects: If nh is empty, has no effect. Otherwise, inserts the element owned by nh if and only if there is

no element in the container with a key equivalent to nh.key().
87 Returns: If nh is empty, inserted is false, position is end(), and node is empty. Otherwise if the

insertion took place, inserted is true, position points to the inserted element, and node is empty; if
the insertion failed, inserted is false, node has the previous value of nh, and position points to an
element with a key equivalent to nh.key().

88 Complexity: Logarithmic.

a_eq.insert(nh)

89 Result: iterator
90 Preconditions: nh is empty or a_eq.get_allocator() == nh.get_allocator() is true.
91 Effects: If nh is empty, has no effect and returns a_eq.end(). Otherwise, inserts the element owned by

nh and returns an iterator pointing to the newly inserted element. If a range containing elements with
keys equivalent to nh.key() exists in a_eq, the element is inserted at the end of that range.

92 Postconditions: nh is empty.
93 Complexity: Logarithmic.

a.insert(p, nh)

94 Result: iterator
95 Preconditions: nh is empty or a.get_allocator() == nh.get_allocator() is true.
96 Effects: If nh is empty, has no effect and returns a.end(). Otherwise, inserts the element owned by

nh if and only if there is no element with key equivalent to nh.key() in containers with unique keys;
always inserts the element owned by nh in containers with equivalent keys. The element is inserted as
close as possible to the position just prior to p.

97 Postconditions: nh is empty if insertion succeeds, unchanged if insertion fails.
98 Returns: An iterator pointing to the element with key equivalent to nh.key().
99 Complexity: Logarithmic in general, but amortized constant if the element is inserted right before p.

a.extract(k)

100 Result: node_type
101 Effects: Removes the first element in the container with key equivalent to k.
102 Returns: A node_type owning the element if found, otherwise an empty node_type.
103 Complexity: log(a.size())

a_tran.extract(kx)

104 Result: node_type
105 Effects: Removes the first element in the container with key r such that !c(r, kx) && !c(kx, r) is

true.
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106 Returns: A node_type owning the element if found, otherwise an empty node_type.
107 Complexity: log(a_tran.size())

a.extract(q)

108 Result: node_type
109 Effects: Removes the element pointed to by q.
110 Returns: A node_type owning that element.
111 Complexity: Amortized constant.

a.merge(a2)

112 Result: void
113 Preconditions: a.get_allocator() == a2.get_allocator().
114 Effects: Attempts to extract each element in a2 and insert it into a using the comparison object of a.

In containers with unique keys, if there is an element in a with key equivalent to the key of an element
from a2, then that element is not extracted from a2.

115 Postconditions: Pointers and references to the transferred elements of a2 refer to those same elements
but as members of a. Iterators referring to the transferred elements will continue to refer to their
elements, but they now behave as iterators into a, not into a2.

116 Throws: Nothing unless the comparison object throws.
117 Complexity: N log(a.size()+N), where N has the value a2.size().

a.erase(k)

118 Result: size_type
119 Effects: Erases all elements in the container with key equivalent to k.
120 Returns: The number of erased elements.
121 Complexity: log(a.size()) + a.count(k)

a_tran.erase(kx)

122 Result: size_type
123 Effects: Erases all elements in the container with key r such that !c(r, kx) && !c(kx, r) is true.
124 Returns: The number of erased elements.
125 Complexity: log(a_tran.size()) + a_tran.count(kx)

a.erase(q)

126 Result: iterator
127 Effects: Erases the element pointed to by q.
128 Returns: An iterator pointing to the element immediately following q prior to the element being erased.

If no such element exists, returns a.end().
129 Complexity: Amortized constant.

a.erase(r)

130 Result: iterator
131 Effects: Erases the element pointed to by r.
132 Returns: An iterator pointing to the element immediately following r prior to the element being erased.

If no such element exists, returns a.end().
133 Complexity: Amortized constant.

a.erase(q1, q2)

134 Result: iterator
135 Effects: Erases all the elements in the range [q1, q2).
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136 Returns: An iterator pointing to the element pointed to by q2 prior to any elements being erased. If no
such element exists, a.end() is returned.

137 Complexity: log(a.size()) + N , where N has the value distance(q1, q2).

a.clear()

138 Effects: Equivalent to a.erase(a.begin(), a.end()).
139 Postconditions: a.empty() is true.
140 Complexity: Linear in a.size().

b.find(k)

141 Result: iterator; const_iterator for constant b.
142 Returns: An iterator pointing to an element with the key equivalent to k, or b.end() if such an element

is not found.
143 Complexity: Logarithmic.

a_tran.find(ke)

144 Result: iterator; const_iterator for constant a_tran.
145 Returns: An iterator pointing to an element with key r such that !c(r, ke) && !c(ke, r) is true,

or a_tran.end() if such an element is not found.
146 Complexity: Logarithmic.

b.count(k)

147 Result: size_type
148 Returns: The number of elements with key equivalent to k.
149 Complexity: log(b.size()) + b.count(k)

a_tran.count(ke)

150 Result: size_type
151 Returns: The number of elements with key r such that !c(r, ke) && !c(ke, r).
152 Complexity: log(a_tran.size()) + a_tran.count(ke)

b.contains(k)

153 Result: bool
154 Effects: Equivalent to: return b.find(k) != b.end();

a_tran.contains(ke)

155 Result: bool
156 Effects: Equivalent to: return a_tran.find(ke) != a_tran.end();

b.lower_bound(k)

157 Result: iterator; const_iterator for constant b.
158 Returns: An iterator pointing to the first element with key not less than k, or b.end() if such an

element is not found.
159 Complexity: Logarithmic.

a_tran.lower_bound(kl)

160 Result: iterator; const_iterator for constant a_tran.
161 Returns: An iterator pointing to the first element with key r such that !c(r, kl), or a_tran.end() if

such an element is not found.
162 Complexity: Logarithmic.
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b.upper_bound(k)

163 Result: iterator; const_iterator for constant b.
164 Returns: An iterator pointing to the first element with key greater than k, or b.end() if such an

element is not found.
165 Complexity: Logarithmic,

a_tran.upper_bound(ku)

166 Result: iterator; const_iterator for constant a_tran.
167 Returns: An iterator pointing to the first element with key r such that c(ku, r), or a_tran.end() if

such an element is not found.
168 Complexity: Logarithmic.

b.equal_range(k)

169 Result: pair<iterator, iterator>; pair<const_iterator, const_iterator> for constant b.
170 Effects: Equivalent to: return make_pair(b.lower_bound(k), b.upper_bound(k));
171 Complexity: Logarithmic.

a_tran.equal_range(ke)

172 Result: pair<iterator, iterator>; pair<const_iterator, const_iterator> for constant a_tran.
173 Effects: Equivalent to: return make_pair(a_tran.lower_bound(ke), a_tran.upper_bound(ke));
174 Complexity: Logarithmic.
175 The insert, insert_range, and emplace members shall not affect the validity of iterators and references to

the container, and the erase members shall invalidate only iterators and references to the erased elements.
176 The extract members invalidate only iterators to the removed element; pointers and references to the

removed element remain valid. However, accessing the element through such pointers and references while
the element is owned by a node_type is undefined behavior. References and pointers to an element obtained
while it is owned by a node_type are invalidated if the element is successfully inserted.

177 The fundamental property of iterators of associative containers is that they iterate through the containers
in the non-descending order of keys where non-descending is defined by the comparison that was used to
construct them. For any two dereferenceable iterators i and j such that distance from i to j is positive, the
following condition holds:

value_comp(*j, *i) == false

178 For associative containers with unique keys the stronger condition holds:
value_comp(*i, *j) != false

179 When an associative container is constructed by passing a comparison object the container shall not store a
pointer or reference to the passed object, even if that object is passed by reference. When an associative
container is copied, through either a copy constructor or an assignment operator, the target container shall
then use the comparison object from the container being copied, as if that comparison object had been passed
to the target container in its constructor.

180 The member function templates find, count, contains, lower_bound, upper_bound, equal_range, erase,
and extract shall not participate in overload resolution unless the qualified-id Compare::is_transparent is
valid and denotes a type (13.10.3). Additionally, the member function templates extract and erase shall
not participate in overload resolution if is_convertible_v<K&&, iterator> || is_convertible_v<K&&,
const_iterator> is true, where K is the type substituted as the first template argument.

181 A deduction guide for an associative container shall not participate in overload resolution if any of the
following are true:

—(181.1) It has an InputIterator template parameter and a type that does not qualify as an input iterator is
deduced for that parameter.

—(181.2) It has an Allocator template parameter and a type that does not qualify as an allocator is deduced
for that parameter.
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—(181.3) It has a Compare template parameter and a type that qualifies as an allocator is deduced for that
parameter.

24.2.7.2 Exception safety guarantees [associative.reqmts.except]
1 For associative containers, no clear() function throws an exception. erase(k) does not throw an exception

unless that exception is thrown by the container’s Compare object (if any).
2 For associative containers, if an exception is thrown by any operation from within an insert or emplace

function inserting a single element, the insertion has no effect.
3 For associative containers, no swap function throws an exception unless that exception is thrown by the swap

of the container’s Compare object (if any).

24.2.8 Unordered associative containers [unord.req]
24.2.8.1 General [unord.req.general]

1 Unordered associative containers provide an ability for fast retrieval of data based on keys. The worst-case
complexity for most operations is linear, but the average case is much faster. The library provides four
unordered associative containers: unordered_set, unordered_map, unordered_multiset, and unordered_-
multimap.

2 Unordered associative containers conform to the requirements for Containers (24.2), except that the expressions
a == b and a != b have different semantics than for the other container types.

3 Each unordered associative container is parameterized by Key, by a function object type Hash that meets the
Cpp17Hash requirements (16.4.4.5) and acts as a hash function for argument values of type Key, and by a
binary predicate Pred that induces an equivalence relation on values of type Key. Additionally, unordered_map
and unordered_multimap associate an arbitrary mapped type T with the Key.

4 The container’s object of type Hash — denoted by hash — is called the hash function of the container. The
container’s object of type Pred — denoted by pred — is called the key equality predicate of the container.

5 Two values k1 and k2 are considered equivalent if the container’s key equality predicate pred(k1, k2) is
valid and returns true when passed those values. If k1 and k2 are equivalent, the container’s hash function
shall return the same value for both.
[Note 1 : Thus, when an unordered associative container is instantiated with a non-default Pred parameter it usually
needs a non-default Hash parameter as well. — end note ]

For any two keys k1 and k2 in the same container, calling pred(k1, k2) shall always return the same value.
For any key k in a container, calling hash(k) shall always return the same value.

6 An unordered associative container supports unique keys if it may contain at most one element for each
key. Otherwise, it supports equivalent keys. unordered_set and unordered_map support unique keys.
unordered_multiset and unordered_multimap support equivalent keys. In containers that support equiva-
lent keys, elements with equivalent keys are adjacent to each other in the iteration order of the container.
Thus, although the absolute order of elements in an unordered container is not specified, its elements are
grouped into equivalent-key groups such that all elements of each group have equivalent keys. Mutating
operations on unordered containers shall preserve the relative order of elements within each equivalent-key
group unless otherwise specified.

7 For unordered_set and unordered_multiset the value type is the same as the key type. For unordered_map
and unordered_multimap it is pair<const Key, T>.

8 For unordered containers where the value type is the same as the key type, both iterator and const_-
iterator are constant iterators. It is unspecified whether or not iterator and const_iterator are the
same type.
[Note 2 : iterator and const_iterator have identical semantics in this case, and iterator is convertible to const_-
iterator. Users can avoid violating the one-definition rule by always using const_iterator in their function
parameter lists. — end note ]

9 The elements of an unordered associative container are organized into buckets. Keys with the same hash
code appear in the same bucket. The number of buckets is automatically increased as elements are added
to an unordered associative container, so that the average number of elements per bucket is kept below
a bound. Rehashing invalidates iterators, changes ordering between elements, and changes which buckets
elements appear in, but does not invalidate pointers or references to elements. For unordered_multiset and
unordered_multimap, rehashing preserves the relative ordering of equivalent elements.
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10 In this subclause,
—(10.1) X denotes an unordered associative container class,
—(10.2) a denotes a value of type X,
—(10.3) a2 denotes a value of a type with nodes compatible with type X (Table 83),
—(10.4) b denotes a value of type X or const X,
—(10.5) a_uniq denotes a value of type X when X supports unique keys,
—(10.6) a_eq denotes a value of type X when X supports equivalent keys,
—(10.7) a_tran denotes a value of type X or const X when the qualified-ids X::key_equal::is_transparent

and X::hasher::is_transparent are both valid and denote types (13.10.3),
—(10.8) i and j denote input iterators that refer to value_type,
—(10.9) [i, j) denotes a valid range,
—(10.10) rg denotes a value of a type R that models container-compatible-range <value_type>,
—(10.11) p and q2 denote valid constant iterators to a,
—(10.12) q and q1 denote valid dereferenceable constant iterators to a,
—(10.13) r denotes a valid dereferenceable iterator to a,
—(10.14) [q1, q2) denotes a valid range in a,
—(10.15) il denotes a value of type initializer_list<value_type>,
—(10.16) t denotes a value of type X::value_type,
—(10.17) k denotes a value of type key_type,
—(10.18) hf denotes a value of type hasher or const hasher,
—(10.19) eq denotes a value of type key_equal or const key_equal,
—(10.20) ke is a value such that

—(10.20.1) eq(r1, ke) == eq(ke, r1),
—(10.20.2) hf(r1) == hf(ke) if eq(r1, ke) is true, and
—(10.20.3) if any two of eq(r1, ke), eq(r2, ke), and eq(r1, r2) are true, then all three are true,

where r1 and r2 are keys of elements in a_tran,
—(10.21) kx is a value such that

—(10.21.1) eq(r1, kx) == eq(kx, r1),
—(10.21.2) hf(r1) == hf(kx) if eq(r1, kx) is true,
—(10.21.3) if any two of eq(r1, kx), eq(r2, kx), and eq(r1, r2) are true, then all three are true, and
—(10.21.4) kx is not convertible to either iterator or const_iterator,

where r1 and r2 are keys of elements in a_tran,
—(10.22) n denotes a value of type size_type,
—(10.23) z denotes a value of type float, and
—(10.24) nh denotes an rvalue of type X::node_type.

11 A type X meets the unordered associative container requirements if X meets all the requirements of an
allocator-aware container (24.2.2.2) and the following types, statements, and expressions are well-formed and
have the specified semantics, except that for unordered_map and unordered_multimap, the requirements
placed on value_type in 24.2.2.5 apply instead to key_type and mapped_type.
[Note 3 : For example, key_type and mapped_type are sometimes required to be Cpp17CopyAssignable even though
the associated value_type, pair<const key_type, mapped_type>, is not Cpp17CopyAssignable. — end note ]

typename X::key_type

12 Result: Key.
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typename X::mapped_type

13 Result: T.
14 Remarks: For unordered_map and unordered_multimap only.

typename X::value_type

15 Result: Key for unordered_set and unordered_multiset only; pair<const Key, T> for unordered_-
map and unordered_multimap only.

16 Preconditions: value_type is Cpp17Erasable from X.

typename X::hasher

17 Result: Hash.
18 Preconditions: Hash is a unary function object type such that the expression hf(k) has type size_t.

typename X::key_equal

19 Result: Pred.
20 Preconditions: Pred meets the Cpp17CopyConstructible requirements. Pred is a binary predicate that

takes two arguments of type Key. Pred is an equivalence relation.

typename X::local_iterator

21 Result: An iterator type whose category, value type, difference type, and pointer and reference types
are the same as X::iterator’s.
[Note 4 : A local_iterator object can be used to iterate through a single bucket, but cannot be used to iterate
across buckets. — end note ]

typename X::const_local_iterator

22 Result: An iterator type whose category, value type, difference type, and pointer and reference types
are the same as X::const_iterator’s.
[Note 5 : A const_local_iterator object can be used to iterate through a single bucket, but cannot be used
to iterate across buckets. — end note ]

typename X::node_type

23 Result: A specialization of a node-handle class template (24.2.5), such that the public nested types
are the same types as the corresponding types in X.

X(n, hf, eq)

24 Effects: Constructs an empty container with at least n buckets, using hf as the hash function and eq
as the key equality predicate.

25 Complexity: O(n)

X(n, hf)

26 Preconditions: key_equal meets the Cpp17DefaultConstructible requirements.
27 Effects: Constructs an empty container with at least n buckets, using hf as the hash function and

key_equal() as the key equality predicate.
28 Complexity: O(n)

X(n)

29 Preconditions: hasher and key_equal meet the Cpp17DefaultConstructible requirements.
30 Effects: Constructs an empty container with at least n buckets, using hasher() as the hash function

and key_equal() as the key equality predicate.
31 Complexity: O(n)

X a = X();
X a;

32 Preconditions: hasher and key_equal meet the Cpp17DefaultConstructible requirements.

§ 24.2.8.1 899



© ISO/IEC N4950

33 Effects: Constructs an empty container with an unspecified number of buckets, using hasher() as the
hash function and key_equal() as the key equality predicate.

34 Complexity: Constant.

X(i, j, n, hf, eq)

35 Preconditions: value_type is Cpp17EmplaceConstructible into X from *i.
36 Effects: Constructs an empty container with at least n buckets, using hf as the hash function and eq

as the key equality predicate, and inserts elements from [i, j) into it.
37 Complexity: Average case O(N) (N is distance(i, j)), worst case O(N2).

X(i, j, n, hf)

38 Preconditions: key_equal meets the Cpp17DefaultConstructible requirements. value_type is Cpp17-
EmplaceConstructible into X from *i.

39 Effects: Constructs an empty container with at least n buckets, using hf as the hash function and
key_equal() as the key equality predicate, and inserts elements from [i, j) into it.

40 Complexity: Average case O(N) (N is distance(i, j)), worst case O(N2).

X(i, j, n)

41 Preconditions: hasher and key_equal meet the Cpp17DefaultConstructible requirements. value_type
is Cpp17EmplaceConstructible into X from *i.

42 Effects: Constructs an empty container with at least n buckets, using hasher() as the hash function
and key_equal() as the key equality predicate, and inserts elements from [i, j) into it.

43 Complexity: Average case O(N) (N is distance(i, j)), worst case O(N2).

X(i, j)

44 Preconditions: hasher and key_equal meet the Cpp17DefaultConstructible requirements. value_type
is Cpp17EmplaceConstructible into X from *i.

45 Effects: Constructs an empty container with an unspecified number of buckets, using hasher() as the
hash function and key_equal() as the key equality predicate, and inserts elements from [i, j) into it.

46 Complexity: Average case O(N) (N is distance(i, j)), worst case O(N2).

X(from_range, rg, n, hf, eq)

47 Preconditions: value_type is Cpp17EmplaceConstructible into X from *ranges::begin(rg).
48 Effects: Constructs an empty container with at least n buckets, using hf as the hash function and eq

as the key equality predicate, and inserts elements from rg into it.
49 Complexity: Average case O(N) (N is ranges::distance(rg)), worst case O(N2).

X(from_range, rg, n, hf)

50 Preconditions: key_equal meets the Cpp17DefaultConstructible requirements. value_type is Cpp17-
EmplaceConstructible into X from *ranges::begin(rg).

51 Effects: Constructs an empty container with at least n buckets, using hf as the hash function and
key_equal() as the key equality predicate, and inserts elements from rg into it.

52 Complexity: Average case O(N) (N is ranges::distance(rg)), worst case O(N2).

X(from_range, rg, n)

53 Preconditions: hasher and key_equal meet the Cpp17DefaultConstructible requirements. value_type
is Cpp17EmplaceConstructible into X from *ranges::begin(rg).

54 Effects: Constructs an empty container with at least n buckets, using hasher() as the hash function
and key_equal() as the key equality predicate, and inserts elements from rg into it.

55 Complexity: Average case O(N) (N is ranges::distance(rg)), worst case O(N2).
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X(from_range, rg)

56 Preconditions: hasher and key_equal meet the Cpp17DefaultConstructible requirements. value_type
is Cpp17EmplaceConstructible into X from *ranges::begin(rg).

57 Effects: Constructs an empty container with an unspecified number of buckets, using hasher() as the
hash function and key_equal() as the key equality predicate, and inserts elements from rg into it.

58 Complexity: Average case O(N) (N is ranges::distance(rg)), worst case O(N2).

X(il)

59 Effects: Equivalent to X(il.begin(), il.end()).

X(il, n)

60 Effects: Equivalent to X(il.begin(), il.end(), n).

X(il, n, hf)

61 Effects: Equivalent to X(il.begin(), il.end(), n, hf).

X(il, n, hf, eq)

62 Effects: Equivalent to X(il.begin(), il.end(), n, hf, eq).

X(b)

63 Effects: In addition to the container requirements (24.2.2.2), copies the hash function, predicate, and
maximum load factor.

64 Complexity: Average case linear in b.size(), worst case quadratic.

a = b

65 Result: X&
66 Effects: In addition to the container requirements, copies the hash function, predicate, and maximum

load factor.
67 Complexity: Average case linear in b.size(), worst case quadratic.

a = il

68 Result: X&
69 Preconditions: value_type is Cpp17CopyInsertable into X and Cpp17CopyAssignable.
70 Effects: Assigns the range [il.begin(), il.end()) into a. All existing elements of a are either assigned

to or destroyed.
71 Complexity: Average case linear in il.size(), worst case quadratic.

b.hash_function()

72 Result: hasher
73 Returns: b’s hash function.
74 Complexity: Constant.

b.key_eq()

75 Result: key_equal
76 Returns: b’s key equality predicate.
77 Complexity: Constant.

a_uniq.emplace(args)

78 Result: pair<iterator, bool>
79 Preconditions: value_type is Cpp17EmplaceConstructible into X from args.
80 Effects: Inserts a value_type object t constructed with std::forward<Args>(args)... if and only

if there is no element in the container with key equivalent to the key of t.
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81 Returns: The bool component of the returned pair is true if and only if the insertion takes place, and
the iterator component of the pair points to the element with key equivalent to the key of t.

82 Complexity: Average case O(1), worst case O(a_uniq.size()).

a_eq.emplace(args)

83 Result: iterator
84 Preconditions: value_type is Cpp17EmplaceConstructible into X from args.
85 Effects: Inserts a value_type object t constructed with std::forward<Args>(args)....
86 Returns: An iterator pointing to the newly inserted element.
87 Complexity: Average case O(1), worst case O(a_eq.size()).

a.emplace_hint(p, args)

88 Result: iterator
89 Preconditions: value_type is Cpp17EmplaceConstructible into X from args.
90 Effects: Equivalent to a.emplace(std::forward<Args>(args)...).
91 Returns: An iterator pointing to the element with the key equivalent to the newly inserted element. The

const_iterator p is a hint pointing to where the search should start. Implementations are permitted
to ignore the hint.

92 Complexity: Average case O(1), worst case O(a.size()).

a_uniq.insert(t)

93 Result: pair<iterator, bool>
94 Preconditions: If t is a non-const rvalue, value_type is Cpp17MoveInsertable into X; otherwise,

value_type is Cpp17CopyInsertable into X.
95 Effects: Inserts t if and only if there is no element in the container with key equivalent to the key of t.
96 Returns: The bool component of the returned pair indicates whether the insertion takes place, and the

iterator component points to the element with key equivalent to the key of t.
97 Complexity: Average case O(1), worst case O(a_uniq.size()).

a_eq.insert(t)

98 Result: iterator
99 Preconditions: If t is a non-const rvalue, value_type is Cpp17MoveInsertable into X; otherwise,

value_type is Cpp17CopyInsertable into X.
100 Effects: Inserts t.
101 Returns: An iterator pointing to the newly inserted element.
102 Complexity: Average case O(1), worst case O(a_eq.size()).

a.insert(p, t)

103 Result: iterator
104 Preconditions: If t is a non-const rvalue, value_type is Cpp17MoveInsertable into X; otherwise,

value_type is Cpp17CopyInsertable into X.
105 Effects: Equivalent to a.insert(t). The iterator p is a hint pointing to where the search should start.

Implementations are permitted to ignore the hint.
106 Returns: An iterator pointing to the element with the key equivalent to that of t.
107 Complexity: Average case O(1), worst case O(a.size()).

a.insert(i, j)

108 Result: void
109 Preconditions: value_type is Cpp17EmplaceConstructible into X from *i. Neither i nor j are iterators

into a.
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110 Effects: Equivalent to a.insert(t) for each element in [i,j).
111 Complexity: Average case O(N), where N is distance(i, j), worst case O(N(a.size() + 1)).

a.insert_range(rg)

112 Result: void
113 Preconditions: value_type is Cpp17EmplaceConstructible into X from *ranges::begin(rg). rg and a

do not overlap.
114 Effects: Equivalent to a.insert(t) for each element t in rg.
115 Complexity: Average case O(N), where N is ranges::distance(rg), worst case O(N(a.size() + 1)).

a.insert(il)

116 Effects: Equivalent to a.insert(il.begin(), il.end()).

a_uniq.insert(nh)

117 Result: insert_return_type
118 Preconditions: nh is empty or a_uniq.get_allocator() == nh.get_allocator() is true.
119 Effects: If nh is empty, has no effect. Otherwise, inserts the element owned by nh if and only if there is

no element in the container with a key equivalent to nh.key().
120 Postconditions: If nh is empty, inserted is false, position is end(), and node is empty. Otherwise

if the insertion took place, inserted is true, position points to the inserted element, and node is
empty; if the insertion failed, inserted is false, node has the previous value of nh, and position
points to an element with a key equivalent to nh.key().

121 Complexity: Average case O(1), worst case O(a_uniq.size()).

a_eq.insert(nh)

122 Result: iterator
123 Preconditions: nh is empty or a_eq.get_allocator() == nh.get_allocator() is true.
124 Effects: If nh is empty, has no effect and returns a_eq.end(). Otherwise, inserts the element owned by

nh and returns an iterator pointing to the newly inserted element.
125 Postconditions: nh is empty.
126 Complexity: Average case O(1), worst case O(a_eq.size()).

a.insert(q, nh)

127 Result: iterator
128 Preconditions: nh is empty or a.get_allocator() == nh.get_allocator() is true.
129 Effects: If nh is empty, has no effect and returns a.end(). Otherwise, inserts the element owned by

nh if and only if there is no element with key equivalent to nh.key() in containers with unique keys;
always inserts the element owned by nh in containers with equivalent keys. The iterator q is a hint
pointing to where the search should start. Implementations are permitted to ignore the hint.

130 Postconditions: nh is empty if insertion succeeds, unchanged if insertion fails.
131 Returns: An iterator pointing to the element with key equivalent to nh.key().
132 Complexity: Average case O(1), worst case O(a.size()).

a.extract(k)

133 Result: node_type
134 Effects: Removes an element in the container with key equivalent to k.
135 Returns: A node_type owning the element if found, otherwise an empty node_type.
136 Complexity: Average case O(1), worst case O(a.size()).

a_tran.extract(kx)

137 Result: node_type
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138 Effects: Removes an element in the container with key equivalent to kx.
139 Returns: A node_type owning the element if found, otherwise an empty node_type.
140 Complexity: Average case O(1), worst case O(a_tran.size()).

a.extract(q)

141 Result: node_type
142 Effects: Removes the element pointed to by q.
143 Returns: A node_type owning that element.
144 Complexity: Average case O(1), worst case O(a.size()).

a.merge(a2)

145 Result: void
146 Preconditions: a.get_allocator() == a2.get_allocator().
147 Effects: Attempts to extract each element in a2 and insert it into a using the hash function and key

equality predicate of a. In containers with unique keys, if there is an element in a with key equivalent
to the key of an element from a2, then that element is not extracted from a2.

148 Postconditions: Pointers and references to the transferred elements of a2 refer to those same elements
but as members of a. Iterators referring to the transferred elements and all iterators referring to a will
be invalidated, but iterators to elements remaining in a2 will remain valid.

149 Complexity: Average case O(N), where N is a2.size(), worst case O(N*a.size() + N).

a.erase(k)

150 Result: size_type
151 Effects: Erases all elements with key equivalent to k.
152 Returns: The number of elements erased.
153 Complexity: Average case O(a.count(k)), worst case O(a.size()).

a_tran.erase(kx)

154 Result: size_type
155 Effects: Erases all elements with key equivalent to kx.
156 Returns: The number of elements erased.
157 Complexity: Average case O(a_tran.count(kx)), worst case O(a_tran.size()).

a.erase(q)

158 Result: iterator
159 Effects: Erases the element pointed to by q.
160 Returns: The iterator immediately following q prior to the erasure.
161 Complexity: Average case O(1), worst case O(a.size()).

a.erase(r)

162 Result: iterator
163 Effects: Erases the element pointed to by r.
164 Returns: The iterator immediately following r prior to the erasure.
165 Complexity: Average case O(1), worst case O(a.size()).

a.erase(q1, q2)

166 Result: iterator
167 Effects: Erases all elements in the range [q1, q2).
168 Returns: The iterator immediately following the erased elements prior to the erasure.
169 Complexity: Average case linear in distance(q1, q2), worst case O(a.size()).
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a.clear()

170 Result: void
171 Effects: Erases all elements in the container.
172 Postconditions: a.empty() is true.
173 Complexity: Linear in a.size().

b.find(k)

174 Result: iterator; const_iterator for constant b.
175 Returns: An iterator pointing to an element with key equivalent to k, or b.end() if no such element

exists.
176 Complexity: Average case O(1), worst case O(b.size()).

a_tran.find(ke)

177 Result: iterator; const_iterator for constant a_tran.
178 Returns: An iterator pointing to an element with key equivalent to ke, or a_tran.end() if no such

element exists.
179 Complexity: Average case O(1), worst case O(a_tran.size()).

b.count(k)

180 Result: size_type
181 Returns: The number of elements with key equivalent to k.
182 Complexity: Average case O(b.count(k)), worst case O(b.size()).

a_tran.count(ke)

183 Result: size_type
184 Returns: The number of elements with key equivalent to ke.
185 Complexity: Average case O(a_tran.count(ke)), worst case O(a_tran.size()).

b.contains(k)

186 Effects: Equivalent to b.find(k) != b.end().

a_tran.contains(ke)

187 Effects: Equivalent to a_tran.find(ke) != a_tran.end().

b.equal_range(k)

188 Result: pair<iterator, iterator>; pair<const_iterator, const_iterator> for constant b.
189 Returns: A range containing all elements with keys equivalent to k. Returns make_pair(b.end(),

b.end()) if no such elements exist.
190 Complexity: Average case O(b.count(k)), worst case O(b.size()).

a_tran.equal_range(ke)

191 Result: pair<iterator, iterator>; pair<const_iterator, const_iterator> for constant a_tran.
192 Returns: A range containing all elements with keys equivalent to ke. Returns make_pair(a_tran.end(),

a_tran.end()) if no such elements exist.
193 Complexity: Average case O(a_tran.count(ke)), worst case O(a_tran.size()).

b.bucket_count()

194 Result: size_type
195 Returns: The number of buckets that b contains.
196 Complexity: Constant.
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b.max_bucket_count()

197 Result: size_type
198 Returns: An upper bound on the number of buckets that b can ever contain.
199 Complexity: Constant.

b.bucket(k)

200 Result: size_type
201 Preconditions: b.bucket_count() > 0.
202 Returns: The index of the bucket in which elements with keys equivalent to k would be found, if any

such element existed. The return value is in the range [0, b.bucket_count()).
203 Complexity: Constant.

b.bucket_size(n)

204 Result: size_type
205 Preconditions: n shall be in the range [0, b.bucket_count()).
206 Returns: The number of elements in the nth bucket.
207 Complexity: O(b.bucket_size(n))

b.begin(n)

208 Result: local_iterator; const_local_iterator for constant b.
209 Preconditions: n is in the range [0, b.bucket_count()).
210 Returns: An iterator referring to the first element in the bucket. If the bucket is empty, then b.begin(n)

== b.end(n).
211 Complexity: Constant.

b.end(n)

212 Result: local_iterator; const_local_iterator for constant b.
213 Preconditions: n is in the range [0, b.bucket_count()).
214 Returns: An iterator which is the past-the-end value for the bucket.
215 Complexity: Constant.

b.cbegin(n)

216 Result: const_local_iterator
217 Preconditions: n shall be in the range [0, b.bucket_count()).
218 Returns: An iterator referring to the first element in the bucket. If the bucket is empty, then

b.cbegin(n) == b.cend(n).
219 Complexity: Constant.

b.cend(n)

220 Result: const_local_iterator
221 Preconditions: n is in the range [0, b.bucket_count()).
222 Returns: An iterator which is the past-the-end value for the bucket.
223 Complexity: Constant.

b.load_factor()

224 Result: float
225 Returns: The average number of elements per bucket.
226 Complexity: Constant.
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b.max_load_factor()

227 Result: float
228 Returns: A positive number that the container attempts to keep the load factor less than or equal to.

The container automatically increases the number of buckets as necessary to keep the load factor below
this number.

229 Complexity: Constant.

a.max_load_factor(z)

230 Result: void
231 Preconditions: z is positive. May change the container’s maximum load factor, using z as a hint.
232 Complexity: Constant.

a.rehash(n)

233 Result: void
234 Postconditions: a.bucket_count() >= a.size() / a.max_load_factor() and a.bucket_count()

>= n.
235 Complexity: Average case linear in a.size(), worst case quadratic.

a.reserve(n)

236 Effects: Equivalent to a.rehash(ceil(n / a.max_load_factor())).
237 Two unordered containers a and b compare equal if a.size() == b.size() and, for every equivalent-

key group [Ea1, Ea2) obtained from a.equal_range(Ea1), there exists an equivalent-key group [Eb1, Eb2)
obtained from b.equal_range(Ea1), such that is_permutation(Ea1, Ea2, Eb1, Eb2) returns true. For
unordered_set and unordered_map, the complexity of operator== (i.e., the number of calls to the ==
operator of the value_type, to the predicate returned by key_eq(), and to the hasher returned by hash_-
function()) is proportional to N in the average case and to N2 in the worst case, where N is a.size(). For
unordered_multiset and unordered_multimap, the complexity of operator== is proportional to

∑
E2

i in
the average case and to N2 in the worst case, where N is a.size(), and Ei is the size of the ith equivalent-key
group in a. However, if the respective elements of each corresponding pair of equivalent-key groups Eai and
Ebi are arranged in the same order (as is commonly the case, e.g., if a and b are unmodified copies of the same
container), then the average-case complexity for unordered_multiset and unordered_multimap becomes
proportional to N (but worst-case complexity remains O(N2), e.g., for a pathologically bad hash function).
The behavior of a program that uses operator== or operator!= on unordered containers is undefined unless
the Pred function object has the same behavior for both containers and the equality comparison function for
Key is a refinement208 of the partition into equivalent-key groups produced by Pred.

238 The iterator types iterator and const_iterator of an unordered associative container are of at least the
forward iterator category. For unordered associative containers where the key type and value type are the
same, both iterator and const_iterator are constant iterators.

239 The insert, insert_range, and emplace members shall not affect the validity of references to container
elements, but may invalidate all iterators to the container. The erase members shall invalidate only iterators
and references to the erased elements, and preserve the relative order of the elements that are not erased.

240 The insert, insert_range, and emplace members shall not affect the validity of iterators if (N+n) <= z
* B, where N is the number of elements in the container prior to the insert operation, n is the number of
elements inserted, B is the container’s bucket count, and z is the container’s maximum load factor.

241 The extract members invalidate only iterators to the removed element, and preserve the relative order of
the elements that are not erased; pointers and references to the removed element remain valid. However,
accessing the element through such pointers and references while the element is owned by a node_type is
undefined behavior. References and pointers to an element obtained while it is owned by a node_type are
invalidated if the element is successfully inserted.

242 The member function templates find, count, equal_range, contains, extract, and erase shall not
participate in overload resolution unless the qualified-ids Pred::is_transparent and Hash::is_transparent
are both valid and denote types (13.10.3). Additionally, the member function templates extract and erase

208) Equality comparison is a refinement of partitioning if no two objects that compare equal fall into different partitions.
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shall not participate in overload resolution if is_convertible_v<K&&, iterator> || is_convertible_-
v<K&&, const_iterator> is true, where K is the type substituted as the first template argument.

243 A deduction guide for an unordered associative container shall not participate in overload resolution if any of
the following are true:

—(243.1) It has an InputIterator template parameter and a type that does not qualify as an input iterator is
deduced for that parameter.

—(243.2) It has an Allocator template parameter and a type that does not qualify as an allocator is deduced
for that parameter.

—(243.3) It has a Hash template parameter and an integral type or a type that qualifies as an allocator is deduced
for that parameter.

—(243.4) It has a Pred template parameter and a type that qualifies as an allocator is deduced for that parameter.

24.2.8.2 Exception safety guarantees [unord.req.except]
1 For unordered associative containers, no clear() function throws an exception. erase(k) does not throw an

exception unless that exception is thrown by the container’s Hash or Pred object (if any).
2 For unordered associative containers, if an exception is thrown by any operation other than the container’s

hash function from within an insert or emplace function inserting a single element, the insertion has no
effect.

3 For unordered associative containers, no swap function throws an exception unless that exception is thrown
by the swap of the container’s Hash or Pred object (if any).

4 For unordered associative containers, if an exception is thrown from within a rehash() function other than
by the container’s hash function or comparison function, the rehash() function has no effect.

24.3 Sequence containers [sequences]
24.3.1 In general [sequences.general]

1 The headers <array> (24.3.2), <deque> (24.3.3), <forward_list> (24.3.4), <list> (24.3.5), and <vector>
(24.3.6) define class templates that meet the requirements for sequence containers.

2 The following exposition-only alias template may appear in deduction guides for sequence containers:
template<class InputIterator>

using iter-value-type = typename iterator_traits<InputIterator>::value_type; // exposition only

24.3.2 Header <array> synopsis [array.syn]
#include <compare> // see 17.11.1
#include <initializer_list> // see 17.10.2

namespace std {
// 24.3.7, class template array
template<class T, size_t N> struct array;

template<class T, size_t N>
constexpr bool operator==(const array<T, N>& x, const array<T, N>& y);

template<class T, size_t N>
constexpr synth-three-way-result <T>

operator<=>(const array<T, N>& x, const array<T, N>& y);

// 24.3.7.4, specialized algorithms
template<class T, size_t N>

constexpr void swap(array<T, N>& x, array<T, N>& y) noexcept(noexcept(x.swap(y)));

// 24.3.7.6, array creation functions
template<class T, size_t N>

constexpr array<remove_cv_t<T>, N> to_array(T (&a)[N]);
template<class T, size_t N>

constexpr array<remove_cv_t<T>, N> to_array(T (&&a)[N]);
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// 24.3.7.7, tuple interface
template<class T> struct tuple_size;
template<size_t I, class T> struct tuple_element;
template<class T, size_t N>

struct tuple_size<array<T, N>>;
template<size_t I, class T, size_t N>

struct tuple_element<I, array<T, N>>;
template<size_t I, class T, size_t N>

constexpr T& get(array<T, N>&) noexcept;
template<size_t I, class T, size_t N>

constexpr T&& get(array<T, N>&&) noexcept;
template<size_t I, class T, size_t N>

constexpr const T& get(const array<T, N>&) noexcept;
template<size_t I, class T, size_t N>

constexpr const T&& get(const array<T, N>&&) noexcept;
}

24.3.3 Header <deque> synopsis [deque.syn]
#include <compare> // see 17.11.1
#include <initializer_list> // see 17.10.2

namespace std {
// 24.3.8, class template deque
template<class T, class Allocator = allocator<T>> class deque;

template<class T, class Allocator>
bool operator==(const deque<T, Allocator>& x, const deque<T, Allocator>& y);

template<class T, class Allocator>
synth-three-way-result <T> operator<=>(const deque<T, Allocator>& x,

const deque<T, Allocator>& y);

template<class T, class Allocator>
void swap(deque<T, Allocator>& x, deque<T, Allocator>& y)

noexcept(noexcept(x.swap(y)));

// 24.3.8.5, erasure
template<class T, class Allocator, class U>

typename deque<T, Allocator>::size_type
erase(deque<T, Allocator>& c, const U& value);

template<class T, class Allocator, class Predicate>
typename deque<T, Allocator>::size_type

erase_if(deque<T, Allocator>& c, Predicate pred);

namespace pmr {
template<class T>

using deque = std::deque<T, polymorphic_allocator<T>>;
}

}

24.3.4 Header <forward_list> synopsis [forward.list.syn]
#include <compare> // see 17.11.1
#include <initializer_list> // see 17.10.2

namespace std {
// 24.3.9, class template forward_list
template<class T, class Allocator = allocator<T>> class forward_list;

template<class T, class Allocator>
bool operator==(const forward_list<T, Allocator>& x, const forward_list<T, Allocator>& y);

template<class T, class Allocator>
synth-three-way-result <T> operator<=>(const forward_list<T, Allocator>& x,

const forward_list<T, Allocator>& y);
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template<class T, class Allocator>
void swap(forward_list<T, Allocator>& x, forward_list<T, Allocator>& y)

noexcept(noexcept(x.swap(y)));

// 24.3.9.7, erasure
template<class T, class Allocator, class U>

typename forward_list<T, Allocator>::size_type
erase(forward_list<T, Allocator>& c, const U& value);

template<class T, class Allocator, class Predicate>
typename forward_list<T, Allocator>::size_type

erase_if(forward_list<T, Allocator>& c, Predicate pred);

namespace pmr {
template<class T>

using forward_list = std::forward_list<T, polymorphic_allocator<T>>;
}

}

24.3.5 Header <list> synopsis [list.syn]
#include <compare> // see 17.11.1
#include <initializer_list> // see 17.10.2

namespace std {
// 24.3.10, class template list
template<class T, class Allocator = allocator<T>> class list;

template<class T, class Allocator>
bool operator==(const list<T, Allocator>& x, const list<T, Allocator>& y);

template<class T, class Allocator>
synth-three-way-result <T> operator<=>(const list<T, Allocator>& x,

const list<T, Allocator>& y);

template<class T, class Allocator>
void swap(list<T, Allocator>& x, list<T, Allocator>& y)

noexcept(noexcept(x.swap(y)));

// 24.3.10.6, erasure
template<class T, class Allocator, class U>

typename list<T, Allocator>::size_type
erase(list<T, Allocator>& c, const U& value);

template<class T, class Allocator, class Predicate>
typename list<T, Allocator>::size_type

erase_if(list<T, Allocator>& c, Predicate pred);

namespace pmr {
template<class T>

using list = std::list<T, polymorphic_allocator<T>>;
}

}

24.3.6 Header <vector> synopsis [vector.syn]
#include <compare> // see 17.11.1
#include <initializer_list> // see 17.10.2

namespace std {
// 24.3.11, class template vector
template<class T, class Allocator = allocator<T>> class vector;

template<class T, class Allocator>
constexpr bool operator==(const vector<T, Allocator>& x, const vector<T, Allocator>& y);

template<class T, class Allocator>
constexpr synth-three-way-result <T> operator<=>(const vector<T, Allocator>& x,

const vector<T, Allocator>& y);
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template<class T, class Allocator>
constexpr void swap(vector<T, Allocator>& x, vector<T, Allocator>& y)

noexcept(noexcept(x.swap(y)));

// 24.3.11.6, erasure
template<class T, class Allocator, class U>

constexpr typename vector<T, Allocator>::size_type
erase(vector<T, Allocator>& c, const U& value);

template<class T, class Allocator, class Predicate>
constexpr typename vector<T, Allocator>::size_type

erase_if(vector<T, Allocator>& c, Predicate pred);

namespace pmr {
template<class T>

using vector = std::vector<T, polymorphic_allocator<T>>;
}

// 24.3.12, specialization of vector for bool
// 24.3.12.1, partial class template specialization vector<bool, Allocator>
template<class Allocator>

class vector<bool, Allocator>;

template<class T>
constexpr bool is-vector-bool-reference = see below ; // exposition only

// hash support
template<class T> struct hash;
template<class Allocator> struct hash<vector<bool, Allocator>>;

// 24.3.12.2, formatter specialization for vector<bool>
template<class T, class charT> requires is-vector-bool-reference <T>

struct formatter<T, charT>;
}

24.3.7 Class template array [array]
24.3.7.1 Overview [array.overview]

1 The header <array> defines a class template for storing fixed-size sequences of objects. An array is a
contiguous container (24.2.2.2). An instance of array<T, N> stores N elements of type T, so that size() ==
N is an invariant.

2 An array is an aggregate (9.4.2) that can be list-initialized with up to N elements whose types are convertible
to T.

3 An array meets all of the requirements of a container (24.2.2.2) and of a reversible container (24.2.2.3), except
that a default constructed array object is not empty if N > 0. An array meets some of the requirements
of a sequence container (24.2.4). Descriptions are provided here only for operations on array that are not
described in one of these tables and for operations where there is additional semantic information.

4 array<T, N> is a structural type (13.2) if T is a structural type. Two values a1 and a2 of type array<T, N>
are template-argument-equivalent (13.6) if and only if each pair of corresponding elements in a1 and a2 are
template-argument-equivalent.

5 The types iterator and const_iterator meet the constexpr iterator requirements (25.3.1).
namespace std {

template<class T, size_t N>
struct array {

// types
using value_type = T;
using pointer = T*;
using const_pointer = const T*;
using reference = T&;
using const_reference = const T&;
using size_type = size_t;
using difference_type = ptrdiff_t;
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using iterator = implementation-defined ; // see 24.2
using const_iterator = implementation-defined ; // see 24.2
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;

// no explicit construct/copy/destroy for aggregate type

constexpr void fill(const T& u);
constexpr void swap(array&) noexcept(is_nothrow_swappable_v<T>);

// iterators
constexpr iterator begin() noexcept;
constexpr const_iterator begin() const noexcept;
constexpr iterator end() noexcept;
constexpr const_iterator end() const noexcept;

constexpr reverse_iterator rbegin() noexcept;
constexpr const_reverse_iterator rbegin() const noexcept;
constexpr reverse_iterator rend() noexcept;
constexpr const_reverse_iterator rend() const noexcept;

constexpr const_iterator cbegin() const noexcept;
constexpr const_iterator cend() const noexcept;
constexpr const_reverse_iterator crbegin() const noexcept;
constexpr const_reverse_iterator crend() const noexcept;

// capacity
[[nodiscard]] constexpr bool empty() const noexcept;
constexpr size_type size() const noexcept;
constexpr size_type max_size() const noexcept;

// element access
constexpr reference operator[](size_type n);
constexpr const_reference operator[](size_type n) const;
constexpr reference at(size_type n);
constexpr const_reference at(size_type n) const;
constexpr reference front();
constexpr const_reference front() const;
constexpr reference back();
constexpr const_reference back() const;

constexpr T * data() noexcept;
constexpr const T * data() const noexcept;

};

template<class T, class... U>
array(T, U...) -> array<T, 1 + sizeof...(U)>;

}

24.3.7.2 Constructors, copy, and assignment [array.cons]
1 The conditions for an aggregate (9.4.2) shall be met. Class array relies on the implicitly-declared special

member functions (11.4.5.2, 11.4.7, 11.4.5.3) to conform to the container requirements table in 24.2. In
addition to the requirements specified in the container requirements table, the implicit move constructor and
move assignment operator for array require that T be Cpp17MoveConstructible or Cpp17MoveAssignable,
respectively.

template<class T, class... U>
array(T, U...) -> array<T, 1 + sizeof...(U)>;

2 Mandates: (is_same_v<T, U> && ...) is true.
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24.3.7.3 Member functions [array.members]

constexpr size_type size() const noexcept;

1 Returns: N.

constexpr T* data() noexcept;
constexpr const T* data() const noexcept;

2 Returns: A pointer such that [data(), data() + size()) is a valid range. For a non-empty array,
data() == addressof(front()).

constexpr void fill(const T& u);

3 Effects: As if by fill_n(begin(), N, u).

constexpr void swap(array& y) noexcept(is_nothrow_swappable_v<T>);

4 Effects: Equivalent to swap_ranges(begin(), end(), y.begin()).
5 [Note 1 : Unlike the swap function for other containers, array::swap takes linear time, can exit via an exception,

and does not cause iterators to become associated with the other container. — end note ]

24.3.7.4 Specialized algorithms [array.special]

template<class T, size_t N>
constexpr void swap(array<T, N>& x, array<T, N>& y) noexcept(noexcept(x.swap(y)));

1 Constraints: N == 0 or is_swappable_v<T> is true.
2 Effects: As if by x.swap(y).
3 Complexity: Linear in N.

24.3.7.5 Zero-sized arrays [array.zero]
1 array shall provide support for the special case N == 0.
2 In the case that N == 0, begin() == end() == unique value. The return value of data() is unspecified.
3 The effect of calling front() or back() for a zero-sized array is undefined.
4 Member function swap() shall have a non-throwing exception specification.

24.3.7.6 Array creation functions [array.creation]

template<class T, size_t N>
constexpr array<remove_cv_t<T>, N> to_array(T (&a)[N]);

1 Mandates: is_array_v<T> is false and is_constructible_v<T, T&> is true.
2 Preconditions: T meets the Cpp17CopyConstructible requirements.
3 Returns: {{ a[0], . . . , a[N - 1] }}.

template<class T, size_t N>
constexpr array<remove_cv_t<T>, N> to_array(T (&&a)[N]);

4 Mandates: is_array_v<T> is false and is_move_constructible_v<T> is true.
5 Preconditions: T meets the Cpp17MoveConstructible requirements.
6 Returns: {{ std::move(a[0]), . . . , std::move(a[N - 1]) }}.

24.3.7.7 Tuple interface [array.tuple]

template<class T, size_t N>
struct tuple_size<array<T, N>> : integral_constant<size_t, N> { };

template<size_t I, class T, size_t N>
struct tuple_element<I, array<T, N>> {

using type = T;
};

1 Mandates: I < N is true.
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template<size_t I, class T, size_t N>
constexpr T& get(array<T, N>& a) noexcept;

template<size_t I, class T, size_t N>
constexpr T&& get(array<T, N>&& a) noexcept;

template<size_t I, class T, size_t N>
constexpr const T& get(const array<T, N>& a) noexcept;

template<size_t I, class T, size_t N>
constexpr const T&& get(const array<T, N>&& a) noexcept;

2 Mandates: I < N is true.
3 Returns: A reference to the Ith element of a, where indexing is zero-based.

24.3.8 Class template deque [deque]
24.3.8.1 Overview [deque.overview]

1 A deque is a sequence container that supports random access iterators (25.3.5.7). In addition, it supports
constant time insert and erase operations at the beginning or the end; insert and erase in the middle take
linear time. That is, a deque is especially optimized for pushing and popping elements at the beginning and
end. Storage management is handled automatically.

2 A deque meets all of the requirements of a container (24.2.2.2), of a reversible container (24.2.2.3), of an
allocator-aware container (24.2.2.5), and of a sequence container, including the optional sequence container
requirements (24.2.4). Descriptions are provided here only for operations on deque that are not described in
one of these tables or for operations where there is additional semantic information.

namespace std {
template<class T, class Allocator = allocator<T>>
class deque {
public:

// types
using value_type = T;
using allocator_type = Allocator;
using pointer = typename allocator_traits<Allocator>::pointer;
using const_pointer = typename allocator_traits<Allocator>::const_pointer;
using reference = value_type&;
using const_reference = const value_type&;
using size_type = implementation-defined ; // see 24.2
using difference_type = implementation-defined ; // see 24.2
using iterator = implementation-defined ; // see 24.2
using const_iterator = implementation-defined ; // see 24.2
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;

// 24.3.8.2, construct/copy/destroy
deque() : deque(Allocator()) { }
explicit deque(const Allocator&);
explicit deque(size_type n, const Allocator& = Allocator());
deque(size_type n, const T& value, const Allocator& = Allocator());
template<class InputIterator>

deque(InputIterator first, InputIterator last, const Allocator& = Allocator());
template<container-compatible-range <T> R>

deque(from_range_t, R&& rg, const Allocator& = Allocator());
deque(const deque& x);
deque(deque&&);
deque(const deque&, const type_identity_t<Allocator>&);
deque(deque&&, const type_identity_t<Allocator>&);
deque(initializer_list<T>, const Allocator& = Allocator());

~deque();
deque& operator=(const deque& x);
deque& operator=(deque&& x)

noexcept(allocator_traits<Allocator>::is_always_equal::value);
deque& operator=(initializer_list<T>);
template<class InputIterator>

void assign(InputIterator first, InputIterator last);
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template<container-compatible-range <T> R>
void assign_range(R&& rg);

void assign(size_type n, const T& t);
void assign(initializer_list<T>);
allocator_type get_allocator() const noexcept;

// iterators
iterator begin() noexcept;
const_iterator begin() const noexcept;
iterator end() noexcept;
const_iterator end() const noexcept;
reverse_iterator rbegin() noexcept;
const_reverse_iterator rbegin() const noexcept;
reverse_iterator rend() noexcept;
const_reverse_iterator rend() const noexcept;

const_iterator cbegin() const noexcept;
const_iterator cend() const noexcept;
const_reverse_iterator crbegin() const noexcept;
const_reverse_iterator crend() const noexcept;

// 24.3.8.3, capacity
[[nodiscard]] bool empty() const noexcept;
size_type size() const noexcept;
size_type max_size() const noexcept;
void resize(size_type sz);
void resize(size_type sz, const T& c);
void shrink_to_fit();

// element access
reference operator[](size_type n);
const_reference operator[](size_type n) const;
reference at(size_type n);
const_reference at(size_type n) const;
reference front();
const_reference front() const;
reference back();
const_reference back() const;

// 24.3.8.4, modifiers
template<class... Args> reference emplace_front(Args&&... args);
template<class... Args> reference emplace_back(Args&&... args);
template<class... Args> iterator emplace(const_iterator position, Args&&... args);

void push_front(const T& x);
void push_front(T&& x);
template<container-compatible-range <T> R>

void prepend_range(R&& rg);
void push_back(const T& x);
void push_back(T&& x);
template<container-compatible-range <T> R>

void append_range(R&& rg);

iterator insert(const_iterator position, const T& x);
iterator insert(const_iterator position, T&& x);
iterator insert(const_iterator position, size_type n, const T& x);
template<class InputIterator>

iterator insert(const_iterator position, InputIterator first, InputIterator last);
template<container-compatible-range <T> R>

iterator insert_range(const_iterator position, R&& rg);
iterator insert(const_iterator position, initializer_list<T>);

void pop_front();
void pop_back();
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iterator erase(const_iterator position);
iterator erase(const_iterator first, const_iterator last);
void swap(deque&)

noexcept(allocator_traits<Allocator>::is_always_equal::value);
void clear() noexcept;

};

template<class InputIterator, class Allocator = allocator<iter-value-type <InputIterator>>>
deque(InputIterator, InputIterator, Allocator = Allocator())

-> deque<iter-value-type <InputIterator>, Allocator>;

template<ranges::input_range R, class Allocator = allocator<ranges::range_value_t<R>>>
deque(from_range_t, R&&, Allocator = Allocator())

-> deque<ranges::range_value_t<R>, Allocator>;
}

24.3.8.2 Constructors, copy, and assignment [deque.cons]

explicit deque(const Allocator&);

1 Effects: Constructs an empty deque, using the specified allocator.
2 Complexity: Constant.

explicit deque(size_type n, const Allocator& = Allocator());

3 Preconditions: T is Cpp17DefaultInsertable into *this.
4 Effects: Constructs a deque with n default-inserted elements using the specified allocator.
5 Complexity: Linear in n.

deque(size_type n, const T& value, const Allocator& = Allocator());

6 Preconditions: T is Cpp17CopyInsertable into *this.
7 Effects: Constructs a deque with n copies of value, using the specified allocator.
8 Complexity: Linear in n.

template<class InputIterator>
deque(InputIterator first, InputIterator last, const Allocator& = Allocator());

9 Effects: Constructs a deque equal to the range [first, last), using the specified allocator.
10 Complexity: Linear in distance(first, last).

template<container-compatible-range <T> R>
deque(from_range_t, R&& rg, const Allocator& = Allocator());

11 Effects: Constructs a deque with the elements of the range rg, using the specified allocator.
12 Complexity: Linear in ranges::distance(rg).

24.3.8.3 Capacity [deque.capacity]

void resize(size_type sz);

1 Preconditions: T is Cpp17MoveInsertable and Cpp17DefaultInsertable into *this.
2 Effects: If sz < size(), erases the last size() - sz elements from the sequence. Otherwise, appends

sz - size() default-inserted elements to the sequence.

void resize(size_type sz, const T& c);

3 Preconditions: T is Cpp17CopyInsertable into *this.
4 Effects: If sz < size(), erases the last size() - sz elements from the sequence. Otherwise, appends

sz - size() copies of c to the sequence.

void shrink_to_fit();

5 Preconditions: T is Cpp17MoveInsertable into *this.
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6 Effects: shrink_to_fit is a non-binding request to reduce memory use but does not change the size of
the sequence.
[Note 1 : The request is non-binding to allow latitude for implementation-specific optimizations. — end note ]

If the size is equal to the old capacity, or if an exception is thrown other than by the move constructor
of a non-Cpp17CopyInsertable T, then there are no effects.

7 Complexity: If the size is not equal to the old capacity, linear in the size of the sequence; otherwise
constant.

8 Remarks: If the size is not equal to the old capacity, then invalidates all the references, pointers, and
iterators referring to the elements in the sequence, as well as the past-the-end iterator.

24.3.8.4 Modifiers [deque.modifiers]

iterator insert(const_iterator position, const T& x);
iterator insert(const_iterator position, T&& x);
iterator insert(const_iterator position, size_type n, const T& x);
template<class InputIterator>

iterator insert(const_iterator position,
InputIterator first, InputIterator last);

template<container-compatible-range <T> R>
iterator insert_range(const_iterator position, R&& rg);

iterator insert(const_iterator position, initializer_list<T>);

template<class... Args> reference emplace_front(Args&&... args);
template<class... Args> reference emplace_back(Args&&... args);
template<class... Args> iterator emplace(const_iterator position, Args&&... args);
void push_front(const T& x);
void push_front(T&& x);
template<container-compatible-range <T> R>

void prepend_range(R&& rg);
void push_back(const T& x);
void push_back(T&& x);
template<container-compatible-range <T> R>

void append_range(R&& rg);

1 Effects: An insertion in the middle of the deque invalidates all the iterators and references to elements
of the deque. An insertion at either end of the deque invalidates all the iterators to the deque, but has
no effect on the validity of references to elements of the deque.

2 Complexity: The complexity is linear in the number of elements inserted plus the lesser of the distances
to the beginning and end of the deque. Inserting a single element at either the beginning or end of a
deque always takes constant time and causes a single call to a constructor of T.

3 Remarks: If an exception is thrown other than by the copy constructor, move constructor, assignment
operator, or move assignment operator of T there are no effects. If an exception is thrown while inserting
a single element at either end, there are no effects. Otherwise, if an exception is thrown by the move
constructor of a non-Cpp17CopyInsertable T, the effects are unspecified.

iterator erase(const_iterator position);
iterator erase(const_iterator first, const_iterator last);
void pop_front();
void pop_back();

4 Effects: An erase operation that erases the last element of a deque invalidates only the past-the-end
iterator and all iterators and references to the erased elements. An erase operation that erases the
first element of a deque but not the last element invalidates only iterators and references to the erased
elements. An erase operation that erases neither the first element nor the last element of a deque
invalidates the past-the-end iterator and all iterators and references to all the elements of the deque.
[Note 1 : pop_front and pop_back are erase operations. — end note ]

5 Throws: Nothing unless an exception is thrown by the assignment operator of T.
6 Complexity: The number of calls to the destructor of T is the same as the number of elements erased,

but the number of calls to the assignment operator of T is no more than the lesser of the number of
elements before the erased elements and the number of elements after the erased elements.
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24.3.8.5 Erasure [deque.erasure]

template<class T, class Allocator, class U>
typename deque<T, Allocator>::size_type

erase(deque<T, Allocator>& c, const U& value);

1 Effects: Equivalent to:
auto it = remove(c.begin(), c.end(), value);
auto r = distance(it, c.end());
c.erase(it, c.end());
return r;

template<class T, class Allocator, class Predicate>
typename deque<T, Allocator>::size_type

erase_if(deque<T, Allocator>& c, Predicate pred);

2 Effects: Equivalent to:
auto it = remove_if(c.begin(), c.end(), pred);
auto r = distance(it, c.end());
c.erase(it, c.end());
return r;

24.3.9 Class template forward_list [forward.list]
24.3.9.1 Overview [forward.list.overview]

1 A forward_list is a container that supports forward iterators and allows constant time insert and erase
operations anywhere within the sequence, with storage management handled automatically. Fast random
access to list elements is not supported.
[Note 1 : It is intended that forward_list have zero space or time overhead relative to a hand-written C-style singly
linked list. Features that would conflict with that goal have been omitted. — end note ]

2 A forward_list meets all of the requirements of a container (24.2.2.2), except that the size() member
function is not provided and operator== has linear complexity, A forward_list also meets all of the
requirements for an allocator-aware container (24.2.2.5). In addition, a forward_list provides the assign
member functions and several of the optional sequence container requirements (24.2.4). Descriptions are
provided here only for operations on forward_list that are not described in that table or for operations
where there is additional semantic information.

3 [Note 2 : Modifying any list requires access to the element preceding the first element of interest, but in a forward_list
there is no constant-time way to access a preceding element. For this reason, erase_after and splice_after take
fully-open ranges, not semi-open ranges. — end note ]

namespace std {
template<class T, class Allocator = allocator<T>>
class forward_list {
public:

// types
using value_type = T;
using allocator_type = Allocator;
using pointer = typename allocator_traits<Allocator>::pointer;
using const_pointer = typename allocator_traits<Allocator>::const_pointer;
using reference = value_type&;
using const_reference = const value_type&;
using size_type = implementation-defined ; // see 24.2
using difference_type = implementation-defined ; // see 24.2
using iterator = implementation-defined ; // see 24.2
using const_iterator = implementation-defined ; // see 24.2

// 24.3.9.2, construct/copy/destroy
forward_list() : forward_list(Allocator()) { }
explicit forward_list(const Allocator&);
explicit forward_list(size_type n, const Allocator& = Allocator());
forward_list(size_type n, const T& value, const Allocator& = Allocator());
template<class InputIterator>

forward_list(InputIterator first, InputIterator last, const Allocator& = Allocator());
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template<container-compatible-range <T> R>
forward_list(from_range_t, R&& rg, const Allocator& = Allocator());

forward_list(const forward_list& x);
forward_list(forward_list&& x);
forward_list(const forward_list& x, const type_identity_t<Allocator>&);
forward_list(forward_list&& x, const type_identity_t<Allocator>&);
forward_list(initializer_list<T>, const Allocator& = Allocator());
~forward_list();
forward_list& operator=(const forward_list& x);
forward_list& operator=(forward_list&& x)

noexcept(allocator_traits<Allocator>::is_always_equal::value);
forward_list& operator=(initializer_list<T>);
template<class InputIterator>

void assign(InputIterator first, InputIterator last);
template<container-compatible-range <T> R>

void assign_range(R&& rg);
void assign(size_type n, const T& t);
void assign(initializer_list<T>);
allocator_type get_allocator() const noexcept;

// 24.3.9.3, iterators
iterator before_begin() noexcept;
const_iterator before_begin() const noexcept;
iterator begin() noexcept;
const_iterator begin() const noexcept;
iterator end() noexcept;
const_iterator end() const noexcept;

const_iterator cbegin() const noexcept;
const_iterator cbefore_begin() const noexcept;
const_iterator cend() const noexcept;

// capacity
[[nodiscard]] bool empty() const noexcept;
size_type max_size() const noexcept;

// 24.3.9.4, element access
reference front();
const_reference front() const;

// 24.3.9.5, modifiers
template<class... Args> reference emplace_front(Args&&... args);
void push_front(const T& x);
void push_front(T&& x);
template<container-compatible-range <T> R>

void prepend_range(R&& rg);
void pop_front();

template<class... Args> iterator emplace_after(const_iterator position, Args&&... args);
iterator insert_after(const_iterator position, const T& x);
iterator insert_after(const_iterator position, T&& x);

iterator insert_after(const_iterator position, size_type n, const T& x);
template<class InputIterator>

iterator insert_after(const_iterator position, InputIterator first, InputIterator last);
iterator insert_after(const_iterator position, initializer_list<T> il);
template<container-compatible-range <T> R>

iterator insert_range_after(const_iterator position, R&& rg);

iterator erase_after(const_iterator position);
iterator erase_after(const_iterator position, const_iterator last);
void swap(forward_list&)

noexcept(allocator_traits<Allocator>::is_always_equal::value);
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void resize(size_type sz);
void resize(size_type sz, const value_type& c);
void clear() noexcept;

// 24.3.9.6, forward_list operations
void splice_after(const_iterator position, forward_list& x);
void splice_after(const_iterator position, forward_list&& x);
void splice_after(const_iterator position, forward_list& x, const_iterator i);
void splice_after(const_iterator position, forward_list&& x, const_iterator i);
void splice_after(const_iterator position, forward_list& x,

const_iterator first, const_iterator last);
void splice_after(const_iterator position, forward_list&& x,

const_iterator first, const_iterator last);

size_type remove(const T& value);
template<class Predicate> size_type remove_if(Predicate pred);

size_type unique();
template<class BinaryPredicate> size_type unique(BinaryPredicate binary_pred);

void merge(forward_list& x);
void merge(forward_list&& x);
template<class Compare> void merge(forward_list& x, Compare comp);
template<class Compare> void merge(forward_list&& x, Compare comp);

void sort();
template<class Compare> void sort(Compare comp);

void reverse() noexcept;
};

template<class InputIterator, class Allocator = allocator<iter-value-type <InputIterator>>>
forward_list(InputIterator, InputIterator, Allocator = Allocator())

-> forward_list<iter-value-type <InputIterator>, Allocator>;

template<ranges::input_range R, class Allocator = allocator<ranges::range_value_t<R>>>
forward_list(from_range_t, R&&, Allocator = Allocator())

-> forward_list<ranges::range_value_t<R>, Allocator>;
}

4 An incomplete type T may be used when instantiating forward_list if the allocator meets the allocator
completeness requirements (16.4.4.6.2). T shall be complete before any member of the resulting specialization
of forward_list is referenced.

24.3.9.2 Constructors, copy, and assignment [forward.list.cons]

explicit forward_list(const Allocator&);

1 Effects: Constructs an empty forward_list object using the specified allocator.
2 Complexity: Constant.

explicit forward_list(size_type n, const Allocator& = Allocator());

3 Preconditions: T is Cpp17DefaultInsertable into *this.
4 Effects: Constructs a forward_list object with n default-inserted elements using the specified allocator.
5 Complexity: Linear in n.

forward_list(size_type n, const T& value, const Allocator& = Allocator());

6 Preconditions: T is Cpp17CopyInsertable into *this.
7 Effects: Constructs a forward_list object with n copies of value using the specified allocator.
8 Complexity: Linear in n.
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template<class InputIterator>
forward_list(InputIterator first, InputIterator last, const Allocator& = Allocator());

9 Effects: Constructs a forward_list object equal to the range [first, last).
10 Complexity: Linear in distance(first, last).

template<container-compatible-range <T> R>
forward_list(from_range_t, R&& rg, const Allocator& = Allocator());

11 Effects: Constructs a forward_list object with the elements of the range rg.
12 Complexity: Linear in ranges::distance(rg).

24.3.9.3 Iterators [forward.list.iter]

iterator before_begin() noexcept;
const_iterator before_begin() const noexcept;
const_iterator cbefore_begin() const noexcept;

1 Effects: cbefore_begin() is equivalent to const_cast<forward_list const&>(*this).before_-
begin().

2 Returns: A non-dereferenceable iterator that, when incremented, is equal to the iterator returned by
begin().

3 Remarks: before_begin() == end() shall equal false.

24.3.9.4 Element access [forward.list.access]

reference front();
const_reference front() const;

1 Returns: *begin()

24.3.9.5 Modifiers [forward.list.modifiers]
1 None of the overloads of insert_after shall affect the validity of iterators and references, and erase_after

shall invalidate only iterators and references to the erased elements. If an exception is thrown during
insert_after there shall be no effect. Inserting n elements into a forward_list is linear in n, and the
number of calls to the copy or move constructor of T is exactly equal to n. Erasing n elements from a
forward_list is linear in n and the number of calls to the destructor of type T is exactly equal to n.

template<class... Args> reference emplace_front(Args&&... args);

2 Effects: Inserts an object of type value_type constructed with value_type(std::forward<Args>(
args)...) at the beginning of the list.

void push_front(const T& x);
void push_front(T&& x);

3 Effects: Inserts a copy of x at the beginning of the list.

template<container-compatible-range <T> R>
void prepend_range(R&& rg);

4 Effects: Inserts a copy of each element of rg at the beginning of the list.
[Note 1 : The order of elements is not reversed. — end note ]

void pop_front();

5 Effects: As if by erase_after(before_begin()).

iterator insert_after(const_iterator position, const T& x);

6 Preconditions: T is Cpp17CopyInsertable into forward_list. position is before_begin() or is a
dereferenceable iterator in the range [begin(), end()).

7 Effects: Inserts a copy of x after position.
8 Returns: An iterator pointing to the copy of x.
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iterator insert_after(const_iterator position, T&& x);

9 Preconditions: T is Cpp17MoveInsertable into forward_list. position is before_begin() or is a
dereferenceable iterator in the range [begin(), end()).

10 Effects: Inserts a copy of x after position.
11 Returns: An iterator pointing to the copy of x.

iterator insert_after(const_iterator position, size_type n, const T& x);

12 Preconditions: T is Cpp17CopyInsertable into forward_list. position is before_begin() or is a
dereferenceable iterator in the range [begin(), end()).

13 Effects: Inserts n copies of x after position.
14 Returns: An iterator pointing to the last inserted copy of x, or position if n == 0 is true.

template<class InputIterator>
iterator insert_after(const_iterator position, InputIterator first, InputIterator last);

15 Preconditions: T is Cpp17EmplaceConstructible into forward_list from *first. position is before_-
begin() or is a dereferenceable iterator in the range [begin(), end()). Neither first nor last are
iterators in *this.

16 Effects: Inserts copies of elements in [first, last) after position.
17 Returns: An iterator pointing to the last inserted element, or position if first == last is true.

template<container-compatible-range <T> R>
iterator insert_range_after(const_iterator position, R&& rg);

18 Preconditions: T is Cpp17EmplaceConstructible into forward_list from *ranges::begin(rg). posi-
tion is before_begin() or is a dereferenceable iterator in the range [begin(), end()). rg and *this
do not overlap.

19 Effects: Inserts copies of elements in the range rg after position.
20 Returns: An iterator pointing to the last inserted element, or position if rg is empty.

iterator insert_after(const_iterator position, initializer_list<T> il);

21 Effects: Equivalent to: return insert_after(position, il.begin(), il.end());

template<class... Args>
iterator emplace_after(const_iterator position, Args&&... args);

22 Preconditions: T is Cpp17EmplaceConstructible into forward_list from std::forward<Args>(
args).... position is before_begin() or is a dereferenceable iterator in the range [begin(), end()).

23 Effects: Inserts an object of type value_type direct-non-list-initialized with std::forward<Args>(
args)... after position.

24 Returns: An iterator pointing to the new object.

iterator erase_after(const_iterator position);

25 Preconditions: The iterator following position is dereferenceable.
26 Effects: Erases the element pointed to by the iterator following position.
27 Returns: An iterator pointing to the element following the one that was erased, or end() if no such

element exists.
28 Throws: Nothing.

iterator erase_after(const_iterator position, const_iterator last);

29 Preconditions: All iterators in the range (position, last) are dereferenceable.
30 Effects: Erases the elements in the range (position, last).
31 Returns: last.
32 Throws: Nothing.
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void resize(size_type sz);

33 Preconditions: T is Cpp17DefaultInsertable into *this.
34 Effects: If sz < distance(begin(), end()), erases the last distance(begin(), end()) - sz ele-

ments from the list. Otherwise, inserts sz - distance(begin(), end()) default-inserted elements at
the end of the list.

void resize(size_type sz, const value_type& c);

35 Preconditions: T is Cpp17CopyInsertable into *this.
36 Effects: If sz < distance(begin(), end()), erases the last distance(begin(), end()) - sz ele-

ments from the list. Otherwise, inserts sz - distance(begin(), end()) copies of c at the end of the
list.

void clear() noexcept;

37 Effects: Erases all elements in the range [begin(), end()).
38 Remarks: Does not invalidate past-the-end iterators.

24.3.9.6 Operations [forward.list.ops]
1 In this subclause, arguments for a template parameter named Predicate or BinaryPredicate shall meet

the corresponding requirements in 27.2. The semantics of i + n, where i is an iterator into the list and n is
an integer, are the same as those of next(i, n). The expression i - n, where i is an iterator into the list
and n is an integer, means an iterator j such that j + n == i is true. For merge and sort, the definitions
and requirements in 27.8 apply.

void splice_after(const_iterator position, forward_list& x);
void splice_after(const_iterator position, forward_list&& x);

2 Preconditions: position is before_begin() or is a dereferenceable iterator in the range [begin(),
end()). get_allocator() == x.get_allocator() is true. addressof(x) != this is true.

3 Effects: Inserts the contents of x after position, and x becomes empty. Pointers and references to the
moved elements of x now refer to those same elements but as members of *this. Iterators referring
to the moved elements will continue to refer to their elements, but they now behave as iterators into
*this, not into x.

4 Throws: Nothing.
5 Complexity: O(distance(x.begin(), x.end()))

void splice_after(const_iterator position, forward_list& x, const_iterator i);
void splice_after(const_iterator position, forward_list&& x, const_iterator i);

6 Preconditions: position is before_begin() or is a dereferenceable iterator in the range [begin(),
end()). The iterator following i is a dereferenceable iterator in x. get_allocator() == x.get_-
allocator() is true.

7 Effects: Inserts the element following i into *this, following position, and removes it from x. The
result is unchanged if position == i or position == ++i. Pointers and references to *++i continue
to refer to the same element but as a member of *this. Iterators to *++i continue to refer to the same
element, but now behave as iterators into *this, not into x.

8 Throws: Nothing.
9 Complexity: O(1)

void splice_after(const_iterator position, forward_list& x,
const_iterator first, const_iterator last);

void splice_after(const_iterator position, forward_list&& x,
const_iterator first, const_iterator last);

10 Preconditions: position is before_begin() or is a dereferenceable iterator in the range [begin(),
end()). (first, last) is a valid range in x, and all iterators in the range (first, last) are deref-
erenceable. position is not an iterator in the range (first, last). get_allocator() == x.get_-
allocator() is true.
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11 Effects: Inserts elements in the range (first, last) after position and removes the elements from x.
Pointers and references to the moved elements of x now refer to those same elements but as members
of *this. Iterators referring to the moved elements will continue to refer to their elements, but they
now behave as iterators into *this, not into x.

12 Complexity: O(distance(first, last))

size_type remove(const T& value);
template<class Predicate> size_type remove_if(Predicate pred);

13 Effects: Erases all the elements in the list referred to by a list iterator i for which the following
conditions hold: *i == value (for remove()), pred(*i) is true (for remove_if()). Invalidates only
the iterators and references to the erased elements.

14 Returns: The number of elements erased.
15 Throws: Nothing unless an exception is thrown by the equality comparison or the predicate.
16 Complexity: Exactly distance(begin(), end()) applications of the corresponding predicate.
17 Remarks: Stable (16.4.6.8).

size_type unique();
template<class BinaryPredicate> size_type unique(BinaryPredicate binary_pred);

18 Let binary_pred be equal_to<>{} for the first overload.
19 Preconditions: binary_pred is an equivalence relation.
20 Effects: Erases all but the first element from every consecutive group of equivalent elements. That is,

for a nonempty list, erases all elements referred to by the iterator i in the range [begin() + 1, end())
for which binary_pred(*i, *(i - 1)) is true. Invalidates only the iterators and references to the
erased elements.

21 Returns: The number of elements erased.
22 Throws: Nothing unless an exception is thrown by the predicate.
23 Complexity: If empty() is false, exactly distance(begin(), end()) - 1 applications of the corre-

sponding predicate, otherwise no applications of the predicate.

void merge(forward_list& x);
void merge(forward_list&& x);
template<class Compare> void merge(forward_list& x, Compare comp);
template<class Compare> void merge(forward_list&& x, Compare comp);

24 Let comp be less<> for the first two overloads.
25 Preconditions: *this and x are both sorted with respect to the comparator comp, and get_allocator()

== x.get_allocator() is true.
26 Effects: If addressof(x) == this, there are no effects. Otherwise, merges the two sorted ranges

[begin(), end()) and [x.begin(), x.end()). The result is a range that is sorted with respect to the
comparator comp. Pointers and references to the moved elements of x now refer to those same elements
but as members of *this. Iterators referring to the moved elements will continue to refer to their
elements, but they now behave as iterators into *this, not into x.

27 Complexity: At most distance(begin(), end()) + distance(x.begin(), x.end()) - 1 compar-
isons if addressof(x) != this; otherwise, no comparisons are performed.

28 Remarks: Stable (16.4.6.8). If addressof(x) != this, x is empty after the merge. No elements are
copied by this operation. If an exception is thrown other than by a comparison, there are no effects.

void sort();
template<class Compare> void sort(Compare comp);

29 Effects: Sorts the list according to the operator< or the comp function object. If an exception is
thrown, the order of the elements in *this is unspecified. Does not affect the validity of iterators and
references.

30 Complexity: Approximately N log N comparisons, where N is distance(begin(), end()).
31 Remarks: Stable (16.4.6.8).
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void reverse() noexcept;

32 Effects: Reverses the order of the elements in the list. Does not affect the validity of iterators and
references.

33 Complexity: Linear time.

24.3.9.7 Erasure [forward.list.erasure]

template<class T, class Allocator, class U>
typename forward_list<T, Allocator>::size_type

erase(forward_list<T, Allocator>& c, const U& value);

1 Effects: Equivalent to: return erase_if(c, [&](auto& elem) { return elem == value; });

template<class T, class Allocator, class Predicate>
typename forward_list<T, Allocator>::size_type

erase_if(forward_list<T, Allocator>& c, Predicate pred);

2 Effects: Equivalent to: return c.remove_if(pred);

24.3.10 Class template list [list]
24.3.10.1 Overview [list.overview]

1 A list is a sequence container that supports bidirectional iterators and allows constant time insert and
erase operations anywhere within the sequence, with storage management handled automatically. Unlike
vectors (24.3.11) and deques (24.3.8), fast random access to list elements is not supported, but many
algorithms only need sequential access anyway.

2 A list meets all of the requirements of a container (24.2.2.2), of a reversible container (24.2.2.3), of an
allocator-aware container (24.2.2.5), and of a sequence container, including most of the optional sequence
container requirements (24.2.4). The exceptions are the operator[] and at member functions, which are
not provided.209 Descriptions are provided here only for operations on list that are not described in one of
these tables or for operations where there is additional semantic information.

namespace std {
template<class T, class Allocator = allocator<T>>
class list {
public:

// types
using value_type = T;
using allocator_type = Allocator;
using pointer = typename allocator_traits<Allocator>::pointer;
using const_pointer = typename allocator_traits<Allocator>::const_pointer;
using reference = value_type&;
using const_reference = const value_type&;
using size_type = implementation-defined ; // see 24.2
using difference_type = implementation-defined ; // see 24.2
using iterator = implementation-defined ; // see 24.2
using const_iterator = implementation-defined ; // see 24.2
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;

// 24.3.10.2, construct/copy/destroy
list() : list(Allocator()) { }
explicit list(const Allocator&);
explicit list(size_type n, const Allocator& = Allocator());
list(size_type n, const T& value, const Allocator& = Allocator());
template<class InputIterator>

list(InputIterator first, InputIterator last, const Allocator& = Allocator());
template<container-compatible-range <T> R>

list(from_range_t, R&& rg, const Allocator& = Allocator());
list(const list& x);
list(list&& x);
list(const list&, const type_identity_t<Allocator>&);

209) These member functions are only provided by containers whose iterators are random access iterators.
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list(list&&, const type_identity_t<Allocator>&);
list(initializer_list<T>, const Allocator& = Allocator());
~list();
list& operator=(const list& x);
list& operator=(list&& x)

noexcept(allocator_traits<Allocator>::is_always_equal::value);
list& operator=(initializer_list<T>);
template<class InputIterator>

void assign(InputIterator first, InputIterator last);
template<container-compatible-range <T> R>

void assign_range(R&& rg);
void assign(size_type n, const T& t);
void assign(initializer_list<T>);
allocator_type get_allocator() const noexcept;

// iterators
iterator begin() noexcept;
const_iterator begin() const noexcept;
iterator end() noexcept;
const_iterator end() const noexcept;
reverse_iterator rbegin() noexcept;
const_reverse_iterator rbegin() const noexcept;
reverse_iterator rend() noexcept;
const_reverse_iterator rend() const noexcept;

const_iterator cbegin() const noexcept;
const_iterator cend() const noexcept;
const_reverse_iterator crbegin() const noexcept;
const_reverse_iterator crend() const noexcept;

// 24.3.10.3, capacity
[[nodiscard]] bool empty() const noexcept;
size_type size() const noexcept;
size_type max_size() const noexcept;
void resize(size_type sz);
void resize(size_type sz, const T& c);

// element access
reference front();
const_reference front() const;
reference back();
const_reference back() const;

// 24.3.10.4, modifiers
template<class... Args> reference emplace_front(Args&&... args);
template<class... Args> reference emplace_back(Args&&... args);
void push_front(const T& x);
void push_front(T&& x);
template<container-compatible-range <T> R>

void prepend_range(R&& rg);
void pop_front();
void push_back(const T& x);
void push_back(T&& x);
template<container-compatible-range <T> R>

void append_range(R&& rg);
void pop_back();

template<class... Args> iterator emplace(const_iterator position, Args&&... args);
iterator insert(const_iterator position, const T& x);
iterator insert(const_iterator position, T&& x);
iterator insert(const_iterator position, size_type n, const T& x);
template<class InputIterator>

iterator insert(const_iterator position, InputIterator first, InputIterator last);
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template<container-compatible-range <T> R>
iterator insert_range(const_iterator position, R&& rg);

iterator insert(const_iterator position, initializer_list<T> il);

iterator erase(const_iterator position);
iterator erase(const_iterator position, const_iterator last);
void swap(list&) noexcept(allocator_traits<Allocator>::is_always_equal::value);
void clear() noexcept;

// 24.3.10.5, list operations
void splice(const_iterator position, list& x);
void splice(const_iterator position, list&& x);
void splice(const_iterator position, list& x, const_iterator i);
void splice(const_iterator position, list&& x, const_iterator i);
void splice(const_iterator position, list& x, const_iterator first, const_iterator last);
void splice(const_iterator position, list&& x, const_iterator first, const_iterator last);

size_type remove(const T& value);
template<class Predicate> size_type remove_if(Predicate pred);

size_type unique();
template<class BinaryPredicate>

size_type unique(BinaryPredicate binary_pred);

void merge(list& x);
void merge(list&& x);
template<class Compare> void merge(list& x, Compare comp);
template<class Compare> void merge(list&& x, Compare comp);

void sort();
template<class Compare> void sort(Compare comp);

void reverse() noexcept;
};

template<class InputIterator, class Allocator = allocator<iter-value-type <InputIterator>>>
list(InputIterator, InputIterator, Allocator = Allocator())

-> list<iter-value-type <InputIterator>, Allocator>;

template<ranges::input_range R, class Allocator = allocator<ranges::range_value_t<R>>>
list(from_range_t, R&&, Allocator = Allocator())

-> list<ranges::range_value_t<R>, Allocator>;
}

3 An incomplete type T may be used when instantiating list if the allocator meets the allocator completeness
requirements (16.4.4.6.2). T shall be complete before any member of the resulting specialization of list is
referenced.

24.3.10.2 Constructors, copy, and assignment [list.cons]

explicit list(const Allocator&);

1 Effects: Constructs an empty list, using the specified allocator.
2 Complexity: Constant.

explicit list(size_type n, const Allocator& = Allocator());

3 Preconditions: T is Cpp17DefaultInsertable into *this.
4 Effects: Constructs a list with n default-inserted elements using the specified allocator.
5 Complexity: Linear in n.

list(size_type n, const T& value, const Allocator& = Allocator());

6 Preconditions: T is Cpp17CopyInsertable into *this.
7 Effects: Constructs a list with n copies of value, using the specified allocator.
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8 Complexity: Linear in n.

template<class InputIterator>
list(InputIterator first, InputIterator last, const Allocator& = Allocator());

9 Effects: Constructs a list equal to the range [first, last).
10 Complexity: Linear in distance(first, last).

template<container-compatible-range <T> R>
list(from_range_t, R&& rg, const Allocator& = Allocator());

11 Effects: Constructs a list object with the elements of the range rg.
12 Complexity: Linear in ranges::distance(rg).

24.3.10.3 Capacity [list.capacity]

void resize(size_type sz);

1 Preconditions: T is Cpp17DefaultInsertable into *this.
2 Effects: If size() < sz, appends sz - size() default-inserted elements to the sequence. If sz <=

size(), equivalent to:
list<T>::iterator it = begin();
advance(it, sz);
erase(it, end());

void resize(size_type sz, const T& c);

3 Preconditions: T is Cpp17CopyInsertable into *this.
4 Effects: As if by:

if (sz > size())
insert(end(), sz-size(), c);

else if (sz < size()) {
iterator i = begin();
advance(i, sz);
erase(i, end());

}
else

; // do nothing

24.3.10.4 Modifiers [list.modifiers]

iterator insert(const_iterator position, const T& x);
iterator insert(const_iterator position, T&& x);
iterator insert(const_iterator position, size_type n, const T& x);
template<class InputIterator>

iterator insert(const_iterator position, InputIterator first,
InputIterator last);

template<container-compatible-range <T> R>
iterator insert_range(const_iterator position, R&& rg);

iterator insert(const_iterator position, initializer_list<T>);

template<class... Args> reference emplace_front(Args&&... args);
template<class... Args> reference emplace_back(Args&&... args);
template<class... Args> iterator emplace(const_iterator position, Args&&... args);
void push_front(const T& x);
void push_front(T&& x);
template<container-compatible-range <T> R>

void prepend_range(R&& rg);
void push_back(const T& x);
void push_back(T&& x);
template<container-compatible-range <T> R>

void append_range(R&& rg);

1 Complexity: Insertion of a single element into a list takes constant time and exactly one call to a
constructor of T. Insertion of multiple elements into a list is linear in the number of elements inserted,
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and the number of calls to the copy constructor or move constructor of T is exactly equal to the number
of elements inserted.

2 Remarks: Does not affect the validity of iterators and references. If an exception is thrown there are no
effects.

iterator erase(const_iterator position);
iterator erase(const_iterator first, const_iterator last);

void pop_front();
void pop_back();
void clear() noexcept;

3 Effects: Invalidates only the iterators and references to the erased elements.
4 Throws: Nothing.
5 Complexity: Erasing a single element is a constant time operation with a single call to the destructor

of T. Erasing a range in a list is linear time in the size of the range and the number of calls to the
destructor of type T is exactly equal to the size of the range.

24.3.10.5 Operations [list.ops]
1 Since lists allow fast insertion and erasing from the middle of a list, certain operations are provided specifically

for them.210 In this subclause, arguments for a template parameter named Predicate or BinaryPredicate
shall meet the corresponding requirements in 27.2. The semantics of i + n and i - n, where i is an iterator
into the list and n is an integer, are the same as those of next(i, n) and prev(i, n), respectively. For
merge and sort, the definitions and requirements in 27.8 apply.

2 list provides three splice operations that destructively move elements from one list to another. The behavior
of splice operations is undefined if get_allocator() != x.get_allocator().

void splice(const_iterator position, list& x);
void splice(const_iterator position, list&& x);

3 Preconditions: addressof(x) != this is true.
4 Effects: Inserts the contents of x before position and x becomes empty. Pointers and references to the

moved elements of x now refer to those same elements but as members of *this. Iterators referring
to the moved elements will continue to refer to their elements, but they now behave as iterators into
*this, not into x.

5 Throws: Nothing.
6 Complexity: Constant time.

void splice(const_iterator position, list& x, const_iterator i);
void splice(const_iterator position, list&& x, const_iterator i);

7 Preconditions: i is a valid dereferenceable iterator of x.
8 Effects: Inserts an element pointed to by i from list x before position and removes the element from

x. The result is unchanged if position == i or position == ++i. Pointers and references to *i
continue to refer to this same element but as a member of *this. Iterators to *i (including i itself)
continue to refer to the same element, but now behave as iterators into *this, not into x.

9 Throws: Nothing.
10 Complexity: Constant time.

void splice(const_iterator position, list& x, const_iterator first,
const_iterator last);

void splice(const_iterator position, list&& x, const_iterator first,
const_iterator last);

11 Preconditions: [first, last) is a valid range in x. position is not an iterator in the range [first,
last).

12 Effects: Inserts elements in the range [first, last) before position and removes the elements from x.
Pointers and references to the moved elements of x now refer to those same elements but as members

210) As specified in 16.4.4.6, the requirements in this Clause apply only to lists whose allocators compare equal.
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of *this. Iterators referring to the moved elements will continue to refer to their elements, but they
now behave as iterators into *this, not into x.

13 Throws: Nothing.
14 Complexity: Constant time if addressof(x) == this; otherwise, linear time.

size_type remove(const T& value);
template<class Predicate> size_type remove_if(Predicate pred);

15 Effects: Erases all the elements in the list referred to by a list iterator i for which the following
conditions hold: *i == value, pred(*i) != false. Invalidates only the iterators and references to
the erased elements.

16 Returns: The number of elements erased.
17 Throws: Nothing unless an exception is thrown by *i == value or pred(*i) != false.
18 Complexity: Exactly size() applications of the corresponding predicate.
19 Remarks: Stable (16.4.6.8).

size_type unique();
template<class BinaryPredicate> size_type unique(BinaryPredicate binary_pred);

20 Let binary_pred be equal_to<>{} for the first overload.
21 Preconditions: binary_pred is an equivalence relation.
22 Effects: Erases all but the first element from every consecutive group of equivalent elements. That is,

for a nonempty list, erases all elements referred to by the iterator i in the range [begin() + 1, end())
for which binary_pred(*i, *(i - 1)) is true. Invalidates only the iterators and references to the
erased elements.

23 Returns: The number of elements erased.
24 Throws: Nothing unless an exception is thrown by the predicate.
25 Complexity: If empty() is false, exactly size() - 1 applications of the corresponding predicate,

otherwise no applications of the predicate.

void merge(list& x);
void merge(list&& x);
template<class Compare> void merge(list& x, Compare comp);
template<class Compare> void merge(list&& x, Compare comp);

26 Let comp be less<> for the first two overloads.
27 Preconditions: *this and x are both sorted with respect to the comparator comp, and get_allocator()

== x.get_allocator() is true.
28 Effects: If addressof(x) == this, there are no effects. Otherwise, merges the two sorted ranges

[begin(), end()) and [x.begin(), x.end()). The result is a range that is sorted with respect to the
comparator comp. Pointers and references to the moved elements of x now refer to those same elements
but as members of *this. Iterators referring to the moved elements will continue to refer to their
elements, but they now behave as iterators into *this, not into x.

29 Complexity: At most size() + x.size() - 1 comparisons if addressof(x) != this; otherwise, no
comparisons are performed.

30 Remarks: Stable (16.4.6.8). If addressof(x) != this, x is empty after the merge. No elements are
copied by this operation. If an exception is thrown other than by a comparison there are no effects.

void reverse() noexcept;

31 Effects: Reverses the order of the elements in the list. Does not affect the validity of iterators and
references.

32 Complexity: Linear time.

void sort();
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template<class Compare> void sort(Compare comp);

33 Effects: Sorts the list according to the operator< or a Compare function object. If an exception is
thrown, the order of the elements in *this is unspecified. Does not affect the validity of iterators and
references.

34 Complexity: Approximately N log N comparisons, where N == size().
35 Remarks: Stable (16.4.6.8).

24.3.10.6 Erasure [list.erasure]

template<class T, class Allocator, class U>
typename list<T, Allocator>::size_type

erase(list<T, Allocator>& c, const U& value);

1 Effects: Equivalent to: return erase_if(c, [&](auto& elem) { return elem == value; });

template<class T, class Allocator, class Predicate>
typename list<T, Allocator>::size_type

erase_if(list<T, Allocator>& c, Predicate pred);

2 Effects: Equivalent to: return c.remove_if(pred);

24.3.11 Class template vector [vector]
24.3.11.1 Overview [vector.overview]

1 A vector is a sequence container that supports (amortized) constant time insert and erase operations at the
end; insert and erase in the middle take linear time. Storage management is handled automatically, though
hints can be given to improve efficiency.

2 A vector meets all of the requirements of a container (24.2.2.2), of a reversible container (24.2.2.3), of an
allocator-aware container (24.2.2.5), of a sequence container, including most of the optional sequence container
requirements (24.2.4), and, for an element type other than bool, of a contiguous container (24.2.2.2). The
exceptions are the push_front, prepend_range, pop_front, and emplace_front member functions, which
are not provided. Descriptions are provided here only for operations on vector that are not described in one
of these tables or for operations where there is additional semantic information.

3 The types iterator and const_iterator meet the constexpr iterator requirements (25.3.1).
namespace std {

template<class T, class Allocator = allocator<T>>
class vector {
public:

// types
using value_type = T;
using allocator_type = Allocator;
using pointer = typename allocator_traits<Allocator>::pointer;
using const_pointer = typename allocator_traits<Allocator>::const_pointer;
using reference = value_type&;
using const_reference = const value_type&;
using size_type = implementation-defined ; // see 24.2
using difference_type = implementation-defined ; // see 24.2
using iterator = implementation-defined ; // see 24.2
using const_iterator = implementation-defined ; // see 24.2
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;

// 24.3.11.2, construct/copy/destroy
constexpr vector() noexcept(noexcept(Allocator())) : vector(Allocator()) { }
constexpr explicit vector(const Allocator&) noexcept;
constexpr explicit vector(size_type n, const Allocator& = Allocator());
constexpr vector(size_type n, const T& value, const Allocator& = Allocator());
template<class InputIterator>

constexpr vector(InputIterator first, InputIterator last, const Allocator& = Allocator());
template<container-compatible-range <T> R>

constexpr vector(from_range_t, R&& rg, const Allocator& = Allocator());
constexpr vector(const vector& x);
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constexpr vector(vector&&) noexcept;
constexpr vector(const vector&, const type_identity_t<Allocator>&);
constexpr vector(vector&&, const type_identity_t<Allocator>&);
constexpr vector(initializer_list<T>, const Allocator& = Allocator());
constexpr ~vector();
constexpr vector& operator=(const vector& x);
constexpr vector& operator=(vector&& x)

noexcept(allocator_traits<Allocator>::propagate_on_container_move_assignment::value ||
allocator_traits<Allocator>::is_always_equal::value);

constexpr vector& operator=(initializer_list<T>);
template<class InputIterator>

constexpr void assign(InputIterator first, InputIterator last);
template<container-compatible-range <T> R>

constexpr void assign_range(R&& rg);
constexpr void assign(size_type n, const T& u);
constexpr void assign(initializer_list<T>);
constexpr allocator_type get_allocator() const noexcept;

// iterators
constexpr iterator begin() noexcept;
constexpr const_iterator begin() const noexcept;
constexpr iterator end() noexcept;
constexpr const_iterator end() const noexcept;
constexpr reverse_iterator rbegin() noexcept;
constexpr const_reverse_iterator rbegin() const noexcept;
constexpr reverse_iterator rend() noexcept;
constexpr const_reverse_iterator rend() const noexcept;

constexpr const_iterator cbegin() const noexcept;
constexpr const_iterator cend() const noexcept;
constexpr const_reverse_iterator crbegin() const noexcept;
constexpr const_reverse_iterator crend() const noexcept;

// 24.3.11.3, capacity
[[nodiscard]] constexpr bool empty() const noexcept;
constexpr size_type size() const noexcept;
constexpr size_type max_size() const noexcept;
constexpr size_type capacity() const noexcept;
constexpr void resize(size_type sz);
constexpr void resize(size_type sz, const T& c);
constexpr void reserve(size_type n);
constexpr void shrink_to_fit();

// element access
constexpr reference operator[](size_type n);
constexpr const_reference operator[](size_type n) const;
constexpr const_reference at(size_type n) const;
constexpr reference at(size_type n);
constexpr reference front();
constexpr const_reference front() const;
constexpr reference back();
constexpr const_reference back() const;

// 24.3.11.4, data access
constexpr T* data() noexcept;
constexpr const T* data() const noexcept;

// 24.3.11.5, modifiers
template<class... Args> constexpr reference emplace_back(Args&&... args);
constexpr void push_back(const T& x);
constexpr void push_back(T&& x);
template<container-compatible-range <T> R>

constexpr void append_range(R&& rg);
constexpr void pop_back();
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template<class... Args> constexpr iterator emplace(const_iterator position, Args&&... args);
constexpr iterator insert(const_iterator position, const T& x);
constexpr iterator insert(const_iterator position, T&& x);
constexpr iterator insert(const_iterator position, size_type n, const T& x);
template<class InputIterator>

constexpr iterator insert(const_iterator position,
InputIterator first, InputIterator last);

template<container-compatible-range <T> R>
constexpr iterator insert_range(const_iterator position, R&& rg);

constexpr iterator insert(const_iterator position, initializer_list<T> il);
constexpr iterator erase(const_iterator position);
constexpr iterator erase(const_iterator first, const_iterator last);
constexpr void swap(vector&)

noexcept(allocator_traits<Allocator>::propagate_on_container_swap::value ||
allocator_traits<Allocator>::is_always_equal::value);

constexpr void clear() noexcept;
};

template<class InputIterator, class Allocator = allocator<iter-value-type <InputIterator>>>
vector(InputIterator, InputIterator, Allocator = Allocator())

-> vector<iter-value-type <InputIterator>, Allocator>;

template<ranges::input_range R, class Allocator = allocator<ranges::range_value_t<R>>>
vector(from_range_t, R&&, Allocator = Allocator())

-> vector<ranges::range_value_t<R>, Allocator>;
}

4 An incomplete type T may be used when instantiating vector if the allocator meets the allocator completeness
requirements (16.4.4.6.2). T shall be complete before any member of the resulting specialization of vector is
referenced.

24.3.11.2 Constructors [vector.cons]

constexpr explicit vector(const Allocator&) noexcept;

1 Effects: Constructs an empty vector, using the specified allocator.
2 Complexity: Constant.

constexpr explicit vector(size_type n, const Allocator& = Allocator());

3 Preconditions: T is Cpp17DefaultInsertable into *this.
4 Effects: Constructs a vector with n default-inserted elements using the specified allocator.
5 Complexity: Linear in n.

constexpr vector(size_type n, const T& value,
const Allocator& = Allocator());

6 Preconditions: T is Cpp17CopyInsertable into *this.
7 Effects: Constructs a vector with n copies of value, using the specified allocator.
8 Complexity: Linear in n.

template<class InputIterator>
constexpr vector(InputIterator first, InputIterator last,

const Allocator& = Allocator());

9 Effects: Constructs a vector equal to the range [first, last), using the specified allocator.
10 Complexity: Makes only N calls to the copy constructor of T (where N is the distance between first

and last) and no reallocations if iterators first and last are of forward, bidirectional, or random
access categories. It makes order N calls to the copy constructor of T and order log N reallocations if
they are just input iterators.

template<container-compatible-range <T> R>
constexpr vector(from_range_t, R&& rg, const Allocator& = Allocator());

11 Effects: Constructs a vector object with the elements of the range rg, using the specified allocator.
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12 Complexity: Initializes exactly N elements from the results of dereferencing successive iterators of rg,
where N is ranges::distance(rg). Performs no reallocations if R models ranges::forward_range
or ranges::sized_range; otherwise, performs order log N reallocations and order N calls to the copy
or move constructor of T.

24.3.11.3 Capacity [vector.capacity]

constexpr size_type capacity() const noexcept;

1 Returns: The total number of elements that the vector can hold without requiring reallocation.
2 Complexity: Constant time.

constexpr void reserve(size_type n);

3 Preconditions: T is Cpp17MoveInsertable into *this.
4 Effects: A directive that informs a vector of a planned change in size, so that it can manage the storage

allocation accordingly. After reserve(), capacity() is greater or equal to the argument of reserve if
reallocation happens; and equal to the previous value of capacity() otherwise. Reallocation happens
at this point if and only if the current capacity is less than the argument of reserve(). If an exception
is thrown other than by the move constructor of a non-Cpp17CopyInsertable type, there are no effects.

5 Throws: length_error if n > max_size().211

6 Complexity: It does not change the size of the sequence and takes at most linear time in the size of the
sequence.

7 Remarks: Reallocation invalidates all the references, pointers, and iterators referring to the elements in
the sequence, as well as the past-the-end iterator.
[Note 1 : If no reallocation happens, they remain valid. — end note ]

No reallocation shall take place during insertions that happen after a call to reserve() until an
insertion would make the size of the vector greater than the value of capacity().

constexpr void shrink_to_fit();

8 Preconditions: T is Cpp17MoveInsertable into *this.
9 Effects: shrink_to_fit is a non-binding request to reduce capacity() to size().

[Note 2 : The request is non-binding to allow latitude for implementation-specific optimizations. — end note ]

It does not increase capacity(), but may reduce capacity() by causing reallocation. If an exception
is thrown other than by the move constructor of a non-Cpp17CopyInsertable T there are no effects.

10 Complexity: If reallocation happens, linear in the size of the sequence.
11 Remarks: Reallocation invalidates all the references, pointers, and iterators referring to the elements in

the sequence as well as the past-the-end iterator.
[Note 3 : If no reallocation happens, they remain valid. — end note ]

constexpr void swap(vector& x)
noexcept(allocator_traits<Allocator>::propagate_on_container_swap::value ||

allocator_traits<Allocator>::is_always_equal::value);

12 Effects: Exchanges the contents and capacity() of *this with that of x.
13 Complexity: Constant time.

constexpr void resize(size_type sz);

14 Preconditions: T is Cpp17MoveInsertable and Cpp17DefaultInsertable into *this.
15 Effects: If sz < size(), erases the last size() - sz elements from the sequence. Otherwise, appends

sz - size() default-inserted elements to the sequence.
16 Remarks: If an exception is thrown other than by the move constructor of a non-Cpp17CopyInsertable

T there are no effects.

211) reserve() uses Allocator::allocate() which can throw an appropriate exception.
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constexpr void resize(size_type sz, const T& c);

17 Preconditions: T is Cpp17CopyInsertable into *this.
18 Effects: If sz < size(), erases the last size() - sz elements from the sequence. Otherwise, appends

sz - size() copies of c to the sequence.
19 Remarks: If an exception is thrown there are no effects.

24.3.11.4 Data [vector.data]

constexpr T* data() noexcept;
constexpr const T* data() const noexcept;

1 Returns: A pointer such that [data(), data() + size()) is a valid range. For a non-empty vector,
data() == addressof(front()).

2 Complexity: Constant time.

24.3.11.5 Modifiers [vector.modifiers]

constexpr iterator insert(const_iterator position, const T& x);
constexpr iterator insert(const_iterator position, T&& x);
constexpr iterator insert(const_iterator position, size_type n, const T& x);
template<class InputIterator>

constexpr iterator insert(const_iterator position, InputIterator first, InputIterator last);
template<container-compatible-range <T> R>

constexpr iterator insert_range(const_iterator position, R&& rg);
constexpr iterator insert(const_iterator position, initializer_list<T>);

template<class... Args> constexpr reference emplace_back(Args&&... args);
template<class... Args> constexpr iterator emplace(const_iterator position, Args&&... args);
constexpr void push_back(const T& x);
constexpr void push_back(T&& x);
template<container-compatible-range <T> R>

constexpr void append_range(R&& rg);

1 Complexity: If reallocation happens, linear in the number of elements of the resulting vector; otherwise,
linear in the number of elements inserted plus the distance to the end of the vector.

2 Remarks: Causes reallocation if the new size is greater than the old capacity. Reallocation invalidates
all the references, pointers, and iterators referring to the elements in the sequence, as well as the past-
the-end iterator. If no reallocation happens, then references, pointers, and iterators before the insertion
point remain valid but those at or after the insertion point, including the past-the-end iterator, are
invalidated. If an exception is thrown other than by the copy constructor, move constructor, assignment
operator, or move assignment operator of T or by any InputIterator operation there are no effects.
If an exception is thrown while inserting a single element at the end and T is Cpp17CopyInsertable
or is_nothrow_move_constructible_v<T> is true, there are no effects. Otherwise, if an exception is
thrown by the move constructor of a non-Cpp17CopyInsertable T, the effects are unspecified.

constexpr iterator erase(const_iterator position);
constexpr iterator erase(const_iterator first, const_iterator last);
constexpr void pop_back();

3 Effects: Invalidates iterators and references at or after the point of the erase.
4 Throws: Nothing unless an exception is thrown by the assignment operator or move assignment operator

of T.
5 Complexity: The destructor of T is called the number of times equal to the number of the elements

erased, but the assignment operator of T is called the number of times equal to the number of elements
in the vector after the erased elements.

24.3.11.6 Erasure [vector.erasure]

template<class T, class Allocator, class U>
constexpr typename vector<T, Allocator>::size_type

erase(vector<T, Allocator>& c, const U& value);

1 Effects: Equivalent to:
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auto it = remove(c.begin(), c.end(), value);
auto r = distance(it, c.end());
c.erase(it, c.end());
return r;

template<class T, class Allocator, class Predicate>
constexpr typename vector<T, Allocator>::size_type

erase_if(vector<T, Allocator>& c, Predicate pred);

2 Effects: Equivalent to:
auto it = remove_if(c.begin(), c.end(), pred);
auto r = distance(it, c.end());
c.erase(it, c.end());
return r;

24.3.12 Specialization of vector for bool [vector.bool]
24.3.12.1 Partial class template specialization vector<bool, Allocator> [vector.bool.pspc]

1 To optimize space allocation, a partial specialization of vector for bool elements is provided:
namespace std {

template<class Allocator>
class vector<bool, Allocator> {
public:

// types
using value_type = bool;
using allocator_type = Allocator;
using pointer = implementation-defined ;
using const_pointer = implementation-defined ;
using const_reference = bool;
using size_type = implementation-defined ; // see 24.2
using difference_type = implementation-defined ; // see 24.2
using iterator = implementation-defined ; // see 24.2
using const_iterator = implementation-defined ; // see 24.2
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;

// bit reference
class reference {

friend class vector;
constexpr reference() noexcept;

public:
constexpr reference(const reference&) = default;
constexpr ~reference();
constexpr operator bool() const noexcept;
constexpr reference& operator=(bool x) noexcept;
constexpr reference& operator=(const reference& x) noexcept;
constexpr const reference& operator=(bool x) const noexcept;
constexpr void flip() noexcept; // flips the bit

};

// construct/copy/destroy
constexpr vector() noexcept(noexcept(Allocator())) : vector(Allocator()) { }
constexpr explicit vector(const Allocator&) noexcept;
constexpr explicit vector(size_type n, const Allocator& = Allocator());
constexpr vector(size_type n, const bool& value, const Allocator& = Allocator());
template<class InputIterator>

constexpr vector(InputIterator first, InputIterator last, const Allocator& = Allocator());
template<container-compatible-range <bool> R>

constexpr vector(from_range_t, R&& rg, const Allocator& = Allocator());
constexpr vector(const vector& x);
constexpr vector(vector&& x) noexcept;
constexpr vector(const vector&, const type_identity_t<Allocator>&);
constexpr vector(vector&&, const type_identity_t<Allocator>&);

§ 24.3.12.1 936



© ISO/IEC N4950

constexpr vector(initializer_list<bool>, const Allocator& = Allocator());
constexpr ~vector();
constexpr vector& operator=(const vector& x);
constexpr vector& operator=(vector&& x)

noexcept(allocator_traits<Allocator>::propagate_on_container_move_assignment::value ||
allocator_traits<Allocator>::is_always_equal::value);

constexpr vector& operator=(initializer_list<bool>);
template<class InputIterator>

constexpr void assign(InputIterator first, InputIterator last);
template<container-compatible-range <bool> R>

constexpr void assign_range(R&& rg);
constexpr void assign(size_type n, const bool& t);
constexpr void assign(initializer_list<bool>);
constexpr allocator_type get_allocator() const noexcept;

// iterators
constexpr iterator begin() noexcept;
constexpr const_iterator begin() const noexcept;
constexpr iterator end() noexcept;
constexpr const_iterator end() const noexcept;
constexpr reverse_iterator rbegin() noexcept;
constexpr const_reverse_iterator rbegin() const noexcept;
constexpr reverse_iterator rend() noexcept;
constexpr const_reverse_iterator rend() const noexcept;

constexpr const_iterator cbegin() const noexcept;
constexpr const_iterator cend() const noexcept;
constexpr const_reverse_iterator crbegin() const noexcept;
constexpr const_reverse_iterator crend() const noexcept;

// capacity
[[nodiscard]] constexpr bool empty() const noexcept;
constexpr size_type size() const noexcept;
constexpr size_type max_size() const noexcept;
constexpr size_type capacity() const noexcept;
constexpr void resize(size_type sz, bool c = false);
constexpr void reserve(size_type n);
constexpr void shrink_to_fit();

// element access
constexpr reference operator[](size_type n);
constexpr const_reference operator[](size_type n) const;
constexpr const_reference at(size_type n) const;
constexpr reference at(size_type n);
constexpr reference front();
constexpr const_reference front() const;
constexpr reference back();
constexpr const_reference back() const;

// modifiers
template<class... Args> constexpr reference emplace_back(Args&&... args);
constexpr void push_back(const bool& x);
template<container-compatible-range <bool> R>

constexpr void append_range(R&& rg);
constexpr void pop_back();
template<class... Args> constexpr iterator emplace(const_iterator position, Args&&... args);
constexpr iterator insert(const_iterator position, const bool& x);
constexpr iterator insert(const_iterator position, size_type n, const bool& x);
template<class InputIterator>

constexpr iterator insert(const_iterator position,
InputIterator first, InputIterator last);

template<container-compatible-range <bool> R>
constexpr iterator insert_range(const_iterator position, R&& rg);

constexpr iterator insert(const_iterator position, initializer_list<bool> il);
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constexpr iterator erase(const_iterator position);
constexpr iterator erase(const_iterator first, const_iterator last);
constexpr void swap(vector&)

noexcept(allocator_traits<Allocator>::propagate_on_container_swap::value ||
allocator_traits<Allocator>::is_always_equal::value);

static constexpr void swap(reference x, reference y) noexcept;
constexpr void flip() noexcept; // flips all bits
constexpr void clear() noexcept;

};
}

2 Unless described below, all operations have the same requirements and semantics as the primary vector
template, except that operations dealing with the bool value type map to bit values in the container storage
and allocator_traits::construct (20.2.9.3) is not used to construct these values.

3 There is no requirement that the data be stored as a contiguous allocation of bool values. A space-optimized
representation of bits is recommended instead.

4 reference is a class that simulates the behavior of references of a single bit in vector<bool>. The conversion
function returns true when the bit is set, and false otherwise. The assignment operators set the bit when
the argument is (convertible to) true and clear it otherwise. flip reverses the state of the bit.

constexpr void flip() noexcept;

5 Effects: Replaces each element in the container with its complement.

static constexpr void swap(reference x, reference y) noexcept;

6 Effects: Exchanges the contents of x and y as if by:
bool b = x;
x = y;
y = b;

template<class Allocator> struct hash<vector<bool, Allocator>>;

7 The specialization is enabled (22.10.19).

template<class T>
constexpr bool is-vector-bool-reference = see below ;

8 The expression is-vector-bool-reference <T> is true if T denotes the type vector<bool, Alloc>::
reference for some type Alloc and vector<bool, Alloc> is not a program-defined specialization.

24.3.12.2 Formatter specialization for vector<bool> [vector.bool.fmt]
namespace std {

template<class T, class charT>
requires is-vector-bool-reference <T>

struct formatter<T, charT> {
private:

formatter<bool, charT> underlying_; // exposition only

public:
template<class ParseContext>

constexpr typename ParseContext::iterator
parse(ParseContext& ctx);

template<class FormatContext>
typename FormatContext::iterator

format(const T& ref, FormatContext& ctx) const;
};

}

template<class ParseContext>
constexpr typename ParseContext::iterator

parse(ParseContext& ctx);

1 Equivalent to: return underlying_.parse(ctx);
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template<class FormatContext>
typename FormatContext::iterator

format(const T& ref, FormatContext& ctx) const;

2 Equivalent to: return underlying_.format(ref, ctx);

24.4 Associative containers [associative]
24.4.1 In general [associative.general]

1 The header <map> defines the class templates map and multimap; the header <set> defines the class templates
set and multiset.

2 The following exposition-only alias templates may appear in deduction guides for associative containers:
template<class InputIterator>

using iter-value-type =
typename iterator_traits<InputIterator>::value_type; // exposition only

template<class InputIterator>
using iter-key-type = remove_const_t<

tuple_element_t<0, iter-value-type <InputIterator>>>; // exposition only
template<class InputIterator>

using iter-mapped-type =
tuple_element_t<1, iter-value-type <InputIterator>>; // exposition only

template<class InputIterator>
using iter-to-alloc-type = pair<

add_const_t<tuple_element_t<0, iter-value-type <InputIterator>>>,
tuple_element_t<1, iter-value-type <InputIterator>>>; // exposition only

template<ranges::input_range Range>
using range-key-type =

remove_const_t<typename ranges::range_value_t<Range>::first_type>; // exposition only
template<ranges::input_range Range>

using range-mapped-type = typename ranges::range_value_t<Range>::second_type; // exposition only
template<ranges::input_range Range>

using range-to-alloc-type =
pair<add_const_t<typename ranges::range_value_t<Range>::first_type>,

typename ranges::range_value_t<Range>::second_type>; // exposition only

24.4.2 Header <map> synopsis [associative.map.syn]
#include <compare> // see 17.11.1
#include <initializer_list> // see 17.10.2

namespace std {
// 24.4.4, class template map
template<class Key, class T, class Compare = less<Key>,

class Allocator = allocator<pair<const Key, T>>>
class map;

template<class Key, class T, class Compare, class Allocator>
bool operator==(const map<Key, T, Compare, Allocator>& x,

const map<Key, T, Compare, Allocator>& y);
template<class Key, class T, class Compare, class Allocator>

synth-three-way-result <pair<const Key, T>>
operator<=>(const map<Key, T, Compare, Allocator>& x,

const map<Key, T, Compare, Allocator>& y);

template<class Key, class T, class Compare, class Allocator>
void swap(map<Key, T, Compare, Allocator>& x,

map<Key, T, Compare, Allocator>& y)
noexcept(noexcept(x.swap(y)));

// 24.4.4.5, erasure for map
template<class Key, class T, class Compare, class Allocator, class Predicate>

typename map<Key, T, Compare, Allocator>::size_type
erase_if(map<Key, T, Compare, Allocator>& c, Predicate pred);
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// 24.4.5, class template multimap
template<class Key, class T, class Compare = less<Key>,

class Allocator = allocator<pair<const Key, T>>>
class multimap;

template<class Key, class T, class Compare, class Allocator>
bool operator==(const multimap<Key, T, Compare, Allocator>& x,

const multimap<Key, T, Compare, Allocator>& y);
template<class Key, class T, class Compare, class Allocator>

synth-three-way-result <pair<const Key, T>>
operator<=>(const multimap<Key, T, Compare, Allocator>& x,

const multimap<Key, T, Compare, Allocator>& y);

template<class Key, class T, class Compare, class Allocator>
void swap(multimap<Key, T, Compare, Allocator>& x,

multimap<Key, T, Compare, Allocator>& y)
noexcept(noexcept(x.swap(y)));

// 24.4.5.4, erasure for multimap
template<class Key, class T, class Compare, class Allocator, class Predicate>

typename multimap<Key, T, Compare, Allocator>::size_type
erase_if(multimap<Key, T, Compare, Allocator>& c, Predicate pred);

namespace pmr {
template<class Key, class T, class Compare = less<Key>>

using map = std::map<Key, T, Compare,
polymorphic_allocator<pair<const Key, T>>>;

template<class Key, class T, class Compare = less<Key>>
using multimap = std::multimap<Key, T, Compare,

polymorphic_allocator<pair<const Key, T>>>;
}

}

24.4.3 Header <set> synopsis [associative.set.syn]
#include <compare> // see 17.11.1
#include <initializer_list> // see 17.10.2

namespace std {
// 24.4.6, class template set
template<class Key, class Compare = less<Key>, class Allocator = allocator<Key>>

class set;

template<class Key, class Compare, class Allocator>
bool operator==(const set<Key, Compare, Allocator>& x,

const set<Key, Compare, Allocator>& y);
template<class Key, class Compare, class Allocator>

synth-three-way-result <Key> operator<=>(const set<Key, Compare, Allocator>& x,
const set<Key, Compare, Allocator>& y);

template<class Key, class Compare, class Allocator>
void swap(set<Key, Compare, Allocator>& x,

set<Key, Compare, Allocator>& y)
noexcept(noexcept(x.swap(y)));

// 24.4.6.3, erasure for set
template<class Key, class Compare, class Allocator, class Predicate>

typename set<Key, Compare, Allocator>::size_type
erase_if(set<Key, Compare, Allocator>& c, Predicate pred);

// 24.4.7, class template multiset
template<class Key, class Compare = less<Key>, class Allocator = allocator<Key>>

class multiset;
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template<class Key, class Compare, class Allocator>
bool operator==(const multiset<Key, Compare, Allocator>& x,

const multiset<Key, Compare, Allocator>& y);
template<class Key, class Compare, class Allocator>

synth-three-way-result <Key> operator<=>(const multiset<Key, Compare, Allocator>& x,
const multiset<Key, Compare, Allocator>& y);

template<class Key, class Compare, class Allocator>
void swap(multiset<Key, Compare, Allocator>& x,

multiset<Key, Compare, Allocator>& y)
noexcept(noexcept(x.swap(y)));

// 24.4.7.3, erasure for multiset
template<class Key, class Compare, class Allocator, class Predicate>

typename multiset<Key, Compare, Allocator>::size_type
erase_if(multiset<Key, Compare, Allocator>& c, Predicate pred);

namespace pmr {
template<class Key, class Compare = less<Key>>

using set = std::set<Key, Compare, polymorphic_allocator<Key>>;

template<class Key, class Compare = less<Key>>
using multiset = std::multiset<Key, Compare, polymorphic_allocator<Key>>;

}
}

24.4.4 Class template map [map]
24.4.4.1 Overview [map.overview]

1 A map is an associative container that supports unique keys (i.e., contains at most one of each key value) and
provides for fast retrieval of values of another type T based on the keys. The map class supports bidirectional
iterators.

2 A map meets all of the requirements of a container (24.2.2.2), of a reversible container (24.2.2.3), of an
allocator-aware container (24.2.2.5). and of an associative container (24.2.7). A map also provides most
operations described in 24.2.7 for unique keys. This means that a map supports the a_uniq operations in 24.2.7
but not the a_eq operations. For a map<Key,T> the key_type is Key and the value_type is pair<const
Key,T>. Descriptions are provided here only for operations on map that are not described in one of those
tables or for operations where there is additional semantic information.

namespace std {
template<class Key, class T, class Compare = less<Key>,

class Allocator = allocator<pair<const Key, T>>>
class map {
public:

// types
using key_type = Key;
using mapped_type = T;
using value_type = pair<const Key, T>;
using key_compare = Compare;
using allocator_type = Allocator;
using pointer = typename allocator_traits<Allocator>::pointer;
using const_pointer = typename allocator_traits<Allocator>::const_pointer;
using reference = value_type&;
using const_reference = const value_type&;
using size_type = implementation-defined ; // see 24.2
using difference_type = implementation-defined ; // see 24.2
using iterator = implementation-defined ; // see 24.2
using const_iterator = implementation-defined ; // see 24.2
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
using node_type = unspecified ;
using insert_return_type = insert-return-type<iterator, node_type>;
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class value_compare {
friend class map;

protected:
Compare comp;
value_compare(Compare c) : comp(c) {}

public:
bool operator()(const value_type& x, const value_type& y) const {

return comp(x.first, y.first);
}

};

// 24.4.4.2, construct/copy/destroy
map() : map(Compare()) { }
explicit map(const Compare& comp, const Allocator& = Allocator());
template<class InputIterator>

map(InputIterator first, InputIterator last,
const Compare& comp = Compare(), const Allocator& = Allocator());

template<container-compatible-range <value_type> R>
map(from_range_t, R&& rg, const Compare& comp = Compare(), const Allocator& = Allocator());

map(const map& x);
map(map&& x);
explicit map(const Allocator&);
map(const map&, const type_identity_t<Allocator>&);
map(map&&, const type_identity_t<Allocator>&);
map(initializer_list<value_type>,

const Compare& = Compare(),
const Allocator& = Allocator());

template<class InputIterator>
map(InputIterator first, InputIterator last, const Allocator& a)

: map(first, last, Compare(), a) { }
template<container-compatible-range <value_type> R>

map(from_range_t, R&& rg, const Allocator& a))
: map(from_range, std::forward<R>(rg), Compare(), a) { }

map(initializer_list<value_type> il, const Allocator& a)
: map(il, Compare(), a) { }

~map();
map& operator=(const map& x);
map& operator=(map&& x)

noexcept(allocator_traits<Allocator>::is_always_equal::value &&
is_nothrow_move_assignable_v<Compare>);

map& operator=(initializer_list<value_type>);
allocator_type get_allocator() const noexcept;

// iterators
iterator begin() noexcept;
const_iterator begin() const noexcept;
iterator end() noexcept;
const_iterator end() const noexcept;

reverse_iterator rbegin() noexcept;
const_reverse_iterator rbegin() const noexcept;
reverse_iterator rend() noexcept;
const_reverse_iterator rend() const noexcept;

const_iterator cbegin() const noexcept;
const_iterator cend() const noexcept;
const_reverse_iterator crbegin() const noexcept;
const_reverse_iterator crend() const noexcept;

// capacity
[[nodiscard]] bool empty() const noexcept;
size_type size() const noexcept;
size_type max_size() const noexcept;
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// 24.4.4.3, element access
mapped_type& operator[](const key_type& x);
mapped_type& operator[](key_type&& x);
mapped_type& at(const key_type& x);
const mapped_type& at(const key_type& x) const;

// 24.4.4.4, modifiers
template<class... Args> pair<iterator, bool> emplace(Args&&... args);
template<class... Args> iterator emplace_hint(const_iterator position, Args&&... args);
pair<iterator, bool> insert(const value_type& x);
pair<iterator, bool> insert(value_type&& x);
template<class P> pair<iterator, bool> insert(P&& x);
iterator insert(const_iterator position, const value_type& x);
iterator insert(const_iterator position, value_type&& x);
template<class P>

iterator insert(const_iterator position, P&&);
template<class InputIterator>

void insert(InputIterator first, InputIterator last);
template<container-compatible-range <value_type> R>

void insert_range(R&& rg);
void insert(initializer_list<value_type>);

node_type extract(const_iterator position);
node_type extract(const key_type& x);
template<class K> node_type extract(K&& x);
insert_return_type insert(node_type&& nh);
iterator insert(const_iterator hint, node_type&& nh);

template<class... Args>
pair<iterator, bool> try_emplace(const key_type& k, Args&&... args);

template<class... Args>
pair<iterator, bool> try_emplace(key_type&& k, Args&&... args);

template<class... Args>
iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args);

template<class... Args>
iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args);

template<class M>
pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj);

template<class M>
pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj);

template<class M>
iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj);

template<class M>
iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj);

iterator erase(iterator position);
iterator erase(const_iterator position);
size_type erase(const key_type& x);
template<class K> size_type erase(K&& x);
iterator erase(const_iterator first, const_iterator last);
void swap(map&)

noexcept(allocator_traits<Allocator>::is_always_equal::value &&
is_nothrow_swappable_v<Compare>);

void clear() noexcept;

template<class C2>
void merge(map<Key, T, C2, Allocator>& source);

template<class C2>
void merge(map<Key, T, C2, Allocator>&& source);

template<class C2>
void merge(multimap<Key, T, C2, Allocator>& source);

template<class C2>
void merge(multimap<Key, T, C2, Allocator>&& source);

§ 24.4.4.1 943



© ISO/IEC N4950

// observers
key_compare key_comp() const;
value_compare value_comp() const;

// map operations
iterator find(const key_type& x);
const_iterator find(const key_type& x) const;
template<class K> iterator find(const K& x);
template<class K> const_iterator find(const K& x) const;

size_type count(const key_type& x) const;
template<class K> size_type count(const K& x) const;

bool contains(const key_type& x) const;
template<class K> bool contains(const K& x) const;

iterator lower_bound(const key_type& x);
const_iterator lower_bound(const key_type& x) const;
template<class K> iterator lower_bound(const K& x);
template<class K> const_iterator lower_bound(const K& x) const;

iterator upper_bound(const key_type& x);
const_iterator upper_bound(const key_type& x) const;
template<class K> iterator upper_bound(const K& x);
template<class K> const_iterator upper_bound(const K& x) const;

pair<iterator, iterator> equal_range(const key_type& x);
pair<const_iterator, const_iterator> equal_range(const key_type& x) const;
template<class K>

pair<iterator, iterator> equal_range(const K& x);
template<class K>

pair<const_iterator, const_iterator> equal_range(const K& x) const;
};

template<class InputIterator, class Compare = less<iter-key-type <InputIterator>>,
class Allocator = allocator<iter-to-alloc-type <InputIterator>>>

map(InputIterator, InputIterator, Compare = Compare(), Allocator = Allocator())
-> map<iter-key-type <InputIterator>, iter-mapped-type <InputIterator>, Compare, Allocator>;

template<ranges::input_range R, class Compare = less<range-key-type <R>,
class Allocator = allocator<range-to-alloc-type <R>>>

map(from_range_t, R&&, Compare = Compare(), Allocator = Allocator())
-> map<range-key-type <R>, range-mapped-type <R>, Compare, Allocator>;

template<class Key, class T, class Compare = less<Key>,
class Allocator = allocator<pair<const Key, T>>>

map(initializer_list<pair<Key, T>>, Compare = Compare(), Allocator = Allocator())
-> map<Key, T, Compare, Allocator>;

template<class InputIterator, class Allocator>
map(InputIterator, InputIterator, Allocator)

-> map<iter-key-type <InputIterator>, iter-mapped-type <InputIterator>,
less<iter-key-type <InputIterator>>, Allocator>;

template<ranges::input_range R, class Allocator>
map(from_range_t, R&&, Allocator)

-> map<range-key-type <R>, range-mapped-type <R>, less<range-key-type <R>>, Allocator>;

template<class Key, class T, class Allocator>
map(initializer_list<pair<Key, T>>, Allocator) -> map<Key, T, less<Key>, Allocator>;

}
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24.4.4.2 Constructors, copy, and assignment [map.cons]

explicit map(const Compare& comp, const Allocator& = Allocator());

1 Effects: Constructs an empty map using the specified comparison object and allocator.
2 Complexity: Constant.

template<class InputIterator>
map(InputIterator first, InputIterator last,

const Compare& comp = Compare(), const Allocator& = Allocator());

3 Effects: Constructs an empty map using the specified comparison object and allocator, and inserts
elements from the range [first, last).

4 Complexity: Linear in N if the range [first, last) is already sorted with respect to comp and otherwise
N log N , where N is last - first.

template<container-compatible-range <value_type> R>
map(from_range_t, R&& rg, const Compare& comp = Compare(), const Allocator& = Allocator());

5 Effects: Constructs an empty map using the specified comparison object and allocator, and inserts
elements from the range rg.

6 Complexity: Linear in N if rg is already sorted with respect to comp and otherwise N log N , where N
is ranges::distance(rg).

24.4.4.3 Element access [map.access]

mapped_type& operator[](const key_type& x);

1 Effects: Equivalent to: return try_emplace(x).first->second;

mapped_type& operator[](key_type&& x);

2 Effects: Equivalent to: return try_emplace(std::move(x)).first->second;

mapped_type& at(const key_type& x);
const mapped_type& at(const key_type& x) const;

3 Returns: A reference to the mapped_type corresponding to x in *this.
4 Throws: An exception object of type out_of_range if no such element is present.
5 Complexity: Logarithmic.

24.4.4.4 Modifiers [map.modifiers]

template<class P>
pair<iterator, bool> insert(P&& x);

template<class P>
iterator insert(const_iterator position, P&& x);

1 Constraints: is_constructible_v<value_type, P&&> is true.
2 Effects: The first form is equivalent to return emplace(std::forward<P>(x)). The second form is

equivalent to return emplace_hint(position, std::forward<P>(x)).

template<class... Args>
pair<iterator, bool> try_emplace(const key_type& k, Args&&... args);

template<class... Args>
iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args);

3 Preconditions: value_type is Cpp17EmplaceConstructible into map from piecewise_construct, for-
ward_as_tuple(k), forward_as_tuple(std::forward<Args>(args)...).

4 Effects: If the map already contains an element whose key is equivalent to k, there is no effect. Otherwise
inserts an object of type value_type constructed with piecewise_construct, forward_as_tuple(k),
forward_as_tuple(std::forward<Args>(args)...).

5 Returns: In the first overload, the bool component of the returned pair is true if and only if the
insertion took place. The returned iterator points to the map element whose key is equivalent to k.

6 Complexity: The same as emplace and emplace_hint, respectively.
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template<class... Args>
pair<iterator, bool> try_emplace(key_type&& k, Args&&... args);

template<class... Args>
iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args);

7 Preconditions: value_type is Cpp17EmplaceConstructible into map from piecewise_construct, for-
ward_as_tuple(std::move(k)), forward_as_tuple(std::forward<Args>(args)...).

8 Effects: If the map already contains an element whose key is equivalent to k, there is no effect.
Otherwise inserts an object of type value_type constructed with piecewise_construct, forward_-
as_tuple(std::move(k)), forward_as_tuple(std::forward<Args>(args)...).

9 Returns: In the first overload, the bool component of the returned pair is true if and only if the
insertion took place. The returned iterator points to the map element whose key is equivalent to k.

10 Complexity: The same as emplace and emplace_hint, respectively.

template<class M>
pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj);

template<class M>
iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj);

11 Mandates: is_assignable_v<mapped_type&, M&&> is true.
12 Preconditions: value_type is Cpp17EmplaceConstructible into map from k, std::forward<M>(obj).
13 Effects: If the map already contains an element e whose key is equivalent to k, assigns std::for-

ward<M>(obj) to e.second. Otherwise inserts an object of type value_type constructed with k,
std::forward<M>(obj).

14 Returns: In the first overload, the bool component of the returned pair is true if and only if the
insertion took place. The returned iterator points to the map element whose key is equivalent to k.

15 Complexity: The same as emplace and emplace_hint, respectively.

template<class M>
pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj);

template<class M>
iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj);

16 Mandates: is_assignable_v<mapped_type&, M&&> is true.
17 Preconditions: value_type is Cpp17EmplaceConstructible into map from std::move(k), std::for-

ward<M>(obj).
18 Effects: If the map already contains an element e whose key is equivalent to k, assigns std::for-

ward<M>(obj) to e.second. Otherwise inserts an object of type value_type constructed with std::
move(k), std::forward<M>(obj).

19 Returns: In the first overload, the bool component of the returned pair is true if and only if the
insertion took place. The returned iterator points to the map element whose key is equivalent to k.

20 Complexity: The same as emplace and emplace_hint, respectively.

24.4.4.5 Erasure [map.erasure]

template<class Key, class T, class Compare, class Allocator, class Predicate>
typename map<Key, T, Compare, Allocator>::size_type

erase_if(map<Key, T, Compare, Allocator>& c, Predicate pred);

1 Effects: Equivalent to:
auto original_size = c.size();
for (auto i = c.begin(), last = c.end(); i != last; ) {

if (pred(*i)) {
i = c.erase(i);

} else {
++i;

}
}
return original_size - c.size();
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24.4.5 Class template multimap [multimap]
24.4.5.1 Overview [multimap.overview]

1 A multimap is an associative container that supports equivalent keys (i.e., possibly containing multiple copies
of the same key value) and provides for fast retrieval of values of another type T based on the keys. The
multimap class supports bidirectional iterators.

2 A multimap meets all of the requirements of a container (24.2.2.2), of a reversible container (24.2.2.3), of an
allocator-aware container (24.2.2.5), and of an associative container (24.2.7). A multimap also provides most
operations described in 24.2.7 for equal keys. This means that a multimap supports the a_eq operations
in 24.2.7 but not the a_uniq operations. For a multimap<Key,T> the key_type is Key and the value_type is
pair<const Key,T>. Descriptions are provided here only for operations on multimap that are not described
in one of those tables or for operations where there is additional semantic information.

namespace std {
template<class Key, class T, class Compare = less<Key>,

class Allocator = allocator<pair<const Key, T>>>
class multimap {
public:

// types
using key_type = Key;
using mapped_type = T;
using value_type = pair<const Key, T>;
using key_compare = Compare;
using allocator_type = Allocator;
using pointer = typename allocator_traits<Allocator>::pointer;
using const_pointer = typename allocator_traits<Allocator>::const_pointer;
using reference = value_type&;
using const_reference = const value_type&;
using size_type = implementation-defined ; // see 24.2
using difference_type = implementation-defined ; // see 24.2
using iterator = implementation-defined ; // see 24.2
using const_iterator = implementation-defined ; // see 24.2
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
using node_type = unspecified ;

class value_compare {
friend class multimap;

protected:
Compare comp;
value_compare(Compare c) : comp(c) { }

public:
bool operator()(const value_type& x, const value_type& y) const {

return comp(x.first, y.first);
}

};

// 24.4.5.2, construct/copy/destroy
multimap() : multimap(Compare()) { }
explicit multimap(const Compare& comp, const Allocator& = Allocator());
template<class InputIterator>

multimap(InputIterator first, InputIterator last,
const Compare& comp = Compare(),
const Allocator& = Allocator());

template<container-compatible-range <value_type> R>
multimap(from_range_t, R&& rg,

const Compare& comp = Compare(), const Allocator& = Allocator());
multimap(const multimap& x);
multimap(multimap&& x);
explicit multimap(const Allocator&);
multimap(const multimap&, const type_identity_t<Allocator>&);
multimap(multimap&&, const type_identity_t<Allocator>&);
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multimap(initializer_list<value_type>,
const Compare& = Compare(),
const Allocator& = Allocator());

template<class InputIterator>
multimap(InputIterator first, InputIterator last, const Allocator& a)

: multimap(first, last, Compare(), a) { }
template<container-compatible-range <value_type> R>

multimap(from_range_t, R&& rg, const Allocator& a))
: multimap(from_range, std::forward<R>(rg), Compare(), a) { }

multimap(initializer_list<value_type> il, const Allocator& a)
: multimap(il, Compare(), a) { }

~multimap();
multimap& operator=(const multimap& x);
multimap& operator=(multimap&& x)

noexcept(allocator_traits<Allocator>::is_always_equal::value &&
is_nothrow_move_assignable_v<Compare>);

multimap& operator=(initializer_list<value_type>);
allocator_type get_allocator() const noexcept;

// iterators
iterator begin() noexcept;
const_iterator begin() const noexcept;
iterator end() noexcept;
const_iterator end() const noexcept;

reverse_iterator rbegin() noexcept;
const_reverse_iterator rbegin() const noexcept;
reverse_iterator rend() noexcept;
const_reverse_iterator rend() const noexcept;

const_iterator cbegin() const noexcept;
const_iterator cend() const noexcept;
const_reverse_iterator crbegin() const noexcept;
const_reverse_iterator crend() const noexcept;

// capacity
[[nodiscard]] bool empty() const noexcept;
size_type size() const noexcept;
size_type max_size() const noexcept;

// 24.4.5.3, modifiers
template<class... Args> iterator emplace(Args&&... args);
template<class... Args> iterator emplace_hint(const_iterator position, Args&&... args);
iterator insert(const value_type& x);
iterator insert(value_type&& x);
template<class P> iterator insert(P&& x);
iterator insert(const_iterator position, const value_type& x);
iterator insert(const_iterator position, value_type&& x);
template<class P> iterator insert(const_iterator position, P&& x);
template<class InputIterator>

void insert(InputIterator first, InputIterator last);
template<container-compatible-range <value_type> R>

void insert_range(R&& rg);
void insert(initializer_list<value_type>);

node_type extract(const_iterator position);
node_type extract(const key_type& x);
template<class K> node_type extract(K&& x);
iterator insert(node_type&& nh);
iterator insert(const_iterator hint, node_type&& nh);

iterator erase(iterator position);
iterator erase(const_iterator position);
size_type erase(const key_type& x);
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template<class K> size_type erase(K&& x);
iterator erase(const_iterator first, const_iterator last);
void swap(multimap&)

noexcept(allocator_traits<Allocator>::is_always_equal::value &&
is_nothrow_swappable_v<Compare>);

void clear() noexcept;

template<class C2>
void merge(multimap<Key, T, C2, Allocator>& source);

template<class C2>
void merge(multimap<Key, T, C2, Allocator>&& source);

template<class C2>
void merge(map<Key, T, C2, Allocator>& source);

template<class C2>
void merge(map<Key, T, C2, Allocator>&& source);

// observers
key_compare key_comp() const;
value_compare value_comp() const;

// map operations
iterator find(const key_type& x);
const_iterator find(const key_type& x) const;
template<class K> iterator find(const K& x);
template<class K> const_iterator find(const K& x) const;

size_type count(const key_type& x) const;
template<class K> size_type count(const K& x) const;

bool contains(const key_type& x) const;
template<class K> bool contains(const K& x) const;

iterator lower_bound(const key_type& x);
const_iterator lower_bound(const key_type& x) const;
template<class K> iterator lower_bound(const K& x);
template<class K> const_iterator lower_bound(const K& x) const;

iterator upper_bound(const key_type& x);
const_iterator upper_bound(const key_type& x) const;
template<class K> iterator upper_bound(const K& x);
template<class K> const_iterator upper_bound(const K& x) const;

pair<iterator, iterator> equal_range(const key_type& x);
pair<const_iterator, const_iterator> equal_range(const key_type& x) const;
template<class K>

pair<iterator, iterator> equal_range(const K& x);
template<class K>

pair<const_iterator, const_iterator> equal_range(const K& x) const;
};

template<class InputIterator, class Compare = less<iter-key-type <InputIterator>>,
class Allocator = allocator<iter-to-alloc-type <InputIterator>>>

multimap(InputIterator, InputIterator, Compare = Compare(), Allocator = Allocator())
-> multimap<iter-key-type <InputIterator>, iter-mapped-type <InputIterator>,

Compare, Allocator>;

template<ranges::input_range R, class Compare = less<range-key-type <R>>,
class Allocator = allocator<range-to-alloc-type <R>>>

multimap(from_range_t, R&&, Compare = Compare(), Allocator = Allocator())
-> multimap<range-key-type <R>, range-mapped-type <R>, Compare, Allocator>;
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template<class Key, class T, class Compare = less<Key>,
class Allocator = allocator<pair<const Key, T>>>

multimap(initializer_list<pair<Key, T>>, Compare = Compare(), Allocator = Allocator())
-> multimap<Key, T, Compare, Allocator>;

template<class InputIterator, class Allocator>
multimap(InputIterator, InputIterator, Allocator)

-> multimap<iter-key-type <InputIterator>, iter-mapped-type <InputIterator>,
less<iter-key-type <InputIterator>>, Allocator>;

template<ranges::input_range R, class Allocator>
multimap(from_range_t, R&&, Allocator)

-> multimap<range-key-type <R>, range-mapped-type <R>, less<range-key-type <R>>, Allocator>;

template<class Key, class T, class Allocator>
multimap(initializer_list<pair<Key, T>>, Allocator)

-> multimap<Key, T, less<Key>, Allocator>;
}

24.4.5.2 Constructors [multimap.cons]

explicit multimap(const Compare& comp, const Allocator& = Allocator());

1 Effects: Constructs an empty multimap using the specified comparison object and allocator.
2 Complexity: Constant.

template<class InputIterator>
multimap(InputIterator first, InputIterator last,

const Compare& comp = Compare(),
const Allocator& = Allocator());

3 Effects: Constructs an empty multimap using the specified comparison object and allocator, and inserts
elements from the range [first, last).

4 Complexity: Linear in N if the range [first, last) is already sorted with respect to comp and otherwise
N log N , where N is last - first.

template<container-compatible-range <value_type> R>
multimap(from_range_t, R&& rg, const Compare& comp = Compare(), const Allocator& = Allocator());

5 Effects: Constructs an empty multimap using the specified comparison object and allocator, and inserts
elements from the range rg.

6 Complexity: Linear in N if rg is already sorted with respect to comp and otherwise N log N , where N
is ranges::distance(rg).

24.4.5.3 Modifiers [multimap.modifiers]

template<class P> iterator insert(P&& x);
template<class P> iterator insert(const_iterator position, P&& x);

1 Constraints: is_constructible_v<value_type, P&&> is true.
2 Effects: The first form is equivalent to return emplace(std::forward<P>(x)). The second form is

equivalent to return emplace_hint(position, std::forward<P>(x)).

24.4.5.4 Erasure [multimap.erasure]

template<class Key, class T, class Compare, class Allocator, class Predicate>
typename multimap<Key, T, Compare, Allocator>::size_type

erase_if(multimap<Key, T, Compare, Allocator>& c, Predicate pred);

1 Effects: Equivalent to:
auto original_size = c.size();
for (auto i = c.begin(), last = c.end(); i != last; ) {

if (pred(*i)) {
i = c.erase(i);

} else {
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++i;
}

}
return original_size - c.size();

24.4.6 Class template set [set]
24.4.6.1 Overview [set.overview]

1 A set is an associative container that supports unique keys (i.e., contains at most one of each key value) and
provides for fast retrieval of the keys themselves. The set class supports bidirectional iterators.

2 A set meets all of the requirements of a container (24.2.2.2), of a reversible container (24.2.2.3), of an
allocator-aware container (24.2.2.5). and of an associative container (24.2.7). A set also provides most
operations described in 24.2.7 for unique keys. This means that a set supports the a_uniq operations in 24.2.7
but not the a_eq operations. For a set<Key> both the key_type and value_type are Key. Descriptions are
provided here only for operations on set that are not described in one of these tables and for operations
where there is additional semantic information.

namespace std {
template<class Key, class Compare = less<Key>,

class Allocator = allocator<Key>>
class set {
public:

// types
using key_type = Key;
using key_compare = Compare;
using value_type = Key;
using value_compare = Compare;
using allocator_type = Allocator;
using pointer = typename allocator_traits<Allocator>::pointer;
using const_pointer = typename allocator_traits<Allocator>::const_pointer;
using reference = value_type&;
using const_reference = const value_type&;
using size_type = implementation-defined ; // see 24.2
using difference_type = implementation-defined ; // see 24.2
using iterator = implementation-defined ; // see 24.2
using const_iterator = implementation-defined ; // see 24.2
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
using node_type = unspecified ;
using insert_return_type = insert-return-type<iterator, node_type>;

// 24.4.6.2, construct/copy/destroy
set() : set(Compare()) { }
explicit set(const Compare& comp, const Allocator& = Allocator());
template<class InputIterator>

set(InputIterator first, InputIterator last,
const Compare& comp = Compare(), const Allocator& = Allocator());

template<container-compatible-range <value_type> R>
set(from_range_t, R&& rg, const Compare& comp = Compare(), const Allocator& = Allocator());

set(const set& x);
set(set&& x);
explicit set(const Allocator&);
set(const set&, const type_identity_t<Allocator>&);
set(set&&, const type_identity_t<Allocator>&);
set(initializer_list<value_type>, const Compare& = Compare(),

const Allocator& = Allocator());
template<class InputIterator>

set(InputIterator first, InputIterator last, const Allocator& a)
: set(first, last, Compare(), a) { }

template<container-compatible-range <value_type> R>
set(from_range_t, R&& rg, const Allocator& a))

: set(from_range, std::forward<R>(rg), Compare(), a) { }
set(initializer_list<value_type> il, const Allocator& a)

: set(il, Compare(), a) { }
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~set();
set& operator=(const set& x);
set& operator=(set&& x)

noexcept(allocator_traits<Allocator>::is_always_equal::value &&
is_nothrow_move_assignable_v<Compare>);

set& operator=(initializer_list<value_type>);
allocator_type get_allocator() const noexcept;

// iterators
iterator begin() noexcept;
const_iterator begin() const noexcept;
iterator end() noexcept;
const_iterator end() const noexcept;

reverse_iterator rbegin() noexcept;
const_reverse_iterator rbegin() const noexcept;
reverse_iterator rend() noexcept;
const_reverse_iterator rend() const noexcept;

const_iterator cbegin() const noexcept;
const_iterator cend() const noexcept;
const_reverse_iterator crbegin() const noexcept;
const_reverse_iterator crend() const noexcept;

// capacity
[[nodiscard]] bool empty() const noexcept;
size_type size() const noexcept;
size_type max_size() const noexcept;

// modifiers
template<class... Args> pair<iterator, bool> emplace(Args&&... args);
template<class... Args> iterator emplace_hint(const_iterator position, Args&&... args);
pair<iterator,bool> insert(const value_type& x);
pair<iterator,bool> insert(value_type&& x);
iterator insert(const_iterator position, const value_type& x);
iterator insert(const_iterator position, value_type&& x);
template<class InputIterator>

void insert(InputIterator first, InputIterator last);
template<container-compatible-range <value_type> R>

void insert_range(R&& rg);
void insert(initializer_list<value_type>);

node_type extract(const_iterator position);
node_type extract(const key_type& x);
template<class K> node_type extract(K&& x);
insert_return_type insert(node_type&& nh);
iterator insert(const_iterator hint, node_type&& nh);

iterator erase(iterator position)
requires (!same_as<iterator, const_iterator>);

iterator erase(const_iterator position);
size_type erase(const key_type& x);
template<class K> size_type erase(K&& x);
iterator erase(const_iterator first, const_iterator last);
void swap(set&)

noexcept(allocator_traits<Allocator>::is_always_equal::value &&
is_nothrow_swappable_v<Compare>);

void clear() noexcept;

template<class C2>
void merge(set<Key, C2, Allocator>& source);

template<class C2>
void merge(set<Key, C2, Allocator>&& source);
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template<class C2>
void merge(multiset<Key, C2, Allocator>& source);

template<class C2>
void merge(multiset<Key, C2, Allocator>&& source);

// observers
key_compare key_comp() const;
value_compare value_comp() const;

// set operations
iterator find(const key_type& x);
const_iterator find(const key_type& x) const;
template<class K> iterator find(const K& x);
template<class K> const_iterator find(const K& x) const;

size_type count(const key_type& x) const;
template<class K> size_type count(const K& x) const;

bool contains(const key_type& x) const;
template<class K> bool contains(const K& x) const;

iterator lower_bound(const key_type& x);
const_iterator lower_bound(const key_type& x) const;
template<class K> iterator lower_bound(const K& x);
template<class K> const_iterator lower_bound(const K& x) const;

iterator upper_bound(const key_type& x);
const_iterator upper_bound(const key_type& x) const;
template<class K> iterator upper_bound(const K& x);
template<class K> const_iterator upper_bound(const K& x) const;

pair<iterator, iterator> equal_range(const key_type& x);
pair<const_iterator, const_iterator> equal_range(const key_type& x) const;
template<class K>

pair<iterator, iterator> equal_range(const K& x);
template<class K>

pair<const_iterator, const_iterator> equal_range(const K& x) const;
};

template<class InputIterator,
class Compare = less<iter-value-type <InputIterator>>,
class Allocator = allocator<iter-value-type <InputIterator>>>

set(InputIterator, InputIterator,
Compare = Compare(), Allocator = Allocator())

-> set<iter-value-type <InputIterator>, Compare, Allocator>;

template<ranges::input_range R, class Compare = less<ranges::range_value_t<R>>,
class Allocator = allocator<ranges::range_value_t<R>>>

set(from_range_t, R&&, Compare = Compare(), Allocator = Allocator())
-> set<ranges::range_value_t<R>, Compare, Allocator>;

template<class Key, class Compare = less<Key>, class Allocator = allocator<Key>>
set(initializer_list<Key>, Compare = Compare(), Allocator = Allocator())

-> set<Key, Compare, Allocator>;

template<class InputIterator, class Allocator>
set(InputIterator, InputIterator, Allocator)

-> set<iter-value-type <InputIterator>,
less<iter-value-type <InputIterator>>, Allocator>;

template<ranges::input_range R, class Allocator>
set(from_range_t, R&&, Allocator)

-> set<ranges::range_value_t<R>, less<ranges::range_value_t<R>>, Allocator>;
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template<class Key, class Allocator>
set(initializer_list<Key>, Allocator) -> set<Key, less<Key>, Allocator>;

}

24.4.6.2 Constructors, copy, and assignment [set.cons]

explicit set(const Compare& comp, const Allocator& = Allocator());

1 Effects: Constructs an empty set using the specified comparison object and allocator.
2 Complexity: Constant.

template<class InputIterator>
set(InputIterator first, InputIterator last,

const Compare& comp = Compare(), const Allocator& = Allocator());

3 Effects: Constructs an empty set using the specified comparison object and allocator, and inserts
elements from the range [first, last).

4 Complexity: Linear in N if the range [first, last) is already sorted with respect to comp and otherwise
N log N , where N is last - first.

template<container-compatible-range <value_type> R>
set(from_range_t, R&& rg, const Compare& comp = Compare(), const Allocator& = Allocator());

5 Effects: Constructs an empty set using the specified comparison object and allocator, and inserts
elements from the range rg.

6 Complexity: Linear in N if rg is already sorted with respect to comp and otherwise N log N , where N
is ranges::distance(rg).

24.4.6.3 Erasure [set.erasure]

template<class Key, class Compare, class Allocator, class Predicate>
typename set<Key, Compare, Allocator>::size_type

erase_if(set<Key, Compare, Allocator>& c, Predicate pred);

1 Effects: Equivalent to:
auto original_size = c.size();
for (auto i = c.begin(), last = c.end(); i != last; ) {

if (pred(*i)) {
i = c.erase(i);

} else {
++i;

}
}
return original_size - c.size();

24.4.7 Class template multiset [multiset]
24.4.7.1 Overview [multiset.overview]

1 A multiset is an associative container that supports equivalent keys (i.e., possibly contains multiple copies
of the same key value) and provides for fast retrieval of the keys themselves. The multiset class supports
bidirectional iterators.

2 A multiset meets all of the requirements of a container (24.2.2.2), of a reversible container (24.2.2.3), of
an allocator-aware container (24.2.2.5), of an associative container (24.2.7). multiset also provides most
operations described in 24.2.7 for duplicate keys. This means that a multiset supports the a_eq operations
in 24.2.7 but not the a_uniq operations. For a multiset<Key> both the key_type and value_type are Key.
Descriptions are provided here only for operations on multiset that are not described in one of these tables
and for operations where there is additional semantic information.

namespace std {
template<class Key, class Compare = less<Key>,

class Allocator = allocator<Key>>
class multiset {
public:

// types
using key_type = Key;
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using key_compare = Compare;
using value_type = Key;
using value_compare = Compare;
using allocator_type = Allocator;
using pointer = typename allocator_traits<Allocator>::pointer;
using const_pointer = typename allocator_traits<Allocator>::const_pointer;
using reference = value_type&;
using const_reference = const value_type&;
using size_type = implementation-defined ; // see 24.2
using difference_type = implementation-defined ; // see 24.2
using iterator = implementation-defined ; // see 24.2
using const_iterator = implementation-defined ; // see 24.2
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
using node_type = unspecified ;

// 24.4.7.2, construct/copy/destroy
multiset() : multiset(Compare()) { }
explicit multiset(const Compare& comp, const Allocator& = Allocator());
template<class InputIterator>

multiset(InputIterator first, InputIterator last,
const Compare& comp = Compare(), const Allocator& = Allocator());

template<container-compatible-range <value_type> R>
multiset(from_range_t, R&& rg,

const Compare& comp = Compare(), const Allocator& = Allocator());
multiset(const multiset& x);
multiset(multiset&& x);
explicit multiset(const Allocator&);
multiset(const multiset&, const type_identity_t<Allocator>&);
multiset(multiset&&, const type_identity_t<Allocator>&);
multiset(initializer_list<value_type>, const Compare& = Compare(),

const Allocator& = Allocator());
template<class InputIterator>

multiset(InputIterator first, InputIterator last, const Allocator& a)
: multiset(first, last, Compare(), a) { }

template<container-compatible-range <value_type> R>
multiset(from_range_t, R&& rg, const Allocator& a))

: multiset(from_range, std::forward<R>(rg), Compare(), a) { }
multiset(initializer_list<value_type> il, const Allocator& a)

: multiset(il, Compare(), a) { }
~multiset();
multiset& operator=(const multiset& x);
multiset& operator=(multiset&& x)

noexcept(allocator_traits<Allocator>::is_always_equal::value &&
is_nothrow_move_assignable_v<Compare>);

multiset& operator=(initializer_list<value_type>);
allocator_type get_allocator() const noexcept;

// iterators
iterator begin() noexcept;
const_iterator begin() const noexcept;
iterator end() noexcept;
const_iterator end() const noexcept;

reverse_iterator rbegin() noexcept;
const_reverse_iterator rbegin() const noexcept;
reverse_iterator rend() noexcept;
const_reverse_iterator rend() const noexcept;

const_iterator cbegin() const noexcept;
const_iterator cend() const noexcept;
const_reverse_iterator crbegin() const noexcept;
const_reverse_iterator crend() const noexcept;
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// capacity
[[nodiscard]] bool empty() const noexcept;
size_type size() const noexcept;
size_type max_size() const noexcept;

// modifiers
template<class... Args> iterator emplace(Args&&... args);
template<class... Args> iterator emplace_hint(const_iterator position, Args&&... args);
iterator insert(const value_type& x);
iterator insert(value_type&& x);
iterator insert(const_iterator position, const value_type& x);
iterator insert(const_iterator position, value_type&& x);
template<class InputIterator>

void insert(InputIterator first, InputIterator last);
template<container-compatible-range <value_type> R>

void insert_range(R&& rg);
void insert(initializer_list<value_type>);

node_type extract(const_iterator position);
node_type extract(const key_type& x);
template<class K> node_type extract(K&& x);
iterator insert(node_type&& nh);
iterator insert(const_iterator hint, node_type&& nh);

iterator erase(iterator position)
requires (!same_as<iterator, const_iterator>);

iterator erase(const_iterator position);
size_type erase(const key_type& x);
template<class K> size_type erase(K&& x);
iterator erase(const_iterator first, const_iterator last);
void swap(multiset&)

noexcept(allocator_traits<Allocator>::is_always_equal::value &&
is_nothrow_swappable_v<Compare>);

void clear() noexcept;

template<class C2>
void merge(multiset<Key, C2, Allocator>& source);

template<class C2>
void merge(multiset<Key, C2, Allocator>&& source);

template<class C2>
void merge(set<Key, C2, Allocator>& source);

template<class C2>
void merge(set<Key, C2, Allocator>&& source);

// observers
key_compare key_comp() const;
value_compare value_comp() const;

// set operations
iterator find(const key_type& x);
const_iterator find(const key_type& x) const;
template<class K> iterator find(const K& x);
template<class K> const_iterator find(const K& x) const;

size_type count(const key_type& x) const;
template<class K> size_type count(const K& x) const;

bool contains(const key_type& x) const;
template<class K> bool contains(const K& x) const;

iterator lower_bound(const key_type& x);
const_iterator lower_bound(const key_type& x) const;
template<class K> iterator lower_bound(const K& x);
template<class K> const_iterator lower_bound(const K& x) const;
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iterator upper_bound(const key_type& x);
const_iterator upper_bound(const key_type& x) const;
template<class K> iterator upper_bound(const K& x);
template<class K> const_iterator upper_bound(const K& x) const;

pair<iterator, iterator> equal_range(const key_type& x);
pair<const_iterator, const_iterator> equal_range(const key_type& x) const;
template<class K>

pair<iterator, iterator> equal_range(const K& x);
template<class K>

pair<const_iterator, const_iterator> equal_range(const K& x) const;
};

template<class InputIterator,
class Compare = less<iter-value-type <InputIterator>>,
class Allocator = allocator<iter-value-type <InputIterator>>>

multiset(InputIterator, InputIterator,
Compare = Compare(), Allocator = Allocator())

-> multiset<iter-value-type <InputIterator>, Compare, Allocator>;

template<ranges::input_range R, class Compare = less<ranges::range_value_t<R>>,
class Allocator = allocator<ranges::range_value_t<R>>>

multiset(from_range_t, R&&, Compare = Compare(), Allocator = Allocator())
-> multiset<ranges::range_value_t<R>, Compare, Allocator>;

template<class Key, class Compare = less<Key>, class Allocator = allocator<Key>>
multiset(initializer_list<Key>, Compare = Compare(), Allocator = Allocator())

-> multiset<Key, Compare, Allocator>;

template<class InputIterator, class Allocator>
multiset(InputIterator, InputIterator, Allocator)

-> multiset<iter-value-type <InputIterator>,
less<iter-value-type <InputIterator>>, Allocator>;

template<ranges::input_range R, class Allocator>
multiset(from_range_t, R&&, Allocator)

-> multiset<ranges::range_value_t<R>, less<ranges::range_value_t<R>>, Allocator>;

template<class Key, class Allocator>
multiset(initializer_list<Key>, Allocator) -> multiset<Key, less<Key>, Allocator>;

}

24.4.7.2 Constructors [multiset.cons]

explicit multiset(const Compare& comp, const Allocator& = Allocator());

1 Effects: Constructs an empty multiset using the specified comparison object and allocator.
2 Complexity: Constant.

template<class InputIterator>
multiset(InputIterator first, InputIterator last,

const Compare& comp = Compare(), const Allocator& = Allocator());

3 Effects: Constructs an empty multiset using the specified comparison object and allocator, and inserts
elements from the range [first, last).

4 Complexity: Linear in N if the range [first, last) is already sorted with respect to comp and otherwise
N log N , where N is last - first.

template<container-compatible-range <value_type> R>
multiset(from_range_t, R&& rg, const Compare& comp = Compare(), const Allocator& = Allocator());

5 Effects: Constructs an empty multiset using the specified comparison object and allocator, and inserts
elements from the range rg.
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6 Complexity: Linear in N if rg is already sorted with respect to comp and otherwise N log N , where N
is ranges::distance(rg).

24.4.7.3 Erasure [multiset.erasure]

template<class Key, class Compare, class Allocator, class Predicate>
typename multiset<Key, Compare, Allocator>::size_type

erase_if(multiset<Key, Compare, Allocator>& c, Predicate pred);

1 Effects: Equivalent to:
auto original_size = c.size();
for (auto i = c.begin(), last = c.end(); i != last; ) {

if (pred(*i)) {
i = c.erase(i);

} else {
++i;

}
}
return original_size - c.size();

24.5 Unordered associative containers [unord]
24.5.1 In general [unord.general]

1 The header <unordered_map> defines the class templates unordered_map and unordered_multimap; the
header <unordered_set> defines the class templates unordered_set and unordered_multiset.

2 The exposition-only alias templates iter-value-type , iter-key-type , iter-mapped-type , iter-to-
-alloc-type , range-key-type , range-mapped-type , and range-to-alloc-type defined in 24.4.1 may
appear in deduction guides for unordered containers.

24.5.2 Header <unordered_map> synopsis [unord.map.syn]
#include <compare> // see 17.11.1
#include <initializer_list> // see 17.10.2

namespace std {
// 24.5.4, class template unordered_map
template<class Key,

class T,
class Hash = hash<Key>,
class Pred = equal_to<Key>,
class Alloc = allocator<pair<const Key, T>>>

class unordered_map;

// 24.5.5, class template unordered_multimap
template<class Key,

class T,
class Hash = hash<Key>,
class Pred = equal_to<Key>,
class Alloc = allocator<pair<const Key, T>>>

class unordered_multimap;

template<class Key, class T, class Hash, class Pred, class Alloc>
bool operator==(const unordered_map<Key, T, Hash, Pred, Alloc>& a,

const unordered_map<Key, T, Hash, Pred, Alloc>& b);

template<class Key, class T, class Hash, class Pred, class Alloc>
bool operator==(const unordered_multimap<Key, T, Hash, Pred, Alloc>& a,

const unordered_multimap<Key, T, Hash, Pred, Alloc>& b);

template<class Key, class T, class Hash, class Pred, class Alloc>
void swap(unordered_map<Key, T, Hash, Pred, Alloc>& x,

unordered_map<Key, T, Hash, Pred, Alloc>& y)
noexcept(noexcept(x.swap(y)));
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template<class Key, class T, class Hash, class Pred, class Alloc>
void swap(unordered_multimap<Key, T, Hash, Pred, Alloc>& x,

unordered_multimap<Key, T, Hash, Pred, Alloc>& y)
noexcept(noexcept(x.swap(y)));

// 24.5.4.5, erasure for unordered_map
template<class K, class T, class H, class P, class A, class Predicate>

typename unordered_map<K, T, H, P, A>::size_type
erase_if(unordered_map<K, T, H, P, A>& c, Predicate pred);

// 24.5.5.4, erasure for unordered_multimap
template<class K, class T, class H, class P, class A, class Predicate>

typename unordered_multimap<K, T, H, P, A>::size_type
erase_if(unordered_multimap<K, T, H, P, A>& c, Predicate pred);

namespace pmr {
template<class Key,

class T,
class Hash = hash<Key>,
class Pred = equal_to<Key>>

using unordered_map =
std::unordered_map<Key, T, Hash, Pred,

polymorphic_allocator<pair<const Key, T>>>;
template<class Key,

class T,
class Hash = hash<Key>,
class Pred = equal_to<Key>>

using unordered_multimap =
std::unordered_multimap<Key, T, Hash, Pred,

polymorphic_allocator<pair<const Key, T>>>;

}
}

24.5.3 Header <unordered_set> synopsis [unord.set.syn]
#include <compare> // see 17.11.1
#include <initializer_list> // see 17.10.2

namespace std {
// 24.5.6, class template unordered_set
template<class Key,

class Hash = hash<Key>,
class Pred = equal_to<Key>,
class Alloc = allocator<Key>>

class unordered_set;

// 24.5.7, class template unordered_multiset
template<class Key,

class Hash = hash<Key>,
class Pred = equal_to<Key>,
class Alloc = allocator<Key>>

class unordered_multiset;

template<class Key, class Hash, class Pred, class Alloc>
bool operator==(const unordered_set<Key, Hash, Pred, Alloc>& a,

const unordered_set<Key, Hash, Pred, Alloc>& b);

template<class Key, class Hash, class Pred, class Alloc>
bool operator==(const unordered_multiset<Key, Hash, Pred, Alloc>& a,

const unordered_multiset<Key, Hash, Pred, Alloc>& b);
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template<class Key, class Hash, class Pred, class Alloc>
void swap(unordered_set<Key, Hash, Pred, Alloc>& x,

unordered_set<Key, Hash, Pred, Alloc>& y)
noexcept(noexcept(x.swap(y)));

template<class Key, class Hash, class Pred, class Alloc>
void swap(unordered_multiset<Key, Hash, Pred, Alloc>& x,

unordered_multiset<Key, Hash, Pred, Alloc>& y)
noexcept(noexcept(x.swap(y)));

// 24.5.6.3, erasure for unordered_set
template<class K, class H, class P, class A, class Predicate>

typename unordered_set<K, H, P, A>::size_type
erase_if(unordered_set<K, H, P, A>& c, Predicate pred);

// 24.5.7.3, erasure for unordered_multiset
template<class K, class H, class P, class A, class Predicate>

typename unordered_multiset<K, H, P, A>::size_type
erase_if(unordered_multiset<K, H, P, A>& c, Predicate pred);

namespace pmr {
template<class Key,

class Hash = hash<Key>,
class Pred = equal_to<Key>>

using unordered_set = std::unordered_set<Key, Hash, Pred,
polymorphic_allocator<Key>>;

template<class Key,
class Hash = hash<Key>,
class Pred = equal_to<Key>>

using unordered_multiset = std::unordered_multiset<Key, Hash, Pred,
polymorphic_allocator<Key>>;

}
}

24.5.4 Class template unordered_map [unord.map]
24.5.4.1 Overview [unord.map.overview]

1 An unordered_map is an unordered associative container that supports unique keys (an unordered_map
contains at most one of each key value) and that associates values of another type mapped_type with the
keys. The unordered_map class supports forward iterators.

2 An unordered_map meets all of the requirements of a container (24.2.2.2), of an allocator-aware container
(24.2.2.5), and of an unordered associative container (24.2.8). It provides the operations described in the
preceding requirements table for unique keys; that is, an unordered_map supports the a_uniq operations in
that table, not the a_eq operations. For an unordered_map<Key, T> the key_type is Key, the mapped_type
is T, and the value_type is pair<const Key, T>.

3 Subclause 24.5.4 only describes operations on unordered_map that are not described in one of the requirement
tables, or for which there is additional semantic information.

namespace std {
template<class Key,

class T,
class Hash = hash<Key>,
class Pred = equal_to<Key>,
class Allocator = allocator<pair<const Key, T>>>

class unordered_map {
public:

// types
using key_type = Key;
using mapped_type = T;
using value_type = pair<const Key, T>;
using hasher = Hash;
using key_equal = Pred;
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using allocator_type = Allocator;
using pointer = typename allocator_traits<Allocator>::pointer;
using const_pointer = typename allocator_traits<Allocator>::const_pointer;
using reference = value_type&;
using const_reference = const value_type&;
using size_type = implementation-defined ; // see 24.2
using difference_type = implementation-defined ; // see 24.2

using iterator = implementation-defined ; // see 24.2
using const_iterator = implementation-defined ; // see 24.2
using local_iterator = implementation-defined ; // see 24.2
using const_local_iterator = implementation-defined ; // see 24.2
using node_type = unspecified ;
using insert_return_type = insert-return-type<iterator, node_type>;

// 24.5.4.2, construct/copy/destroy
unordered_map();
explicit unordered_map(size_type n,

const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

template<class InputIterator>
unordered_map(InputIterator f, InputIterator l,

size_type n = see below ,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

template<container-compatible-range <value_type> R>
unordered_map(from_range_t, R&& rg, size_type n = see below ,

const hasher& hf = hasher(), const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

unordered_map(const unordered_map&);
unordered_map(unordered_map&&);
explicit unordered_map(const Allocator&);
unordered_map(const unordered_map&, const type_identity_t<Allocator>&);
unordered_map(unordered_map&&, const type_identity_t<Allocator>&);
unordered_map(initializer_list<value_type> il,

size_type n = see below ,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

unordered_map(size_type n, const allocator_type& a)
: unordered_map(n, hasher(), key_equal(), a) { }

unordered_map(size_type n, const hasher& hf, const allocator_type& a)
: unordered_map(n, hf, key_equal(), a) { }

template<class InputIterator>
unordered_map(InputIterator f, InputIterator l, size_type n, const allocator_type& a)

: unordered_map(f, l, n, hasher(), key_equal(), a) { }
template<class InputIterator>

unordered_map(InputIterator f, InputIterator l, size_type n, const hasher& hf,
const allocator_type& a)

: unordered_map(f, l, n, hf, key_equal(), a) { }
template<container-compatible-range <value_type> R>

unordered_map(from_range_t, R&& rg, size_type n, const allocator_type& a)
: unordered_map(from_range, std::forward<R>(rg), n, hasher(), key_equal(), a) { }

template<container-compatible-range <value_type> R>
unordered_map(from_range_t, R&& rg, size_type n, const hasher& hf, const allocator_type& a)

: unordered_map(from_range, std::forward<R>(rg), n, hf, key_equal(), a) { }
unordered_map(initializer_list<value_type> il, size_type n, const allocator_type& a)

: unordered_map(il, n, hasher(), key_equal(), a) { }
unordered_map(initializer_list<value_type> il, size_type n, const hasher& hf,

const allocator_type& a)
: unordered_map(il, n, hf, key_equal(), a) { }
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~unordered_map();
unordered_map& operator=(const unordered_map&);
unordered_map& operator=(unordered_map&&)

noexcept(allocator_traits<Allocator>::is_always_equal::value &&
is_nothrow_move_assignable_v<Hash> &&
is_nothrow_move_assignable_v<Pred>);

unordered_map& operator=(initializer_list<value_type>);
allocator_type get_allocator() const noexcept;

// iterators
iterator begin() noexcept;
const_iterator begin() const noexcept;
iterator end() noexcept;
const_iterator end() const noexcept;
const_iterator cbegin() const noexcept;
const_iterator cend() const noexcept;

// capacity
[[nodiscard]] bool empty() const noexcept;
size_type size() const noexcept;
size_type max_size() const noexcept;

// 24.5.4.4, modifiers
template<class... Args> pair<iterator, bool> emplace(Args&&... args);
template<class... Args> iterator emplace_hint(const_iterator position, Args&&... args);
pair<iterator, bool> insert(const value_type& obj);
pair<iterator, bool> insert(value_type&& obj);
template<class P> pair<iterator, bool> insert(P&& obj);
iterator insert(const_iterator hint, const value_type& obj);
iterator insert(const_iterator hint, value_type&& obj);
template<class P> iterator insert(const_iterator hint, P&& obj);
template<class InputIterator> void insert(InputIterator first, InputIterator last);
template<container-compatible-range <value_type> R>

void insert_range(R&& rg);
void insert(initializer_list<value_type>);

node_type extract(const_iterator position);
node_type extract(const key_type& x);
template<class K> node_type extract(K&& x);
insert_return_type insert(node_type&& nh);
iterator insert(const_iterator hint, node_type&& nh);

template<class... Args>
pair<iterator, bool> try_emplace(const key_type& k, Args&&... args);

template<class... Args>
pair<iterator, bool> try_emplace(key_type&& k, Args&&... args);

template<class... Args>
iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args);

template<class... Args>
iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args);

template<class M>
pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj);

template<class M>
pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj);

template<class M>
iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj);

template<class M>
iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj);

iterator erase(iterator position);
iterator erase(const_iterator position);
size_type erase(const key_type& k);
template<class K> size_type erase(K&& x);
iterator erase(const_iterator first, const_iterator last);

§ 24.5.4.1 962



© ISO/IEC N4950

void swap(unordered_map&)
noexcept(allocator_traits<Allocator>::is_always_equal::value &&

is_nothrow_swappable_v<Hash> &&
is_nothrow_swappable_v<Pred>);

void clear() noexcept;

template<class H2, class P2>
void merge(unordered_map<Key, T, H2, P2, Allocator>& source);

template<class H2, class P2>
void merge(unordered_map<Key, T, H2, P2, Allocator>&& source);

template<class H2, class P2>
void merge(unordered_multimap<Key, T, H2, P2, Allocator>& source);

template<class H2, class P2>
void merge(unordered_multimap<Key, T, H2, P2, Allocator>&& source);

// observers
hasher hash_function() const;
key_equal key_eq() const;

// map operations
iterator find(const key_type& k);
const_iterator find(const key_type& k) const;
template<class K>

iterator find(const K& k);
template<class K>

const_iterator find(const K& k) const;
size_type count(const key_type& k) const;
template<class K>

size_type count(const K& k) const;
bool contains(const key_type& k) const;
template<class K>

bool contains(const K& k) const;
pair<iterator, iterator> equal_range(const key_type& k);
pair<const_iterator, const_iterator> equal_range(const key_type& k) const;
template<class K>

pair<iterator, iterator> equal_range(const K& k);
template<class K>

pair<const_iterator, const_iterator> equal_range(const K& k) const;

// 24.5.4.3, element access
mapped_type& operator[](const key_type& k);
mapped_type& operator[](key_type&& k);
mapped_type& at(const key_type& k);
const mapped_type& at(const key_type& k) const;

// bucket interface
size_type bucket_count() const noexcept;
size_type max_bucket_count() const noexcept;
size_type bucket_size(size_type n) const;
size_type bucket(const key_type& k) const;
local_iterator begin(size_type n);
const_local_iterator begin(size_type n) const;
local_iterator end(size_type n);
const_local_iterator end(size_type n) const;
const_local_iterator cbegin(size_type n) const;
const_local_iterator cend(size_type n) const;

// hash policy
float load_factor() const noexcept;
float max_load_factor() const noexcept;
void max_load_factor(float z);
void rehash(size_type n);
void reserve(size_type n);

};

§ 24.5.4.1 963



© ISO/IEC N4950

template<class InputIterator,
class Hash = hash<iter-key-type <InputIterator>>,
class Pred = equal_to<iter-key-type <InputIterator>>,
class Allocator = allocator<iter-to-alloc-type <InputIterator>>>

unordered_map(InputIterator, InputIterator, typename see below ::size_type = see below ,
Hash = Hash(), Pred = Pred(), Allocator = Allocator())

-> unordered_map<iter-key-type <InputIterator>, iter-mapped-type <InputIterator>, Hash, Pred,
Allocator>;

template<ranges::input_range R, class Hash = hash<range-key-type <R>>,
class Pred = equal_to<range-key-type <R>>,
class Allocator = allocator<range-to-alloc-type <R>>>

unordered_map(from_range_t, R&&, typename see below ::size_type = see below ,
Hash = Hash(), Pred = Pred(), Allocator = Allocator())

-> unordered_map<range-key-type <R>, range-mapped-type <R>, Hash, Pred, Allocator>;

template<class Key, class T, class Hash = hash<Key>,
class Pred = equal_to<Key>, class Allocator = allocator<pair<const Key, T>>>

unordered_map(initializer_list<pair<Key, T>>,
typename see below ::size_type = see below , Hash = Hash(),
Pred = Pred(), Allocator = Allocator())

-> unordered_map<Key, T, Hash, Pred, Allocator>;

template<class InputIterator, class Allocator>
unordered_map(InputIterator, InputIterator, typename see below ::size_type, Allocator)

-> unordered_map<iter-key-type <InputIterator>, iter-mapped-type <InputIterator>,
hash<iter-key-type <InputIterator>>,
equal_to<iter-key-type <InputIterator>>, Allocator>;

template<class InputIterator, class Allocator>
unordered_map(InputIterator, InputIterator, Allocator)

-> unordered_map<iter-key-type <InputIterator>, iter-mapped-type <InputIterator>,
hash<iter-key-type <InputIterator>>,
equal_to<iter-key-type <InputIterator>>, Allocator>;

template<class InputIterator, class Hash, class Allocator>
unordered_map(InputIterator, InputIterator, typename see below ::size_type, Hash, Allocator)

-> unordered_map<iter-key-type <InputIterator>, iter-mapped-type <InputIterator>, Hash,
equal_to<iter-key-type <InputIterator>>, Allocator>;

template<ranges::input_range R, class Allocator>
unordered_map(from_range_t, R&&, typename see below ::size_type, Allocator)

-> unordered_map<range-key-type <R>, range-mapped-type <R>, hash<range-key-type <R>>,
equal_to<range-key-type <R>>, Allocator>;

template<ranges::input_range R, class Allocator>
unordered_map(from_range_t, R&&, Allocator)

-> unordered_map<range-key-type <R>, range-mapped-type <R>, hash<range-key-type <R>>,
equal_to<range-key-type <R>>, Allocator>;

template<ranges::input_range R, class Hash, class Allocator>
unordered_map(from_range_t, R&&, typename see below ::size_type, Hash, Allocator)

-> unordered_map<range-key-type <R>, range-mapped-type <R>, Hash,
equal_to<range-key-type <R>>, Allocator>;

template<class Key, class T, class Allocator>
unordered_map(initializer_list<pair<Key, T>>, typename see below ::size_type,

Allocator)
-> unordered_map<Key, T, hash<Key>, equal_to<Key>, Allocator>;

template<class Key, class T, class Allocator>
unordered_map(initializer_list<pair<Key, T>>, Allocator)

-> unordered_map<Key, T, hash<Key>, equal_to<Key>, Allocator>;
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template<class Key, class T, class Hash, class Allocator>
unordered_map(initializer_list<pair<Key, T>>, typename see below ::size_type, Hash,

Allocator)
-> unordered_map<Key, T, Hash, equal_to<Key>, Allocator>;

}

4 A size_type parameter type in an unordered_map deduction guide refers to the size_type member type
of the type deduced by the deduction guide.

24.5.4.2 Constructors [unord.map.cnstr]

unordered_map() : unordered_map(size_type(see below )) { }
explicit unordered_map(size_type n,

const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

1 Effects: Constructs an empty unordered_map using the specified hash function, key equality predicate,
and allocator, and using at least n buckets. For the default constructor, the number of buckets is
implementation-defined. max_load_factor() returns 1.0.

2 Complexity: Constant.

template<class InputIterator>
unordered_map(InputIterator f, InputIterator l,

size_type n = see below ,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

template<container-compatible-range <value_type> R>
unordered_map(from_range_t, R&& rg,

size_type n = see below ,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

unordered_map(initializer_list<value_type> il,
size_type n = see below ,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

3 Effects: Constructs an empty unordered_map using the specified hash function, key equality predicate,
and allocator, and using at least n buckets. If n is not provided, the number of buckets is implementa-
tion-defined. Then inserts elements from the range [f, l), rg, or il, respectively. max_load_factor()
returns 1.0.

4 Complexity: Average case linear, worst case quadratic.

24.5.4.3 Element access [unord.map.elem]

mapped_type& operator[](const key_type& k);

1 Effects: Equivalent to: return try_emplace(k).first->second;

mapped_type& operator[](key_type&& k);

2 Effects: Equivalent to: return try_emplace(std::move(k)).first->second;

mapped_type& at(const key_type& k);
const mapped_type& at(const key_type& k) const;

3 Returns: A reference to x.second, where x is the (unique) element whose key is equivalent to k.
4 Throws: An exception object of type out_of_range if no such element is present.

24.5.4.4 Modifiers [unord.map.modifiers]

template<class P>
pair<iterator, bool> insert(P&& obj);

1 Constraints: is_constructible_v<value_type, P&&> is true.
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2 Effects: Equivalent to: return emplace(std::forward<P>(obj));

template<class P>
iterator insert(const_iterator hint, P&& obj);

3 Constraints: is_constructible_v<value_type, P&&> is true.
4 Effects: Equivalent to: return emplace_hint(hint, std::forward<P>(obj));

template<class... Args>
pair<iterator, bool> try_emplace(const key_type& k, Args&&... args);

template<class... Args>
iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args);

5 Preconditions: value_type is Cpp17EmplaceConstructible into unordered_map from piecewise_con-
struct, forward_as_tuple(k), forward_as_tuple(std::forward<Args>(args)...).

6 Effects: If the map already contains an element whose key is equivalent to k, there is no effect. Otherwise
inserts an object of type value_type constructed with piecewise_construct, forward_as_tuple(k),
forward_as_tuple(std::forward<Args>(args)...).

7 Returns: In the first overload, the bool component of the returned pair is true if and only if the
insertion took place. The returned iterator points to the map element whose key is equivalent to k.

8 Complexity: The same as emplace and emplace_hint, respectively.

template<class... Args>
pair<iterator, bool> try_emplace(key_type&& k, Args&&... args);

template<class... Args>
iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args);

9 Preconditions: value_type is Cpp17EmplaceConstructible into unordered_map from piecewise_con-
struct, forward_as_tuple(std::move(k)), forward_as_tuple(std::forward<Args>(args)...).

10 Effects: If the map already contains an element whose key is equivalent to k, there is no effect.
Otherwise inserts an object of type value_type constructed with piecewise_construct, forward_-
as_tuple(std::move(k)), forward_as_tuple(std::forward<Args>(args)...).

11 Returns: In the first overload, the bool component of the returned pair is true if and only if the
insertion took place. The returned iterator points to the map element whose key is equivalent to k.

12 Complexity: The same as emplace and emplace_hint, respectively.

template<class M>
pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj);

template<class M>
iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj);

13 Mandates: is_assignable_v<mapped_type&, M&&> is true.
14 Preconditions: value_type is Cpp17EmplaceConstructible into unordered_map from k, std::for-

ward<M>(obj).
15 Effects: If the map already contains an element e whose key is equivalent to k, assigns std::for-

ward<M>(obj) to e.second. Otherwise inserts an object of type value_type constructed with k,
std::forward<M>(obj).

16 Returns: In the first overload, the bool component of the returned pair is true if and only if the
insertion took place. The returned iterator points to the map element whose key is equivalent to k.

17 Complexity: The same as emplace and emplace_hint, respectively.

template<class M>
pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj);

template<class M>
iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj);

18 Mandates: is_assignable_v<mapped_type&, M&&> is true.
19 Preconditions: value_type is Cpp17EmplaceConstructible into unordered_map from std::move(k),

std::forward<M>(obj).
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20 Effects: If the map already contains an element e whose key is equivalent to k, assigns std::for-
ward<M>(obj) to e.second. Otherwise inserts an object of type value_type constructed with std::
move(k), std::forward<M>(obj).

21 Returns: In the first overload, the bool component of the returned pair is true if and only if the
insertion took place. The returned iterator points to the map element whose key is equivalent to k.

22 Complexity: The same as emplace and emplace_hint, respectively.

24.5.4.5 Erasure [unord.map.erasure]

template<class K, class T, class H, class P, class A, class Predicate>
typename unordered_map<K, T, H, P, A>::size_type

erase_if(unordered_map<K, T, H, P, A>& c, Predicate pred);

1 Effects: Equivalent to:
auto original_size = c.size();
for (auto i = c.begin(), last = c.end(); i != last; ) {

if (pred(*i)) {
i = c.erase(i);

} else {
++i;

}
}
return original_size - c.size();

24.5.5 Class template unordered_multimap [unord.multimap]
24.5.5.1 Overview [unord.multimap.overview]

1 An unordered_multimap is an unordered associative container that supports equivalent keys (an instance of
unordered_multimap may contain multiple copies of each key value) and that associates values of another
type mapped_type with the keys. The unordered_multimap class supports forward iterators.

2 An unordered_multimap meets all of the requirements of a container (24.2.2.2), of an allocator-aware
container (24.2.2.5), and of an unordered associative container (24.2.8). It provides the operations described
in the preceding requirements table for equivalent keys; that is, an unordered_multimap supports the a_eq
operations in that table, not the a_uniq operations. For an unordered_multimap<Key, T> the key_type is
Key, the mapped_type is T, and the value_type is pair<const Key, T>.

3 Subclause 24.5.5 only describes operations on unordered_multimap that are not described in one of the
requirement tables, or for which there is additional semantic information.

namespace std {
template<class Key,

class T,
class Hash = hash<Key>,
class Pred = equal_to<Key>,
class Allocator = allocator<pair<const Key, T>>>

class unordered_multimap {
public:

// types
using key_type = Key;
using mapped_type = T;
using value_type = pair<const Key, T>;
using hasher = Hash;
using key_equal = Pred;
using allocator_type = Allocator;
using pointer = typename allocator_traits<Allocator>::pointer;
using const_pointer = typename allocator_traits<Allocator>::const_pointer;
using reference = value_type&;
using const_reference = const value_type&;
using size_type = implementation-defined ; // see 24.2
using difference_type = implementation-defined ; // see 24.2

using iterator = implementation-defined ; // see 24.2
using const_iterator = implementation-defined ; // see 24.2
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using local_iterator = implementation-defined ; // see 24.2
using const_local_iterator = implementation-defined ; // see 24.2
using node_type = unspecified ;

// 24.5.5.2, construct/copy/destroy
unordered_multimap();
explicit unordered_multimap(size_type n,

const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

template<class InputIterator>
unordered_multimap(InputIterator f, InputIterator l,

size_type n = see below ,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

template<container-compatible-range <value_type> R>
unordered_multimap(from_range_t, R&& rg,

size_type n = see below ,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

unordered_multimap(const unordered_multimap&);
unordered_multimap(unordered_multimap&&);
explicit unordered_multimap(const Allocator&);
unordered_multimap(const unordered_multimap&, const type_identity_t<Allocator>&);
unordered_multimap(unordered_multimap&&, const type_identity_t<Allocator>&);
unordered_multimap(initializer_list<value_type> il,

size_type n = see below ,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

unordered_multimap(size_type n, const allocator_type& a)
: unordered_multimap(n, hasher(), key_equal(), a) { }

unordered_multimap(size_type n, const hasher& hf, const allocator_type& a)
: unordered_multimap(n, hf, key_equal(), a) { }

template<class InputIterator>
unordered_multimap(InputIterator f, InputIterator l, size_type n, const allocator_type& a)

: unordered_multimap(f, l, n, hasher(), key_equal(), a) { }
template<class InputIterator>

unordered_multimap(InputIterator f, InputIterator l, size_type n, const hasher& hf,
const allocator_type& a)

: unordered_multimap(f, l, n, hf, key_equal(), a) { }
template<container-compatible-range <value_type> R>

unordered_multimap(from_range_t, R&& rg, size_type n, const allocator_type& a)
: unordered_multimap(from_range, std::forward<R>(rg),

n, hasher(), key_equal(), a) { }
template<container-compatible-range <value_type> R>

unordered_multimap(from_range_t, R&& rg, size_type n, const hasher& hf,
const allocator_type& a)

: unordered_multimap(from_range, std::forward<R>(rg), n, hf, key_equal(), a) { }
unordered_multimap(initializer_list<value_type> il, size_type n, const allocator_type& a)

: unordered_multimap(il, n, hasher(), key_equal(), a) { }
unordered_multimap(initializer_list<value_type> il, size_type n, const hasher& hf,

const allocator_type& a)
: unordered_multimap(il, n, hf, key_equal(), a) { }

~unordered_multimap();
unordered_multimap& operator=(const unordered_multimap&);
unordered_multimap& operator=(unordered_multimap&&)

noexcept(allocator_traits<Allocator>::is_always_equal::value &&
is_nothrow_move_assignable_v<Hash> &&
is_nothrow_move_assignable_v<Pred>);

unordered_multimap& operator=(initializer_list<value_type>);
allocator_type get_allocator() const noexcept;
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// iterators
iterator begin() noexcept;
const_iterator begin() const noexcept;
iterator end() noexcept;
const_iterator end() const noexcept;
const_iterator cbegin() const noexcept;
const_iterator cend() const noexcept;

// capacity
[[nodiscard]] bool empty() const noexcept;
size_type size() const noexcept;
size_type max_size() const noexcept;

// 24.5.5.3, modifiers
template<class... Args> iterator emplace(Args&&... args);
template<class... Args> iterator emplace_hint(const_iterator position, Args&&... args);
iterator insert(const value_type& obj);
iterator insert(value_type&& obj);
template<class P> iterator insert(P&& obj);
iterator insert(const_iterator hint, const value_type& obj);
iterator insert(const_iterator hint, value_type&& obj);
template<class P> iterator insert(const_iterator hint, P&& obj);
template<class InputIterator> void insert(InputIterator first, InputIterator last);
template<container-compatible-range <value_type> R>

void insert_range(R&& rg);
void insert(initializer_list<value_type>);

node_type extract(const_iterator position);
node_type extract(const key_type& x);
template<class K> node_type extract(K&& x);
iterator insert(node_type&& nh);
iterator insert(const_iterator hint, node_type&& nh);

iterator erase(iterator position);
iterator erase(const_iterator position);
size_type erase(const key_type& k);
template<class K> size_type erase(K&& x);
iterator erase(const_iterator first, const_iterator last);
void swap(unordered_multimap&)

noexcept(allocator_traits<Allocator>::is_always_equal::value &&
is_nothrow_swappable_v<Hash> &&
is_nothrow_swappable_v<Pred>);

void clear() noexcept;

template<class H2, class P2>
void merge(unordered_multimap<Key, T, H2, P2, Allocator>& source);

template<class H2, class P2>
void merge(unordered_multimap<Key, T, H2, P2, Allocator>&& source);

template<class H2, class P2>
void merge(unordered_map<Key, T, H2, P2, Allocator>& source);

template<class H2, class P2>
void merge(unordered_map<Key, T, H2, P2, Allocator>&& source);

// observers
hasher hash_function() const;
key_equal key_eq() const;

// map operations
iterator find(const key_type& k);
const_iterator find(const key_type& k) const;
template<class K>

iterator find(const K& k);
template<class K>

const_iterator find(const K& k) const;
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size_type count(const key_type& k) const;
template<class K>

size_type count(const K& k) const;
bool contains(const key_type& k) const;
template<class K>

bool contains(const K& k) const;
pair<iterator, iterator> equal_range(const key_type& k);
pair<const_iterator, const_iterator> equal_range(const key_type& k) const;
template<class K>

pair<iterator, iterator> equal_range(const K& k);
template<class K>

pair<const_iterator, const_iterator> equal_range(const K& k) const;

// bucket interface
size_type bucket_count() const noexcept;
size_type max_bucket_count() const noexcept;
size_type bucket_size(size_type n) const;
size_type bucket(const key_type& k) const;
local_iterator begin(size_type n);
const_local_iterator begin(size_type n) const;
local_iterator end(size_type n);
const_local_iterator end(size_type n) const;
const_local_iterator cbegin(size_type n) const;
const_local_iterator cend(size_type n) const;

// hash policy
float load_factor() const noexcept;
float max_load_factor() const noexcept;
void max_load_factor(float z);
void rehash(size_type n);
void reserve(size_type n);

};

template<class InputIterator,
class Hash = hash<iter-key-type <InputIterator>>,
class Pred = equal_to<iter-key-type <InputIterator>>,
class Allocator = allocator<iter-to-alloc-type <InputIterator>>>

unordered_multimap(InputIterator, InputIterator,
typename see below ::size_type = see below ,
Hash = Hash(), Pred = Pred(), Allocator = Allocator())

-> unordered_multimap<iter-key-type <InputIterator>, iter-mapped-type <InputIterator>,
Hash, Pred, Allocator>;

template<ranges::input_range R,
class Hash = hash<range-key-type <R>>,
class Pred = equal_to<range-key-type <R>>,
class Allocator = allocator<range-to-alloc-type <R>>>

unordered_multimap(from_range_t, R&&, typename see below ::size_type = see below ,
Hash = Hash(), Pred = Pred(), Allocator = Allocator())

-> unordered_multimap<range-key-type <R>, range-mapped-type <R>, Hash, Pred, Allocator>;

template<class Key, class T, class Hash = hash<Key>,
class Pred = equal_to<Key>, class Allocator = allocator<pair<const Key, T>>>

unordered_multimap(initializer_list<pair<Key, T>>,
typename see below ::size_type = see below ,
Hash = Hash(), Pred = Pred(), Allocator = Allocator())

-> unordered_multimap<Key, T, Hash, Pred, Allocator>;

template<class InputIterator, class Allocator>
unordered_multimap(InputIterator, InputIterator, typename see below ::size_type, Allocator)

-> unordered_multimap<iter-key-type <InputIterator>, iter-mapped-type <InputIterator>,
hash<iter-key-type <InputIterator>>,
equal_to<iter-key-type <InputIterator>>, Allocator>;
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template<class InputIterator, class Allocator>
unordered_multimap(InputIterator, InputIterator, Allocator)

-> unordered_multimap<iter-key-type <InputIterator>, iter-mapped-type <InputIterator>,
hash<iter-key-type <InputIterator>>,
equal_to<iter-key-type <InputIterator>>, Allocator>;

template<class InputIterator, class Hash, class Allocator>
unordered_multimap(InputIterator, InputIterator, typename see below ::size_type, Hash,

Allocator)
-> unordered_multimap<iter-key-type <InputIterator>, iter-mapped-type <InputIterator>, Hash,

equal_to<iter-key-type <InputIterator>>, Allocator>;

template<ranges::input_range R, class Allocator>
unordered_multimap(from_range_t, R&&, typename see below ::size_type, Allocator)

-> unordered_multimap<range-key-type <R>, range-mapped-type <R>, hash<range-key-type <R>>,
equal_to<range-key-type <R>>, Allocator>;

template<ranges::input_range R, class Allocator>
unordered_multimap(from_range_t, R&&, Allocator)

-> unordered_multimap<range-key-type <R>, range-mapped-type <R>, hash<range-key-type <R>>,
equal_to<range-key-type <R>>, Allocator>;

template<ranges::input_range R, class Hash, class Allocator>
unordered_multimap(from_range_t, R&&, typename see below ::size_type, Hash, Allocator)

-> unordered_multimap<range-key-type <R>, range-mapped-type <R>, Hash,
equal_to<range-key-type <R>>, Allocator>;

template<class Key, class T, class Allocator>
unordered_multimap(initializer_list<pair<Key, T>>, typename see below ::size_type,

Allocator)
-> unordered_multimap<Key, T, hash<Key>, equal_to<Key>, Allocator>;

template<class Key, class T, class Allocator>
unordered_multimap(initializer_list<pair<Key, T>>, Allocator)

-> unordered_multimap<Key, T, hash<Key>, equal_to<Key>, Allocator>;

template<class Key, class T, class Hash, class Allocator>
unordered_multimap(initializer_list<pair<Key, T>>, typename see below ::size_type,

Hash, Allocator)
-> unordered_multimap<Key, T, Hash, equal_to<Key>, Allocator>;

}

4 A size_type parameter type in an unordered_multimap deduction guide refers to the size_type member
type of the type deduced by the deduction guide.

24.5.5.2 Constructors [unord.multimap.cnstr]

unordered_multimap() : unordered_multimap(size_type(see below )) { }
explicit unordered_multimap(size_type n,

const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

1 Effects: Constructs an empty unordered_multimap using the specified hash function, key equality
predicate, and allocator, and using at least n buckets. For the default constructor, the number of
buckets is implementation-defined. max_load_factor() returns 1.0.

2 Complexity: Constant.

template<class InputIterator>
unordered_multimap(InputIterator f, InputIterator l,

size_type n = see below ,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());
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template<container-compatible-range <value_type> R>
unordered_multimap(from_range_t, R&& rg,

size_type n = see below ,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

unordered_multimap(initializer_list<value_type> il,
size_type n = see below ,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

3 Effects: Constructs an empty unordered_multimap using the specified hash function, key equality
predicate, and allocator, and using at least n buckets. If n is not provided, the number of buckets is
implementation-defined. Then inserts elements from the range [f, l), rg, or il, respectively. max_-
load_factor() returns 1.0.

4 Complexity: Average case linear, worst case quadratic.

24.5.5.3 Modifiers [unord.multimap.modifiers]

template<class P>
iterator insert(P&& obj);

1 Constraints: is_constructible_v<value_type, P&&> is true.
2 Effects: Equivalent to: return emplace(std::forward<P>(obj));

template<class P>
iterator insert(const_iterator hint, P&& obj);

3 Constraints: is_constructible_v<value_type, P&&> is true.
4 Effects: Equivalent to: return emplace_hint(hint, std::forward<P>(obj));

24.5.5.4 Erasure [unord.multimap.erasure]

template<class K, class T, class H, class P, class A, class Predicate>
typename unordered_multimap<K, T, H, P, A>::size_type

erase_if(unordered_multimap<K, T, H, P, A>& c, Predicate pred);

1 Effects: Equivalent to:
auto original_size = c.size();
for (auto i = c.begin(), last = c.end(); i != last; ) {

if (pred(*i)) {
i = c.erase(i);

} else {
++i;

}
}
return original_size - c.size();

24.5.6 Class template unordered_set [unord.set]
24.5.6.1 Overview [unord.set.overview]

1 An unordered_set is an unordered associative container that supports unique keys (an unordered_set
contains at most one of each key value) and in which the elements’ keys are the elements themselves. The
unordered_set class supports forward iterators.

2 An unordered_set meets all of the requirements of a container (24.2.2.2), of an allocator-aware container
(24.2.2.5), of an unordered associative container (24.2.8). It provides the operations described in the preceding
requirements table for unique keys; that is, an unordered_set supports the a_uniq operations in that table,
not the a_eq operations. For an unordered_set<Key> the key_type and the value_type are both Key. The
iterator and const_iterator types are both constant iterator types. It is unspecified whether they are
the same type.

3 Subclause 24.5.6 only describes operations on unordered_set that are not described in one of the requirement
tables, or for which there is additional semantic information.
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namespace std {
template<class Key,

class Hash = hash<Key>,
class Pred = equal_to<Key>,
class Allocator = allocator<Key>>

class unordered_set {
public:

// types
using key_type = Key;
using value_type = Key;
using hasher = Hash;
using key_equal = Pred;
using allocator_type = Allocator;
using pointer = typename allocator_traits<Allocator>::pointer;
using const_pointer = typename allocator_traits<Allocator>::const_pointer;
using reference = value_type&;
using const_reference = const value_type&;
using size_type = implementation-defined ; // see 24.2
using difference_type = implementation-defined ; // see 24.2

using iterator = implementation-defined ; // see 24.2
using const_iterator = implementation-defined ; // see 24.2
using local_iterator = implementation-defined ; // see 24.2
using const_local_iterator = implementation-defined ; // see 24.2
using node_type = unspecified ;
using insert_return_type = insert-return-type<iterator, node_type>;

// 24.5.6.2, construct/copy/destroy
unordered_set();
explicit unordered_set(size_type n,

const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

template<class InputIterator>
unordered_set(InputIterator f, InputIterator l,

size_type n = see below ,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

template<container-compatible-range <value_type> R>
unordered_set(from_range_t, R&& rg,

size_type n = see below ,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

unordered_set(const unordered_set&);
unordered_set(unordered_set&&);
explicit unordered_set(const Allocator&);
unordered_set(const unordered_set&, const type_identity_t<Allocator>&);
unordered_set(unordered_set&&, const type_identity_t<Allocator>&);
unordered_set(initializer_list<value_type> il,

size_type n = see below ,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

unordered_set(size_type n, const allocator_type& a)
: unordered_set(n, hasher(), key_equal(), a) { }

unordered_set(size_type n, const hasher& hf, const allocator_type& a)
: unordered_set(n, hf, key_equal(), a) { }

template<class InputIterator>
unordered_set(InputIterator f, InputIterator l, size_type n, const allocator_type& a)

: unordered_set(f, l, n, hasher(), key_equal(), a) { }
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template<class InputIterator>
unordered_set(InputIterator f, InputIterator l, size_type n, const hasher& hf,

const allocator_type& a)
: unordered_set(f, l, n, hf, key_equal(), a) { }

unordered_set(initializer_list<value_type> il, size_type n, const allocator_type& a)
: unordered_set(il, n, hasher(), key_equal(), a) { }

template<container-compatible-range <value_type> R>
unordered_set(from_range_t, R&& rg, size_type n, const allocator_type& a)

: unordered_set(from_range, std::forward<R>(rg), n, hasher(), key_equal(), a) { }
template<container-compatible-range <value_type> R>

unordered_set(from_range_t, R&& rg, size_type n, const hasher& hf, const allocator_type& a)
: unordered_set(from_range, std::forward<R>(rg), n, hf, key_equal(), a) { }

unordered_set(initializer_list<value_type> il, size_type n, const hasher& hf,
const allocator_type& a)

: unordered_set(il, n, hf, key_equal(), a) { }
~unordered_set();
unordered_set& operator=(const unordered_set&);
unordered_set& operator=(unordered_set&&)

noexcept(allocator_traits<Allocator>::is_always_equal::value &&
is_nothrow_move_assignable_v<Hash> &&
is_nothrow_move_assignable_v<Pred>);

unordered_set& operator=(initializer_list<value_type>);
allocator_type get_allocator() const noexcept;

// iterators
iterator begin() noexcept;
const_iterator begin() const noexcept;
iterator end() noexcept;
const_iterator end() const noexcept;
const_iterator cbegin() const noexcept;
const_iterator cend() const noexcept;

// capacity
[[nodiscard]] bool empty() const noexcept;
size_type size() const noexcept;
size_type max_size() const noexcept;

// modifiers
template<class... Args> pair<iterator, bool> emplace(Args&&... args);
template<class... Args> iterator emplace_hint(const_iterator position, Args&&... args);
pair<iterator, bool> insert(const value_type& obj);
pair<iterator, bool> insert(value_type&& obj);
iterator insert(const_iterator hint, const value_type& obj);
iterator insert(const_iterator hint, value_type&& obj);
template<class InputIterator> void insert(InputIterator first, InputIterator last);
template<container-compatible-range <value_type> R>

void insert_range(R&& rg);
void insert(initializer_list<value_type>);

node_type extract(const_iterator position);
node_type extract(const key_type& x);
template<class K> node_type extract(K&& x);
insert_return_type insert(node_type&& nh);
iterator insert(const_iterator hint, node_type&& nh);

iterator erase(iterator position)
requires (!same_as<iterator, const_iterator>);

iterator erase(const_iterator position);
size_type erase(const key_type& k);
template<class K> size_type erase(K&& x);
iterator erase(const_iterator first, const_iterator last);
void swap(unordered_set&)

noexcept(allocator_traits<Allocator>::is_always_equal::value &&
is_nothrow_swappable_v<Hash> &&
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is_nothrow_swappable_v<Pred>);
void clear() noexcept;

template<class H2, class P2>
void merge(unordered_set<Key, H2, P2, Allocator>& source);

template<class H2, class P2>
void merge(unordered_set<Key, H2, P2, Allocator>&& source);

template<class H2, class P2>
void merge(unordered_multiset<Key, H2, P2, Allocator>& source);

template<class H2, class P2>
void merge(unordered_multiset<Key, H2, P2, Allocator>&& source);

// observers
hasher hash_function() const;
key_equal key_eq() const;

// set operations
iterator find(const key_type& k);
const_iterator find(const key_type& k) const;
template<class K>

iterator find(const K& k);
template<class K>

const_iterator find(const K& k) const;
size_type count(const key_type& k) const;
template<class K>

size_type count(const K& k) const;
bool contains(const key_type& k) const;
template<class K>

bool contains(const K& k) const;
pair<iterator, iterator> equal_range(const key_type& k);
pair<const_iterator, const_iterator> equal_range(const key_type& k) const;
template<class K>

pair<iterator, iterator> equal_range(const K& k);
template<class K>

pair<const_iterator, const_iterator> equal_range(const K& k) const;

// bucket interface
size_type bucket_count() const noexcept;
size_type max_bucket_count() const noexcept;
size_type bucket_size(size_type n) const;
size_type bucket(const key_type& k) const;
local_iterator begin(size_type n);
const_local_iterator begin(size_type n) const;
local_iterator end(size_type n);
const_local_iterator end(size_type n) const;
const_local_iterator cbegin(size_type n) const;
const_local_iterator cend(size_type n) const;

// hash policy
float load_factor() const noexcept;
float max_load_factor() const noexcept;
void max_load_factor(float z);
void rehash(size_type n);
void reserve(size_type n);

};

template<class InputIterator,
class Hash = hash<iter-value-type <InputIterator>>,
class Pred = equal_to<iter-value-type <InputIterator>>,
class Allocator = allocator<iter-value-type <InputIterator>>>

unordered_set(InputIterator, InputIterator, typename see below ::size_type = see below ,
Hash = Hash(), Pred = Pred(), Allocator = Allocator())

-> unordered_set<iter-value-type <InputIterator>,
Hash, Pred, Allocator>;
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template<ranges::input_range R,
class Hash = hash<ranges::range_value_t<R>>,
class Pred = equal_to<ranges::range_value_t<R>>,
class Allocator = allocator<ranges::range_value_t<R>>>

unordered_set(from_range_t, R&&, typename see below ::size_type = see below ,
Hash = Hash(), Pred = Pred(), Allocator = Allocator())

-> unordered_set<ranges::range_value_t<R>, Hash, Pred, Allocator>;

template<class T, class Hash = hash<T>,
class Pred = equal_to<T>, class Allocator = allocator<T>>

unordered_set(initializer_list<T>, typename see below ::size_type = see below ,
Hash = Hash(), Pred = Pred(), Allocator = Allocator())

-> unordered_set<T, Hash, Pred, Allocator>;

template<class InputIterator, class Allocator>
unordered_set(InputIterator, InputIterator, typename see below ::size_type, Allocator)

-> unordered_set<iter-value-type <InputIterator>,
hash<iter-value-type <InputIterator>>,
equal_to<iter-value-type <InputIterator>>,
Allocator>;

template<class InputIterator, class Hash, class Allocator>
unordered_set(InputIterator, InputIterator, typename see below ::size_type,

Hash, Allocator)
-> unordered_set<iter-value-type <InputIterator>, Hash,

equal_to<iter-value-type <InputIterator>>,
Allocator>;

template<ranges::input_range R, class Allocator>
unordered_set(from_range_t, R&&, typename see below ::size_type, Allocator)

-> unordered_set<ranges::range_value_t<R>, hash<ranges::range_value_t<R>>,
equal_to<ranges::range_value_t<R>>, Allocator>;

template<ranges::input_range R, class Allocator>
unordered_set(from_range_t, R&&, Allocator)

-> unordered_set<ranges::range_value_t<R>, hash<ranges::range_value_t<R>>,
equal_to<ranges::range_value_t<R>>, Allocator>;

template<ranges::input_range R, class Hash, class Allocator>
unordered_set(from_range_t, R&&, typename see below ::size_type, Hash, Allocator)

-> unordered_set<ranges::range_value_t<R>, Hash,
equal_to<ranges::range_value_t<R>>, Allocator>;

template<class T, class Allocator>
unordered_set(initializer_list<T>, typename see below ::size_type, Allocator)

-> unordered_set<T, hash<T>, equal_to<T>, Allocator>;

template<class T, class Hash, class Allocator>
unordered_set(initializer_list<T>, typename see below ::size_type, Hash, Allocator)

-> unordered_set<T, Hash, equal_to<T>, Allocator>;
}

4 A size_type parameter type in an unordered_set deduction guide refers to the size_type member type
of the type deduced by the deduction guide.

24.5.6.2 Constructors [unord.set.cnstr]

unordered_set() : unordered_set(size_type(see below )) { }
explicit unordered_set(size_type n,

const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

1 Effects: Constructs an empty unordered_set using the specified hash function, key equality predicate,
and allocator, and using at least n buckets. For the default constructor, the number of buckets is
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implementation-defined. max_load_factor() returns 1.0.
2 Complexity: Constant.

template<class InputIterator>
unordered_set(InputIterator f, InputIterator l,

size_type n = see below ,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

template<container-compatible-range <value_type> R>
unordered_multiset(from_range_t, R&& rg,

size_type n = see below ,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

unordered_set(initializer_list<value_type> il,
size_type n = see below ,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

3 Effects: Constructs an empty unordered_set using the specified hash function, key equality predicate,
and allocator, and using at least n buckets. If n is not provided, the number of buckets is implementa-
tion-defined. Then inserts elements from the range [f, l), rg, or il, respectively. max_load_factor()
returns 1.0.

4 Complexity: Average case linear, worst case quadratic.

24.5.6.3 Erasure [unord.set.erasure]

template<class K, class H, class P, class A, class Predicate>
typename unordered_set<K, H, P, A>::size_type

erase_if(unordered_set<K, H, P, A>& c, Predicate pred);

1 Effects: Equivalent to:
auto original_size = c.size();
for (auto i = c.begin(), last = c.end(); i != last; ) {

if (pred(*i)) {
i = c.erase(i);

} else {
++i;

}
}
return original_size - c.size();

24.5.7 Class template unordered_multiset [unord.multiset]
24.5.7.1 Overview [unord.multiset.overview]

1 An unordered_multiset is an unordered associative container that supports equivalent keys (an instance of
unordered_multiset may contain multiple copies of the same key value) and in which each element’s key is
the element itself. The unordered_multiset class supports forward iterators.

2 An unordered_multiset meets all of the requirements of a container (24.2.2.2), of an allocator-aware
container (24.2.2.5), and of an unordered associative container (24.2.8). It provides the operations described
in the preceding requirements table for equivalent keys; that is, an unordered_multiset supports the a_eq
operations in that table, not the a_uniq operations. For an unordered_multiset<Key> the key_type and
the value_type are both Key. The iterator and const_iterator types are both constant iterator types.
It is unspecified whether they are the same type.

3 Subclause 24.5.7 only describes operations on unordered_multiset that are not described in one of the
requirement tables, or for which there is additional semantic information.

namespace std {
template<class Key,

class Hash = hash<Key>,
class Pred = equal_to<Key>,
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class Allocator = allocator<Key>>
class unordered_multiset {
public:

// types
using key_type = Key;
using value_type = Key;
using hasher = Hash;
using key_equal = Pred;
using allocator_type = Allocator;
using pointer = typename allocator_traits<Allocator>::pointer;
using const_pointer = typename allocator_traits<Allocator>::const_pointer;
using reference = value_type&;
using const_reference = const value_type&;
using size_type = implementation-defined ; // see 24.2
using difference_type = implementation-defined ; // see 24.2

using iterator = implementation-defined ; // see 24.2
using const_iterator = implementation-defined ; // see 24.2
using local_iterator = implementation-defined ; // see 24.2
using const_local_iterator = implementation-defined ; // see 24.2
using node_type = unspecified ;

// 24.5.7.2, construct/copy/destroy
unordered_multiset();
explicit unordered_multiset(size_type n,

const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

template<class InputIterator>
unordered_multiset(InputIterator f, InputIterator l,

size_type n = see below ,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

template<container-compatible-range <value_type> R>
unordered_multiset(from_range_t, R&& rg,

size_type n = see below ,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

unordered_multiset(const unordered_multiset&);
unordered_multiset(unordered_multiset&&);
explicit unordered_multiset(const Allocator&);
unordered_multiset(const unordered_multiset&, const type_identity_t<Allocator>&);
unordered_multiset(unordered_multiset&&, const type_identity_t<Allocator>&);
unordered_multiset(initializer_list<value_type> il,

size_type n = see below ,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

unordered_multiset(size_type n, const allocator_type& a)
: unordered_multiset(n, hasher(), key_equal(), a) { }

unordered_multiset(size_type n, const hasher& hf, const allocator_type& a)
: unordered_multiset(n, hf, key_equal(), a) { }

template<class InputIterator>
unordered_multiset(InputIterator f, InputIterator l, size_type n, const allocator_type& a)

: unordered_multiset(f, l, n, hasher(), key_equal(), a) { }
template<class InputIterator>

unordered_multiset(InputIterator f, InputIterator l, size_type n, const hasher& hf,
const allocator_type& a)

: unordered_multiset(f, l, n, hf, key_equal(), a) { }
template<container-compatible-range <value_type> R>

unordered_multiset(from_range_t, R&& rg, size_type n, const allocator_type& a)
: unordered_multiset(from_range, std::forward<R>(rg),
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n, hasher(), key_equal(), a) { }
template<container-compatible-range <value_type> R>

unordered_multiset(from_range_t, R&& rg, size_type n, const hasher& hf,
const allocator_type& a)

: unordered_multiset(from_range, std::forward<R>(rg), n, hf, key_equal(), a) { }
unordered_multiset(initializer_list<value_type> il, size_type n, const allocator_type& a)

: unordered_multiset(il, n, hasher(), key_equal(), a) { }
unordered_multiset(initializer_list<value_type> il, size_type n, const hasher& hf,

const allocator_type& a)
: unordered_multiset(il, n, hf, key_equal(), a) { }

~unordered_multiset();
unordered_multiset& operator=(const unordered_multiset&);
unordered_multiset& operator=(unordered_multiset&&)

noexcept(allocator_traits<Allocator>::is_always_equal::value &&
is_nothrow_move_assignable_v<Hash> &&
is_nothrow_move_assignable_v<Pred>);

unordered_multiset& operator=(initializer_list<value_type>);
allocator_type get_allocator() const noexcept;

// iterators
iterator begin() noexcept;
const_iterator begin() const noexcept;
iterator end() noexcept;
const_iterator end() const noexcept;
const_iterator cbegin() const noexcept;
const_iterator cend() const noexcept;

// capacity
[[nodiscard]] bool empty() const noexcept;
size_type size() const noexcept;
size_type max_size() const noexcept;

// modifiers
template<class... Args> iterator emplace(Args&&... args);
template<class... Args> iterator emplace_hint(const_iterator position, Args&&... args);
iterator insert(const value_type& obj);
iterator insert(value_type&& obj);
iterator insert(const_iterator hint, const value_type& obj);
iterator insert(const_iterator hint, value_type&& obj);
template<class InputIterator> void insert(InputIterator first, InputIterator last);
template<container-compatible-range <value_type> R>

void insert_range(R&& rg);
void insert(initializer_list<value_type>);

node_type extract(const_iterator position);
node_type extract(const key_type& x);
template<class K> node_type extract(K&& x);
iterator insert(node_type&& nh);
iterator insert(const_iterator hint, node_type&& nh);

iterator erase(iterator position)
requires (!same_as<iterator, const_iterator>);

iterator erase(const_iterator position);
size_type erase(const key_type& k);
template<class K> size_type erase(K&& x);
iterator erase(const_iterator first, const_iterator last);
void swap(unordered_multiset&)

noexcept(allocator_traits<Allocator>::is_always_equal::value &&
is_nothrow_swappable_v<Hash> &&
is_nothrow_swappable_v<Pred>);

void clear() noexcept;

template<class H2, class P2>
void merge(unordered_multiset<Key, H2, P2, Allocator>& source);
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template<class H2, class P2>
void merge(unordered_multiset<Key, H2, P2, Allocator>&& source);

template<class H2, class P2>
void merge(unordered_set<Key, H2, P2, Allocator>& source);

template<class H2, class P2>
void merge(unordered_set<Key, H2, P2, Allocator>&& source);

// observers
hasher hash_function() const;
key_equal key_eq() const;

// set operations
iterator find(const key_type& k);
const_iterator find(const key_type& k) const;
template<class K>

iterator find(const K& k);
template<class K>

const_iterator find(const K& k) const;
size_type count(const key_type& k) const;
template<class K>

size_type count(const K& k) const;
bool contains(const key_type& k) const;
template<class K>

bool contains(const K& k) const;
pair<iterator, iterator> equal_range(const key_type& k);
pair<const_iterator, const_iterator> equal_range(const key_type& k) const;
template<class K>

pair<iterator, iterator> equal_range(const K& k);
template<class K>

pair<const_iterator, const_iterator> equal_range(const K& k) const;

// bucket interface
size_type bucket_count() const noexcept;
size_type max_bucket_count() const noexcept;
size_type bucket_size(size_type n) const;
size_type bucket(const key_type& k) const;
local_iterator begin(size_type n);
const_local_iterator begin(size_type n) const;
local_iterator end(size_type n);
const_local_iterator end(size_type n) const;
const_local_iterator cbegin(size_type n) const;
const_local_iterator cend(size_type n) const;

// hash policy
float load_factor() const noexcept;
float max_load_factor() const noexcept;
void max_load_factor(float z);
void rehash(size_type n);
void reserve(size_type n);

};

template<class InputIterator,
class Hash = hash<iter-value-type <InputIterator>>,
class Pred = equal_to<iter-value-type <InputIterator>>,
class Allocator = allocator<iter-value-type <InputIterator>>>

unordered_multiset(InputIterator, InputIterator, see below ::size_type = see below ,
Hash = Hash(), Pred = Pred(), Allocator = Allocator())

-> unordered_multiset<iter-value-type <InputIterator>,
Hash, Pred, Allocator>;

template<ranges::input_range R,
class Hash = hash<ranges::range_value_t<R>>,
class Pred = equal_to<ranges::range_value_t<R>>,
class Allocator = allocator<ranges::range_value_t<R>>>
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unordered_multiset(from_range_t, R&&, typename see below ::size_type = see below ,
Hash = Hash(), Pred = Pred(), Allocator = Allocator())

-> unordered_multiset<ranges::range_value_t<R>, Hash, Pred, Allocator>;

template<class T, class Hash = hash<T>,
class Pred = equal_to<T>, class Allocator = allocator<T>>

unordered_multiset(initializer_list<T>, typename see below ::size_type = see below ,
Hash = Hash(), Pred = Pred(), Allocator = Allocator())

-> unordered_multiset<T, Hash, Pred, Allocator>;

template<class InputIterator, class Allocator>
unordered_multiset(InputIterator, InputIterator, typename see below ::size_type, Allocator)

-> unordered_multiset<iter-value-type <InputIterator>,
hash<iter-value-type <InputIterator>>,
equal_to<iter-value-type <InputIterator>>,
Allocator>;

template<class InputIterator, class Hash, class Allocator>
unordered_multiset(InputIterator, InputIterator, typename see below ::size_type,

Hash, Allocator)
-> unordered_multiset<iter-value-type <InputIterator>, Hash,

equal_to<iter-value-type <InputIterator>>,
Allocator>;

template<ranges::input_range R, class Allocator>
unordered_multiset(from_range_t, R&&, typename see below ::size_type, Allocator)

-> unordered_multiset<ranges::range_value_t<R>, hash<ranges::range_value_t<R>>,
equal_to<ranges::range_value_t<R>>, Allocator>;

template<ranges::input_range R, class Allocator>
unordered_multiset(from_range_t, R&&, Allocator)

-> unordered_multiset<ranges::range_value_t<R>, hash<ranges::range_value_t<R>>,
equal_to<ranges::range_value_t<R>>, Allocator>;

template<ranges::input_range R, class Hash, class Allocator>
unordered_multiset(from_range_t, R&&, typename see below ::size_type, Hash, Allocator)

-> unordered_multiset<ranges::range_value_t<R>, Hash, equal_to<ranges::range_value_t<R>>,
Allocator>;

template<class T, class Allocator>
unordered_multiset(initializer_list<T>, typename see below ::size_type, Allocator)

-> unordered_multiset<T, hash<T>, equal_to<T>, Allocator>;

template<class T, class Hash, class Allocator>
unordered_multiset(initializer_list<T>, typename see below ::size_type, Hash, Allocator)

-> unordered_multiset<T, Hash, equal_to<T>, Allocator>;
}

4 A size_type parameter type in an unordered_multiset deduction guide refers to the size_type member
type of the type deduced by the deduction guide.

24.5.7.2 Constructors [unord.multiset.cnstr]

unordered_multiset() : unordered_multiset(size_type(see below )) { }
explicit unordered_multiset(size_type n,

const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

1 Effects: Constructs an empty unordered_multiset using the specified hash function, key equality
predicate, and allocator, and using at least n buckets. For the default constructor, the number of
buckets is implementation-defined. max_load_factor() returns 1.0.

2 Complexity: Constant.
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template<class InputIterator>
unordered_multiset(InputIterator f, InputIterator l,

size_type n = see below ,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

template<container-compatible-range <value_type> R>
unordered_multiset(from_range_t, R&& rg,

size_type n = see below ,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

unordered_multiset(initializer_list<value_type> il,
size_type n = see below ,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());

3 Effects: Constructs an empty unordered_multiset using the specified hash function, key equality
predicate, and allocator, and using at least n buckets. If n is not provided, the number of buckets is
implementation-defined. Then inserts elements from the range [f, l), rg, or il, respectively. max_-
load_factor() returns 1.0.

4 Complexity: Average case linear, worst case quadratic.

24.5.7.3 Erasure [unord.multiset.erasure]

template<class K, class H, class P, class A, class Predicate>
typename unordered_multiset<K, H, P, A>::size_type

erase_if(unordered_multiset<K, H, P, A>& c, Predicate pred);

1 Effects: Equivalent to:
auto original_size = c.size();
for (auto i = c.begin(), last = c.end(); i != last; ) {

if (pred(*i)) {
i = c.erase(i);

} else {
++i;

}
}
return original_size - c.size();

24.6 Container adaptors [container.adaptors]
24.6.1 In general [container.adaptors.general]

1 The headers <queue>, <stack>, <flat_map>, and <flat_set> define the container adaptors queue and
priority_queue, stack, flat_map and flat_multimap, and flat_set and flat_multiset, respectively.

2 Each container adaptor takes one or more template parameters named Container, KeyContainer, or
MappedContainer that denote the types of containers that the container adaptor adapts. Each container
adaptor has at least one constructor that takes a reference argument to one or more such template parameters.
For each constructor reference argument to a container C, the constructor copies the container into the
container adaptor. If C takes an allocator, then a compatible allocator may be passed in to the adaptor’s
constructor. Otherwise, normal copy or move construction is used for the container argument. For the
container adaptors that take a single container template parameter Container, the first template parameter
T of the container adaptor shall denote the same type as Container::value_type.

3 For container adaptors, no swap function throws an exception unless that exception is thrown by the swap of
the adaptor’s Container, KeyContainer, MappedContainer, or Compare object (if any).

4 A constructor template of a container adaptor shall not participate in overload resolution if it has an
InputIterator template parameter and a type that does not qualify as an input iterator is deduced for that
parameter.
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5 For container adaptors that have them, the insert, emplace, and erase members affect the validity of
iterators, references, and pointers to the adaptor’s container(s) in the same way that the containers’ respective
insert, emplace, and erase members do.
[Example 1 : A call to flat_map<Key, T>::insert can invalidate all iterators to the flat_map. — end example ]

6 A deduction guide for a container adaptor shall not participate in overload resolution if any of the following
are true:

—(6.1) It has an InputIterator template parameter and a type that does not qualify as an input iterator is
deduced for that parameter.

—(6.2) It has a Compare template parameter and a type that qualifies as an allocator is deduced for that
parameter.

—(6.3) It has a Container, KeyContainer, or MappedContainer template parameter and a type that qualifies
as an allocator is deduced for that parameter.

—(6.4) It has no Container, KeyContainer, or MappedContainer template parameter, and it has an Allocator
template parameter, and a type that does not qualify as an allocator is deduced for that parameter.

—(6.5) It has both Container and Allocator template parameters, and uses_allocator_v<Container,
Allocator> is false.

—(6.6) It has both KeyContainer and Allocator template parameters, and uses_allocator_v<KeyContai-
ner, Allocator> is false.

—(6.7) It has both KeyContainer and Compare template parameters, and
is_invocable_v<const Compare&,

const typename KeyContainer::value_type&,
const typename KeyContainer::value_type&>

is not a valid expression or is false.
—(6.8) It has both MappedContainer and Allocator template parameters, and uses_allocator_v<Mapped-

Container, Allocator> is false.
7 The exposition-only alias template iter-value-type defined in 24.3.1 and the exposition-only alias templates

iter-key-type , iter-mapped-type , range-key-type , and range-mapped-type defined in 24.4.1 may
appear in deduction guides for container adaptors.

8 The following exposition-only alias template may appear in deduction guides for container adaptors:
template<class Allocator, class T>

using alloc-rebind = // exposition only
typename allocator_traits<Allocator>::template rebind_alloc<T>;

24.6.2 Header <queue> synopsis [queue.syn]
#include <compare> // see 17.11.1
#include <initializer_list> // see 17.10.2

namespace std {
// 24.6.6, class template queue
template<class T, class Container = deque<T>> class queue;

template<class T, class Container>
bool operator==(const queue<T, Container>& x, const queue<T, Container>& y);

template<class T, class Container>
bool operator!=(const queue<T, Container>& x, const queue<T, Container>& y);

template<class T, class Container>
bool operator< (const queue<T, Container>& x, const queue<T, Container>& y);

template<class T, class Container>
bool operator> (const queue<T, Container>& x, const queue<T, Container>& y);

template<class T, class Container>
bool operator<=(const queue<T, Container>& x, const queue<T, Container>& y);

template<class T, class Container>
bool operator>=(const queue<T, Container>& x, const queue<T, Container>& y);
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template<class T, three_way_comparable Container>
compare_three_way_result_t<Container>

operator<=>(const queue<T, Container>& x, const queue<T, Container>& y);

template<class T, class Container>
void swap(queue<T, Container>& x, queue<T, Container>& y) noexcept(noexcept(x.swap(y)));

template<class T, class Container, class Alloc>
struct uses_allocator<queue<T, Container>, Alloc>;

// 24.6.7, class template priority_queue
template<class T, class Container = vector<T>,

class Compare = less<typename Container::value_type>>
class priority_queue;

template<class T, class Container, class Compare>
void swap(priority_queue<T, Container, Compare>& x,

priority_queue<T, Container, Compare>& y) noexcept(noexcept(x.swap(y)));
template<class T, class Container, class Compare, class Alloc>

struct uses_allocator<priority_queue<T, Container, Compare>, Alloc>;
}

24.6.3 Header <stack> synopsis [stack.syn]
#include <compare> // see 17.11.1
#include <initializer_list> // see 17.10.2

namespace std {
// 24.6.8, class template stack
template<class T, class Container = deque<T>> class stack;

template<class T, class Container>
bool operator==(const stack<T, Container>& x, const stack<T, Container>& y);

template<class T, class Container>
bool operator!=(const stack<T, Container>& x, const stack<T, Container>& y);

template<class T, class Container>
bool operator< (const stack<T, Container>& x, const stack<T, Container>& y);

template<class T, class Container>
bool operator> (const stack<T, Container>& x, const stack<T, Container>& y);

template<class T, class Container>
bool operator<=(const stack<T, Container>& x, const stack<T, Container>& y);

template<class T, class Container>
bool operator>=(const stack<T, Container>& x, const stack<T, Container>& y);

template<class T, three_way_comparable Container>
compare_three_way_result_t<Container>

operator<=>(const stack<T, Container>& x, const stack<T, Container>& y);

template<class T, class Container>
void swap(stack<T, Container>& x, stack<T, Container>& y) noexcept(noexcept(x.swap(y)));

template<class T, class Container, class Alloc>
struct uses_allocator<stack<T, Container>, Alloc>;

}

24.6.4 Header <flat_map> synopsis [flat.map.syn]
#include <compare> // see 17.11.1
#include <initializer_list> // see 17.10.2

namespace std {
// 24.6.9, class template flat_map
template<class Key, class T, class Compare = less<Key>,

class KeyContainer = vector<Key>, class MappedContainer = vector<T>>
class flat_map;

struct sorted_unique_t { explicit sorted_unique_t() = default; };
inline constexpr sorted_unique_t sorted_unique{};
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template<class Key, class T, class Compare, class KeyContainer, class MappedContainer,
class Allocator>

struct uses_allocator<flat_map<Key, T, Compare, KeyContainer, MappedContainer>,
Allocator>;

// 24.6.9.7, erasure for flat_map
template<class Key, class T, class Compare, class KeyContainer, class MappedContainer,

class Predicate>
typename flat_map<Key, T, Compare, KeyContainer, MappedContainer>::size_type

erase_if(flat_map<Key, T, Compare, KeyContainer, MappedContainer>& c, Predicate pred);

// 24.6.10, class template flat_multimap
template<class Key, class T, class Compare = less<Key>,

class KeyContainer = vector<Key>, class MappedContainer = vector<T>>
class flat_multimap;

struct sorted_equivalent_t { explicit sorted_equivalent_t() = default; };
inline constexpr sorted_equivalent_t sorted_equivalent{};

template<class Key, class T, class Compare, class KeyContainer, class MappedContainer,
class Allocator>

struct uses_allocator<flat_multimap<Key, T, Compare, KeyContainer, MappedContainer>,
Allocator>;

// 24.6.10.4, erasure for flat_multimap
template<class Key, class T, class Compare, class KeyContainer, class MappedContainer,

class Predicate>
typename flat_multimap<Key, T, Compare, KeyContainer, MappedContainer>::size_type

erase_if(flat_multimap<Key, T, Compare, KeyContainer, MappedContainer>& c, Predicate pred);
}

24.6.5 Header <flat_set> synopsis [flat.set.syn]
#include <compare> // see 17.11.1
#include <initializer_list> // see 17.10.2

namespace std {
// 24.6.11, class template flat_set
template<class Key, class Compare = less<Key>, class KeyContainer = vector<Key>>

class flat_set;

struct sorted_unique_t { explicit sorted_unique_t() = default; };
inline constexpr sorted_unique_t sorted_unique{};

template<class Key, class Compare, class KeyContainer, class Allocator>
struct uses_allocator<flat_set<Key, Compare, KeyContainer>, Allocator>;

// 24.6.11.5, erasure for flat_set
template<class Key, class Compare, class KeyContainer, class Predicate>

typename flat_set<Key, Compare, KeyContainer>::size_type
erase_if(flat_set<Key, Compare, KeyContainer>& c, Predicate pred);

// 24.6.12, class template flat_multiset
template<class Key, class Compare = less<Key>, class KeyContainer = vector<Key>>

class flat_multiset;

struct sorted_equivalent_t { explicit sorted_equivalent_t() = default; };
inline constexpr sorted_equivalent_t sorted_equivalent{};

template<class Key, class Compare, class KeyContainer, class Allocator>
struct uses_allocator<flat_multiset<Key, Compare, KeyContainer>, Allocator>;
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// 24.6.12.5, erasure for flat_multiset
template<class Key, class Compare, class KeyContainer, class Predicate>

typename flat_multiset<Key, Compare, KeyContainer>::size_type
erase_if(flat_multiset<Key, Compare, KeyContainer>& c, Predicate pred);

}

24.6.6 Class template queue [queue]
24.6.6.1 Definition [queue.defn]

1 Any sequence container supporting operations front(), back(), push_back() and pop_front() can be used
to instantiate queue. In particular, list (24.3.10) and deque (24.3.8) can be used.

namespace std {
template<class T, class Container = deque<T>>
class queue {
public:

using value_type = typename Container::value_type;
using reference = typename Container::reference;
using const_reference = typename Container::const_reference;
using size_type = typename Container::size_type;
using container_type = Container;

protected:
Container c;

public:
queue() : queue(Container()) {}
explicit queue(const Container&);
explicit queue(Container&&);
template<class InputIterator> queue(InputIterator first, InputIterator last);
template<container-compatible-range <T> R> queue(from_range_t, R&& rg);
template<class Alloc> explicit queue(const Alloc&);
template<class Alloc> queue(const Container&, const Alloc&);
template<class Alloc> queue(Container&&, const Alloc&);
template<class Alloc> queue(const queue&, const Alloc&);
template<class Alloc> queue(queue&&, const Alloc&);
template<class InputIterator, class Alloc>

queue(InputIterator first, InputIterator last, const Alloc&);
template<container-compatible-range <T> R, class Alloc>

queue(from_range_t, R&& rg, const Alloc&);

[[nodiscard]] bool empty() const { return c.empty(); }
size_type size() const { return c.size(); }
reference front() { return c.front(); }
const_reference front() const { return c.front(); }
reference back() { return c.back(); }
const_reference back() const { return c.back(); }
void push(const value_type& x) { c.push_back(x); }
void push(value_type&& x) { c.push_back(std::move(x)); }
template<container-compatible-range <T> R> void push_range(R&& rg);
template<class... Args>

decltype(auto) emplace(Args&&... args)
{ return c.emplace_back(std::forward<Args>(args)...); }

void pop() { c.pop_front(); }
void swap(queue& q) noexcept(is_nothrow_swappable_v<Container>)

{ using std::swap; swap(c, q.c); }
};

template<class Container>
queue(Container) -> queue<typename Container::value_type, Container>;

template<class InputIterator>
queue(InputIterator, InputIterator) -> queue<iter-value-type <InputIterator>>;
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template<ranges::input_range R>
queue(from_range_t, R&&) -> queue<ranges::range_value_t<R>>;

template<class Container, class Allocator>
queue(Container, Allocator) -> queue<typename Container::value_type, Container>;

template<class InputIterator, class Allocator>
queue(InputIterator, InputIterator, Allocator)

-> queue<iter-value-type <InputIterator>, deque<iter-value-type <InputIterator>,
Allocator>>;

template<ranges::input_range R, class Allocator>
queue(from_range_t, R&&, Allocator)

-> queue<ranges::range_value_t<R>, deque<ranges::range_value_t<R>, Allocator>>;

template<class T, class Container, class Alloc>
struct uses_allocator<queue<T, Container>, Alloc>

: uses_allocator<Container, Alloc>::type { };
}

24.6.6.2 Constructors [queue.cons]

explicit queue(const Container& cont);

1 Effects: Initializes c with cont.

explicit queue(Container&& cont);

2 Effects: Initializes c with std::move(cont).

template<class InputIterator>
queue(InputIterator first, InputIterator last);

3 Effects: Initializes c with first as the first argument and last as the second argument.

template<container-compatible-range <T> R>
queue(from_range_t, R&& rg);

4 Effects: Initializes c with ranges::to<Container>(std::forward<R>(rg)).

24.6.6.3 Constructors with allocators [queue.cons.alloc]
1 If uses_allocator_v<container_type, Alloc> is false the constructors in this subclause shall not par-

ticipate in overload resolution.

template<class Alloc> explicit queue(const Alloc& a);

2 Effects: Initializes c with a.

template<class Alloc> queue(const container_type& cont, const Alloc& a);

3 Effects: Initializes c with cont as the first argument and a as the second argument.

template<class Alloc> queue(container_type&& cont, const Alloc& a);

4 Effects: Initializes c with std::move(cont) as the first argument and a as the second argument.

template<class Alloc> queue(const queue& q, const Alloc& a);

5 Effects: Initializes c with q.c as the first argument and a as the second argument.

template<class Alloc> queue(queue&& q, const Alloc& a);

6 Effects: Initializes c with std::move(q.c) as the first argument and a as the second argument.

template<class InputIterator, class Alloc>
queue(InputIterator first, InputIterator last, const Alloc& alloc);

7 Effects: Initializes c with first as the first argument, last as the second argument, and alloc as the
third argument.
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template<container-compatible-range <T> R, class Alloc>
queue(from_range_t, R&& rg, const Alloc& a);

8 Effects: Initializes c with ranges::to<Container>(std::forward<R>(rg), a).

24.6.6.4 Modifiers [queue.mod]

template<container-compatible-range <T> R>
void push_range(R&& rg);

1 Effects: Equivalent to c.append_range(std::forward<R>(rg)) if that is a valid expression, otherwise
ranges::copy(rg, back_inserter(c)).

24.6.6.5 Operators [queue.ops]

template<class T, class Container>
bool operator==(const queue<T, Container>& x, const queue<T, Container>& y);

1 Returns: x.c == y.c.

template<class T, class Container>
bool operator!=(const queue<T, Container>& x, const queue<T, Container>& y);

2 Returns: x.c != y.c.

template<class T, class Container>
bool operator< (const queue<T, Container>& x, const queue<T, Container>& y);

3 Returns: x.c < y.c.

template<class T, class Container>
bool operator> (const queue<T, Container>& x, const queue<T, Container>& y);

4 Returns: x.c > y.c.

template<class T, class Container>
bool operator<=(const queue<T, Container>& x, const queue<T, Container>& y);

5 Returns: x.c <= y.c.

template<class T, class Container>
bool operator>=(const queue<T, Container>& x,

const queue<T, Container>& y);

6 Returns: x.c >= y.c.

template<class T, three_way_comparable Container>
compare_three_way_result_t<Container>

operator<=>(const queue<T, Container>& x, const queue<T, Container>& y);

7 Returns: x.c <=> y.c.

24.6.6.6 Specialized algorithms [queue.special]

template<class T, class Container>
void swap(queue<T, Container>& x, queue<T, Container>& y) noexcept(noexcept(x.swap(y)));

1 Constraints: is_swappable_v<Container> is true.
2 Effects: As if by x.swap(y).

24.6.7 Class template priority_queue [priority.queue]
24.6.7.1 Overview [priqueue.overview]

1 Any sequence container with random access iterator and supporting operations front(), push_back() and
pop_back() can be used to instantiate priority_queue. In particular, vector (24.3.11) and deque (24.3.8)
can be used. Instantiating priority_queue also involves supplying a function or function object for
making priority comparisons; the library assumes that the function or function object defines a strict weak
ordering (27.8).
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namespace std {
template<class T, class Container = vector<T>,

class Compare = less<typename Container::value_type>>
class priority_queue {
public:

using value_type = typename Container::value_type;
using reference = typename Container::reference;
using const_reference = typename Container::const_reference;
using size_type = typename Container::size_type;
using container_type = Container;
using value_compare = Compare;

protected:
Container c;
Compare comp;

public:
priority_queue() : priority_queue(Compare()) {}
explicit priority_queue(const Compare& x) : priority_queue(x, Container()) {}
priority_queue(const Compare& x, const Container&);
priority_queue(const Compare& x, Container&&);
template<class InputIterator>

priority_queue(InputIterator first, InputIterator last, const Compare& x = Compare());
template<class InputIterator>

priority_queue(InputIterator first, InputIterator last, const Compare& x,
const Container&);

template<class InputIterator>
priority_queue(InputIterator first, InputIterator last, const Compare& x,

Container&&);
template<container-compatible-range <T> R>

priority_queue(from_range_t, R&& rg, const Compare& x = Compare());
template<class Alloc> explicit priority_queue(const Alloc&);
template<class Alloc> priority_queue(const Compare&, const Alloc&);
template<class Alloc> priority_queue(const Compare&, const Container&, const Alloc&);
template<class Alloc> priority_queue(const Compare&, Container&&, const Alloc&);
template<class Alloc> priority_queue(const priority_queue&, const Alloc&);
template<class Alloc> priority_queue(priority_queue&&, const Alloc&);
template<class InputIterator, class Alloc>

priority_queue(InputIterator, InputIterator, const Alloc&);
template<class InputIterator, class Alloc>

priority_queue(InputIterator, InputIterator, const Compare&, const Alloc&);
template<class InputIterator, class Alloc>

priority_queue(InputIterator, InputIterator, const Compare&, const Container&,
const Alloc&);

template<class InputIterator, class Alloc>
priority_queue(InputIterator, InputIterator, const Compare&, Container&&, const Alloc&);

template<container-compatible-range <T> R, class Alloc>
priority_queue(from_range_t, R&& rg, const Compare&, const Alloc&);

template<container-compatible-range <T> R, class Alloc>
priority_queue(from_range_t, R&& rg, const Alloc&);

[[nodiscard]] bool empty() const { return c.empty(); }
size_type size() const { return c.size(); }
const_reference top() const { return c.front(); }
void push(const value_type& x);
void push(value_type&& x);
template<container-compatible-range <T> R>

void push_range(R&& rg);
template<class... Args> void emplace(Args&&... args);
void pop();
void swap(priority_queue& q) noexcept(is_nothrow_swappable_v<Container> &&

is_nothrow_swappable_v<Compare>)
{ using std::swap; swap(c, q.c); swap(comp, q.comp); }

};
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template<class Compare, class Container>
priority_queue(Compare, Container)

-> priority_queue<typename Container::value_type, Container, Compare>;

template<class InputIterator,
class Compare = less<iter-value-type <InputIterator>>,
class Container = vector<iter-value-type <InputIterator>>>

priority_queue(InputIterator, InputIterator, Compare = Compare(), Container = Container())
-> priority_queue<iter-value-type <InputIterator>, Container, Compare>;

template<ranges::input_range R, class Compare = less<ranges::range_value_t<R>>>
priority_queue(from_range_t, R&&, Compare = Compare())

-> priority_queue<ranges::range_value_t<R>, vector<ranges::range_value_t<R>>, Compare>;

template<class Compare, class Container, class Allocator>
priority_queue(Compare, Container, Allocator)

-> priority_queue<typename Container::value_type, Container, Compare>;

template<class InputIterator, class Allocator>
priority_queue(InputIterator, InputIterator, Allocator)

-> priority_queue<iter-value-type <InputIterator>,
vector<iter-value-type <InputIterator>, Allocator>,
less<iter-value-type <InputIterator>>>;

template<class InputIterator, class Compare, class Allocator>
priority_queue(InputIterator, InputIterator, Compare, Allocator)

-> priority_queue<iter-value-type <InputIterator>,
vector<iter-value-type <InputIterator>, Allocator>, Compare>;

template<class InputIterator, class Compare, class Container, class Allocator>
priority_queue(InputIterator, InputIterator, Compare, Container, Allocator)

-> priority_queue<typename Container::value_type, Container, Compare>;

template<ranges::input_range R, class Compare, class Allocator>
priority_queue(from_range_t, R&&, Compare, Allocator)

-> priority_queue<ranges::range_value_t<R>, vector<ranges::range_value_t<R>, Allocator>,
Compare>;

template<ranges::input_range R, class Allocator>
priority_queue(from_range_t, R&&, Allocator)

-> priority_queue<ranges::range_value_t<R>, vector<ranges::range_value_t<R>, Allocator>>;

// no equality is provided

template<class T, class Container, class Compare, class Alloc>
struct uses_allocator<priority_queue<T, Container, Compare>, Alloc>

: uses_allocator<Container, Alloc>::type { };
}

24.6.7.2 Constructors [priqueue.cons]

priority_queue(const Compare& x, const Container& y);
priority_queue(const Compare& x, Container&& y);

1 Preconditions: x defines a strict weak ordering (27.8).
2 Effects: Initializes comp with x and c with y (copy constructing or move constructing as appropriate);

calls make_heap(c.begin(), c.end(), comp).

template<class InputIterator>
priority_queue(InputIterator first, InputIterator last, const Compare& x = Compare());

3 Preconditions: x defines a strict weak ordering (27.8).
4 Effects: Initializes c with first as the first argument and last as the second argument, and initializes

comp with x; then calls make_heap(c.begin(), c.end(), comp).
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template<class InputIterator>
priority_queue(InputIterator first, InputIterator last, const Compare& x, const Container& y);

template<class InputIterator>
priority_queue(InputIterator first, InputIterator last, const Compare& x, Container&& y);

5 Preconditions: x defines a strict weak ordering (27.8).
6 Effects: Initializes comp with x and c with y (copy constructing or move constructing as appropriate);

calls c.insert(c.end(), first, last); and finally calls make_heap(c.begin(), c.end(), comp).

template<container-compatible-range <T> R>
priority_queue(from_range_t, R&& rg, const Compare& x = Compare());

7 Preconditions: x defines a strict weak ordering (27.8).
8 Effects: Initializes comp with x and c with ranges::to<Container>(std::forward<R>(rg)) and

finally calls make_heap(c.begin(), c.end(), comp).

24.6.7.3 Constructors with allocators [priqueue.cons.alloc]
1 If uses_allocator_v<container_type, Alloc> is false the constructors in this subclause shall not par-

ticipate in overload resolution.

template<class Alloc> explicit priority_queue(const Alloc& a);

2 Effects: Initializes c with a and value-initializes comp.

template<class Alloc> priority_queue(const Compare& compare, const Alloc& a);

3 Effects: Initializes c with a and initializes comp with compare.

template<class Alloc>
priority_queue(const Compare& compare, const Container& cont, const Alloc& a);

4 Effects: Initializes c with cont as the first argument and a as the second argument, and initializes comp
with compare; calls make_heap(c.begin(), c.end(), comp).

template<class Alloc>
priority_queue(const Compare& compare, Container&& cont, const Alloc& a);

5 Effects: Initializes c with std::move(cont) as the first argument and a as the second argument, and
initializes comp with compare; calls make_heap(c.begin(), c.end(), comp).

template<class Alloc> priority_queue(const priority_queue& q, const Alloc& a);

6 Effects: Initializes c with q.c as the first argument and a as the second argument, and initializes comp
with q.comp.

template<class Alloc> priority_queue(priority_queue&& q, const Alloc& a);

7 Effects: Initializes c with std::move(q.c) as the first argument and a as the second argument, and
initializes comp with std::move(q.comp).

template<class InputIterator, class Alloc>
priority_queue(InputIterator first, InputIterator last, const Alloc& a);

8 Effects: Initializes c with first as the first argument, last as the second argument, and a as the third
argument, and value-initializes comp; calls make_heap(c.begin(), c.end(), comp).

template<class InputIterator, class Alloc>
priority_queue(InputIterator first, InputIterator last, const Compare& compare, const Alloc& a);

9 Effects: Initializes c with first as the first argument, last as the second argument, and a as the third
argument, and initializes comp with compare; calls make_heap(c.begin(), c.end(), comp).

template<class InputIterator, class Alloc>
priority_queue(InputIterator first, InputIterator last, const Compare& compare,

const Container& cont, const Alloc& a);

10 Effects: Initializes c with cont as the first argument and a as the second argument, and initializes
comp with compare; calls c.insert(c.end(), first, last); and finally calls make_heap(c.begin(),
c.end(), comp).
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template<class InputIterator, class Alloc>
priority_queue(InputIterator first, InputIterator last, const Compare& compare, Container&& cont,

const Alloc& a);

11 Effects: Initializes c with std::move(cont) as the first argument and a as the second argument,
and initializes comp with compare; calls c.insert(c.end(), first, last); and finally calls make_-
heap(c.begin(), c.end(), comp).

template<container-compatible-range <T> R, class Alloc>
priority_queue(from_range_t, R&& rg, const Compare& compare, const Alloc& a);

12 Effects: Initializes comp with compare and c with ranges::to<Container>(std::forward<R>(rg),
a); calls make_heap(c.begin(), c.end(), comp).

template<container-compatible-range <T> R, class Alloc>
priority_queue(from_range_t, R&& rg, const Alloc& a);

13 Effects: Initializes c with ranges::to<Container>(std::forward<R>(rg), a); calls make_heap(c.
begin(), c.end(), comp).

24.6.7.4 Members [priqueue.members]

void push(const value_type& x);

1 Effects: As if by:
c.push_back(x);
push_heap(c.begin(), c.end(), comp);

void push(value_type&& x);

2 Effects: As if by:
c.push_back(std::move(x));
push_heap(c.begin(), c.end(), comp);

template<container-compatible-range <T> R>
void push_range(R&& rg);

3 Effects: Inserts all elements of rg in c via c.append_range(std::forward<R>(rg)) if that is a valid
expression, or ranges::copy(rg, back_inserter(c)) otherwise. Then restores the heap property as
if by make_heap(c.begin(), c.end(), comp).

4 Postconditions: is_heap(c.begin(), c.end(), comp) is true.

template<class... Args> void emplace(Args&&... args);

5 Effects: As if by:
c.emplace_back(std::forward<Args>(args)...);
push_heap(c.begin(), c.end(), comp);

void pop();

6 Effects: As if by:
pop_heap(c.begin(), c.end(), comp);
c.pop_back();

24.6.7.5 Specialized algorithms [priqueue.special]

template<class T, class Container, class Compare>
void swap(priority_queue<T, Container, Compare>& x,

priority_queue<T, Container, Compare>& y) noexcept(noexcept(x.swap(y)));

1 Constraints: is_swappable_v<Container> is true and is_swappable_v<Compare> is true.
2 Effects: As if by x.swap(y).

24.6.8 Class template stack [stack]
24.6.8.1 General [stack.general]

1 Any sequence container supporting operations back(), push_back() and pop_back() can be used to instan-
tiate stack. In particular, vector (24.3.11), list (24.3.10) and deque (24.3.8) can be used.
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24.6.8.2 Definition [stack.defn]
namespace std {

template<class T, class Container = deque<T>>
class stack {
public:

using value_type = typename Container::value_type;
using reference = typename Container::reference;
using const_reference = typename Container::const_reference;
using size_type = typename Container::size_type;
using container_type = Container;

protected:
Container c;

public:
stack() : stack(Container()) {}
explicit stack(const Container&);
explicit stack(Container&&);
template<class InputIterator> stack(InputIterator first, InputIterator last);
template<container-compatible-range <T> R> stack(from_range_t, R&& rg);
template<class Alloc> explicit stack(const Alloc&);
template<class Alloc> stack(const Container&, const Alloc&);
template<class Alloc> stack(Container&&, const Alloc&);
template<class Alloc> stack(const stack&, const Alloc&);
template<class Alloc> stack(stack&&, const Alloc&);
template<class InputIterator, class Alloc>

stack(InputIterator first, InputIterator last, const Alloc&);
template<container-compatible-range <T> R, class Alloc>

stack(from_range_t, R&& rg, const Alloc&);

[[nodiscard]] bool empty() const { return c.empty(); }
size_type size() const { return c.size(); }
reference top() { return c.back(); }
const_reference top() const { return c.back(); }
void push(const value_type& x) { c.push_back(x); }
void push(value_type&& x) { c.push_back(std::move(x)); }
template<container-compatible-range <T> R>

void push_range(R&& rg);
template<class... Args>

decltype(auto) emplace(Args&&... args)
{ return c.emplace_back(std::forward<Args>(args)...); }

void pop() { c.pop_back(); }
void swap(stack& s) noexcept(is_nothrow_swappable_v<Container>)

{ using std::swap; swap(c, s.c); }
};

template<class Container>
stack(Container) -> stack<typename Container::value_type, Container>;

template<class InputIterator>
stack(InputIterator, InputIterator) -> stack<iter-value-type <InputIterator>>;

template<ranges::input_range R>
stack(from_range_t, R&&) -> stack<ranges::range_value_t<R>>;

template<class Container, class Allocator>
stack(Container, Allocator) -> stack<typename Container::value_type, Container>;

template<class InputIterator, class Allocator>
stack(InputIterator, InputIterator, Allocator)

-> stack<iter-value-type <InputIterator>, deque<iter-value-type <InputIterator>,
Allocator>>;
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template<ranges::input_range R, class Allocator>
stack(from_range_t, R&&, Allocator)

-> stack<ranges::range_value_t<R>, deque<ranges::range_value_t<R>, Allocator>>;

template<class T, class Container, class Alloc>
struct uses_allocator<stack<T, Container>, Alloc>

: uses_allocator<Container, Alloc>::type { };
}

24.6.8.3 Constructors [stack.cons]

explicit stack(const Container& cont);

1 Effects: Initializes c with cont.

explicit stack(Container&& cont);

2 Effects: Initializes c with std::move(cont).

template<class InputIterator>
stack(InputIterator first, InputIterator last);

3 Effects: Initializes c with first as the first argument and last as the second argument.

template<container-compatible-range <T> R>
stack(from_range_t, R&& rg);

4 Effects: Initializes c with ranges::to<Container>(std::forward<R>(rg)).

24.6.8.4 Constructors with allocators [stack.cons.alloc]
1 If uses_allocator_v<container_type, Alloc> is false the constructors in this subclause shall not par-

ticipate in overload resolution.

template<class Alloc> explicit stack(const Alloc& a);

2 Effects: Initializes c with a.

template<class Alloc> stack(const container_type& cont, const Alloc& a);

3 Effects: Initializes c with cont as the first argument and a as the second argument.

template<class Alloc> stack(container_type&& cont, const Alloc& a);

4 Effects: Initializes c with std::move(cont) as the first argument and a as the second argument.

template<class Alloc> stack(const stack& s, const Alloc& a);

5 Effects: Initializes c with s.c as the first argument and a as the second argument.

template<class Alloc> stack(stack&& s, const Alloc& a);

6 Effects: Initializes c with std::move(s.c) as the first argument and a as the second argument.

template<class InputIterator, class Alloc>
stack(InputIterator first, InputIterator last, const Alloc& alloc);

7 Effects: Initializes c with first as the first argument, last as the second argument, and alloc as the
third argument.

template<container-compatible-range <T> R, class Alloc>
stack(from_range_t, R&& rg, const Alloc& a);

8 Effects: Initializes c with ranges::to<Container>(std::forward<R>(rg), a).

24.6.8.5 Modifiers [stack.mod]

template<container-compatible-range <T> R>
void push_range(R&& rg);

1 Effects: Equivalent to c.append_range(std::forward<R>(rg)) if that is a valid expression, otherwise
ranges::copy(rg, back_inserter(c)).
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24.6.8.6 Operators [stack.ops]

template<class T, class Container>
bool operator==(const stack<T, Container>& x, const stack<T, Container>& y);

1 Returns: x.c == y.c.

template<class T, class Container>
bool operator!=(const stack<T, Container>& x, const stack<T, Container>& y);

2 Returns: x.c != y.c.

template<class T, class Container>
bool operator< (const stack<T, Container>& x, const stack<T, Container>& y);

3 Returns: x.c < y.c.

template<class T, class Container>
bool operator> (const stack<T, Container>& x, const stack<T, Container>& y);

4 Returns: x.c > y.c.

template<class T, class Container>
bool operator<=(const stack<T, Container>& x, const stack<T, Container>& y);

5 Returns: x.c <= y.c.

template<class T, class Container>
bool operator>=(const stack<T, Container>& x, const stack<T, Container>& y);

6 Returns: x.c >= y.c.

template<class T, three_way_comparable Container>
compare_three_way_result_t<Container>

operator<=>(const stack<T, Container>& x, const stack<T, Container>& y);

7 Returns: x.c <=> y.c.

24.6.8.7 Specialized algorithms [stack.special]

template<class T, class Container>
void swap(stack<T, Container>& x, stack<T, Container>& y) noexcept(noexcept(x.swap(y)));

1 Constraints: is_swappable_v<Container> is true.
2 Effects: As if by x.swap(y).

24.6.9 Class template flat_map [flat.map]
24.6.9.1 Overview [flat.map.overview]

1 A flat_map is a container adaptor that provides an associative container interface that supports unique keys
(i.e., contains at most one of each key value) and provides for fast retrieval of values of another type T based
on the keys. flat_map supports iterators that meet the Cpp17InputIterator requirements and model the
random_access_iterator concept (25.3.4.13).

2 A flat_map meets all of the requirements of a container (24.2.2.2) and of a reversible container (24.2.2.3),
plus the optional container requirements (24.2.2.4). flat_map meets the requirements of an associative
container (24.2.7), except that:

—(2.1) it does not meet the requirements related to node handles (24.2.5),
—(2.2) it does not meet the requirements related to iterator invalidation, and
—(2.3) the time complexity of the operations that insert or erase a single element from the map is linear,

including the ones that take an insertion position iterator.
[Note 1 : A flat_map does not meet the additional requirements of an allocator-aware container (24.2.2.5). — end
note ]

3 A flat_map also provides most operations described in 24.2.7 for unique keys. This means that a flat_map
supports the a_uniq operations in 24.2.7 but not the a_eq operations. For a flat_map<Key, T> the key_type
is Key and the value_type is pair<Key, T>.
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4 Descriptions are provided here only for operations on flat_map that are not described in one of those sets of
requirements or for operations where there is additional semantic information.

5 A flat_map maintains the following invariants:
—(5.1) it contains the same number of keys and values;
—(5.2) the keys are sorted with respect to the comparison object; and
—(5.3) the value at offset off within the value container is the value associated with the key at offset off

within the key container.
6 If any member function in 24.6.9.2 exits via an exception the invariants are restored.

[Note 2 : This can result in the flat_map being emptied. — end note ]
7 Any type C that meets the sequence container requirements (24.2.4) can be used to instantiate flat_map,

as long as C::iterator meets the Cpp17RandomAccessIterator requirements and invocations of member
functions C::size and C::max_size do not exit via an exception. In particular, vector (24.3.11) and
deque (24.3.8) can be used.
[Note 3 : vector<bool> is not a sequence container. — end note ]

8 The program is ill-formed if Key is not the same type as KeyContainer::value_type or T is not the same
type as MappedContainer::value_type.

9 The effect of calling a constructor that takes both key_container_type and mapped_container_type
arguments with containers of different sizes is undefined.

10 The effect of calling a constructor or member function that takes a sorted_unique_t argument with a
container, containers, or range that is not sorted with respect to key_comp(), or that contains equal elements,
is undefined.

24.6.9.2 Definition [flat.map.defn]
namespace std {

template<class Key, class T, class Compare = less<Key>,
class KeyContainer = vector<Key>, class MappedContainer = vector<T>>

class flat_map {
public:

// types
using key_type = Key;
using mapped_type = T;
using value_type = pair<key_type, mapped_type>;
using key_compare = Compare;
using reference = pair<const key_type&, mapped_type&>;
using const_reference = pair<const key_type&, const mapped_type&>;
using size_type = size_t;
using difference_type = ptrdiff_t;
using iterator = implementation-defined ; // see 24.2
using const_iterator = implementation-defined ; // see 24.2
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
using key_container_type = KeyContainer;
using mapped_container_type = MappedContainer;

class value_compare {
private:

key_compare comp; // exposition only
value_compare(key_compare c) : comp(c) { } // exposition only

public:
bool operator()(const_reference x, const_reference y) const {

return comp(x.first, y.first);
}

};

struct containers {
key_container_type keys;
mapped_container_type values;
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};

// 24.6.9.3, construct/copy/destroy
flat_map() : flat_map(key_compare()) { }

flat_map(key_container_type key_cont, mapped_container_type mapped_cont,
const key_compare& comp = key_compare());

template<class Allocator>
flat_map(const key_container_type& key_cont, const mapped_container_type& mapped_cont,

const Allocator& a);
template<class Allocator>

flat_map(const key_container_type& key_cont, const mapped_container_type& mapped_cont,
const key_compare& comp, const Allocator& a);

flat_map(sorted_unique_t, key_container_type key_cont, mapped_container_type mapped_cont,
const key_compare& comp = key_compare());

template<class Allocator>
flat_map(sorted_unique_t, const key_container_type& key_cont,

const mapped_container_type& mapped_cont, const Allocator& a);
template<class Allocator>

flat_map(sorted_unique_t, const key_container_type& key_cont,
const mapped_container_type& mapped_cont,
const key_compare& comp, const Allocator& a);

explicit flat_map(const key_compare& comp)
: c(), compare(comp) { }

template<class Allocator>
flat_map(const key_compare& comp, const Allocator& a);

template<class Allocator>
explicit flat_map(const Allocator& a);

template<class InputIterator>
flat_map(InputIterator first, InputIterator last, const key_compare& comp = key_compare())

: c(), compare(comp) { insert(first, last); }
template<class InputIterator, class Allocator>

flat_map(InputIterator first, InputIterator last,
const key_compare& comp, const Allocator& a);

template<class InputIterator, class Allocator>
flat_map(InputIterator first, InputIterator last, const Allocator& a);

template<container-compatible-range <value_type> R>
flat_map(from_range_t fr, R&& rg)

: flat_map(fr, std::forward<R>(rg), key_compare()) { }
template<container-compatible-range <value_type> R, class Allocator>

flat_map(from_range_t, R&& rg, const Allocator& a);
template<container-compatible-range <value_type> R>

flat_map(from_range_t, R&& rg, const key_compare& comp)
: flat_map(comp) { insert_range(std::forward<R>(rg)); }

template<container-compatible-range <value_type> R, class Allocator>
flat_map(from_range_t, R&& rg, const key_compare& comp, const Allocator& a);

template<class InputIterator>
flat_map(sorted_unique_t s, InputIterator first, InputIterator last,

const key_compare& comp = key_compare())
: c(), compare(comp) { insert(s, first, last); }

template<class InputIterator, class Allocator>
flat_map(sorted_unique_t, InputIterator first, InputIterator last,

const key_compare& comp, const Allocator& a);
template<class InputIterator, class Allocator>

flat_map(sorted_unique_t, InputIterator first, InputIterator last, const Allocator& a);

flat_map(initializer_list<value_type> il, const key_compare& comp = key_compare())
: flat_map(il.begin(), il.end(), comp) { }
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template<class Allocator>
flat_map(initializer_list<value_type> il, const key_compare& comp, const Allocator& a);

template<class Allocator>
flat_map(initializer_list<value_type> il, const Allocator& a);

flat_map(sorted_unique_t s, initializer_list<value_type> il,
const key_compare& comp = key_compare())

: flat_map(s, il.begin(), il.end(), comp) { }
template<class Allocator>

flat_map(sorted_unique_t, initializer_list<value_type> il,
const key_compare& comp, const Allocator& a);

template<class Allocator>
flat_map(sorted_unique_t, initializer_list<value_type> il, const Allocator& a);

flat_map& operator=(initializer_list<value_type> il);

// iterators
iterator begin() noexcept;
const_iterator begin() const noexcept;
iterator end() noexcept;
const_iterator end() const noexcept;

reverse_iterator rbegin() noexcept;
const_reverse_iterator rbegin() const noexcept;
reverse_iterator rend() noexcept;
const_reverse_iterator rend() const noexcept;

const_iterator cbegin() const noexcept;
const_iterator cend() const noexcept;
const_reverse_iterator crbegin() const noexcept;
const_reverse_iterator crend() const noexcept;

// 24.6.9.4, capacity
[[nodiscard]] bool empty() const noexcept;
size_type size() const noexcept;
size_type max_size() const noexcept;

// 24.6.9.5, element access
mapped_type& operator[](const key_type& x);
mapped_type& operator[](key_type&& x);
template<class K> mapped_type& operator[](K&& x);
mapped_type& at(const key_type& x);
const mapped_type& at(const key_type& x) const;
template<class K> mapped_type& at(const K& x);
template<class K> const mapped_type& at(const K& x) const;

// 24.6.9.6, modifiers
template<class... Args> pair<iterator, bool> emplace(Args&&... args);
template<class... Args>

iterator emplace_hint(const_iterator position, Args&&... args);

pair<iterator, bool> insert(const value_type& x)
{ return emplace(x); }

pair<iterator, bool> insert(value_type&& x)
{ return emplace(std::move(x)); }

iterator insert(const_iterator position, const value_type& x)
{ return emplace_hint(position, x); }

iterator insert(const_iterator position, value_type&& x)
{ return emplace_hint(position, std::move(x)); }

template<class P> pair<iterator, bool> insert(P&& x);
template<class P>

iterator insert(const_iterator position, P&&);
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template<class InputIterator>
void insert(InputIterator first, InputIterator last);

template<class InputIterator>
void insert(sorted_unique_t, InputIterator first, InputIterator last);

template<container-compatible-range <value_type> R>
void insert_range(R&& rg);

void insert(initializer_list<value_type> il)
{ insert(il.begin(), il.end()); }

void insert(sorted_unique_t s, initializer_list<value_type> il)
{ insert(s, il.begin(), il.end()); }

containers extract() &&;
void replace(key_container_type&& key_cont, mapped_container_type&& mapped_cont);

template<class... Args>
pair<iterator, bool> try_emplace(const key_type& k, Args&&... args);

template<class... Args>
pair<iterator, bool> try_emplace(key_type&& k, Args&&... args);

template<class K, class... Args>
pair<iterator, bool> try_emplace(K&& k, Args&&... args);

template<class... Args>
iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args);

template<class... Args>
iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args);

template<class K, class... Args>
iterator try_emplace(const_iterator hint, K&& k, Args&&... args);

template<class M>
pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj);

template<class M>
pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj);

template<class K, class M>
pair<iterator, bool> insert_or_assign(K&& k, M&& obj);

template<class M>
iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj);

template<class M>
iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj);

template<class K, class M>
iterator insert_or_assign(const_iterator hint, K&& k, M&& obj);

iterator erase(iterator position);
iterator erase(const_iterator position);
size_type erase(const key_type& x);
template<class K> size_type erase(K&& x);
iterator erase(const_iterator first, const_iterator last);

void swap(flat_map& y) noexcept;
void clear() noexcept;

// observers
key_compare key_comp() const;
value_compare value_comp() const;

const key_container_type& keys() const noexcept { return c.keys; }
const mapped_container_type& values() const noexcept { return c.values; }

// map operations
iterator find(const key_type& x);
const_iterator find(const key_type& x) const;
template<class K> iterator find(const K& x);
template<class K> const_iterator find(const K& x) const;

size_type count(const key_type& x) const;
template<class K> size_type count(const K& x) const;
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bool contains(const key_type& x) const;
template<class K> bool contains(const K& x) const;

iterator lower_bound(const key_type& x);
const_iterator lower_bound(const key_type& x) const;
template<class K> iterator lower_bound(const K& x);
template<class K> const_iterator lower_bound(const K& x) const;

iterator upper_bound(const key_type& x);
const_iterator upper_bound(const key_type& x) const;
template<class K> iterator upper_bound(const K& x);
template<class K> const_iterator upper_bound(const K& x) const;

pair<iterator, iterator> equal_range(const key_type& x);
pair<const_iterator, const_iterator> equal_range(const key_type& x) const;
template<class K> pair<iterator, iterator> equal_range(const K& x);
template<class K> pair<const_iterator, const_iterator> equal_range(const K& x) const;

friend bool operator==(const flat_map& x, const flat_map& y);

friend synth-three-way-result <value_type>
operator<=>(const flat_map& x, const flat_map& y);

friend void swap(flat_map& x, flat_map& y) noexcept
{ x.swap(y); }

private:
containers c; // exposition only
key_compare compare; // exposition only

struct key_equiv { // exposition only
key_equiv(key_compare c) : comp(c) { }
bool operator()(const_reference x, const_reference y) const {

return !comp(x.first, y.first) && !comp(y.first, x.first);
}
key_compare comp;

};
};

template<class KeyContainer, class MappedContainer,
class Compare = less<typename KeyContainer::value_type>>

flat_map(KeyContainer, MappedContainer, Compare = Compare())
-> flat_map<typename KeyContainer::value_type, typename MappedContainer::value_type,

Compare, KeyContainer, MappedContainer>;

template<class KeyContainer, class MappedContainer, class Allocator>
flat_map(KeyContainer, MappedContainer, Allocator)

-> flat_map<typename KeyContainer::value_type, typename MappedContainer::value_type,
less<typename KeyContainer::value_type>, KeyContainer, MappedContainer>;

template<class KeyContainer, class MappedContainer, class Compare, class Allocator>
flat_map(KeyContainer, MappedContainer, Compare, Allocator)

-> flat_map<typename KeyContainer::value_type, typename MappedContainer::value_type,
Compare, KeyContainer, MappedContainer>;

template<class KeyContainer, class MappedContainer,
class Compare = less<typename KeyContainer::value_type>>

flat_map(sorted_unique_t, KeyContainer, MappedContainer, Compare = Compare())
-> flat_map<typename KeyContainer::value_type, typename MappedContainer::value_type,

Compare, KeyContainer, MappedContainer>;

template<class KeyContainer, class MappedContainer, class Allocator>
flat_map(sorted_unique_t, KeyContainer, MappedContainer, Allocator)

-> flat_map<typename KeyContainer::value_type, typename MappedContainer::value_type,
less<typename KeyContainer::value_type>, KeyContainer, MappedContainer>;
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template<class KeyContainer, class MappedContainer, class Compare, class Allocator>
flat_map(sorted_unique_t, KeyContainer, MappedContainer, Compare, Allocator)

-> flat_map<typename KeyContainer::value_type, typename MappedContainer::value_type,
Compare, KeyContainer, MappedContainer>;

template<class InputIterator, class Compare = less<iter-key-type <InputIterator>>>
flat_map(InputIterator, InputIterator, Compare = Compare())

-> flat_map<iter-key-type <InputIterator>, iter-mapped-type <InputIterator>, Compare>;

template<class InputIterator, class Compare = less<iter-key-type <InputIterator>>>
flat_map(sorted_unique_t, InputIterator, InputIterator, Compare = Compare())

-> flat_map<iter-key-type <InputIterator>, iter-mapped-type <InputIterator>, Compare>;

template<ranges::input_range R, class Compare = less<range-key-type <R>>,
class Allocator = allocator<byte>>

flat_map(from_range_t, R&&, Compare = Compare(), Allocator = Allocator())
-> flat_map<range-key-type <R>, range-mapped-type <R>, Compare,

vector<range-key-type <R>, alloc-rebind <Allocator, range-key-type <R>>>,
vector<range-mapped-type <R>, alloc-rebind <Allocator, range-mapped-type <R>>>>;

template<ranges::input_range R, class Allocator>
flat_map(from_range_t, R&&, Allocator)

-> flat_map<range-key-type <R>, range-mapped-type <R>, less<range-key-type <R>>,
vector<range-key-type <R>, alloc-rebind <Allocator, range-key-type <R>>>,
vector<range-mapped-type <R>, alloc-rebind <Allocator, range-mapped-type <R>>>>;

template<class Key, class T, class Compare = less<Key>>
flat_map(initializer_list<pair<Key, T>>, Compare = Compare())

-> flat_map<Key, T, Compare>;

template<class Key, class T, class Compare = less<Key>>
flat_map(sorted_unique_t, initializer_list<pair<Key, T>>, Compare = Compare())

-> flat_map<Key, T, Compare>;

template<class Key, class T, class Compare, class KeyContainer, class MappedContainer,
class Allocator>

struct uses_allocator<flat_map<Key, T, Compare, KeyContainer, MappedContainer>, Allocator>
: bool_constant<uses_allocator_v<KeyContainer, Allocator> &&

uses_allocator_v<MappedContainer, Allocator>> { };
}

1 The member type containers has the data members and special members specified above. It has no base
classes or members other than those specified.

24.6.9.3 Constructors [flat.map.cons]

flat_map(key_container_type key_cont, mapped_container_type mapped_cont,
const key_compare& comp = key_compare());

1 Effects: Initializes c.keys with std::move(key_cont), c.values with std::move(mapped_cont), and
compare with comp; sorts the range [begin(), end()) with respect to value_comp(); and finally erases
the duplicate elements as if by:

auto zv = ranges::zip_view(c.keys, c.values);
auto it = ranges::unique(zv, key_equiv(compare)).begin();
auto dist = distance(zv.begin(), it);
c.keys.erase(c.keys.begin() + dist, c.keys.end());
c.values.erase(c.values.begin() + dist, c.values.end());

2 Complexity: Linear in N if the container arguments are already sorted with respect to value_comp()
and otherwise N log N , where N is the value of key_cont.size() before this call.

template<class Allocator>
flat_map(const key_container_type& key_cont, const mapped_container_type& mapped_cont,

const Allocator& a);
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template<class Allocator>
flat_map(const key_container_type& key_cont, const mapped_container_type& mapped_cont,

const key_compare& comp, const Allocator& a);

3 Constraints: uses_allocator_v<key_container_type, Allocator> is true and uses_allocator_-
v<mapped_container_type, Allocator> is true.

4 Effects: Equivalent to flat_map(key_cont, mapped_cont) and flat_map(key_cont, mapped_cont,
comp), respectively, except that c.keys and c.values are constructed with uses-allocator construction
(20.2.8.2).

5 Complexity: Same as flat_map(key_cont, mapped_cont) and flat_map(key_cont, mapped_cont,
comp), respectively.

flat_map(sorted_unique_t, key_container_type key_cont, mapped_container_type mapped_cont,
const key_compare& comp = key_compare());

6 Effects: Initializes c.keys with std::move(key_cont), c.values with std::move(mapped_cont), and
compare with comp.

7 Complexity: Constant.

template<class Allocator>
flat_map(sorted_unique_t s, const key_container_type& key_cont,

const mapped_container_type& mapped_cont, const Allocator& a);
template<class Allocator>

flat_map(sorted_unique_t s, const key_container_type& key_cont,
const mapped_container_type& mapped_cont, const key_compare& comp,
const Allocator& a);

8 Constraints: uses_allocator_v<key_container_type, Allocator> is true and uses_allocator_-
v<mapped_container_type, Allocator> is true.

9 Effects: Equivalent to flat_map(s, key_cont, mapped_cont) and flat_map(s, key_cont,
mapped_cont, comp), respectively, except that c.keys and c.values are constructed with uses-
allocator construction (20.2.8.2).

10 Complexity: Linear.

template<class Allocator>
flat_map(const key_compare& comp, const Allocator& a);

template<class Allocator>
explicit flat_map(const Allocator& a);

template<class InputIterator, class Allocator>
flat_map(InputIterator first, InputIterator last, const key_compare& comp, const Allocator& a);

template<class InputIterator, class Allocator>
flat_map(InputIterator first, InputIterator last, const Allocator& a);

template<container-compatible-range <value_type> R, class Allocator>
flat_map(from_range_t, R&& rg, const Allocator& a);

template<container-compatible-range <value_type> R, class Allocator>
flat_map(from_range_t, R&& rg, const key_compare& comp, const Allocator& a);

template<class InputIterator, class Allocator>
flat_map(sorted_unique_t, InputIterator first, InputIterator last,

const key_compare& comp, const Allocator& a);
template<class InputIterator, class Allocator>

flat_map(sorted_unique_t, InputIterator first, InputIterator last, const Allocator& a);
template<class Allocator>

flat_map(initializer_list<value_type> il, const key_compare& comp, const Allocator& a);
template<class Allocator>

flat_map(initializer_list<value_type> il, const Allocator& a);
template<class Allocator>

flat_map(sorted_unique_t, initializer_list<value_type> il,
const key_compare& comp, const Allocator& a);

template<class Allocator>
flat_map(sorted_unique_t, initializer_list<value_type> il, const Allocator& a);

11 Constraints: uses_allocator_v<key_container_type, Allocator> is true and uses_allocator_-
v<mapped_container_type, Allocator> is true.
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12 Effects: Equivalent to the corresponding non-allocator constructors except that c.keys and c.values
are constructed with uses-allocator construction (20.2.8.2).

24.6.9.4 Capacity [flat.map.capacity]

size_type size() const noexcept;

1 Returns: c.keys.size().

size_type max_size() const noexcept;

2 Returns: min<size_type>(c.keys.max_size(), c.values.max_size()).

24.6.9.5 Access [flat.map.access]

mapped_type& operator[](const key_type& x);

1 Effects: Equivalent to: return try_emplace(x).first->second;

mapped_type& operator[](key_type&& x);

2 Effects: Equivalent to: return try_emplace(std::move(x)).first->second;

template<class K> mapped_type& operator[](K&& x);

3 Constraints: The qualified-id Compare::is_transparent is valid and denotes a type.
4 Effects: Equivalent to: return try_emplace(std::forward<K>(x)).first->second;

mapped_type& at(const key_type& x);
const mapped_type& at(const key_type& x) const;

5 Returns: A reference to the mapped_type corresponding to x in *this.
6 Throws: An exception object of type out_of_range if no such element is present.
7 Complexity: Logarithmic.

template<class K> mapped_type& at(const K& x);
template<class K> const mapped_type& at(const K& x) const;

8 Constraints: The qualified-id Compare::is_transparent is valid and denotes a type.
9 Preconditions: The expression find(x) is well-formed and has well-defined behavior.

10 Returns: A reference to the mapped_type corresponding to x in *this.
11 Throws: An exception object of type out_of_range if no such element is present.
12 Complexity: Logarithmic.

24.6.9.6 Modifiers [flat.map.modifiers]

template<class... Args> pair<iterator, bool> emplace(Args&&... args);

1 Constraints: is_constructible_v<pair<key_type, mapped_type>, Args...> is true.
2 Effects: Initializes an object t of type pair<key_type, mapped_type> with std::forward<Args>(

args)...; if the map already contains an element whose key is equivalent to t.first, *this is
unchanged. Otherwise, equivalent to:

auto key_it = ranges::upper_bound(c.keys, t.first, compare);
auto value_it = c.values.begin() + distance(c.keys.begin(), key_it);
c.keys.insert(key_it, std::move(t.first));
c.values.insert(value_it, std::move(t.second));

3 Returns: The bool component of the returned pair is true if and only if the insertion took place, and
the iterator component of the pair points to the element with key equivalent to t.first.

template<class P> pair<iterator, bool> insert(P&& x);
template<class P> iterator insert(const_iterator position, P&& x);

4 Constraints: is_constructible_v<pair<key_type, mapped_type>, P> is true.
5 Effects: The first form is equivalent to return emplace(std::forward<P>(x));. The second form is

equivalent to return emplace_hint(position, std::forward<P>(x));.
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template<class InputIterator>
void insert(InputIterator first, InputIterator last);

6 Effects: Adds elements to c as if by:
for (; first != last; ++first) {

value_type value = *first;
c.keys.insert(c.keys.end(), std::move(value.first));
c.values.insert(c.values.end(), std::move(value.second));

}

Then, sorts the range of newly inserted elements with respect to value_comp(); merges the resulting
sorted range and the sorted range of pre-existing elements into a single sorted range; and finally erases
the duplicate elements as if by:

auto zv = ranges::zip_view(c.keys, c.values);
auto it = ranges::unique(zv, key_equiv(compare)).begin();
auto dist = distance(zv.begin(), it);
c.keys.erase(c.keys.begin() + dist, c.keys.end());
c.values.erase(c.values.begin() + dist, c.values.end());

7 Complexity: N + M log M , where N is size() before the operation and M is distance(first,
last).

8 Remarks: Since this operation performs an in-place merge, it may allocate memory.

template<class InputIterator>
void insert(sorted_unique_t, InputIterator first, InputIterator last);

9 Effects: Adds elements to c as if by:
for (; first != last; ++first) {

value_type value = *first;
c.keys.insert(c.keys.end(), std::move(value.first));
c.values.insert(c.values.end(), std::move(value.second));

}

Then, merges the sorted range of newly added elements and the sorted range of pre-existing elements
into a single sorted range; and finally erases the duplicate elements as if by:

auto zv = ranges::zip_view(c.keys, c.values);
auto it = ranges::unique(zv, key_equiv(compare)).begin();
auto dist = distance(zv.begin(), it);
c.keys.erase(c.keys.begin() + dist, c.keys.end());
c.values.erase(c.values.begin() + dist, c.values.end());

10 Complexity: Linear in N , where N is size() after the operation.
11 Remarks: Since this operation performs an in-place merge, it may allocate memory.

template<container-compatible-range <value_type> R>
void insert_range(R&& rg);

12 Effects: Adds elements to c as if by:
for (const auto& e : rg) {

c.keys.insert(c.keys.end(), e.first);
c.values.insert(c.values.end(), e.second);

}

Then, sorts the range of newly inserted elements with respect to value_comp(); merges the resulting
sorted range and the sorted range of pre-existing elements into a single sorted range; and finally erases
the duplicate elements as if by:

auto zv = ranges::zip_view(c.keys, c.values);
auto it = ranges::unique(zv, key_equiv(compare)).begin();
auto dist = distance(zv.begin(), it);
c.keys.erase(c.keys.begin() + dist, c.keys.end());
c.values.erase(c.values.begin() + dist, c.values.end());

13 Complexity: N + M log M , where N is size() before the operation and M is ranges::distance(rg).
14 Remarks: Since this operation performs an in-place merge, it may allocate memory.
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template<class... Args>
pair<iterator, bool> try_emplace(const key_type& k, Args&&... args);

template<class... Args>
pair<iterator, bool> try_emplace(key_type&& k, Args&&... args);

template<class... Args>
iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args);

template<class... Args>
iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args);

15 Constraints: is_constructible_v<mapped_type, Args...> is true.
16 Effects: If the map already contains an element whose key is equivalent to k, *this and args... are

unchanged. Otherwise equivalent to:
auto key_it = ranges::upper_bound(c.keys, k, compare);
auto value_it = c.values.begin() + distance(c.keys.begin(), key_it);
c.keys.insert(key_it, std::forward<decltype(k)>(k));
c.values.emplace(value_it, std::forward<Args>(args)...);

17 Returns: In the first two overloads, the bool component of the returned pair is true if and only if the
insertion took place. The returned iterator points to the map element whose key is equivalent to k.

18 Complexity: The same as emplace for the first two overloads, and the same as emplace_hint for the
last two overloads.

template<class K, class... Args>
pair<iterator, bool> try_emplace(K&& k, Args&&... args);

template<class K, class... Args>
iterator try_emplace(const_iterator hint, K&& k, Args&&... args);

19 Constraints:
—(19.1) The qualified-id Compare::is_transparent is valid and denotes a type.
—(19.2) is_constructible_v<key_type, K> is true.
—(19.3) is_constructible_v<mapped_type, Args...> is true.
—(19.4) For the first overload, is_convertible_v<K&&, const_iterator> and is_convertible_v<K&&,

iterator> are both false.
20 Preconditions: The conversion from k into key_type constructs an object u, for which find(k) ==

find(u) is true.
21 Effects: If the map already contains an element whose key is equivalent to k, *this and args... are

unchanged. Otherwise equivalent to:
auto key_it = ranges::upper_bound(c.keys, k, compare);
auto value_it = c.values.begin() + distance(c.keys.begin(), key_it);
c.keys.emplace(key_it, std::forward<K>(k));
c.values.emplace(value_it, std::forward<Args>(args)...);

22 Returns: In the first overload, the bool component of the returned pair is true if and only if the
insertion took place. The returned iterator points to the map element whose key is equivalent to k.

23 Complexity: The same as emplace and emplace_hint, respectively.

template<class M>
pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj);

template<class M>
pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj);

template<class M>
iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj);

template<class M>
iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj);

24 Constraints: is_assignable_v<mapped_type&, M> is true and is_constructible_v<mapped_type,
M> is true.

25 Effects: If the map already contains an element e whose key is equivalent to k, assigns std::forward<
M>(obj) to e.second. Otherwise, equivalent to

try_emplace(std::forward<decltype(k)>(k), std::forward<M>(obj))
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for the first two overloads or
try_emplace(hint, std::forward<decltype(k)>(k), std::forward<M>(obj))

for the last two overloads.
26 Returns: In the first two overloads, the bool component of the returned pair is true if and only if the

insertion took place. The returned iterator points to the map element whose key is equivalent to k.
27 Complexity: The same as emplace for the first two overloads and the same as emplace_hint for the

last two overloads.

template<class K, class M>
pair<iterator, bool> insert_or_assign(K&& k, M&& obj);

template<class K, class M>
iterator insert_or_assign(const_iterator hint, K&& k, M&& obj);

28 Constraints:
—(28.1) The qualified-id Compare::is_transparent is valid and denotes a type.
—(28.2) is_constructible_v<key_type, K> is true.
—(28.3) is_assignable_v<mapped_type&, M> is true.
—(28.4) is_constructible_v<mapped_type, M> is true.

29 Preconditions: The conversion from k into key_type constructs an object u, for which find(k) ==
find(u) is true.

30 Effects: If the map already contains an element e whose key is equivalent to k, assigns std::forward<
M>(obj) to e.second. Otherwise, equivalent to

try_emplace(std::forward<K>(k), std::forward<M>(obj))

for the first overload or
try_emplace(hint, std::forward<K>(k), std::forward<M>(obj))

for the second overload.
31 Returns: In the first overload, the bool component of the returned pair is true if and only if the

insertion took place. The returned iterator points to the map element whose key is equivalent to k.
32 Complexity: The same as emplace and emplace_hint, respectively.

void swap(flat_map& y) noexcept;

33 Effects: Equivalent to:
ranges::swap(compare, y.compare);
ranges::swap(c.keys, y.c.keys);
ranges::swap(c.values, y.c.values);

containers extract() &&;

34 Postconditions: *this is emptied, even if the function exits via an exception.
35 Returns: std::move(c).

void replace(key_container_type&& key_cont, mapped_container_type&& mapped_cont);

36 Preconditions: key_cont.size() == mapped_cont.size() is true, the elements of key_cont are
sorted with respect to compare, and key_cont contains no equal elements.

37 Effects: Equivalent to:
c.keys = std::move(key_cont);
c.values = std::move(mapped_cont);

24.6.9.7 Erasure [flat.map.erasure]

template<class Key, class T, class Compare, class KeyContainer, class MappedContainer,
class Predicate>

typename flat_map<Key, T, Compare, KeyContainer, MappedContainer>::size_type
erase_if(flat_map<Key, T, Compare, KeyContainer, MappedContainer>& c, Predicate pred);

1 Preconditions: Key and T meet the Cpp17MoveAssignable requirements.
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2 Effects: Let E be bool(pred(pair<const Key&, const T&>(e))). Erases all elements e in c for
which E holds.

3 Returns: The number of elements erased.
4 Complexity: Exactly c.size() applications of the predicate.
5 Remarks: Stable (16.4.6.8). If an invocation of erase_if exits via an exception, c is in a valid but

unspecified state (3.64).
[Note 1 : c still meets its invariants, but can be empty. — end note ]

24.6.10 Class template flat_multimap [flat.multimap]
24.6.10.1 Overview [flat.multimap.overview]

1 A flat_multimap is a container adaptor that provides an associative container interface that supports
equivalent keys (i.e., possibly containing multiple copies of the same key value) and provides for fast
retrieval of values of another type T based on the keys. flat_multimap supports iterators that meet the
Cpp17InputIterator requirements and model the random_access_iterator concept (25.3.4.13).

2 A flat_multimap meets all of the requirements for a container (24.2.2.2) and for a reversible container
(24.2.2.3), plus the optional container requirements (24.2.2.4). flat_multimap meets the requirements of an
associative container (24.2.7), except that:

—(2.1) it does not meet the requirements related to node handles (24.2.5),
—(2.2) it does not meet the requirements related to iterator invalidation, and
—(2.3) the time complexity of the operations that insert or erase a single element from the map is linear,

including the ones that take an insertion position iterator.
[Note 1 : A flat_multimap does not meet the additional requirements of an allocator-aware container (24.2.2.5).

— end note ]
3 A flat_multimap also provides most operations described in 24.2.7 for equal keys. This means that a flat_-

multimap supports the a_eq operations in 24.2.7 but not the a_uniq operations. For a flat_multimap<Key,
T> the key_type is Key and the value_type is pair<Key, T>.

4 Except as otherwise noted, operations on flat_multimap are equivalent to those of flat_map, except that
flat_multimap operations do not remove or replace elements with equal keys.
[Example 1 : flat_multimap constructors and emplace do not erase non-unique elements after sorting them. — end
example ]

5 A flat_multimap maintains the following invariants:
—(5.1) it contains the same number of keys and values;
—(5.2) the keys are sorted with respect to the comparison object; and
—(5.3) the value at offset off within the value container is the value associated with the key at offset off

within the key container.
6 If any member function in 24.6.10.2 exits via an exception, the invariants are restored.

[Note 2 : This can result in the flat_multimap being emptied. — end note ]
7 Any type C that meets the sequence container requirements (24.2.4) can be used to instantiate flat_multimap,

as long as C::iterator meets the Cpp17RandomAccessIterator requirements and invocations of member
functions C::size and C::max_size do not exit via an exception. In particular, vector (24.3.11) and
deque (24.3.8) can be used.
[Note 3 : vector<bool> is not a sequence container. — end note ]

8 The program is ill-formed if Key is not the same type as KeyContainer::value_type or T is not the same
type as MappedContainer::value_type.

9 The effect of calling a constructor that takes both key_container_type and mapped_container_type
arguments with containers of different sizes is undefined.

10 The effect of calling a constructor or member function that takes a sorted_equivalent_t argument with a
container, containers, or range that are not sorted with respect to key_comp() is undefined.
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24.6.10.2 Definition [flat.multimap.defn]
namespace std {

template<class Key, class T, class Compare = less<Key>,
class KeyContainer = vector<Key>, class MappedContainer = vector<T>>

class flat_multimap {
public:

// types
using key_type = Key;
using mapped_type = T;
using value_type = pair<key_type, mapped_type>;
using key_compare = Compare;
using reference = pair<const key_type&, mapped_type&>;
using const_reference = pair<const key_type&, const mapped_type&>;
using size_type = size_t;
using difference_type = ptrdiff_t;
using iterator = implementation-defined ; // see 24.2
using const_iterator = implementation-defined ; // see 24.2
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
using key_container_type = KeyContainer;
using mapped_container_type = MappedContainer;

class value_compare {
private:

key_compare comp; // exposition only
value_compare(key_compare c) : comp(c) { } // exposition only

public:
bool operator()(const_reference x, const_reference y) const {

return comp(x.first, y.first);
}

};

struct containers {
key_container_type keys;
mapped_container_type values;

};

// 24.6.10.3, construct/copy/destroy
flat_multimap() : flat_multimap(key_compare()) { }

flat_multimap(key_container_type key_cont, mapped_container_type mapped_cont,
const key_compare& comp = key_compare());

template<class Allocator>
flat_multimap(const key_container_type& key_cont, const mapped_container_type& mapped_cont,

const Allocator& a);
template<class Allocator>

flat_multimap(const key_container_type& key_cont, const mapped_container_type& mapped_cont,
const key_compare& comp, const Allocator& a);

flat_multimap(sorted_equivalent_t,
key_container_type key_cont, mapped_container_type mapped_cont,
const key_compare& comp = key_compare());

template<class Allocator>
flat_multimap(sorted_equivalent_t, const key_container_type& key_cont,

const mapped_container_type& mapped_cont, const Allocator& a);
template<class Allocator>

flat_multimap(sorted_equivalent_t, const key_container_type& key_cont,
const mapped_container_type& mapped_cont,
const key_compare& comp, const Allocator& a);

explicit flat_multimap(const key_compare& comp)
: c(), compare(comp) { }
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template<class Allocator>
flat_multimap(const key_compare& comp, const Allocator& a);

template<class Allocator>
explicit flat_multimap(const Allocator& a);

template<class InputIterator>
flat_multimap(InputIterator first, InputIterator last,

const key_compare& comp = key_compare())
: c(), compare(comp)
{ insert(first, last); }

template<class InputIterator, class Allocator>
flat_multimap(InputIterator first, InputIterator last,

const key_compare& comp, const Allocator& a);
template<class InputIterator, class Allocator>

flat_multimap(InputIterator first, InputIterator last, const Allocator& a);

template<container-compatible-range <value_type> R>
flat_multimap(from_range_t fr, R&& rg)

: flat_multimap(fr, std::forward<R>(rg), key_compare()) { }
template<container-compatible-range <value_type> R, class Allocator>

flat_multimap(from_range_t, R&& rg, const Allocator& a);
template<container-compatible-range <value_type> R>

flat_multimap(from_range_t, R&& rg, const key_compare& comp)
: flat_multimap(comp) { insert_range(std::forward<R>(rg)); }

template<container-compatible-range <value_type> R, class Allocator>
flat_multimap(from_range_t, R&& rg, const key_compare& comp, const Allocator& a);

template<class InputIterator>
flat_multimap(sorted_equivalent_t s, InputIterator first, InputIterator last,

const key_compare& comp = key_compare())
: c(), compare(comp) { insert(s, first, last); }

template<class InputIterator, class Allocator>
flat_multimap(sorted_equivalent_t, InputIterator first, InputIterator last,

const key_compare& comp, const Allocator& a);
template<class InputIterator, class Allocator>

flat_multimap(sorted_equivalent_t, InputIterator first, InputIterator last,
const Allocator& a);

flat_multimap(initializer_list<value_type> il, const key_compare& comp = key_compare())
: flat_multimap(il.begin(), il.end(), comp) { }

template<class Allocator>
flat_multimap(initializer_list<value_type> il, const key_compare& comp,

const Allocator& a);
template<class Allocator>

flat_multimap(initializer_list<value_type> il, const Allocator& a);

flat_multimap(sorted_equivalent_t s, initializer_list<value_type> il,
const key_compare& comp = key_compare())

: flat_multimap(s, il.begin(), il.end(), comp) { }
template<class Allocator>

flat_multimap(sorted_equivalent_t, initializer_list<value_type> il,
const key_compare& comp, const Allocator& a);

template<class Allocator>
flat_multimap(sorted_equivalent_t, initializer_list<value_type> il, const Allocator& a);

flat_multimap& operator=(initializer_list<value_type> il);

// iterators
iterator begin() noexcept;
const_iterator begin() const noexcept;
iterator end() noexcept;
const_iterator end() const noexcept;
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reverse_iterator rbegin() noexcept;
const_reverse_iterator rbegin() const noexcept;
reverse_iterator rend() noexcept;
const_reverse_iterator rend() const noexcept;

const_iterator cbegin() const noexcept;
const_iterator cend() const noexcept;
const_reverse_iterator crbegin() const noexcept;
const_reverse_iterator crend() const noexcept;

// capacity
[[nodiscard]] bool empty() const noexcept;
size_type size() const noexcept;
size_type max_size() const noexcept;

// modifiers
template<class... Args> iterator emplace(Args&&... args);
template<class... Args>

iterator emplace_hint(const_iterator position, Args&&... args);

iterator insert(const value_type& x)
{ return emplace(x); }

iterator insert(value_type&& x)
{ return emplace(std::move(x)); }

iterator insert(const_iterator position, const value_type& x)
{ return emplace_hint(position, x); }

iterator insert(const_iterator position, value_type&& x)
{ return emplace_hint(position, std::move(x)); }

template<class P> iterator insert(P&& x);
template<class P>

iterator insert(const_iterator position, P&&);
template<class InputIterator>

void insert(InputIterator first, InputIterator last);
template<class InputIterator>

void insert(sorted_equivalent_t, InputIterator first, InputIterator last);
template<container-compatible-range <value_type> R>

void insert_range(R&& rg);

void insert(initializer_list<value_type> il)
{ insert(il.begin(), il.end()); }

void insert(sorted_equivalent_t s, initializer_list<value_type> il)
{ insert(s, il.begin(), il.end()); }

containers extract() &&;
void replace(key_container_type&& key_cont, mapped_container_type&& mapped_cont);

iterator erase(iterator position);
iterator erase(const_iterator position);
size_type erase(const key_type& x);
template<class K> size_type erase(K&& x);
iterator erase(const_iterator first, const_iterator last);

void swap(flat_multimap&) noexcept;
void clear() noexcept;

// observers
key_compare key_comp() const;
value_compare value_comp() const;

const key_container_type& keys() const noexcept { return c.keys; }
const mapped_container_type& values() const noexcept { return c.values; }
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// map operations
iterator find(const key_type& x);
const_iterator find(const key_type& x) const;
template<class K> iterator find(const K& x);
template<class K> const_iterator find(const K& x) const;

size_type count(const key_type& x) const;
template<class K> size_type count(const K& x) const;

bool contains(const key_type& x) const;
template<class K> bool contains(const K& x) const;

iterator lower_bound(const key_type& x);
const_iterator lower_bound(const key_type& x) const;
template<class K> iterator lower_bound(const K& x);
template<class K> const_iterator lower_bound(const K& x) const;

iterator upper_bound(const key_type& x);
const_iterator upper_bound(const key_type& x) const;
template<class K> iterator upper_bound(const K& x);
template<class K> const_iterator upper_bound(const K& x) const;

pair<iterator, iterator> equal_range(const key_type& x);
pair<const_iterator, const_iterator> equal_range(const key_type& x) const;
template<class K>

pair<iterator, iterator> equal_range(const K& x);
template<class K>

pair<const_iterator, const_iterator> equal_range(const K& x) const;

friend bool operator==(const flat_multimap& x, const flat_multimap& y);

friend synth-three-way-result <value_type>
operator<=>(const flat_multimap& x, const flat_multimap& y);

friend void swap(flat_multimap& x, flat_multimap& y) noexcept
{ x.swap(y); }

private:
containers c; // exposition only
key_compare compare; // exposition only

};

template<class KeyContainer, class MappedContainer,
class Compare = less<typename KeyContainer::value_type>>

flat_multimap(KeyContainer, MappedContainer, Compare = Compare())
-> flat_multimap<typename KeyContainer::value_type, typename MappedContainer::value_type,

Compare, KeyContainer, MappedContainer>;

template<class KeyContainer, class MappedContainer, class Allocator>
flat_multimap(KeyContainer, MappedContainer, Allocator)

-> flat_multimap<typename KeyContainer::value_type, typename MappedContainer::value_type,
less<typename KeyContainer::value_type>, KeyContainer, MappedContainer>;

template<class KeyContainer, class MappedContainer, class Compare, class Allocator>
flat_multimap(KeyContainer, MappedContainer, Compare, Allocator)

-> flat_multimap<typename KeyContainer::value_type, typename MappedContainer::value_type,
Compare, KeyContainer, MappedContainer>;

template<class KeyContainer, class MappedContainer,
class Compare = less<typename KeyContainer::value_type>>

flat_multimap(sorted_equivalent_t, KeyContainer, MappedContainer, Compare = Compare())
-> flat_multimap<typename KeyContainer::value_type, typename MappedContainer::value_type,

Compare, KeyContainer, MappedContainer>;
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template<class KeyContainer, class MappedContainer, class Allocator>
flat_multimap(sorted_equivalent_t, KeyContainer, MappedContainer, Allocator)

-> flat_multimap<typename KeyContainer::value_type, typename MappedContainer::value_type,
less<typename KeyContainer::value_type>, KeyContainer, MappedContainer>;

template<class KeyContainer, class MappedContainer, class Compare, class Allocator>
flat_multimap(sorted_equivalent_t, KeyContainer, MappedContainer, Compare, Allocator)

-> flat_multimap<typename KeyContainer::value_type, typename MappedContainer::value_type,
Compare, KeyContainer, MappedContainer>;

template<class InputIterator, class Compare = less<iter-key-type <InputIterator>>>
flat_multimap(InputIterator, InputIterator, Compare = Compare())

-> flat_multimap<iter-key-type <InputIterator>, iter-mapped-type <InputIterator>, Compare>;

template<class InputIterator, class Compare = less<iter-key-type <InputIterator>>>
flat_multimap(sorted_equivalent_t, InputIterator, InputIterator, Compare = Compare())

-> flat_multimap<iter-key-type <InputIterator>, iter-mapped-type <InputIterator>, Compare>;

template<ranges::input_range R, class Compare = less<range-key-type <R>>,
class Allocator = allocator<byte>>

flat_multimap(from_range_t, R&&, Compare = Compare(), Allocator = Allocator())
-> flat_multimap<range-key-type <R>, range-mapped-type <R>, Compare,

vector<range-key-type <R>,
alloc-rebind <Allocator, range-key-type <R>>>,

vector<range-mapped-type <R>,
alloc-rebind <Allocator, range-mapped-type <R>>>>;

template<ranges::input_range R, class Allocator>
flat_multimap(from_range_t, R&&, Allocator)

-> flat_multimap<range-key-type <R>, range-mapped-type <R>, less<range-key-type <R>>,
vector<range-key-type <R>,

alloc-rebind <Allocator, range-key-type <R>>>,
vector<range-mapped-type <R>,

alloc-rebind <Allocator, range-mapped-type <R>>>>;

template<class Key, class T, class Compare = less<Key>>
flat_multimap(initializer_list<pair<Key, T>>, Compare = Compare())

-> flat_multimap<Key, T, Compare>;

template<class Key, class T, class Compare = less<Key>>
flat_multimap(sorted_equivalent_t, initializer_list<pair<Key, T>>, Compare = Compare())

-> flat_multimap<Key, T, Compare>;

template<class Key, class T, class Compare, class KeyContainer, class MappedContainer,
class Allocator>

struct uses_allocator<flat_multimap<Key, T, Compare, KeyContainer, MappedContainer>,
Allocator>

: bool_constant<uses_allocator_v<KeyContainer, Allocator> &&
uses_allocator_v<MappedContainer, Allocator>> { };

}

1 The member type containers has the data members and special members specified above. It has no base
classes or members other than those specified.

24.6.10.3 Constructors [flat.multimap.cons]

flat_multimap(key_container_type key_cont, mapped_container_type mapped_cont,
const key_compare& comp = key_compare());

1 Effects: Initializes c.keys with std::move(key_cont), c.values with std::move(mapped_cont), and
compare with comp; sorts the range [begin(), end()) with respect to value_comp().

2 Complexity: Linear in N if the container arguments are already sorted with respect to value_comp()
and otherwise N log N , where N is the value of key_cont.size() before this call.
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template<class Allocator>
flat_multimap(const key_container_type& key_cont, const mapped_container_type& mapped_cont,

const Allocator& a);
template<class Allocator>

flat_multimap(const key_container_type& key_cont, const mapped_container_type& mapped_cont,
const key_compare& comp, const Allocator& a);

3 Constraints: uses_allocator_v<key_container_type, Allocator> is true and uses_allocator_-
v<mapped_container_type, Allocator> is true.

4 Effects: Equivalent to flat_multimap(key_cont, mapped_cont) and flat_multimap(key_cont,
mapped_cont, comp), respectively, except that c.keys and c.values are constructed with uses-
allocator construction (20.2.8.2).

5 Complexity: Same as flat_multimap(key_cont, mapped_cont) and flat_multimap(key_cont,
mapped_cont, comp), respectively.

flat_multimap(sorted_equivalent_t, key_container_type key_cont, mapped_container_type mapped_cont,
const key_compare& comp = key_compare());

6 Effects: Initializes c.keys with std::move(key_cont), c.values with std::move(mapped_cont), and
compare with comp.

7 Complexity: Constant.

template<class Allocator>
flat_multimap(sorted_equivalent_t s, const key_container_type& key_cont,

const mapped_container_type& mapped_cont, const Allocator& a);
template<class Allocator>

flat_multimap(sorted_equivalent_t s, const key_container_type& key_cont,
const mapped_container_type& mapped_cont, const key_compare& comp,
const Allocator& a);

8 Constraints: uses_allocator_v<key_container_type, Allocator> is true and uses_allocator_-
v<mapped_container_type, Allocator> is true.

9 Effects: Equivalent to flat_multimap(s, key_cont, mapped_cont) and flat_multimap(s, key_-
cont, mapped_cont, comp), respectively, except that c.keys and c.values are constructed with
uses-allocator construction (20.2.8.2).

10 Complexity: Linear.

template<class Allocator>
flat_multimap(const key_compare& comp, const Allocator& a);

template<class Allocator>
explicit flat_multimap(const Allocator& a);

template<class InputIterator, class Allocator>
flat_multimap(InputIterator first, InputIterator last, const key_compare& comp,

const Allocator& a);
template<class InputIterator, class Allocator>

flat_multimap(InputIterator first, InputIterator last, const Allocator& a);
template<container-compatible-range <value_type> R, class Allocator>

flat_multimap(from_range_t, R&& rg, const Allocator& a);
template<container-compatible-range <value_type> R, class Allocator>

flat_multimap(from_range_t, R&& rg, const key_compare& comp, const Allocator& a);
template<class InputIterator, class Allocator>

flat_multimap(sorted_equivalent_t, InputIterator first, InputIterator last,
const key_compare& comp, const Allocator& a);

template<class InputIterator, class Allocator>
flat_multimap(sorted_equivalent_t, InputIterator first, InputIterator last,

const Allocator& a);
template<class Allocator>

flat_multimap(initializer_list<value_type> il, const key_compare& comp, const Allocator& a);
template<class Allocator>

flat_multimap(initializer_list<value_type> il, const Allocator& a);
template<class Allocator>

flat_multimap(sorted_equivalent_t, initializer_list<value_type> il,
const key_compare& comp, const Allocator& a);
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template<class Allocator>
flat_multimap(sorted_equivalent_t, initializer_list<value_type> il, const Allocator& a);

11 Constraints: uses_allocator_v<key_container_type, Allocator> is true and uses_allocator_-
v<mapped_container_type, Allocator> is true.

12 Effects: Equivalent to the corresponding non-allocator constructors except that c.keys and c.values
are constructed with uses-allocator construction (20.2.8.2).

24.6.10.4 Erasure [flat.multimap.erasure]

template<class Key, class T, class Compare, class KeyContainer, class MappedContainer,
class Predicate>

typename flat_multimap<Key, T, Compare, KeyContainer, MappedContainer>::size_type
erase_if(flat_multimap<Key, T, Compare, KeyContainer, MappedContainer>& c, Predicate pred);

1 Preconditions: Key and T meet the Cpp17MoveAssignable requirements.
2 Effects: Let E be bool(pred(pair<const Key&, const T&>(e))). Erases all elements e in c for

which E holds.
3 Returns: The number of elements erased.
4 Complexity: Exactly c.size() applications of the predicate.
5 Remarks: Stable (16.4.6.8). If an invocation of erase_if exits via an exception, c is in a valid but

unspecified state (3.64).
[Note 1 : c still meets its invariants, but can be empty. — end note ]

24.6.11 Class template flat_set [flat.set]
24.6.11.1 Overview [flat.set.overview]

1 A flat_set is a container adaptor that provides an associative container interface that supports unique keys
(i.e., contains at most one of each key value) and provides for fast retrieval of the keys themselves. flat_set
supports iterators that model the random_access_iterator concept (25.3.4.13).

2 A flat_set meets all of the requirements for a container (24.2.2.2) and for a reversible container (24.2.2.3),
plus the optional container requirements (24.2.2.4). flat_set meets the requirements of an associative
container (24.2.7), except that:

—(2.1) it does not meet the requirements related to node handles (24.2.5.1),
—(2.2) it does not meet the requirements related to iterator invalidation, and
—(2.3) the time complexity of the operations that insert or erase a single element from the set is linear,

including the ones that take an insertion position iterator.
[Note 1 : A flat_set does not meet the additional requirements of an allocator-aware container, as described in
24.2.2.5. — end note ]

3 A flat_set also provides most operations described in 24.2.7 for unique keys. This means that a flat_set
supports the a_uniq operations in 24.2.7 but not the a_eq operations. For a flat_set<Key>, both the
key_type and value_type are Key.

4 Descriptions are provided here only for operations on flat_set that are not described in one of those sets of
requirements or for operations where there is additional semantic information.

5 A flat_set maintains the invariant that the keys are sorted with respect to the comparison object.
6 If any member function in 24.6.11.2 exits via an exception, the invariant is restored.

[Note 2 : This can result in the flat_set’s being emptied. — end note ]
7 Any sequence container (24.2.4) supporting Cpp17RandomAccessIterator can be used to instantiate flat_set.

In particular, vector (24.3.11) and deque (24.3.8) can be used.
[Note 3 : vector<bool> is not a sequence container. — end note ]

8 The program is ill-formed if Key is not the same type as KeyContainer::value_type.
9 The effect of calling a constructor or member function that takes a sorted_unique_t argument with a range

that is not sorted with respect to key_comp(), or that contains equal elements, is undefined.
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24.6.11.2 Definition [flat.set.defn]
namespace std {

template<class Key, class Compare = less<Key>, class KeyContainer = vector<Key>>
class flat_set {
public:

// types
using key_type = Key;
using value_type = Key;
using key_compare = Compare;
using value_compare = Compare;
using reference = value_type&;
using const_reference = const value_type&;
using size_type = typename KeyContainer::size_type;
using difference_type = typename KeyContainer::difference_type;
using iterator = implementation-defined ; // see 24.2
using const_iterator = implementation-defined ; // see 24.2
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
using container_type = KeyContainer;

// 24.6.11.3, constructors
flat_set() : flat_set(key_compare()) { }

explicit flat_set(container_type cont, const key_compare& comp = key_compare());
template<class Allocator>

flat_set(const container_type& cont, const Allocator& a);
template<class Allocator>

flat_set(const container_type& cont, const key_compare& comp, const Allocator& a);

flat_set(sorted_unique_t, container_type cont, const key_compare& comp = key_compare())
: c (std::move(cont)), compare (comp) { }

template<class Allocator>
flat_set(sorted_unique_t, const container_type& cont, const Allocator& a);

template<class Allocator>
flat_set(sorted_unique_t, const container_type& cont,

const key_compare& comp, const Allocator& a);

explicit flat_set(const key_compare& comp)
: c (), compare (comp) { }

template<class Allocator>
flat_set(const key_compare& comp, const Allocator& a);

template<class Allocator>
explicit flat_set(const Allocator& a);

template<class InputIterator>
flat_set(InputIterator first, InputIterator last, const key_compare& comp = key_compare())

: c (), compare (comp)
{ insert(first, last); }

template<class InputIterator, class Allocator>
flat_set(InputIterator first, InputIterator last,

const key_compare& comp, const Allocator& a);
template<class InputIterator, class Allocator>

flat_set(InputIterator first, InputIterator last, const Allocator& a);

template<container-compatible-range <value_type> R>
flat_set(from_range_t fr, R&& rg)

: flat_set(fr, std::forward<R>(rg), key_compare()) { }
template<container-compatible-range <value_type> R, class Allocator>

flat_set(from_range_t, R&& rg, const Allocator& a);
template<container-compatible-range <value_type> R>

flat_set(from_range_t, R&& rg, const key_compare& comp)
: flat_set(comp)
{ insert_range(std::forward<R>(rg)); }
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template<container-compatible-range <value_type> R, class Allocator>
flat_set(from_range_t, R&& rg, const key_compare& comp, const Allocator& a);

template<class InputIterator>
flat_set(sorted_unique_t, InputIterator first, InputIterator last,

const key_compare& comp = key_compare())
: c (first, last), compare (comp) { }

template<class InputIterator, class Allocator>
flat_set(sorted_unique_t, InputIterator first, InputIterator last,

const key_compare& comp, const Allocator& a);
template<class InputIterator, class Allocator>

flat_set(sorted_unique_t, InputIterator first, InputIterator last, const Allocator& a);

flat_set(initializer_list<value_type> il, const key_compare& comp = key_compare())
: flat_set(il.begin(), il.end(), comp) { }

template<class Allocator>
flat_set(initializer_list<value_type> il, const key_compare& comp, const Allocator& a);

template<class Allocator>
flat_set(initializer_list<value_type> il, const Allocator& a);

flat_set(sorted_unique_t s, initializer_list<value_type> il,
const key_compare& comp = key_compare())

: flat_set(s, il.begin(), il.end(), comp) { }
template<class Allocator>

flat_set(sorted_unique_t, initializer_list<value_type> il,
const key_compare& comp, const Allocator& a);

template<class Allocator>
flat_set(sorted_unique_t, initializer_list<value_type> il, const Allocator& a);

flat_set& operator=(initializer_list<value_type>);

// iterators
iterator begin() noexcept;
const_iterator begin() const noexcept;
iterator end() noexcept;
const_iterator end() const noexcept;

reverse_iterator rbegin() noexcept;
const_reverse_iterator rbegin() const noexcept;
reverse_iterator rend() noexcept;
const_reverse_iterator rend() const noexcept;

const_iterator cbegin() const noexcept;
const_iterator cend() const noexcept;
const_reverse_iterator crbegin() const noexcept;
const_reverse_iterator crend() const noexcept;

// capacity
[[nodiscard]] bool empty() const noexcept;
size_type size() const noexcept;
size_type max_size() const noexcept;

// 24.6.11.4, modifiers
template<class... Args> pair<iterator, bool> emplace(Args&&... args);
template<class... Args>

iterator emplace_hint(const_iterator position, Args&&... args);

pair<iterator, bool> insert(const value_type& x)
{ return emplace(x); }

pair<iterator, bool> insert(value_type&& x)
{ return emplace(std::move(x)); }

template<class K> pair<iterator, bool> insert(K&& x);
iterator insert(const_iterator position, const value_type& x)

{ return emplace_hint(position, x); }
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iterator insert(const_iterator position, value_type&& x)
{ return emplace_hint(position, std::move(x)); }

template<class K> iterator insert(const_iterator hint, K&& x);

template<class InputIterator>
void insert(InputIterator first, InputIterator last);

template<class InputIterator>
void insert(sorted_unique_t, InputIterator first, InputIterator last);

template<container-compatible-range <value_type> R>
void insert_range(R&& rg);

void insert(initializer_list<value_type> il)
{ insert(il.begin(), il.end()); }

void insert(sorted_unique_t s, initializer_list<value_type> il)
{ insert(s, il.begin(), il.end()); }

container_type extract() &&;
void replace(container_type&&);

iterator erase(iterator position);
iterator erase(const_iterator position);
size_type erase(const key_type& x);
template<class K> size_type erase(K&& x);
iterator erase(const_iterator first, const_iterator last);

void swap(flat_set& y) noexcept;
void clear() noexcept;

// observers
key_compare key_comp() const;
value_compare value_comp() const;

// set operations
iterator find(const key_type& x);
const_iterator find(const key_type& x) const;
template<class K> iterator find(const K& x);
template<class K> const_iterator find(const K& x) const;

size_type count(const key_type& x) const;
template<class K> size_type count(const K& x) const;

bool contains(const key_type& x) const;
template<class K> bool contains(const K& x) const;

iterator lower_bound(const key_type& x);
const_iterator lower_bound(const key_type& x) const;
template<class K> iterator lower_bound(const K& x);
template<class K> const_iterator lower_bound(const K& x) const;

iterator upper_bound(const key_type& x);
const_iterator upper_bound(const key_type& x) const;
template<class K> iterator upper_bound(const K& x);
template<class K> const_iterator upper_bound(const K& x) const;

pair<iterator, iterator> equal_range(const key_type& x);
pair<const_iterator, const_iterator> equal_range(const key_type& x) const;
template<class K>

pair<iterator, iterator> equal_range(const K& x);
template<class K>

pair<const_iterator, const_iterator> equal_range(const K& x) const;

friend bool operator==(const flat_set& x, const flat_set& y);
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friend synth-three-way-result <value_type>
operator<=>(const flat_set& x, const flat_set& y);

friend void swap(flat_set& x, flat_set& y) noexcept { x.swap(y); }

private:
container_type c ; // exposition only
key_compare compare ; // exposition only

};

template<class KeyContainer, class Compare = less<typename KeyContainer::value_type>>
flat_set(KeyContainer, Compare = Compare())

-> flat_set<typename KeyContainer::value_type, Compare, KeyContainer>;
template<class KeyContainer, class Allocator>

flat_set(KeyContainer, Allocator)
-> flat_set<typename KeyContainer::value_type,

less<typename KeyContainer::value_type>, KeyContainer>;
template<class KeyContainer, class Compare, class Allocator>

flat_set(KeyContainer, Compare, Allocator)
-> flat_set<typename KeyContainer::value_type, Compare, KeyContainer>;

template<class KeyContainer, class Compare = less<typename KeyContainer::value_type>>
flat_set(sorted_unique_t, KeyContainer, Compare = Compare())

-> flat_set<typename KeyContainer::value_type, Compare, KeyContainer>;
template<class KeyContainer, class Allocator>

flat_set(sorted_unique_t, KeyContainer, Allocator)
-> flat_set<typename KeyContainer::value_type,

less<typename KeyContainer::value_type>, KeyContainer>;
template<class KeyContainer, class Compare, class Allocator>

flat_set(sorted_unique_t, KeyContainer, Compare, Allocator)
-> flat_set<typename KeyContainer::value_type, Compare, KeyContainer>;

template<class InputIterator, class Compare = less<iter-value-type <InputIterator>>>
flat_set(InputIterator, InputIterator, Compare = Compare())

-> flat_set<iter-value-type <InputIterator>, Compare>;

template<class InputIterator, class Compare = less<iter-value-type <InputIterator>>>
flat_set(sorted_unique_t, InputIterator, InputIterator, Compare = Compare())

-> flat_set<iter-value-type <InputIterator>, Compare>;

template<ranges::input_range R, class Compare = less<ranges::range_value_t<R>>,
class Allocator = allocator<ranges::range_value_t<R>>>

flat_set(from_range_t, R&&, Compare = Compare(), Allocator = Allocator())
-> flat_set<ranges::range_value_t<R>, Compare,

vector<ranges::range_value_t<R>,
alloc-rebind <Allocator, ranges::range_value_t<R>>>>;

template<ranges::input_range R, class Allocator>
flat_set(from_range_t, R&&, Allocator)

-> flat_set<ranges::range_value_t<R>, less<ranges::range_value_t<R>>,
vector<ranges::range_value_t<R>,

alloc-rebind <Allocator, ranges::range_value_t<R>>>>;

template<class Key, class Compare = less<Key>>
flat_set(initializer_list<Key>, Compare = Compare())

-> flat_set<Key, Compare>;

template<class Key, class Compare = less<Key>>
flat_set(sorted_unique_t, initializer_list<Key>, Compare = Compare())

-> flat_set<Key, Compare>;
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template<class Key, class Compare, class KeyContainer, class Allocator>
struct uses_allocator<flat_set<Key, Compare, KeyContainer>, Allocator>

: bool_constant<uses_allocator_v<KeyContainer, Allocator>> { };
}

24.6.11.3 Constructors [flat.set.cons]

explicit flat_set(container_type cont, const key_compare& comp = key_compare());

1 Effects: Initializes c with std::move(cont) and compare with comp, sorts the range [begin(), end())
with respect to compare , and finally erases all but the first element from each group of consecutive
equivalent elements.

2 Complexity: Linear in N if cont is sorted with respect to compare and otherwise N log N , where N is
the value of cont.size() before this call.

template<class Allocator>
flat_set(const container_type& cont, const Allocator& a);

template<class Allocator>
flat_set(const container_type& cont, const key_compare& comp, const Allocator& a);

3 Constraints: uses_allocator_v<container_type, Allocator> is true.
4 Effects: Equivalent to flat_set(cont) and flat_set(cont, comp), respectively, except that c is

constructed with uses-allocator construction (20.2.8.2).
5 Complexity: Same as flat_set(cont) and flat_set(cont, comp), respectively.

template<class Allocator>
flat_set(sorted_unique_t s, const container_type& cont, const Allocator& a);

template<class Allocator>
flat_set(sorted_unique_t s, const container_type& cont,

const key_compare& comp, const Allocator& a);

6 Constraints: uses_allocator_v<container_type, Allocator> is true.
7 Effects: Equivalent to flat_set(s, cont) and flat_set(s, cont, comp), respectively, except that

c is constructed with uses-allocator construction (20.2.8.2).
8 Complexity: Linear.

template<class Allocator>
flat_set(const key_compare& comp, const Allocator& a);

template<class Allocator>
explicit flat_set(const Allocator& a);

template<class InputIterator, class Allocator>
flat_set(InputIterator first, InputIterator last, const key_compare& comp, const Allocator& a);

template<class InputIterator, class Allocator>
flat_set(InputIterator first, InputIterator last, const Allocator& a);

template<container-compatible-range <value_type> R, class Allocator>
flat_set(from_range_t, R&& rg, const Allocator& a);

template<container-compatible-range <value_type> R, class Allocator>
flat_set(from_range_t, R&& rg, const key_compare& comp, const Allocator& a);

template<class InputIterator, class Allocator>
flat_set(sorted_unique_t, InputIterator first, InputIterator last,

const key_compare& comp, const Allocator& a);
template<class InputIterator, class Allocator>

flat_set(sorted_unique_t, InputIterator first, InputIterator last, const Allocator& a);
template<class Allocator>

flat_set(initializer_list<value_type> il, const key_compare& comp, const Allocator& a);
template<class Allocator>

flat_set(initializer_list<value_type> il, const Allocator& a);
template<class Allocator>

flat_set(sorted_unique_t, initializer_list<value_type> il,
const key_compare& comp, const Allocator& a);

template<class Allocator>
flat_set(sorted_unique_t, initializer_list<value_type> il, const Allocator& a);

9 Constraints: uses_allocator_v<container_type, Allocator> is true.
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10 Effects: Equivalent to the corresponding non-allocator constructors except that c is constructed with
uses-allocator construction (20.2.8.2).

24.6.11.4 Modifiers [flat.set.modifiers]

template<class K> pair<iterator, bool> insert(K&& x);
template<class K> iterator insert(const_iterator hint, K&& x);

1 Constraints: The qualified-id Compare::is_transparent is valid and denotes a type. is_constructi-
ble_v<value_type, K> is true.

2 Preconditions: The conversion from x into value_type constructs an object u, for which find(x) ==
find(u) is true.

3 Effects: If the set already contains an element equivalent to x, *this and x are unchanged. Otherwise,
inserts a new element as if by emplace(std::forward<K>(x)).

4 Returns: In the first overload, the bool component of the returned pair is true if and only if the
insertion took place. The returned iterator points to the element whose key is equivalent to x.

template<class InputIterator>
void insert(InputIterator first, InputIterator last);

5 Effects: Adds elements to c as if by:
c .insert(c .end(), first, last);

Then, sorts the range of newly inserted elements with respect to compare ; merges the resulting sorted
range and the sorted range of pre-existing elements into a single sorted range; and finally erases all but
the first element from each group of consecutive equivalent elements.

6 Complexity: N + M log M , where N is size() before the operation and M is distance(first,
last).

7 Remarks: Since this operation performs an in-place merge, it may allocate memory.

template<class InputIterator>
void insert(sorted_unique_t, InputIterator first, InputIterator last);

8 Effects: Equivalent to insert(first, last).
9 Complexity: Linear.

template<container-compatible-range <value_type> R>
void insert_range(R&& rg);

10 Effects: Adds elements to c as if by:
for (const auto& e : rg) {

c .insert(c .end(), e);
}

Then, sorts the range of newly inserted elements with respect to compare ; merges the resulting sorted
range and the sorted range of pre-existing elements into a single sorted range; and finally erases all but
the first element from each group of consecutive equivalent elements.

11 Complexity: N + M log M , where N is size() before the operation and M is ranges::distance(rg).
12 Remarks: Since this operation performs an in-place merge, it may allocate memory.

void swap(flat_set& y) noexcept;

13 Effects: Equivalent to:
ranges::swap(compare , y.compare );
ranges::swap(c , y.c );

container_type extract() &&;

14 Postconditions: *this is emptied, even if the function exits via an exception.
15 Returns: std::move(c ).
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void replace(container_type&& cont);

16 Preconditions: The elements of cont are sorted with respect to compare , and cont contains no equal
elements.

17 Effects: Equivalent to: c = std::move(cont);

24.6.11.5 Erasure [flat.set.erasure]

template<class Key, class Compare, class KeyContainer, class Predicate>
typename flat_set<Key, Compare, KeyContainer>::size_type

erase_if(flat_set<Key, Compare, KeyContainer>& c, Predicate pred);

1 Preconditions: Key meets the Cpp17MoveAssignable requirements.
2 Effects: Let E be bool(pred(as_const(e))). Erases all elements e in c for which E holds.
3 Returns: The number of elements erased.
4 Complexity: Exactly c.size() applications of the predicate.
5 Remarks: Stable (16.4.6.8). If an invocation of erase_if exits via an exception, c is in a valid but

unspecified state (3.64).
[Note 1 : c still meets its invariants, but can be empty. — end note ]

24.6.12 Class template flat_multiset [flat.multiset]
24.6.12.1 Overview [flat.multiset.overview]

1 A flat_multiset is a container adaptor that provides an associative container interface that supports
equivalent keys (i.e., possibly containing multiple copies of the same key value) and provides for fast
retrieval of the keys themselves. flat_multiset supports iterators that model the random_access_iterator
concept (25.3.4.13).

2 A flat_multiset meets all of the requirements for a container (24.2.2.2) and for a reversible container
(24.2.2.3), plus the optional container requirements (24.2.2.4). flat_multiset meets the requirements of an
associative container (24.2.7), except that:

—(2.1) it does not meet the requirements related to node handles (24.2.5.1),
—(2.2) it does not meet the requirements related to iterator invalidation, and
—(2.3) the time complexity of the operations that insert or erase a single element from the set is linear,

including the ones that take an insertion position iterator.
[Note 1 : A flat_multiset does not meet the additional requirements of an allocator-aware container, as described in
24.2.2.5. — end note ]

3 A flat_multiset also provides most operations described in 24.2.7 for equal keys. This means that a flat_-
multiset supports the a_eq operations in 24.2.7 but not the a_uniq operations. For a flat_multiset<Key>,
both the key_type and value_type are Key.

4 Descriptions are provided here only for operations on flat_multiset that are not described in one of the
general sections or for operations where there is additional semantic information.

5 A flat_multiset maintains the invariant that the keys are sorted with respect to the comparison object.
6 If any member function in 24.6.12.2 exits via an exception, the invariant is restored.

[Note 2 : This can result in the flat_multiset’s being emptied. — end note ]
7 Any sequence container (24.2.4) supporting Cpp17RandomAccessIterator can be used to instantiate flat_-

multiset. In particular, vector (24.3.11) and deque (24.3.8) can be used.
[Note 3 : vector<bool> is not a sequence container. — end note ]

8 The program is ill-formed if Key is not the same type as KeyContainer::value_type.
9 The effect of calling a constructor or member function that takes a sorted_equivalent_t argument with a

range that is not sorted with respect to key_comp() is undefined.

24.6.12.2 Definition [flat.multiset.defn]
namespace std {

template<class Key, class Compare = less<Key>, class KeyContainer = vector<Key>>
class flat_multiset {
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public:
// types
using key_type = Key;
using value_type = Key;
using key_compare = Compare;
using value_compare = Compare;
using reference = value_type&;
using const_reference = const value_type&;
using size_type = typename KeyContainer::size_type;
using difference_type = typename KeyContainer::difference_type;
using iterator = implementation-defined ; // see 24.2
using const_iterator = implementation-defined ; // see 24.2
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
using container_type = KeyContainer;

// 24.6.12.3, constructors
flat_multiset() : flat_multiset(key_compare()) { }

explicit flat_multiset(container_type cont, const key_compare& comp = key_compare());
template<class Allocator>

flat_multiset(const container_type& cont, const Allocator& a);
template<class Allocator>

flat_multiset(const container_type& cont, const key_compare& comp, const Allocator& a);

flat_multiset(sorted_equivalent_t, container_type cont,
const key_compare& comp = key_compare())

: c (std::move(cont)), compare (comp) { }
template<class Allocator>

flat_multiset(sorted_equivalent_t, const container_type&, const Allocator& a);
template<class Allocator>

flat_multiset(sorted_equivalent_t, const container_type& cont,
const key_compare& comp, const Allocator& a);

explicit flat_multiset(const key_compare& comp)
: c (), compare (comp) { }

template<class Allocator>
flat_multiset(const key_compare& comp, const Allocator& a);

template<class Allocator>
explicit flat_multiset(const Allocator& a);

template<class InputIterator>
flat_multiset(InputIterator first, InputIterator last,

const key_compare& comp = key_compare())
: c (), compare (comp)
{ insert(first, last); }

template<class InputIterator, class Allocator>
flat_multiset(InputIterator first, InputIterator last,

const key_compare& comp, const Allocator& a);
template<class InputIterator, class Allocator>

flat_multiset(InputIterator first, InputIterator last, const Allocator& a);

template<container-compatible-range <value_type> R>
flat_multiset(from_range_t fr, R&& rg)

: flat_multiset(fr, std::forward<R>(rg), key_compare()) { }
template<container-compatible-range <value_type> R, class Allocator>

flat_multiset(from_range_t, R&& rg, const Allocator& a);
template<container-compatible-range <value_type> R>

flat_multiset(from_range_t, R&& rg, const key_compare& comp)
: flat_multiset(comp)
{ insert_range(std::forward<R>(rg)); }

template<container-compatible-range <value_type> R, class Allocator>
flat_multiset(from_range_t, R&& rg, const key_compare& comp, const Allocator& a);
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template<class InputIterator>
flat_multiset(sorted_equivalent_t, InputIterator first, InputIterator last,

const key_compare& comp = key_compare())
: c (first, last), compare (comp) { }

template<class InputIterator, class Allocator>
flat_multiset(sorted_equivalent_t, InputIterator first, InputIterator last,

const key_compare& comp, const Allocator& a);
template<class InputIterator, class Allocator>

flat_multiset(sorted_equivalent_t, InputIterator first, InputIterator last,
const Allocator& a);

flat_multiset(initializer_list<value_type> il, const key_compare& comp = key_compare())
: flat_multiset(il.begin(), il.end(), comp) { }

template<class Allocator>
flat_multiset(initializer_list<value_type> il, const key_compare& comp,

const Allocator& a);
template<class Allocator>

flat_multiset(initializer_list<value_type> il, const Allocator& a);

flat_multiset(sorted_equivalent_t s, initializer_list<value_type> il,
const key_compare& comp = key_compare())

: flat_multiset(s, il.begin(), il.end(), comp) { }
template<class Allocator>

flat_multiset(sorted_equivalent_t, initializer_list<value_type> il,
const key_compare& comp, const Allocator& a);

template<class Allocator>
flat_multiset(sorted_equivalent_t, initializer_list<value_type> il, const Allocator& a);

flat_multiset& operator=(initializer_list<value_type>);

// iterators
iterator begin() noexcept;
const_iterator begin() const noexcept;
iterator end() noexcept;
const_iterator end() const noexcept;

reverse_iterator rbegin() noexcept;
const_reverse_iterator rbegin() const noexcept;
reverse_iterator rend() noexcept;
const_reverse_iterator rend() const noexcept;

const_iterator cbegin() const noexcept;
const_iterator cend() const noexcept;
const_reverse_iterator crbegin() const noexcept;
const_reverse_iterator crend() const noexcept;

// capacity
[[nodiscard]] bool empty() const noexcept;
size_type size() const noexcept;
size_type max_size() const noexcept;

// 24.6.12.4, modifiers
template<class... Args> iterator emplace(Args&&... args);
template<class... Args>

iterator emplace_hint(const_iterator position, Args&&... args);

iterator insert(const value_type& x)
{ return emplace(x); }

iterator insert(value_type&& x)
{ return emplace(std::move(x)); }

iterator insert(const_iterator position, const value_type& x)
{ return emplace_hint(position, x); }

iterator insert(const_iterator position, value_type&& x)
{ return emplace_hint(position, std::move(x)); }
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template<class InputIterator>
void insert(InputIterator first, InputIterator last);

template<class InputIterator>
void insert(sorted_equivalent_t, InputIterator first, InputIterator last);

template<container-compatible-range <value_type> R>
void insert_range(R&& rg);

void insert(initializer_list<value_type> il)
{ insert(il.begin(), il.end()); }

void insert(sorted_equivalent_t s, initializer_list<value_type> il)
{ insert(s, il.begin(), il.end()); }

container_type extract() &&;
void replace(container_type&&);

iterator erase(iterator position);
iterator erase(const_iterator position);
size_type erase(const key_type& x);
template<class K> size_type erase(K&& x);
iterator erase(const_iterator first, const_iterator last);

void swap(flat_multiset& y) noexcept;
void clear() noexcept;

// observers
key_compare key_comp() const;
value_compare value_comp() const;

// set operations
iterator find(const key_type& x);
const_iterator find(const key_type& x) const;
template<class K> iterator find(const K& x);
template<class K> const_iterator find(const K& x) const;

size_type count(const key_type& x) const;
template<class K> size_type count(const K& x) const;

bool contains(const key_type& x) const;
template<class K> bool contains(const K& x) const;

iterator lower_bound(const key_type& x);
const_iterator lower_bound(const key_type& x) const;
template<class K> iterator lower_bound(const K& x);
template<class K> const_iterator lower_bound(const K& x) const;

iterator upper_bound(const key_type& x);
const_iterator upper_bound(const key_type& x) const;
template<class K> iterator upper_bound(const K& x);
template<class K> const_iterator upper_bound(const K& x) const;

pair<iterator, iterator> equal_range(const key_type& x);
pair<const_iterator, const_iterator> equal_range(const key_type& x) const;
template<class K>

pair<iterator, iterator> equal_range(const K& x);
template<class K>

pair<const_iterator, const_iterator> equal_range(const K& x) const;

friend bool operator==(const flat_multiset& x, const flat_multiset& y);

friend synth-three-way-result <value_type>
operator<=>(const flat_multiset& x, const flat_multiset& y);

friend void swap(flat_multiset& x, flat_multiset& y) noexcept
{ x.swap(y); }
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private:
container_type c ; // exposition only
key_compare compare ; // exposition only

};

template<class KeyContainer, class Compare = less<typename KeyContainer::value_type>>
flat_multiset(KeyContainer, Compare = Compare())

-> flat_multiset<typename KeyContainer::value_type, Compare, KeyContainer>;
template<class KeyContainer, class Allocator>

flat_multiset(KeyContainer, Allocator)
-> flat_multiset<typename KeyContainer::value_type,

less<typename KeyContainer::value_type>, KeyContainer>;
template<class KeyContainer, class Compare, class Allocator>

flat_multiset(KeyContainer, Compare, Allocator)
-> flat_multiset<typename KeyContainer::value_type, Compare, KeyContainer>;

template<class KeyContainer, class Compare = less<typename KeyContainer::value_type>>
flat_multiset(sorted_equivalent_t, KeyContainer, Compare = Compare())

-> flat_multiset<typename KeyContainer::value_type, Compare, KeyContainer>;
template<class KeyContainer, class Allocator>

flat_multiset(sorted_equivalent_t, KeyContainer, Allocator)
-> flat_multiset<typename KeyContainer::value_type,

less<typename KeyContainer::value_type>, KeyContainer>;
template<class KeyContainer, class Compare, class Allocator>

flat_multiset(sorted_equivalent_t, KeyContainer, Compare, Allocator)
-> flat_multiset<typename KeyContainer::value_type, Compare, KeyContainer>;

template<class InputIterator, class Compare = less<iter-value-type <InputIterator>>>
flat_multiset(InputIterator, InputIterator, Compare = Compare())

-> flat_multiset<iter-value-type <InputIterator>, iter-value-type <InputIterator>, Compare>;

template<class InputIterator, class Compare = less<iter-value-type <InputIterator>>>
flat_multiset(sorted_equivalent_t, InputIterator, InputIterator, Compare = Compare())

-> flat_multiset<iter-value-type <InputIterator>, iter-value-type <InputIterator>, Compare>;

template<ranges::input_range R, class Compare = less<ranges::range_value_t<R>>,
class Allocator = allocator<ranges::range_value_t<R>>>

flat_multiset(from_range_t, R&&, Compare = Compare(), Allocator = Allocator())
-> flat_multiset<ranges::range_value_t<R>, Compare,

vector<ranges::range_value_t<R>,
alloc-rebind <Allocator, ranges::range_value_t<R>>>>;

template<ranges::input_range R, class Allocator>
flat_multiset(from_range_t, R&&, Allocator)

-> flat_multiset<ranges::range_value_t<R>, less<ranges::range_value_t<R>>,
vector<ranges::range_value_t<R>,

alloc-rebind <Allocator, ranges::range_value_t<R>>>>;

template<class Key, class Compare = less<Key>>
flat_multiset(initializer_list<Key>, Compare = Compare())

-> flat_multiset<Key, Compare>;

template<class Key, class Compare = less<Key>>
flat_multiset(sorted_equivalent_t, initializer_list<Key>, Compare = Compare())

-> flat_multiset<Key, Compare>;

template<class Key, class Compare, class KeyContainer, class Allocator>
struct uses_allocator<flat_multiset<Key, Compare, KeyContainer>, Allocator>

: bool_constant<uses_allocator_v<KeyContainer, Allocator>> { };
}
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24.6.12.3 Constructors [flat.multiset.cons]

explicit flat_multiset(container_type cont, const key_compare& comp = key_compare());

1 Effects: Initializes c with std::move(cont) and compare with comp, and sorts the range [begin(),
end()) with respect to compare .

2 Complexity: Linear in N if cont is sorted with respect to compare and otherwise N log N , where N is
the value of cont.size() before this call.

template<class Allocator>
flat_multiset(const container_type& cont, const Allocator& a);

template<class Allocator>
flat_multiset(const container_type& cont, const key_compare& comp, const Allocator& a);

3 Constraints: uses_allocator_v<container_type, Allocator> is true.
4 Effects: Equivalent to flat_multiset(cont) and flat_multiset(cont, comp), respectively, except

that c is constructed with uses-allocator construction (20.2.8.2).
5 Complexity: Same as flat_multiset(cont) and flat_multiset(cont, comp), respectively.

template<class Allocator>
flat_multiset(sorted_equivalent_t s, const container_type& cont, const Allocator& a);

template<class Allocator>
flat_multiset(sorted_equivalent_t s, const container_type& cont,

const key_compare& comp, const Allocator& a);

6 Constraints: uses_allocator_v<container_type, Allocator> is true.
7 Effects: Equivalent to flat_multiset(s, cont) and flat_multiset(s, cont, comp), respectively,

except that c is constructed with uses-allocator construction (20.2.8.2).
8 Complexity: Linear.

template<class Allocator>
flat_multiset(const key_compare& comp, const Allocator& a);

template<class Allocator>
explicit flat_multiset(const Allocator& a);

template<class InputIterator, class Allocator>
flat_multiset(InputIterator first, InputIterator last,

const key_compare& comp, const Allocator& a);
template<class InputIterator, class Allocator>

flat_multiset(InputIterator first, InputIterator last, const Allocator& a);
template<container-compatible-range <value_type> R, class Allocator>

flat_multiset(from_range_t, R&& rg, const Allocator& a);
template<container-compatible-range <value_type> R, class Allocator>

flat_multiset(from_range_t, R&& rg, const key_compare& comp, const Allocator& a);
template<class InputIterator, class Allocator>

flat_multiset(sorted_equivalent_t, InputIterator first, InputIterator last,
const key_compare& comp, const Allocator& a);

template<class InputIterator, class Allocator>
flat_multiset(sorted_equivalent_t, InputIterator first, InputIterator last, const Allocator& a);

template<class Allocator>
flat_multiset(initializer_list<value_type> il, const key_compare& comp, const Allocator& a);

template<class Allocator>
flat_multiset(initializer_list<value_type> il, const Allocator& a);

template<class Allocator>
flat_multiset(sorted_equivalent_t, initializer_list<value_type> il,

const key_compare& comp, const Allocator& a);
template<class Allocator>

flat_multiset(sorted_equivalent_t, initializer_list<value_type> il, const Allocator& a);

9 Constraints: uses_allocator_v<container_type, Allocator> is true.
10 Effects: Equivalent to the corresponding non-allocator constructors except that c is constructed with

uses-allocator construction (20.2.8.2).
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24.6.12.4 Modifiers [flat.multiset.modifiers]

template<class... Args> iterator emplace(Args&&... args);

1 Constraints: is_constructible_v<value_type, Args...> is true.
2 Effects: First, initializes an object t of type value_type with std::forward<Args>(args)..., then

inserts t as if by:
auto it = ranges::upper_bound(c, t, compare);
c.insert(it, std::move(t));

3 Returns: An iterator that points to the inserted element.

template<class InputIterator>
void insert(InputIterator first, InputIterator last);

4 Effects: Adds elements to c as if by:
c.insert(c.end(), first, last);

Then, sorts the range of newly inserted elements with respect to compare , and merges the resulting
sorted range and the sorted range of pre-existing elements into a single sorted range.

5 Complexity: N + M log M , where N is size() before the operation and M is distance(first,
last).

6 Remarks: Since this operation performs an in-place merge, it may allocate memory.

template<class InputIterator>
void insert(sorted_equivalent_t, InputIterator first, InputIterator last);

7 Effects: Equivalent to insert(first, last).
8 Complexity: Linear.

void swap(flat_multiset& y) noexcept;

9 Effects: Equivalent to:
ranges::swap(compare, y.compare);
ranges::swap(c, y.c);

container_type extract() &&;

10 Postconditions: *this is emptied, even if the function exits via an exception.
11 Returns: std::move(c).

void replace(container_type&& cont);

12 Preconditions: The elements of cont are sorted with respect to compare .
13 Effects: Equivalent to: c = std::move(cont);

24.6.12.5 Erasure [flat.multiset.erasure]

template<class Key, class Compare, class KeyContainer, class Predicate>
typename flat_multiset<Key, Compare, KeyContainer>::size_type

erase_if(flat_multiset<Key, Compare, KeyContainer>& c, Predicate pred);

1 Preconditions: Key meets the Cpp17MoveAssignable requirements.
2 Effects: Let E be bool(pred(as_const(e))). Erases all elements e in c for which E holds.
3 Returns: The number of elements erased.
4 Complexity: Exactly c.size() applications of the predicate.
5 Remarks: Stable (16.4.6.8). If an invocation of erase_if exits via an exception, c is in a valid but

unspecified state (3.64).
[Note 1 : c still meets its invariants, but can be empty. — end note ]

24.6.13 Container adaptors formatting [container.adaptors.format]
1 For each of queue, priority_queue, and stack, the library provides the following formatter specialization

where adaptor-type is the name of the template:
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namespace std {
template<class charT, class T, formattable<charT> Container, class... U>
struct formatter<adaptor-type <T, Container, U...>, charT> {
private:

using maybe-const-container = // exposition only
fmt-maybe-const <Container, charT>;

using maybe-const-adaptor = // exposition only
maybe-const <is_const_v<maybe-const-container >, // see 26.2

adaptor-type <T, Container, U...>>;
formatter<ranges::ref_view<maybe-const-container >, charT> underlying_; // exposition only

public:
template<class ParseContext>

constexpr typename ParseContext::iterator
parse(ParseContext& ctx);

template<class FormatContext>
typename FormatContext::iterator

format(maybe-const-adaptor & r, FormatContext& ctx) const;
};

}

template<class ParseContext>
constexpr typename ParseContext::iterator

parse(ParseContext& ctx);

2 Effects: Equivalent to: return underlying_.parse(ctx);

template<class FormatContext>
typename FormatContext::iterator

format(maybe-const-adaptor & r, FormatContext& ctx) const;

3 Effects: Equivalent to: return underlying_.format(r.c, ctx);

24.7 Views [views]
24.7.1 General [views.general]

1 The header <span> defines the view span. The header <mdspan> defines the class template mdspan and other
facilities for interacting with these multidimensional views.

24.7.2 Contiguous access [views.contiguous]
24.7.2.1 Header <span> synopsis [span.syn]

namespace std {
// constants
inline constexpr size_t dynamic_extent = numeric_limits<size_t>::max();

// 24.7.2.2, class template span
template<class ElementType, size_t Extent = dynamic_extent>

class span;

template<class ElementType, size_t Extent>
constexpr bool ranges::enable_view<span<ElementType, Extent>> = true;

template<class ElementType, size_t Extent>
constexpr bool ranges::enable_borrowed_range<span<ElementType, Extent>> = true;

// 24.7.2.3, views of object representation
template<class ElementType, size_t Extent>

span<const byte, Extent == dynamic_extent ? dynamic_extent : sizeof(ElementType) * Extent>
as_bytes(span<ElementType, Extent> s) noexcept;

template<class ElementType, size_t Extent>
span<byte, Extent == dynamic_extent ? dynamic_extent : sizeof(ElementType) * Extent>

as_writable_bytes(span<ElementType, Extent> s) noexcept;
}
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24.7.2.2 Class template span [views.span]
24.7.2.2.1 Overview [span.overview]

1 A span is a view over a contiguous sequence of objects, the storage of which is owned by some other object.
2 All member functions of span have constant time complexity.

namespace std {
template<class ElementType, size_t Extent = dynamic_extent>
class span {
public:

// constants and types
using element_type = ElementType;
using value_type = remove_cv_t<ElementType>;
using size_type = size_t;
using difference_type = ptrdiff_t;
using pointer = element_type*;
using const_pointer = const element_type*;
using reference = element_type&;
using const_reference = const element_type&;
using iterator = implementation-defined ; // see 24.7.2.2.7
using const_iterator = std::const_iterator<iterator>;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::const_iterator<reverse_iterator>;
static constexpr size_type extent = Extent;

// 24.7.2.2.2, constructors, copy, and assignment
constexpr span() noexcept;
template<class It>

constexpr explicit(extent != dynamic_extent) span(It first, size_type count);
template<class It, class End>

constexpr explicit(extent != dynamic_extent) span(It first, End last);
template<size_t N>

constexpr span(type_identity_t<element_type> (&arr)[N]) noexcept;
template<class T, size_t N>

constexpr span(array<T, N>& arr) noexcept;
template<class T, size_t N>

constexpr span(const array<T, N>& arr) noexcept;
template<class R>

constexpr explicit(extent != dynamic_extent) span(R&& r);
constexpr span(const span& other) noexcept = default;
template<class OtherElementType, size_t OtherExtent>

constexpr explicit(see below ) span(const span<OtherElementType, OtherExtent>& s) noexcept;

~span() noexcept = default;

constexpr span& operator=(const span& other) noexcept = default;

// 24.7.2.2.4, subviews
template<size_t Count>

constexpr span<element_type, Count> first() const;
template<size_t Count>

constexpr span<element_type, Count> last() const;
template<size_t Offset, size_t Count = dynamic_extent>

constexpr span<element_type, see below > subspan() const;

constexpr span<element_type, dynamic_extent> first(size_type count) const;
constexpr span<element_type, dynamic_extent> last(size_type count) const;
constexpr span<element_type, dynamic_extent> subspan(

size_type offset, size_type count = dynamic_extent) const;

// 24.7.2.2.5, observers
constexpr size_type size() const noexcept;
constexpr size_type size_bytes() const noexcept;
[[nodiscard]] constexpr bool empty() const noexcept;
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// 24.7.2.2.6, element access
constexpr reference operator[](size_type idx) const;
constexpr reference front() const;
constexpr reference back() const;
constexpr pointer data() const noexcept;

// 24.7.2.2.7, iterator support
constexpr iterator begin() const noexcept;
constexpr iterator end() const noexcept;
constexpr const_iterator cbegin() const noexcept { return begin(); }
constexpr const_iterator cend() const noexcept { return end(); }
constexpr reverse_iterator rbegin() const noexcept;
constexpr reverse_iterator rend() const noexcept;
constexpr const_reverse_iterator crbegin() const noexcept { return rbegin(); }
constexpr const_reverse_iterator crend() const noexcept { return rend(); }

private:
pointer data_; // exposition only
size_type size_; // exposition only

};

template<class It, class EndOrSize>
span(It, EndOrSize) -> span<remove_reference_t<iter_reference_t<It>>>;

template<class T, size_t N>
span(T (&)[N]) -> span<T, N>;

template<class T, size_t N>
span(array<T, N>&) -> span<T, N>;

template<class T, size_t N>
span(const array<T, N>&) -> span<const T, N>;

template<class R>
span(R&&) -> span<remove_reference_t<ranges::range_reference_t<R>>>;

}

3 span<ElementType, Extent> is a trivially copyable type (6.8.1).
4 ElementType is required to be a complete object type that is not an abstract class type.

24.7.2.2.2 Constructors, copy, and assignment [span.cons]

constexpr span() noexcept;

1 Constraints: Extent == dynamic_extent || Extent == 0 is true.
2 Postconditions: size() == 0 && data() == nullptr.

template<class It>
constexpr explicit(extent != dynamic_extent) span(It first, size_type count);

3 Constraints: Let U be remove_reference_t<iter_reference_t<It>>.
—(3.1) It satisfies contiguous_iterator.
—(3.2) is_convertible_v<U(*)[], element_type(*)[]> is true.

[Note 1 : The intent is to allow only qualification conversions of the iterator reference type to element_type.
— end note ]

4 Preconditions:
—(4.1) [first, first + count) is a valid range.
—(4.2) It models contiguous_iterator.
—(4.3) If extent is not equal to dynamic_extent, then count is equal to extent.

5 Effects: Initializes data_ with to_address(first) and size_ with count.
6 Throws: Nothing.

template<class It, class End>
constexpr explicit(extent != dynamic_extent) span(It first, End last);

7 Constraints: Let U be remove_reference_t<iter_reference_t<It>>.
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—(7.1) is_convertible_v<U(*)[], element_type(*)[]> is true.
[Note 2 : The intent is to allow only qualification conversions of the iterator reference type to element_type.

— end note ]

—(7.2) It satisfies contiguous_iterator.
—(7.3) End satisfies sized_sentinel_for<It>.
—(7.4) is_convertible_v<End, size_t> is false.

8 Preconditions:
—(8.1) If extent is not equal to dynamic_extent, then last - first is equal to extent.
—(8.2) [first, last) is a valid range.
—(8.3) It models contiguous_iterator.
—(8.4) End models sized_sentinel_for<It>.

9 Effects: Initializes data_ with to_address(first) and size_ with last - first.
10 Throws: When and what last - first throws.

template<size_t N> constexpr span(type_identity_t<element_type> (&arr)[N]) noexcept;
template<class T, size_t N> constexpr span(array<T, N>& arr) noexcept;
template<class T, size_t N> constexpr span(const array<T, N>& arr) noexcept;

11 Constraints: Let U be remove_pointer_t<decltype(data(arr))>.
—(11.1) extent == dynamic_extent || N == extent is true, and
—(11.2) is_convertible_v<U(*)[], element_type(*)[]> is true.

[Note 3 : The intent is to allow only qualification conversions of the array element type to element_type.
— end note ]

12 Effects: Constructs a span that is a view over the supplied array.
[Note 4 : type_identity_t affects class template argument deduction. — end note ]

13 Postconditions: size() == N && data() == data(arr) is true.

template<class R> constexpr explicit(extent != dynamic_extent) span(R&& r);

14 Constraints: Let U be remove_reference_t<ranges::range_reference_t<R>>.
—(14.1) R satisfies ranges::contiguous_range and ranges::sized_range.
—(14.2) Either R satisfies ranges::borrowed_range or is_const_v<element_type> is true.
—(14.3) remove_cvref_t<R> is not a specialization of span.
—(14.4) remove_cvref_t<R> is not a specialization of array.
—(14.5) is_array_v<remove_cvref_t<R>> is false.
—(14.6) is_convertible_v<U(*)[], element_type(*)[]> is true.

[Note 5 : The intent is to allow only qualification conversions of the range reference type to element_type.
— end note ]

15 Preconditions:
—(15.1) If extent is not equal to dynamic_extent, then ranges::size(r) is equal to extent.
—(15.2) R models ranges::contiguous_range and ranges::sized_range.
—(15.3) If is_const_v<element_type> is false, R models ranges::borrowed_range.

16 Effects: Initializes data_ with ranges::data(r) and size_ with ranges::size(r).
17 Throws: What and when ranges::data(r) and ranges::size(r) throw.

constexpr span(const span& other) noexcept = default;

18 Postconditions: other.size() == size() && other.data() == data().

template<class OtherElementType, size_t OtherExtent>
constexpr explicit(see below ) span(const span<OtherElementType, OtherExtent>& s) noexcept;

19 Constraints:
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—(19.1) extent == dynamic_extent || OtherExtent == dynamic_extent || extent == OtherExtent
is true, and

—(19.2) is_convertible_v<OtherElementType(*)[], element_type(*)[]> is true.
[Note 6 : The intent is to allow only qualification conversions of the OtherElementType to element_type.

— end note ]
20 Preconditions: If extent is not equal to dynamic_extent, then s.size() is equal to extent.
21 Effects: Constructs a span that is a view over the range [s.data(), s.data() + s.size()).
22 Postconditions: size() == s.size() && data() == s.data().
23 Remarks: The expression inside explicit is equivalent to:

extent != dynamic_extent && OtherExtent == dynamic_extent

constexpr span& operator=(const span& other) noexcept = default;

24 Postconditions: size() == other.size() && data() == other.data().

24.7.2.2.3 Deduction guides [span.deduct]

template<class It, class EndOrSize>
span(It, EndOrSize) -> span<remove_reference_t<iter_reference_t<It>>>;

1 Constraints: It satisfies contiguous_iterator.

template<class R>
span(R&&) -> span<remove_reference_t<ranges::range_reference_t<R>>>;

2 Constraints: R satisfies ranges::contiguous_range.

24.7.2.2.4 Subviews [span.sub]

template<size_t Count> constexpr span<element_type, Count> first() const;

1 Mandates: Count <= Extent is true.
2 Preconditions: Count <= size() is true.
3 Effects: Equivalent to: return R{data(), Count}; where R is the return type.

template<size_t Count> constexpr span<element_type, Count> last() const;

4 Mandates: Count <= Extent is true.
5 Preconditions: Count <= size() is true.
6 Effects: Equivalent to: return R{data() + (size() - Count), Count}; where R is the return type.

template<size_t Offset, size_t Count = dynamic_extent>
constexpr span<element_type, see below > subspan() const;

7 Mandates:
Offset <= Extent && (Count == dynamic_extent || Count <= Extent - Offset)

is true.
8 Preconditions:

Offset <= size() && (Count == dynamic_extent || Count <= size() - Offset)

is true.
9 Effects: Equivalent to:

return span<ElementType, see below >(
data() + Offset, Count != dynamic_extent ? Count : size() - Offset);

10 Remarks: The second template argument of the returned span type is:
Count != dynamic_extent ? Count

: (Extent != dynamic_extent ? Extent - Offset
: dynamic_extent)
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constexpr span<element_type, dynamic_extent> first(size_type count) const;

11 Preconditions: count <= size() is true.
12 Effects: Equivalent to: return {data(), count};

constexpr span<element_type, dynamic_extent> last(size_type count) const;

13 Preconditions: count <= size() is true.
14 Effects: Equivalent to: return {data() + (size() - count), count};

constexpr span<element_type, dynamic_extent> subspan(
size_type offset, size_type count = dynamic_extent) const;

15 Preconditions:
offset <= size() && (count == dynamic_extent || count <= size() - offset)

is true.
16 Effects: Equivalent to:

return {data() + offset, count == dynamic_extent ? size() - offset : count};

24.7.2.2.5 Observers [span.obs]

constexpr size_type size() const noexcept;

1 Effects: Equivalent to: return size_;

constexpr size_type size_bytes() const noexcept;

2 Effects: Equivalent to: return size() * sizeof(element_type);

[[nodiscard]] constexpr bool empty() const noexcept;

3 Effects: Equivalent to: return size() == 0;

24.7.2.2.6 Element access [span.elem]

constexpr reference operator[](size_type idx) const;

1 Preconditions: idx < size() is true.
2 Effects: Equivalent to: return *(data() + idx);

constexpr reference front() const;

3 Preconditions: empty() is false.
4 Effects: Equivalent to: return *data();

constexpr reference back() const;

5 Preconditions: empty() is false.
6 Effects: Equivalent to: return *(data() + (size() - 1));

constexpr pointer data() const noexcept;

7 Effects: Equivalent to: return data_;

24.7.2.2.7 Iterator support [span.iterators]

using iterator = implementation-defined ;

1 The type models contiguous_iterator (25.3.4.14), meets the Cpp17RandomAccessIterator require-
ments (25.3.5.7), and meets the requirements for constexpr iterators (25.3.1), whose value type is
value_type and whose reference type is reference.

2 All requirements on container iterators (24.2.2.2) apply to span::iterator as well.

constexpr iterator begin() const noexcept;

3 Returns: An iterator referring to the first element in the span. If empty() is true, then it returns the
same value as end().
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constexpr iterator end() const noexcept;

4 Returns: An iterator which is the past-the-end value.

constexpr reverse_iterator rbegin() const noexcept;

5 Effects: Equivalent to: return reverse_iterator(end());

constexpr reverse_iterator rend() const noexcept;

6 Effects: Equivalent to: return reverse_iterator(begin());

24.7.2.3 Views of object representation [span.objectrep]

template<class ElementType, size_t Extent>
span<const byte, Extent == dynamic_extent ? dynamic_extent : sizeof(ElementType) * Extent>

as_bytes(span<ElementType, Extent> s) noexcept;

1 Effects: Equivalent to: return R{reinterpret_cast<const byte*>(s.data()), s.size_bytes()};
where R is the return type.

template<class ElementType, size_t Extent>
span<byte, Extent == dynamic_extent ? dynamic_extent : sizeof(ElementType) * Extent>

as_writable_bytes(span<ElementType, Extent> s) noexcept;

2 Constraints: is_const_v<ElementType> is false.
3 Effects: Equivalent to: return R{reinterpret_cast<byte*>(s.data()), s.size_bytes()}; where

R is the return type.

24.7.3 Multidimensional access [views.multidim]
24.7.3.1 Overview [mdspan.overview]

1 A multidimensional index space is a Cartesian product of integer intervals. Each interval can be represented
by a half-open range [Li, Ui), where Li and Ui are the lower and upper bounds of the ith dimension. The rank
of a multidimensional index space is the number of intervals it represents. The size of a multidimensional
index space is the product of Ui − Li for each dimension i if its rank is greater than 0, and 1 otherwise.

2 An integer r is a rank index of an index space S if r is in the range [0, rank of S).
3 A pack of integers idx is a multidimensional index in a multidimensional index space S (or representation

thereof) if both of the following are true:
—(3.1) sizeof...(idx) is equal to the rank of S, and
—(3.2) for every rank index i of S, the ith value of idx is an integer in the interval [Li, Ui) of S.

24.7.3.2 Header <mdspan> synopsis [mdspan.syn]
namespace std {

// 24.7.3.3, class template extents
template<class IndexType, size_t... Extents>

class extents;

// 24.7.3.3.6, alias template dextents
template<class IndexType, size_t Rank>

using dextents = see below ;

// 24.7.3.4, layout mapping
struct layout_left;
struct layout_right;
struct layout_stride;

// 24.7.3.5.3, class template default_accessor
template<class ElementType>

class default_accessor;
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// 24.7.3.6, class template mdspan
template<class ElementType, class Extents, class LayoutPolicy = layout_right,

class AccessorPolicy = default_accessor<ElementType>>
class mdspan;

}

24.7.3.3 Class template extents [mdspan.extents]
24.7.3.3.1 Overview [mdspan.extents.overview]
The class template extents represents a multidimensional index space of rank equal to sizeof...(Extents).
In subclause (24.7), extents is used synonymously with multidimensional index space.

namespace std {
template<class IndexType, size_t... Extents>
class extents {
public:

using index_type = IndexType;
using size_type = make_unsigned_t<index_type>;
using rank_type = size_t;

// 24.7.3.3.4, observers of the multidimensional index space
static constexpr rank_type rank() noexcept { return sizeof...(Extents); }
static constexpr rank_type rank_dynamic() noexcept { return dynamic-index (rank()); }
static constexpr size_t static_extent(rank_type) noexcept;
constexpr index_type extent(rank_type) const noexcept;

// 24.7.3.3.3, constructors
constexpr extents() noexcept = default;

template<class OtherIndexType, size_t... OtherExtents>
constexpr explicit(see below )

extents(const extents<OtherIndexType, OtherExtents...>&) noexcept;
template<class... OtherIndexTypes>

constexpr explicit extents(OtherIndexTypes...) noexcept;
template<class OtherIndexType, size_t N>

constexpr explicit(N != rank_dynamic())
extents(span<OtherIndexType, N>) noexcept;

template<class OtherIndexType, size_t N>
constexpr explicit(N != rank_dynamic())

extents(const array<OtherIndexType, N>&) noexcept;

// 24.7.3.3.5, comparison operators
template<class OtherIndexType, size_t... OtherExtents>

friend constexpr bool operator==(const extents&,
const extents<OtherIndexType, OtherExtents...>&) noexcept;

// 24.7.3.3.2, exposition-only helpers
constexpr size_t fwd-prod-of-extents (rank_type) const noexcept; // exposition only
constexpr size_t rev-prod-of-extents (rank_type) const noexcept; // exposition only
template<class OtherIndexType>

static constexpr auto index-cast (OtherIndexType&&) noexcept; // exposition only

private:
static constexpr rank_type dynamic-index (rank_type) noexcept; // exposition only
static constexpr rank_type dynamic-index-inv (rank_type) noexcept; // exposition only
array<index_type, rank_dynamic()> dynamic-extents {}; // exposition only

};

template<class... Integrals>
explicit extents(Integrals...)

-> see below ;
}

1 Mandates:
—(1.1) IndexType is a signed or unsigned integer type, and
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—(1.2) each element of Extents is either equal to dynamic_extent, or is representable as a value of type
IndexType.

2 Each specialization of extents models regular and is trivially copyable.
3 Let Er be the rth element of Extents. Er is a dynamic extent if it is equal to dynamic_extent, otherwise Er

is a static extent. Let Dr be the value of dynamic-extents [dynamic-index (r)] if Er is a dynamic extent,
otherwise Er.

4 The rth interval of the multidimensional index space represented by an extents object is [0, Dr).

24.7.3.3.2 Exposition-only helpers [mdspan.extents.expo]

static constexpr rank_type dynamic-index (rank_type i) noexcept;

1 Preconditions: i <= rank() is true.
2 Returns: The number of Er with r < i for which Er is a dynamic extent.

static constexpr rank_type dynamic-index-inv (rank_type i) noexcept;

3 Preconditions: i < rank_dynamic() is true.
4 Returns: The minimum value of r such that dynamic-index (r + 1) == i + 1 is true.

constexpr size_t fwd-prod-of-extents (rank_type i) const noexcept;

5 Preconditions: i <= rank() is true.
6 Returns: If i > 0 is true, the product of extent(k) for all k in the range [0, i), otherwise 1.

constexpr size_t rev-prod-of-extents (rank_type i) const noexcept;

7 Preconditions: i < rank() is true.
8 Returns: If i + 1 < rank() is true, the product of extent(k) for all k in the range [i + 1, rank()),

otherwise 1.

template<class OtherIndexType>
static constexpr auto index-cast (OtherIndexType&& i) noexcept;

9 Effects:
—(9.1) If OtherIndexType is an integral type other than bool, then equivalent to return i;,
—(9.2) otherwise, equivalent to return static_cast<index_type>(i);.

[Note 1 : This function will always return an integral type other than bool. Since this function’s call sites are
constrained on convertibility of OtherIndexType to index_type, integer-class types can use the static_cast
branch without loss of precision. — end note ]

24.7.3.3.3 Constructors [mdspan.extents.cons]

template<class OtherIndexType, size_t... OtherExtents>
constexpr explicit(see below )

extents(const extents<OtherIndexType, OtherExtents...>& other) noexcept;

1 Constraints:
—(1.1) sizeof...(OtherExtents) == rank() is true.
—(1.2) ((OtherExtents == dynamic_extent || Extents == dynamic_extent || OtherExtents ==

Extents) && ...) is true.
2 Preconditions:

—(2.1) other.extent(r) equals Er for each r for which Er is a static extent, and
—(2.2) either

—(2.2.1) sizeof...(OtherExtents) is zero, or
—(2.2.2) other.extent(r) is representable as a value of type index_type for every rank index r of

other.
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3 Postconditions: *this == other is true.
4 Remarks: The expression inside explicit is equivalent to:

(((Extents != dynamic_extent) && (OtherExtents == dynamic_extent)) || ... ) ||
(numeric_limits<index_type>::max() < numeric_limits<OtherIndexType>::max())

template<class... OtherIndexTypes>
constexpr explicit extents(OtherIndexTypes... exts) noexcept;

5 Let N be sizeof...(OtherIndexTypes), and let exts_arr be array<index_type, N>{static_cast<
index_type>(std::move(exts))...}.

6 Constraints:
—(6.1) (is_convertible_v<OtherIndexTypes, index_type> && ...) is true,
—(6.2) (is_nothrow_constructible_v<index_type, OtherIndexTypes> && ...) is true, and
—(6.3) N == rank_dynamic() || N == rank() is true.

[Note 1 : One can construct extents from just dynamic extents, which are all the values getting stored, or
from all the extents with a precondition. — end note ]

7 Preconditions:
—(7.1) If N != rank_dynamic() is true, exts_arr[r] equals Er for each r for which Er is a static

extent, and
—(7.2) either

—(7.2.1) sizeof...(exts) == 0 is true, or
—(7.2.2) each element of exts is nonnegative and is representable as a value of type index_type.

8 Postconditions: *this == extents(exts_arr) is true.

template<class OtherIndexType, size_t N>
constexpr explicit(N != rank_dynamic())

extents(span<OtherIndexType, N> exts) noexcept;
template<class OtherIndexType, size_t N>

constexpr explicit(N != rank_dynamic())
extents(const array<OtherIndexType, N>& exts) noexcept;

9 Constraints:
—(9.1) is_convertible_v<const OtherIndexType&, index_type> is true,
—(9.2) is_nothrow_constructible_v<index_type, const OtherIndexType&> is true, and
—(9.3) N == rank_dynamic() || N == rank() is true.

10 Preconditions:
—(10.1) If N != rank_dynamic() is true, exts[r] equals Er for each r for which Er is a static extent,

and
—(10.2) either

—(10.2.1) N is zero, or
—(10.2.2) exts[r] is nonnegative and is representable as a value of type index_type for every rank

index r.
11 Effects:

—(11.1) If N equals dynamic_rank(), for all d in the range [0, rank_dynamic()), direct-non-list-initializes
dynamic-extents[d] with as_const(exts[d]).

—(11.2) Otherwise, for all d in the range [0, rank_dynamic()), direct-non-list-initializes dynamic-ex-
tents[d] with as_const(exts[dynamic-index-inv(d)]).

template<class... Integrals>
explicit extents(Integrals...) -> see below ;

12 Constraints: (is_convertible_v<Integrals, size_t> && ...) is true.
13 Remarks: The deduced type is dextents<size_t, sizeof...(Integrals)>.
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24.7.3.3.4 Observers of the multidimensional index space [mdspan.extents.obs]

static constexpr size_t static_extent(rank_type i) noexcept;

1 Preconditions: i < rank() is true.
2 Returns: Ei.

constexpr index_type extent(rank_type i) const noexcept;

3 Preconditions: i < rank() is true.
4 Returns: Di.

24.7.3.3.5 Comparison operators [mdspan.extents.cmp]

template<class OtherIndexType, size_t... OtherExtents>
friend constexpr bool operator==(const extents& lhs,

const extents<OtherIndexType, OtherExtents...>& rhs) noexcept;

1 Returns: true if lhs.rank() equals rhs.rank() and if lhs.extent(r) equals rhs.extent(r) for
every rank index r of rhs, otherwise false.

24.7.3.3.6 Alias template dextents [mdspan.extents.dextents]

template<class IndexType, size_t Rank>
using dextents = see below ;

1 Result: A type E that is a specialization of extents such that E::rank() == Rank && E::rank() ==
E::rank_dynamic() is true, and E::index_type denotes IndexType.

24.7.3.4 Layout mapping [mdspan.layout]
24.7.3.4.1 General [mdspan.layout.general]

1 In subclauses 24.7.3.4.2 and 24.7.3.4.3:
—(1.1) M denotes a layout mapping class.
—(1.2) m denotes a (possibly const) value of type M.
—(1.3) i and j are packs of (possibly const) integers that are multidimensional indices in m.extents() (24.7.3.1).

[Note 1 : The type of each element of the packs can be a different integer type. — end note ]

—(1.4) r is a (possibly const) rank index of typename M::extents_type.
—(1.5) dr is a pack of (possibly const) integers for which sizeof...(dr) == M::extents_type::rank() is

true, the rth element is equal to 1, and all other elements are equal to 0.
2 In subclauses 24.7.3.4.2 through 24.7.3.4.7, let is-mapping-of be the exposition-only variable template

defined as follows:
template<class Layout, class Mapping>
constexpr bool is-mapping-of = // exposition only

is_same_v<typename Layout::template mapping<typename Mapping::extents_type>, Mapping>;

24.7.3.4.2 Requirements [mdspan.layout.reqmts]
1 A type M meets the layout mapping requirements if

—(1.1) M models copyable and equality_comparable,
—(1.2) is_nothrow_move_constructible_v<M> is true,
—(1.3) is_nothrow_move_assignable_v<M> is true,
—(1.4) is_nothrow_swappable_v<M> is true, and
—(1.5) the following types and expressions are well-formed and have the specified semantics.

typename M::extents_type

2 Result: A type that is a specialization of extents.

typename M::index_type

3 Result: typename M::extents_type::index_type.
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typename M::rank_type

4 Result: typename M::extents_type::rank_type.

typename M::layout_type

5 Result: A type MP that meets the layout mapping policy requirements (24.7.3.4.3) and for which
is-mapping-of <MP, M> is true.

m.extents()

6 Result: const typename M::extents_type&

m(i...)

7 Result: typename M::index_type
8 Returns: A nonnegative integer less than numeric_limits<typename M::index_type>::max() and

less than or equal to numeric_limits<size_t>::max().

m(i...) == m(static_cast<typename M::index_type>(i)...)

9 Result: bool
10 Returns: true

m.required_span_size()

11 Result: typename M::index_type
12 Returns: If the size of the multidimensional index space m.extents() is 0, then 0, else 1 plus the

maximum value of m(i...) for all i.

m.is_unique()

13 Result: bool
14 Returns: true only if for every i and j where (i != j || ...) is true, m(i...) != m(j...) is true.

[Note 1 : A mapping can return false even if the condition is met. For certain layouts, it is possibly not feasible
to determine efficiently whether the layout is unique. — end note ]

m.is_exhaustive()

15 Result: bool
16 Returns: true only if for all k in the range [0, m.required_span_size()) there exists an i such that

m(i...) equals k.
[Note 2 : A mapping can return false even if the condition is met. For certain layouts, it is possibly not feasible
to determine efficiently whether the layout is exhaustive. — end note ]

m.is_strided()

17 Result: bool
18 Returns: true only if for every rank index r of m.extents() there exists an integer sr such that, for all

i where (i + dr) is a multidimensional index in m.extents() (24.7.3.1), m((i + dr)...) - m(i...)
equals sr.
[Note 3 : This implies that for a strided layout m(i0, . . . , ik) = m(0, . . . , 0) + i0 × s0 + · · · + ik × sk. — end note ]
[Note 4 : A mapping can return false even if the condition is met. For certain layouts, it is possibly not feasible
to determine efficiently whether the layout is strided. — end note ]

m.stride(r)

19 Preconditions: m.is_strided() is true.
20 Result: typename M::index_type
21 Returns: sr as defined in m.is_strided() above.

M::is_always_unique()

22 Result: A constant expression (7.7) of type bool.
23 Returns: true only if m.is_unique() is true for all possible objects m of type M.
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[Note 5 : A mapping can return false even if the above condition is met. For certain layout mappings, it is
possibly not feasible to determine whether every instance is unique. — end note ]

M::is_always_exhaustive()

24 Result: A constant expression (7.7) of type bool.
25 Returns: true only if m.is_exhaustive() is true for all possible objects m of type M.

[Note 6 : A mapping can return false even if the above condition is met. For certain layout mappings, it is
possibly not feasible to determine whether every instance is exhaustive. — end note ]

M::is_always_strided()

26 Result: A constant expression (7.7) of type bool.
27 Returns: true only if m.is_strided() is true for all possible objects m of type M.

[Note 7 : A mapping can return false even if the above condition is met. For certain layout mappings, it is
possibly not feasible to determine whether every instance is strided. — end note ]

24.7.3.4.3 Layout mapping policy requirements [mdspan.layout.policy.reqmts]
1 A type MP meets the layout mapping policy requirements if for a type E that is a specialization of extents,

MP::mapping<E> is valid and denotes a type X that meets the layout mapping requirements (24.7.3.4.2), and for
which the qualified-id X::layout_type is valid and denotes the type MP and the qualified-id X::extents_type
denotes E.

24.7.3.4.4 Layout mapping policies [mdspan.layout.policy.overview]
namespace std {

struct layout_left {
template<class Extents>

class mapping;
};
struct layout_right {

template<class Extents>
class mapping;

};
struct layout_stride {

template<class Extents>
class mapping;

};
}

1 Each of layout_left, layout_right, and layout_stride meets the layout mapping policy requirements
and is a trivial type.

24.7.3.4.5 Class template layout_left::mapping [mdspan.layout.left]
24.7.3.4.5.1 Overview [mdspan.layout.left.overview]

1 layout_left provides a layout mapping where the leftmost extent has stride 1, and strides increase left-to-
right as the product of extents.

namespace std {
template<class Extents>
class layout_left::mapping {
public:

using extents_type = Extents;
using index_type = typename extents_type::index_type;
using size_type = typename extents_type::size_type;
using rank_type = typename extents_type::rank_type;
using layout_type = layout_left;

// 24.7.3.4.5.2, constructors
constexpr mapping() noexcept = default;
constexpr mapping(const mapping&) noexcept = default;
constexpr mapping(const extents_type&) noexcept;
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template<class OtherExtents>
constexpr explicit(!is_convertible_v<OtherExtents, extents_type>)

mapping(const mapping<OtherExtents>&) noexcept;
template<class OtherExtents>

constexpr explicit(!is_convertible_v<OtherExtents, extents_type>)
mapping(const layout_right::mapping<OtherExtents>&) noexcept;

template<class OtherExtents>
constexpr explicit(extents_type::rank() > 0)

mapping(const layout_stride::mapping<OtherExtents>&);

constexpr mapping& operator=(const mapping&) noexcept = default;

// 24.7.3.4.5.3, observers
constexpr const extents_type& extents() const noexcept { return extents_; }

constexpr index_type required_span_size() const noexcept;

template<class... Indices>
constexpr index_type operator()(Indices...) const noexcept;

static constexpr bool is_always_unique() noexcept { return true; }
static constexpr bool is_always_exhaustive() noexcept { return true; }
static constexpr bool is_always_strided() noexcept { return true; }

static constexpr bool is_unique() noexcept { return true; }
static constexpr bool is_exhaustive() noexcept { return true; }
static constexpr bool is_strided() noexcept { return true; }

constexpr index_type stride(rank_type) const noexcept;

template<class OtherExtents>
friend constexpr bool operator==(const mapping&, const mapping<OtherExtents>&) noexcept;

private:
extents_type extents_{}; // exposition only

};
}

2 If Extents is not a specialization of extents, then the program is ill-formed.
3 layout_left::mapping<E> is a trivially copyable type that models regular for each E.
4 Mandates: If Extents::rank_dynamic() == 0 is true, then the size of the multidimensional index space

Extents() is representable as a value of type typename Extents::index_type.

24.7.3.4.5.2 Constructors [mdspan.layout.left.cons]

constexpr mapping(const extents_type& e) noexcept;

1 Preconditions: The size of the multidimensional index space e is representable as a value of type
index_type (6.8.2).

2 Effects: Direct-non-list-initializes extents_ with e.

template<class OtherExtents>
constexpr explicit(!is_convertible_v<OtherExtents, extents_type>)

mapping(const mapping<OtherExtents>& other) noexcept;

3 Constraints: is_constructible_v<extents_type, OtherExtents> is true.
4 Preconditions: other.required_span_size() is representable as a value of type index_type (6.8.2).
5 Effects: Direct-non-list-initializes extents_ with other.extents().

template<class OtherExents>
constexpr explicit(!is_convertible_v<OtherExtents, extents_type>)

mapping(const layout_right::mapping<OtherExtents>& other) noexcept;

6 Constraints:
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—(6.1) extents_type::rank() <= 1 is true, and
—(6.2) is_constructible_v<extents_type, OtherExtents> is true.

7 Preconditions: other.required_span_size() is representable as a value of type index_type (6.8.2).
8 Effects: Direct-non-list-initializes extents_ with other.extents().

template<class OtherExtents>
constexpr explicit(extents_type::rank() > 0)

mapping(const layout_stride::mapping<OtherExtents>& other);

9 Constraints: is_constructible_v<extents_type, OtherExtents> is true.
10 Preconditions:

—(10.1) If extents_type::rank() > 0 is true, then for all r in the range [0, extents_type::rank()),
other.stride(r) equals other.extents().fwd-prod-of-extents (r), and

—(10.2) other.required_span_size() is representable as a value of type index_type (6.8.2).
11 Effects: Direct-non-list-initializes extents_ with other.extents().

24.7.3.4.5.3 Observers [mdspan.layout.left.obs]

constexpr index_type required_span_size() const noexcept;

1 Returns: extents().fwd-prod-of-extents (extents_type::rank()).

template<class... Indices>
constexpr index_type operator()(Indices... i) const noexcept;

2 Constraints:
—(2.1) sizeof...(Indices) == extents_type::rank() is true,
—(2.2) (is_convertible_v<Indices, index_type> && ...) is true, and
—(2.3) (is_nothrow_constructible_v<index_type, Indices> && ...) is true.

3 Preconditions: extents_type::index-cast (i) is a multidimensional index in extents_ (24.7.3.1).
4 Effects: Let P be a parameter pack such that

is_same_v<index_sequence_for<Indices...>, index_sequence<P...>>

is true. Equivalent to:
return ((static_cast<index_type>(i) * stride(P)) + ... + 0);

constexpr index_type stride(rank_type i) const;

5 Constraints: extents_type::rank() > 0 is true.
6 Preconditions: i < extents_type::rank() is true.
7 Returns: extents().fwd-prod-of-extents (i).

template<class OtherExtents>
friend constexpr bool operator==(const mapping& x, const mapping<OtherExtents>& y) noexcept;

8 Constraints: extents_type::rank() == OtherExtents::rank() is true.
9 Effects: Equivalent to: return x.extents() == y.extents();

24.7.3.4.6 Class template layout_right::mapping [mdspan.layout.right]
24.7.3.4.6.1 Overview [mdspan.layout.right.overview]

1 layout_right provides a layout mapping where the rightmost extent is stride 1, and strides increase
right-to-left as the product of extents.

namespace std {
template<class Extents>
class layout_right::mapping {
public:

using extents_type = Extents;
using index_type = typename extents_type::index_type;
using size_type = typename extents_type::size_type;
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using rank_type = typename extents_type::rank_type;
using layout_type = layout_right;

// 24.7.3.4.6.2, constructors
constexpr mapping() noexcept = default;
constexpr mapping(const mapping&) noexcept = default;
constexpr mapping(const extents_type&) noexcept;
template<class OtherExtents>

constexpr explicit(!is_convertible_v<OtherExtents, extents_type>)
mapping(const mapping<OtherExtents>&) noexcept;

template<class OtherExtents>
constexpr explicit(!is_convertible_v<OtherExtents, extents_type>)

mapping(const layout_left::mapping<OtherExtents>&) noexcept;
template<class OtherExtents>

constexpr explicit(extents_type::rank() > 0)
mapping(const layout_stride::mapping<OtherExtents>&) noexcept;

constexpr mapping& operator=(const mapping&) noexcept = default;

// 24.7.3.4.6.3, observers
constexpr const extents_type& extents() const noexcept { return extents_; }

constexpr index_type required_span_size() const noexcept;

template<class... Indices>
constexpr index_type operator()(Indices...) const noexcept;

static constexpr bool is_always_unique() noexcept { return true; }
static constexpr bool is_always_exhaustive() noexcept { return true; }
static constexpr bool is_always_strided() noexcept { return true; }

static constexpr bool is_unique() noexcept { return true; }
static constexpr bool is_exhaustive() noexcept { return true; }
static constexpr bool is_strided() noexcept { return true; }

constexpr index_type stride(rank_type) const noexcept;

template<class OtherExtents>
friend constexpr bool operator==(const mapping&, const mapping<OtherExtents>&) noexcept;

private:
extents_type extents_{}; // exposition only

};
}

2 If Extents is not a specialization of extents, then the program is ill-formed.
3 layout_right::mapping<E> is a trivially copyable type that models regular for each E.
4 Mandates: If Extents::rank_dynamic() == 0 is true, then the size of the multidimensional index space

Extents() is representable as a value of type typename Extents::index_type.

24.7.3.4.6.2 Constructors [mdspan.layout.right.cons]

constexpr mapping(const extents_type& e) noexcept;

1 Preconditions: The size of the multidimensional index space e is representable as a value of type
index_type (6.8.2).

2 Effects: Direct-non-list-initializes extents_ with e.

template<class OtherExtents>
constexpr explicit(!is_convertible_v<OtherExtents, extents_type>)

mapping(const mapping<OtherExtents>& other) noexcept;

3 Constraints: is_constructible_v<extents_type, OtherExtents> is true.
4 Preconditions: other.required_span_size() is representable as a value of type index_type (6.8.2).
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5 Effects: Direct-non-list-initializes extents_ with other.extents().

template<class OtherExtents>
constexpr explicit(!is_convertible_v<OtherExtents, extents_type>)

mapping(const layout_left::mapping<OtherExtents>& other) noexcept;

6 Constraints:
—(6.1) extents_type::rank() <= 1 is true, and
—(6.2) is_constructible_v<extents_type, OtherExtents> is true.

7 Preconditions: other.required_span_size() is representable as a value of type index_type (6.8.2).
8 Effects: Direct-non-list-initializes extents_ with other.extents().

template<class OtherExtents>
constexpr explicit(extents_type::rank() > 0)

mapping(const layout_stride::mapping<OtherExtents>& other) noexcept;

9 Constraints: is_constructible_v<extents_type, OtherExtents> is true.
10 Preconditions:

—(10.1) If extents_type::rank() > 0 is true, then for all r in the range [0, extents_type::rank()),
other.stride(r) equals other.extents().rev-prod-of-extents (r).

—(10.2) other.required_span_size() is representable as a value of type index_type (6.8.2).
11 Effects: Direct-non-list-initializes extents_ with other.extents().

24.7.3.4.6.3 Observers [mdspan.layout.right.obs]

index_type required_span_size() const noexcept;

1 Returns: extents().fwd-prod-of-extents (extents_type::rank()).

template<class... Indices>
constexpr index_type operator()(Indices... i) const noexcept;

2 Constraints:
—(2.1) sizeof...(Indices) == extents_type::rank() is true,
—(2.2) (is_convertible_v<Indices, index_type> && ...) is true, and
—(2.3) (is_nothrow_constructible_v<index_type, Indices> && ...) is true.

3 Preconditions: extents_type::index-cast (i) is a multidimensional index in extents_ (24.7.3.1).
4 Effects: Let P be a parameter pack such that

is_same_v<index_sequence_for<Indices...>, index_sequence<P...>>

is true. Equivalent to:
return ((static_cast<index_type>(i) * stride(P)) + ... + 0);

constexpr index_type stride(rank_type i) const noexcept;

5 Constraints: extents_type::rank() > 0 is true.
6 Preconditions: i < extents_type::rank() is true.
7 Returns: extents().rev-prod-of-extents (i).

template<class OtherExtents>
friend constexpr bool operator==(const mapping& x, const mapping<OtherExtents>& y) noexcept;

8 Constraints: extents_type::rank() == OtherExtents::rank() is true.
9 Effects: Equivalent to: return x.extents() == y.extents();

24.7.3.4.7 Class template layout_stride::mapping [mdspan.layout.stride]
24.7.3.4.7.1 Overview [mdspan.layout.stride.overview]

1 layout_stride provides a layout mapping where the strides are user-defined.
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namespace std {
template<class Extents>
class layout_stride::mapping {
public:

using extents_type = Extents;
using index_type = typename extents_type::index_type;
using size_type = typename extents_type::size_type;
using rank_type = typename extents_type::rank_type;
using layout_type = layout_stride;

private:
static constexpr rank_type rank_ = extents_type::rank(); // exposition only

public:
// 24.7.3.4.7.3, constructors
constexpr mapping() noexcept;
constexpr mapping(const mapping&) noexcept = default;
template<class OtherIndexType>

constexpr mapping(const extents_type&, span<OtherIndexType, rank_>) noexcept;
template<class OtherIndexType>

constexpr mapping(const extents_type&, const array<OtherIndexType, rank_>&) noexcept;

template<class StridedLayoutMapping>
constexpr explicit(see below ) mapping(const StridedLayoutMapping&) noexcept;

constexpr mapping& operator=(const mapping&) noexcept = default;

// 24.7.3.4.7.4, observers
constexpr const extents_type& extents() const noexcept { return extents_; }
constexpr array<index_type, rank_> strides() const noexcept { return strides_; }

constexpr index_type required_span_size() const noexcept;

template<class... Indices>
constexpr index_type operator()(Indices...) const noexcept;

static constexpr bool is_always_unique() noexcept { return true; }
static constexpr bool is_always_exhaustive() noexcept { return false; }
static constexpr bool is_always_strided() noexcept { return true; }

static constexpr bool is_unique() noexcept { return true; }
constexpr bool is_exhaustive() const noexcept;
static constexpr bool is_strided() noexcept { return true; }

constexpr index_type stride(rank_type i) const noexcept { return strides_[i]; }

template<class OtherMapping>
friend constexpr bool operator==(const mapping&, const OtherMapping&) noexcept;

private:
extents_type extents_{}; // exposition only
array<index_type, rank_> strides_{}; // exposition only

};
}

2 If Extents is not a specialization of extents, then the program is ill-formed.
3 layout_stride::mapping<E> is a trivially copyable type that models regular for each E.
4 Mandates: If Extents::rank_dynamic() == 0 is true, then the size of the multidimensional index space

Extents() is representable as a value of type typename Extents::index_type.

24.7.3.4.7.2 Exposition-only helpers [mdspan.layout.stride.expo]
1 Let REQUIRED-SPAN-SIZE (e, strides) be:

—(1.1) 1, if e.rank() == 0 is true,
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—(1.2) otherwise 0, if the size of the multidimensional index space e is 0,
—(1.3) otherwise 1 plus the sum of products of (e.extent(r) - 1) and strides[r] for all r in the range

[0, e.rank()).
2 Let OFFSET (m) be:

—(2.1) m(), if e.rank() == 0 is true,
—(2.2) otherwise 0, if the size of the multidimensional index space e is 0,
—(2.3) otherwise m(z...) for a pack of integers z that is a multidimensional index in m.extents() and each

element of z equals 0.
3 Let is-extents be the exposition-only variable template defined as follows:

template<class T>
constexpr bool is-extents = false; // exposition only

template<class IndexType, size_t... Args>
constexpr bool is-extents <extents<IndexType, Args...>> = true; // exposition only

4 Let layout-mapping-alike be the exposition-only concept defined as follows:
template<class M>
concept layout-mapping-alike = requires { // exposition only

requires is-extents <typename M::extents_type>;
{ M::is_always_strided() } -> same_as<bool>;
{ M::is_always_exhaustive() } -> same_as<bool>;
{ M::is_always_unique() } -> same_as<bool>;
bool_constant<M::is_always_strided()>::value;
bool_constant<M::is_always_exhaustive()>::value;
bool_constant<M::is_always_unique()>::value;

};

[Note 1 : This concept checks that the functions M::is_always_strided(), M::is_always_exhaustive(), and M::is_-
always_unique() exist, are constant expressions, and have a return type of bool. — end note ]

24.7.3.4.7.3 Constructors [mdspan.layout.stride.cons]

constexpr mapping() noexcept;

1 Preconditions: layout_right::mapping<extents_type>().required_span_size() is representable
as a value of type index_type (6.8.2).

2 Effects: Direct-non-list-initializes extents_ with extents_type(), and for all d in the range [0, rank_),
direct-non-list-initializes strides_[d] with layout_right::mapping<extents_type>().stride(d).

template<class OtherIndexType>
constexpr mapping(const extents_type& e, span<OtherIndexType, rank_> s) noexcept;

template<class OtherIndexType>
constexpr mapping(const extents_type& e, const array<OtherIndexType, rank_>& s) noexcept;

3 Constraints:
—(3.1) is_convertible_v<const OtherIndexType&, index_type> is true, and
—(3.2) is_nothrow_constructible_v<index_type, const OtherIndexType&> is true.

4 Preconditions:
—(4.1) s[i] > 0 is true for all i in the range [0, rank_).
—(4.2) REQUIRED-SPAN-SIZE (e, s) is representable as a value of type index_type (6.8.2).
—(4.3) If rank_ is greater than 0, then there exists a permutation P of the integers in the range [0, rank_),

such that s[pi] >= s[pi−1] * e.extent(pi−1) is true for all i in the range [1, rank_), where pi

is the ith element of P .
[Note 1 : For layout_stride, this condition is necessary and sufficient for is_unique() to be true. — end
note ]

5 Effects: Direct-non-list-initializes extents_ with e, and for all d in the range [0, rank_), direct-non-list-
initializes strides_[d] with as_const(s[d]).
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template<class StridedLayoutMapping>
constexpr explicit(see below )

mapping(const StridedLayoutMapping& other) noexcept;

6 Constraints:
—(6.1) layout-mapping-alike <StridedLayoutMapping> is satisfied.
—(6.2) is_constructible_v<extents_type, typename StridedLayoutMapping::extents_type> is

true.
—(6.3) StridedLayoutMapping::is_always_unique() is true.
—(6.4) StridedLayoutMapping::is_always_strided() is true.

7 Preconditions:
—(7.1) StridedLayoutMapping meets the layout mapping requirements (24.7.3.4.3),
—(7.2) other.stride(r) > 0 is true for every rank index r of extents(),
—(7.3) other.required_span_size() is representable as a value of type index_type (6.8.2), and
—(7.4) OFFSET (other) == 0 is true.

8 Effects: Direct-non-list-initializes extents_ with other.extents(), and for all d in the range [0, rank_),
direct-non-list-initializes strides_[d] with other.stride(d).

9 Remarks: The expression inside explicit is equivalent to:
!(is_convertible_v<typename StridedLayoutMapping::extents_type, extents_type> &&

(is-mapping-of <layout_left, LayoutStrideMapping> ||
is-mapping-of <layout_right, LayoutStrideMapping> ||
is-mapping-of <layout_stride, LayoutStrideMapping>))

24.7.3.4.7.4 Observers [mdspan.layout.stride.obs]

constexpr index_type required_span_size() const noexcept;

1 Returns: REQUIRED-SPAN-SIZE (extents(), strides_).

template<class... Indices>
constexpr index_type operator()(Indices... i) const noexcept;

2 Constraints:
—(2.1) sizeof...(Indices) == rank_ is true,
—(2.2) (is_convertible_v<Indices, index_type> && ...) is true, and
—(2.3) (is_nothrow_constructible_v<index_type, Indices> && ...) is true.

3 Preconditions: extents_type::index-cast (i) is a multidimensional index in extents_ (24.7.3.1).
4 Effects: Let P be a parameter pack such that

is_same_v<index_sequence_for<Indices...>, index_sequence<P...>>

is true. Equivalent to:
return ((static_cast<index_type>(i) * stride(P)) + ... + 0);

constexpr bool is_exhaustive() const noexcept;

5 Returns:
—(5.1) true if rank_ is 0.
—(5.2) Otherwise, true if there is a permutation P of the integers in the range [0, rank_) such that

stride(p0) equals 1, and stride(pi) equals stride(pi−1) * extents().extent(pi−1) for i in
the range [1, rank_), where pi is the ith element of P .

—(5.3) Otherwise, false.

template<class OtherMapping>
friend constexpr bool operator==(const mapping& x, const OtherMapping& y) noexcept;

6 Constraints:
—(6.1) layout-mapping-alike <OtherMapping> is satisfied.
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—(6.2) rank_ == OtherMapping::extents_type::rank() is true.
—(6.3) OtherMapping::is_always_strided() is true.

7 Preconditions: OtherMapping meets the layout mapping requirements (24.7.3.4.3).
8 Returns: true if x.extents() == y.extents() is true, OFFSET (y) == 0 is true, and each of

x.stride(r) == y.stride(r) is true for r in the range [0, x.extents().rank()). Otherwise, false.

24.7.3.5 Accessor policy [mdspan.accessor]
24.7.3.5.1 General [mdspan.accessor.general]

1 An accessor policy defines types and operations by which a reference to a single object is created from an
abstract data handle to a number of such objects and an index.

2 A range of indices [0, N) is an accessible range of a given data handle and an accessor if, for each i in the
range, the accessor policy’s access function produces a valid reference to an object.

3 In subclause 24.7.3.5.2,
—(3.1) A denotes an accessor policy.
—(3.2) a denotes a value of type A or const A.
—(3.3) p denotes a value of type A::data_handle_type or const A::data_handle_type.

[Note 1 : The type A::data_handle_type need not be dereferenceable. — end note ]

—(3.4) n, i, and j each denote values of type size_t.

24.7.3.5.2 Requirements [mdspan.accessor.reqmts]
1 A type A meets the accessor policy requirements if

—(1.1) A models copyable,
—(1.2) is_nothrow_move_constructible_v<A> is true,
—(1.3) is_nothrow_move_assignable_v<A> is true,
—(1.4) is_nothrow_swappable_v<A> is true, and
—(1.5) the following types and expressions are well-formed and have the specified semantics.

typename A::element_type

2 Result: A complete object type that is not an abstract class type.

typename A::data_handle_type

3 Result: A type that models copyable, and for which is_nothrow_move_constructible_v<A::data_-
handle_type> is true, is_nothrow_move_assignable_v<A::data_handle_type> is true, and is_-
nothrow_swappable_v<A::data_handle_type> is true.
[Note 1 : The type of data_handle_type need not be element_type*. — end note ]

typename A::reference

4 Result: A type that models common_reference_with<A::reference&&, A::element_type&>.
[Note 2 : The type of reference need not be element_type&. — end note ]

typename A::offset_policy

5 Result: A type OP such that:
—(5.1) OP meets the accessor policy requirements,
—(5.2) constructible_from<OP, const A&> is modeled, and
—(5.3) is_same_v<typename OP::element_type, typename A::element_type> is true.

a.access(p, i)

6 Result: A::reference
7 Remarks: The expression is equality preserving.
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8 [Note 3 : Concrete accessor policies can impose preconditions for their access function. However, they might
not. For example, an accessor where p is span<A::element_type, dynamic_extent> and access(p, i) returns
p[i % p.size()] does not need to impose a precondition on i. — end note ]

a.offset(p, i)

9 Result: A::offset_policy::data_handle_type
10 Returns: q such that for b being A::offset_policy(a), and any integer n for which [0, n) is an

accessible range of p and a:
—(10.1) [0, n − i) is an accessible range of q and b; and
—(10.2) b.access(q, j) provides access to the same element as a.access(p, i + j), for every j in the

range [0, n − i).
11 Remarks: The expression is equality-preserving.

24.7.3.5.3 Class template default_accessor [mdspan.accessor.default]
24.7.3.5.3.1 Overview [mdspan.accessor.default.overview]

namespace std {
template<class ElementType>
struct default_accessor {

using offset_policy = default_accessor;
using element_type = ElementType;
using reference = ElementType&;
using data_handle_type = ElementType*;

constexpr default_accessor() noexcept = default;
template<class OtherElementType>

constexpr default_accessor(default_accessor<OtherElementType>) noexcept;
constexpr reference access(data_handle_type p, size_t i) const noexcept;
constexpr data_handle_type offset(data_handle_type p, size_t i) const noexcept;

};
}

1 default_accessor meets the accessor policy requirements.
2 ElementType is required to be a complete object type that is neither an abstract class type nor an array type.
3 Each specialization of default_accessor is a trivially copyable type that models semiregular.
4 [0, n) is an accessible range for an object p of type data_handle_type and an object of type default_-

accessor if and only if [p, p + n) is a valid range.

24.7.3.5.3.2 Members [mdspan.accessor.default.members]

template<class OtherElementType>
constexpr default_accessor(default_accessor<OtherElementType>) noexcept {}

1 Constraints: is_convertible_v<OtherElementType(*)[], element_type(*)[]> is true.

constexpr reference access(data_handle_type p, size_t i) const noexcept;

2 Effects: Equivalent to: return p[i];

constexpr data_handle_type offset(data_handle_type p, size_t i) const noexcept;

3 Effects: Equivalent to: return p + i;

24.7.3.6 Class template mdspan [mdspan.mdspan]
24.7.3.6.1 Overview [mdspan.mdspan.overview]

1 mdspan is a view of a multidimensional array of elements.
namespace std {

template<class ElementType, class Extents, class LayoutPolicy = layout_right,
class AccessorPolicy = default_accessor<ElementType>>

class mdspan {
public:

using extents_type = Extents;
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using layout_type = LayoutPolicy;
using accessor_type = AccessorPolicy;
using mapping_type = typename layout_type::template mapping<extents_type>;
using element_type = ElementType;
using value_type = remove_cv_t<element_type>;
using index_type = typename extents_type::index_type;
using size_type = typename extents_type::size_type;
using rank_type = typename extents_type::rank_type;
using data_handle_type = typename accessor_type::data_handle_type;
using reference = typename accessor_type::reference;

static constexpr rank_type rank() noexcept { return extents_type::rank(); }
static constexpr rank_type rank_dynamic() noexcept { return extents_type::rank_dynamic(); }
static constexpr size_t static_extent(rank_type r) noexcept

{ return extents_type::static_extent(r); }
constexpr index_type extent(rank_type r) const noexcept { return extents().extent(r); }

// 24.7.3.6.2, constructors
constexpr mdspan();
constexpr mdspan(const mdspan& rhs) = default;
constexpr mdspan(mdspan&& rhs) = default;

template<class... OtherIndexTypes>
constexpr explicit mdspan(data_handle_type ptr, OtherIndexTypes... exts);

template<class OtherIndexType, size_t N>
constexpr explicit(N != rank_dynamic())

mdspan(data_handle_type p, span<OtherIndexType, N> exts);
template<class OtherIndexType, size_t N>

constexpr explicit(N != rank_dynamic())
mdspan(data_handle_type p, const array<OtherIndexType, N>& exts);

constexpr mdspan(data_handle_type p, const extents_type& ext);
constexpr mdspan(data_handle_type p, const mapping_type& m);
constexpr mdspan(data_handle_type p, const mapping_type& m, const accessor_type& a);

template<class OtherElementType, class OtherExtents,
class OtherLayoutPolicy, class OtherAccessorPolicy>

constexpr explicit(see below )
mdspan(const mdspan<OtherElementType, OtherExtents,

OtherLayoutPolicy, OtherAccessorPolicy>& other);

constexpr mdspan& operator=(const mdspan& rhs) = default;
constexpr mdspan& operator=(mdspan&& rhs) = default;

// 24.7.3.6.3, members
template<class... OtherIndexTypes>

constexpr reference operator[](OtherIndexTypes... indices) const;
template<class OtherIndexType>

constexpr reference operator[](span<OtherIndexType, rank()> indices) const;
template<class OtherIndexType>

constexpr reference operator[](const array<OtherIndexType, rank()>& indices) const;

constexpr size_type size() const noexcept;
[[nodiscard]] constexpr bool empty() const noexcept;

friend constexpr void swap(mdspan& x, mdspan& y) noexcept;

constexpr const extents_type& extents() const noexcept { return map_.extents(); }
constexpr const data_handle_type& data_handle() const noexcept { return ptr_; }
constexpr const mapping_type& mapping() const noexcept { return map_; }
constexpr const accessor_type& accessor() const noexcept { return acc_; }

static constexpr bool is_always_unique()
{ return mapping_type::is_always_unique(); }
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static constexpr bool is_always_exhaustive()
{ return mapping_type::is_always_exhaustive(); }

static constexpr bool is_always_strided()
{ return mapping_type::is_always_strided(); }

constexpr bool is_unique() const
{ return map_.is_unique(); }

constexpr bool is_exhaustive() const
{ return map_.is_exhaustive(); }

constexpr bool is_strided() const
{ return map_. is_strided(); }

constexpr index_type stride(rank_type r) const
{ return map_.stride(r); }

private:
accessor_type acc_; // exposition only
mapping_type map_; // exposition only
data_handle_type ptr_; // exposition only

};

template<class CArray>
requires(is_array_v<CArray> && rank_v<CArray> == 1)
mdspan(CArray&)

-> mdspan<remove_all_extents_t<CArray>, extents<size_t, extent_v<CArray, 0>>>;

template<class Pointer>
requires(is_pointer_v<remove_reference_t<Pointer>>)
mdspan(Pointer&&)

-> mdspan<remove_pointer_t<remove_reference_t<Pointer>>, extents<size_t>>;

template<class ElementType, class... Integrals>
requires((is_convertible_v<Integrals, size_t> && ...) && sizeof...(Integrals) > 0)
explicit mdspan(ElementType*, Integrals...)

-> mdspan<ElementType, dextents<size_t, sizeof...(Integrals)>>;

template<class ElementType, class OtherIndexType, size_t N>
mdspan(ElementType*, span<OtherIndexType, N>)

-> mdspan<ElementType, dextents<size_t, N>>;

template<class ElementType, class OtherIndexType, size_t N>
mdspan(ElementType*, const array<OtherIndexType, N>&)

-> mdspan<ElementType, dextents<size_t, N>>;

template<class ElementType, class IndexType, size_t... ExtentsPack>
mdspan(ElementType*, const extents<IndexType, ExtentsPack...>&)

-> mdspan<ElementType, extents<IndexType, ExtentsPack...>>;

template<class ElementType, class MappingType>
mdspan(ElementType*, const MappingType&)

-> mdspan<ElementType, typename MappingType::extents_type,
typename MappingType::layout_type>;

template<class MappingType, class AccessorType>
mdspan(const typename AccessorType::data_handle_type&, const MappingType&,

const AccessorType&)
-> mdspan<typename AccessorType::element_type, typename MappingType::extents_type,

typename MappingType::layout_type, AccessorType>;
}

2 Mandates:
—(2.1) ElementType is a complete object type that is neither an abstract class type nor an array type,
—(2.2) Extents is a specialization of extents, and
—(2.3) is_same_v<ElementType, typename AccessorPolicy::element_type> is true.

§ 24.7.3.6.1 1051



© ISO/IEC N4950

3 LayoutPolicy shall meet the layout mapping policy requirements (24.7.3.4.3), and AccessorPolicy shall
meet the accessor policy requirements (24.7.3.5.2).

4 Each specialization MDS of mdspan models copyable and
—(4.1) is_nothrow_move_constructible_v<MDS> is true,
—(4.2) is_nothrow_move_assignable_v<MDS> is true, and
—(4.3) is_nothrow_swappable_v<MDS> is true.

5 A specialization of mdspan is a trivially copyable type if its accessor_type, mapping_type, and data_-
handle_type are trivially copyable types.

24.7.3.6.2 Constructors [mdspan.mdspan.cons]

constexpr mdspan();

1 Constraints:
—(1.1) rank_dynamic() > 0 is true.
—(1.2) is_default_constructible_v<data_handle_type> is true.
—(1.3) is_default_constructible_v<mapping_type> is true.
—(1.4) is_default_constructible_v<accessor_type> is true.

2 Preconditions: [0, map_.required_span_size()) is an accessible range of ptr_ and acc_ for the values
of map_ and acc_ after the invocation of this constructor.

3 Effects: Value-initializes ptr_, map_, and acc_.

template<class... OtherIndexTypes>
constexpr explicit mdspan(data_handle_type p, OtherIndexTypes... exts);

4 Let N be sizeof...(OtherIndexTypes).
5 Constraints:

—(5.1) (is_convertible_v<OtherIndexTypes, index_type> && ...) is true,
—(5.2) (is_nothrow_constructible<index_type, OtherIndexTypes> && ...) is true,
—(5.3) N == rank() || N == rank_dynamic() is true,
—(5.4) is_constructible_v<mapping_type, extents_type> is true, and
—(5.5) is_default_constructible_v<accessor_type> is true.

6 Preconditions: [0, map_.required_span_size()) is an accessible range of p and acc_ for the values of
map_ and acc_ after the invocation of this constructor.

7 Effects:
—(7.1) Direct-non-list-initializes ptr_ with std::move(p),
—(7.2) direct-non-list-initializes map_ with extents_type(static_cast<index_type>(std::move(exts

))...), and
—(7.3) value-initializes acc_.

template<class OtherIndexType, size_t N>
constexpr explicit(N != rank_dynamic())

mdspan(data_handle_type p, span<OtherIndexType, N> exts);
template<class OtherIndexType, size_t N>

constexpr explicit(N != rank_dynamic())
mdspan(data_handle_type p, const array<OtherIndexType, N>& exts);

8 Constraints:
—(8.1) is_convertible_v<const OtherIndexType&, index_type> is true,
—(8.2) (is_nothrow_constructible<index_type, const OtherIndexType&> && ...) is true,
—(8.3) N == rank() || N == rank_dynamic() is true,
—(8.4) is_constructible_v<mapping_type, extents_type> is true, and
—(8.5) is_default_constructible_v<accessor_type> is true.
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9 Preconditions: [0, map_.required_span_size()) is an accessible range of p and acc_ for the values of
map_ and acc_ after the invocation of this constructor.

10 Effects:
—(10.1) Direct-non-list-initializes ptr_ with std::move(p),
—(10.2) direct-non-list-initializes map_ with extents_type(exts), and
—(10.3) value-initializes acc_.

constexpr mdspan(data_handle_type p, const extents_type& ext);

11 Constraints:
—(11.1) is_constructible_v<mapping_type, const extents_type&> is true, and
—(11.2) is_default_constructible_v<accessor_type> is true.

12 Preconditions: [0, map_.required_span_size()) is an accessible range of p and acc_ for the values of
map_ and acc_ after the invocation of this constructor.

13 Effects:
—(13.1) Direct-non-list-initializes ptr_ with std::move(p),
—(13.2) direct-non-list-initializes map_ with ext, and
—(13.3) value-initializes acc_.

constexpr mdspan(data_handle_type p, const mapping_type& m);

14 Constraints: is_default_constructible_v<accessor_type> is true.
15 Preconditions: [0, m.required_span_size()) is an accessible range of p and acc_ for the value of

acc_ after the invocation of this constructor.
16 Effects:

—(16.1) Direct-non-list-initializes ptr_ with std::move(p),
—(16.2) direct-non-list-initializes map_ with m, and
—(16.3) value-initializes acc_.

constexpr mdspan(data_handle_type p, const mapping_type& m, const accessor_type& a);

17 Preconditions: [0, m.required_span_size()) is an accessible range of p and a.
18 Effects:

—(18.1) Direct-non-list-initializes ptr_ with std::move(p),
—(18.2) direct-non-list-initializes map_ with m, and
—(18.3) direct-non-list-initializes acc_ with a.

template<class OtherElementType, class OtherExtents,
class OtherLayoutPolicy, class OtherAccessor>

constexpr explicit(see below )
mdspan(const mdspan<OtherElementType, OtherExtents,

OtherLayoutPolicy, OtherAccessor>& other);

19 Constraints:
—(19.1) is_constructible_v<mapping_type, const OtherLayoutPolicy::template mapping<Oth-

erExtents>&> is true, and
—(19.2) is_constructible_v<accessor_type, const OtherAccessor&> is true.

20 Mandates:
—(20.1) is_constructible_v<data_handle_type, const OtherAccessor::data_handle_type&> is

true, and
—(20.2) is_constructible_v<extents_type, OtherExtents> is true.

21 Preconditions:
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—(21.1) For each rank index r of extents_type, static_extent(r) == dynamic_extent || static_-
extent(r) == other.extent(r) is true.

—(21.2) [0, map_.required_span_size()) is an accessible range of ptr_ and acc_ for values of ptr_,
map_, and acc_ after the invocation of this constructor.

22 Effects:
—(22.1) Direct-non-list-initializes ptr_ with other.ptr_,
—(22.2) direct-non-list-initializes map_ with other.map_, and
—(22.3) direct-non-list-initializes acc_ with other.acc_.

23 Remarks: The expression inside explicit is equivalent to:
!is_convertible_v<const OtherLayoutPolicy::template mapping<OtherExtents>&, mapping_type>
|| !is_convertible_v<const OtherAccessor&, accessor_type>

24.7.3.6.3 Members [mdspan.mdspan.members]

template<class... OtherIndexTypes>
constexpr reference operator[](OtherIndexTypes... indices) const;

1 Constraints:
—(1.1) (is_convertible_v<OtherIndexTypes, index_type> && ...) is true,
—(1.2) (is_nothrow_constructible_v<index_type, OtherIndexTypes> && ...) is true, and
—(1.3) sizeof...(OtherIndexTypes) == rank() is true.

2 Let I be extents_type::index-cast (std::move(indices)).
3 Preconditions: I is a multidimensional index in extents().

[Note 1 : This implies that map_(I) < map_.required_span_size() is true. — end note ]
4 Effects: Equivalent to:

return acc_.access(ptr_, map_(static_cast<index_type>(std::move(indices))...));

template<class OtherIndexType>
constexpr reference operator[](span<OtherIndexType, rank()> indices) const;

template<class OtherIndexType>
constexpr reference operator[](const array<OtherIndexType, rank()>& indices) const;

5 Constraints:
—(5.1) is_convertible_v<const OtherIndexType&, index_type> is true, and
—(5.2) is_nothrow_constructible_v<index_type, const OtherIndexType&> is true.

6 Effects: Let P be a parameter pack such that
is_same_v<make_index_sequence<rank()>, index_sequence<P...>>

is true. Equivalent to:
return operator[](as_const(indices[P])...);

constexpr size_type size() const noexcept;

7 Preconditions: The size of the multidimensional index space extents() is representable as a value of
type size_type (6.8.2).

8 Returns: extents().fwd-prod-of-extents (rank()).

[[nodiscard]] constexpr bool empty() const noexcept;

9 Returns: true if the size of the multidimensional index space extents() is 0, otherwise false.

friend constexpr void swap(mdspan& x, mdspan& y) noexcept;

10 Effects: Equivalent to:
swap(x.ptr_, y.ptr_);
swap(x.map_, y.map_);
swap(x.acc_, y.acc_);
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25 Iterators library [iterators]
25.1 General [iterators.general]

1 This Clause describes components that C++ programs may use to perform iterations over containers (Clause
24), streams (31.7), stream buffers (31.6), and other ranges (Clause 26).

2 The following subclauses describe iterator requirements, and components for iterator primitives, predefined
iterators, and stream iterators, as summarized in Table 84.

Table 84: Iterators library summary [tab:iterators.summary]

Subclause Header
25.3 Iterator requirements <iterator>
25.4 Iterator primitives
25.5 Iterator adaptors
25.6 Stream iterators
25.7 Range access

25.2 Header <iterator> synopsis [iterator.synopsis]
#include <compare> // see 17.11.1
#include <concepts> // see 18.3

namespace std {
template<class T> using with-reference = T&; // exposition only
template<class T> concept can-reference // exposition only

= requires { typename with-reference<T>; };
template<class T> concept dereferenceable // exposition only

= requires(T& t) {
{ *t } -> can-reference ; // not required to be equality-preserving

};

// 25.3.2, associated types
// 25.3.2.1, incrementable traits
template<class> struct incrementable_traits; // freestanding
template<class T>

using iter_difference_t = see below ; // freestanding

// 25.3.2.2, indirectly readable traits
template<class> struct indirectly_readable_traits; // freestanding
template<class T>

using iter_value_t = see below ; // freestanding

// 25.3.2.3, iterator traits
template<class I> struct iterator_traits; // freestanding
template<class T> requires is_object_v<T> struct iterator_traits<T*>; // freestanding

template<dereferenceable T>
using iter_reference_t = decltype(*declval<T&>()); // freestanding

namespace ranges {
// 25.3.3, customization point objects
inline namespace unspecified {

// 25.3.3.1, ranges::iter_move
inline constexpr unspecified iter_move = unspecified ; // freestanding

§ 25.2 1055



© ISO/IEC N4950

// 25.3.3.2, ranges::iter_swap
inline constexpr unspecified iter_swap = unspecified ; // freestanding

}
}

template<dereferenceable T>
requires requires(T& t) {

{ ranges::iter_move(t) } -> can-reference ;
}

using iter_rvalue_reference_t // freestanding
= decltype(ranges::iter_move(declval<T&>()));

// 25.3.4, iterator concepts
// 25.3.4.2, concept indirectly_readable
template<class In>

concept indirectly_readable = see below ; // freestanding

template<indirectly_readable T>
using indirect-value-t = see below ; // exposition only

template<indirectly_readable T>
using iter_common_reference_t = // freestanding

common_reference_t<iter_reference_t<T>, indirect-value-t <T>>;

// 25.3.4.3, concept indirectly_writable
template<class Out, class T>

concept indirectly_writable = see below ; // freestanding

// 25.3.4.4, concept weakly_incrementable
template<class I>

concept weakly_incrementable = see below ; // freestanding

// 25.3.4.5, concept incrementable
template<class I>

concept incrementable = see below ; // freestanding

// 25.3.4.6, concept input_or_output_iterator
template<class I>

concept input_or_output_iterator = see below ; // freestanding

// 25.3.4.7, concept sentinel_for
template<class S, class I>

concept sentinel_for = see below ; // freestanding

// 25.3.4.8, concept sized_sentinel_for
template<class S, class I>

constexpr bool disable_sized_sentinel_for = false; // freestanding

template<class S, class I>
concept sized_sentinel_for = see below ; // freestanding

// 25.3.4.9, concept input_iterator
template<class I>

concept input_iterator = see below ; // freestanding

// 25.3.4.10, concept output_iterator
template<class I, class T>

concept output_iterator = see below ; // freestanding

// 25.3.4.11, concept forward_iterator
template<class I>

concept forward_iterator = see below ; // freestanding
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// 25.3.4.12, concept bidirectional_iterator
template<class I>

concept bidirectional_iterator = see below ; // freestanding

// 25.3.4.13, concept random_access_iterator
template<class I>

concept random_access_iterator = see below ; // freestanding

// 25.3.4.14, concept contiguous_iterator
template<class I>

concept contiguous_iterator = see below ; // freestanding

// 25.3.6, indirect callable requirements
// 25.3.6.3, indirect callables
template<class F, class I>

concept indirectly_unary_invocable = see below ; // freestanding

template<class F, class I>
concept indirectly_regular_unary_invocable = see below ; // freestanding

template<class F, class I>
concept indirect_unary_predicate = see below ; // freestanding

template<class F, class I1, class I2>
concept indirect_binary_predicate = see below ; // freestanding

template<class F, class I1, class I2 = I1>
concept indirect_equivalence_relation = see below ; // freestanding

template<class F, class I1, class I2 = I1>
concept indirect_strict_weak_order = see below ; // freestanding

template<class F, class... Is>
requires (indirectly_readable<Is> && ...) && invocable<F, iter_reference_t<Is>...>

using indirect_result_t = invoke_result_t<F, iter_reference_t<Is>...>; // freestanding

// 25.3.6.4, projected
template<indirectly_readable I, indirectly_regular_unary_invocable<I> Proj>

struct projected; // freestanding

template<weakly_incrementable I, class Proj>
struct incrementable_traits<projected<I, Proj>>; // freestanding

// 25.3.7, common algorithm requirements
// 25.3.7.2, concept indirectly_movable
template<class In, class Out>

concept indirectly_movable = see below ; // freestanding

template<class In, class Out>
concept indirectly_movable_storable = see below ; // freestanding

// 25.3.7.3, concept indirectly_copyable
template<class In, class Out>

concept indirectly_copyable = see below ; // freestanding

template<class In, class Out>
concept indirectly_copyable_storable = see below ; // freestanding

// 25.3.7.4, concept indirectly_swappable
template<class I1, class I2 = I1>

concept indirectly_swappable = see below ; // freestanding
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// 25.3.7.5, concept indirectly_comparable
template<class I1, class I2, class R, class P1 = identity, class P2 = identity>

concept indirectly_comparable = see below ; // freestanding

// 25.3.7.6, concept permutable
template<class I>

concept permutable = see below ; // freestanding

// 25.3.7.7, concept mergeable
template<class I1, class I2, class Out,

class R = ranges::less, class P1 = identity, class P2 = identity>
concept mergeable = see below ; // freestanding

// 25.3.7.8, concept sortable
template<class I, class R = ranges::less, class P = identity>

concept sortable = see below ; // freestanding

// 25.4, primitives
// 25.4.2, iterator tags
struct input_iterator_tag { }; // freestanding
struct output_iterator_tag { }; // freestanding
struct forward_iterator_tag: public input_iterator_tag { }; // freestanding
struct bidirectional_iterator_tag: public forward_iterator_tag { }; // freestanding
struct random_access_iterator_tag: public bidirectional_iterator_tag { }; // freestanding
struct contiguous_iterator_tag: public random_access_iterator_tag { }; // freestanding

// 25.4.3, iterator operations
template<class InputIterator, class Distance>

constexpr void
advance(InputIterator& i, Distance n); // freestanding

template<class InputIterator>
constexpr typename iterator_traits<InputIterator>::difference_type

distance(InputIterator first, InputIterator last); // freestanding
template<class InputIterator>

constexpr InputIterator
next(InputIterator x, // freestanding

typename iterator_traits<InputIterator>::difference_type n = 1);
template<class BidirectionalIterator>

constexpr BidirectionalIterator
prev(BidirectionalIterator x, // freestanding

typename iterator_traits<BidirectionalIterator>::difference_type n = 1);

// 25.4.4, range iterator operations
namespace ranges {

// 25.4.4.2, ranges::advance
template<input_or_output_iterator I>

constexpr void advance(I& i, iter_difference_t<I> n); // freestanding
template<input_or_output_iterator I, sentinel_for<I> S>

constexpr void advance(I& i, S bound); // freestanding
template<input_or_output_iterator I, sentinel_for<I> S>

constexpr iter_difference_t<I> advance(I& i, iter_difference_t<I> n, // freestanding
S bound);

// 25.4.4.3, ranges::distance
template<class I, sentinel_for<I> S>

requires (!sized_sentinel_for<S, I>)
constexpr iter_difference_t<I> distance(I first, S last); // freestanding

template<class I, sized_sentinel_for<decay_t<I>> S>
constexpr iter_difference_t<decay_t<I>> distance(I&& first, S last); // freestanding

template<range R>
constexpr range_difference_t<R> distance(R&& r); // freestanding
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// 25.4.4.4, ranges::next
template<input_or_output_iterator I>

constexpr I next(I x); // freestanding
template<input_or_output_iterator I>

constexpr I next(I x, iter_difference_t<I> n); // freestanding
template<input_or_output_iterator I, sentinel_for<I> S>

constexpr I next(I x, S bound); // freestanding
template<input_or_output_iterator I, sentinel_for<I> S>

constexpr I next(I x, iter_difference_t<I> n, S bound); // freestanding

// 25.4.4.5, ranges::prev
template<bidirectional_iterator I>

constexpr I prev(I x); // freestanding
template<bidirectional_iterator I>

constexpr I prev(I x, iter_difference_t<I> n); // freestanding
template<bidirectional_iterator I>

constexpr I prev(I x, iter_difference_t<I> n, I bound); // freestanding
}

// 25.5, predefined iterators and sentinels
// 25.5.1, reverse iterators
template<class Iterator> class reverse_iterator; // freestanding

template<class Iterator1, class Iterator2>
constexpr bool operator==( // freestanding

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

template<class Iterator1, class Iterator2>
constexpr bool operator!=( // freestanding

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

template<class Iterator1, class Iterator2>
constexpr bool operator<( // freestanding

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

template<class Iterator1, class Iterator2>
constexpr bool operator>( // freestanding

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

template<class Iterator1, class Iterator2>
constexpr bool operator<=( // freestanding

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

template<class Iterator1, class Iterator2>
constexpr bool operator>=( // freestanding

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

template<class Iterator1, three_way_comparable_with<Iterator1> Iterator2>
constexpr compare_three_way_result_t<Iterator1, Iterator2>

operator<=>(const reverse_iterator<Iterator1>& x, // freestanding
const reverse_iterator<Iterator2>& y);

template<class Iterator1, class Iterator2>
constexpr auto operator-( // freestanding

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y) -> decltype(y.base() - x.base());

template<class Iterator>
constexpr reverse_iterator<Iterator> operator+( // freestanding

iter_difference_t<Iterator> n,
const reverse_iterator<Iterator>& x);

template<class Iterator>
constexpr reverse_iterator<Iterator> make_reverse_iterator(Iterator i); // freestanding
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template<class Iterator1, class Iterator2>
requires (!sized_sentinel_for<Iterator1, Iterator2>)

constexpr bool disable_sized_sentinel_for<reverse_iterator<Iterator1>, // freestanding
reverse_iterator<Iterator2>> = true;

// 25.5.2, insert iterators
template<class Container> class back_insert_iterator; // freestanding
template<class Container>

constexpr back_insert_iterator<Container> back_inserter(Container& x); // freestanding

template<class Container> class front_insert_iterator; // freestanding
template<class Container>

constexpr front_insert_iterator<Container> front_inserter(Container& x); // freestanding

template<class Container> class insert_iterator; // freestanding
template<class Container>

constexpr insert_iterator<Container>
inserter(Container& x, ranges::iterator_t<Container> i); // freestanding

// 25.5.3, constant iterators and sentinels
// 25.5.3.2, alias templates
template<indirectly_readable I>

using iter_const_reference_t = see below ; // freestanding
template<class Iterator>

concept constant-iterator = see below ; // exposition only
template<input_iterator I>

using const_iterator = see below ; // freestanding
template<semiregular S>

using const_sentinel = see below ; // freestanding

// 25.5.3.3, class template basic_const_iterator
template<input_iterator Iterator>

class basic_const_iterator; // freestanding

template<class T, common_with<T> U>
requires input_iterator<common_type_t<T, U>>

struct common_type<basic_const_iterator<T>, U> { // freestanding
using type = basic_const_iterator<common_type_t<T, U>>;

};
template<class T, common_with<T> U>

requires input_iterator<common_type_t<T, U>>
struct common_type<U, basic_const_iterator<T>> { // freestanding

using type = basic_const_iterator<common_type_t<T, U>>;
};
template<class T, common_with<T> U>

requires input_iterator<common_type_t<T, U>>
struct common_type<basic_const_iterator<T>, basic_const_iterator<U>> { // freestanding

using type = basic_const_iterator<common_type_t<T, U>>;
};

template<input_iterator I>
constexpr const_iterator<I> make_const_iterator(I it) { return it; } // freestanding

template<semiregular S>
constexpr const_sentinel<S> make_const_sentinel(S s) { return s; } // freestanding

// 25.5.4, move iterators and sentinels
template<class Iterator> class move_iterator; // freestanding

template<class Iterator1, class Iterator2>
constexpr bool operator==( // freestanding

const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y);
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template<class Iterator1, class Iterator2>
constexpr bool operator<( // freestanding

const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y);
template<class Iterator1, class Iterator2>

constexpr bool operator>( // freestanding
const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y);

template<class Iterator1, class Iterator2>
constexpr bool operator<=( // freestanding

const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y);
template<class Iterator1, class Iterator2>

constexpr bool operator>=( // freestanding
const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y);

template<class Iterator1, three_way_comparable_with<Iterator1> Iterator2>
constexpr compare_three_way_result_t<Iterator1, Iterator2>

operator<=>(const move_iterator<Iterator1>& x, // freestanding
const move_iterator<Iterator2>& y);

template<class Iterator1, class Iterator2>
constexpr auto operator-( // freestanding

const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y)
-> decltype(x.base() - y.base());

template<class Iterator>
constexpr move_iterator<Iterator>

operator+(iter_difference_t<Iterator> n, const move_iterator<Iterator>& x); // freestanding

template<class Iterator>
constexpr move_iterator<Iterator> make_move_iterator(Iterator i); // freestanding

template<class Iterator1, class Iterator2>
requires (!sized_sentinel_for<Iterator1, Iterator2>)

constexpr bool disable_sized_sentinel_for<move_iterator<Iterator1>, // freestanding
move_iterator<Iterator2>> = true;

template<semiregular S> class move_sentinel; // freestanding

// 25.5.5, common iterators
template<input_or_output_iterator I, sentinel_for<I> S>

requires (!same_as<I, S> && copyable<I>)
class common_iterator; // freestanding

template<class I, class S>
struct incrementable_traits<common_iterator<I, S>>; // freestanding

template<input_iterator I, class S>
struct iterator_traits<common_iterator<I, S>>; // freestanding

// 25.5.6, default sentinel
struct default_sentinel_t; // freestanding
inline constexpr default_sentinel_t default_sentinel{}; // freestanding

// 25.5.7, counted iterators
template<input_or_output_iterator I> class counted_iterator; // freestanding

template<input_iterator I>
requires see below
struct iterator_traits<counted_iterator<I>>; // freestanding

// 25.5.8, unreachable sentinel
struct unreachable_sentinel_t; // freestanding
inline constexpr unreachable_sentinel_t unreachable_sentinel{}; // freestanding
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// 25.6, stream iterators
template<class T, class charT = char, class traits = char_traits<charT>,

class Distance = ptrdiff_t>
class istream_iterator;
template<class T, class charT, class traits, class Distance>

bool operator==(const istream_iterator<T,charT,traits,Distance>& x,
const istream_iterator<T,charT,traits,Distance>& y);

template<class T, class charT = char, class traits = char_traits<charT>>
class ostream_iterator;

template<class charT, class traits = char_traits<charT>>
class istreambuf_iterator;

template<class charT, class traits>
bool operator==(const istreambuf_iterator<charT,traits>& a,

const istreambuf_iterator<charT,traits>& b);

template<class charT, class traits = char_traits<charT>>
class ostreambuf_iterator;

// 25.7, range access
template<class C> constexpr auto begin(C& c) -> decltype(c.begin()); // freestanding
template<class C> constexpr auto begin(const C& c) -> decltype(c.begin()); // freestanding
template<class C> constexpr auto end(C& c) -> decltype(c.end()); // freestanding
template<class C> constexpr auto end(const C& c) -> decltype(c.end()); // freestanding
template<class T, size_t N> constexpr T* begin(T (&array)[N]) noexcept; // freestanding
template<class T, size_t N> constexpr T* end(T (&array)[N]) noexcept; // freestanding
template<class C> constexpr auto cbegin(const C& c) // freestanding

noexcept(noexcept(std::begin(c))) -> decltype(std::begin(c));
template<class C> constexpr auto cend(const C& c) // freestanding

noexcept(noexcept(std::end(c))) -> decltype(std::end(c));
template<class C> constexpr auto rbegin(C& c) -> decltype(c.rbegin()); // freestanding
template<class C> constexpr auto rbegin(const C& c) -> decltype(c.rbegin()); // freestanding
template<class C> constexpr auto rend(C& c) -> decltype(c.rend()); // freestanding
template<class C> constexpr auto rend(const C& c) -> decltype(c.rend()); // freestanding
template<class T, size_t N> constexpr reverse_iterator<T*> rbegin(T (&array)[N]) // freestanding
template<class T, size_t N> constexpr reverse_iterator<T*> rend(T (&array)[N]); // freestanding
template<class E> constexpr reverse_iterator<const E*>

rbegin(initializer_list<E> il); // freestanding
template<class E> constexpr reverse_iterator<const E*>

rend(initializer_list<E> il); // freestanding
template<class C> constexpr auto

crbegin(const C& c) -> decltype(std::rbegin(c)); // freestanding
template<class C> constexpr auto

crend(const C& c) -> decltype(std::rend(c)); // freestanding

template<class C> constexpr auto
size(const C& c) -> decltype(c.size()); // freestanding

template<class T, size_t N> constexpr size_t
size(const T (&array)[N]) noexcept; // freestanding

template<class C> constexpr auto
ssize(const C& c)

-> common_type_t<ptrdiff_t, make_signed_t<decltype(c.size())>>; // freestanding
template<class T, ptrdiff_t N> constexpr ptrdiff_t

ssize(const T (&array)[N]) noexcept; // freestanding

template<class C> [[nodiscard]] constexpr auto
empty(const C& c) -> decltype(c.empty()); // freestanding

template<class T, size_t N> [[nodiscard]] constexpr bool
empty(const T (&array)[N]) noexcept; // freestanding

template<class E> [[nodiscard]] constexpr bool
empty(initializer_list<E> il) noexcept; // freestanding
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template<class C> constexpr auto data(C& c) -> decltype(c.data()); // freestanding
template<class C> constexpr auto data(const C& c) -> decltype(c.data()); // freestanding
template<class T, size_t N> constexpr T* data(T (&array)[N]) noexcept; // freestanding
template<class E> constexpr const E* data(initializer_list<E> il) noexcept; // freestanding

}

25.3 Iterator requirements [iterator.requirements]
25.3.1 In general [iterator.requirements.general]

1 Iterators are a generalization of pointers that allow a C++ program to work with different data structures
(for example, containers and ranges) in a uniform manner. To be able to construct template algorithms
that work correctly and efficiently on different types of data structures, the library formalizes not just the
interfaces but also the semantics and complexity assumptions of iterators. An input iterator i supports the
expression *i, resulting in a value of some object type T, called the value type of the iterator. An output
iterator i has a non-empty set of types that are indirectly_writable to the iterator; for each such type T,
the expression *i = o is valid where o is a value of type T. For every iterator type X, there is a corresponding
signed integer-like type (25.3.4.4) called the difference type of the iterator.

2 Since iterators are an abstraction of pointers, their semantics are a generalization of most of the semantics of
pointers in C++. This ensures that every function template that takes iterators works as well with regular
pointers. This document defines six categories of iterators, according to the operations defined on them: input
iterators, output iterators, forward iterators, bidirectional iterators, random access iterators, and contiguous
iterators, as shown in Table 85.

Table 85: Relations among iterator categories [tab:iterators.relations]

Contiguous → Random Access → Bidirectional → Forward → Input
→ Output

3 The six categories of iterators correspond to the iterator concepts
—(3.1) input_iterator (25.3.4.9),
—(3.2) output_iterator (25.3.4.10),
—(3.3) forward_iterator (25.3.4.11),
—(3.4) bidirectional_iterator (25.3.4.12),
—(3.5) random_access_iterator (25.3.4.13), and
—(3.6) contiguous_iterator (25.3.4.14),

respectively. The generic term iterator refers to any type that models the input_or_output_iterator
concept (25.3.4.6).

4 Forward iterators meet all the requirements of input iterators and can be used whenever an input iterator is
specified; Bidirectional iterators also meet all the requirements of forward iterators and can be used whenever
a forward iterator is specified; Random access iterators also meet all the requirements of bidirectional
iterators and can be used whenever a bidirectional iterator is specified; Contiguous iterators also meet all the
requirements of random access iterators and can be used whenever a random access iterator is specified.

5 Iterators that further meet the requirements of output iterators are called mutable iterators. Nonmutable
iterators are referred to as constant iterators.

6 In addition to the requirements in this subclause, the nested typedef-names specified in 25.3.2.3 shall be
provided for the iterator type.
[Note 1 : Either the iterator type must provide the typedef-names directly (in which case iterator_traits pick them
up automatically), or an iterator_traits specialization must provide them. — end note ]

7 Just as a regular pointer to an array guarantees that there is a pointer value pointing past the last element of
the array, so for any iterator type there is an iterator value that points past the last element of a corresponding
sequence. Such a value is called a past-the-end value. Values of an iterator i for which the expression *i is
defined are called dereferenceable. The library never assumes that past-the-end values are dereferenceable.
Iterators can also have singular values that are not associated with any sequence. Results of most expressions
are undefined for singular values; the only exceptions are destroying an iterator that holds a singular value,
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the assignment of a non-singular value to an iterator that holds a singular value, and, for iterators that meet
the Cpp17DefaultConstructible requirements, using a value-initialized iterator as the source of a copy or move
operation.
[Note 2 : This guarantee is not offered for default-initialization, although the distinction only matters for types with
trivial default constructors such as pointers or aggregates holding pointers. — end note ]

In these cases the singular value is overwritten the same way as any other value. Dereferenceable values are
always non-singular.

8 Most of the library’s algorithmic templates that operate on data structures have interfaces that use ranges.
A range is an iterator and a sentinel that designate the beginning and end of the computation, or an iterator
and a count that designate the beginning and the number of elements to which the computation is to be
applied.212

9 An iterator and a sentinel denoting a range are comparable. A range [i, s) is empty if i == s; otherwise,
[i, s) refers to the elements in the data structure starting with the element pointed to by i and up to but not
including the element, if any, pointed to by the first iterator j such that j == s.

10 A sentinel s is called reachable from an iterator i if and only if there is a finite sequence of applications of
the expression ++i that makes i == s. If s is reachable from i, [i, s) denotes a valid range.

11 A counted range i + [0, n) is empty if n == 0; otherwise, i + [0, n) refers to the n elements in the data
structure starting with the element pointed to by i and up to but not including the element, if any, pointed
to by the result of n applications of ++i. A counted range i + [0, n) is valid if and only if n == 0; or n is
positive, i is dereferenceable, and ++i + [0, --n) is valid.

12 The result of the application of library functions to invalid ranges is undefined.
13 All the categories of iterators require only those functions that are realizable for a given category in constant

time (amortized). Therefore, requirement tables and concept definitions for the iterators do not specify
complexity.

14 Destruction of a non-forward iterator may invalidate pointers and references previously obtained from that
iterator.

15 An invalid iterator is an iterator that may be singular.213

16 Iterators are called constexpr iterators if all operations provided to meet iterator category requirements are
constexpr functions.
[Note 3 : For example, the types “pointer to int” and reverse_iterator<int*> are constexpr iterators. — end note ]

25.3.2 Associated types [iterator.assoc.types]
25.3.2.1 Incrementable traits [incrementable.traits]

1 To implement algorithms only in terms of incrementable types, it is often necessary to determine the difference
type that corresponds to a particular incrementable type. Accordingly, it is required that if WI is the name of
a type that models the weakly_incrementable concept (25.3.4.4), the type

iter_difference_t<WI>

be defined as the incrementable type’s difference type.
namespace std {

template<class> struct incrementable_traits { };

template<class T>
requires is_object_v<T>

struct incrementable_traits<T*> {
using difference_type = ptrdiff_t;

};

template<class I>
struct incrementable_traits<const I>

: incrementable_traits<I> { };

212) The sentinel denoting the end of a range can have the same type as the iterator denoting the beginning of the range, or a
different type.
213) This definition applies to pointers, since pointers are iterators. The effect of dereferencing an iterator that has been
invalidated is undefined.
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template<class T>
requires requires { typename T::difference_type; }

struct incrementable_traits<T> {
using difference_type = typename T::difference_type;

};

template<class T>
requires (!requires { typename T::difference_type; } &&

requires(const T& a, const T& b) { { a - b } -> integral; })
struct incrementable_traits<T> {

using difference_type = make_signed_t<decltype(declval<T>() - declval<T>())>;
};

template<class T>
using iter_difference_t = see below ;

}

2 Let RI be remove_cvref_t<I>. The type iter_difference_t<I> denotes
—(2.1) incrementable_traits<RI>::difference_type if iterator_traits<RI> names a specialization gen-

erated from the primary template, and
—(2.2) iterator_traits<RI>::difference_type otherwise.

3 Users may specialize incrementable_traits on program-defined types.

25.3.2.2 Indirectly readable traits [readable.traits]
1 To implement algorithms only in terms of indirectly readable types, it is often necessary to determine the

value type that corresponds to a particular indirectly readable type. Accordingly, it is required that if R is
the name of a type that models the indirectly_readable concept (25.3.4.2), the type

iter_value_t<R>

be defined as the indirectly readable type’s value type.
template<class> struct cond-value-type { }; // exposition only
template<class T>

requires is_object_v<T>
struct cond-value-type <T> {

using value_type = remove_cv_t<T>;
};

template<class T>
concept has-member-value-type = requires { typename T::value_type; }; // exposition only

template<class T>
concept has-member-element-type = requires { typename T::element_type; }; // exposition only

template<class> struct indirectly_readable_traits { };

template<class T>
struct indirectly_readable_traits<T*>

: cond-value-type <T> { };

template<class I>
requires is_array_v<I>

struct indirectly_readable_traits<I> {
using value_type = remove_cv_t<remove_extent_t<I>>;

};

template<class I>
struct indirectly_readable_traits<const I>

: indirectly_readable_traits<I> { };

template<has-member-value-type T>
struct indirectly_readable_traits<T>

: cond-value-type <typename T::value_type> { };
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template<has-member-element-type T>
struct indirectly_readable_traits<T>

: cond-value-type <typename T::element_type> { };

template<has-member-value-type T>
requires has-member-element-type <T>

struct indirectly_readable_traits<T> { };

template<has-member-value-type T>
requires has-member-element-type <T> &&

same_as<remove_cv_t<typename T::element_type>, remove_cv_t<typename T::value_type>>
struct indirectly_readable_traits<T>

: cond-value-type <typename T::value_type> { };

template<class T> using iter_value_t = see below ;

2 Let RI be remove_cvref_t<I>. The type iter_value_t<I> denotes
—(2.1) indirectly_readable_traits<RI>::value_type if iterator_traits<RI> names a specialization

generated from the primary template, and
—(2.2) iterator_traits<RI>::value_type otherwise.

3 Class template indirectly_readable_traits may be specialized on program-defined types.
4 [Note 1 : Some legacy output iterators define a nested type named value_type that is an alias for void. These types

are not indirectly_readable and have no associated value types. — end note ]
5 [Note 2 : Smart pointers like shared_ptr<int> are indirectly_readable and have an associated value type, but a

smart pointer like shared_ptr<void> is not indirectly_readable and has no associated value type. — end note ]

25.3.2.3 Iterator traits [iterator.traits]
1 To implement algorithms only in terms of iterators, it is sometimes necessary to determine the iterator

category that corresponds to a particular iterator type. Accordingly, it is required that if I is the type of an
iterator, the type

iterator_traits<I>::iterator_category

be defined as the iterator’s iterator category. In addition, the types
iterator_traits<I>::pointer
iterator_traits<I>::reference

shall be defined as the iterator’s pointer and reference types; that is, for an iterator object a of class
type, the same type as decltype(a.operator->()) and decltype(*a), respectively. The type iterator_-
traits<I>::pointer shall be void for an iterator of class type I that does not support operator->.
Additionally, in the case of an output iterator, the types

iterator_traits<I>::value_type
iterator_traits<I>::difference_type
iterator_traits<I>::reference

may be defined as void.
2 The definitions in this subclause make use of the following exposition-only concepts:

template<class I>
concept cpp17-iterator =

requires(I i) {
{ *i } -> can-reference ;
{ ++i } -> same_as<I&>;
{ *i++ } -> can-reference ;

} && copyable<I>;

template<class I>
concept cpp17-input-iterator =

cpp17-iterator <I> && equality_comparable<I> && requires(I i) {
typename incrementable_traits<I>::difference_type;
typename indirectly_readable_traits<I>::value_type;
typename common_reference_t<iter_reference_t<I>&&,

typename indirectly_readable_traits<I>::value_type&>;
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typename common_reference_t<decltype(*i++)&&,
typename indirectly_readable_traits<I>::value_type&>;

requires signed_integral<typename incrementable_traits<I>::difference_type>;
};

template<class I>
concept cpp17-forward-iterator =

cpp17-input-iterator <I> && constructible_from<I> &&
is_reference_v<iter_reference_t<I>> &&
same_as<remove_cvref_t<iter_reference_t<I>>,

typename indirectly_readable_traits<I>::value_type> &&
requires(I i) {

{ i++ } -> convertible_to<const I&>;
{ *i++ } -> same_as<iter_reference_t<I>>;

};

template<class I>
concept cpp17-bidirectional-iterator =

cpp17-forward-iterator <I> && requires(I i) {
{ --i } -> same_as<I&>;
{ i-- } -> convertible_to<const I&>;
{ *i-- } -> same_as<iter_reference_t<I>>;

};

template<class I>
concept cpp17-random-access-iterator =

cpp17-bidirectional-iterator <I> && totally_ordered<I> &&
requires(I i, typename incrementable_traits<I>::difference_type n) {

{ i += n } -> same_as<I&>;
{ i -= n } -> same_as<I&>;
{ i + n } -> same_as<I>;
{ n + i } -> same_as<I>;
{ i - n } -> same_as<I>;
{ i - i } -> same_as<decltype(n)>;
{ i[n] } -> convertible_to<iter_reference_t<I>>;

};

3 The members of a specialization iterator_traits<I> generated from the iterator_traits primary tem-
plate are computed as follows:

—(3.1) If I has valid (13.10.3) member types difference_type, value_type, reference, and iterator_-
category, then iterator_traits<I> has the following publicly accessible members:

using iterator_category = typename I::iterator_category;
using value_type = typename I::value_type;
using difference_type = typename I::difference_type;
using pointer = see below ;
using reference = typename I::reference;

If the qualified-id I::pointer is valid and denotes a type, then iterator_traits<I>::pointer names
that type; otherwise, it names void.

—(3.2) Otherwise, if I satisfies the exposition-only concept cpp17-input-iterator , iterator_traits<I>
has the following publicly accessible members:

using iterator_category = see below ;
using value_type = typename indirectly_readable_traits<I>::value_type;
using difference_type = typename incrementable_traits<I>::difference_type;
using pointer = see below ;
using reference = see below ;

—(3.2.1) If the qualified-id I::pointer is valid and denotes a type, pointer names that type. Other-
wise, if decltype(declval<I&>().operator->()) is well-formed, then pointer names that type.
Otherwise, pointer names void.

—(3.2.2) If the qualified-id I::reference is valid and denotes a type, reference names that type. Otherwise,
reference names iter_reference_t<I>.
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—(3.2.3) If the qualified-id I::iterator_category is valid and denotes a type, iterator_category names
that type. Otherwise, iterator_category names:
—(3.2.3.1) random_access_iterator_tag if I satisfies cpp17-random-access-iterator , or otherwise
—(3.2.3.2) bidirectional_iterator_tag if I satisfies cpp17-bidirectional-iterator , or otherwise
—(3.2.3.3) forward_iterator_tag if I satisfies cpp17-forward-iterator , or otherwise
—(3.2.3.4) input_iterator_tag.

—(3.3) Otherwise, if I satisfies the exposition-only concept cpp17-iterator , then iterator_traits<I> has
the following publicly accessible members:

using iterator_category = output_iterator_tag;
using value_type = void;
using difference_type = see below ;
using pointer = void;
using reference = void;

If the qualified-id incrementable_traits<I>::difference_type is valid and denotes a type, then
difference_type names that type; otherwise, it names void.

—(3.4) Otherwise, iterator_traits<I> has no members by any of the above names.
4 Explicit or partial specializations of iterator_traits may have a member type iterator_concept that is

used to indicate conformance to the iterator concepts (25.3.4).
[Example 1 : To indicate conformance to the input_iterator concept but a lack of conformance to the Cpp17InputIter-
ator requirements (25.3.5.3), an iterator_traits specialization might have iterator_concept denote input_-
iterator_tag but not define iterator_category. — end example ]

5 iterator_traits is specialized for pointers as
namespace std {

template<class T>
requires is_object_v<T>

struct iterator_traits<T*> {
using iterator_concept = contiguous_iterator_tag;
using iterator_category = random_access_iterator_tag;
using value_type = remove_cv_t<T>;
using difference_type = ptrdiff_t;
using pointer = T*;
using reference = T&;

};
}

6 [Example 2 : To implement a generic reverse function, a C++ program can do the following:
template<class BI>
void reverse(BI first, BI last) {

typename iterator_traits<BI>::difference_type n =
distance(first, last);

--n;
while(n > 0) {

typename iterator_traits<BI>::value_type
tmp = *first;

*first++ = *--last;
*last = tmp;
n -= 2;

}
}

— end example ]

25.3.3 Customization point objects [iterator.cust]
25.3.3.1 ranges::iter_move [iterator.cust.move]

1 The name ranges::iter_move denotes a customization point object (16.3.3.3.5). The expression ranges::-
iter_move(E) for a subexpression E is expression-equivalent to:
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—(1.1) iter_move(E), if E has class or enumeration type and iter_move(E) is a well-formed expression when
treated as an unevaluated operand, where the meaning of iter_move is established as-if by performing
argument-dependent lookup only (6.5.4).

—(1.2) Otherwise, if the expression *E is well-formed:
—(1.2.1) if *E is an lvalue, std::move(*E);
—(1.2.2) otherwise, *E.

—(1.3) Otherwise, ranges::iter_move(E) is ill-formed.
[Note 1 : This case can result in substitution failure when ranges::iter_move(E) appears in the immediate
context of a template instantiation. — end note ]

2 If ranges::iter_move(E) is not equal to *E, the program is ill-formed, no diagnostic required.

25.3.3.2 ranges::iter_swap [iterator.cust.swap]
1 The name ranges::iter_swap denotes a customization point object (16.3.3.3.5) that exchanges the values

(18.4.9) denoted by its arguments.
2 Let iter-exchange-move be the exposition-only function:

template<class X, class Y>
constexpr iter_value_t<X> iter-exchange-move (X&& x, Y&& y)

noexcept(noexcept(iter_value_t<X>(iter_move(x))) &&
noexcept(*x = iter_move(y)));

3 Effects: Equivalent to:
iter_value_t<X> old_value(iter_move(x));
*x = iter_move(y);
return old_value;

4 The expression ranges::iter_swap(E1, E2) for subexpressions E1 and E2 is expression-equivalent to:
—(4.1) (void)iter_swap(E1, E2), if either E1 or E2 has class or enumeration type and iter_swap(E1, E2)

is a well-formed expression with overload resolution performed in a context that includes the declaration
template<class I1, class I2>

void iter_swap(I1, I2) = delete;

and does not include a declaration of ranges::iter_swap. If the function selected by overload resolution
does not exchange the values denoted by E1 and E2, the program is ill-formed, no diagnostic required.
[Note 1 : This precludes calling unconstrained std::iter_swap. When the deleted overload is viable, program-
defined overloads need to be more specialized (13.7.7.3) to be selected. — end note ]

—(4.2) Otherwise, if the types of E1 and E2 each model indirectly_readable, and if the reference types of
E1 and E2 model swappable_with (18.4.9), then ranges::swap(*E1, *E2).

—(4.3) Otherwise, if the types T1 and T2 of E1 and E2 model indirectly_movable_storable<T1, T2>
and indirectly_movable_storable<T2, T1>, then (void)(*E1 = iter-exchange-move(E2, E1)),
except that E1 is evaluated only once.

—(4.4) Otherwise, ranges::iter_swap(E1, E2) is ill-formed.
[Note 2 : This case can result in substitution failure when ranges::iter_swap(E1, E2) appears in the immediate
context of a template instantiation. — end note ]

25.3.4 Iterator concepts [iterator.concepts]
25.3.4.1 General [iterator.concepts.general]

1 For a type I, let ITER_TRAITS(I) denote the type I if iterator_traits<I> names a specialization generated
from the primary template. Otherwise, ITER_TRAITS(I) denotes iterator_traits<I>.

—(1.1) If the qualified-id ITER_TRAITS(I)::iterator_concept is valid and names a type, then ITER_-
CONCEPT(I) denotes that type.

—(1.2) Otherwise, if the qualified-id ITER_TRAITS(I)::iterator_category is valid and names a type, then
ITER_CONCEPT(I) denotes that type.

—(1.3) Otherwise, if iterator_traits<I> names a specialization generated from the primary template, then
ITER_CONCEPT(I) denotes random_access_iterator_tag.
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—(1.4) Otherwise, ITER_CONCEPT(I) does not denote a type.
2 [Note 1 : ITER_TRAITS enables independent syntactic determination of an iterator’s category and concept. — end

note ]
[Example 1 :

struct I {
using value_type = int;
using difference_type = int;

int operator*() const;
I& operator++();
I operator++(int);
I& operator--();
I operator--(int);

bool operator==(I) const;
};

iterator_traits<I>::iterator_category denotes input_iterator_tag, and ITER_CONCEPT (I) denotes random_-
access_iterator_tag. — end example ]

25.3.4.2 Concept indirectly_readable [iterator.concept.readable]
1 Types that are indirectly readable by applying operator* model the indirectly_readable concept, including

pointers, smart pointers, and iterators.
template<class In>

concept indirectly-readable-impl =
requires(const In in) {

typename iter_value_t<In>;
typename iter_reference_t<In>;
typename iter_rvalue_reference_t<In>;
{ *in } -> same_as<iter_reference_t<In>>;
{ ranges::iter_move(in) } -> same_as<iter_rvalue_reference_t<In>>;

} &&
common_reference_with<iter_reference_t<In>&&, iter_value_t<In>&> &&
common_reference_with<iter_reference_t<In>&&, iter_rvalue_reference_t<In>&&> &&
common_reference_with<iter_rvalue_reference_t<In>&&, const iter_value_t<In>&>;

template<class In>
concept indirectly_readable =

indirectly-readable-impl <remove_cvref_t<In>>;

2 Given a value i of type I, I models indirectly_readable only if the expression *i is equality-preserving.

25.3.4.3 Concept indirectly_writable [iterator.concept.writable]
1 The indirectly_writable concept specifies the requirements for writing a value into an iterator’s referenced

object.
template<class Out, class T>

concept indirectly_writable =
requires(Out&& o, T&& t) {

*o = std::forward<T>(t); // not required to be equality-preserving
*std::forward<Out>(o) = std::forward<T>(t); // not required to be equality-preserving
const_cast<const iter_reference_t<Out>&&>(*o) =

std::forward<T>(t); // not required to be equality-preserving
const_cast<const iter_reference_t<Out>&&>(*std::forward<Out>(o)) =

std::forward<T>(t); // not required to be equality-preserving
};

2 Let E be an expression such that decltype((E)) is T, and let o be a dereferenceable object of type Out. Out
and T model indirectly_writable<Out, T> only if

—(2.1) If Out and T model indirectly_readable<Out> && same_as<iter_value_t<Out>, decay_t<T>>,
then *o after any above assignment is equal to the value of E before the assignment.

3 After evaluating any above assignment expression, o is not required to be dereferenceable.
4 If E is an xvalue (7.2.1), the resulting state of the object it denotes is valid but unspecified (16.4.6.15).
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5 [Note 1 : The only valid use of an operator* is on the left side of the assignment statement. Assignment through the
same value of the indirectly writable type happens only once. — end note ]

6 [Note 2 : indirectly_writable has the awkward const_cast expressions to reject iterators with prvalue non-proxy
reference types that permit rvalue assignment but do not also permit const rvalue assignment. Consequently, an
iterator type I that returns std::string by value does not model indirectly_writable<I, std::string>. — end
note ]

25.3.4.4 Concept weakly_incrementable [iterator.concept.winc]
1 The weakly_incrementable concept specifies the requirements on types that can be incremented with the

pre- and post-increment operators. The increment operations are not required to be equality-preserving, nor
is the type required to be equality_comparable.

template<class T>
constexpr bool is-integer-like = see below ; // exposition only

template<class T>
constexpr bool is-signed-integer-like = see below ; // exposition only

template<class I>
concept weakly_incrementable =

movable<I> &&
requires(I i) {

typename iter_difference_t<I>;
requires is-signed-integer-like <iter_difference_t<I>>;
{ ++i } -> same_as<I&>; // not required to be equality-preserving
i++; // not required to be equality-preserving

};

2 A type I is an integer-class type if it is in a set of implementation-defined types that behave as integer types
do, as defined below.
[Note 1 : An integer-class type is not necessarily a class type. — end note ]

3 The range of representable values of an integer-class type is the continuous set of values over which it is
defined. For any integer-class type, its range of representable values is either −2N−1 to 2N−1 − 1 (inclusive)
for some integer N , in which case it is a signed-integer-class type, or 0 to 2N − 1 (inclusive) for some integer
N , in which case it is an unsigned-integer-class type. In both cases, N is called the width of the integer-class
type. The width of an integer-class type is greater than that of every integral type of the same signedness.

4 A type I other than cv bool is integer-like if it models integral<I> or if it is an integer-class type. An
integer-like type I is signed-integer-like if it models signed_integral<I> or if it is a signed-integer-class
type. An integer-like type I is unsigned-integer-like if it models unsigned_integral<I> or if it is an
unsigned-integer-class type.

5 For every integer-class type I, let B(I) be a unique hypothetical extended integer type of the same signedness
with the same width (6.8.2) as I.
[Note 2 : The corresponding hypothetical specialization numeric_limits<B(I)> meets the requirements on numeric_-
limits specializations for integral types (17.3.5). — end note ]

For every integral type J, let B(J) be the same type as J.
6 Expressions of integer-class type are explicitly convertible to any integer-like type, and implicitly convertible

to any integer-class type of equal or greater width and the same signedness. Expressions of integral type
are both implicitly and explicitly convertible to any integer-class type. Conversions between integral and
integer-class types and between two integer-class types do not exit via an exception. The result of such a
conversion is the unique value of the destination type that is congruent to the source modulo 2N , where N is
the width of the destination type.

7 Let a be an object of integer-class type I, let b be an object of integer-like type I2 such that the expression b
is implicitly convertible to I, let x and y be, respectively, objects of type B(I) and B(I2) as described above
that represent the same values as a and b, and let c be an lvalue of any integral type.

—(7.1) The expressions a++ and a-- shall be prvalues of type I whose values are equal to that of a prior to
the evaluation of the expressions. The expression a++ shall modify the value of a by adding 1 to it.
The expression a-- shall modify the value of a by subtracting 1 from it.

§ 25.3.4.4 1071



© ISO/IEC N4950

—(7.2) The expressions ++a, --a, and &a shall be expression-equivalent to a += 1, a -= 1, and addressof(a),
respectively.

—(7.3) For every unary-operator @ other than & for which the expression @x is well-formed, @a shall also be
well-formed and have the same value, effects, and value category as @x. If @x has type bool, so too
does @a; if @x has type B(I), then @a has type I.

—(7.4) For every assignment operator @= for which c @= x is well-formed, c @= a shall also be well-formed
and shall have the same value and effects as c @= x. The expression c @= a shall be an lvalue referring
to c.

—(7.5) For every assignment operator @= for which x @= y is well-formed, a @= b shall also be well-formed
and shall have the same effects as x @= y, except that the value that would be stored into x is stored
into a. The expression a @= b shall be an lvalue referring to a.

—(7.6) For every non-assignment binary operator @ for which x @ y and y @ x are well-formed, a @ b and b
@ a shall also be well-formed and shall have the same value, effects, and value category as x @ y and y
@ x, respectively. If x @ y or y @ x has type B(I), then a @ b or b @ a, respectively, has type I; if x
@ y or y @ x has type B(I2), then a @ b or b @ a, respectively, has type I2; if x @ y or y @ x has
any other type, then a @ b or b @ a, respectively, has that type.

8 An expression E of integer-class type I is contextually convertible to bool as if by bool(E != I(0)).
9 All integer-class types model regular (18.6) and three_way_comparable<strong_ordering> (17.11.4).

10 A value-initialized object of integer-class type has value 0.
11 For every (possibly cv-qualified) integer-class type I, numeric_limits<I> is specialized such that each static

data member m has the same value as numeric_limits<B(I)>::m, and each static member function f returns
I(numeric_limits<B(I)>::f()).

12 For any two integer-like types I1 and I2, at least one of which is an integer-class type, common_type_t<I1,
I2> denotes an integer-class type whose width is not less than that of I1 or I2. If both I1 and I2 are
signed-integer-like types, then common_type_t<I1, I2> is also a signed-integer-like type.

13 is-integer-like <I> is true if and only if I is an integer-like type. is-signed-integer-like <I> is true
if and only if I is a signed-integer-like type.

14 Let i be an object of type I. When i is in the domain of both pre- and post-increment, i is said to be
incrementable. I models weakly_incrementable<I> only if

—(14.1) The expressions ++i and i++ have the same domain.
—(14.2) If i is incrementable, then both ++i and i++ advance i to the next element.
—(14.3) If i is incrementable, then addressof(++i) is equal to addressof(i).

15 Recommended practice: The implementaton of an algorithm on a weakly incrementable type should never
attempt to pass through the same incrementable value twice; such an algorithm should be a single-pass
algorithm.
[Note 3 : For weakly_incrementable types, a equals b does not imply that ++a equals ++b. (Equality does not
guarantee the substitution property or referential transparency.) Such algorithms can be used with istreams as the
source of the input data through the istream_iterator class template. — end note ]

25.3.4.5 Concept incrementable [iterator.concept.inc]
1 The incrementable concept specifies requirements on types that can be incremented with the pre- and

post-increment operators. The increment operations are required to be equality-preserving, and the type is
required to be equality_comparable.
[Note 1 : This supersedes the annotations on the increment expressions in the definition of weakly_incrementable.

— end note ]
template<class I>

concept incrementable =
regular<I> &&
weakly_incrementable<I> &&
requires(I i) {

{ i++ } -> same_as<I>;
};
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2 Let a and b be incrementable objects of type I. I models incrementable only if
—(2.1) If bool(a == b) then bool(a++ == b).
—(2.2) If bool(a == b) then bool(((void)a++, a) == ++b).

3 [Note 2 : The requirement that a equals b implies ++a equals ++b (which is not true for weakly incrementable types)
allows the use of multi-pass one-directional algorithms with types that model incrementable. — end note ]

25.3.4.6 Concept input_or_output_iterator [iterator.concept.iterator]
1 The input_or_output_iterator concept forms the basis of the iterator concept taxonomy; every iterator

models input_or_output_iterator. This concept specifies operations for dereferencing and incrementing
an iterator. Most algorithms will require additional operations to compare iterators with sentinels (25.3.4.7),
to read (25.3.4.9) or write (25.3.4.10) values, or to provide a richer set of iterator movements (25.3.4.11,
25.3.4.12, 25.3.4.13).

template<class I>
concept input_or_output_iterator =

requires(I i) {
{ *i } -> can-reference ;

} &&
weakly_incrementable<I>;

2 [Note 1 : Unlike the Cpp17Iterator requirements, the input_or_output_iterator concept does not require copyability.
— end note ]

25.3.4.7 Concept sentinel_for [iterator.concept.sentinel]
1 The sentinel_for concept specifies the relationship between an input_or_output_iterator type and a

semiregular type whose values denote a range.

template<class S, class I>
concept sentinel_for =

semiregular<S> &&
input_or_output_iterator<I> &&
weakly-equality-comparable-with <S, I>; // see 18.5.4

2 Let s and i be values of type S and I such that [i, s) denotes a range. Types S and I model
sentinel_for<S, I> only if

—(2.1) i == s is well-defined.
—(2.2) If bool(i != s) then i is dereferenceable and [++i, s) denotes a range.
—(2.3) assignable_from<I&, S> is either modeled or not satisfied.

3 The domain of == is not static. Given an iterator i and sentinel s such that [i, s) denotes a range and i !=
s, i and s are not required to continue to denote a range after incrementing any other iterator equal to i.
Consequently, i == s is no longer required to be well-defined.

25.3.4.8 Concept sized_sentinel_for [iterator.concept.sizedsentinel]
1 The sized_sentinel_for concept specifies requirements on an input_or_output_iterator type I and a

corresponding sentinel_for<I> that allow the use of the - operator to compute the distance between them
in constant time.

template<class S, class I>
concept sized_sentinel_for =

sentinel_for<S, I> &&
!disable_sized_sentinel_for<remove_cv_t<S>, remove_cv_t<I>> &&
requires(const I& i, const S& s) {

{ s - i } -> same_as<iter_difference_t<I>>;
{ i - s } -> same_as<iter_difference_t<I>>;

};

2 Let i be an iterator of type I, and s a sentinel of type S such that [i, s) denotes a range. Let N be
the smallest number of applications of ++i necessary to make bool(i == s) be true. S and I model
sized_sentinel_for<S, I> only if

—(2.1) If N is representable by iter_difference_t<I>, then s - i is well-defined and equals N .
—(2.2) If −N is representable by iter_difference_t<I>, then i - s is well-defined and equals −N .
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template<class S, class I>
constexpr bool disable_sized_sentinel_for = false;

3 Remarks: Pursuant to 16.4.5.2.1, users may specialize disable_sized_sentinel_for for cv-unqualified
non-array object types S and I if S and/or I is a program-defined type. Such specializations shall be
usable in constant expressions (7.7) and have type const bool.

4 [Note 1 : disable_sized_sentinel_for allows use of sentinels and iterators with the library that satisfy but
do not in fact model sized_sentinel_for. — end note ]

5 [Example 1 : The sized_sentinel_for concept is modeled by pairs of random_access_iterators (25.3.4.13)
and by counted iterators and their sentinels (25.5.7.1). — end example ]

25.3.4.9 Concept input_iterator [iterator.concept.input]
1 The input_iterator concept defines requirements for a type whose referenced values can be read (from the

requirement for indirectly_readable (25.3.4.2)) and which can be both pre- and post-incremented.
[Note 1 : Unlike the Cpp17InputIterator requirements (25.3.5.3), the input_iterator concept does not need equality
comparison since iterators are typically compared to sentinels. — end note ]

template<class I>
concept input_iterator =

input_or_output_iterator<I> &&
indirectly_readable<I> &&
requires { typename ITER_CONCEPT(I); } &&
derived_from<ITER_CONCEPT(I), input_iterator_tag>;

25.3.4.10 Concept output_iterator [iterator.concept.output]
1 The output_iterator concept defines requirements for a type that can be used to write values (from the

requirement for indirectly_writable (25.3.4.3)) and which can be both pre- and post-incremented.
[Note 1 : Output iterators are not required to model equality_comparable. — end note ]

template<class I, class T>
concept output_iterator =

input_or_output_iterator<I> &&
indirectly_writable<I, T> &&
requires(I i, T&& t) {

*i++ = std::forward<T>(t); // not required to be equality-preserving
};

2 Let E be an expression such that decltype((E)) is T, and let i be a dereferenceable object of type I. I and
T model output_iterator<I, T> only if *i++ = E; has effects equivalent to:

*i = E;
++i;

3 Recommended practice: The implementation of an algorithm on output iterators should never attempt to
pass through the same iterator twice; such an algorithm should be a single-pass algorithm.

25.3.4.11 Concept forward_iterator [iterator.concept.forward]
1 The forward_iterator concept adds copyability, equality comparison, and the multi-pass guarantee, specified

below.
template<class I>

concept forward_iterator =
input_iterator<I> &&
derived_from<ITER_CONCEPT(I), forward_iterator_tag> &&
incrementable<I> &&
sentinel_for<I, I>;

2 The domain of == for forward iterators is that of iterators over the same underlying sequence. However,
value-initialized iterators of the same type may be compared and shall compare equal to other value-initialized
iterators of the same type.
[Note 1 : Value-initialized iterators behave as if they refer past the end of the same empty sequence. — end note ]

3 Pointers and references obtained from a forward iterator into a range [i, s) shall remain valid while [i, s)
continues to denote a range.

4 Two dereferenceable iterators a and b of type X offer the multi-pass guarantee if:
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—(4.1) a == b implies ++a == ++b and
—(4.2) the expression ((void)[](X x){++x;}(a), *a) is equivalent to the expression *a.

5 [Note 2 : The requirement that a == b implies ++a == ++b and the removal of the restrictions on the number of
assignments through a mutable iterator (which applies to output iterators) allow the use of multi-pass one-directional
algorithms with forward iterators. — end note ]

25.3.4.12 Concept bidirectional_iterator [iterator.concept.bidir]
1 The bidirectional_iterator concept adds the ability to move an iterator backward as well as forward.

template<class I>
concept bidirectional_iterator =

forward_iterator<I> &&
derived_from<ITER_CONCEPT(I), bidirectional_iterator_tag> &&
requires(I i) {

{ --i } -> same_as<I&>;
{ i-- } -> same_as<I>;

};

2 A bidirectional iterator r is decrementable if and only if there exists some q such that ++q == r. Decrementable
iterators r shall be in the domain of the expressions --r and r--.

3 Let a and b be equal objects of type I. I models bidirectional_iterator only if:
—(3.1) If a and b are decrementable, then all of the following are true:

—(3.1.1) addressof(--a) == addressof(a)
—(3.1.2) bool(a-- == b)
—(3.1.3) after evaluating both a-- and --b, bool(a == b) is still true
—(3.1.4) bool(++(--a) == b)

—(3.2) If a and b are incrementable, then bool(--(++a) == b).

25.3.4.13 Concept random_access_iterator [iterator.concept.random.access]
1 The random_access_iterator concept adds support for constant-time advancement with +=, +, -=, and -,

as well as the computation of distance in constant time with -. Random access iterators also support array
notation via subscripting.

template<class I>
concept random_access_iterator =

bidirectional_iterator<I> &&
derived_from<ITER_CONCEPT(I), random_access_iterator_tag> &&
totally_ordered<I> &&
sized_sentinel_for<I, I> &&
requires(I i, const I j, const iter_difference_t<I> n) {

{ i += n } -> same_as<I&>;
{ j + n } -> same_as<I>;
{ n + j } -> same_as<I>;
{ i -= n } -> same_as<I&>;
{ j - n } -> same_as<I>;
{ j[n] } -> same_as<iter_reference_t<I>>;

};

2 Let a and b be valid iterators of type I such that b is reachable from a after n applications of ++a, let D be
iter_difference_t<I>, and let n denote a value of type D. I models random_access_iterator only if

—(2.1) (a += n) is equal to b.
—(2.2) addressof(a += n) is equal to addressof(a).
—(2.3) (a + n) is equal to (a += n).
—(2.4) For any two positive values x and y of type D, if (a + D(x + y)) is valid, then (a + D(x + y)) is

equal to ((a + x) + y).
—(2.5) (a + D(0)) is equal to a.
—(2.6) If (a + D(n - 1)) is valid, then (a + n) is equal to [](I c){ return ++c; }(a + D(n - 1)).
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—(2.7) (b += D(-n)) is equal to a.
—(2.8) (b -= n) is equal to a.
—(2.9) addressof(b -= n) is equal to addressof(b).
—(2.10) (b - n) is equal to (b -= n).
—(2.11) If b is dereferenceable, then a[n] is valid and is equal to *b.
—(2.12) bool(a <= b) is true.

25.3.4.14 Concept contiguous_iterator [iterator.concept.contiguous]
1 The contiguous_iterator concept provides a guarantee that the denoted elements are stored contiguously

in memory.
template<class I>

concept contiguous_iterator =
random_access_iterator<I> &&
derived_from<ITER_CONCEPT(I), contiguous_iterator_tag> &&
is_lvalue_reference_v<iter_reference_t<I>> &&
same_as<iter_value_t<I>, remove_cvref_t<iter_reference_t<I>>> &&
requires(const I& i) {

{ to_address(i) } -> same_as<add_pointer_t<iter_reference_t<I>>>;
};

2 Let a and b be dereferenceable iterators and c be a non-dereferenceable iterator of type I such that b
is reachable from a and c is reachable from b, and let D be iter_difference_t<I>. The type I models
contiguous_iterator only if

—(2.1) to_address(a) == addressof(*a),
—(2.2) to_address(b) == to_address(a) + D(b - a),
—(2.3) to_address(c) == to_address(a) + D(c - a),
—(2.4) ranges::iter_move(a) has the same type, value category, and effects as std::move(*a), and
—(2.5) if ranges::iter_swap(a, b) is well-formed, it has effects equivalent to ranges::swap(*a, *b).

25.3.5 C++17 iterator requirements [iterator.cpp17]
25.3.5.1 General [iterator.cpp17.general]

1 In the following sections, a and b denote values of type X or const X, difference_type and reference refer
to the types iterator_traits<X>::difference_type and iterator_traits<X>::reference, respectively,
n denotes a value of difference_type, u, tmp, and m denote identifiers, r denotes a value of X&, t denotes a
value of value type T, o denotes a value of some type that is writable to the output iterator.
[Note 1 : For an iterator type X there must be an instantiation of iterator_traits<X> (25.3.2.3). — end note ]

25.3.5.2 Cpp17Iterator [iterator.iterators]
1 The Cpp17Iterator requirements form the basis of the iterator taxonomy; every iterator meets the Cpp17-

Iterator requirements. This set of requirements specifies operations for dereferencing and incrementing an
iterator. Most algorithms will require additional operations to read (25.3.5.3) or write (25.3.5.4) values, or to
provide a richer set of iterator movements (25.3.5.5, 25.3.5.6, 25.3.5.7).

2 A type X meets the Cpp17Iterator requirements if:
—(2.1) X meets the Cpp17CopyConstructible, Cpp17CopyAssignable, Cpp17Swappable, and Cpp17Destructible

requirements (16.4.4.2, 16.4.4.3), and
—(2.2) iterator_traits<X>::difference_type is a signed integer type or void, and
—(2.3) the expressions in Table 86 are valid and have the indicated semantics.

25.3.5.3 Input iterators [input.iterators]
1 A class or pointer type X meets the requirements of an input iterator for the value type T if X meets the

Cpp17Iterator (25.3.5.2) and Cpp17EqualityComparable (Table 28) requirements and the expressions in
Table 87 are valid and have the indicated semantics.

2 In Table 87, the term the domain of == is used in the ordinary mathematical sense to denote the set of values
over which == is (required to be) defined. This set can change over time. Each algorithm places additional
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Table 86: Cpp17Iterator requirements [tab:iterator]

Expression Return type Operational Assertion/note
semantics pre-/post-condition

*r unspecified Preconditions: r is
dereferenceable.

++r X&

requirements on the domain of == for the iterator values it uses. These requirements can be inferred from
the uses that algorithm makes of == and !=.
[Example 1 : The call find(a,b,x) is defined only if the value of a has the property p defined as follows: b has
property p and a value i has property p if (*i==x) or if (*i!=x and ++i has property p). — end example ]

Table 87: Cpp17InputIterator requirements (in addition to Cpp17Iterator) [tab:inputiterator]

Expression Return type Operational Assertion/note
semantics pre-/post-condition

a != b decltype(a !=
b) models
boolean-test-
able

!(a == b) Preconditions: (a, b) is in the
domain of ==.

*a reference,
convertible to T

Preconditions: a is
dereferenceable.
The expression
(void)*a, *a is equivalent
to *a.
If a == b and (a, b) is in the
domain of == then *a is
equivalent to *b.

a->m (*a).m Preconditions: a is
dereferenceable.

++r X& Preconditions: r is
dereferenceable.
Postconditions: r is
dereferenceable or r is
past-the-end;
any copies of the previous
value of r are no longer
required to be
dereferenceable nor to be in
the domain of ==.

(void)r++ equivalent to (void)++r
*r++ convertible to T { T tmp = *r;

++r;
return tmp; }

3 Recommended practice: The implementation of an algorithm on input iterators should never attempt to pass
through the same iterator twice; such an algorithm should be a single pass algorithm.
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[Note 1 : For input iterators, a == b does not imply ++a == ++b. (Equality does not guarantee the substitution
property or referential transparency.) Value type T is not required to be a Cpp17CopyAssignable type (Table 34).
Such an algorithm can be used with istreams as the source of the input data through the istream_iterator class
template. — end note ]

25.3.5.4 Output iterators [output.iterators]
1 A class or pointer type X meets the requirements of an output iterator if X meets the Cpp17Iterator

requirements (25.3.5.2) and the expressions in Table 88 are valid and have the indicated semantics.

Table 88: Cpp17OutputIterator requirements (in addition to Cpp17Iterator) [tab:outputiterator]

Expression Return type Operational Assertion/note
semantics pre-/post-condition

*r = o result is not
used

Remarks: After this
operation r is not required to
be dereferenceable.
Postconditions: r is
incrementable.

++r X& addressof(r) ==
addressof(++r).
Remarks: After this
operation r is not required to
be dereferenceable.
Postconditions: r is
incrementable.

r++ convertible to
const X&

{ X tmp = r;
++r;
return tmp; }

Remarks: After this
operation r is not required to
be dereferenceable.
Postconditions: r is
incrementable.

*r++ = o result is not
used

Remarks: After this
operation r is not required to
be dereferenceable.
Postconditions: r is
incrementable.

2 Recommended practice: The implementation of an algorithm on output iterators should never attempt to
pass through the same iterator twice; such an algorithm should be a single-pass algorithm.
[Note 1 : The only valid use of an operator* is on the left side of the assignment statement. Assignment through the
same value of the iterator happens only once. Equality and inequality are not necessarily defined. — end note ]

25.3.5.5 Forward iterators [forward.iterators]
1 A class or pointer type X meets the requirements of a forward iterator if

—(1.1) X meets the Cpp17InputIterator requirements (25.3.5.3),
—(1.2) X meets the Cpp17DefaultConstructible requirements (16.4.4.2),
—(1.3) if X is a mutable iterator, reference is a reference to T; if X is a constant iterator, reference is a

reference to const T,
—(1.4) the expressions in Table 89 are valid and have the indicated semantics, and
—(1.5) objects of type X offer the multi-pass guarantee, described below.

2 The domain of == for forward iterators is that of iterators over the same underlying sequence. However,
value-initialized iterators may be compared and shall compare equal to other value-initialized iterators of the
same type.
[Note 1 : Value-initialized iterators behave as if they refer past the end of the same empty sequence. — end note ]
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3 Two dereferenceable iterators a and b of type X offer the multi-pass guarantee if:
—(3.1) a == b implies ++a == ++b and
—(3.2) X is a pointer type or the expression (void)++X(a), *a is equivalent to the expression *a.

4 [Note 2 : The requirement that a == b implies ++a == ++b (which is not true for input and output iterators) and the
removal of the restrictions on the number of the assignments through a mutable iterator (which applies to output
iterators) allows the use of multi-pass one-directional algorithms with forward iterators. — end note ]

Table 89: Cpp17ForwardIterator requirements (in addition to Cpp17InputIterator) [tab:forwarditerator]

Expression Return type Operational Assertion/note
semantics pre-/post-condition

r++ convertible to
const X&

{ X tmp = r;
++r;
return tmp; }

*r++ reference

5 If a and b are equal, then either a and b are both dereferenceable or else neither is dereferenceable.
6 If a and b are both dereferenceable, then a == b if and only if *a and *b are bound to the same object.

25.3.5.6 Bidirectional iterators [bidirectional.iterators]
1 A class or pointer type X meets the requirements of a bidirectional iterator if, in addition to meeting the

Cpp17ForwardIterator requirements, the following expressions are valid as shown in Table 90.

Table 90: Cpp17BidirectionalIterator requirements (in addition to Cpp17ForwardIterator)
[tab:bidirectionaliterator]

Expression Return type Operational Assertion/note
semantics pre-/post-condition

--r X& Preconditions: there exists s
such that r == ++s.
Postconditions: r is
dereferenceable.
--(++r) == r.
--r == --s implies r == s.
addressof(r) ==
addressof(--r).

r-- convertible to
const X&

{ X tmp = r;
--r;
return tmp; }

*r-- reference

2 [Note 1 : Bidirectional iterators allow algorithms to move iterators backward as well as forward. — end note ]

25.3.5.7 Random access iterators [random.access.iterators]
1 A class or pointer type X meets the requirements of a random access iterator if, in addition to meeting the

Cpp17BidirectionalIterator requirements, the following expressions are valid as shown in Table 91.
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Table 91: Cpp17RandomAccessIterator requirements (in addition to Cpp17BidirectionalIterator)
[tab:randomaccessiterator]

Expression Return type Operational Assertion/note
semantics pre-/post-condition

r += n X& { difference_type m = n;
if (m >= 0)
while (m--)
++r;
else
while (m++)
--r;
return r; }

a + n
n + a

X { X tmp = a;
return tmp += n; }

a + n == n + a.

r -= n X& return r += -n; Preconditions: the absolute
value of n is in the range of
representable values of
difference_type.

a - n X { X tmp = a;
return tmp -= n; }

b - a difference_-
type

return n; Preconditions: there exists a
value n of type
difference_type such that
a + n == b.
b == a + (b - a).

a[n] convertible to
reference

*(a + n)

a < b decltype(a <
b) models
boolean-test-
able

Effects: Equivalent to: return
b - a > 0;

< is a total ordering relation

a > b decltype(a >
b) models
boolean-test-
able

b < a > is a total ordering relation
opposite to <.

a >= b decltype(a >=
b) models
boolean-test-
able

!(a < b)

a <= b decltype(a <=
b) models
boolean-test-
able

!(a > b)

25.3.6 Indirect callable requirements [indirectcallable]
25.3.6.1 General [indirectcallable.general]

1 There are several concepts that group requirements of algorithms that take callable objects (22.10.3) as
arguments.

25.3.6.2 Indirect callable traits [indirectcallable.traits]
1 To implement algorithms taking projections, it is necessary to determine the projected type of an iterator’s

value type. For the exposition-only alias template indirect-value-t , indirect-value-t <T> denotes
—(1.1) invoke_result_t<Proj&, indirect-value-t <I>> if T names projected<I, Proj>, and
—(1.2) iter_value_t<T>& otherwise.
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25.3.6.3 Indirect callables [indirectcallable.indirectinvocable]
1 The indirect callable concepts are used to constrain those algorithms that accept callable objects (22.10.3) as

arguments.
namespace std {

template<class F, class I>
concept indirectly_unary_invocable =

indirectly_readable<I> &&
copy_constructible<F> &&
invocable<F&, indirect-value-t<I>> &&
invocable<F&, iter_reference_t<I>> &&
invocable<F&, iter_common_reference_t<I>> &&
common_reference_with<

invoke_result_t<F&, indirect-value-t<I>>,
invoke_result_t<F&, iter_reference_t<I>>>;

template<class F, class I>
concept indirectly_regular_unary_invocable =

indirectly_readable<I> &&
copy_constructible<F> &&
regular_invocable<F&, indirect-value-t<I>> &&
regular_invocable<F&, iter_reference_t<I>> &&
regular_invocable<F&, iter_common_reference_t<I>> &&
common_reference_with<

invoke_result_t<F&, indirect-value-t<I>>,
invoke_result_t<F&, iter_reference_t<I>>>;

template<class F, class I>
concept indirect_unary_predicate =

indirectly_readable<I> &&
copy_constructible<F> &&
predicate<F&, indirect-value-t<I>> &&
predicate<F&, iter_reference_t<I>> &&
predicate<F&, iter_common_reference_t<I>>;

template<class F, class I1, class I2>
concept indirect_binary_predicate =

indirectly_readable<I1> && indirectly_readable<I2> &&
copy_constructible<F> &&
predicate<F&, indirect-value-t<I1>, indirect-value-t<I2>> &&
predicate<F&, indirect-value-t<I1>, iter_reference_t<I2>> &&
predicate<F&, iter_reference_t<I1>, indirect-value-t<I2>> &&
predicate<F&, iter_reference_t<I1>, iter_reference_t<I2>> &&
predicate<F&, iter_common_reference_t<I1>, iter_common_reference_t<I2>>;

template<class F, class I1, class I2 = I1>
concept indirect_equivalence_relation =

indirectly_readable<I1> && indirectly_readable<I2> &&
copy_constructible<F> &&
equivalence_relation<F&, indirect-value-t<I1>, indirect-value-t<I2>> &&
equivalence_relation<F&, indirect-value-t<I1>, iter_reference_t<I2>> &&
equivalence_relation<F&, iter_reference_t<I1>, indirect-value-t<I2>> &&
equivalence_relation<F&, iter_reference_t<I1>, iter_reference_t<I2>> &&
equivalence_relation<F&, iter_common_reference_t<I1>, iter_common_reference_t<I2>>;

template<class F, class I1, class I2 = I1>
concept indirect_strict_weak_order =

indirectly_readable<I1> && indirectly_readable<I2> &&
copy_constructible<F> &&
strict_weak_order<F&, indirect-value-t<I1>, indirect-value-t<I2>> &&
strict_weak_order<F&, indirect-value-t<I1>, iter_reference_t<I2>> &&
strict_weak_order<F&, iter_reference_t<I1>, indirect-value-t<I2>> &&
strict_weak_order<F&, iter_reference_t<I1>, iter_reference_t<I2>> &&
strict_weak_order<F&, iter_common_reference_t<I1>, iter_common_reference_t<I2>>;
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}

25.3.6.4 Class template projected [projected]
1 Class template projected is used to constrain algorithms that accept callable objects and projections (3.42). It

combines an indirectly_readable type I and a callable object type Proj into a new indirectly_readable
type whose reference type is the result of applying Proj to the iter_reference_t of I.

namespace std {
template<indirectly_readable I, indirectly_regular_unary_invocable<I> Proj>
struct projected {

using value_type = remove_cvref_t<indirect_result_t<Proj&, I>>;
indirect_result_t<Proj&, I> operator*() const; // not defined

};

template<weakly_incrementable I, class Proj>
struct incrementable_traits<projected<I, Proj>> {

using difference_type = iter_difference_t<I>;
};

}

25.3.7 Common algorithm requirements [alg.req]
25.3.7.1 General [alg.req.general]

1 There are several additional iterator concepts that are commonly applied to families of algorithms. These
group together iterator requirements of algorithm families. There are three relational concepts that spec-
ify how element values are transferred between indirectly_readable and indirectly_writable types:
indirectly_movable, indirectly_copyable, and indirectly_swappable. There are three relational con-
cepts for rearrangements: permutable, mergeable, and sortable. There is one relational concept for
comparing values from different sequences: indirectly_comparable.

2 [Note 1 : The ranges::less function object type used in the concepts below imposes constraints on the concepts’
arguments in addition to those that appear in the concepts’ bodies (22.10.9). — end note ]

25.3.7.2 Concept indirectly_movable [alg.req.ind.move]
1 The indirectly_movable concept specifies the relationship between an indirectly_readable type and an

indirectly_writable type between which values may be moved.
template<class In, class Out>

concept indirectly_movable =
indirectly_readable<In> &&
indirectly_writable<Out, iter_rvalue_reference_t<In>>;

2 The indirectly_movable_storable concept augments indirectly_movable with additional requirements
enabling the transfer to be performed through an intermediate object of the indirectly_readable type’s
value type.

template<class In, class Out>
concept indirectly_movable_storable =

indirectly_movable<In, Out> &&
indirectly_writable<Out, iter_value_t<In>> &&
movable<iter_value_t<In>> &&
constructible_from<iter_value_t<In>, iter_rvalue_reference_t<In>> &&
assignable_from<iter_value_t<In>&, iter_rvalue_reference_t<In>>;

3 Let i be a dereferenceable value of type In. In and Out model indirectly_movable_storable<In, Out>
only if after the initialization of the object obj in

iter_value_t<In> obj(ranges::iter_move(i));

obj is equal to the value previously denoted by *i. If iter_rvalue_reference_t<In> is an rvalue reference
type, the resulting state of the value denoted by *i is valid but unspecified (16.4.6.15).

25.3.7.3 Concept indirectly_copyable [alg.req.ind.copy]
1 The indirectly_copyable concept specifies the relationship between an indirectly_readable type and

an indirectly_writable type between which values may be copied.
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template<class In, class Out>
concept indirectly_copyable =

indirectly_readable<In> &&
indirectly_writable<Out, iter_reference_t<In>>;

2 The indirectly_copyable_storable concept augments indirectly_copyable with additional require-
ments enabling the transfer to be performed through an intermediate object of the indirectly_readable
type’s value type. It also requires the capability to make copies of values.

template<class In, class Out>
concept indirectly_copyable_storable =

indirectly_copyable<In, Out> &&
indirectly_writable<Out, iter_value_t<In>&> &&
indirectly_writable<Out, const iter_value_t<In>&> &&
indirectly_writable<Out, iter_value_t<In>&&> &&
indirectly_writable<Out, const iter_value_t<In>&&> &&
copyable<iter_value_t<In>> &&
constructible_from<iter_value_t<In>, iter_reference_t<In>> &&
assignable_from<iter_value_t<In>&, iter_reference_t<In>>;

3 Let i be a dereferenceable value of type In. In and Out model indirectly_copyable_storable<In, Out>
only if after the initialization of the object obj in

iter_value_t<In> obj(*i);

obj is equal to the value previously denoted by *i. If iter_reference_t<In> is an rvalue reference type,
the resulting state of the value denoted by *i is valid but unspecified (16.4.6.15).

25.3.7.4 Concept indirectly_swappable [alg.req.ind.swap]
1 The indirectly_swappable concept specifies a swappable relationship between the values referenced by two

indirectly_readable types.
template<class I1, class I2 = I1>

concept indirectly_swappable =
indirectly_readable<I1> && indirectly_readable<I2> &&
requires(const I1 i1, const I2 i2) {

ranges::iter_swap(i1, i1);
ranges::iter_swap(i2, i2);
ranges::iter_swap(i1, i2);
ranges::iter_swap(i2, i1);

};

25.3.7.5 Concept indirectly_comparable [alg.req.ind.cmp]
1 The indirectly_comparable concept specifies the common requirements of algorithms that compare values

from two different sequences.
template<class I1, class I2, class R, class P1 = identity,

class P2 = identity>
concept indirectly_comparable =

indirect_binary_predicate<R, projected<I1, P1>, projected<I2, P2>>;

25.3.7.6 Concept permutable [alg.req.permutable]
1 The permutable concept specifies the common requirements of algorithms that reorder elements in place by

moving or swapping them.
template<class I>

concept permutable =
forward_iterator<I> &&
indirectly_movable_storable<I, I> &&
indirectly_swappable<I, I>;

25.3.7.7 Concept mergeable [alg.req.mergeable]
1 The mergeable concept specifies the requirements of algorithms that merge sorted sequences into an output

sequence by copying elements.
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template<class I1, class I2, class Out, class R = ranges::less,
class P1 = identity, class P2 = identity>

concept mergeable =
input_iterator<I1> &&
input_iterator<I2> &&
weakly_incrementable<Out> &&
indirectly_copyable<I1, Out> &&
indirectly_copyable<I2, Out> &&
indirect_strict_weak_order<R, projected<I1, P1>, projected<I2, P2>>;

25.3.7.8 Concept sortable [alg.req.sortable]
1 The sortable concept specifies the common requirements of algorithms that permute sequences into ordered

sequences (e.g., sort).
template<class I, class R = ranges::less, class P = identity>

concept sortable =
permutable<I> &&
indirect_strict_weak_order<R, projected<I, P>>;

25.4 Iterator primitives [iterator.primitives]
25.4.1 General [iterator.primitives.general]

1 To simplify the use of iterators, the library provides several classes and functions.

25.4.2 Standard iterator tags [std.iterator.tags]
1 It is often desirable for a function template specialization to find out what is the most specific cate-

gory of its iterator argument, so that the function can select the most efficient algorithm at compile
time. To facilitate this, the library introduces category tag classes which are used as compile time tags
for algorithm selection. They are: output_iterator_tag, input_iterator_tag, forward_iterator_tag,
bidirectional_iterator_tag, random_access_iterator_tag, and contiguous_iterator_tag. For every
iterator of type I, iterator_traits<I>::iterator_category shall be defined to be a category tag that
describes the iterator’s behavior. Additionally, iterator_traits<I>::iterator_concept may be used to
indicate conformance to the iterator concepts (25.3.4).

namespace std {
struct output_iterator_tag { };
struct input_iterator_tag { };
struct forward_iterator_tag: public input_iterator_tag { };
struct bidirectional_iterator_tag: public forward_iterator_tag { };
struct random_access_iterator_tag: public bidirectional_iterator_tag { };
struct contiguous_iterator_tag: public random_access_iterator_tag { };

}
2 [Example 1 : A program-defined iterator BinaryTreeIterator can be included into the bidirectional iterator category

by specializing the iterator_traits template:
template<class T> struct iterator_traits<BinaryTreeIterator<T>> {

using iterator_category = bidirectional_iterator_tag;
using difference_type = ptrdiff_t;
using value_type = T;
using pointer = T*;
using reference = T&;

};

— end example ]
3 [Example 2 : If evolve() is well-defined for bidirectional iterators, but can be implemented more efficiently for random

access iterators, then the implementation is as follows:
template<class BidirectionalIterator>
inline void
evolve(BidirectionalIterator first, BidirectionalIterator last) {

evolve(first, last,
typename iterator_traits<BidirectionalIterator>::iterator_category());

}
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template<class BidirectionalIterator>
void evolve(BidirectionalIterator first, BidirectionalIterator last,

bidirectional_iterator_tag) {
// more generic, but less efficient algorithm

}

template<class RandomAccessIterator>
void evolve(RandomAccessIterator first, RandomAccessIterator last,

random_access_iterator_tag) {
// more efficient, but less generic algorithm

}

— end example ]

25.4.3 Iterator operations [iterator.operations]
1 Since only random access iterators provide + and - operators, the library provides two function templates

advance and distance. These function templates use + and - for random access iterators (and are, therefore,
constant time for them); for input, forward and bidirectional iterators they use ++ to provide linear time
implementations.

template<class InputIterator, class Distance>
constexpr void advance(InputIterator& i, Distance n);

2 Preconditions: n is negative only for bidirectional iterators.
3 Effects: Increments i by n if n is non-negative, and decrements i by -n otherwise.

template<class InputIterator>
constexpr typename iterator_traits<InputIterator>::difference_type

distance(InputIterator first, InputIterator last);

4 Preconditions: last is reachable from first, or InputIterator meets the Cpp17RandomAccessIterator
requirements and first is reachable from last.

5 Effects: If InputIterator meets the Cpp17RandomAccessIterator requirements, returns (last -
first); otherwise, increments first until last is reached and returns the number of increments.

template<class InputIterator>
constexpr InputIterator next(InputIterator x,

typename iterator_traits<InputIterator>::difference_type n = 1);

6 Effects: Equivalent to: advance(x, n); return x;

template<class BidirectionalIterator>
constexpr BidirectionalIterator prev(BidirectionalIterator x,

typename iterator_traits<BidirectionalIterator>::difference_type n = 1);

7 Effects: Equivalent to: advance(x, -n); return x;

25.4.4 Range iterator operations [range.iter.ops]
25.4.4.1 General [range.iter.ops.general]

1 The library includes the function templates ranges::advance, ranges::distance, ranges::next, and
ranges::prev to manipulate iterators. These operations adapt to the set of operators provided by each
iterator category to provide the most efficient implementation possible for a concrete iterator type.
[Example 1 : ranges::advance uses the + operator to move a random_access_iterator forward n steps in constant
time. For an iterator type that does not model random_access_iterator, ranges::advance instead performs n
individual increments with the ++ operator. — end example ]

2 The function templates defined in 25.4.4 are not found by argument-dependent name lookup (6.5.4). When
found by unqualified (6.5.3) name lookup for the postfix-expression in a function call (7.6.1.3), they inhibit
argument-dependent name lookup.
[Example 2 :

void foo() {
using namespace std::ranges;
std::vector<int> vec{1,2,3};
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distance(begin(vec), end(vec)); // #1
}

The function call expression at #1 invokes std::ranges::distance, not std::distance, despite that (a) the iterator
type returned from begin(vec) and end(vec) may be associated with namespace std and (b) std::distance is more
specialized (13.7.7.3) than std::ranges::distance since the former requires its first two parameters to have the same
type. — end example ]

3 The number and order of deducible template parameters for the function templates defined in 25.4.4 is
unspecified, except where explicitly stated otherwise.

25.4.4.2 ranges::advance [range.iter.op.advance]

template<input_or_output_iterator I>
constexpr void ranges::advance(I& i, iter_difference_t<I> n);

1 Preconditions: If I does not model bidirectional_iterator, n is not negative.
2 Effects:

—(2.1) If I models random_access_iterator, equivalent to i += n.
—(2.2) Otherwise, if n is non-negative, increments i by n.
—(2.3) Otherwise, decrements i by -n.

template<input_or_output_iterator I, sentinel_for<I> S>
constexpr void ranges::advance(I& i, S bound);

3 Preconditions: Either assignable_from<I&, S> || sized_sentinel_for<S, I> is modeled, or [i,
bound) denotes a range.

4 Effects:
—(4.1) If I and S model assignable_from<I&, S>, equivalent to i = std::move(bound).
—(4.2) Otherwise, if S and I model sized_sentinel_for<S, I>, equivalent to ranges::advance(i,

bound - i).
—(4.3) Otherwise, while bool(i != bound) is true, increments i.

template<input_or_output_iterator I, sentinel_for<I> S>
constexpr iter_difference_t<I> ranges::advance(I& i, iter_difference_t<I> n, S bound);

5 Preconditions: If n > 0, [i, bound) denotes a range. If n == 0, [i, bound) or [bound, i) denotes a
range. If n < 0, [bound, i) denotes a range, I models bidirectional_iterator, and I and S model
same_as<I, S>.

6 Effects:
—(6.1) If S and I model sized_sentinel_for<S, I>:

—(6.1.1) If |n| ≥ |bound - i|, equivalent to ranges::advance(i, bound).
—(6.1.2) Otherwise, equivalent to ranges::advance(i, n).

—(6.2) Otherwise,
—(6.2.1) if n is non-negative, while bool(i != bound) is true, increments i but at most n times.
—(6.2.2) Otherwise, while bool(i != bound) is true, decrements i but at most -n times.

7 Returns: n - M , where M is the difference between the ending and starting positions of i.

25.4.4.3 ranges::distance [range.iter.op.distance]

template<class I, sentinel_for<I> S>
requires (!sized_sentinel_for<S, I>)
constexpr iter_difference_t<I> ranges::distance(I first, S last);

1 Preconditions: [first, last) denotes a range.
2 Effects: Increments first until last is reached and returns the number of increments.
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template<class I, sized_sentinel_for<decay_t<I>> S>
constexpr iter_difference_t<decay_t<I>> ranges::distance(I&& first, S last);

3 Effects: Equivalent to: return last - static_cast<const decay_t<I>&>(first);

template<range R>
constexpr range_difference_t<R> ranges::distance(R&& r);

4 Effects: If R models sized_range, equivalent to:
return static_cast<range_difference_t<R>>(ranges::size(r)); // 26.3.10

Otherwise, equivalent to:
return ranges::distance(ranges::begin(r), ranges::end(r)); // 26.3

25.4.4.4 ranges::next [range.iter.op.next]

template<input_or_output_iterator I>
constexpr I ranges::next(I x);

1 Effects: Equivalent to: ++x; return x;

template<input_or_output_iterator I>
constexpr I ranges::next(I x, iter_difference_t<I> n);

2 Effects: Equivalent to: ranges::advance(x, n); return x;

template<input_or_output_iterator I, sentinel_for<I> S>
constexpr I ranges::next(I x, S bound);

3 Effects: Equivalent to: ranges::advance(x, bound); return x;

template<input_or_output_iterator I, sentinel_for<I> S>
constexpr I ranges::next(I x, iter_difference_t<I> n, S bound);

4 Effects: Equivalent to: ranges::advance(x, n, bound); return x;

25.4.4.5 ranges::prev [range.iter.op.prev]

template<bidirectional_iterator I>
constexpr I ranges::prev(I x);

1 Effects: Equivalent to: --x; return x;

template<bidirectional_iterator I>
constexpr I ranges::prev(I x, iter_difference_t<I> n);

2 Effects: Equivalent to: ranges::advance(x, -n); return x;

template<bidirectional_iterator I>
constexpr I ranges::prev(I x, iter_difference_t<I> n, I bound);

3 Effects: Equivalent to: ranges::advance(x, -n, bound); return x;

25.5 Iterator adaptors [predef.iterators]
25.5.1 Reverse iterators [reverse.iterators]
25.5.1.1 General [reverse.iterators.general]

1 Class template reverse_iterator is an iterator adaptor that iterates from the end of the sequence defined
by its underlying iterator to the beginning of that sequence.

25.5.1.2 Class template reverse_iterator [reverse.iterator]
namespace std {

template<class Iterator>
class reverse_iterator {
public:

using iterator_type = Iterator;
using iterator_concept = see below ;
using iterator_category = see below ;
using value_type = iter_value_t<Iterator>;
using difference_type = iter_difference_t<Iterator>;
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using pointer = typename iterator_traits<Iterator>::pointer;
using reference = iter_reference_t<Iterator>;

constexpr reverse_iterator();
constexpr explicit reverse_iterator(Iterator x);
template<class U> constexpr reverse_iterator(const reverse_iterator<U>& u);
template<class U> constexpr reverse_iterator& operator=(const reverse_iterator<U>& u);

constexpr Iterator base() const;
constexpr reference operator*() const;
constexpr pointer operator->() const requires see below ;

constexpr reverse_iterator& operator++();
constexpr reverse_iterator operator++(int);
constexpr reverse_iterator& operator--();
constexpr reverse_iterator operator--(int);

constexpr reverse_iterator operator+ (difference_type n) const;
constexpr reverse_iterator& operator+=(difference_type n);
constexpr reverse_iterator operator- (difference_type n) const;
constexpr reverse_iterator& operator-=(difference_type n);
constexpr unspecified operator[](difference_type n) const;

friend constexpr iter_rvalue_reference_t<Iterator>
iter_move(const reverse_iterator& i) noexcept(see below );

template<indirectly_swappable<Iterator> Iterator2>
friend constexpr void

iter_swap(const reverse_iterator& x,
const reverse_iterator<Iterator2>& y) noexcept(see below );

protected:
Iterator current;

};
}

1 The member typedef-name iterator_concept denotes
—(1.1) random_access_iterator_tag if Iterator models random_access_iterator, and
—(1.2) bidirectional_iterator_tag otherwise.

2 The member typedef-name iterator_category denotes
—(2.1) random_access_iterator_tag if the type iterator_traits<Iterator>::iterator_category mod-

els derived_from<random_access_iterator_tag>, and
—(2.2) iterator_traits<Iterator>::iterator_category otherwise.

25.5.1.3 Requirements [reverse.iter.requirements]
1 The template parameter Iterator shall either meet the requirements of a Cpp17BidirectionalIterator (25.3.5.6)

or model bidirectional_iterator (25.3.4.12).
2 Additionally, Iterator shall either meet the requirements of a Cpp17RandomAccessIterator (25.3.5.7) or

model random_access_iterator (25.3.4.13) if the definitions of any of the members
—(2.1) operator+, operator-, operator+=, operator-= (25.5.1.7), or
—(2.2) operator[] (25.5.1.6),

or the non-member operators (25.5.1.8)
—(2.3) operator<, operator>, operator<=, operator>=, operator-, or operator+ (25.5.1.9)

are instantiated (13.9.2).

25.5.1.4 Construction and assignment [reverse.iter.cons]

constexpr reverse_iterator();

1 Effects: Value-initializes current. Iterator operations applied to the resulting iterator have defined

§ 25.5.1.4 1088



© ISO/IEC N4950

behavior if and only if the corresponding operations are defined on a value-initialized iterator of type
Iterator.

constexpr explicit reverse_iterator(Iterator x);

2 Effects: Initializes current with x.

template<class U> constexpr reverse_iterator(const reverse_iterator<U>& u);

3 Constraints: is_same_v<U, Iterator> is false and const U& models convertible_to<Iterator>.
4 Effects: Initializes current with u.current.

template<class U>
constexpr reverse_iterator&

operator=(const reverse_iterator<U>& u);

5 Constraints: is_same_v<U, Iterator> is false, const U& models convertible_to<Iterator>, and
assignable_from<Iterator&, const U&> is modeled.

6 Effects: Assigns u.current to current.
7 Returns: *this.

25.5.1.5 Conversion [reverse.iter.conv]

constexpr Iterator base() const;

1 Returns: current.

25.5.1.6 Element access [reverse.iter.elem]

constexpr reference operator*() const;

1 Effects: As if by:
Iterator tmp = current;
return *--tmp;

constexpr pointer operator->() const
requires (is_pointer_v<Iterator> ||

requires(const Iterator i) { i.operator->(); });

2 Effects:
—(2.1) If Iterator is a pointer type, equivalent to: return prev(current);
—(2.2) Otherwise, equivalent to: return prev(current).operator->();

constexpr unspecified operator[](difference_type n) const;

3 Returns: current[-n-1].

25.5.1.7 Navigation [reverse.iter.nav]

constexpr reverse_iterator operator+(difference_type n) const;

1 Returns: reverse_iterator(current-n).

constexpr reverse_iterator operator-(difference_type n) const;

2 Returns: reverse_iterator(current+n).

constexpr reverse_iterator& operator++();

3 Effects: As if by: --current;
4 Returns: *this.

constexpr reverse_iterator operator++(int);

5 Effects: As if by:
reverse_iterator tmp = *this;
--current;
return tmp;
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constexpr reverse_iterator& operator--();

6 Effects: As if by ++current.
7 Returns: *this.

constexpr reverse_iterator operator--(int);

8 Effects: As if by:
reverse_iterator tmp = *this;
++current;
return tmp;

constexpr reverse_iterator& operator+=(difference_type n);

9 Effects: As if by: current -= n;
10 Returns: *this.

constexpr reverse_iterator& operator-=(difference_type n);

11 Effects: As if by: current += n;
12 Returns: *this.

25.5.1.8 Comparisons [reverse.iter.cmp]

template<class Iterator1, class Iterator2>
constexpr bool operator==(

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

1 Constraints: x.base() == y.base() is well-formed and convertible to bool.
2 Returns: x.base() == y.base().

template<class Iterator1, class Iterator2>
constexpr bool operator!=(

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

3 Constraints: x.base() != y.base() is well-formed and convertible to bool.
4 Returns: x.base() != y.base().

template<class Iterator1, class Iterator2>
constexpr bool operator<(

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

5 Constraints: x.base() > y.base() is well-formed and convertible to bool.
6 Returns: x.base() > y.base().

template<class Iterator1, class Iterator2>
constexpr bool operator>(

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

7 Constraints: x.base() < y.base() is well-formed and convertible to bool.
8 Returns: x.base() < y.base().

template<class Iterator1, class Iterator2>
constexpr bool operator<=(

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

9 Constraints: x.base() >= y.base() is well-formed and convertible to bool.
10 Returns: x.base() >= y.base().
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template<class Iterator1, class Iterator2>
constexpr bool operator>=(

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

11 Constraints: x.base() <= y.base() is well-formed and convertible to bool.
12 Returns: x.base() <= y.base().

template<class Iterator1, three_way_comparable_with<Iterator1> Iterator2>
constexpr compare_three_way_result_t<Iterator1, Iterator2>

operator<=>(const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y);

13 Returns: y.base() <=> x.base().
14 [Note 1 : The argument order in the Returns: element is reversed because this is a reverse iterator. — end note ]

25.5.1.9 Non-member functions [reverse.iter.nonmember]

template<class Iterator1, class Iterator2>
constexpr auto operator-(

const reverse_iterator<Iterator1>& x,
const reverse_iterator<Iterator2>& y) -> decltype(y.base() - x.base());

1 Returns: y.base() - x.base().

template<class Iterator>
constexpr reverse_iterator<Iterator> operator+(

iter_difference_t<Iterator> n,
const reverse_iterator<Iterator>& x);

2 Returns: reverse_iterator<Iterator>(x.base() - n).

friend constexpr iter_rvalue_reference_t<Iterator>
iter_move(const reverse_iterator& i) noexcept(see below );

3 Effects: Equivalent to:
auto tmp = i.base();
return ranges::iter_move(--tmp);

4 Remarks: The exception specification is equivalent to:
is_nothrow_copy_constructible_v<Iterator> &&
noexcept(ranges::iter_move(--declval<Iterator&>()))

template<indirectly_swappable<Iterator> Iterator2>
friend constexpr void

iter_swap(const reverse_iterator& x,
const reverse_iterator<Iterator2>& y) noexcept(see below );

5 Effects: Equivalent to:
auto xtmp = x.base();
auto ytmp = y.base();
ranges::iter_swap(--xtmp, --ytmp);

6 Remarks: The exception specification is equivalent to:
is_nothrow_copy_constructible_v<Iterator> &&
is_nothrow_copy_constructible_v<Iterator2> &&
noexcept(ranges::iter_swap(--declval<Iterator&>(), --declval<Iterator2&>()))

template<class Iterator>
constexpr reverse_iterator<Iterator> make_reverse_iterator(Iterator i);

7 Returns: reverse_iterator<Iterator>(i).

25.5.2 Insert iterators [insert.iterators]
25.5.2.1 General [insert.iterators.general]

1 To make it possible to deal with insertion in the same way as writing into an array, a special kind of iterator
adaptors, called insert iterators, are provided in the library. With regular iterator classes,
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while (first != last) *result++ = *first++;

causes a range [first, last) to be copied into a range starting with result. The same code with result
being an insert iterator will insert corresponding elements into the container. This device allows all of the
copying algorithms in the library to work in the insert mode instead of the regular overwrite mode.

2 An insert iterator is constructed from a container and possibly one of its iterators pointing to where
insertion takes place if it is neither at the beginning nor at the end of the container. Insert iterators
meet the requirements of output iterators. operator* returns the insert iterator itself. The assignment
operator=(const T& x) is defined on insert iterators to allow writing into them, it inserts x right before
where the insert iterator is pointing. In other words, an insert iterator is like a cursor pointing into the
container where the insertion takes place. back_insert_iterator inserts elements at the end of a container,
front_insert_iterator inserts elements at the beginning of a container, and insert_iterator inserts
elements where the iterator points to in a container. back_inserter, front_inserter, and inserter are
three functions making the insert iterators out of a container.

25.5.2.2 Class template back_insert_iterator [back.insert.iterator]
namespace std {

template<class Container>
class back_insert_iterator {
protected:

Container* container;

public:
using iterator_category = output_iterator_tag;
using value_type = void;
using difference_type = ptrdiff_t;
using pointer = void;
using reference = void;
using container_type = Container;

constexpr explicit back_insert_iterator(Container& x);
constexpr back_insert_iterator& operator=(const typename Container::value_type& value);
constexpr back_insert_iterator& operator=(typename Container::value_type&& value);

constexpr back_insert_iterator& operator*();
constexpr back_insert_iterator& operator++();
constexpr back_insert_iterator operator++(int);

};
}

25.5.2.2.1 Operations [back.insert.iter.ops]

constexpr explicit back_insert_iterator(Container& x);

1 Effects: Initializes container with addressof(x).

constexpr back_insert_iterator& operator=(const typename Container::value_type& value);

2 Effects: As if by: container->push_back(value);
3 Returns: *this.

constexpr back_insert_iterator& operator=(typename Container::value_type&& value);

4 Effects: As if by: container->push_back(std::move(value));
5 Returns: *this.

constexpr back_insert_iterator& operator*();

6 Returns: *this.

constexpr back_insert_iterator& operator++();
constexpr back_insert_iterator operator++(int);

7 Returns: *this.
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25.5.2.2.2 back_inserter [back.inserter]

template<class Container>
constexpr back_insert_iterator<Container> back_inserter(Container& x);

1 Returns: back_insert_iterator<Container>(x).

25.5.2.3 Class template front_insert_iterator [front.insert.iterator]
namespace std {

template<class Container>
class front_insert_iterator {
protected:

Container* container;

public:
using iterator_category = output_iterator_tag;
using value_type = void;
using difference_type = ptrdiff_t;
using pointer = void;
using reference = void;
using container_type = Container;

constexpr explicit front_insert_iterator(Container& x);
constexpr front_insert_iterator& operator=(const typename Container::value_type& value);
constexpr front_insert_iterator& operator=(typename Container::value_type&& value);

constexpr front_insert_iterator& operator*();
constexpr front_insert_iterator& operator++();
constexpr front_insert_iterator operator++(int);

};
}

25.5.2.3.1 Operations [front.insert.iter.ops]

constexpr explicit front_insert_iterator(Container& x);

1 Effects: Initializes container with addressof(x).

constexpr front_insert_iterator& operator=(const typename Container::value_type& value);

2 Effects: As if by: container->push_front(value);
3 Returns: *this.

constexpr front_insert_iterator& operator=(typename Container::value_type&& value);

4 Effects: As if by: container->push_front(std::move(value));
5 Returns: *this.

constexpr front_insert_iterator& operator*();

6 Returns: *this.

constexpr front_insert_iterator& operator++();
constexpr front_insert_iterator operator++(int);

7 Returns: *this.

25.5.2.3.2 front_inserter [front.inserter]

template<class Container>
constexpr front_insert_iterator<Container> front_inserter(Container& x);

1 Returns: front_insert_iterator<Container>(x).
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25.5.2.4 Class template insert_iterator [insert.iterator]
namespace std {

template<class Container>
class insert_iterator {
protected:

Container* container;
ranges::iterator_t<Container> iter;

public:
using iterator_category = output_iterator_tag;
using value_type = void;
using difference_type = ptrdiff_t;
using pointer = void;
using reference = void;
using container_type = Container;

constexpr insert_iterator(Container& x, ranges::iterator_t<Container> i);
constexpr insert_iterator& operator=(const typename Container::value_type& value);
constexpr insert_iterator& operator=(typename Container::value_type&& value);

constexpr insert_iterator& operator*();
constexpr insert_iterator& operator++();
constexpr insert_iterator& operator++(int);

};
}

25.5.2.4.1 Operations [insert.iter.ops]

constexpr insert_iterator(Container& x, ranges::iterator_t<Container> i);

1 Effects: Initializes container with addressof(x) and iter with i.

constexpr insert_iterator& operator=(const typename Container::value_type& value);

2 Effects: As if by:
iter = container->insert(iter, value);
++iter;

3 Returns: *this.

constexpr insert_iterator& operator=(typename Container::value_type&& value);

4 Effects: As if by:
iter = container->insert(iter, std::move(value));
++iter;

5 Returns: *this.

constexpr insert_iterator& operator*();

6 Returns: *this.

constexpr insert_iterator& operator++();
constexpr insert_iterator& operator++(int);

7 Returns: *this.

25.5.2.4.2 inserter [inserter]

template<class Container>
constexpr insert_iterator<Container>

inserter(Container& x, ranges::iterator_t<Container> i);

1 Returns: insert_iterator<Container>(x, i).
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25.5.3 Constant iterators and sentinels [const.iterators]
25.5.3.1 General [const.iterators.general]

1 Class template basic_const_iterator is an iterator adaptor with the same behavior as the underlying
iterator except that its indirection operator implicitly converts the value returned by the underlying iterator’s
indirection operator to a type such that the adapted iterator is a constant iterator (25.3). Some generic
algorithms can be called with constant iterators to avoid mutation.

2 Specializations of basic_const_iterator are constant iterators.

25.5.3.2 Alias templates [const.iterators.alias]

template<indirectly_readable It>
using iter_const_reference_t =

common_reference_t<const iter_value_t<It>&&, iter_reference_t<It>>;

template<class It>
concept constant-iterator = // exposition only

input_iterator<It> && same_as<iter_const_reference_t<It>, iter_reference_t<It>>;

template<input_iterator I>
using const_iterator = see below ;

1 Result: If I models constant-iterator , I. Otherwise, basic_const_iterator<I>.

template<semiregular S>
using const_sentinel = see below ;

2 Result: If S models input_iterator, const_iterator<S>. Otherwise, S.

25.5.3.3 Class template basic_const_iterator [const.iterators.iterator]
namespace std {

template<class I>
concept not-a-const-iterator = see below ; // exposition only

template<indirectly_readable I>
using iter-const-rvalue-reference-t = // exposition only

common_reference_t<const iter_value_t<I>&&, iter_rvalue_reference_t<I>>;

template<input_iterator Iterator>
class basic_const_iterator {

Iterator current_ = Iterator(); // exposition only
using reference = iter_const_reference_t<Iterator>; // exposition only
using rvalue-reference = // exposition only

iter-const-rvalue-reference-t <Iterator>;

public:
using iterator_concept = see below ;
using iterator_category = see below ; // not always present
using value_type = iter_value_t<Iterator>;
using difference_type = iter_difference_t<Iterator>;

basic_const_iterator() requires default_initializable<Iterator> = default;
constexpr basic_const_iterator(Iterator current);
template<convertible_to<Iterator> U>

constexpr basic_const_iterator(basic_const_iterator<U> current);
template<different-from <basic_const_iterator> T>

requires convertible_to<T, Iterator>
constexpr basic_const_iterator(T&& current);

constexpr const Iterator& base() const & noexcept;
constexpr Iterator base() &&;

constexpr reference operator*() const;
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constexpr const auto* operator->() const
requires is_lvalue_reference_v<iter_reference_t<Iterator>> &&

same_as<remove_cvref_t<iter_reference_t<Iterator>>, value_type>;

constexpr basic_const_iterator& operator++();
constexpr void operator++(int);
constexpr basic_const_iterator operator++(int) requires forward_iterator<Iterator>;

constexpr basic_const_iterator& operator--() requires bidirectional_iterator<Iterator>;
constexpr basic_const_iterator operator--(int) requires bidirectional_iterator<Iterator>;

constexpr basic_const_iterator& operator+=(difference_type n)
requires random_access_iterator<Iterator>;

constexpr basic_const_iterator& operator-=(difference_type n)
requires random_access_iterator<Iterator>;

constexpr reference operator[](difference_type n) const
requires random_access_iterator<Iterator>;

template<sentinel_for<Iterator> S>
constexpr bool operator==(const S& s) const;

constexpr bool operator<(const basic_const_iterator& y) const
requires random_access_iterator<Iterator>;

constexpr bool operator>(const basic_const_iterator& y) const
requires random_access_iterator<Iterator>;

constexpr bool operator<=(const basic_const_iterator& y) const
requires random_access_iterator<Iterator>;

constexpr bool operator>=(const basic_const_iterator& y) const
requires random_access_iterator<Iterator>;

constexpr auto operator<=>(const basic_const_iterator& y) const
requires random_access_iterator<Iterator> && three_way_comparable<Iterator>;

template<different-from <basic_const_iterator> I>
constexpr bool operator<(const I& y) const

requires random_access_iterator<Iterator> && totally_ordered_with<Iterator, I>;
template<different-from <basic_const_iterator> I>

constexpr bool operator>(const I& y) const
requires random_access_iterator<Iterator> && totally_ordered_with<Iterator, I>;

template<different-from <basic_const_iterator> I>
constexpr bool operator<=(const I& y) const

requires random_access_iterator<Iterator> && totally_ordered_with<Iterator, I>;
template<different-from <basic_const_iterator> I>

constexpr bool operator>=(const I& y) const
requires random_access_iterator<Iterator> && totally_ordered_with<Iterator, I>;

template<different-from <basic_const_iterator> I>
constexpr auto operator<=>(const I& y) const

requires random_access_iterator<Iterator> && totally_ordered_with<Iterator, I> &&
three_way_comparable_with<Iterator, I>;

template<not-a-const-iterator I>
friend constexpr bool operator<(const I& x, const basic_const_iterator& y)

requires random_access_iterator<Iterator> && totally_ordered_with<Iterator, I>;
template<not-a-const-iterator I>

friend constexpr bool operator>(const I& x, const basic_const_iterator& y)
requires random_access_iterator<Iterator> && totally_ordered_with<Iterator, I>;

template<not-a-const-iterator I>
friend constexpr bool operator<=(const I& x, const basic_const_iterator& y)

requires random_access_iterator<Iterator> && totally_ordered_with<Iterator, I>;
template<not-a-const-iterator I>

friend constexpr bool operator>=(const I& x, const basic_const_iterator& y)
requires random_access_iterator<Iterator> && totally_ordered_with<Iterator, I>;
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friend constexpr basic_const_iterator operator+(const basic_const_iterator& i,
difference_type n)

requires random_access_iterator<Iterator>;
friend constexpr basic_const_iterator operator+(difference_type n,

const basic_const_iterator& i)
requires random_access_iterator<Iterator>;

friend constexpr basic_const_iterator operator-(const basic_const_iterator& i,
difference_type n)

requires random_access_iterator<Iterator>;
template<sized_sentinel_for<Iterator> S>

constexpr difference_type operator-(const S& y) const;
template<not-a-const-iterator S>

requires sized_sentinel_for<S, Iterator>
friend constexpr difference_type operator-(const S& x, const basic_const_iterator& y);

friend constexpr rvalue-reference iter_move(const basic_const_iterator& i)
noexcept(noexcept(static_cast<rvalue-reference >(ranges::iter_move(i.current_))))
{

return static_cast<rvalue-reference >(ranges::iter_move(i.current_));
}

};
}

1 Given some type I, the concept not-a-const-iterator is defined as false if I is a specialization of
basic_const_iterator and true otherwise.

25.5.3.4 Member types [const.iterators.types]
1 basic_const_iterator<Iterator>::iterator_concept is defined as follows:

—(1.1) If Iterator models contiguous_iterator, then iterator_concept denotes contiguous_iterator_-
tag.

—(1.2) Otherwise, if Iterator models random_access_iterator, then iterator_concept denotes random_-
access_iterator_tag.

—(1.3) Otherwise, if Iterator models bidirectional_iterator, then iterator_concept denotes bidirec-
tional_iterator_tag.

—(1.4) Otherwise, if Iterator models forward_iterator, then iterator_concept denotes forward_itera-
tor_tag.

—(1.5) Otherwise, iterator_concept denotes input_iterator_tag.
2 The member typedef-name iterator_category is defined if and only if Iterator models forward_iterator.

In that case, basic_const_iterator<Iterator>::iterator_category denotes the type iterator_traits<
Iterator>::iterator_category.

25.5.3.5 Operations [const.iterators.ops]

constexpr basic_const_iterator(Iterator current);

1 Effects: Initializes current_ with std::move(current).

template<convertible_to<Iterator> U>
constexpr basic_const_iterator(basic_const_iterator<U> current);

2 Effects: Initializes current_ with std::move(current.current_).

template<different-from <basic_const_iterator> T>
requires convertible_to<T, Iterator>
constexpr basic_const_iterator(T&& current);

3 Effects: Initializes current_ with std::forward<T>(current).

constexpr const Iterator& base() const & noexcept;

4 Effects: Equivalent to: return current_;

constexpr Iterator base() &&;

5 Effects: Equivalent to: return std::move(current_);
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constexpr reference operator*() const;

6 Effects: Equivalent to: return static_cast<reference >(*current_);

constexpr const auto* operator->() const
requires is_lvalue_reference_v<iter_reference_t<Iterator>> &&

same_as<remove_cvref_t<iter_reference_t<Iterator>>, value_type>;

7 Returns: If Iterator models contiguous_iterator, to_address(current_); otherwise, address-
of(*current_).

constexpr basic_const_iterator& operator++();

8 Effects: Equivalent to:
++current_;
return *this;

constexpr void operator++(int);

9 Effects: Equivalent to: ++current_;

constexpr basic_const_iterator operator++(int) requires forward_iterator<Iterator>;

10 Effects: Equivalent to:
auto tmp = *this;
++*this;
return tmp;

constexpr basic_const_iterator& operator--() requires bidirectional_iterator<Iterator>;

11 Effects: Equivalent to:
--current_;
return *this;

constexpr basic_const_iterator operator--(int) requires bidirectional_iterator<Iterator>;

12 Effects: Equivalent to:
auto tmp = *this;
--*this;
return tmp;

constexpr basic_const_iterator& operator+=(difference_type n)
requires random_access_iterator<Iterator>;

constexpr basic_const_iterator& operator-=(difference_type n)
requires random_access_iterator<Iterator>;

13 Let op be the operator.
14 Effects: Equivalent to:

current_ op n;
return *this;

constexpr reference operator[](difference_type n) const requires random_access_iterator<Iterator>

15 Effects: Equivalent to: return static_cast<reference >(current_[n]);

template<sentinel_for<Iterator> S>
constexpr bool operator==(const S& s) const;

16 Effects: Equivalent to: return current_ == s;

constexpr bool operator<(const basic_const_iterator& y) const
requires random_access_iterator<Iterator>;

constexpr bool operator>(const basic_const_iterator& y) const
requires random_access_iterator<Iterator>;

constexpr bool operator<=(const basic_const_iterator& y) const
requires random_access_iterator<Iterator>;

constexpr bool operator>=(const basic_const_iterator& y) const
requires random_access_iterator<Iterator>;
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constexpr auto operator<=>(const basic_const_iterator& y) const
requires random_access_iterator<Iterator> && three_way_comparable<Iterator>;

17 Let op be the operator.
18 Effects: Equivalent to: return current_ op y.current_;

template<different-from <basic_const_iterator> I>
constexpr bool operator<(const I& y) const

requires random_access_iterator<Iterator> && totally_ordered_with<Iterator, I>;
template<different-from <basic_const_iterator> I>

constexpr bool operator>(const I& y) const
requires random_access_iterator<Iterator> && totally_ordered_with<Iterator, I>;

template<different-from <basic_const_iterator> I>
constexpr bool operator<=(const I& y) const

requires random_access_iterator<Iterator> && totally_ordered_with<Iterator, I>;
template<different-from <basic_const_iterator> I>

constexpr bool operator>=(const I& y) const
requires random_access_iterator<Iterator> && totally_ordered_with<Iterator, I>;

template<different-from <basic_const_iterator> I>
constexpr auto operator<=>(const I& y) const

requires random_access_iterator<Iterator> && totally_ordered_with<Iterator, I> &&
three_way_comparable_with<Iterator, I>;

19 Let op be the operator.
20 Effects: Equivalent to: return current_ op y;

template<not-a-const-iterator I>
friend constexpr bool operator<(const I& x, const basic_const_iterator& y)

requires random_access_iterator<Iterator> && totally_ordered_with<Iterator, I>;
template<not-a-const-iterator I>

friend constexpr bool operator>(const I& x, const basic_const_iterator& y)
requires random_access_iterator<Iterator> && totally_ordered_with<Iterator, I>;

template<not-a-const-iterator I>
friend constexpr bool operator<=(const I& x, const basic_const_iterator& y)

requires random_access_iterator<Iterator> && totally_ordered_with<Iterator, I>;
template<not-a-const-iterator I>

friend constexpr bool operator>=(const I& x, const basic_const_iterator& y)
requires random_access_iterator<Iterator> && totally_ordered_with<Iterator, I>;

Let op be the operator.
21 Returns: Equivalent to: return x op y.current_;

friend constexpr basic_const_iterator operator+(const basic_const_iterator& i, difference_type n)
requires random_access_iterator<Iterator>;

friend constexpr basic_const_iterator operator+(difference_type n, const basic_const_iterator& i)
requires random_access_iterator<Iterator>;

22 Effects: Equivalent to: return basic_const_iterator(i.current_ + n);

friend constexpr basic_const_iterator operator-(const basic_const_iterator& i, difference_type n)
requires random_access_iterator<Iterator>;

23 Effects: Equivalent to: return basic_const_iterator(i.current_ - n);

template<sized_sentinel_for<Iterator> S>
constexpr difference_type operator-(const S& y) const;

24 Effects: Equivalent to: return current_ - y;

template<not-a-const-iterator S>
requires sized_sentinel_for<S, Iterator>
friend constexpr difference_type operator-(const S& x, const basic_const_iterator& y);

25 Effects: Equivalent to: return x - y.current_;
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25.5.4 Move iterators and sentinels [move.iterators]
25.5.4.1 General [move.iterators.general]

1 Class template move_iterator is an iterator adaptor with the same behavior as the underlying iterator except
that its indirection operator implicitly converts the value returned by the underlying iterator’s indirection
operator to an rvalue. Some generic algorithms can be called with move iterators to replace copying with
moving.

2 [Example 1 :
list<string> s;
// populate the list s
vector<string> v1(s.begin(), s.end()); // copies strings into v1
vector<string> v2(make_move_iterator(s.begin()),

make_move_iterator(s.end())); // moves strings into v2

— end example ]

25.5.4.2 Class template move_iterator [move.iterator]
namespace std {

template<class Iterator>
class move_iterator {
public:

using iterator_type = Iterator;
using iterator_concept = see below ;
using iterator_category = see below ; // not always present
using value_type = iter_value_t<Iterator>;
using difference_type = iter_difference_t<Iterator>;
using pointer = Iterator;
using reference = iter_rvalue_reference_t<Iterator>;

constexpr move_iterator();
constexpr explicit move_iterator(Iterator i);
template<class U> constexpr move_iterator(const move_iterator<U>& u);
template<class U> constexpr move_iterator& operator=(const move_iterator<U>& u);

constexpr const Iterator& base() const & noexcept;
constexpr Iterator base() &&;
constexpr reference operator*() const;

constexpr move_iterator& operator++();
constexpr auto operator++(int);
constexpr move_iterator& operator--();
constexpr move_iterator operator--(int);

constexpr move_iterator operator+(difference_type n) const;
constexpr move_iterator& operator+=(difference_type n);
constexpr move_iterator operator-(difference_type n) const;
constexpr move_iterator& operator-=(difference_type n);
constexpr reference operator[](difference_type n) const;

template<sentinel_for<Iterator> S>
friend constexpr bool

operator==(const move_iterator& x, const move_sentinel<S>& y);
template<sized_sentinel_for<Iterator> S>

friend constexpr iter_difference_t<Iterator>
operator-(const move_sentinel<S>& x, const move_iterator& y);

template<sized_sentinel_for<Iterator> S>
friend constexpr iter_difference_t<Iterator>

operator-(const move_iterator& x, const move_sentinel<S>& y);
friend constexpr iter_rvalue_reference_t<Iterator>

iter_move(const move_iterator& i)
noexcept(noexcept(ranges::iter_move(i.current)));
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template<indirectly_swappable<Iterator> Iterator2>
friend constexpr void

iter_swap(const move_iterator& x, const move_iterator<Iterator2>& y)
noexcept(noexcept(ranges::iter_swap(x.current, y.current)));

private:
Iterator current; // exposition only

};
}

1 The member typedef-name iterator_concept is defined as follows:
—(1.1) If Iterator models random_access_iterator, then iterator_concept denotes random_access_-

iterator_tag.
—(1.2) Otherwise, if Iterator models bidirectional_iterator, then iterator_concept denotes bidirec-

tional_iterator_tag.
—(1.3) Otherwise, if Iterator models forward_iterator, then iterator_concept denotes forward_itera-

tor_tag.
—(1.4) Otherwise, iterator_concept denotes input_iterator_tag.

2 The member typedef-name iterator_category is defined if and only if the qualified-id iterator_traits<It-
erator>::iterator_category is valid and denotes a type. In that case, iterator_category denotes

—(2.1) random_access_iterator_tag if the type iterator_traits<Iterator>::iterator_category mod-
els derived_from<random_access_iterator_tag>, and

—(2.2) iterator_traits<Iterator>::iterator_category otherwise.

25.5.4.3 Requirements [move.iter.requirements]
1 The template parameter Iterator shall either meet the Cpp17InputIterator requirements (25.3.5.3) or model

input_iterator (25.3.4.9). Additionally, if any of the bidirectional traversal functions are instantiated,
the template parameter shall either meet the Cpp17BidirectionalIterator requirements (25.3.5.6) or model
bidirectional_iterator (25.3.4.12). If any of the random access traversal functions are instantiated, the
template parameter shall either meet the Cpp17RandomAccessIterator requirements (25.3.5.7) or model
random_access_iterator (25.3.4.13).

25.5.4.4 Construction and assignment [move.iter.cons]

constexpr move_iterator();

1 Effects: Value-initializes current.

constexpr explicit move_iterator(Iterator i);

2 Effects: Initializes current with std::move(i).

template<class U> constexpr move_iterator(const move_iterator<U>& u);

3 Constraints: is_same_v<U, Iterator> is false and const U& models convertible_to<Iterator>.
4 Effects: Initializes current with u.current.

template<class U> constexpr move_iterator& operator=(const move_iterator<U>& u);

5 Constraints: is_same_v<U, Iterator> is false, const U& models convertible_to<Iterator>, and
assignable_from<Iterator&, const U&> is modeled.

6 Effects: Assigns u.current to current.
7 Returns: *this.

25.5.4.5 Conversion [move.iter.op.conv]

constexpr const Iterator& base() const & noexcept;

1 Returns: current.

constexpr Iterator base() &&;

2 Returns: std::move(current).

§ 25.5.4.5 1101



© ISO/IEC N4950

25.5.4.6 Element access [move.iter.elem]

constexpr reference operator*() const;

1 Effects: Equivalent to: return ranges::iter_move(current);

constexpr reference operator[](difference_type n) const;

2 Effects: Equivalent to: return ranges::iter_move(current + n);

25.5.4.7 Navigation [move.iter.nav]

constexpr move_iterator& operator++();

1 Effects: As if by ++current.
2 Returns: *this.

constexpr auto operator++(int);

3 Effects: If Iterator models forward_iterator, equivalent to:
move_iterator tmp = *this;
++current;
return tmp;

Otherwise, equivalent to ++current.

constexpr move_iterator& operator--();

4 Effects: As if by --current.
5 Returns: *this.

constexpr move_iterator operator--(int);

6 Effects: As if by:
move_iterator tmp = *this;
--current;
return tmp;

constexpr move_iterator operator+(difference_type n) const;

7 Returns: move_iterator(current + n).

constexpr move_iterator& operator+=(difference_type n);

8 Effects: As if by: current += n;
9 Returns: *this.

constexpr move_iterator operator-(difference_type n) const;

10 Returns: move_iterator(current - n).

constexpr move_iterator& operator-=(difference_type n);

11 Effects: As if by: current -= n;
12 Returns: *this.

25.5.4.8 Comparisons [move.iter.op.comp]

template<class Iterator1, class Iterator2>
constexpr bool operator==(const move_iterator<Iterator1>& x,

const move_iterator<Iterator2>& y);
template<sentinel_for<Iterator> S>

friend constexpr bool operator==(const move_iterator& x,
const move_sentinel<S>& y);

1 Constraints: x.base() == y.base() is well-formed and convertible to bool.
2 Returns: x.base() == y.base().
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template<class Iterator1, class Iterator2>
constexpr bool operator<(const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y);

3 Constraints: x.base() < y.base() is well-formed and convertible to bool.
4 Returns: x.base() < y.base().

template<class Iterator1, class Iterator2>
constexpr bool operator>(const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y);

5 Constraints: y.base() < x.base() is well-formed and convertible to bool.
6 Returns: y < x.

template<class Iterator1, class Iterator2>
constexpr bool operator<=(const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y);

7 Constraints: y.base() < x.base() is well-formed and convertible to bool.
8 Returns: !(y < x).

template<class Iterator1, class Iterator2>
constexpr bool operator>=(const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y);

9 Constraints: x.base() < y.base() is well-formed and convertible to bool.
10 Returns: !(x < y).

template<class Iterator1, three_way_comparable_with<Iterator1> Iterator2>
constexpr compare_three_way_result_t<Iterator1, Iterator2>

operator<=>(const move_iterator<Iterator1>& x,
const move_iterator<Iterator2>& y);

11 Returns: x.base() <=> y.base().

25.5.4.9 Non-member functions [move.iter.nonmember]

template<class Iterator1, class Iterator2>
constexpr auto operator-(

const move_iterator<Iterator1>& x, const move_iterator<Iterator2>& y)
-> decltype(x.base() - y.base());

template<sized_sentinel_for<Iterator> S>
friend constexpr iter_difference_t<Iterator>

operator-(const move_sentinel<S>& x, const move_iterator& y);
template<sized_sentinel_for<Iterator> S>

friend constexpr iter_difference_t<Iterator>
operator-(const move_iterator& x, const move_sentinel<S>& y);

1 Returns: x.base() - y.base().

template<class Iterator>
constexpr move_iterator<Iterator>

operator+(iter_difference_t<Iterator> n, const move_iterator<Iterator>& x);

2 Constraints: x.base() + n is well-formed and has type Iterator.
3 Returns: x + n.

friend constexpr iter_rvalue_reference_t<Iterator>
iter_move(const move_iterator& i)

noexcept(noexcept(ranges::iter_move(i.current)));

4 Effects: Equivalent to: return ranges::iter_move(i.current);

template<indirectly_swappable<Iterator> Iterator2>
friend constexpr void

iter_swap(const move_iterator& x, const move_iterator<Iterator2>& y)
noexcept(noexcept(ranges::iter_swap(x.current, y.current)));

5 Effects: Equivalent to: ranges::iter_swap(x.current, y.current).
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template<class Iterator>
constexpr move_iterator<Iterator> make_move_iterator(Iterator i);

6 Returns: move_iterator<Iterator>(std::move(i)).

25.5.4.10 Class template move_sentinel [move.sentinel]
1 Class template move_sentinel is a sentinel adaptor useful for denoting ranges together with move_iterator.

When an input iterator type I and sentinel type S model sentinel_for<S, I>, move_sentinel<S> and
move_iterator<I> model sentinel_for<move_sentinel<S>, move_iterator<I>> as well.

2 [Example 1 : A move_if algorithm is easily implemented with copy_if using move_iterator and move_sentinel:
template<input_iterator I, sentinel_for<I> S, weakly_incrementable O,

indirect_unary_predicate<I> Pred>
requires indirectly_movable<I, O>

void move_if(I first, S last, O out, Pred pred) {
ranges::copy_if(move_iterator<I>{std::move(first)}, move_sentinel<S>{last},

std::move(out), pred);
}

— end example ]
namespace std {

template<semiregular S>
class move_sentinel {
public:

constexpr move_sentinel();
constexpr explicit move_sentinel(S s);
template<class S2>

requires convertible_to<const S2&, S>
constexpr move_sentinel(const move_sentinel<S2>& s);

template<class S2>
requires assignable_from<S&, const S2&>

constexpr move_sentinel& operator=(const move_sentinel<S2>& s);

constexpr S base() const;

private:
S last; // exposition only

};
}

25.5.4.11 Operations [move.sent.ops]

constexpr move_sentinel();

1 Effects: Value-initializes last. If is_trivially_default_constructible_v<S> is true, then this
constructor is a constexpr constructor.

constexpr explicit move_sentinel(S s);

2 Effects: Initializes last with std::move(s).

template<class S2>
requires convertible_to<const S2&, S>

constexpr move_sentinel(const move_sentinel<S2>& s);

3 Effects: Initializes last with s.last.

template<class S2>
requires assignable_from<S&, const S2&>

constexpr move_sentinel& operator=(const move_sentinel<S2>& s);

4 Effects: Equivalent to: last = s.last; return *this;

constexpr S base() const;

5 Returns: last.
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25.5.5 Common iterators [iterators.common]
25.5.5.1 Class template common_iterator [common.iterator]

1 Class template common_iterator is an iterator/sentinel adaptor that is capable of representing a non-common
range of elements (where the types of the iterator and sentinel differ) as a common range (where they are the
same). It does this by holding either an iterator or a sentinel, and implementing the equality comparison
operators appropriately.

2 [Note 1 : The common_iterator type is useful for interfacing with legacy code that expects the begin and end of a
range to have the same type. — end note ]

3 [Example 1 :
template<class ForwardIterator>
void fun(ForwardIterator begin, ForwardIterator end);

list<int> s;
// populate the list s
using CI = common_iterator<counted_iterator<list<int>::iterator>, default_sentinel_t>;
// call fun on a range of 10 ints
fun(CI(counted_iterator(s.begin(), 10)), CI(default_sentinel));

— end example ]
namespace std {

template<input_or_output_iterator I, sentinel_for<I> S>
requires (!same_as<I, S> && copyable<I>)

class common_iterator {
public:

constexpr common_iterator() requires default_initializable<I> = default;
constexpr common_iterator(I i);
constexpr common_iterator(S s);
template<class I2, class S2>

requires convertible_to<const I2&, I> && convertible_to<const S2&, S>
constexpr common_iterator(const common_iterator<I2, S2>& x);

template<class I2, class S2>
requires convertible_to<const I2&, I> && convertible_to<const S2&, S> &&

assignable_from<I&, const I2&> && assignable_from<S&, const S2&>
constexpr common_iterator& operator=(const common_iterator<I2, S2>& x);

constexpr decltype(auto) operator*();
constexpr decltype(auto) operator*() const

requires dereferenceable <const I>;
constexpr auto operator->() const

requires see below ;

constexpr common_iterator& operator++();
constexpr decltype(auto) operator++(int);

template<class I2, sentinel_for<I> S2>
requires sentinel_for<S, I2>

friend constexpr bool operator==(
const common_iterator& x, const common_iterator<I2, S2>& y);

template<class I2, sentinel_for<I> S2>
requires sentinel_for<S, I2> && equality_comparable_with<I, I2>

friend constexpr bool operator==(
const common_iterator& x, const common_iterator<I2, S2>& y);

template<sized_sentinel_for<I> I2, sized_sentinel_for<I> S2>
requires sized_sentinel_for<S, I2>

friend constexpr iter_difference_t<I2> operator-(
const common_iterator& x, const common_iterator<I2, S2>& y);

friend constexpr iter_rvalue_reference_t<I> iter_move(const common_iterator& i)
noexcept(noexcept(ranges::iter_move(declval<const I&>())))

requires input_iterator<I>;
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template<indirectly_swappable<I> I2, class S2>
friend constexpr void iter_swap(const common_iterator& x, const common_iterator<I2, S2>& y)

noexcept(noexcept(ranges::iter_swap(declval<const I&>(), declval<const I2&>())));

private:
variant<I, S> v_; // exposition only

};

template<class I, class S>
struct incrementable_traits<common_iterator<I, S>> {

using difference_type = iter_difference_t<I>;
};

template<input_iterator I, class S>
struct iterator_traits<common_iterator<I, S>> {

using iterator_concept = see below ;
using iterator_category = see below ;
using value_type = iter_value_t<I>;
using difference_type = iter_difference_t<I>;
using pointer = see below ;
using reference = iter_reference_t<I>;

};
}

25.5.5.2 Associated types [common.iter.types]
1 The nested typedef-names of the specialization of iterator_traits for common_iterator<I, S> are defined

as follows.
—(1.1) iterator_concept denotes forward_iterator_tag if I models forward_iterator; otherwise it de-

notes input_iterator_tag.
—(1.2) iterator_category denotes forward_iterator_tag if the qualified-id iterator_traits<I>::iter-

ator_category is valid and denotes a type that models derived_from<forward_iterator_tag>;
otherwise it denotes input_iterator_tag.

—(1.3) Let a denote an lvalue of type const common_iterator<I, S>. If the expression a.operator->() is
well-formed, then pointer denotes decltype(a.operator->()). Otherwise, pointer denotes void.

25.5.5.3 Constructors and conversions [common.iter.const]

constexpr common_iterator(I i);

1 Effects: Initializes v_ as if by v_{in_place_type<I>, std::move(i)}.

constexpr common_iterator(S s);

2 Effects: Initializes v_ as if by v_{in_place_type<S>, std::move(s)}.

template<class I2, class S2>
requires convertible_to<const I2&, I> && convertible_to<const S2&, S>

constexpr common_iterator(const common_iterator<I2, S2>& x);

3 Preconditions: x.v_.valueless_by_exception() is false.
4 Effects: Initializes v_ as if by v_{in_place_index<i>, get<i>(x.v_)}, where i is x.v_.index().

template<class I2, class S2>
requires convertible_to<const I2&, I> && convertible_to<const S2&, S> &&

assignable_from<I&, const I2&> && assignable_from<S&, const S2&>
constexpr common_iterator& operator=(const common_iterator<I2, S2>& x);

5 Preconditions: x.v_.valueless_by_exception() is false.
6 Effects: Equivalent to:

—(6.1) If v_.index() == x.v_.index(), then get<i>(v_) = get<i>(x.v_).
—(6.2) Otherwise, v_.emplace<i>(get<i>(x.v_)).
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where i is x.v_.index().
7 Returns: *this

25.5.5.4 Accessors [common.iter.access]

constexpr decltype(auto) operator*();
constexpr decltype(auto) operator*() const

requires dereferenceable <const I>;

1 Preconditions: holds_alternative<I>(v_) is true.
2 Effects: Equivalent to: return *get<I>(v_);

constexpr auto operator->() const
requires see below ;

3 The expression in the requires-clause is equivalent to:
indirectly_readable<const I> &&
(requires(const I& i) { i.operator->(); } ||
is_reference_v<iter_reference_t<I>> ||
constructible_from<iter_value_t<I>, iter_reference_t<I>>)

4 Preconditions: holds_alternative<I>(v_) is true.
5 Effects:

—(5.1) If I is a pointer type or if the expression get<I>(v_).operator->() is well-formed, equivalent
to: return get<I>(v_);

—(5.2) Otherwise, if iter_reference_t<I> is a reference type, equivalent to:
auto&& tmp = *get<I>(v_);
return addressof(tmp);

—(5.3) Otherwise, equivalent to: return proxy (*get<I>(v_)); where proxy is the exposition-only
class:

class proxy {
iter_value_t<I> keep_;
constexpr proxy (iter_reference_t<I>&& x)

: keep_(std::move(x)) {}
public:

constexpr const iter_value_t<I>* operator->() const noexcept {
return addressof(keep_);

}
};

25.5.5.5 Navigation [common.iter.nav]

constexpr common_iterator& operator++();

1 Preconditions: holds_alternative<I>(v_) is true.
2 Effects: Equivalent to ++get<I>(v_).
3 Returns: *this.

constexpr decltype(auto) operator++(int);

4 Preconditions: holds_alternative<I>(v_) is true.
5 Effects: If I models forward_iterator, equivalent to:

common_iterator tmp = *this;
++*this;
return tmp;

Otherwise, if requires(I& i) { { *i++ } -> can-reference; } is true or
indirectly_readable<I> && constructible_from<iter_value_t<I>, iter_reference_t<I>> &&
move_constructible<iter_value_t<I>>

is false, equivalent to:
return get<I>(v_)++;
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Otherwise, equivalent to:
postfix-proxy p(**this);
++*this;
return p;

where postfix-proxy is the exposition-only class:
class postfix-proxy {

iter_value_t<I> keep_;
constexpr postfix-proxy (iter_reference_t<I>&& x)

: keep_(std::forward<iter_reference_t<I>>(x)) {}
public:

constexpr const iter_value_t<I>& operator*() const noexcept {
return keep_;

}
};

25.5.5.6 Comparisons [common.iter.cmp]

template<class I2, sentinel_for<I> S2>
requires sentinel_for<S, I2>

friend constexpr bool operator==(
const common_iterator& x, const common_iterator<I2, S2>& y);

1 Preconditions: x.v_.valueless_by_exception() and y.v_.valueless_by_exception() are each
false.

2 Returns: true if i == j, and otherwise get<i>(x.v_) == get<j>(y.v_), where i is x.v_.index()
and j is y.v_.index().

template<class I2, sentinel_for<I> S2>
requires sentinel_for<S, I2> && equality_comparable_with<I, I2>

friend constexpr bool operator==(
const common_iterator& x, const common_iterator<I2, S2>& y);

3 Preconditions: x.v_.valueless_by_exception() and y.v_.valueless_by_exception() are each
false.

4 Returns: true if i and j are each 1, and otherwise get<i>(x.v_) == get<j>(y.v_), where i is
x.v_.index() and j is y.v_.index().

template<sized_sentinel_for<I> I2, sized_sentinel_for<I> S2>
requires sized_sentinel_for<S, I2>

friend constexpr iter_difference_t<I2> operator-(
const common_iterator& x, const common_iterator<I2, S2>& y);

5 Preconditions: x.v_.valueless_by_exception() and y.v_.valueless_by_exception() are each
false.

6 Returns: 0 if i and j are each 1, and otherwise get<i>(x.v_) - get<j>(y.v_), where i is x.v_.index()
and j is y.v_.index().

25.5.5.7 Customizations [common.iter.cust]

friend constexpr iter_rvalue_reference_t<I> iter_move(const common_iterator& i)
noexcept(noexcept(ranges::iter_move(declval<const I&>())))

requires input_iterator<I>;

1 Preconditions: holds_alternative<I>(i.v_) is true.
2 Effects: Equivalent to: return ranges::iter_move(get<I>(i.v_));

template<indirectly_swappable<I> I2, class S2>
friend constexpr void iter_swap(const common_iterator& x, const common_iterator<I2, S2>& y)

noexcept(noexcept(ranges::iter_swap(declval<const I&>(), declval<const I2&>())));

3 Preconditions: holds_alternative<I>(x.v_) and holds_alternative<I2>(y.v_) are each true.
4 Effects: Equivalent to ranges::iter_swap(get<I>(x.v_), get<I2>(y.v_)).
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25.5.6 Default sentinel [default.sentinel]
namespace std {

struct default_sentinel_t { };
}

1 Class default_sentinel_t is an empty type used to denote the end of a range. It can be used together with
iterator types that know the bound of their range (e.g., counted_iterator (25.5.7.1)).

25.5.7 Counted iterators [iterators.counted]
25.5.7.1 Class template counted_iterator [counted.iterator]

1 Class template counted_iterator is an iterator adaptor with the same behavior as the underlying iterator
except that it keeps track of the distance to the end of its range. It can be used together with default_-
sentinel in calls to generic algorithms to operate on a range of N elements starting at a given position
without needing to know the end position a priori.

2 [Example 1 :
list<string> s;
// populate the list s with at least 10 strings
vector<string> v;
// copies 10 strings into v:
ranges::copy(counted_iterator(s.begin(), 10), default_sentinel, back_inserter(v));

— end example ]
3 Two values i1 and i2 of types counted_iterator<I1> and counted_iterator<I2> refer to elements of the

same sequence if and only if there exists some integer n such that next(i1.base(), i1.count() + n) and
next(i2.base(), i2.count() + n) refer to the same (possibly past-the-end) element.

namespace std {
template<input_or_output_iterator I>
class counted_iterator {
public:

using iterator_type = I;
using value_type = iter_value_t<I>; // present only

// if I models indirectly_readable
using difference_type = iter_difference_t<I>;
using iterator_concept = typename I::iterator_concept; // present only

// if the qualified-id I::iterator_concept is valid and denotes a type
using iterator_category = typename I::iterator_category; // present only

// if the qualified-id I::iterator_category is valid and denotes a type
constexpr counted_iterator() requires default_initializable<I> = default;
constexpr counted_iterator(I x, iter_difference_t<I> n);
template<class I2>

requires convertible_to<const I2&, I>
constexpr counted_iterator(const counted_iterator<I2>& x);

template<class I2>
requires assignable_from<I&, const I2&>

constexpr counted_iterator& operator=(const counted_iterator<I2>& x);

constexpr const I& base() const & noexcept;
constexpr I base() &&;
constexpr iter_difference_t<I> count() const noexcept;
constexpr decltype(auto) operator*();
constexpr decltype(auto) operator*() const

requires dereferenceable <const I>;

constexpr auto operator->() const noexcept
requires contiguous_iterator<I>;

constexpr counted_iterator& operator++();
constexpr decltype(auto) operator++(int);
constexpr counted_iterator operator++(int)

requires forward_iterator<I>;
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constexpr counted_iterator& operator--()
requires bidirectional_iterator<I>;

constexpr counted_iterator operator--(int)
requires bidirectional_iterator<I>;

constexpr counted_iterator operator+(iter_difference_t<I> n) const
requires random_access_iterator<I>;

friend constexpr counted_iterator operator+(
iter_difference_t<I> n, const counted_iterator& x)

requires random_access_iterator<I>;
constexpr counted_iterator& operator+=(iter_difference_t<I> n)

requires random_access_iterator<I>;

constexpr counted_iterator operator-(iter_difference_t<I> n) const
requires random_access_iterator<I>;

template<common_with<I> I2>
friend constexpr iter_difference_t<I2> operator-(

const counted_iterator& x, const counted_iterator<I2>& y);
friend constexpr iter_difference_t<I> operator-(

const counted_iterator& x, default_sentinel_t);
friend constexpr iter_difference_t<I> operator-(

default_sentinel_t, const counted_iterator& y);
constexpr counted_iterator& operator-=(iter_difference_t<I> n)

requires random_access_iterator<I>;

constexpr decltype(auto) operator[](iter_difference_t<I> n) const
requires random_access_iterator<I>;

template<common_with<I> I2>
friend constexpr bool operator==(

const counted_iterator& x, const counted_iterator<I2>& y);
friend constexpr bool operator==(

const counted_iterator& x, default_sentinel_t);

template<common_with<I> I2>
friend constexpr strong_ordering operator<=>(

const counted_iterator& x, const counted_iterator<I2>& y);

friend constexpr iter_rvalue_reference_t<I> iter_move(const counted_iterator& i)
noexcept(noexcept(ranges::iter_move(i.current)))

requires input_iterator<I>;
template<indirectly_swappable<I> I2>

friend constexpr void iter_swap(const counted_iterator& x, const counted_iterator<I2>& y)
noexcept(noexcept(ranges::iter_swap(x.current, y.current)));

private:
I current = I(); // exposition only
iter_difference_t<I> length = 0; // exposition only

};

template<input_iterator I>
requires same_as<ITER_TRAITS (I), iterator_traits<I>> // see 25.3.4.1

struct iterator_traits<counted_iterator<I>> : iterator_traits<I> {
using pointer = conditional_t<contiguous_iterator<I>,

add_pointer_t<iter_reference_t<I>>, void>;
};

}

25.5.7.2 Constructors and conversions [counted.iter.const]

constexpr counted_iterator(I i, iter_difference_t<I> n);

1 Preconditions: n >= 0.
2 Effects: Initializes current with std::move(i) and length with n.
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template<class I2>
requires convertible_to<const I2&, I>

constexpr counted_iterator(const counted_iterator<I2>& x);

3 Effects: Initializes current with x.current and length with x.length.

template<class I2>
requires assignable_from<I&, const I2&>

constexpr counted_iterator& operator=(const counted_iterator<I2>& x);

4 Effects: Assigns x.current to current and x.length to length.
5 Returns: *this.

25.5.7.3 Accessors [counted.iter.access]

constexpr const I& base() const & noexcept;

1 Effects: Equivalent to: return current;

constexpr I base() &&;

2 Returns: std::move(current).

constexpr iter_difference_t<I> count() const noexcept;

3 Effects: Equivalent to: return length;

25.5.7.4 Element access [counted.iter.elem]

constexpr decltype(auto) operator*();
constexpr decltype(auto) operator*() const

requires dereferenceable <const I>;

1 Preconditions: length > 0 is true.
2 Effects: Equivalent to: return *current;

constexpr auto operator->() const noexcept
requires contiguous_iterator<I>;

3 Effects: Equivalent to: return to_address(current);

constexpr decltype(auto) operator[](iter_difference_t<I> n) const
requires random_access_iterator<I>;

4 Preconditions: n < length.
5 Effects: Equivalent to: return current[n];

25.5.7.5 Navigation [counted.iter.nav]

constexpr counted_iterator& operator++();

1 Preconditions: length > 0.
2 Effects: Equivalent to:

++current;
--length;
return *this;

constexpr decltype(auto) operator++(int);

3 Preconditions: length > 0.
4 Effects: Equivalent to:

--length;
try { return current++; }
catch(...) { ++length; throw; }

constexpr counted_iterator operator++(int)
requires forward_iterator<I>;

5 Effects: Equivalent to:
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counted_iterator tmp = *this;
++*this;
return tmp;

constexpr counted_iterator& operator--()
requires bidirectional_iterator<I>;

6 Effects: Equivalent to:
--current;
++length;
return *this;

constexpr counted_iterator operator--(int)
requires bidirectional_iterator<I>;

7 Effects: Equivalent to:
counted_iterator tmp = *this;
--*this;
return tmp;

constexpr counted_iterator operator+(iter_difference_t<I> n) const
requires random_access_iterator<I>;

8 Effects: Equivalent to: return counted_iterator(current + n, length - n);

friend constexpr counted_iterator operator+(
iter_difference_t<I> n, const counted_iterator& x)

requires random_access_iterator<I>;

9 Effects: Equivalent to: return x + n;

constexpr counted_iterator& operator+=(iter_difference_t<I> n)
requires random_access_iterator<I>;

10 Preconditions: n <= length.
11 Effects: Equivalent to:

current += n;
length -= n;
return *this;

constexpr counted_iterator operator-(iter_difference_t<I> n) const
requires random_access_iterator<I>;

12 Effects: Equivalent to: return counted_iterator(current - n, length + n);

template<common_with<I> I2>
friend constexpr iter_difference_t<I2> operator-(

const counted_iterator& x, const counted_iterator<I2>& y);

13 Preconditions: x and y refer to elements of the same sequence (25.5.7.1).
14 Effects: Equivalent to: return y.length - x.length;

friend constexpr iter_difference_t<I> operator-(
const counted_iterator& x, default_sentinel_t);

15 Effects: Equivalent to: return -x.length;

friend constexpr iter_difference_t<I> operator-(
default_sentinel_t, const counted_iterator& y);

16 Effects: Equivalent to: return y.length;

constexpr counted_iterator& operator-=(iter_difference_t<I> n)
requires random_access_iterator<I>;

17 Preconditions: -n <= length.
18 Effects: Equivalent to:

current -= n;
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length += n;
return *this;

25.5.7.6 Comparisons [counted.iter.cmp]

template<common_with<I> I2>
friend constexpr bool operator==(

const counted_iterator& x, const counted_iterator<I2>& y);

1 Preconditions: x and y refer to elements of the same sequence (25.5.7.1).
2 Effects: Equivalent to: return x.length == y.length;

friend constexpr bool operator==(
const counted_iterator& x, default_sentinel_t);

3 Effects: Equivalent to: return x.length == 0;

template<common_with<I> I2>
friend constexpr strong_ordering operator<=>(

const counted_iterator& x, const counted_iterator<I2>& y);

4 Preconditions: x and y refer to elements of the same sequence (25.5.7.1).
5 Effects: Equivalent to: return y.length <=> x.length;
6 [Note 1 : The argument order in the Effects: element is reversed because length counts down, not up. — end

note ]

25.5.7.7 Customizations [counted.iter.cust]

friend constexpr iter_rvalue_reference_t<I>
iter_move(const counted_iterator& i)

noexcept(noexcept(ranges::iter_move(i.current)))
requires input_iterator<I>;

1 Preconditions: i.length > 0 is true.
2 Effects: Equivalent to: return ranges::iter_move(i.current);

template<indirectly_swappable<I> I2>
friend constexpr void

iter_swap(const counted_iterator& x, const counted_iterator<I2>& y)
noexcept(noexcept(ranges::iter_swap(x.current, y.current)));

3 Preconditions: Both x.length > 0 and y.length > 0 are true.
4 Effects: Equivalent to ranges::iter_swap(x.current, y.current).

25.5.8 Unreachable sentinel [unreachable.sentinel]
1 Class unreachable_sentinel_t can be used with any weakly_incrementable type to denote the “upper

bound” of an unbounded interval.
2 [Example 1 :

char* p;
// set p to point to a character buffer containing newlines
char* nl = find(p, unreachable_sentinel, '\n');

Provided a newline character really exists in the buffer, the use of unreachable_sentinel above potentially makes
the call to find more efficient since the loop test against the sentinel does not require a conditional branch. — end
example ]

namespace std {
struct unreachable_sentinel_t {

template<weakly_incrementable I>
friend constexpr bool operator==(unreachable_sentinel_t, const I&) noexcept
{ return false; }

};
}
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25.6 Stream iterators [stream.iterators]
25.6.1 General [stream.iterators.general]

1 To make it possible for algorithmic templates to work directly with input/output streams, appropriate
iterator-like class templates are provided.
[Example 1 :

partial_sum(istream_iterator<double, char>(cin),
istream_iterator<double, char>(),
ostream_iterator<double, char>(cout, "\n"));

reads a file containing floating-point numbers from cin, and prints the partial sums onto cout. — end example ]

25.6.2 Class template istream_iterator [istream.iterator]
25.6.2.1 General [istream.iterator.general]

1 The class template istream_iterator is an input iterator (25.3.5.3) that reads successive elements from the
input stream for which it was constructed.

namespace std {
template<class T, class charT = char, class traits = char_traits<charT>,

class Distance = ptrdiff_t>
class istream_iterator {
public:

using iterator_category = input_iterator_tag;
using value_type = T;
using difference_type = Distance;
using pointer = const T*;
using reference = const T&;
using char_type = charT;
using traits_type = traits;
using istream_type = basic_istream<charT,traits>;

constexpr istream_iterator();
constexpr istream_iterator(default_sentinel_t);
istream_iterator(istream_type& s);
constexpr istream_iterator(const istream_iterator& x) noexcept(see below );
~istream_iterator() = default;
istream_iterator& operator=(const istream_iterator&) = default;

const T& operator*() const;
const T* operator->() const;
istream_iterator& operator++();
istream_iterator operator++(int);

friend bool operator==(const istream_iterator& i, default_sentinel_t);

private:
basic_istream<charT,traits>* in_stream; // exposition only
T value; // exposition only

};
}

2 The type T shall meet the Cpp17DefaultConstructible, Cpp17CopyConstructible, and Cpp17CopyAssignable
requirements.

25.6.2.2 Constructors and destructor [istream.iterator.cons]

constexpr istream_iterator();
constexpr istream_iterator(default_sentinel_t);

1 Effects: Constructs the end-of-stream iterator, value-initializing value.
2 Postconditions: in_stream == nullptr is true.
3 Remarks: If the initializer T() in the declaration auto x = T(); is a constant initializer (7.7), then

these constructors are constexpr constructors.
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istream_iterator(istream_type& s);

4 Effects: Initializes in_stream with addressof(s), value-initializes value, and then calls operator++().

constexpr istream_iterator(const istream_iterator& x) noexcept(see below );

5 Effects: Initializes in_stream with x.in_stream and initializes value with x.value.
6 Remarks: An invocation of this constructor may be used in a core constant expression if and only if the

initialization of value from x.value is a constant subexpression (3.14). The exception specification is
equivalent to is_nothrow_copy_constructible_v<T>.

~istream_iterator() = default;

7 Remarks: If is_trivially_destructible_v<T> is true, then this destructor is trivial.

25.6.2.3 Operations [istream.iterator.ops]

const T& operator*() const;

1 Preconditions: in_stream != nullptr is true.
2 Returns: value.

const T* operator->() const;

3 Preconditions: in_stream != nullptr is true.
4 Returns: addressof(value).

istream_iterator& operator++();

5 Preconditions: in_stream != nullptr is true.
6 Effects: Equivalent to:

if (!(*in_stream >> value))
in_stream = nullptr;

7 Returns: *this.

istream_iterator operator++(int);

8 Preconditions: in_stream != nullptr is true.
9 Effects: Equivalent to:

istream_iterator tmp = *this;
++*this;
return tmp;

template<class T, class charT, class traits, class Distance>
bool operator==(const istream_iterator<T,charT,traits,Distance>& x,

const istream_iterator<T,charT,traits,Distance>& y);

10 Returns: x.in_stream == y.in_stream.

friend bool operator==(const istream_iterator& i, default_sentinel_t);

11 Returns: !i.in_stream.

25.6.3 Class template ostream_iterator [ostream.iterator]
25.6.3.1 General [ostream.iterator.general]

1 ostream_iterator writes (using operator<<) successive elements onto the output stream from which it was
constructed. If it was constructed with charT* as a constructor argument, this string, called a delimiter
string, is written to the stream after every T is written.

namespace std {
template<class T, class charT = char, class traits = char_traits<charT>>
class ostream_iterator {
public:

using iterator_category = output_iterator_tag;
using value_type = void;
using difference_type = ptrdiff_t;
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using pointer = void;
using reference = void;
using char_type = charT;
using traits_type = traits;
using ostream_type = basic_ostream<charT,traits>;

ostream_iterator(ostream_type& s);
ostream_iterator(ostream_type& s, const charT* delimiter);
ostream_iterator(const ostream_iterator& x);
~ostream_iterator();
ostream_iterator& operator=(const ostream_iterator&) = default;
ostream_iterator& operator=(const T& value);

ostream_iterator& operator*();
ostream_iterator& operator++();
ostream_iterator& operator++(int);

private:
basic_ostream<charT,traits>* out_stream; // exposition only
const charT* delim; // exposition only

};
}

25.6.3.2 Constructors and destructor [ostream.iterator.cons.des]

ostream_iterator(ostream_type& s);

1 Effects: Initializes out_stream with addressof(s) and delim with nullptr.

ostream_iterator(ostream_type& s, const charT* delimiter);

2 Effects: Initializes out_stream with addressof(s) and delim with delimiter.

25.6.3.3 Operations [ostream.iterator.ops]

ostream_iterator& operator=(const T& value);

1 Effects: As if by:
*out_stream << value;
if (delim)

*out_stream << delim;
return *this;

ostream_iterator& operator*();

2 Returns: *this.

ostream_iterator& operator++();
ostream_iterator& operator++(int);

3 Returns: *this.

25.6.4 Class template istreambuf_iterator [istreambuf.iterator]
25.6.4.1 General [istreambuf.iterator.general]

1 The class template istreambuf_iterator defines an input iterator (25.3.5.3) that reads successive characters
from the streambuf for which it was constructed. operator* provides access to the current input character,
if any. Each time operator++ is evaluated, the iterator advances to the next input character. If the end
of stream is reached (streambuf_type::sgetc() returns traits::eof()), the iterator becomes equal to
the end-of-stream iterator value. The default constructor istreambuf_iterator() and the constructor
istreambuf_iterator(nullptr) both construct an end-of-stream iterator object suitable for use as an
end-of-range. All specializations of istreambuf_iterator shall have a trivial copy constructor, a constexpr
default constructor, and a trivial destructor.

2 The result of operator*() on an end-of-stream iterator is undefined. For any other iterator value a char_type
value is returned. It is impossible to assign a character via an input iterator.
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namespace std {
template<class charT, class traits = char_traits<charT>>
class istreambuf_iterator {
public:

using iterator_category = input_iterator_tag;
using value_type = charT;
using difference_type = typename traits::off_type;
using pointer = unspecified ;
using reference = charT;
using char_type = charT;
using traits_type = traits;
using int_type = typename traits::int_type;
using streambuf_type = basic_streambuf<charT,traits>;
using istream_type = basic_istream<charT,traits>;

// 25.6.4.2, class istreambuf_iterator::proxy
class proxy ; // exposition only

constexpr istreambuf_iterator() noexcept;
constexpr istreambuf_iterator(default_sentinel_t) noexcept;
istreambuf_iterator(const istreambuf_iterator&) noexcept = default;
~istreambuf_iterator() = default;
istreambuf_iterator(istream_type& s) noexcept;
istreambuf_iterator(streambuf_type* s) noexcept;
istreambuf_iterator(const proxy & p) noexcept;
istreambuf_iterator& operator=(const istreambuf_iterator&) noexcept = default;
charT operator*() const;
istreambuf_iterator& operator++();
proxy operator++(int);
bool equal(const istreambuf_iterator& b) const;

friend bool operator==(const istreambuf_iterator& i, default_sentinel_t s);

private:
streambuf_type* sbuf_; // exposition only

};
}

25.6.4.2 Class istreambuf_iterator::proxy [istreambuf.iterator.proxy]
1 Class istreambuf_iterator<charT,traits>::proxy is for exposition only. An implementation is per-

mitted to provide equivalent functionality without providing a class with this name. Class istreambuf_-
iterator<charT, traits>::proxy provides a temporary placeholder as the return value of the post-
increment operator (operator++). It keeps the character pointed to by the previous value of the iterator for
some possible future access to get the character.

namespace std {
template<class charT, class traits>
class istreambuf_iterator<charT, traits>::proxy { // exposition only

charT keep_;
basic_streambuf<charT,traits>* sbuf_;
proxy (charT c, basic_streambuf<charT,traits>* sbuf)

: keep_(c), sbuf_(sbuf) { }
public:

charT operator*() { return keep_; }
};

}

25.6.4.3 Constructors [istreambuf.iterator.cons]
1 For each istreambuf_iterator constructor in this subclause, an end-of-stream iterator is constructed if and

only if the exposition-only member sbuf_ is initialized with a null pointer value.

constexpr istreambuf_iterator() noexcept;
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constexpr istreambuf_iterator(default_sentinel_t) noexcept;

2 Effects: Initializes sbuf_ with nullptr.

istreambuf_iterator(istream_type& s) noexcept;

3 Effects: Initializes sbuf_ with s.rdbuf().

istreambuf_iterator(streambuf_type* s) noexcept;

4 Effects: Initializes sbuf_ with s.

istreambuf_iterator(const proxy & p) noexcept;

5 Effects: Initializes sbuf_ with p.sbuf_.

25.6.4.4 Operations [istreambuf.iterator.ops]

charT operator*() const;

1 Returns: The character obtained via the streambuf member sbuf_->sgetc().

istreambuf_iterator& operator++();

2 Effects: As if by sbuf_->sbumpc().
3 Returns: *this.

proxy operator++(int);

4 Returns: proxy (sbuf_->sbumpc(), sbuf_).

bool equal(const istreambuf_iterator& b) const;

5 Returns: true if and only if both iterators are at end-of-stream, or neither is at end-of-stream, regardless
of what streambuf object they use.

template<class charT, class traits>
bool operator==(const istreambuf_iterator<charT,traits>& a,

const istreambuf_iterator<charT,traits>& b);

6 Returns: a.equal(b).

friend bool operator==(const istreambuf_iterator& i, default_sentinel_t s);

7 Returns: i.equal(s).

25.6.5 Class template ostreambuf_iterator [ostreambuf.iterator]
25.6.5.1 General [ostreambuf.iterator.general]

1 The class template ostreambuf_iterator writes successive characters onto the output stream from which it
was constructed.

namespace std {
template<class charT, class traits = char_traits<charT>>
class ostreambuf_iterator {
public:

using iterator_category = output_iterator_tag;
using value_type = void;
using difference_type = ptrdiff_t;
using pointer = void;
using reference = void;
using char_type = charT;
using traits_type = traits;
using streambuf_type = basic_streambuf<charT,traits>;
using ostream_type = basic_ostream<charT,traits>;

ostreambuf_iterator(ostream_type& s) noexcept;
ostreambuf_iterator(streambuf_type* s) noexcept;
ostreambuf_iterator& operator=(charT c);
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ostreambuf_iterator& operator*();
ostreambuf_iterator& operator++();
ostreambuf_iterator& operator++(int);
bool failed() const noexcept;

private:
streambuf_type* sbuf_; // exposition only

};
}

25.6.5.2 Constructors [ostreambuf.iter.cons]

ostreambuf_iterator(ostream_type& s) noexcept;

1 Preconditions: s.rdbuf() is not a null pointer.
2 Effects: Initializes sbuf_ with s.rdbuf().

ostreambuf_iterator(streambuf_type* s) noexcept;

3 Preconditions: s is not a null pointer.
4 Effects: Initializes sbuf_ with s.

25.6.5.3 Operations [ostreambuf.iter.ops]

ostreambuf_iterator& operator=(charT c);

1 Effects: If failed() yields false, calls sbuf_->sputc(c); otherwise has no effect.
2 Returns: *this.

ostreambuf_iterator& operator*();

3 Returns: *this.

ostreambuf_iterator& operator++();
ostreambuf_iterator& operator++(int);

4 Returns: *this.

bool failed() const noexcept;

5 Returns: true if in any prior use of member operator=, the call to sbuf_->sputc() returned
traits::eof(); or false otherwise.

25.7 Range access [iterator.range]
1 In addition to being available via inclusion of the <iterator> header, the function templates in 25.7 are

available when any of the following headers are included: <array> (24.3.2), <deque> (24.3.3), <forward_list>
(24.3.4), <list> (24.3.5), <map> (24.4.2), <regex> (32.3), <set> (24.4.3), <span> (24.7.2.1), <string> (23.4.2),
<string_view> (23.3.2), <unordered_map> (24.5.2), <unordered_set> (24.5.3), and <vector> (24.3.6).

template<class C> constexpr auto begin(C& c) -> decltype(c.begin());
template<class C> constexpr auto begin(const C& c) -> decltype(c.begin());

2 Returns: c.begin().

template<class C> constexpr auto end(C& c) -> decltype(c.end());
template<class C> constexpr auto end(const C& c) -> decltype(c.end());

3 Returns: c.end().

template<class T, size_t N> constexpr T* begin(T (&array)[N]) noexcept;

4 Returns: array.

template<class T, size_t N> constexpr T* end(T (&array)[N]) noexcept;

5 Returns: array + N.
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template<class C> constexpr auto cbegin(const C& c) noexcept(noexcept(std::begin(c)))
-> decltype(std::begin(c));

6 Returns: std::begin(c).

template<class C> constexpr auto cend(const C& c) noexcept(noexcept(std::end(c)))
-> decltype(std::end(c));

7 Returns: std::end(c).

template<class C> constexpr auto rbegin(C& c) -> decltype(c.rbegin());
template<class C> constexpr auto rbegin(const C& c) -> decltype(c.rbegin());

8 Returns: c.rbegin().

template<class C> constexpr auto rend(C& c) -> decltype(c.rend());
template<class C> constexpr auto rend(const C& c) -> decltype(c.rend());

9 Returns: c.rend().

template<class T, size_t N> constexpr reverse_iterator<T*> rbegin(T (&array)[N]);

10 Returns: reverse_iterator<T*>(array + N).

template<class T, size_t N> constexpr reverse_iterator<T*> rend(T (&array)[N]);

11 Returns: reverse_iterator<T*>(array).

template<class E> constexpr reverse_iterator<const E*> rbegin(initializer_list<E> il);

12 Returns: reverse_iterator<const E*>(il.end()).

template<class E> constexpr reverse_iterator<const E*> rend(initializer_list<E> il);

13 Returns: reverse_iterator<const E*>(il.begin()).

template<class C> constexpr auto crbegin(const C& c) -> decltype(std::rbegin(c));

14 Returns: std::rbegin(c).

template<class C> constexpr auto crend(const C& c) -> decltype(std::rend(c));

15 Returns: std::rend(c).

template<class C> constexpr auto size(const C& c) -> decltype(c.size());

16 Returns: c.size().

template<class T, size_t N> constexpr size_t size(const T (&array)[N]) noexcept;

17 Returns: N.

template<class C> constexpr auto ssize(const C& c)
-> common_type_t<ptrdiff_t, make_signed_t<decltype(c.size())>>;

18 Effects: Equivalent to:
return static_cast<common_type_t<ptrdiff_t, make_signed_t<decltype(c.size())>>>(c.size());

template<class T, ptrdiff_t N> constexpr ptrdiff_t ssize(const T (&array)[N]) noexcept;

19 Returns: N.

template<class C> [[nodiscard]] constexpr auto empty(const C& c) -> decltype(c.empty());

20 Returns: c.empty().

template<class T, size_t N> [[nodiscard]] constexpr bool empty(const T (&array)[N]) noexcept;

21 Returns: false.

template<class E> [[nodiscard]] constexpr bool empty(initializer_list<E> il) noexcept;

22 Returns: il.size() == 0.

template<class C> constexpr auto data(C& c) -> decltype(c.data());
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template<class C> constexpr auto data(const C& c) -> decltype(c.data());

23 Returns: c.data().

template<class T, size_t N> constexpr T* data(T (&array)[N]) noexcept;

24 Returns: array.

template<class E> constexpr const E* data(initializer_list<E> il) noexcept;

25 Returns: il.begin().
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26 Ranges library [ranges]
26.1 General [ranges.general]

1 This Clause describes components for dealing with ranges of elements.
2 The following subclauses describe range and view requirements, and components for range primitives and

range generators as summarized in Table 92.

Table 92: Ranges library summary [tab:range.summary]

Subclause Header
26.3 Range access <ranges>
26.4 Requirements
26.5 Range utilities
26.6 Range factories
26.7 Range adaptors
26.8 Range generators <generator>

26.2 Header <ranges> synopsis [ranges.syn]
#include <compare> // see 17.11.1
#include <initializer_list> // see 17.10.2
#include <iterator> // see 25.2

namespace std::ranges {
inline namespace unspecified {

// 26.3, range access
inline constexpr unspecified begin = unspecified ; // freestanding
inline constexpr unspecified end = unspecified ; // freestanding
inline constexpr unspecified cbegin = unspecified ; // freestanding
inline constexpr unspecified cend = unspecified ; // freestanding
inline constexpr unspecified rbegin = unspecified ; // freestanding
inline constexpr unspecified rend = unspecified ; // freestanding
inline constexpr unspecified crbegin = unspecified ; // freestanding
inline constexpr unspecified crend = unspecified ; // freestanding

inline constexpr unspecified size = unspecified ; // freestanding
inline constexpr unspecified ssize = unspecified ; // freestanding
inline constexpr unspecified empty = unspecified ; // freestanding
inline constexpr unspecified data = unspecified ; // freestanding
inline constexpr unspecified cdata = unspecified ; // freestanding

}

// 26.4.2, ranges
template<class T>

concept range = see below ; // freestanding

template<class T>
constexpr bool enable_borrowed_range = false; // freestanding

template<class T>
concept borrowed_range = see below ; // freestanding

template<class T>
using iterator_t = decltype(ranges::begin(declval<T&>())); // freestanding

template<range R>
using sentinel_t = decltype(ranges::end(declval<R&>())); // freestanding
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template<range R>
using const_iterator_t = const_iterator<iterator_t<R>>; // freestanding

template<range R>
using const_sentinel_t = const_sentinel<sentinel_t<R>>; // freestanding

template<range R>
using range_difference_t = iter_difference_t<iterator_t<R>>; // freestanding

template<sized_range R>
using range_size_t = decltype(ranges::size(declval<R&>())); // freestanding

template<range R>
using range_value_t = iter_value_t<iterator_t<R>>; // freestanding

template<range R>
using range_reference_t = iter_reference_t<iterator_t<R>>; // freestanding

template<range R>
using range_const_reference_t = iter_const_reference_t<iterator_t<R>>; // freestanding

template<range R>
using range_rvalue_reference_t = iter_rvalue_reference_t<iterator_t<R>>; // freestanding

template<range R>
using range_common_reference_t = iter_common_reference_t<iterator_t<R>>; // freestanding

// 26.4.3, sized ranges
template<class>

constexpr bool disable_sized_range = false; // freestanding

template<class T>
concept sized_range = see below ; // freestanding

// 26.4.4, views
template<class T>

constexpr bool enable_view = see below ; // freestanding

struct view_base {}; // freestanding

template<class T>
concept view = see below ; // freestanding

// 26.4.5, other range refinements
template<class R, class T>

concept output_range = see below ; // freestanding

template<class T>
concept input_range = see below ; // freestanding

template<class T>
concept forward_range = see below ; // freestanding

template<class T>
concept bidirectional_range = see below ; // freestanding

template<class T>
concept random_access_range = see below ; // freestanding

template<class T>
concept contiguous_range = see below ; // freestanding

template<class T>
concept common_range = see below ; // freestanding

template<class T>
concept viewable_range = see below ; // freestanding

template<class T>
concept constant_range = see below ; // freestanding
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// 26.5.3, class template view_interface
template<class D>

requires is_class_v<D> && same_as<D, remove_cv_t<D>>
class view_interface; // freestanding

// 26.5.4, sub-ranges
enum class subrange_kind : bool { unsized, sized }; // freestanding

template<input_or_output_iterator I, sentinel_for<I> S = I, subrange_kind K = see below >
requires (K == subrange_kind::sized || !sized_sentinel_for<S, I>)

class subrange; // freestanding

template<class I, class S, subrange_kind K>
constexpr bool enable_borrowed_range<subrange<I, S, K>> = true; // freestanding

template<size_t N, class I, class S, subrange_kind K>
requires ((N == 0 && copyable<I>) || N == 1)
constexpr auto get(const subrange<I, S, K>& r); // freestanding

template<size_t N, class I, class S, subrange_kind K>
requires (N < 2)
constexpr auto get(subrange<I, S, K>&& r); // freestanding

}

namespace std {
using ranges::get; // freestanding

}

namespace std::ranges {
// 26.5.5, dangling iterator handling
struct dangling; // freestanding

// 26.5.6, class template elements_of
template<range R, class Allocator = allocator<byte>>

struct elements_of;

template<range R>
using borrowed_iterator_t = see below ; // freestanding

template<range R>
using borrowed_subrange_t = see below ; // freestanding

// 26.5.7, range conversions
template<class C, input_range R, class... Args> requires (!view<C>)

constexpr C to(R&& r, Args&&... args); // freestanding
template<template<class...> class C, input_range R, class... Args>

constexpr auto to(R&& r, Args&&... args); // freestanding
template<class C, class... Args> requires (!view<C>)

constexpr auto to(Args&&... args); // freestanding
template<template<class...> class C, class... Args>

constexpr auto to(Args&&... args); // freestanding

// 26.6.2, empty view
template<class T>

requires is_object_v<T>
class empty_view; // freestanding

template<class T>
constexpr bool enable_borrowed_range<empty_view<T>> = true; // freestanding

namespace views {
template<class T>

constexpr empty_view<T> empty{}; // freestanding
}
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// 26.6.3, single view
template<move_constructible T>

requires is_object_v<T>
class single_view; // freestanding

namespace views { inline constexpr unspecified single = unspecified; } // freestanding

template<bool Const, class T>
using maybe-const = conditional_t<Const, const T, T>; // exposition only

// 26.6.4, iota view
template<weakly_incrementable W, semiregular Bound = unreachable_sentinel_t>

requires weakly-equality-comparable-with <W, Bound> && copyable<W>
class iota_view; // freestanding

template<class W, class Bound>
constexpr bool enable_borrowed_range<iota_view<W, Bound>> = true; // freestanding

namespace views { inline constexpr unspecified iota = unspecified; } // freestanding

// 26.6.5, repeat view
template<move_constructible T, semiregular Bound = unreachable_sentinel_t>

requires see below
class repeat_view; // freestanding

namespace views { inline constexpr unspecified repeat = unspecified; } // freestanding

// 26.6.6, istream view
template<movable Val, class CharT, class Traits = char_traits<CharT>>

requires see below
class basic_istream_view;
template<class Val>

using istream_view = basic_istream_view<Val, char>;
template<class Val>

using wistream_view = basic_istream_view<Val, wchar_t>;

namespace views { template<class T> constexpr unspecified istream = unspecified; }

// 26.7.2, range adaptor objects
template<class D>

requires is_class_v<D> && same_as<D, remove_cv_t<D>>
class range_adaptor_closure { }; // freestanding

// 26.7.6, all view
namespace views {

inline constexpr unspecified all = unspecified; // freestanding

template<viewable_range R>
using all_t = decltype(all(declval<R>())); // freestanding

}

// 26.7.6.2, ref view
template<range R>

requires is_object_v<R>
class ref_view; // freestanding

template<class T>
constexpr bool enable_borrowed_range<ref_view<T>> = true; // freestanding

// 26.7.6.3, owning view
template<range R>

requires see below
class owning_view; // freestanding
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template<class T>
constexpr bool enable_borrowed_range<owning_view<T>> = // freestanding

enable_borrowed_range<T>;

// 26.7.7, as rvalue view
template<view V>

requires input_range<V>
class as_rvalue_view; // freestanding

template<class T>
constexpr bool enable_borrowed_range<as_rvalue_view<T>> = // freestanding

enable_borrowed_range<T>;

namespace views { inline constexpr unspecified as_rvalue = unspecified; } // freestanding

// 26.7.8, filter view
template<input_range V, indirect_unary_predicate<iterator_t<V>> Pred>

requires view<V> && is_object_v<Pred>
class filter_view; // freestanding

namespace views { inline constexpr unspecified filter = unspecified; } // freestanding

// 26.7.9, transform view
template<input_range V, move_constructible F>

requires view<V> && is_object_v<F> &&
regular_invocable<F&, range_reference_t<V>> &&
can-reference <invoke_result_t<F&, range_reference_t<V>>>

class transform_view; // freestanding

namespace views { inline constexpr unspecified transform = unspecified; } // freestanding

// 26.7.10, take view
template<view> class take_view; // freestanding

template<class T>
constexpr bool enable_borrowed_range<take_view<T>> = // freestanding

enable_borrowed_range<T>;

namespace views { inline constexpr unspecified take = unspecified; } // freestanding

// 26.7.11, take while view
template<view V, class Pred>

requires input_range<V> && is_object_v<Pred> &&
indirect_unary_predicate<const Pred, iterator_t<V>>

class take_while_view; // freestanding

namespace views { inline constexpr unspecified take_while = unspecified; } // freestanding

// 26.7.12, drop view
template<view V>

class drop_view; // freestanding

template<class T>
constexpr bool enable_borrowed_range<drop_view<T>> = // freestanding

enable_borrowed_range<T>;

namespace views { inline constexpr unspecified drop = unspecified; } // freestanding

// 26.7.13, drop while view
template<view V, class Pred>

requires input_range<V> && is_object_v<Pred> &&
indirect_unary_predicate<const Pred, iterator_t<V>>

class drop_while_view; // freestanding
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template<class T, class Pred>
constexpr bool enable_borrowed_range<drop_while_view<T, Pred>> = // freestanding

enable_borrowed_range<T>;

namespace views { inline constexpr unspecified drop_while = unspecified; } // freestanding

// 26.7.14, join view
template<input_range V>

requires view<V> && input_range<range_reference_t<V>>
class join_view; // freestanding

namespace views { inline constexpr unspecified join = unspecified; } // freestanding

// 26.7.15, join with view
template<class R, class P>

concept compatible-joinable-ranges = see below ; // exposition only

template<input_range V, forward_range Pattern>
requires view<V> && input_range<range_reference_t<V>>

&& view<Pattern>
&& compatible-joinable-ranges <range_reference_t<V>, Pattern>

class join_with_view; // freestanding

namespace views { inline constexpr unspecified join_with = unspecified; } // freestanding

// 26.7.16, lazy split view
template<class R>

concept tiny-range = see below ; // exposition only

template<input_range V, forward_range Pattern>
requires view<V> && view<Pattern> &&

indirectly_comparable<iterator_t<V>, iterator_t<Pattern>, ranges::equal_to> &&
(forward_range<V> || tiny-range <Pattern>)

class lazy_split_view; // freestanding

// 26.7.17, split view
template<forward_range V, forward_range Pattern>

requires view<V> && view<Pattern> &&
indirectly_comparable<iterator_t<V>, iterator_t<Pattern>, ranges::equal_to>

class split_view; // freestanding

namespace views {
inline constexpr unspecified lazy_split = unspecified; // freestanding
inline constexpr unspecified split = unspecified; // freestanding

}

// 26.7.18, counted view
namespace views { inline constexpr unspecified counted = unspecified; } // freestanding

// 26.7.19, common view
template<view V>

requires (!common_range<V> && copyable<iterator_t<V>>)
class common_view; // freestanding

template<class T>
constexpr bool enable_borrowed_range<common_view<T>> = // freestanding

enable_borrowed_range<T>;

namespace views { inline constexpr unspecified common = unspecified; } // freestanding

// 26.7.20, reverse view
template<view V>

requires bidirectional_range<V>
class reverse_view; // freestanding
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template<class T>
constexpr bool enable_borrowed_range<reverse_view<T>> = // freestanding

enable_borrowed_range<T>;

namespace views { inline constexpr unspecified reverse = unspecified; } // freestanding

// 26.7.21, as const view
template<input_range R>

constexpr auto& possibly-const-range (R& r) { // exposition only
if constexpr (constant_range<const R> && !constant_range<R>) {

return const_cast<const R&>(r);
} else {

return r;
}

}

template<view V>
requires input_range<V>

class as_const_view; // freestanding

template<class T>
constexpr bool enable_borrowed_range<as_const_view<T>> = // freestanding

enable_borrowed_range<T>;

namespace views { inline constexpr unspecified as_const = unspecified; } // freestanding

// 26.7.22, elements view
template<input_range V, size_t N>

requires see below
class elements_view; // freestanding

template<class T, size_t N>
constexpr bool enable_borrowed_range<elements_view<T, N>> = // freestanding

enable_borrowed_range<T>;

template<class R>
using keys_view = elements_view<R, 0>; // freestanding

template<class R>
using values_view = elements_view<R, 1>; // freestanding

namespace views {
template<size_t N>

constexpr unspecified elements = unspecified; // freestanding
inline constexpr auto keys = elements<0>; // freestanding
inline constexpr auto values = elements<1>; // freestanding

}

// 26.7.23, enumerate view
template<input_range View>

requires view<View>
class enumerate_view; // freestanding

template<class View>
constexpr bool enable_borrowed_range<enumerate_view<View>> = // freestanding

enable_borrowed_range<View>;

namespace views { inline constexpr unspecified enumerate = unspecified; } // freestanding

// 26.7.24, zip view
template<input_range... Views>

requires (view<Views> && ...) && (sizeof...(Views) > 0)
class zip_view; // freestanding
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template<class... Views>
constexpr bool enable_borrowed_range<zip_view<Views...>> = // freestanding

(enable_borrowed_range<Views> && ...);

namespace views { inline constexpr unspecified zip = unspecified; } // freestanding

// 26.7.25, zip transform view
template<move_constructible F, input_range... Views>

requires (view<Views> && ...) && (sizeof...(Views) > 0) && is_object_v<F> &&
regular_invocable<F&, range_reference_t<Views>...> &&
can-reference <invoke_result_t<F&, range_reference_t<Views>...>>

class zip_transform_view; // freestanding

namespace views { inline constexpr unspecified zip_transform = unspecified; } // freestanding

// 26.7.26, adjacent view
template<forward_range V, size_t N>

requires view<V> && (N > 0)
class adjacent_view; // freestanding

template<class V, size_t N>
constexpr bool enable_borrowed_range<adjacent_view<V, N>> = // freestanding

enable_borrowed_range<V>;

namespace views {
template<size_t N>

constexpr unspecified adjacent = unspecified; // freestanding
inline constexpr auto pairwise = adjacent<2>; // freestanding

}

// 26.7.27, adjacent transform view
template<forward_range V, move_constructible F, size_t N>

requires see below
class adjacent_transform_view; // freestanding

namespace views {
template<size_t N>

constexpr unspecified adjacent_transform = unspecified; // freestanding
inline constexpr auto pairwise_transform = adjacent_transform<2>; // freestanding

}

// 26.7.28, chunk view
template<view V>

requires input_range<V>
class chunk_view; // freestanding

template<view V>
requires forward_range<V>

class chunk_view<V>; // freestanding

template<class V>
constexpr bool enable_borrowed_range<chunk_view<V>> = // freestanding

forward_range<V> && enable_borrowed_range<V>;

namespace views { inline constexpr unspecified chunk = unspecified; } // freestanding

// 26.7.29, slide view
template<forward_range V>

requires view<V>
class slide_view; // freestanding

template<class V>
constexpr bool enable_borrowed_range<slide_view<V>> =

enable_borrowed_range<V>; // freestanding
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namespace views { inline constexpr unspecified slide = unspecified; } // freestanding

// 26.7.30, chunk by view
template<forward_range V, indirect_binary_predicate<iterator_t<V>, iterator_t<V>> Pred>

requires view<V> && is_object_v<Pred>
class chunk_by_view; // freestanding

namespace views { inline constexpr unspecified chunk_by = unspecified; } // freestanding

// 26.7.31, stride view
template<input_range V>

requires view<V>
class stride_view; // freestanding

template<class V>
constexpr bool enable_borrowed_range<stride_view<V>> = // freestanding

enable_borrowed_range<V>;

namespace views { inline constexpr unspecified stride = unspecified; } // freestanding

// 26.7.32, cartesian product view
template<input_range First, forward_range... Vs>

requires (view<First> && ... && view<Vs>)
class cartesian_product_view; // freestanding

namespace views { inline constexpr unspecified cartesian_product = unspecified; } // freestanding
}

namespace std {
namespace views = ranges::views; // freestanding

template<class T> struct tuple_size; // freestanding
template<size_t I, class T> struct tuple_element; // freestanding

template<class I, class S, ranges::subrange_kind K>
struct tuple_size<ranges::subrange<I, S, K>> // freestanding

: integral_constant<size_t, 2> {};
template<class I, class S, ranges::subrange_kind K>
struct tuple_element<0, ranges::subrange<I, S, K>> { // freestanding

using type = I; // freestanding
};
template<class I, class S, ranges::subrange_kind K>
struct tuple_element<1, ranges::subrange<I, S, K>> { // freestanding

using type = S; // freestanding
};
template<class I, class S, ranges::subrange_kind K>
struct tuple_element<0, const ranges::subrange<I, S, K>> { // freestanding

using type = I; // freestanding
};
template<class I, class S, ranges::subrange_kind K>
struct tuple_element<1, const ranges::subrange<I, S, K>> { // freestanding

using type = S; // freestanding
};

struct from_range_t { explicit from_range_t() = default; }; // freestanding
inline constexpr from_range_t from_range{}; // freestanding

}

1 Within this Clause, for an integer-like type X (25.3.4.4), make-unsigned-like-t<X> denotes make_unsigned_-
t<X> if X is an integer type; otherwise, it denotes a corresponding unspecified unsigned-integer-like type
of the same width as X. For an expression x of type X, to-unsigned-like(x) is x explicitly converted to
make-unsigned-like-t<X>.
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2 Also within this Clause, make-signed-like-t <X> for an integer-like type X denotes make_signed_t<X> if
X is an integer type; otherwise, it denotes a corresponding unspecified signed-integer-like type of the same
width as X.

26.3 Range access [range.access]
26.3.1 General [range.access.general]

1 In addition to being available via inclusion of the <ranges> header, the customization point objects in 26.3
are available when <iterator> (25.2) is included.

2 Within 26.3, the reified object of a subexpression E denotes
—(2.1) the same object as E if E is a glvalue, or
—(2.2) the result of applying the temporary materialization conversion (7.3.5) to E otherwise.

26.3.2 ranges::begin [range.access.begin]
1 The name ranges::begin denotes a customization point object (16.3.3.3.5).
2 Given a subexpression E with type T, let t be an lvalue that denotes the reified object for E. Then:

—(2.1) If E is an rvalue and enable_borrowed_range<remove_cv_t<T>> is false, ranges::begin(E) is ill-
formed.

—(2.2) Otherwise, if T is an array type (9.3.4.5) and remove_all_extents_t<T> is an incomplete type,
ranges::begin(E) is ill-formed with no diagnostic required.

—(2.3) Otherwise, if T is an array type, ranges::begin(E) is expression-equivalent to t + 0.
—(2.4) Otherwise, if auto(t.begin()) is a valid expression whose type models input_or_output_iterator,

ranges::begin(E) is expression-equivalent to auto(t.begin()).
—(2.5) Otherwise, if T is a class or enumeration type and auto(begin(t)) is a valid expression whose type

models input_or_output_iterator where the meaning of begin is established as-if by performing
argument-dependent lookup only (6.5.4), then ranges::begin(E) is expression-equivalent to that
expression.

—(2.6) Otherwise, ranges::begin(E) is ill-formed.
3 [Note 1 : Diagnosable ill-formed cases above result in substitution failure when ranges::begin(E) appears in the

immediate context of a template instantiation. — end note ]
4 [Note 2 : Whenever ranges::begin(E) is a valid expression, its type models input_or_output_iterator. — end

note ]

26.3.3 ranges::end [range.access.end]
1 The name ranges::end denotes a customization point object (16.3.3.3.5).
2 Given a subexpression E with type T, let t be an lvalue that denotes the reified object for E. Then:

—(2.1) If E is an rvalue and enable_borrowed_range<remove_cv_t<T>> is false, ranges::end(E) is ill-
formed.

—(2.2) Otherwise, if T is an array type (9.3.4.5) and remove_all_extents_t<T> is an incomplete type,
ranges::end(E) is ill-formed with no diagnostic required.

—(2.3) Otherwise, if T is an array of unknown bound, ranges::end(E) is ill-formed.
—(2.4) Otherwise, if T is an array, ranges::end(E) is expression-equivalent to t + extent_v<T>.
—(2.5) Otherwise, if auto(t.end()) is a valid expression whose type models sentinel_for<iterator_t<T>>

then ranges::end(E) is expression-equivalent to auto(t.end()).
—(2.6) Otherwise, if T is a class or enumeration type and auto(end(t)) is a valid expression whose type models

sentinel_for<iterator_t<T>> where the meaning of end is established as-if by performing argument-
dependent lookup only (6.5.4), then ranges::end(E) is expression-equivalent to that expression.

—(2.7) Otherwise, ranges::end(E) is ill-formed.
3 [Note 1 : Diagnosable ill-formed cases above result in substitution failure when ranges::end(E) appears in the

immediate context of a template instantiation. — end note ]
4 [Note 2 : Whenever ranges::end(E) is a valid expression, the types S and I of ranges::end(E) and ranges::begin(E)

model sentinel_for<S, I>. — end note ]
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26.3.4 ranges::cbegin [range.access.cbegin]
1 The name ranges::cbegin denotes a customization point object (16.3.3.3.5). Given a subexpression E with

type T, let t be an lvalue that denotes the reified object for E. Then:
—(1.1) If E is an rvalue and enable_borrowed_range<remove_cv_t<T>> is false, ranges::cbegin(E) is

ill-formed.
—(1.2) Otherwise, let U be ranges::begin(possibly-const-range (t)). ranges::cbegin(E) is expression-

equivalent to const_iterator<decltype(U)>(U).
2 [Note 1 : Whenever ranges::cbegin(E) is a valid expression, its type models input_or_output_iterator and

constant-iterator . — end note ]

26.3.5 ranges::cend [range.access.cend]
1 The name ranges::cend denotes a customization point object (16.3.3.3.5). Given a subexpression E with

type T, let t be an lvalue that denotes the reified object for E. Then:
—(1.1) If E is an rvalue and enable_borrowed_range<remove_cv_t<T>> is false, ranges::cend(E) is ill-

formed.
—(1.2) Otherwise, let U be ranges::end(possibly-const-range (t)). ranges::cend(E) is expression-

equivalent to const_sentinel<decltype(U)>(U).
2 [Note 1 : Whenever ranges::cend(E) is a valid expression, the types S and I of the expressions ranges::cend(E) and

ranges::cbegin(E) model sentinel_for<S, I>. If S models input_iterator, then S also models constant-itera-
tor . — end note ]

26.3.6 ranges::rbegin [range.access.rbegin]
1 The name ranges::rbegin denotes a customization point object (16.3.3.3.5).
2 Given a subexpression E with type T, let t be an lvalue that denotes the reified object for E. Then:

—(2.1) If E is an rvalue and enable_borrowed_range<remove_cv_t<T>> is false, ranges::rbegin(E) is
ill-formed.

—(2.2) Otherwise, if T is an array type (9.3.4.5) and remove_all_extents_t<T> is an incomplete type,
ranges::rbegin(E) is ill-formed with no diagnostic required.

—(2.3) Otherwise, if auto(t.rbegin()) is a valid expression whose type models input_or_output_iterator,
ranges::rbegin(E) is expression-equivalent to auto(t.rbegin()).

—(2.4) Otherwise, if T is a class or enumeration type and auto(rbegin(t)) is a valid expression whose type
models input_or_output_iterator where the meaning of rbegin is established as-if by performing
argument-dependent lookup only (6.5.4), then ranges::rbegin(E) is expression-equivalent to that
expression.

—(2.5) Otherwise, if both ranges::begin(t) and ranges::end(t) are valid expressions of the same type
which models bidirectional_iterator (25.3.4.12), ranges::rbegin(E) is expression-equivalent to
make_reverse_iterator(ranges::end(t)).

—(2.6) Otherwise, ranges::rbegin(E) is ill-formed.
3 [Note 1 : Diagnosable ill-formed cases above result in substitution failure when ranges::rbegin(E) appears in the

immediate context of a template instantiation. — end note ]
4 [Note 2 : Whenever ranges::rbegin(E) is a valid expression, its type models input_or_output_iterator. — end

note ]

26.3.7 ranges::rend [range.access.rend]
1 The name ranges::rend denotes a customization point object (16.3.3.3.5).
2 Given a subexpression E with type T, let t be an lvalue that denotes the reified object for E. Then:

—(2.1) If E is an rvalue and enable_borrowed_range<remove_cv_t<T>> is false, ranges::rend(E) is ill-
formed.

—(2.2) Otherwise, if T is an array type (9.3.4.5) and remove_all_extents_t<T> is an incomplete type,
ranges::rend(E) is ill-formed with no diagnostic required.

—(2.3) Otherwise, if auto(t.rend()) is a valid expression whose type models sentinel_for<decltype(
ranges::rbegin(E))> then ranges::rend(E) is expression-equivalent to auto(t.rend()).
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—(2.4) Otherwise, if T is a class or enumeration type and auto(rend(t)) is a valid expression whose type
models sentinel_for<decltype(ranges::rbegin(E))> where the meaning of rend is established as-if
by performing argument-dependent lookup only (6.5.4), then ranges::rend(E) is expression-equivalent
to that expression.

—(2.5) Otherwise, if both ranges::begin(t) and ranges::end(t) are valid expressions of the same type
which models bidirectional_iterator (25.3.4.12), then ranges::rend(E) is expression-equivalent
to make_reverse_iterator(ranges::begin(t)).

—(2.6) Otherwise, ranges::rend(E) is ill-formed.
3 [Note 1 : Diagnosable ill-formed cases above result in substitution failure when ranges::rend(E) appears in the

immediate context of a template instantiation. — end note ]
4 [Note 2 : Whenever ranges::rend(E) is a valid expression, the types S and I of the expressions ranges::rend(E)

and ranges::rbegin(E) model sentinel_for<S, I>. — end note ]

26.3.8 ranges::crbegin [range.access.crbegin]
1 The name ranges::crbegin denotes a customization point object (16.3.3.3.5). Given a subexpression E with

type T, let t be an lvalue that denotes the reified object for E. Then:
—(1.1) If E is an rvalue and enable_borrowed_range<remove_cv_t<T>> is false, ranges::crbegin(E) is

ill-formed.
—(1.2) Otherwise, let U be ranges::rbegin(possibly-const-range (t)). ranges::crbegin(E) is expres-

sion-equivalent to const_iterator<decltype(U)>(U).
2 [Note 1 : Whenever ranges::crbegin(E) is a valid expression, its type models input_or_output_iterator and

constant-iterator . — end note ]

26.3.9 ranges::crend [range.access.crend]
1 The name ranges::crend denotes a customization point object (16.3.3.3.5). Given a subexpression E with

type T, let t be an lvalue that denotes the reified object for E. Then:
—(1.1) If E is an rvalue and enable_borrowed_range<remove_cv_t<T>> is false, ranges::crend(E) is ill-

formed.
—(1.2) Otherwise, let U be ranges::rend(possibly-const-range (t)). ranges::crend(E) is expression-

equivalent to const_sentinel<decltype(U)>(U).
2 [Note 1 : Whenever ranges::crend(E) is a valid expression, the types S and I of the expressions ranges::crend(E) and

ranges::crbegin(E) model sentinel_for<S, I>. If S models input_iterator, then S also models constant-itera-
tor . — end note ]

26.3.10 ranges::size [range.prim.size]
1 The name ranges::size denotes a customization point object (16.3.3.3.5).
2 Given a subexpression E with type T, let t be an lvalue that denotes the reified object for E. Then:

—(2.1) If T is an array of unknown bound (9.3.4.5), ranges::size(E) is ill-formed.
—(2.2) Otherwise, if T is an array type, ranges::size(E) is expression-equivalent to auto(extent_v<T>).
—(2.3) Otherwise, if disable_sized_range<remove_cv_t<T>> (26.4.3) is false and auto(t.size()) is a

valid expression of integer-like type (25.3.4.4), ranges::size(E) is expression-equivalent to auto(
t.size()).

—(2.4) Otherwise, if T is a class or enumeration type, disable_sized_range<remove_cv_t<T>> is false and
auto(size(t)) is a valid expression of integer-like type where the meaning of size is established as-if
by performing argument-dependent lookup only (6.5.4), then ranges::size(E) is expression-equivalent
to that expression.

—(2.5) Otherwise, if to-unsigned-like(ranges::end(t) - ranges::begin(t)) (26.2) is a valid expres-
sion and the types I and S of ranges::begin(t) and ranges::end(t) (respectively) model both
sized_sentinel_for<S, I> (25.3.4.8) and forward_iterator<I>, then ranges::size(E) is expres-
sion-equivalent to to-unsigned-like(ranges::end(t) - ranges::begin(t)).

—(2.6) Otherwise, ranges::size(E) is ill-formed.
3 [Note 1 : Diagnosable ill-formed cases above result in substitution failure when ranges::size(E) appears in the

immediate context of a template instantiation. — end note ]
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4 [Note 2 : Whenever ranges::size(E) is a valid expression, its type is integer-like. — end note ]

26.3.11 ranges::ssize [range.prim.ssize]
1 The name ranges::ssize denotes a customization point object (16.3.3.3.5).
2 Given a subexpression E with type T, let t be an lvalue that denotes the reified object for E. If ranges::size(t)

is ill-formed, ranges::ssize(E) is ill-formed. Otherwise let D be make-signed-like-t <decltype(ranges::
size(t))>, or ptrdiff_t if it is wider than that type; ranges::ssize(E) is expression-equivalent to
static_cast<D>(ranges::size(t)).

26.3.12 ranges::empty [range.prim.empty]
1 The name ranges::empty denotes a customization point object (16.3.3.3.5).
2 Given a subexpression E with type T, let t be an lvalue that denotes the reified object for E. Then:

—(2.1) If T is an array of unknown bound (9.3.4.5), ranges::empty(E) is ill-formed.
—(2.2) Otherwise, if bool(t.empty()) is a valid expression, ranges::empty(E) is expression-equivalent to

bool(t.empty()).
—(2.3) Otherwise, if (ranges::size(t) == 0) is a valid expression, ranges::empty(E) is expression-equiva-

lent to (ranges::size(t) == 0).
—(2.4) Otherwise, if bool(ranges::begin(t) == ranges::end(t)) is a valid expression and the type of

ranges::begin(t) models forward_iterator, ranges::empty(E) is expression-equivalent to bool(
ranges::begin(t) == ranges::end(t)).

—(2.5) Otherwise, ranges::empty(E) is ill-formed.
3 [Note 1 : Diagnosable ill-formed cases above result in substitution failure when ranges::empty(E) appears in the

immediate context of a template instantiation. — end note ]
4 [Note 2 : Whenever ranges::empty(E) is a valid expression, it has type bool. — end note ]

26.3.13 ranges::data [range.prim.data]
1 The name ranges::data denotes a customization point object (16.3.3.3.5).
2 Given a subexpression E with type T, let t be an lvalue that denotes the reified object for E. Then:

—(2.1) If E is an rvalue and enable_borrowed_range<remove_cv_t<T>> is false, ranges::data(E) is ill-
formed.

—(2.2) Otherwise, if T is an array type (9.3.4.5) and remove_all_extents_t<T> is an incomplete type,
ranges::data(E) is ill-formed with no diagnostic required.

—(2.3) Otherwise, if auto(t.data()) is a valid expression of pointer to object type, ranges::data(E) is
expression-equivalent to auto(t.data()).

—(2.4) Otherwise, if ranges::begin(t) is a valid expression whose type models contiguous_iterator,
ranges::data(E) is expression-equivalent to to_address(ranges::begin(t)).

—(2.5) Otherwise, ranges::data(E) is ill-formed.
3 [Note 1 : Diagnosable ill-formed cases above result in substitution failure when ranges::data(E) appears in the

immediate context of a template instantiation. — end note ]
4 [Note 2 : Whenever ranges::data(E) is a valid expression, it has pointer to object type. — end note ]

26.3.14 ranges::cdata [range.prim.cdata]
template<class T>
constexpr auto as-const-pointer (const T* p) { return p; } // exposition only

1 The name ranges::cdata denotes a customization point object (16.3.3.3.5). Given a subexpression E with
type T, let t be an lvalue that denotes the reified object for E. Then:

—(1.1) If E is an rvalue and enable_borrowed_range<remove_cv_t<T>> is false, ranges::cdata(E) is ill-
formed.

—(1.2) Otherwise, ranges::cdata(E) is expression-equivalent to as-const-pointer (ranges::data(possi-
bly-const-range (t))).

2 [Note 1 : Whenever ranges::cdata(E) is a valid expression, it has pointer to constant object type. — end note ]
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26.4 Range requirements [range.req]
26.4.1 General [range.req.general]

1 Ranges are an abstraction that allows a C++ program to operate on elements of data structures uniformly. Call-
ing ranges::begin on a range returns an object whose type models input_or_output_iterator (25.3.4.6).
Calling ranges::end on a range returns an object whose type S, together with the type I of the object
returned by ranges::begin, models sentinel_for<S, I>. The library formalizes the interfaces, semantics,
and complexity of ranges to enable algorithms and range adaptors that work efficiently on different types of
sequences.

2 The range concept requires that ranges::begin and ranges::end return an iterator and a sentinel, respec-
tively. The sized_range concept refines range with the requirement that ranges::size be amortized O(1).
The view concept specifies requirements on a range type to provide operations with predictable complexity.

3 Several refinements of range group requirements that arise frequently in concepts and algorithms. Common
ranges are ranges for which ranges::begin and ranges::end return objects of the same type. Random access
ranges are ranges for which ranges::begin returns a type that models random_access_iterator (25.3.4.13).
(Contiguous, bidirectional, forward, input, and output ranges are defined similarly.) Viewable ranges can be
converted to views.

26.4.2 Ranges [range.range]
1 The range concept defines the requirements of a type that allows iteration over its elements by providing an

iterator and sentinel that denote the elements of the range.

template<class T>
concept range =

requires(T& t) {
ranges::begin(t); // sometimes equality-preserving (see below)
ranges::end(t);

};

2 The required expressions ranges::begin(t) and ranges::end(t) of the range concept do not require
implicit expression variations (18.2).

3 Given an expression t such that decltype((t)) is T&, T models range only if
—(3.1) [ranges::begin(t), ranges::end(t)) denotes a range (25.3.1),
—(3.2) both ranges::begin(t) and ranges::end(t) are amortized constant time and non-modifying,

and
—(3.3) if the type of ranges::begin(t) models forward_iterator, ranges::begin(t) is equality-

preserving.
4 [Note 1 : Equality preservation of both ranges::begin and ranges::end enables passing a range whose iterator

type models forward_iterator to multiple algorithms and making multiple passes over the range by repeated
calls to ranges::begin and ranges::end. Since ranges::begin is not required to be equality-preserving when
the return type does not model forward_iterator, it is possible for repeated calls to not return equal values or
to not be well-defined. — end note ]

template<class T>
concept borrowed_range =

range<T> && (is_lvalue_reference_v<T> || enable_borrowed_range<remove_cvref_t<T>>);

5 Let U be remove_reference_t<T> if T is an rvalue reference type, and T otherwise. Given a variable u
of type U, T models borrowed_range only if the validity of iterators obtained from u is not tied to the
lifetime of that variable.

6 [Note 2 : Since the validity of iterators is not tied to the lifetime of a variable whose type models borrowed_range,
a function with a parameter of such a type can return iterators obtained from it without danger of dangling.

— end note ]

template<class>
constexpr bool enable_borrowed_range = false;

7 Remarks: Pursuant to 16.4.5.2.1, users may specialize enable_borrowed_range for cv-unqualified
program-defined types. Such specializations shall be usable in constant expressions (7.7) and have type
const bool.
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8 [Example 1 : Each specialization S of class template subrange (26.5.4) models borrowed_range because
—(8.1) enable_borrowed_range<S> is specialized to have the value true, and
—(8.2) S’s iterators do not have validity tied to the lifetime of an S object because they are “borrowed” from

some other range.
— end example ]

26.4.3 Sized ranges [range.sized]
1 The sized_range concept refines range with the requirement that the number of elements in the range can

be determined in amortized constant time using ranges::size.

template<class T>
concept sized_range =

range<T> && requires(T& t) { ranges::size(t); };

2 Given an lvalue t of type remove_reference_t<T>, T models sized_range only if
—(2.1) ranges::size(t) is amortized O(1), does not modify t, and is equal to ranges::distance(

ranges::begin(t), ranges::end(t)), and
—(2.2) if iterator_t<T> models forward_iterator, ranges::size(t) is well-defined regardless of the

evaluation of ranges::begin(t).
[Note 1 : ranges::size(t) is otherwise not required to be well-defined after evaluating ranges::begin(t).
For example, it is possible for ranges::size(t) to be well-defined for a sized_range whose iterator type
does not model forward_iterator only if evaluated before the first call to ranges::begin(t). — end
note ]

template<class>
constexpr bool disable_sized_range = false;

3 Remarks: Pursuant to 16.4.5.2.1, users may specialize disable_sized_range for cv-unqualified program-
defined types. Such specializations shall be usable in constant expressions (7.7) and have type const
bool.

4 [Note 2 : disable_sized_range allows use of range types with the library that satisfy but do not in fact model
sized_range. — end note ]

26.4.4 Views [range.view]
1 The view concept specifies the requirements of a range type that has the semantic properties below, which

make it suitable for use in constructing range adaptor pipelines (26.7).

template<class T>
concept view =

range<T> && movable<T> && enable_view<T>;

2 T models view only if:
—(2.1) T has O(1) move construction; and
—(2.2) move assignment of an object of type T is no more complex than destruction followed by move

construction; and
—(2.3) if N copies and/or moves are made from an object of type T that contained M elements, then

those N objects have O(N + M) destruction; and
—(2.4) copy_constructible<T> is false, or T has O(1) copy construction; and
—(2.5) copyable<T> is false, or copy assignment of an object of type T is no more complex than

destruction followed by copy construction.
3 [Note 1 : The constraints on copying and moving imply that a moved-from object of type T has O(1) destruction.

— end note ]
4 [Example 1 : Examples of views are:

—(4.1) A range type that wraps a pair of iterators.
—(4.2) A range type that holds its elements by shared_ptr and shares ownership with all its copies.
—(4.3) A range type that generates its elements on demand.
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A container such as vector<string> does not meet the semantic requirements of view since copying the
container copies all of the elements, which cannot be done in constant time. — end example ]

5 Since the difference between range and view is largely semantic, the two are differentiated with the help of
enable_view.

template<class T>
constexpr bool is-derived-from-view-interface = see below; // exposition only

template<class T>
constexpr bool enable_view =

derived_from<T, view_base> || is-derived-from-view-interface <T>;

6 For a type T, is-derived-from-view-interface <T> is true if and only if T has exactly one public
base class view_interface<U> for some type U and T has no base classes of type view_interface<V>
for any other type V.

7 Remarks: Pursuant to 16.4.5.2.1, users may specialize enable_view to true for cv-unqualified program-
defined types which model view, and false for types which do not. Such specializations shall be usable
in constant expressions (7.7) and have type const bool.

26.4.5 Other range refinements [range.refinements]
1 The output_range concept specifies requirements of a range type for which ranges::begin returns a model of

output_iterator (25.3.4.10). input_range, forward_range, bidirectional_range, and random_access_-
range are defined similarly.

template<class R, class T>
concept output_range =

range<R> && output_iterator<iterator_t<R>, T>;

template<class T>
concept input_range =

range<T> && input_iterator<iterator_t<T>>;

template<class T>
concept forward_range =

input_range<T> && forward_iterator<iterator_t<T>>;

template<class T>
concept bidirectional_range =

forward_range<T> && bidirectional_iterator<iterator_t<T>>;

template<class T>
concept random_access_range =

bidirectional_range<T> && random_access_iterator<iterator_t<T>>;

2 contiguous_range additionally requires that the ranges::data customization point object (26.3.13) is
usable with the range.

template<class T>
concept contiguous_range =

random_access_range<T> && contiguous_iterator<iterator_t<T>> &&
requires(T& t) {

{ ranges::data(t) } -> same_as<add_pointer_t<range_reference_t<T>>>;
};

3 Given an expression t such that decltype((t)) is T&, T models contiguous_range only if to_address(
ranges::begin(t)) == ranges::data(t) is true.

4 The common_range concept specifies requirements of a range type for which ranges::begin and ranges::end
return objects of the same type.
[Example 1 : The standard containers (Clause 24) model common_range. — end example ]

template<class T>
concept common_range =

range<T> && same_as<iterator_t<T>, sentinel_t<T>>;
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template<class R>
constexpr bool is-initializer-list = see below ; // exposition only

5 For a type R, is-initializer-list <R> is true if and only if remove_cvref_t<R> is a specialization
of initializer_list.

6 The viewable_range concept specifies the requirements of a range type that can be converted to a view
safely.

template<class T>
concept viewable_range =

range<T> &&
((view<remove_cvref_t<T>> && constructible_from<remove_cvref_t<T>, T>) ||
(!view<remove_cvref_t<T>> &&
(is_lvalue_reference_v<T> || (movable<remove_reference_t<T>> && !is-initializer-list <T>))));

7 The constant_range concept specifies the requirements of a range type whose elements are not modifiable.

template<class T>
concept constant_range =

input_range<T> && constant-iterator <iterator_t<T>>;

26.5 Range utilities [range.utility]
26.5.1 General [range.utility.general]

1 The components in 26.5 are general utilities for representing and manipulating ranges.

26.5.2 Helper concepts [range.utility.helpers]
1 Many of the types in subclause 26.5 are specified in terms of the following exposition-only concepts:

template<class R>
concept simple-view = // exposition only

view<R> && range<const R> &&
same_as<iterator_t<R>, iterator_t<const R>> &&
same_as<sentinel_t<R>, sentinel_t<const R>>;

template<class I>
concept has-arrow = // exposition only

input_iterator<I> && (is_pointer_v<I> || requires(I i) { i.operator->(); });

template<class T, class U>
concept different-from = // exposition only

!same_as<remove_cvref_t<T>, remove_cvref_t<U>>;

template<class R>
concept range-with-movable-references = // exposition only

input_range<R> && move_constructible<range_reference_t<R>> &&
move_constructible<range_rvalue_reference_t<R>>;

26.5.3 View interface [view.interface]
26.5.3.1 General [view.interface.general]

1 The class template view_interface is a helper for defining view-like types that offer a container-like interface.
It is parameterized with the type that is derived from it.

namespace std::ranges {
template<class D>

requires is_class_v<D> && same_as<D, remove_cv_t<D>>
class view_interface {
private:

constexpr D& derived() noexcept { // exposition only
return static_cast<D&>(*this);

}
constexpr const D& derived() const noexcept { // exposition only

return static_cast<const D&>(*this);
}
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public:
constexpr bool empty() requires sized_range<D> || forward_range<D> {

if constexpr (sized_range<D>)
return ranges::size(derived ()) == 0;

else
return ranges::begin(derived ()) == ranges::end(derived ());

}
constexpr bool empty() const requires sized_range<const D> || forward_range<const D> {

if constexpr (sized_range<const D>)
return ranges::size(derived ()) == 0;

else
return ranges::begin(derived ()) == ranges::end(derived ());

}

constexpr auto cbegin() requires input_range<D> {
return ranges::cbegin(derived ());

}
constexpr auto cbegin() const requires input_range<const D> {

return ranges::cbegin(derived ());
}
constexpr auto cend() requires input_range<D> {

return ranges::cend(derived ());
}
constexpr auto cend() const requires input_range<const D> {

return ranges::cend(derived ());
}

constexpr explicit operator bool()
requires requires { ranges::empty(derived ()); } {

return !ranges::empty(derived ());
}

constexpr explicit operator bool() const
requires requires { ranges::empty(derived ()); } {

return !ranges::empty(derived ());
}

constexpr auto data() requires contiguous_iterator<iterator_t<D>> {
return to_address(ranges::begin(derived ()));

}
constexpr auto data() const

requires range<const D> && contiguous_iterator<iterator_t<const D>> {
return to_address(ranges::begin(derived ()));

}

constexpr auto size() requires forward_range<D> &&
sized_sentinel_for<sentinel_t<D>, iterator_t<D>> {

return to-unsigned-like (ranges::end(derived ()) - ranges::begin(derived ()));
}

constexpr auto size() const requires forward_range<const D> &&
sized_sentinel_for<sentinel_t<const D>, iterator_t<const D>> {

return to-unsigned-like (ranges::end(derived ()) - ranges::begin(derived ()));
}

constexpr decltype(auto) front() requires forward_range<D>;
constexpr decltype(auto) front() const requires forward_range<const D>;

constexpr decltype(auto) back() requires bidirectional_range<D> && common_range<D>;
constexpr decltype(auto) back() const

requires bidirectional_range<const D> && common_range<const D>;

template<random_access_range R = D>
constexpr decltype(auto) operator[](range_difference_t<R> n) {

return ranges::begin(derived ())[n];
}
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template<random_access_range R = const D>
constexpr decltype(auto) operator[](range_difference_t<R> n) const {

return ranges::begin(derived ())[n];
}

};
}

2 The template parameter D for view_interface may be an incomplete type. Before any member of the
resulting specialization of view_interface other than special member functions is referenced, D shall be
complete, and model both derived_from<view_interface<D>> and view.

26.5.3.2 Members [view.interface.members]

constexpr decltype(auto) front() requires forward_range<D>;
constexpr decltype(auto) front() const requires forward_range<const D>;

1 Preconditions: !empty() is true.
2 Effects: Equivalent to: return *ranges::begin(derived ());

constexpr decltype(auto) back() requires bidirectional_range<D> && common_range<D>;
constexpr decltype(auto) back() const

requires bidirectional_range<const D> && common_range<const D>;

3 Preconditions: !empty() is true.
4 Effects: Equivalent to: return *ranges::prev(ranges::end(derived ()));

26.5.4 Sub-ranges [range.subrange]
26.5.4.1 General [range.subrange.general]

1 The subrange class template combines together an iterator and a sentinel into a single object that models
the view concept. Additionally, it models the sized_range concept when the final template parameter is
subrange_kind::sized.

namespace std::ranges {
template<class From, class To>

concept uses-nonqualification-pointer-conversion = // exposition only
is_pointer_v<From> && is_pointer_v<To> &&
!convertible_to<remove_pointer_t<From>(*)[], remove_pointer_t<To>(*)[]>;

template<class From, class To>
concept convertible-to-non-slicing = // exposition only

convertible_to<From, To> &&
!uses-nonqualification-pointer-conversion <decay_t<From>, decay_t<To>>;

template<class T, class U, class V>
concept pair-like-convertible-from = // exposition only

!range<T> && !is_reference_v<T> && pair-like <T> &&
constructible_from<T, U, V> &&
convertible-to-non-slicing <U, tuple_element_t<0, T>> &&
convertible_to<V, tuple_element_t<1, T>>;

template<input_or_output_iterator I, sentinel_for<I> S = I, subrange_kind K =
sized_sentinel_for<S, I> ? subrange_kind::sized : subrange_kind::unsized>

requires (K == subrange_kind::sized || !sized_sentinel_for<S, I>)
class subrange : public view_interface<subrange<I, S, K>> {
private:

static constexpr bool StoreSize = // exposition only
K == subrange_kind::sized && !sized_sentinel_for<S, I>;

I begin_ = I(); // exposition only
S end_ = S(); // exposition only
make-unsigned-like-t<iter_difference_t<I>> size_ = 0; // exposition only; present only

// if StoreSize is true
public:

subrange() requires default_initializable<I> = default;

constexpr subrange(convertible-to-non-slicing <I> auto i, S s) requires (!StoreSize );
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constexpr subrange(convertible-to-non-slicing <I> auto i, S s,
make-unsigned-like-t<iter_difference_t<I>> n)

requires (K == subrange_kind::sized);

template<different-from <subrange> R>
requires borrowed_range<R> &&

convertible-to-non-slicing <iterator_t<R>, I> &&
convertible_to<sentinel_t<R>, S>

constexpr subrange(R&& r) requires (!StoreSize || sized_range<R>);

template<borrowed_range R>
requires convertible-to-non-slicing <iterator_t<R>, I> &&

convertible_to<sentinel_t<R>, S>
constexpr subrange(R&& r, make-unsigned-like-t<iter_difference_t<I>> n)

requires (K == subrange_kind::sized)
: subrange{ranges::begin(r), ranges::end(r), n} {}

template<different-from <subrange> PairLike>
requires pair-like-convertible-from <PairLike, const I&, const S&>

constexpr operator PairLike() const;

constexpr I begin() const requires copyable<I>;
[[nodiscard]] constexpr I begin() requires (!copyable<I>);
constexpr S end() const;

constexpr bool empty() const;
constexpr make-unsigned-like-t<iter_difference_t<I>> size() const

requires (K == subrange_kind::sized);

[[nodiscard]] constexpr subrange next(iter_difference_t<I> n = 1) const &
requires forward_iterator<I>;

[[nodiscard]] constexpr subrange next(iter_difference_t<I> n = 1) &&;
[[nodiscard]] constexpr subrange prev(iter_difference_t<I> n = 1) const

requires bidirectional_iterator<I>;
constexpr subrange& advance(iter_difference_t<I> n);

};

template<input_or_output_iterator I, sentinel_for<I> S>
subrange(I, S) -> subrange<I, S>;

template<input_or_output_iterator I, sentinel_for<I> S>
subrange(I, S, make-unsigned-like-t<iter_difference_t<I>>) ->

subrange<I, S, subrange_kind::sized>;

template<borrowed_range R>
subrange(R&&) ->

subrange<iterator_t<R>, sentinel_t<R>,
(sized_range<R> || sized_sentinel_for<sentinel_t<R>, iterator_t<R>>)

? subrange_kind::sized : subrange_kind::unsized>;

template<borrowed_range R>
subrange(R&&, make-unsigned-like-t<range_difference_t<R>>) ->

subrange<iterator_t<R>, sentinel_t<R>, subrange_kind::sized>;
}

26.5.4.2 Constructors and conversions [range.subrange.ctor]

constexpr subrange(convertible-to-non-slicing <I> auto i, S s) requires (!StoreSize );

1 Preconditions: [i, s) is a valid range.
2 Effects: Initializes begin_ with std::move(i) and end_ with s.
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constexpr subrange(convertible-to-non-slicing <I> auto i, S s,
make-unsigned-like-t<iter_difference_t<I>> n)

requires (K == subrange_kind::sized);

3 Preconditions: [i, s) is a valid range, and n == to-unsigned-like(ranges::distance(i, s)) is
true.

4 Effects: Initializes begin_ with std::move(i) and end_ with s. If StoreSize is true, initializes
size_ with n.

5 [Note 1 : Accepting the length of the range and storing it to later return from size() enables subrange to model
sized_range even when it stores an iterator and sentinel that do not model sized_sentinel_for. — end note ]

template<different-from <subrange> R>
requires borrowed_range<R> &&

convertible-to-non-slicing <iterator_t<R>, I> &&
convertible_to<sentinel_t<R>, S>

constexpr subrange(R&& r) requires (!StoreSize || sized_range<R>);

6 Effects: Equivalent to:
—(6.1) If StoreSize is true, subrange(r, static_cast<decltype(size_)>(ranges::size(r))).
—(6.2) Otherwise, subrange(ranges::begin(r), ranges::end(r)).

template<different-from <subrange> PairLike>
requires pair-like-convertible-from <PairLike, const I&, const S&>

constexpr operator PairLike() const;

7 Effects: Equivalent to: return PairLike(begin_, end_);

26.5.4.3 Accessors [range.subrange.access]

constexpr I begin() const requires copyable<I>;

1 Effects: Equivalent to: return begin_;

[[nodiscard]] constexpr I begin() requires (!copyable<I>);

2 Effects: Equivalent to: return std::move(begin_);

constexpr S end() const;

3 Effects: Equivalent to: return end_;

constexpr bool empty() const;

4 Effects: Equivalent to: return begin_ == end_;

constexpr make-unsigned-like-t<iter_difference_t<I>> size() const
requires (K == subrange_kind::sized);

5 Effects:
—(5.1) If StoreSize is true, equivalent to: return size_;
—(5.2) Otherwise, equivalent to: return to-unsigned-like(end_ - begin_);

[[nodiscard]] constexpr subrange next(iter_difference_t<I> n = 1) const &
requires forward_iterator<I>;

6 Effects: Equivalent to:
auto tmp = *this;
tmp.advance(n);
return tmp;

[[nodiscard]] constexpr subrange next(iter_difference_t<I> n = 1) &&;

7 Effects: Equivalent to:
advance(n);
return std::move(*this);
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[[nodiscard]] constexpr subrange prev(iter_difference_t<I> n = 1) const
requires bidirectional_iterator<I>;

8 Effects: Equivalent to:
auto tmp = *this;
tmp.advance(-n);
return tmp;

constexpr subrange& advance(iter_difference_t<I> n);

9 Effects: Equivalent to:
if constexpr (bidirectional_iterator<I>) {

if (n < 0) {
ranges::advance(begin_, n);
if constexpr (StoreSize )

size_ += to-unsigned-like(-n);
return *this;

}
}

auto d = n - ranges::advance(begin_, n, end_);
if constexpr (StoreSize )

size_ -= to-unsigned-like(d);
return *this;

template<size_t N, class I, class S, subrange_kind K>
requires ((N == 0 && copyable<I>) || N == 1)
constexpr auto get(const subrange<I, S, K>& r);

template<size_t N, class I, class S, subrange_kind K>
requires (N < 2)
constexpr auto get(subrange<I, S, K>&& r);

10 Effects: Equivalent to:
if constexpr (N == 0)

return r.begin();
else

return r.end();

26.5.5 Dangling iterator handling [range.dangling]
1 The type dangling is used together with the template aliases borrowed_iterator_t and borrowed_-

subrange_t. When an algorithm that typically returns an iterator into, or a subrange of, a range argument
is called with an rvalue range argument that does not model borrowed_range (26.4.2), the return value
possibly refers to a range whose lifetime has ended. In such cases, the type dangling is returned instead of
an iterator or subrange.

namespace std::ranges {
struct dangling {

constexpr dangling() noexcept = default;
constexpr dangling(auto&&...) noexcept {}

};
}

2 [Example 1 :
vector<int> f();
auto result1 = ranges::find(f(), 42); // #1
static_assert(same_as<decltype(result1), ranges::dangling>);
auto vec = f();
auto result2 = ranges::find(vec, 42); // #2
static_assert(same_as<decltype(result2), vector<int>::iterator>);
auto result3 = ranges::find(ranges::subrange{vec}, 42); // #3
static_assert(same_as<decltype(result3), vector<int>::iterator>);

The call to ranges::find at #1 returns ranges::dangling since f() is an rvalue vector; it is possible for the vector
to be destroyed before a returned iterator is dereferenced. However, the calls at #2 and #3 both return iterators
since the lvalue vec and specializations of subrange model borrowed_range. — end example ]
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3 For a type R that models range:
—(3.1) if R models borrowed_range, then borrowed_iterator_t<R> denotes iterator_t<R>, and borrowed_-

subrange_t<R> denotes subrange<iterator_t<R>>;
—(3.2) otherwise, both borrowed_iterator_t<R> and borrowed_subrange_t<R> denote dangling.

26.5.6 Class template elements_of [range.elementsof]
Specializations of elements_of encapsulate a range and act as a tag in overload sets to disambiguate when a
range should be treated as a sequence rather than a single value.
[Example 1 :

template<bool YieldElements>
generator<any> f(ranges::input_range auto&& r) {

if constexpr (YieldElements)
co_yield ranges::elements_of(r); // yield each element of r

else
co_yield r; // yield r as a single value

}

— end example ]
namespace std::ranges {

template<range R, class Allocator = allocator<byte>>
struct elements_of {

[[no_unique_address]] R range;
[[no_unique_address]] Allocator allocator = Allocator();

};

template<class R, class Allocator = allocator<byte>>
elements_of(R&&, Allocator = Allocator()) -> elements_of<R&&, Allocator>;

}

26.5.7 Range conversions [range.utility.conv]
26.5.7.1 General [range.utility.conv.general]

1 The range conversion functions construct an object (usually a container) from a range, by using a constructor
taking a range, a from_range_t tagged constructor, or a constructor taking a pair of iterators, or by inserting
each element of the range into the default-constructed object.

2 ranges::to is applied recursively, allowing the conversion of a range of ranges.
[Example 1 :

string_view str = "the quick brown fox";
auto words = views::split(str, ' ') | to<vector<string>>();
// words is vector<string>{"the", "quick", "brown", "fox"}

— end example ]
3 Let reservable-container be defined as follows:

template<class Container>
constexpr bool reservable-container = // exposition only

sized_range<Container> &&
requires(Container& c, range_size_t<Container> n) {

c.reserve(n);
{ c.capacity() } -> same_as<decltype(n)>;
{ c.max_size() } -> same_as<decltype(n)>;

};

4 Let container-insertable be defined as follows:
template<class Container, class Ref>
constexpr bool container-insertable = // exposition only

requires(Container& c, Ref&& ref) {
requires (requires { c.push_back(std::forward<Ref>(ref)); } ||

requires { c.insert(c.end(), std::forward<Ref>(ref)); });
};
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5 Let container-inserter be defined as follows:
template<class Ref, class Container>
constexpr auto container-inserter (Container& c) { // exposition only

if constexpr (requires { c.push_back(declval<Ref>()); })
return back_inserter(c);

else
return inserter(c, c.end());

}

26.5.7.2 ranges::to [range.utility.conv.to]

template<class C, input_range R, class... Args> requires (!view<C>)
constexpr C to(R&& r, Args&&... args);

1 Mandates: C is a cv-unqualified class type.
2 Returns: An object of type C constructed from the elements of r in the following manner:

—(2.1) If C does not satisfy input_range or convertible_to<range_reference_t<R>, range_value_-
t<C>> is true:
—(2.1.1) If constructible_from<C, R, Args...> is true:

C(std::forward<R>(r), std::forward<Args>(args)...)

—(2.1.2) Otherwise, if constructible_from<C, from_range_t, R, Args...> is true:
C(from_range, std::forward<R>(r), std::forward<Args>(args)...)

—(2.1.3) Otherwise, if
—(2.1.3.1) common_range<R> is true,
—(2.1.3.2) the qualified-id iterator_traits<iterator_t<R>>::iterator_category is valid and

denotes a type that models derived_from<input_iterator_tag>, and
—(2.1.3.3) constructible_from<C, iterator_t<R>, sentinel_t<R>, Args...> is true:

C(ranges::begin(r), ranges::end(r), std::forward<Args>(args)...)

—(2.1.4) Otherwise, if
—(2.1.4.1) constructible_from<C, Args...> is true, and
—(2.1.4.2) container-insertable <C, range_reference_t<R>> is true:

C c(std::forward<Args>(args)...);
if constexpr (sized_range<R> && reservable-container <C>)

c.reserve(static_cast<range_size_t<C>>(ranges::size(r)));
ranges::copy(r, container-inserter <range_reference_t<R>>(c));

—(2.2) Otherwise, if input_range<range_reference_t<R>> is true:
to<C>(r | views::transform([](auto&& elem) {

return to<range_value_t<C>>(std::forward<decltype(elem)>(elem));
}), std::forward<Args>(args)...);

—(2.3) Otherwise, the program is ill-formed.

template<template<class...> class C, input_range R, class... Args>
constexpr auto to(R&& r, Args&&... args);

3 Let input-iterator be an exposition-only type:
struct input-iterator { // exposition only

using iterator_category = input_iterator_tag;
using value_type = range_value_t<R>;
using difference_type = ptrdiff_t;
using pointer = add_pointer_t<range_reference_t<R>>;
using reference = range_reference_t<R>;
reference operator*() const;
pointer operator->() const;
input-iterator & operator++();
input-iterator operator++(int);
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bool operator==(const input-iterator &) const;
};

[Note 1 : input-iterator meets the syntactic requirements of Cpp17InputIterator. — end note ]
4 Let DEDUCE_EXPR be defined as follows:

—(4.1) C(declval<R>(), declval<Args>()...) if that is a valid expression,
—(4.2) otherwise, C(from_range, declval<R>(), declval<Args>()...) if that is a valid expression,
—(4.3) otherwise,

C(declval<input-iterator >(), declval<input-iterator >(), declval<Args>()...)

if that is a valid expression,
—(4.4) otherwise, the program is ill-formed.

5 Returns: to<decltype(DEDUCE_EXPR )>(std::forward<R>(r), std::forward<Args>(args)...).

26.5.7.3 ranges::to adaptors [range.utility.conv.adaptors]

template<class C, class... Args> requires (!view<C>)
constexpr auto to(Args&&... args);

template<template<class...> class C, class... Args>
constexpr auto to(Args&&... args);

1 Mandates: For the first overload, C is a cv-unqualified class type.
2 Returns: A range adaptor closure object (26.7.2) f that is a perfect forwarding call wrapper (22.10.4)

with the following properties:
—(2.1) It has no target object.
—(2.2) Its bound argument entities bound_args consist of objects of types decay_t<Args>... direct-non-

list-initialized with std::forward<Args>(args)..., respectively.
—(2.3) Its call pattern is to<C>(r, bound_args...), where r is the argument used in a function call

expression of f.

26.6 Range factories [range.factories]
26.6.1 General [range.factories.general]

1 Subclause 26.6 defines range factories, which are utilities to create a view.
2 Range factories are declared in namespace std::ranges::views.

26.6.2 Empty view [range.empty]
26.6.2.1 Overview [range.empty.overview]

1 empty_view produces a view of no elements of a particular type.
2 [Example 1 :

auto e = views::empty<int>;
static_assert(ranges::empty(e));
static_assert(0 == e.size());

— end example ]

26.6.2.2 Class template empty_view [range.empty.view]
namespace std::ranges {

template<class T>
requires is_object_v<T>

class empty_view : public view_interface<empty_view<T>> {
public:

static constexpr T* begin() noexcept { return nullptr; }
static constexpr T* end() noexcept { return nullptr; }
static constexpr T* data() noexcept { return nullptr; }
static constexpr size_t size() noexcept { return 0; }
static constexpr bool empty() noexcept { return true; }

};
}
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26.6.3 Single view [range.single]
26.6.3.1 Overview [range.single.overview]

1 single_view produces a view that contains exactly one element of a specified value.
2 The name views::single denotes a customization point object (16.3.3.3.5). Given a subexpression E, the

expression views::single(E) is expression-equivalent to single_view<decay_t<decltype((E))>>(E).
3 [Example 1 :

for (int i : views::single(4))
cout << i; // prints 4

— end example ]

26.6.3.2 Class template single_view [range.single.view]
namespace std::ranges {

template<move_constructible T>
requires is_object_v<T>

class single_view : public view_interface<single_view<T>> {
private:

movable-box<T> value_; // exposition only (see 26.7.3)

public:
single_view() requires default_initializable<T> = default;
constexpr explicit single_view(const T& t) requires copy_constructible<T>;
constexpr explicit single_view(T&& t);
template<class... Args>

requires constructible_from<T, Args...>
constexpr explicit single_view(in_place_t, Args&&... args);

constexpr T* begin() noexcept;
constexpr const T* begin() const noexcept;
constexpr T* end() noexcept;
constexpr const T* end() const noexcept;
static constexpr size_t size() noexcept;
constexpr T* data() noexcept;
constexpr const T* data() const noexcept;

};

template<class T>
single_view(T) -> single_view<T>;

}

constexpr explicit single_view(const T& t) requires copy_constructible<T>;

1 Effects: Initializes value_ with t.

constexpr explicit single_view(T&& t);

2 Effects: Initializes value_ with std::move(t).

template<class... Args>
requires constructible_from<T, Args...>

constexpr explicit single_view(in_place_t, Args&&... args);

3 Effects: Initializes value_ as if by value_{in_place, std::forward<Args>(args)...}.

constexpr T* begin() noexcept;
constexpr const T* begin() const noexcept;

4 Effects: Equivalent to: return data();

constexpr T* end() noexcept;
constexpr const T* end() const noexcept;

5 Effects: Equivalent to: return data() + 1;

static constexpr size_t size() noexcept;

6 Effects: Equivalent to: return 1;
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constexpr T* data() noexcept;
constexpr const T* data() const noexcept;

7 Effects: Equivalent to: return value_.operator->();

26.6.4 Iota view [range.iota]
26.6.4.1 Overview [range.iota.overview]

1 iota_view generates a sequence of elements by repeatedly incrementing an initial value.
2 The name views::iota denotes a customization point object (16.3.3.3.5). Given subexpressions E and F,

the expressions views::iota(E) and views::iota(E, F) are expression-equivalent to iota_view(E) and
iota_view(E, F), respectively.

3 [Example 1 :
for (int i : views::iota(1, 10))

cout << i << ' '; // prints 1 2 3 4 5 6 7 8 9

— end example ]

26.6.4.2 Class template iota_view [range.iota.view]
namespace std::ranges {

template<class I>
concept decrementable = see below; // exposition only

template<class I>
concept advanceable = see below; // exposition only

template<weakly_incrementable W, semiregular Bound = unreachable_sentinel_t>
requires weakly-equality-comparable-with <W, Bound> && copyable<W>

class iota_view : public view_interface<iota_view<W, Bound>> {
private:

// 26.6.4.3, class iota_view::iterator
struct iterator; // exposition only

// 26.6.4.4, class iota_view::sentinel
struct sentinel; // exposition only

W value_ = W(); // exposition only
Bound bound_ = Bound(); // exposition only

public:
iota_view() requires default_initializable<W> = default;
constexpr explicit iota_view(W value);
constexpr explicit iota_view(type_identity_t<W> value, type_identity_t<Bound> bound);
constexpr explicit iota_view(iterator first, see below last);

constexpr iterator begin() const;
constexpr auto end() const;
constexpr iterator end() const requires same_as<W, Bound>;

constexpr auto size() const requires see below ;
};

template<class W, class Bound>
requires (!is-integer-like <W> || !is-integer-like <Bound> ||

(is-signed-integer-like <W> == is-signed-integer-like <Bound>))
iota_view(W, Bound) -> iota_view<W, Bound>;

}

1 Let IOTA-DIFF-T(W) be defined as follows:
—(1.1) If W is not an integral type, or if it is an integral type and sizeof(iter_difference_t<W>) is greater

than sizeof(W), then IOTA-DIFF-T(W) denotes iter_difference_t<W>.
—(1.2) Otherwise, IOTA-DIFF-T(W) is a signed integer type of width greater than the width of W if such a type

exists.
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—(1.3) Otherwise, IOTA-DIFF-T(W) is an unspecified signed-integer-like type (25.3.4.4) of width not less than
the width of W.
[Note 1 : It is unspecified whether this type satisfies weakly_incrementable. — end note ]

2 The exposition-only decrementable concept is equivalent to:

template<class I>
concept decrementable = // exposition only

incrementable<I> && requires(I i) {
{ --i } -> same_as<I&>;
{ i-- } -> same_as<I>;

};

3 When an object is in the domain of both pre- and post-decrement, the object is said to be decrementable.
4 Let a and b be equal objects of type I. I models decrementable only if

—(4.1) If a and b are decrementable, then the following are all true:
—(4.1.1) addressof(--a) == addressof(a)
—(4.1.2) bool(a-- == b)
—(4.1.3) bool(((void)a--, a) == --b)
—(4.1.4) bool(++(--a) == b).

—(4.2) If a and b are incrementable, then bool(--(++a) == b).
5 The exposition-only advanceable concept is equivalent to:

template<class I>
concept advanceable = // exposition only

decrementable <I> && totally_ordered<I> &&
requires(I i, const I j, const IOTA-DIFF-T(I) n) {

{ i += n } -> same_as<I&>;
{ i -= n } -> same_as<I&>;
I(j + n);
I(n + j);
I(j - n);
{ j - j } -> convertible_to<IOTA-DIFF-T(I)>;

};

Let D be IOTA-DIFF-T(I). Let a and b be objects of type I such that b is reachable from a after n applications
of ++a, for some value n of type D. I models advanceable only if

—(5.1) (a += n) is equal to b.
—(5.2) addressof(a += n) is equal to addressof(a).
—(5.3) I(a + n) is equal to (a += n).
—(5.4) For any two positive values x and y of type D, if I(a + D(x + y)) is well-defined, then I(a + D(x +

y)) is equal to I(I(a + x) + y).
—(5.5) I(a + D(0)) is equal to a.
—(5.6) If I(a + D(n - 1)) is well-defined, then I(a + n) is equal to [](I c) { return ++c; }(I(a + D(n

- 1))).
—(5.7) (b += -n) is equal to a.
—(5.8) (b -= n) is equal to a.
—(5.9) addressof(b -= n) is equal to addressof(b).
—(5.10) I(b - n) is equal to (b -= n).
—(5.11) D(b - a) is equal to n.
—(5.12) D(a - b) is equal to D(-n).
—(5.13) bool(a <= b) is true.
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constexpr explicit iota_view(W value);

6 Preconditions: Bound denotes unreachable_sentinel_t or Bound() is reachable from value. When W
and Bound model totally_ordered_with, then bool(value <= Bound()) is true.

7 Effects: Initializes value_ with value.

constexpr explicit iota_view(type_identity_t<W> value, type_identity_t<Bound> bound);

8 Preconditions: Bound denotes unreachable_sentinel_t or bound is reachable from value. When W
and Bound model totally_ordered_with, then bool(value <= bound) is true.

9 Effects: Initializes value_ with value and bound_ with bound.

constexpr explicit iota_view(iterator first, see below last);

10 Effects: Equivalent to:
—(10.1) If same_as<W, Bound> is true, iota_view(first.value_, last.value_).
—(10.2) Otherwise, if Bound denotes unreachable_sentinel_t, iota_view(first.value_, last).
—(10.3) Otherwise, iota_view(first.value_, last.bound_).

11 Remarks: The type of last is:
—(11.1) If same_as<W, Bound> is true, iterator .
—(11.2) Otherwise, if Bound denotes unreachable_sentinel_t, Bound.
—(11.3) Otherwise, sentinel .

constexpr iterator begin() const;

12 Effects: Equivalent to: return iterator {value_};

constexpr auto end() const;

13 Effects: Equivalent to:
if constexpr (same_as<Bound, unreachable_sentinel_t>)

return unreachable_sentinel;
else

return sentinel {bound_};

constexpr iterator end() const requires same_as<W, Bound>;

14 Effects: Equivalent to: return iterator {bound_};

constexpr auto size() const requires see below ;

15 Effects: Equivalent to:
if constexpr (is-integer-like <W> && is-integer-like <Bound>)

return (value_ < 0)
? ((bound_ < 0)

? to-unsigned-like(-value_) - to-unsigned-like(-bound_)
: to-unsigned-like(bound_) + to-unsigned-like(-value_))

: to-unsigned-like(bound_) - to-unsigned-like(value_);
else

return to-unsigned-like(bound_ - value_);

16 Remarks: The expression in the requires-clause is equivalent to:
(same_as<W, Bound> && advanceable <W>) || (is-integer-like <W> && is-integer-like <Bound>) ||

sized_sentinel_for<Bound, W>

26.6.4.3 Class iota_view::iterator [range.iota.iterator]
namespace std::ranges {

template<weakly_incrementable W, semiregular Bound>
requires weakly-equality-comparable-with <W, Bound> && copyable<W>

struct iota_view<W, Bound>::iterator {
private:

W value_ = W(); // exposition only
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public:
using iterator_concept = see below ;
using iterator_category = input_iterator_tag; // present only if W models incrementable and

// IOTA-DIFF-T(W) is an integral type
using value_type = W;
using difference_type = IOTA-DIFF-T(W);

iterator () requires default_initializable<W> = default;
constexpr explicit iterator (W value);

constexpr W operator*() const noexcept(is_nothrow_copy_constructible_v<W>);

constexpr iterator & operator++();
constexpr void operator++(int);
constexpr iterator operator++(int) requires incrementable<W>;

constexpr iterator & operator--() requires decrementable <W>;
constexpr iterator operator--(int) requires decrementable <W>;

constexpr iterator & operator+=(difference_type n)
requires advanceable <W>;

constexpr iterator & operator-=(difference_type n)
requires advanceable <W>;

constexpr W operator[](difference_type n) const
requires advanceable <W>;

friend constexpr bool operator==(const iterator & x, const iterator & y)
requires equality_comparable<W>;

friend constexpr bool operator<(const iterator & x, const iterator & y)
requires totally_ordered<W>;

friend constexpr bool operator>(const iterator & x, const iterator & y)
requires totally_ordered<W>;

friend constexpr bool operator<=(const iterator & x, const iterator & y)
requires totally_ordered<W>;

friend constexpr bool operator>=(const iterator & x, const iterator & y)
requires totally_ordered<W>;

friend constexpr auto operator<=>(const iterator & x, const iterator & y)
requires totally_ordered<W> && three_way_comparable<W>;

friend constexpr iterator operator+(iterator i, difference_type n)
requires advanceable <W>;

friend constexpr iterator operator+(difference_type n, iterator i)
requires advanceable <W>;

friend constexpr iterator operator-(iterator i, difference_type n)
requires advanceable <W>;

friend constexpr difference_type operator-(const iterator & x, const iterator & y)
requires advanceable <W>;

};
}

1 iterator ::iterator_concept is defined as follows:
—(1.1) If W models advanceable , then iterator_concept is random_access_iterator_tag.
—(1.2) Otherwise, if W models decrementable , then iterator_concept is bidirectional_iterator_tag.
—(1.3) Otherwise, if W models incrementable, then iterator_concept is forward_iterator_tag.
—(1.4) Otherwise, iterator_concept is input_iterator_tag.

2 [Note 1 : Overloads for iter_move and iter_swap are omitted intentionally. — end note ]

constexpr explicit iterator (W value);

3 Effects: Initializes value_ with value.
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constexpr W operator*() const noexcept(is_nothrow_copy_constructible_v<W>);

4 Effects: Equivalent to: return value_;
5 [Note 2 : The noexcept clause is needed by the default iter_move implementation. — end note ]

constexpr iterator & operator++();

6 Effects: Equivalent to:
++value_;
return *this;

constexpr void operator++(int);

7 Effects: Equivalent to ++*this.

constexpr iterator operator++(int) requires incrementable<W>;

8 Effects: Equivalent to:
auto tmp = *this;
++*this;
return tmp;

constexpr iterator & operator--() requires decrementable <W>;

9 Effects: Equivalent to:
--value_;
return *this;

constexpr iterator operator--(int) requires decrementable <W>;

10 Effects: Equivalent to:
auto tmp = *this;
--*this;
return tmp;

constexpr iterator & operator+=(difference_type n)
requires advanceable <W>;

11 Effects: Equivalent to:
if constexpr (is-integer-like <W> && !is-signed-integer-like <W>) {

if (n >= difference_type(0))
value_ += static_cast<W>(n);

else
value_ -= static_cast<W>(-n);

} else {
value_ += n;

}
return *this;

constexpr iterator & operator-=(difference_type n)
requires advanceable <W>;

12 Effects: Equivalent to:
if constexpr (is-integer-like <W> && !is-signed-integer-like <W>) {

if (n >= difference_type(0))
value_ -= static_cast<W>(n);

else
value_ += static_cast<W>(-n);

} else {
value_ -= n;

}
return *this;

constexpr W operator[](difference_type n) const
requires advanceable <W>;

13 Effects: Equivalent to: return W(value_ + n);
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friend constexpr bool operator==(const iterator & x, const iterator & y)
requires equality_comparable<W>;

14 Effects: Equivalent to: return x.value_ == y.value_;

friend constexpr bool operator<(const iterator & x, const iterator & y)
requires totally_ordered<W>;

15 Effects: Equivalent to: return x.value_ < y.value_;

friend constexpr bool operator>(const iterator & x, const iterator & y)
requires totally_ordered<W>;

16 Effects: Equivalent to: return y < x;

friend constexpr bool operator<=(const iterator & x, const iterator & y)
requires totally_ordered<W>;

17 Effects: Equivalent to: return !(y < x);

friend constexpr bool operator>=(const iterator & x, const iterator & y)
requires totally_ordered<W>;

18 Effects: Equivalent to: return !(x < y);

friend constexpr auto operator<=>(const iterator & x, const iterator & y)
requires totally_ordered<W> && three_way_comparable<W>;

19 Effects: Equivalent to: return x.value_ <=> y.value_;

friend constexpr iterator operator+(iterator i, difference_type n)
requires advanceable <W>;

20 Effects: Equivalent to:
i += n;
return i;

friend constexpr iterator operator+(difference_type n, iterator i)
requires advanceable <W>;

21 Effects: Equivalent to: return i + n;

friend constexpr iterator operator-(iterator i, difference_type n)
requires advanceable <W>;

22 Effects: Equivalent to:
i -= n;
return i;

friend constexpr difference_type operator-(const iterator & x, const iterator & y)
requires advanceable <W>;

23 Effects: Equivalent to:
using D = difference_type;
if constexpr (is-integer-like <W>) {

if constexpr (is-signed-integer-like <W>)
return D(D(x.value_) - D(y.value_));

else
return (y.value_ > x.value_)

? D(-D(y.value_ - x.value_))
: D(x.value_ - y.value_);

} else {
return x.value_ - y.value_;

}

26.6.4.4 Class iota_view::sentinel [range.iota.sentinel]
namespace std::ranges {

template<weakly_incrementable W, semiregular Bound>
requires weakly-equality-comparable-with <W, Bound> && copyable<W>

struct iota_view<W, Bound>::sentinel {
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private:
Bound bound_ = Bound(); // exposition only

public:
sentinel () = default;
constexpr explicit sentinel (Bound bound);

friend constexpr bool operator==(const iterator & x, const sentinel & y);

friend constexpr iter_difference_t<W> operator-(const iterator & x, const sentinel & y)
requires sized_sentinel_for<Bound, W>;

friend constexpr iter_difference_t<W> operator-(const sentinel & x, const iterator & y)
requires sized_sentinel_for<Bound, W>;

};
}

constexpr explicit sentinel (Bound bound);

1 Effects: Initializes bound_ with bound.

friend constexpr bool operator==(const iterator & x, const sentinel & y);

2 Effects: Equivalent to: return x.value_ == y.bound_;

friend constexpr iter_difference_t<W> operator-(const iterator & x, const sentinel & y)
requires sized_sentinel_for<Bound, W>;

3 Effects: Equivalent to: return x.value_ - y.bound_;

friend constexpr iter_difference_t<W> operator-(const sentinel & x, const iterator & y)
requires sized_sentinel_for<Bound, W>;

4 Effects: Equivalent to: return -(y - x);

26.6.5 Repeat view [range.repeat]
26.6.5.1 Overview [range.repeat.overview]

1 repeat_view generates a sequence of elements by repeatedly producing the same value.
2 The name views::repeat denotes a customization point object (16.3.3.3.5). Given subexpressions E and F,

the expressions views::repeat(E) and views::repeat(E, F) are expression-equivalent to repeat_view(E)
and repeat_view(E, F), respectively.

3 [Example 1 :
for (int i : views::repeat(17, 4))

cout << i << ' ';
// prints 17 17 17 17

— end example ]

26.6.5.2 Class template repeat_view [range.repeat.view]
namespace std::ranges {

template<class T>
concept integer-like-with-usable-difference-type = // exposition only

is-signed-integer-like <T> || (is-integer-like <T> && weakly_incrementable<T>);

template<move_constructible T, semiregular Bound = unreachable_sentinel_t>
requires (is_object_v<T> && same_as<T, remove_cv_t<T>> &&

(integer-like-with-usable-difference-type <Bound> ||
same_as<Bound, unreachable_sentinel_t>))

class repeat_view : public view_interface<repeat_view<T, Bound>> {
private:

// 26.6.5.3, class repeat_view::iterator
struct iterator; // exposition only

movable-box<T> value_; // exposition only, see 26.7.3
Bound bound_ = Bound(); // exposition only
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public:
repeat_view() requires default_initializable<T> = default;

constexpr explicit repeat_view(const T& value, Bound bound = Bound())
requires copy_constructible<T>;

constexpr explicit repeat_view(T&& value, Bound bound = Bound());
template<class... TArgs, class... BoundArgs>

requires constructible_from<T, TArgs...> &&
constructible_from<Bound, BoundArgs...>

constexpr explicit repeat_view(piecewise_construct_t,
tuple<TArgs...> value_args, tuple<BoundArgs...> bound_args = tuple<>{});

constexpr iterator begin() const;
constexpr iterator end() const requires (!same_as<Bound, unreachable_sentinel_t>);
constexpr unreachable_sentinel_t end() const noexcept;

constexpr auto size() const requires (!same_as<Bound, unreachable_sentinel_t>);
};

template<class T, class Bound>
repeat_view(T, Bound) -> repeat_view<T, Bound>;

}

constexpr explicit repeat_view(const T& value, Bound bound = Bound())
requires copy_constructible<T>;

1 Preconditions: If Bound is not unreachable_sentinel_t, bound ≥ 0.
2 Effects: Initializes value_ with value and bound_ with bound.

constexpr explicit repeat_view(T&& value, Bound bound = Bound());

3 Preconditions: If Bound is not unreachable_sentinel_t, bound ≥ 0.
4 Effects: Initializes value_ with std::move(value) and bound_ with bound.

template<class... TArgs, class... BoundArgs>
requires constructible_from<T, TArgs...> &&

constructible_from<Bound, BoundArgs...>
constexpr explicit repeat_view(piecewise_construct_t,

tuple<TArgs...> value_args, tuple<BoundArgs...> bound_args = tuple<>{});

5 Effects: Initializes value_ with make_from_tuple<T>(std::move(value_args)) and initializes
bound_ with make_from_tuple<Bound>(std::move(bound_args)). The behavior is undefined if Bound
is not unreachable_sentinel_t and bound_ is negative.

constexpr iterator begin() const;

6 Effects: Equivalent to: return iterator (addressof(*value_));

constexpr iterator end() const requires (!same_as<Bound, unreachable_sentinel_t>);

7 Effects: Equivalent to: return iterator (addressof(*value_), bound_);

constexpr unreachable_sentinel_t end() const noexcept;

8 Effects: Equivalent to: return unreachable_sentinel;

constexpr auto size() const requires (!same_as<Bound, unreachable_sentinel_t>);

9 Effects: Equivalent to: return to-unsigned-like (bound_);

26.6.5.3 Class repeat_view::iterator [range.repeat.iterator]
namespace std::ranges {

template<move_constructible T, semiregular Bound>
requires (is_object_v<T> && same_as<T, remove_cv_t<T>> &&

(integer-like-with-usable-difference-type <Bound> ||
same_as<Bound, unreachable_sentinel_t>))

class repeat_view<T, Bound>::iterator {
private:
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using index-type = // exposition only
conditional_t<same_as<Bound, unreachable_sentinel_t>, ptrdiff_t, Bound>;

const T* value_ = nullptr; // exposition only
index-type current_ = index-type(); // exposition only

constexpr explicit iterator (const T* value, index-type b = index-type()); // exposition only

public:
using iterator_concept = random_access_iterator_tag;
using iterator_category = random_access_iterator_tag;
using value_type = T;
using difference_type = see below ;

iterator () = default;

constexpr const T& operator*() const noexcept;

constexpr iterator & operator++();
constexpr iterator operator++(int);

constexpr iterator & operator--();
constexpr iterator operator--(int);

constexpr iterator & operator+=(difference_type n);
constexpr iterator & operator-=(difference_type n);
constexpr const T& operator[](difference_type n) const noexcept;

friend constexpr bool operator==(const iterator & x, const iterator & y);
friend constexpr auto operator<=>(const iterator & x, const iterator & y);

friend constexpr iterator operator+(iterator i, difference_type n);
friend constexpr iterator operator+(difference_type n, iterator i);

friend constexpr iterator operator-(iterator i, difference_type n);
friend constexpr difference_type operator-(const iterator & x, const iterator & y);

};
}

1 If is-signed-integer-like <index-type > is true, the member typedef-name difference_type denotes
index-type . Otherwise, it denotes IOTA-DIFF-T(index-type ) (26.6.4.2).

constexpr explicit iterator (const T* value, index-type b = index-type ());

2 Preconditions: If Bound is not unreachable_sentinel_t, b ≥ 0.
3 Effects: Initializes value_ with value and current_ with b.

constexpr const T& operator*() const noexcept;

4 Effects: Equivalent to: return *value_;

constexpr iterator & operator++();

5 Effects: Equivalent to:
++current_;
return *this;

constexpr iterator operator++(int);

6 Effects: Equivalent to:
auto tmp = *this;
++*this;
return tmp;

constexpr iterator & operator--();

7 Preconditions: If Bound is not unreachable_sentinel_t, current_ > 0.
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8 Effects: Equivalent to:
--current_;
return *this;

constexpr iterator operator--(int);

9 Effects: Equivalent to:
auto tmp = *this;
--*this;
return tmp;

constexpr iterator & operator+=(difference_type n);

10 Preconditions: If Bound is not unreachable_sentinel_t, current_ + n ≥ 0.
11 Effects: Equivalent to:

current_ += n;
return *this;

constexpr iterator & operator-=(difference_type n);

12 Preconditions: If Bound is not unreachable_sentinel_t, current_ − n ≥ 0.
13 Effects: Equivalent to:

current_ -= n;
return *this;

constexpr const T& operator[](difference_type n) const noexcept;

14 Effects: Equivalent to: return *(*this + n);

friend constexpr bool operator==(const iterator & x, const iterator & y);

15 Effects: Equivalent to: return x.current_ == y.current_;

friend constexpr auto operator<=>(const iterator & x, const iterator & y);

16 Effects: Equivalent to: return x.current_ <=> y.current_;

friend constexpr iterator operator+(iterator i, difference_type n);
friend constexpr iterator operator+(difference_type n, iterator i);

17 Effects: Equivalent to:
i += n;
return i;

friend constexpr iterator operator-(iterator i, difference_type n);

18 Effects: Equivalent to:
i -= n;
return i;

friend constexpr difference_type operator-(const iterator & x, const iterator & y);

19 Effects: Equivalent to:
return static_cast<difference_type>(x.current_) - static_cast<difference_type>(y.current_);

26.6.6 Istream view [range.istream]
26.6.6.1 Overview [range.istream.overview]

1 basic_istream_view models input_range and reads (using operator>>) successive elements from its
corresponding input stream.

2 The name views::istream<T> denotes a customization point object (16.3.3.3.5). Given a type T and a
subexpression E of type U, if U models derived_from<basic_istream<typename U::char_type, typename
U::traits_type>>, then the expression views::istream<T>(E) is expression-equivalent to basic_istream_-
view<T, typename U::char_type, typename U::traits_type>(E); otherwise, views::istream<T>(E) is
ill-formed.

3 [Example 1 :
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auto ints = istringstream{"0 1 2 3 4"};
ranges::copy(views::istream<int>(ints), ostream_iterator<int>{cout, "-"});
// prints 0-1-2-3-4-

— end example ]

26.6.6.2 Class template basic_istream_view [range.istream.view]
namespace std::ranges {

template<class Val, class CharT, class Traits>
concept stream-extractable = // exposition only

requires(basic_istream<CharT, Traits>& is, Val& t) {
is >> t;

};

template<movable Val, class CharT, class Traits = char_traits<CharT>>
requires default_initializable<Val> &&

stream-extractable <Val, CharT, Traits>
class basic_istream_view : public view_interface<basic_istream_view<Val, CharT, Traits>> {
public:

constexpr explicit basic_istream_view(basic_istream<CharT, Traits>& stream);

constexpr auto begin() {
*stream_ >> value_;
return iterator {*this};

}

constexpr default_sentinel_t end() const noexcept;

private:
// 26.6.6.3, class basic_istream_view::iterator
struct iterator; // exposition only
basic_istream<CharT, Traits>* stream_; // exposition only
Val value_ = Val(); // exposition only

};
}

constexpr explicit basic_istream_view(basic_istream<CharT, Traits>& stream);

1 Effects: Initializes stream_ with addressof(stream).

constexpr default_sentinel_t end() const noexcept;

2 Effects: Equivalent to: return default_sentinel;

26.6.6.3 Class basic_istream_view::iterator [range.istream.iterator]
namespace std::ranges {

template<movable Val, class CharT, class Traits>
requires default_initializable<Val> &&

stream-extractable <Val, CharT, Traits>
class basic_istream_view<Val, CharT, Traits>::iterator {
public:

using iterator_concept = input_iterator_tag;
using difference_type = ptrdiff_t;
using value_type = Val;

constexpr explicit iterator (basic_istream_view& parent) noexcept;

iterator (const iterator &) = delete;
iterator (iterator &&) = default;

iterator & operator=(const iterator &) = delete;
iterator & operator=(iterator &&) = default;

iterator & operator++();
void operator++(int);
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Val& operator*() const;

friend bool operator==(const iterator & x, default_sentinel_t);

private:
basic_istream_view* parent_; // exposition only

};
}

constexpr explicit iterator (basic_istream_view& parent) noexcept;

1 Effects: Initializes parent_ with addressof(parent).

iterator & operator++();

2 Effects: Equivalent to:
*parent_->stream_ >> parent_->value_;
return *this;

void operator++(int);

3 Effects: Equivalent to ++*this.

Val& operator*() const;

4 Effects: Equivalent to: return parent_->value_;

friend bool operator==(const iterator & x, default_sentinel_t);

5 Effects: Equivalent to: return !*x.parent_->stream_;

26.7 Range adaptors [range.adaptors]
26.7.1 General [range.adaptors.general]

1 Subclause 26.7 defines range adaptors, which are utilities that transform a range into a view with custom
behaviors. These adaptors can be chained to create pipelines of range transformations that evaluate lazily as
the resulting view is iterated.

2 Range adaptors are declared in namespace std::ranges::views.
3 The bitwise or operator is overloaded for the purpose of creating adaptor chain pipelines. The adaptors also

support function call syntax with equivalent semantics.
4 [Example 1 :

vector<int> ints{0,1,2,3,4,5};
auto even = [](int i) { return 0 == i % 2; };
auto square = [](int i) { return i * i; };
for (int i : ints | views::filter(even) | views::transform(square)) {

cout << i << ' '; // prints 0 4 16
}
assert(ranges::equal(ints | views::filter(even), views::filter(ints, even)));

— end example ]

26.7.2 Range adaptor objects [range.adaptor.object]
1 A range adaptor closure object is a unary function object that accepts a range argument. For a range adaptor

closure object C and an expression R such that decltype((R)) models range, the following expressions are
equivalent:

C(R)
R | C

Given an additional range adaptor closure object D, the expression C | D produces another range adaptor
closure object E. E is a perfect forwarding call wrapper (22.10.4) with the following properties:

—(1.1) Its target object is an object d of type decay_t<decltype((D))> direct-non-list-initialized with D.
—(1.2) It has one bound argument entity, an object c of type decay_t<decltype((C))> direct-non-list-

initialized with C.
—(1.3) Its call pattern is d(c(arg)), where arg is the argument used in a function call expression of E.
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The expression C | D is well-formed if and only if the initializations of the state entities of E are all well-formed.
2 Given an object t of type T, where

—(2.1) t is a unary function object that accepts a range argument,
—(2.2) T models derived_from<range_adaptor_closure<T>>,
—(2.3) T has no other base classes of type range_adaptor_closure<U> for any other type U, and
—(2.4) T does not model range

then the implementation ensures that t is a range adaptor closure object.
3 The template parameter D for range_adaptor_closure may be an incomplete type. If an expression of

type cv D is used as an operand to the | operator, D shall be complete and model derived_from<range_-
adaptor_closure<D>>. The behavior of an expression involving an object of type cv D as an operand to the
| operator is undefined if overload resolution selects a program-defined operator| function.

4 If an expression of type cv U is used as an operand to the | operator, where U has a base class of type
range_adaptor_closure<T> for some type T other than U, the behavior is undefined.

5 The behavior of a program that adds a specialization for range_adaptor_closure is undefined.
6 A range adaptor object is a customization point object (16.3.3.3.5) that accepts a viewable_range as its

first argument and returns a view.
7 If a range adaptor object accepts only one argument, then it is a range adaptor closure object.
8 If a range adaptor object adaptor accepts more than one argument, then let range be an expression such

that decltype((range)) models viewable_range, let args... be arguments such that adaptor(range,
args...) is a well-formed expression as specified in the rest of subclause 26.7, and let BoundArgs be a
pack that denotes decay_t<decltype((args))>.... The expression adaptor(args...) produces a range
adaptor closure object f that is a perfect forwarding call wrapper (22.10.4) with the following properties:

—(8.1) Its target object is a copy of adaptor.
—(8.2) Its bound argument entities bound_args consist of objects of types BoundArgs... direct-non-list-

initialized with std::forward<decltype((args))>(args)..., respectively.
—(8.3) Its call pattern is adaptor(r, bound_args...), where r is the argument used in a function call

expression of f.
The expression adaptor(args...) is well-formed if and only if the initialization of the bound argument
entities of the result, as specified above, are all well-formed.

26.7.3 Movable wrapper [range.move.wrap]
1 Many types in this subclause are specified in terms of an exposition-only class template movable-box .

movable-box <T> behaves exactly like optional<T> with the following differences:
—(1.1) movable-box <T> constrains its type parameter T with move_constructible<T> && is_object_v<T>.
—(1.2) The default constructor of movable-box <T> is equivalent to:

constexpr movable-box () noexcept(is_nothrow_default_constructible_v<T>)
requires default_initializable<T>

: movable-box {in_place} {}

—(1.3) If copyable<T> is not modeled, the copy assignment operator is equivalent to:
constexpr movable-box & operator=(const movable-box & that)

noexcept(is_nothrow_copy_constructible_v<T>)
requires copy_constructible<T> {
if (this != addressof(that)) {

if (that) emplace(*that);
else reset();

}
return *this;

}

—(1.4) If movable<T> is not modeled, the move assignment operator is equivalent to:
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constexpr movable-box & operator=(movable-box && that)
noexcept(is_nothrow_move_constructible_v<T>) {
if (this != addressof(that)) {

if (that) emplace(std::move(*that));
else reset();

}
return *this;

}

2 Recommended practice:
—(2.1) If copy_constructible<T> is true, movable-box <T> should store only a T if either T models copyable,

or is_nothrow_move_constructible_v<T> && is_nothrow_copy_constructible_v<T> is true.
—(2.2) Otherwise, movable-box <T> should store only a T if either T models movable or is_nothrow_move_-

constructible_v<T> is true.

26.7.4 Non-propagating cache [range.nonprop.cache]
1 Some types in subclause 26.7 are specified in terms of an exposition-only class template non-propagating-

cache . non-propagating-cache <T> behaves exactly like optional<T> with the following differences:
—(1.1) non-propagating-cache <T> constrains its type parameter T with is_object_v<T>.
—(1.2) The copy constructor is equivalent to:

constexpr non-propagating-cache (const non-propagating-cache &) noexcept {}

—(1.3) The move constructor is equivalent to:
constexpr non-propagating-cache (non-propagating-cache && other) noexcept {

other.reset();
}

—(1.4) The copy assignment operator is equivalent to:
constexpr non-propagating-cache & operator=(const non-propagating-cache & other) noexcept {

if (addressof(other) != this)
reset();

return *this;
}

—(1.5) The move assignment operator is equivalent to:
constexpr non-propagating-cache & operator=(non-propagating-cache && other) noexcept {

reset();
other.reset();
return *this;

}

—(1.6) non-propagating-cache <T> has an additional member function template specified as follows:

template<class I>
constexpr T& emplace-deref (const I& i); // exposition only

Mandates: The declaration T t(*i); is well-formed for some invented variable t.
[Note 1 : If *i is a prvalue of type cv T, there is no requirement that it is movable (9.4.1). — end note ]

Effects: Calls reset(). Then direct-non-list-initializes the contained value with *i.
Postconditions: *this contains a value.
Returns: A reference to the new contained value.
Throws: Any exception thrown by the initialization of the contained value.
Remarks: If an exception is thrown during the initialization of T, *this does not contain a value,
and the previous value (if any) has been destroyed.

2 [Note 2 : non-propagating-cache enables an input view to temporarily cache values as it is iterated over. — end
note ]
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26.7.5 Range adaptor helpers [range.adaptor.helpers]
namespace std::ranges {

template<class F, class Tuple>
constexpr auto tuple-transform (F&& f, Tuple&& t) { // exposition only

return apply([&]<class... Ts>(Ts&&... elements) {
return tuple<invoke_result_t<F&, Ts>...>(invoke(f, std::forward<Ts>(elements))...);

}, std::forward<Tuple>(t));
}

template<class F, class Tuple>
constexpr void tuple-for-each (F&& f, Tuple&& t) { // exposition only

apply([&]<class... Ts>(Ts&&... elements) {
(static_cast<void>(invoke(f, std::forward<Ts>(elements))), ...);

}, std::forward<Tuple>(t));
}

template<class T>
constexpr T& as-lvalue (T&& t) { // exposition only

return static_cast<T&>(t);
}

}

26.7.6 All view [range.all]
26.7.6.1 General [range.all.general]

1 views::all returns a view that includes all elements of its range argument.
2 The name views::all denotes a range adaptor object (26.7.2). Given a subexpression E, the expression

views::all(E) is expression-equivalent to:
—(2.1) decay-copy(E) if the decayed type of E models view.
—(2.2) Otherwise, ref_view{E} if that expression is well-formed.
—(2.3) Otherwise, owning_view{E}.

26.7.6.2 Class template ref_view [range.ref.view]
1 ref_view is a view of the elements of some other range.

namespace std::ranges {
template<range R>

requires is_object_v<R>
class ref_view : public view_interface<ref_view<R>> {
private:

R* r_; // exposition only

public:
template<different-from <ref_view> T>

requires see below
constexpr ref_view(T&& t);

constexpr R& base() const { return *r_; }

constexpr iterator_t<R> begin() const { return ranges::begin(*r_); }
constexpr sentinel_t<R> end() const { return ranges::end(*r_); }

constexpr bool empty() const
requires requires { ranges::empty(*r_); }

{ return ranges::empty(*r_); }

constexpr auto size() const requires sized_range<R>
{ return ranges::size(*r_); }

constexpr auto data() const requires contiguous_range<R>
{ return ranges::data(*r_); }

};
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template<class R>
ref_view(R&) -> ref_view<R>;

}

template<different-from <ref_view> T>
requires see below

constexpr ref_view(T&& t);

2 Effects: Initializes r_ with addressof(static_cast<R&>(std::forward<T>(t))).
3 Remarks: Let FUN denote the exposition-only functions

void FUN (R&);
void FUN (R&&) = delete;

The expression in the requires-clause is equivalent to:
convertible_to<T, R&> && requires { FUN (declval<T>()); }

26.7.6.3 Class template owning_view [range.owning.view]
1 owning_view is a move-only view of the elements of some other range.

namespace std::ranges {
template<range R>

requires movable<R> && (!is-initializer-list <R>) // see 26.4.5
class owning_view : public view_interface<owning_view<R>> {
private:

R r_ = R(); // exposition only

public:
owning_view() requires default_initializable<R> = default;
constexpr owning_view(R&& t);

owning_view(owning_view&&) = default;
owning_view& operator=(owning_view&&) = default;

constexpr R& base() & noexcept { return r_; }
constexpr const R& base() const & noexcept { return r_; }
constexpr R&& base() && noexcept { return std::move(r_); }
constexpr const R&& base() const && noexcept { return std::move(r_); }

constexpr iterator_t<R> begin() { return ranges::begin(r_); }
constexpr sentinel_t<R> end() { return ranges::end(r_); }

constexpr auto begin() const requires range<const R>
{ return ranges::begin(r_); }
constexpr auto end() const requires range<const R>
{ return ranges::end(r_); }

constexpr bool empty() requires requires { ranges::empty(r_); }
{ return ranges::empty(r_); }
constexpr bool empty() const requires requires { ranges::empty(r_); }
{ return ranges::empty(r_); }

constexpr auto size() requires sized_range<R>
{ return ranges::size(r_); }
constexpr auto size() const requires sized_range<const R>
{ return ranges::size(r_); }

constexpr auto data() requires contiguous_range<R>
{ return ranges::data(r_); }
constexpr auto data() const requires contiguous_range<const R>
{ return ranges::data(r_); }

};
}
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constexpr owning_view(R&& t);

2 Effects: Initializes r_ with std::move(t).

26.7.7 As rvalue view [range.as.rvalue]
26.7.7.1 Overview [range.as.rvalue.overview]

1 as_rvalue_view presents a view of an underlying sequence with the same behavior as the underlying sequence
except that its elements are rvalues. Some generic algorithms can be called with an as_rvalue_view to
replace copying with moving.

2 The name views::as_rvalue denotes a range adaptor object (26.7.2). Let E be an expression and let T be
decltype((E)). The expression views::as_rvalue(E) is expression-equivalent to:

—(2.1) views::all(E) if same_as<range_rvalue_reference_t<T>, range_reference_t<T>> is true.
—(2.2) Otherwise, as_rvalue_view(E).

3 [Example 1 :
vector<string> words = {"the", "quick", "brown", "fox", "ate", "a", "pterodactyl"};
vector<string> new_words;
ranges::copy(words | views::as_rvalue, back_inserter(new_words));

// moves each string from words into new_words

— end example ]

26.7.7.2 Class template as_rvalue_view [range.as.rvalue.view]
namespace std::ranges {

template<view V>
requires input_range<V>

class as_rvalue_view : public view_interface<as_rvalue_view<V>> {
V base_ = V(); // exposition only

public:
as_rvalue_view() requires default_initializable<V> = default;
constexpr explicit as_rvalue_view(V base);

constexpr V base() const & requires copy_constructible<V> { return base_; }
constexpr V base() && { return std::move(base_); }

constexpr auto begin() requires (!simple-view <V>)
{ return move_iterator(ranges::begin(base_)); }
constexpr auto begin() const requires range<const V>
{ return move_iterator(ranges::begin(base_)); }

constexpr auto end() requires (!simple-view <V>) {
if constexpr (common_range<V>) {

return move_iterator(ranges::end(base_));
} else {

return move_sentinel(ranges::end(base_));
}

}
constexpr auto end() const requires range<const V> {

if constexpr (common_range<const V>) {
return move_iterator(ranges::end(base_));

} else {
return move_sentinel(ranges::end(base_));

}
}

constexpr auto size() requires sized_range<V> { return ranges::size(base_); }
constexpr auto size() const requires sized_range<const V> { return ranges::size(base_); }

};

template<class R>
as_rvalue_view(R&&) -> as_rvalue_view<views::all_t<R>>;

}
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constexpr explicit as_rvalue_view(V base);

1 Effects: Initializes base_ with std::move(base).

26.7.8 Filter view [range.filter]
26.7.8.1 Overview [range.filter.overview]

1 filter_view presents a view of the elements of an underlying sequence that satisfy a predicate.
2 The name views::filter denotes a range adaptor object (26.7.2). Given subexpressions E and P, the

expression views::filter(E, P) is expression-equivalent to filter_view(E, P).
3 [Example 1 :

vector<int> is{ 0, 1, 2, 3, 4, 5, 6 };
auto evens = views::filter(is, [](int i) { return 0 == i % 2; });
for (int i : evens)

cout << i << ' '; // prints 0 2 4 6

— end example ]

26.7.8.2 Class template filter_view [range.filter.view]
namespace std::ranges {

template<input_range V, indirect_unary_predicate<iterator_t<V>> Pred>
requires view<V> && is_object_v<Pred>

class filter_view : public view_interface<filter_view<V, Pred>> {
private:

V base_ = V(); // exposition only
movable-box<Pred> pred_; // exposition only

// 26.7.8.3, class filter_view::iterator
class iterator ; // exposition only

// 26.7.8.4, class filter_view::sentinel
class sentinel ; // exposition only

public:
filter_view() requires default_initializable<V> && default_initializable<Pred> = default;
constexpr explicit filter_view(V base, Pred pred);

constexpr V base() const & requires copy_constructible<V> { return base_; }
constexpr V base() && { return std::move(base_); }

constexpr const Pred& pred() const;

constexpr iterator begin();
constexpr auto end() {

if constexpr (common_range<V>)
return iterator {*this, ranges::end(base_)};

else
return sentinel {*this};

}
};

template<class R, class Pred>
filter_view(R&&, Pred) -> filter_view<views::all_t<R>, Pred>;

}

constexpr explicit filter_view(V base, Pred pred);

1 Effects: Initializes base_ with std::move(base) and initializes pred_ with std::move(pred).

constexpr const Pred& pred() const;

2 Effects: Equivalent to: return *pred_;
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constexpr iterator begin();

3 Preconditions: pred_.has_value() is true.
4 Returns: {*this, ranges::find_if(base_, ref(*pred_))}.
5 Remarks: In order to provide the amortized constant time complexity required by the range concept

when filter_view models forward_range, this function caches the result within the filter_view for
use on subsequent calls.

26.7.8.3 Class filter_view::iterator [range.filter.iterator]
namespace std::ranges {

template<input_range V, indirect_unary_predicate<iterator_t<V>> Pred>
requires view<V> && is_object_v<Pred>

class filter_view<V, Pred>::iterator {
private:

iterator_t<V> current_ = iterator_t<V>(); // exposition only
filter_view* parent_ = nullptr; // exposition only

public:
using iterator_concept = see below;
using iterator_category = see below; // not always present
using value_type = range_value_t<V>;
using difference_type = range_difference_t<V>;

iterator () requires default_initializable<iterator_t<V>> = default;
constexpr iterator (filter_view& parent, iterator_t<V> current);

constexpr const iterator_t<V>& base() const & noexcept;
constexpr iterator_t<V> base() &&;
constexpr range_reference_t<V> operator*() const;
constexpr iterator_t<V> operator->() const

requires has-arrow <iterator_t<V>> && copyable<iterator_t<V>>;

constexpr iterator & operator++();
constexpr void operator++(int);
constexpr iterator operator++(int) requires forward_range<V>;

constexpr iterator & operator--() requires bidirectional_range<V>;
constexpr iterator operator--(int) requires bidirectional_range<V>;

friend constexpr bool operator==(const iterator & x, const iterator & y)
requires equality_comparable<iterator_t<V>>;

friend constexpr range_rvalue_reference_t<V> iter_move(const iterator & i)
noexcept(noexcept(ranges::iter_move(i.current_)));

friend constexpr void iter_swap(const iterator & x, const iterator & y)
noexcept(noexcept(ranges::iter_swap(x.current_, y.current_)))
requires indirectly_swappable<iterator_t<V>>;

};
}

1 Modification of the element a filter_view::iterator denotes is permitted, but results in undefined
behavior if the resulting value does not satisfy the filter predicate.

2 iterator ::iterator_concept is defined as follows:
—(2.1) If V models bidirectional_range, then iterator_concept denotes bidirectional_iterator_tag.
—(2.2) Otherwise, if V models forward_range, then iterator_concept denotes forward_iterator_tag.
—(2.3) Otherwise, iterator_concept denotes input_iterator_tag.

3 The member typedef-name iterator_category is defined if and only if V models forward_range. In that
case, iterator ::iterator_category is defined as follows:

—(3.1) Let C denote the type iterator_traits<iterator_t<V>>::iterator_category.
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—(3.2) If C models derived_from<bidirectional_iterator_tag>, then iterator_category denotes bi-
directional_iterator_tag.

—(3.3) Otherwise, if C models derived_from<forward_iterator_tag>, then iterator_category denotes
forward_iterator_tag.

—(3.4) Otherwise, iterator_category denotes C.

constexpr iterator (filter_view& parent, iterator_t<V> current);

4 Effects: Initializes current_ with std::move(current) and parent_ with addressof(parent).

constexpr const iterator_t<V>& base() const & noexcept;

5 Effects: Equivalent to: return current_;

constexpr iterator_t<V> base() &&;

6 Effects: Equivalent to: return std::move(current_);

constexpr range_reference_t<V> operator*() const;

7 Effects: Equivalent to: return *current_;

constexpr iterator_t<V> operator->() const
requires has-arrow <iterator_t<V>> && copyable<iterator_t<V>>;

8 Effects: Equivalent to: return current_;

constexpr iterator & operator++();

9 Effects: Equivalent to:
current_ = ranges::find_if(std::move(++current_), ranges::end(parent_->base_),

ref(*parent_->pred_));
return *this;

constexpr void operator++(int);

10 Effects: Equivalent to ++*this.

constexpr iterator operator++(int) requires forward_range<V>;

11 Effects: Equivalent to:
auto tmp = *this;
++*this;
return tmp;

constexpr iterator & operator--() requires bidirectional_range<V>;

12 Effects: Equivalent to:
do

--current_;
while (!invoke(*parent_->pred_, *current_));
return *this;

constexpr iterator operator--(int) requires bidirectional_range<V>;

13 Effects: Equivalent to:
auto tmp = *this;
--*this;
return tmp;

friend constexpr bool operator==(const iterator & x, const iterator & y)
requires equality_comparable<iterator_t<V>>;

14 Effects: Equivalent to: return x.current_ == y.current_;

friend constexpr range_rvalue_reference_t<V> iter_move(const iterator & i)
noexcept(noexcept(ranges::iter_move(i.current_)));

15 Effects: Equivalent to: return ranges::iter_move(i.current_);
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friend constexpr void iter_swap(const iterator & x, const iterator & y)
noexcept(noexcept(ranges::iter_swap(x.current_, y.current_)))
requires indirectly_swappable<iterator_t<V>>;

16 Effects: Equivalent to ranges::iter_swap(x.current_, y.current_).

26.7.8.4 Class filter_view::sentinel [range.filter.sentinel]
namespace std::ranges {

template<input_range V, indirect_unary_predicate<iterator_t<V>> Pred>
requires view<V> && is_object_v<Pred>

class filter_view<V, Pred>::sentinel {
private:

sentinel_t<V> end_ = sentinel_t<V>(); // exposition only

public:
sentinel () = default;
constexpr explicit sentinel (filter_view& parent);

constexpr sentinel_t<V> base() const;

friend constexpr bool operator==(const iterator & x, const sentinel & y);
};

}

constexpr explicit sentinel (filter_view& parent);

1 Effects: Initializes end_ with ranges::end(parent.base_).

constexpr sentinel_t<V> base() const;

2 Effects: Equivalent to: return end_;

friend constexpr bool operator==(const iterator & x, const sentinel & y);

3 Effects: Equivalent to: return x.current_ == y.end_;

26.7.9 Transform view [range.transform]
26.7.9.1 Overview [range.transform.overview]

1 transform_view presents a view of an underlying sequence after applying a transformation function to each
element.

2 The name views::transform denotes a range adaptor object (26.7.2). Given subexpressions E and F, the
expression views::transform(E, F) is expression-equivalent to transform_view(E, F).

3 [Example 1 :
vector<int> is{ 0, 1, 2, 3, 4 };
auto squares = views::transform(is, [](int i) { return i * i; });
for (int i : squares)

cout << i << ' '; // prints 0 1 4 9 16

— end example ]

26.7.9.2 Class template transform_view [range.transform.view]
namespace std::ranges {

template<input_range V, move_constructible F>
requires view<V> && is_object_v<F> &&

regular_invocable<F&, range_reference_t<V>> &&
can-reference <invoke_result_t<F&, range_reference_t<V>>>

class transform_view : public view_interface<transform_view<V, F>> {
private:

// 26.7.9.3, class template transform_view::iterator
template<bool> struct iterator ; // exposition only

// 26.7.9.4, class template transform_view::sentinel
template<bool> struct sentinel ; // exposition only

§ 26.7.9.2 1168



© ISO/IEC N4950

V base_ = V(); // exposition only
movable-box<F> fun_; // exposition only

public:
transform_view() requires default_initializable<V> && default_initializable<F> = default;
constexpr explicit transform_view(V base, F fun);

constexpr V base() const & requires copy_constructible<V> { return base_; }
constexpr V base() && { return std::move(base_); }

constexpr iterator <false> begin();
constexpr iterator <true> begin() const

requires range<const V> &&
regular_invocable<const F&, range_reference_t<const V>>;

constexpr sentinel <false> end();
constexpr iterator <false> end() requires common_range<V>;
constexpr sentinel <true> end() const

requires range<const V> &&
regular_invocable<const F&, range_reference_t<const V>>;

constexpr iterator <true> end() const
requires common_range<const V> &&

regular_invocable<const F&, range_reference_t<const V>>;

constexpr auto size() requires sized_range<V> { return ranges::size(base_); }
constexpr auto size() const requires sized_range<const V>
{ return ranges::size(base_); }

};

template<class R, class F>
transform_view(R&&, F) -> transform_view<views::all_t<R>, F>;

}

constexpr explicit transform_view(V base, F fun);

1 Effects: Initializes base_ with std::move(base) and fun_ with std::move(fun).

constexpr iterator <false> begin();

2 Effects: Equivalent to:
return iterator <false>{*this, ranges::begin(base_)};

constexpr iterator <true> begin() const
requires range<const V> &&

regular_invocable<const F&, range_reference_t<const V>>;

3 Effects: Equivalent to:
return iterator <true>{*this, ranges::begin(base_)};

constexpr sentinel <false> end();

4 Effects: Equivalent to:
return sentinel <false>{ranges::end(base_)};

constexpr iterator <false> end() requires common_range<V>;

5 Effects: Equivalent to:
return iterator <false>{*this, ranges::end(base_)};

constexpr sentinel <true> end() const
requires range<const V> &&

regular_invocable<const F&, range_reference_t<const V>>;

6 Effects: Equivalent to:
return sentinel <true>{ranges::end(base_)};
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constexpr iterator <true> end() const
requires common_range<const V> &&

regular_invocable<const F&, range_reference_t<const V>>;

7 Effects: Equivalent to:
return iterator <true>{*this, ranges::end(base_)};

26.7.9.3 Class template transform_view::iterator [range.transform.iterator]
namespace std::ranges {

template<input_range V, move_constructible F>
requires view<V> && is_object_v<F> &&

regular_invocable<F&, range_reference_t<V>> &&
can-reference <invoke_result_t<F&, range_reference_t<V>>>

template<bool Const>
class transform_view<V, F>::iterator {
private:

using Parent = maybe-const<Const, transform_view>; // exposition only
using Base = maybe-const<Const, V>; // exposition only
iterator_t<Base> current_ = iterator_t<Base>(); // exposition only
Parent* parent_ = nullptr; // exposition only

public:
using iterator_concept = see below;
using iterator_category = see below; // not always present
using value_type =

remove_cvref_t<invoke_result_t<maybe-const<Const, F>&, range_reference_t<Base >>>;
using difference_type = range_difference_t<Base >;

iterator () requires default_initializable<iterator_t<Base >> = default;
constexpr iterator (Parent & parent, iterator_t<Base > current);
constexpr iterator (iterator <!Const> i)

requires Const && convertible_to<iterator_t<V>, iterator_t<Base >>;

constexpr const iterator_t<Base >& base() const & noexcept;
constexpr iterator_t<Base > base() &&;

constexpr decltype(auto) operator*() const
noexcept(noexcept(invoke(*parent_->fun_, *current_))) {
return invoke(*parent_->fun_, *current_);

}

constexpr iterator & operator++();
constexpr void operator++(int);
constexpr iterator operator++(int) requires forward_range<Base >;

constexpr iterator & operator--() requires bidirectional_range<Base >;
constexpr iterator operator--(int) requires bidirectional_range<Base >;

constexpr iterator & operator+=(difference_type n)
requires random_access_range<Base >;

constexpr iterator & operator-=(difference_type n)
requires random_access_range<Base >;

constexpr decltype(auto) operator[](difference_type n) const
requires random_access_range<Base > {
return invoke(*parent_->fun_, current_[n]);

}

friend constexpr bool operator==(const iterator & x, const iterator & y)
requires equality_comparable<iterator_t<Base >>;

friend constexpr bool operator<(const iterator & x, const iterator & y)
requires random_access_range<Base >;
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friend constexpr bool operator>(const iterator & x, const iterator & y)
requires random_access_range<Base >;

friend constexpr bool operator<=(const iterator & x, const iterator & y)
requires random_access_range<Base >;

friend constexpr bool operator>=(const iterator & x, const iterator & y)
requires random_access_range<Base >;

friend constexpr auto operator<=>(const iterator & x, const iterator & y)
requires random_access_range<Base > && three_way_comparable<iterator_t<Base >>;

friend constexpr iterator operator+(iterator i, difference_type n)
requires random_access_range<Base >;

friend constexpr iterator operator+(difference_type n, iterator i)
requires random_access_range<Base >;

friend constexpr iterator operator-(iterator i, difference_type n)
requires random_access_range<Base >;

friend constexpr difference_type operator-(const iterator & x, const iterator & y)
requires sized_sentinel_for<iterator_t<Base >, iterator_t<Base >>;

};
}

1 iterator ::iterator_concept is defined as follows:
—(1.1) If Base models random_access_range, then iterator_concept denotes random_access_iterator_-

tag.
—(1.2) Otherwise, if Base models bidirectional_range, then iterator_concept denotes bidirectional_-

iterator_tag.
—(1.3) Otherwise, if Base models forward_range, then iterator_concept denotes forward_iterator_tag.
—(1.4) Otherwise, iterator_concept denotes input_iterator_tag.

2 The member typedef-name iterator_category is defined if and only if Base models forward_range.
In that case, iterator ::iterator_category is defined as follows: Let C denote the type iterator_-
traits<iterator_t<Base >>::iterator_category.

—(2.1) If is_reference_v<invoke_result_t<maybe-const<Const, F>&, range_reference_t<Base >>> is
true, then

—(2.1.1) if C models derived_from<contiguous_iterator_tag>, iterator_category denotes random_-
access_iterator_tag;

—(2.1.2) otherwise, iterator_category denotes C.
—(2.2) Otherwise, iterator_category denotes input_iterator_tag.

constexpr iterator (Parent & parent, iterator_t<Base > current);

3 Effects: Initializes current_ with std::move(current) and parent_ with addressof(parent).

constexpr iterator (iterator <!Const> i)
requires Const && convertible_to<iterator_t<V>, iterator_t<Base >>;

4 Effects: Initializes current_ with std::move(i.current_) and parent_ with i.parent_.

constexpr const iterator_t<Base >& base() const & noexcept;

5 Effects: Equivalent to: return current_;

constexpr iterator_t<Base > base() &&;

6 Effects: Equivalent to: return std::move(current_);

constexpr iterator & operator++();

7 Effects: Equivalent to:
++current_;
return *this;
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constexpr void operator++(int);

8 Effects: Equivalent to ++current_.

constexpr iterator operator++(int) requires forward_range<Base >;

9 Effects: Equivalent to:
auto tmp = *this;
++*this;
return tmp;

constexpr iterator & operator--() requires bidirectional_range<Base >;

10 Effects: Equivalent to:
--current_;
return *this;

constexpr iterator operator--(int) requires bidirectional_range<Base >;

11 Effects: Equivalent to:
auto tmp = *this;
--*this;
return tmp;

constexpr iterator & operator+=(difference_type n)
requires random_access_range<Base >;

12 Effects: Equivalent to:
current_ += n;
return *this;

constexpr iterator & operator-=(difference_type n)
requires random_access_range<Base >;

13 Effects: Equivalent to:
current_ -= n;
return *this;

friend constexpr bool operator==(const iterator & x, const iterator & y)
requires equality_comparable<iterator_t<Base >>;

14 Effects: Equivalent to: return x.current_ == y.current_;

friend constexpr bool operator<(const iterator & x, const iterator & y)
requires random_access_range<Base >;

15 Effects: Equivalent to: return x.current_ < y.current_;

friend constexpr bool operator>(const iterator & x, const iterator & y)
requires random_access_range<Base >;

16 Effects: Equivalent to: return y < x;

friend constexpr bool operator<=(const iterator & x, const iterator & y)
requires random_access_range<Base >;

17 Effects: Equivalent to: return !(y < x);

friend constexpr bool operator>=(const iterator & x, const iterator & y)
requires random_access_range<Base >;

18 Effects: Equivalent to: return !(x < y);

friend constexpr auto operator<=>(const iterator & x, const iterator & y)
requires random_access_range<Base > && three_way_comparable<iterator_t<Base >>;

19 Effects: Equivalent to: return x.current_ <=> y.current_;

friend constexpr iterator operator+(iterator i, difference_type n)
requires random_access_range<Base >;
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friend constexpr iterator operator+(difference_type n, iterator i)
requires random_access_range<Base >;

20 Effects: Equivalent to: return iterator {*i.parent_, i.current_ + n};

friend constexpr iterator operator-(iterator i, difference_type n)
requires random_access_range<Base >;

21 Effects: Equivalent to: return iterator {*i.parent_, i.current_ - n};

friend constexpr difference_type operator-(const iterator & x, const iterator & y)
requires sized_sentinel_for<iterator_t<Base >, iterator_t<Base >>;

22 Effects: Equivalent to: return x.current_ - y.current_;

26.7.9.4 Class template transform_view::sentinel [range.transform.sentinel]
namespace std::ranges {

template<input_range V, move_constructible F>
requires view<V> && is_object_v<F> &&

regular_invocable<F&, range_reference_t<V>> &&
can-reference <invoke_result_t<F&, range_reference_t<V>>>

template<bool Const>
class transform_view<V, F>::sentinel {
private:

using Parent = maybe-const <Const, transform_view>; // exposition only
using Base = maybe-const <Const, V>; // exposition only
sentinel_t<Base > end_ = sentinel_t<Base >(); // exposition only

public:
sentinel () = default;
constexpr explicit sentinel (sentinel_t<Base > end);
constexpr sentinel (sentinel <!Const> i)

requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base >>;

constexpr sentinel_t<Base > base() const;

template<bool OtherConst>
requires sentinel_for<sentinel_t<Base >, iterator_t<maybe-const <OtherConst, V>>>

friend constexpr bool operator==(const iterator <OtherConst>& x, const sentinel & y);

template<bool OtherConst>
requires sized_sentinel_for<sentinel_t<Base >, iterator_t<maybe-const <OtherConst, V>>>

friend constexpr range_difference_t<maybe-const <OtherConst, V>>
operator-(const iterator <OtherConst>& x, const sentinel & y);

template<bool OtherConst>
requires sized_sentinel_for<sentinel_t<Base >, iterator_t<maybe-const <OtherConst, V>>>

friend constexpr range_difference_t<maybe-const <OtherConst, V>>
operator-(const sentinel & y, const iterator <OtherConst>& x);

};
}

constexpr explicit sentinel (sentinel_t<Base > end);

1 Effects: Initializes end_ with end.

constexpr sentinel (sentinel <!Const> i)
requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base >>;

2 Effects: Initializes end_ with std::move(i.end_).

constexpr sentinel_t<Base > base() const;

3 Effects: Equivalent to: return end_;
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template<bool OtherConst>
requires sentinel_for<sentinel_t<Base >, iterator_t<maybe-const <OtherConst, V>>>

friend constexpr bool operator==(const iterator <OtherConst>& x, const sentinel & y);

4 Effects: Equivalent to: return x.current_ == y.end_;

template<bool OtherConst>
requires sized_sentinel_for<sentinel_t<Base >, iterator_t<maybe-const <OtherConst, V>>>

friend constexpr range_difference_t<maybe-const <OtherConst, V>>
operator-(const iterator <OtherConst>& x, const sentinel & y);

5 Effects: Equivalent to: return x.current_ - y.end_;

template<bool OtherConst>
requires sized_sentinel_for<sentinel_t<Base >, iterator_t<maybe-const <OtherConst, V>>>

friend constexpr range_difference_t<maybe-const <OtherConst, V>>
operator-(const sentinel & y, const iterator <OtherConst>& x);

6 Effects: Equivalent to: return y.end_ - x.current_;

26.7.10 Take view [range.take]
26.7.10.1 Overview [range.take.overview]

1 take_view produces a view of the first N elements from another view, or all the elements if the adapted
view contains fewer than N .

2 The name views::take denotes a range adaptor object (26.7.2). Let E and F be expressions, let T be remove_-
cvref_t<decltype((E))>, and let D be range_difference_t<decltype((E))>. If decltype((F)) does not
model convertible_to<D>, views::take(E, F) is ill-formed. Otherwise, the expression views::take(E,
F) is expression-equivalent to:

—(2.1) If T is a specialization of empty_view (26.6.2.2), then ((void)F, decay-copy(E)), except that the
evaluations of E and F are indeterminately sequenced.

—(2.2) Otherwise, if T models random_access_range and sized_range and is a specialization of span
(24.7.2.2), basic_string_view (23.3), or subrange (26.5.4), then U(ranges::begin(E), ranges::be-
gin(E) + std::min<D>(ranges::distance(E), F)), except that E is evaluated only once, where U
is a type determined as follows:

—(2.2.1) if T is a specialization of span, then U is span<typename T::element_type>;
—(2.2.2) otherwise, if T is a specialization of basic_string_view, then U is T;
—(2.2.3) otherwise, T is a specialization of subrange, and U is subrange<iterator_t<T>>;

—(2.3) otherwise, if T is a specialization of iota_view (26.6.4.2) that models random_access_range and
sized_range, then iota_view(*ranges::begin(E), *(ranges::begin(E) + std::
min<D>(ranges::distance(E), F))), except that E is evaluated only once.

—(2.4) Otherwise, if T is a specialization of repeat_view (26.6.5.2):
—(2.4.1) if T models sized_range, then

views::repeat(*E.value_, std::min<D>(ranges::distance(E), F))

except that E is evaluated only once;
—(2.4.2) otherwise, views::repeat(*E.value_, static_cast<D>(F)).

—(2.5) Otherwise, take_view(E, F).
3 [Example 1 :

vector<int> is{0,1,2,3,4,5,6,7,8,9};
for (int i : is | views::take(5))

cout << i << ' '; // prints 0 1 2 3 4

— end example ]

26.7.10.2 Class template take_view [range.take.view]
namespace std::ranges {

template<view V>
class take_view : public view_interface<take_view<V>> {
private:
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V base_ = V(); // exposition only
range_difference_t<V> count_ = 0; // exposition only

// 26.7.10.3, class template take_view::sentinel
template<bool> class sentinel ; // exposition only

public:
take_view() requires default_initializable<V> = default;
constexpr explicit take_view(V base, range_difference_t<V> count);

constexpr V base() const & requires copy_constructible<V> { return base_; }
constexpr V base() && { return std::move(base_); }

constexpr auto begin() requires (!simple-view <V>) {
if constexpr (sized_range<V>) {

if constexpr (random_access_range<V>) {
return ranges::begin(base_);

} else {
auto sz = range_difference_t<V>(size());
return counted_iterator(ranges::begin(base_), sz);

}
} else if constexpr (sized_sentinel_for<sentinel_t<V>, iterator_t<V>>) {

auto it = ranges::begin(base_);
auto sz = std::min(count_, ranges::end(base_) - it);
return counted_iterator(std::move(it), sz);

} else {
return counted_iterator(ranges::begin(base_), count_);

}
}

constexpr auto begin() const requires range<const V> {
if constexpr (sized_range<const V>) {

if constexpr (random_access_range<const V>) {
return ranges::begin(base_);

} else {
auto sz = range_difference_t<const V>(size());
return counted_iterator(ranges::begin(base_), sz);

}
} else if constexpr (sized_sentinel_for<sentinel_t<const V>, iterator_t<const V>>) {

auto it = ranges::begin(base_);
auto sz = std::min(count_, ranges::end(base_) - it);
return counted_iterator(std::move(it), sz);

} else {
return counted_iterator(ranges::begin(base_), count_);

}
}

constexpr auto end() requires (!simple-view <V>) {
if constexpr (sized_range<V>) {

if constexpr (random_access_range<V>)
return ranges::begin(base_) + range_difference_t<V>(size());

else
return default_sentinel;

} else if constexpr (sized_sentinel_for<sentinel_t<V>, iterator_t<V>>) {
return default_sentinel;

} else {
return sentinel <false>{ranges::end(base_)};

}
}

constexpr auto end() const requires range<const V> {
if constexpr (sized_range<const V>) {

if constexpr (random_access_range<const V>)
return ranges::begin(base_) + range_difference_t<const V>(size());
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else
return default_sentinel;

} else if constexpr (sized_sentinel_for<sentinel_t<const V>, iterator_t<const V>>) {
return default_sentinel;

} else {
return sentinel <true>{ranges::end(base_)};

}
}

constexpr auto size() requires sized_range<V> {
auto n = ranges::size(base_);
return ranges::min(n, static_cast<decltype(n)>(count_));

}

constexpr auto size() const requires sized_range<const V> {
auto n = ranges::size(base_);
return ranges::min(n, static_cast<decltype(n)>(count_));

}
};

template<class R>
take_view(R&&, range_difference_t<R>)

-> take_view<views::all_t<R>>;
}

constexpr explicit take_view(V base, range_difference_t<V> count);

1 Preconditions: count >= 0 is true.
2 Effects: Initializes base_ with std::move(base) and count_ with count.

26.7.10.3 Class template take_view::sentinel [range.take.sentinel]
namespace std::ranges {

template<view V>
template<bool Const>
class take_view<V>::sentinel {
private:

using Base = maybe-const <Const, V>; // exposition only
template<bool OtherConst>

using CI = counted_iterator<iterator_t<maybe-const <OtherConst, V>>>; // exposition only
sentinel_t<Base > end_ = sentinel_t<Base >(); // exposition only

public:
sentinel () = default;
constexpr explicit sentinel (sentinel_t<Base > end);
constexpr sentinel (sentinel <!Const> s)

requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base >>;

constexpr sentinel_t<Base > base() const;

friend constexpr bool operator==(const CI <Const>& y, const sentinel & x);

template<bool OtherConst = !Const>
requires sentinel_for<sentinel_t<Base >, iterator_t<maybe-const <OtherConst, V>>>

friend constexpr bool operator==(const CI <OtherConst>& y, const sentinel & x);
};

}

constexpr explicit sentinel (sentinel_t<Base > end);

1 Effects: Initializes end_ with end.

constexpr sentinel (sentinel <!Const> s)
requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base >>;

2 Effects: Initializes end_ with std::move(s.end_).
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constexpr sentinel_t<Base > base() const;

3 Effects: Equivalent to: return end_;

friend constexpr bool operator==(const CI <Const>& y, const sentinel & x);

template<bool OtherConst = !Const>
requires sentinel_for<sentinel_t<Base >, iterator_t<maybe-const <OtherConst, V>>>

friend constexpr bool operator==(const CI <OtherConst>& y, const sentinel & x);

4 Effects: Equivalent to: return y.count() == 0 || y.base() == x.end_;

26.7.11 Take while view [range.take.while]
26.7.11.1 Overview [range.take.while.overview]

1 Given a unary predicate pred and a view r, take_while_view produces a view of the range [ranges::be-
gin(r), ranges::find_if_not(r, pred)).

2 The name views::take_while denotes a range adaptor object (26.7.2). Given subexpressions E and F, the
expression views::take_while(E, F) is expression-equivalent to take_while_view(E, F).

3 [Example 1 :
auto input = istringstream{"0 1 2 3 4 5 6 7 8 9"};
auto small = [](const auto x) noexcept { return x < 5; };
auto small_ints = views::istream<int>(input) | views::take_while(small);
for (const auto i : small_ints) {

cout << i << ' '; // prints 0 1 2 3 4
}
auto i = 0;
input >> i;
cout << i; // prints 6

— end example ]

26.7.11.2 Class template take_while_view [range.take.while.view]
namespace std::ranges {

template<view V, class Pred>
requires input_range<V> && is_object_v<Pred> &&

indirect_unary_predicate<const Pred, iterator_t<V>>
class take_while_view : public view_interface<take_while_view<V, Pred>> {

// 26.7.11.3, class template take_while_view::sentinel
template<bool> class sentinel; // exposition only

V base_ = V(); // exposition only
movable-box<Pred> pred_; // exposition only

public:
take_while_view() requires default_initializable<V> && default_initializable<Pred> = default;
constexpr explicit take_while_view(V base, Pred pred);

constexpr V base() const & requires copy_constructible<V> { return base_; }
constexpr V base() && { return std::move(base_); }

constexpr const Pred& pred() const;

constexpr auto begin() requires (!simple-view <V>)
{ return ranges::begin(base_); }

constexpr auto begin() const
requires range<const V> &&

indirect_unary_predicate<const Pred, iterator_t<const V>>
{ return ranges::begin(base_); }

constexpr auto end() requires (!simple-view <V>)
{ return sentinel <false>(ranges::end(base_), addressof(*pred_)); }
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constexpr auto end() const
requires range<const V> &&

indirect_unary_predicate<const Pred, iterator_t<const V>>
{ return sentinel <true>(ranges::end(base_), addressof(*pred_)); }

};

template<class R, class Pred>
take_while_view(R&&, Pred) -> take_while_view<views::all_t<R>, Pred>;

}

constexpr explicit take_while_view(V base, Pred pred);

1 Effects: Initializes base_ with std::move(base) and pred_ with std::move(pred).

constexpr const Pred& pred() const;

2 Effects: Equivalent to: return *pred_;

26.7.11.3 Class template take_while_view::sentinel [range.take.while.sentinel]
namespace std::ranges {

template<view V, class Pred>
requires input_range<V> && is_object_v<Pred> &&

indirect_unary_predicate<const Pred, iterator_t<V>>
template<bool Const>
class take_while_view<V, Pred>::sentinel {

using Base = maybe-const<Const, V>; // exposition only

sentinel_t<Base> end_ = sentinel_t<Base>(); // exposition only
const Pred* pred_ = nullptr; // exposition only

public:
sentinel () = default;
constexpr explicit sentinel (sentinel_t<Base > end, const Pred* pred);
constexpr sentinel (sentinel <!Const> s)

requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base >>;

constexpr sentinel_t<Base > base() const { return end_; }

friend constexpr bool operator==(const iterator_t<Base >& x, const sentinel & y);

template<bool OtherConst = !Const>
requires sentinel_for<sentinel_t<Base >, iterator_t<maybe-const <OtherConst, V>>>

friend constexpr bool operator==(const iterator_t<maybe-const <OtherConst, V>>& x,
const sentinel & y);

};
}

constexpr explicit sentinel (sentinel_t<Base > end, const Pred* pred);

1 Effects: Initializes end_ with end and pred_ with pred.

constexpr sentinel (sentinel <!Const> s)
requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base >>;

2 Effects: Initializes end_ with std::move(s.end_) and pred_ with s.pred_.

friend constexpr bool operator==(const iterator_t<Base >& x, const sentinel & y);

template<bool OtherConst = !Const>
requires sentinel_for<sentinel_t<Base >, iterator_t<maybe-const <OtherConst, V>>>

friend constexpr bool operator==(const iterator_t<maybe-const <OtherConst, V>>& x,
const sentinel & y);

3 Effects: Equivalent to: return y.end_ == x || !invoke(*y.pred_, *x);
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26.7.12 Drop view [range.drop]
26.7.12.1 Overview [range.drop.overview]

1 drop_view produces a view excluding the first N elements from another view, or an empty range if the
adapted view contains fewer than N elements.

2 The name views::drop denotes a range adaptor object (26.7.2). Let E and F be expressions, let T be remove_-
cvref_t<decltype((E))>, and let D be range_difference_t<decltype((E))>. If decltype((F)) does not
model convertible_to<D>, views::drop(E, F) is ill-formed. Otherwise, the expression views::drop(E,
F) is expression-equivalent to:

—(2.1) If T is a specialization of empty_view (26.6.2.2), then ((void)F, decay-copy(E)), except that the
evaluations of E and F are indeterminately sequenced.

—(2.2) Otherwise, if T models random_access_range and sized_range and is
—(2.2.1) a specialization of span (24.7.2.2),
—(2.2.2) a specialization of basic_string_view (23.3),
—(2.2.3) a specialization of iota_view (26.6.4.2), or
—(2.2.4) a specialization of subrange (26.5.4) where T::StoreSize is false,

then U(ranges::begin(E) + std::min<D>(ranges::distance(E), F), ranges::end(E)), except
that E is evaluated only once, where U is span<typename T::element_type> if T is a specialization of
span and T otherwise.

—(2.3) Otherwise, if T is a specialization of subrange (26.5.4) that models random_access_range and sized_-
range, then T(ranges::begin(E) + std::min<D>(ranges::distance(E), F), ranges::
end(E), to-unsigned-like (ranges::distance(E) - std::min<D>(ranges::distance(E), F))),
except that E and F are each evaluated only once.

—(2.4) Otherwise, if T is a specialization of repeat_view (26.6.5.2):
—(2.4.1) if T models sized_range, then

views::repeat(*E.value_, ranges::distance(E) - std::min<D>(ranges::distance(E), F))

except that E is evaluated only once;
—(2.4.2) otherwise, ((void)F, decay-copy(E)), except that the evaluations of E and F are indeterminately

sequenced.
—(2.5) Otherwise, drop_view(E, F).

3 [Example 1 :
auto ints = views::iota(0) | views::take(10);
for (auto i : ints | views::drop(5)) {

cout << i << ' '; // prints 5 6 7 8 9
}

— end example ]

26.7.12.2 Class template drop_view [range.drop.view]
namespace std::ranges {

template<view V>
class drop_view : public view_interface<drop_view<V>> {
public:

drop_view() requires default_initializable<V> = default;
constexpr explicit drop_view(V base, range_difference_t<V> count);

constexpr V base() const & requires copy_constructible<V> { return base_; }
constexpr V base() && { return std::move(base_); }

constexpr auto begin()
requires (!(simple-view <V> &&

random_access_range<const V> && sized_range<const V>));
constexpr auto begin() const

requires random_access_range<const V> && sized_range<const V>;
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constexpr auto end() requires (!simple-view <V>)
{ return ranges::end(base_); }

constexpr auto end() const requires range<const V>
{ return ranges::end(base_); }

constexpr auto size() requires sized_range<V> {
const auto s = ranges::size(base_);
const auto c = static_cast<decltype(s)>(count_);
return s < c ? 0 : s - c;

}

constexpr auto size() const requires sized_range<const V> {
const auto s = ranges::size(base_);
const auto c = static_cast<decltype(s)>(count_);
return s < c ? 0 : s - c;

}

private:
V base_ = V(); // exposition only
range_difference_t<V> count_ = 0; // exposition only

};

template<class R>
drop_view(R&&, range_difference_t<R>) -> drop_view<views::all_t<R>>;

}

constexpr explicit drop_view(V base, range_difference_t<V> count);

1 Preconditions: count >= 0 is true.
2 Effects: Initializes base_ with std::move(base) and count_ with count.

constexpr auto begin()
requires (!(simple-view <V> &&

random_access_range<const V> && sized_range<const V>));
constexpr auto begin() const

requires random_access_range<const V> && sized_range<const V>;

3 Returns: ranges::next(ranges::begin(base_), count_, ranges::end(base_)).
4 Remarks: In order to provide the amortized constant-time complexity required by the range concept

when drop_view models forward_range, the first overload caches the result within the drop_view for
use on subsequent calls.
[Note 1 : Without this, applying a reverse_view over a drop_view would have quadratic iteration complexity.

— end note ]

26.7.13 Drop while view [range.drop.while]
26.7.13.1 Overview [range.drop.while.overview]

1 Given a unary predicate pred and a view r, drop_while_view produces a view of the range [ranges::find_-
if_not(r, pred), ranges::end(r)).

2 The name views::drop_while denotes a range adaptor object (26.7.2). Given subexpressions E and F, the
expression views::drop_while(E, F) is expression-equivalent to drop_while_view(E, F).

3 [Example 1 :
constexpr auto source = " \t \t \t hello there"sv;
auto is_invisible = [](const auto x) { return x == ' ' || x == '\t'; };
auto skip_ws = views::drop_while(source, is_invisible);
for (auto c : skip_ws) {

cout << c; // prints hello there with no leading space
}

— end example ]
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26.7.13.2 Class template drop_while_view [range.drop.while.view]
namespace std::ranges {

template<view V, class Pred>
requires input_range<V> && is_object_v<Pred> &&

indirect_unary_predicate<const Pred, iterator_t<V>>
class drop_while_view : public view_interface<drop_while_view<V, Pred>> {
public:

drop_while_view() requires default_initializable<V> && default_initializable<Pred> = default;
constexpr explicit drop_while_view(V base, Pred pred);

constexpr V base() const & requires copy_constructible<V> { return base_; }
constexpr V base() && { return std::move(base_); }

constexpr const Pred& pred() const;

constexpr auto begin();

constexpr auto end() { return ranges::end(base_); }

private:
V base_ = V(); // exposition only
movable-box <Pred> pred_; // exposition only

};

template<class R, class Pred>
drop_while_view(R&&, Pred) -> drop_while_view<views::all_t<R>, Pred>;

}

constexpr explicit drop_while_view(V base, Pred pred);

1 Effects: Initializes base_ with std::move(base) and pred_ with std::move(pred).

constexpr const Pred& pred() const;

2 Effects: Equivalent to: return *pred_;

constexpr auto begin();

3 Preconditions: pred_.has_value() is true.
4 Returns: ranges::find_if_not(base_, cref(*pred_)).
5 Remarks: In order to provide the amortized constant-time complexity required by the range concept

when drop_while_view models forward_range, the first call caches the result within the drop_while_-
view for use on subsequent calls.
[Note 1 : Without this, applying a reverse_view over a drop_while_view would have quadratic iteration
complexity. — end note ]

26.7.14 Join view [range.join]
26.7.14.1 Overview [range.join.overview]

1 join_view flattens a view of ranges into a view.
2 The name views::join denotes a range adaptor object (26.7.2). Given a subexpression E, the expression

views::join(E) is expression-equivalent to join_view<views::all_t<decltype((E))>>{E}.
3 [Example 1 :

vector<string> ss{"hello", " ", "world", "!"};
for (char ch : ss | views::join)

cout << ch; // prints hello world!

— end example ]

26.7.14.2 Class template join_view [range.join.view]
namespace std::ranges {

template<input_range V>
requires view<V> && input_range<range_reference_t<V>>
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class join_view : public view_interface<join_view<V>> {
private:

using InnerRng = range_reference_t<V>; // exposition only

// 26.7.14.3, class template join_view::iterator
template<bool Const>

struct iterator; // exposition only

// 26.7.14.4, class template join_view::sentinel
template<bool Const>

struct sentinel; // exposition only

V base_ = V(); // exposition only

non-propagating-cache<iterator_t<V>> outer_; // exposition only, present only
// when !forward_range<V>

non-propagating-cache<remove_cv_t<InnerRng>> inner_; // exposition only, present only
// if is_reference_v<InnerRng > is false

public:
join_view() requires default_initializable<V> = default;
constexpr explicit join_view(V base);

constexpr V base() const & requires copy_constructible<V> { return base_; }
constexpr V base() && { return std::move(base_); }

constexpr auto begin() {
if constexpr (forward_range<V>) {

constexpr bool use_const = simple-view <V> &&
is_reference_v<InnerRng >;

return iterator <use_const>{*this, ranges::begin(base_)};
} else {

outer_ = ranges::begin(base_);
return iterator <false>{*this};

}
}

constexpr auto begin() const
requires forward_range<const V> &&

is_reference_v<range_reference_t<const V>> &&
input_range<range_reference_t<const V>>

{ return iterator <true>{*this, ranges::begin(base_)}; }

constexpr auto end() {
if constexpr (forward_range<V> &&

is_reference_v<InnerRng > && forward_range<InnerRng > &&
common_range<V> && common_range<InnerRng >)

return iterator <simple-view <V>>{*this, ranges::end(base_)};
else

return sentinel <simple-view <V>>{*this};
}

constexpr auto end() const
requires forward_range<const V> &&

is_reference_v<range_reference_t<const V>> &&
input_range<range_reference_t<const V>> {

if constexpr (forward_range<range_reference_t<const V>> &&
common_range<const V> &&
common_range<range_reference_t<const V>>)

return iterator <true>{*this, ranges::end(base_)};
else

return sentinel <true>{*this};
}

};
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template<class R>
explicit join_view(R&&) -> join_view<views::all_t<R>>;

}

constexpr explicit join_view(V base);

1 Effects: Initializes base_ with std::move(base).

26.7.14.3 Class template join_view::iterator [range.join.iterator]
namespace std::ranges {

template<input_range V>
requires view<V> && input_range<range_reference_t<V>>

template<bool Const>
struct join_view<V>::iterator {
private:

using Parent = maybe-const<Const, join_view>; // exposition only
using Base = maybe-const<Const, V>; // exposition only
using OuterIter = iterator_t<Base>; // exposition only
using InnerIter = iterator_t<range_reference_t<Base>>; // exposition only

static constexpr bool ref-is-glvalue = // exposition only
is_reference_v<range_reference_t<Base>>;

OuterIter outer_ = OuterIter(); // exposition only, present only
// if Base models forward_range

optional<InnerIter> inner_; // exposition only
Parent* parent_ = nullptr; // exposition only

constexpr void satisfy(); // exposition only

constexpr OuterIter& outer(); // exposition only
constexpr const OuterIter& outer() const; // exposition only

constexpr iterator(Parent& parent, OuterIter outer)
requires forward_range<Base>; // exposition only

constexpr explicit iterator(Parent& parent)
requires (!forward_range<Base>); // exposition only

public:
using iterator_concept = see below ;
using iterator_category = see below ; // not always present
using value_type = range_value_t<range_reference_t<Base >>;
using difference_type = see below ;

iterator () = default;
constexpr iterator (iterator <!Const> i)

requires Const &&
convertible_to<iterator_t<V>, OuterIter > &&
convertible_to<iterator_t<InnerRng >, InnerIter >;

constexpr decltype(auto) operator*() const { return **inner_; }

constexpr InnerIter operator->() const
requires has-arrow <InnerIter > && copyable<InnerIter >;

constexpr iterator & operator++();
constexpr void operator++(int);
constexpr iterator operator++(int)

requires ref-is-glvalue && forward_range<Base > &&
forward_range<range_reference_t<Base >>;

§ 26.7.14.3 1183



© ISO/IEC N4950

constexpr iterator & operator--()
requires ref-is-glvalue && bidirectional_range<Base > &&

bidirectional_range<range_reference_t<Base >> &&
common_range<range_reference_t<Base >>;

constexpr iterator operator--(int)
requires ref-is-glvalue && bidirectional_range<Base > &&

bidirectional_range<range_reference_t<Base >> &&
common_range<range_reference_t<Base >>;

friend constexpr bool operator==(const iterator & x, const iterator & y)
requires ref-is-glvalue && forward_range<Base > &&

equality_comparable<iterator_t<range_reference_t<Base >>>;

friend constexpr decltype(auto) iter_move(const iterator & i)
noexcept(noexcept(ranges::iter_move(*i.inner_))) {

return ranges::iter_move(*i.inner_);
}

friend constexpr void iter_swap(const iterator & x, const iterator & y)
noexcept(noexcept(ranges::iter_swap(*x.inner_, *y.inner_)))
requires indirectly_swappable<InnerIter >;

};
}

1 iterator ::iterator_concept is defined as follows:
—(1.1) If ref-is-glvalue is true, Base models bidirectional_range, and range_reference_t<Base >

models both bidirectional_range and common_range, then iterator_concept denotes bidirectio-
nal_iterator_tag.

—(1.2) Otherwise, if ref-is-glvalue is true and Base and range_reference_t<Base > each model for-
ward_range, then iterator_concept denotes forward_iterator_tag.

—(1.3) Otherwise, iterator_concept denotes input_iterator_tag.
2 The member typedef-name iterator_category is defined if and only if ref-is-glvalue is true, Base models

forward_range, and range_reference_t<Base > models forward_range. In that case, iterator::iter-
ator_category is defined as follows:

—(2.1) Let OUTERC denote iterator_traits<iterator_t<Base >>::iterator_category, and let INNERC
denote iterator_traits<iterator_t<range_reference_t<Base >>>::iterator_category.

—(2.2) If OUTERC and INNERC each model derived_from<bidirectional_iterator_tag> and range_-
reference_t<Base > models common_range, iterator_category denotes bidirectional_iterator_-
tag.

—(2.3) Otherwise, if OUTERC and INNERC each model derived_from<forward_iterator_tag>, iter-
ator_category denotes forward_iterator_tag.

—(2.4) Otherwise, iterator_category denotes input_iterator_tag.
3 iterator::difference_type denotes the type:

common_type_t<
range_difference_t<Base >,
range_difference_t<range_reference_t<Base >>>

4 join_view iterators use the satisfy function to skip over empty inner ranges.

constexpr OuterIter & outer ();
constexpr const OuterIter & outer () const;

5 Returns: outer_ if Base models forward_range; otherwise, *parent_->outer_.

constexpr void satisfy ();

6 Effects: Equivalent to:
auto update_inner = [this](const iterator_t<Base >& x) -> auto&& {

if constexpr (ref-is-glvalue ) // *x is a reference
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return *x;
else

return parent_->inner_.emplace-deref (x);
};

for (; outer () != ranges::end(parent_->base_); ++outer ()) {
auto&& inner = update_inner(outer ());
inner_ = ranges::begin(inner);
if (*inner_ != ranges::end(inner))

return;
}
if constexpr (ref-is-glvalue )

inner_.reset();

constexpr iterator (Parent & parent, OuterIter outer)
requires forward_range<Base >;

7 Effects: Initializes outer_ with std::move(outer) and parent_ with addressof(parent); then calls
satisfy ().

constexpr explicit iterator (Parent & parent)
requires (!forward_range<Base >);

8 Effects: Initializes parent_ with addressof(parent); then calls satisfy ().

constexpr iterator (iterator <!Const> i)
requires Const &&

convertible_to<iterator_t<V>, OuterIter > &&
convertible_to<iterator_t<InnerRng >, InnerIter >;

9 Effects: Initializes outer_ with std::move(i.outer_), inner_ with std::move(i.inner_), and
parent_ with i.parent_.

10 [Note 1 : Const can only be true when Base models forward_range. — end note ]

constexpr InnerIter operator->() const
requires has-arrow <InnerIter > && copyable<InnerIter >;

11 Effects: Equivalent to: return *inner_;

constexpr iterator & operator++();

12 Let inner-range be:
—(12.1) If ref-is-glvalue is true, *outer ().
—(12.2) Otherwise, *parent_->inner_.

13 Effects: Equivalent to:
if (++*inner_ == ranges::end(as-lvalue (inner-range ))) {

++outer ();
satisfy ();

}
return *this;

constexpr void operator++(int);

14 Effects: Equivalent to: ++*this.

constexpr iterator operator++(int)
requires ref-is-glvalue && forward_range<Base > &&

forward_range<range_reference_t<Base >>;

15 Effects: Equivalent to:
auto tmp = *this;
++*this;
return tmp;
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constexpr iterator & operator--()
requires ref-is-glvalue && bidirectional_range<Base > &&

bidirectional_range<range_reference_t<Base >> &&
common_range<range_reference_t<Base >>;

16 Effects: Equivalent to:
if (outer_ == ranges::end(parent_->base_))

inner_ = ranges::end(as-lvalue (*--outer_));
while (*inner_ == ranges::begin(as-lvalue (*outer_)))

*inner_ = ranges::end(as-lvalue (*--outer_));
--*inner_;
return *this;

constexpr iterator operator--(int)
requires ref-is-glvalue && bidirectional_range<Base > &&

bidirectional_range<range_reference_t<Base >> &&
common_range<range_reference_t<Base >>;

17 Effects: Equivalent to:
auto tmp = *this;
--*this;
return tmp;

friend constexpr bool operator==(const iterator & x, const iterator & y)
requires ref-is-glvalue && forward_range<Base > &&

equality_comparable<iterator_t<range_reference_t<Base >>>;

18 Effects: Equivalent to: return x.outer_ == y.outer_ && x.inner_ == y.inner_;

friend constexpr void iter_swap(const iterator & x, const iterator & y)
noexcept(noexcept(ranges::iter_swap(*x.inner_, *y.inner_)))
requires indirectly_swappable<InnerIter >;

19 Effects: Equivalent to: return ranges::iter_swap(*x.inner_, *y.inner_);

26.7.14.4 Class template join_view::sentinel [range.join.sentinel]
namespace std::ranges {

template<input_range V>
requires view<V> && input_range<range_reference_t<V>>

template<bool Const>
struct join_view<V>::sentinel {
private:

using Parent = maybe-const <Const, join_view>; // exposition only
using Base = maybe-const <Const, V>; // exposition only
sentinel_t<Base > end_ = sentinel_t<Base >(); // exposition only

public:
sentinel () = default;

constexpr explicit sentinel (Parent & parent);
constexpr sentinel (sentinel <!Const> s)

requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base >>;

template<bool OtherConst>
requires sentinel_for<sentinel_t<Base >, iterator_t<maybe-const <OtherConst, V>>>

friend constexpr bool operator==(const iterator <OtherConst>& x, const sentinel & y);
};

}

constexpr explicit sentinel (Parent & parent);

1 Effects: Initializes end_ with ranges::end(parent.base_).

constexpr sentinel (sentinel <!Const> s)
requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base >>;

2 Effects: Initializes end_ with std::move(s.end_).
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template<bool OtherConst>
requires sentinel_for<sentinel_t<Base >, iterator_t<maybe-const <OtherConst, V>>>

friend constexpr bool operator==(const iterator <OtherConst>& x, const sentinel & y);

3 Effects: Equivalent to: return x.outer () == y.end_;

26.7.15 Join with view [range.join.with]
26.7.15.1 Overview [range.join.with.overview]

1 join_with_view takes a view and a delimiter, and flattens the view, inserting every element of the delimiter
in between elements of the view. The delimiter can be a single element or a view of elements.

2 The name views::join_with denotes a range adaptor object (26.7.2). Given subexpressions E and F, the
expression views::join_with(E, F) is expression-equivalent to join_with_view(E, F).

3 [Example 1 :
vector<string> vs = {"the", "quick", "brown", "fox"};
for (char c : vs | views::join_with('-')) {

cout << c;
}
// The above prints the-quick-brown-fox

— end example ]

26.7.15.2 Class template join_with_view [range.join.with.view]
namespace std::ranges {

template<class R, class P>
concept compatible-joinable-ranges = // exposition only

common_with<range_value_t<R>, range_value_t<P>> &&
common_reference_with<range_reference_t<R>, range_reference_t<P>> &&
common_reference_with<range_rvalue_reference_t<R>, range_rvalue_reference_t<P>>;

template<class R>
concept bidirectional-common = bidirectional_range<R> && common_range<R>; // exposition only

template<input_range V, forward_range Pattern>
requires view<V> && input_range<range_reference_t<V>>

&& view<Pattern>
&& compatible-joinable-ranges <range_reference_t<V>, Pattern>

class join_with_view : public view_interface<join_with_view<V, Pattern>> {
using InnerRng = range_reference_t<V>; // exposition only

V base_ = V(); // exposition only
non-propagating-cache <iterator_t<V>> outer_it_; // exposition only, present only

// when !forward_range<V>
non-propagating-cache <remove_cv_t<InnerRng >> inner_; // exposition only, present only

// if is_reference_v<InnerRng > is false
Pattern pattern_ = Pattern(); // exposition only

// 26.7.15.3, class template join_with_view::iterator
template<bool Const> struct iterator ; // exposition only

// 26.7.15.4, class template join_with_view::sentinel
template<bool Const> struct sentinel ; // exposition only

public:
join_with_view()

requires default_initializable<V> && default_initializable<Pattern> = default;

constexpr explicit join_with_view(V base, Pattern pattern);

template<input_range R>
requires constructible_from<V, views::all_t<R>> &&

constructible_from<Pattern, single_view<range_value_t<InnerRng >>>
constexpr explicit join_with_view(R&& r, range_value_t<InnerRng > e);
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constexpr V base() const & requires copy_constructible<V> { return base_; }
constexpr V base() && { return std::move(base_); }

constexpr auto begin() {
if constexpr (forward_range<V>) {

constexpr bool use_const =
simple-view <V> && is_reference_v<InnerRng > && simple-view <Pattern>;

return iterator <use_const>{*this, ranges::begin(base_)};
}
else {

outer_it_ = ranges::begin(base_);
return iterator <false>{*this};

}
}
constexpr auto begin() const

requires forward_range<const V> &&
forward_range<const Pattern> &&
is_reference_v<range_reference_t<const V>> &&
input_range<range_reference_t<const V>> {

return iterator <true>{*this, ranges::begin(base_)};
}

constexpr auto end() {
if constexpr (forward_range<V> &&

is_reference_v<InnerRng > && forward_range<InnerRng > &&
common_range<V> && common_range<InnerRng >)

return iterator <simple-view <V> && simple-view <Pattern>>{*this, ranges::end(base_)};
else

return sentinel <simple-view <V> && simple-view <Pattern>>{*this};
}
constexpr auto end() const

requires forward_range<const V> && forward_range<const Pattern> &&
is_reference_v<range_reference_t<const V>> &&
input_range<range_reference_t<const V>> {

using InnerConstRng = range_reference_t<const V>;
if constexpr (forward_range<InnerConstRng> &&

common_range<const V> && common_range<InnerConstRng>)
return iterator <true>{*this, ranges::end(base_)};

else
return sentinel <true>{*this};

}
};

template<class R, class P>
join_with_view(R&&, P&&) -> join_with_view<views::all_t<R>, views::all_t<P>>;

template<input_range R>
join_with_view(R&&, range_value_t<range_reference_t<R>>)

-> join_with_view<views::all_t<R>, single_view<range_value_t<range_reference_t<R>>>>;
}

constexpr explicit join_with_view(V base, Pattern pattern);

1 Effects: Initializes base_ with std::move(base) and pattern_ with std::move(pattern).

template<input_range R>
requires constructible_from<V, views::all_t<R>> &&

constructible_from<Pattern, single_view<range_value_t<InnerRng >>>
constexpr explicit join_with_view(R&& r, range_value_t<InnerRng > e);

2 Effects: Initializes base_ with views::all(std::forward<R>(r)) and pattern_ with views::sin-
gle(std::move(e)).
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26.7.15.3 Class template join_with_view::iterator [range.join.with.iterator]
namespace std::ranges {

template<input_range V, forward_range Pattern>
requires view<V> && input_range<range_reference_t<V>>

&& view<Pattern> && compatible-joinable-ranges <range_reference_t<V>, Pattern>
template<bool Const>
class join_with_view<V, Pattern>::iterator {

using Parent = maybe-const <Const, join_with_view>; // exposition only
using Base = maybe-const <Const, V>; // exposition only
using InnerBase = range_reference_t<Base >; // exposition only
using PatternBase = maybe-const <Const, Pattern>; // exposition only

using OuterIter = iterator_t<Base >; // exposition only
using InnerIter = iterator_t<InnerBase >; // exposition only
using PatternIter = iterator_t<PatternBase >; // exposition only

static constexpr bool ref-is-glvalue = is_reference_v<InnerBase >; // exposition only

Parent * parent_ = nullptr; // exposition only
OuterIter outer_it_ = OuterIter (); // exposition only, present only

// if Base models forward_range
variant<PatternIter , InnerIter > inner_it_; // exposition only

constexpr iterator (Parent & parent, OuterIter outer)
requires forward_range<Base >; // exposition only

constexpr explicit iterator (Parent & parent)
requires (!forward_range<Base >); // exposition only

constexpr OuterIter & outer (); // exposition only
constexpr const OuterIter & outer () const; // exposition only
constexpr auto& update-inner (); // exposition only
constexpr auto& get-inner (); // exposition only
constexpr void satisfy (); // exposition only

public:
using iterator_concept = see below ;
using iterator_category = see below ; // not always present
using value_type = see below ;
using difference_type = see below ;

iterator () = default;
constexpr iterator (iterator <!Const> i)

requires Const && convertible_to<iterator_t<V>, OuterIter > &&
convertible_to<iterator_t<InnerRng >, InnerIter > &&
convertible_to<iterator_t<Pattern>, PatternIter >;

constexpr decltype(auto) operator*() const;

constexpr iterator & operator++();
constexpr void operator++(int);
constexpr iterator operator++(int)

requires ref-is-glvalue && forward_iterator<OuterIter > &&
forward_iterator<InnerIter >;

constexpr iterator & operator--()
requires ref-is-glvalue && bidirectional_range<Base > &&

bidirectional-common <InnerBase > && bidirectional-common <PatternBase >;
constexpr iterator operator--(int)

requires ref-is-glvalue && bidirectional_range<Base > &&
bidirectional-common <InnerBase > && bidirectional-common <PatternBase >;

friend constexpr bool operator==(const iterator & x, const iterator & y)
requires ref-is-glvalue && forward_range<Base > &&

equality_comparable<InnerIter >;
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friend constexpr decltype(auto) iter_move(const iterator & x) {
using rvalue_reference = common_reference_t<

iter_rvalue_reference_t<InnerIter >,
iter_rvalue_reference_t<PatternIter >>;

return visit<rvalue_reference>(ranges::iter_move, x.inner_it_);
}

friend constexpr void iter_swap(const iterator & x, const iterator & y)
requires indirectly_swappable<InnerIter , PatternIter > {
visit(ranges::iter_swap, x.inner_it_, y.inner_it_);

}
};

}

1 iterator ::iterator_concept is defined as follows:
—(1.1) If ref-is-glvalue is true, Base models bidirectional_range, and InnerBase and PatternBase

each model bidirectional-common , then iterator_concept denotes bidirectional_iterator_tag.
—(1.2) Otherwise, if ref-is-glvalue is true and Base and InnerBase each model forward_range, then

iterator_concept denotes forward_iterator_tag.
—(1.3) Otherwise, iterator_concept denotes input_iterator_tag.

2 The member typedef-name iterator_category is defined if and only if ref-is-glvalue is true, and Base
and InnerBase each model forward_range. In that case, iterator ::iterator_category is defined as
follows:

—(2.1) Let OUTERC denote iterator_traits<OuterIter >::iterator_category, let INNERC denote
iterator_traits<InnerIter >::iterator_category, and let PATTERNC denote iterator_-
traits<PatternIter >::iterator_category.

—(2.2) If
is_reference_v<common_reference_t<iter_reference_t<InnerIter >,

iter_reference_t<PatternIter >>>

is false, iterator_category denotes input_iterator_tag.
—(2.3) Otherwise, if OUTERC, INNERC, and PATTERNC each model derived_from<bidirectional_-

iterator_category> and InnerBase and PatternBase each model common_range, iterator_cate-
gory denotes bidirectional_iterator_tag.

—(2.4) Otherwise, if OUTERC, INNERC, and PATTERNC each model derived_from<forward_iterator_-
tag>, iterator_category denotes forward_iterator_tag.

—(2.5) Otherwise, iterator_category denotes input_iterator_tag.
3 iterator ::value_type denotes the type:

common_type_t<iter_value_t<InnerIter >, iter_value_t<PatternIter >>

4 iterator ::difference_type denotes the type:
common_type_t<

iter_difference_t<OuterIter >,
iter_difference_t<InnerIter >,
iter_difference_t<PatternIter >>

constexpr OuterIter & outer ();
constexpr const OuterIter & outer () const;

5 Returns: outer_it_ if Base models forward_range; otherwise, *parent_->outer_it_.

constexpr auto& update-inner ();

6 Effects: Equivalent to:
if constexpr (ref-is-glvalue )

return as-lvalue (*outer ());
else

return parent_->inner_.emplace-deref (outer ());
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constexpr auto& get-inner ();

7 Effects: Equivalent to:
if constexpr (ref-is-glvalue )

return as-lvalue (*outer ());
else

return *parent_->inner_;

constexpr void satisfy ();

8 Effects: Equivalent to:
while (true) {

if (inner_it_.index() == 0) {
if (std::get<0>(inner_it_) != ranges::end(parent_->pattern_))

break;
inner_it_.emplace<1>(ranges::begin(update-inner ()));

} else {
if (std::get<1>(inner_it_) != ranges::end(get-inner ()))

break;
if (++outer () == ranges::end(parent_->base_)) {

if constexpr (ref-is-glvalue )
inner_it_.emplace<0>();

break;
}
inner_it_.emplace<0>(ranges::begin(parent_->pattern_));

}
}

[Note 1 : join_with_view iterators use the satisfy function to skip over empty inner ranges. — end note ]

constexpr iterator (Parent & parent, OuterIter outer)
requires forward_range<Base >;

constexpr explicit iterator (Parent & parent)
requires (!forward_range<Base >);

9 Effects: Initializes parent_ with addressof(parent). For the first overload, also initializes outer_-
it_ with std::move(outer). Then, equivalent to:

if (outer () != ranges::end(parent_->base_)) {
inner_it_.emplace<1>(ranges::begin(update-inner ()));
satisfy();

}

constexpr iterator (iterator <!Const> i)
requires Const && convertible_to<iterator_t<V>, OuterIter > &&

convertible_to<iterator_t<InnerRng >, InnerIter > &&
convertible_to<iterator_t<Pattern>, PatternIter >;

10 Effects: Initializes outer_it_ with std::move(i.outer_it_) and parent_ with i.parent_. Then,
equivalent to:

if (i.inner_it_.index() == 0)
inner_it_.emplace<0>(std::get<0>(std::move(i.inner_it_)));

else
inner_it_.emplace<1>(std::get<1>(std::move(i.inner_it_)));

11 [Note 2 : Const can only be true when Base models forward_range. — end note ]

constexpr decltype(auto) operator*() const;

12 Effects: Equivalent to:
using reference =

common_reference_t<iter_reference_t<InnerIter >, iter_reference_t<PatternIter >>;
return visit([](auto& it) -> reference { return *it; }, inner_it_);

constexpr iterator & operator++();

13 Effects: Equivalent to:
visit([](auto& it){ ++it; }, inner_it_);
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satisfy();
return *this;

constexpr void operator++(int);

14 Effects: Equivalent to ++*this.

constexpr iterator operator++(int)
requires ref-is-glvalue && forward_iterator<OuterIter > && forward_iterator<InnerIter >;

15 Effects: Equivalent to:
iterator tmp = *this;
++*this;
return tmp;

constexpr iterator & operator--()
requires ref-is-glvalue && bidirectional_range<Base > &&

bidirectional-common <InnerBase > && bidirectional-common <PatternBase >;

16 Effects: Equivalent to:
if (outer_it_ == ranges::end(parent_->base_)) {

auto&& inner = *--outer_it_;
inner_it_.emplace<1>(ranges::end(inner));

}

while (true) {
if (inner_it_.index() == 0) {

auto& it = std::get<0>(inner_it_);
if (it == ranges::begin(parent_->pattern_)) {

auto&& inner = *--outer_it_;
inner_it_.emplace<1>(ranges::end(inner));

} else {
break;

}
} else {

auto& it = std::get<1>(inner_it_);
auto&& inner = *outer_it_;
if (it == ranges::begin(inner)) {

inner_it_.emplace<0>(ranges::end(parent_->pattern_));
} else {

break;
}

}
}
visit([](auto& it){ --it; }, inner_it_);
return *this;

constexpr iterator operator--(int)
requires ref-is-glvalue && bidirectional_range<Base > &&

bidirectional-common <InnerBase > && bidirectional-common <PatternBase >;

17 Effects: Equivalent to:
iterator tmp = *this;
--*this;
return tmp;

friend constexpr bool operator==(const iterator & x, const iterator & y)
requires ref-is-glvalue && forward_range<Base > &&

equality_comparable<InnerIter >;

18 Effects: Equivalent to:
return x.outer_it_ == y.outer_it_ && x.inner_it_ == y.inner_it_;

26.7.15.4 Class template join_with_view::sentinel [range.join.with.sentinel]
namespace std::ranges {

template<input_range V, forward_range Pattern>

§ 26.7.15.4 1192



© ISO/IEC N4950

requires view<V> && input_range<range_reference_t<V>>
&& view<Pattern> && compatible-joinable-ranges <range_reference_t<V>, Pattern>

template<bool Const>
class join_with_view<V, Pattern>::sentinel {

using Parent = maybe-const <Const, join_with_view>; // exposition only
using Base = maybe-const <Const, V>; // exposition only
sentinel_t<Base > end_ = sentinel_t<Base >(); // exposition only

constexpr explicit sentinel (Parent & parent); // exposition only

public:
sentinel () = default;
constexpr sentinel (sentinel <!Const> s)

requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base >>;

template<bool OtherConst>
requires sentinel_for<sentinel_t<Base >, iterator_t<maybe-const <OtherConst, V>>>

friend constexpr bool operator==(const iterator <OtherConst>& x, const sentinel & y);
};

}

constexpr explicit sentinel (Parent & parent);

1 Effects: Initializes end_ with ranges::end(parent.base_).

constexpr sentinel (sentinel <!Const> s)
requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base >>;

2 Effects: Initializes end_ with std::move(s.end_).

template<bool OtherConst>
requires sentinel_for<sentinel_t<Base >, iterator_t<maybe-const <OtherConst, V>>>

friend constexpr bool operator==(const iterator <OtherConst>& x, const sentinel & y);

3 Effects: Equivalent to: return x.outer () == y.end_;

26.7.16 Lazy split view [range.lazy.split]
26.7.16.1 Overview [range.lazy.split.overview]

1 lazy_split_view takes a view and a delimiter, and splits the view into subranges on the delimiter. The
delimiter can be a single element or a view of elements.

2 The name views::lazy_split denotes a range adaptor object (26.7.2). Given subexpressions E and F, the
expression views::lazy_split(E, F) is expression-equivalent to lazy_split_view(E, F).

3 [Example 1 :
string str{"the quick brown fox"};
for (auto word : str | views::lazy_split(' ')) {

for (char ch : word)
cout << ch;

cout << '*';
}
// The above prints the*quick*brown*fox*

— end example ]

26.7.16.2 Class template lazy_split_view [range.lazy.split.view]
namespace std::ranges {

template<auto> struct require-constant; // exposition only

template<class R>
concept tiny-range = // exposition only

sized_range<R> &&
requires { typename require-constant <remove_reference_t<R>::size()>; } &&
(remove_reference_t<R>::size() <= 1);
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template<input_range V, forward_range Pattern>
requires view<V> && view<Pattern> &&

indirectly_comparable<iterator_t<V>, iterator_t<Pattern>, ranges::equal_to> &&
(forward_range<V> || tiny-range <Pattern>)

class lazy_split_view : public view_interface<lazy_split_view<V, Pattern>> {
private:

V base_ = V(); // exposition only
Pattern pattern_ = Pattern(); // exposition only

non-propagating-cache<iterator_t<V>> current_; // exposition only, present only
// if forward_range<V> is false

// 26.7.16.3, class template lazy_split_view::outer-iterator
template<bool> struct outer-iterator; // exposition only

// 26.7.16.5, class template lazy_split_view::inner-iterator
template<bool> struct inner-iterator; // exposition only

public:
lazy_split_view()

requires default_initializable<V> && default_initializable<Pattern> = default;
constexpr explicit lazy_split_view(V base, Pattern pattern);

template<input_range R>
requires constructible_from<V, views::all_t<R>> &&

constructible_from<Pattern, single_view<range_value_t<R>>>
constexpr explicit lazy_split_view(R&& r, range_value_t<R> e);

constexpr V base() const & requires copy_constructible<V> { return base_; }
constexpr V base() && { return std::move(base_); }

constexpr auto begin() {
if constexpr (forward_range<V>) {

return outer-iterator <simple-view <V> && simple-view <Pattern>>
{*this, ranges::begin(base_)};

} else {
current_ = ranges::begin(base_);
return outer-iterator <false>{*this};

}
}

constexpr auto begin() const requires forward_range<V> && forward_range<const V> {
return outer-iterator <true>{*this, ranges::begin(base_)};

}

constexpr auto end() requires forward_range<V> && common_range<V> {
return outer-iterator <simple-view <V> && simple-view <Pattern>>

{*this, ranges::end(base_)};
}

constexpr auto end() const {
if constexpr (forward_range<V> && forward_range<const V> && common_range<const V>)

return outer-iterator <true>{*this, ranges::end(base_)};
else

return default_sentinel;
}

};

template<class R, class P>
lazy_split_view(R&&, P&&) -> lazy_split_view<views::all_t<R>, views::all_t<P>>;
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template<input_range R>
lazy_split_view(R&&, range_value_t<R>)

-> lazy_split_view<views::all_t<R>, single_view<range_value_t<R>>>;
}

constexpr explicit lazy_split_view(V base, Pattern pattern);

1 Effects: Initializes base_ with std::move(base), and pattern_ with std::move(pattern).

template<input_range R>
requires constructible_from<V, views::all_t<R>> &&

constructible_from<Pattern, single_view<range_value_t<R>>>
constexpr explicit lazy_split_view(R&& r, range_value_t<R> e);

2 Effects: Initializes base_ with views::all(std::forward<R>(r)), and pattern_ with views::
single(std::move(e)).

26.7.16.3 Class template lazy_split_view::outer-iterator [range.lazy.split.outer]
namespace std::ranges {

template<input_range V, forward_range Pattern>
requires view<V> && view<Pattern> &&

indirectly_comparable<iterator_t<V>, iterator_t<Pattern>, ranges::equal_to> &&
(forward_range<V> || tiny-range <Pattern>)

template<bool Const>
struct lazy_split_view<V, Pattern>::outer-iterator {
private:

using Parent = maybe-const<Const, lazy_split_view>; // exposition only
using Base = maybe-const<Const, V>; // exposition only
Parent* parent_ = nullptr; // exposition only

iterator_t<Base> current_ = iterator_t<Base>(); // exposition only, present only
// if V models forward_range

bool trailing_empty_ = false; // exposition only

public:
using iterator_concept =

conditional_t<forward_range<Base >, forward_iterator_tag, input_iterator_tag>;

using iterator_category = input_iterator_tag; // present only if Base
// models forward_range

// 26.7.16.4, class lazy_split_view::outer-iterator ::value_type
struct value_type;
using difference_type = range_difference_t<Base >;

outer-iterator () = default;
constexpr explicit outer-iterator (Parent & parent)

requires (!forward_range<Base >);
constexpr outer-iterator (Parent & parent, iterator_t<Base > current)

requires forward_range<Base >;
constexpr outer-iterator (outer-iterator <!Const> i)

requires Const && convertible_to<iterator_t<V>, iterator_t<Base >>;

constexpr value_type operator*() const;

constexpr outer-iterator & operator++();
constexpr decltype(auto) operator++(int) {

if constexpr (forward_range<Base >) {
auto tmp = *this;
++*this;
return tmp;

} else
++*this;

}
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friend constexpr bool operator==(const outer-iterator & x, const outer-iterator & y)
requires forward_range<Base >;

friend constexpr bool operator==(const outer-iterator & x, default_sentinel_t);
};

}

1 Many of the specifications in 26.7.16 refer to the notional member current of outer-iterator . current is
equivalent to current_ if V models forward_range, and *parent_->current_ otherwise.

constexpr explicit outer-iterator (Parent & parent)
requires (!forward_range<Base >);

2 Effects: Initializes parent_ with addressof(parent).

constexpr outer-iterator (Parent & parent, iterator_t<Base > current)
requires forward_range<Base >;

3 Effects: Initializes parent_ with addressof(parent) and current_ with std::move(current).

constexpr outer-iterator (outer-iterator <!Const> i)
requires Const && convertible_to<iterator_t<V>, iterator_t<Base >>;

4 Effects: Initializes parent_ with i.parent_ and current_ with std::move(i.current_).

constexpr value_type operator*() const;

5 Effects: Equivalent to: return value_type{*this};

constexpr outer-iterator & operator++();

6 Effects: Equivalent to:
const auto end = ranges::end(parent_->base_);
if (current == end) {

trailing_empty_ = false;
return *this;

}
const auto [pbegin, pend] = subrange{parent_->pattern_};
if (pbegin == pend) ++current ;
else if constexpr (tiny-range <Pattern>) {

current = ranges::find(std::move(current ), end, *pbegin);
if (current != end) {

++current ;
if (current == end)

trailing_empty_ = true;
}

}
else {

do {
auto [b, p] = ranges::mismatch(current , end, pbegin, pend);
if (p == pend) {

current = b;
if (current == end)

trailing_empty_ = true;
break; // The pattern matched; skip it

}
} while (++current != end);

}
return *this;

friend constexpr bool operator==(const outer-iterator & x, const outer-iterator & y)
requires forward_range<Base >;

7 Effects: Equivalent to:
return x.current_ == y.current_ && x.trailing_empty_ == y.trailing_empty_;

friend constexpr bool operator==(const outer-iterator & x, default_sentinel_t);

8 Effects: Equivalent to:
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return x.current == ranges::end(x.parent_->base_) && !x.trailing_empty_;

26.7.16.4 Class lazy_split_view::outer-iterator::value_type [range.lazy.split.outer.value]
namespace std::ranges {

template<input_range V, forward_range Pattern>
requires view<V> && view<Pattern> &&

indirectly_comparable<iterator_t<V>, iterator_t<Pattern>, ranges::equal_to> &&
(forward_range<V> || tiny-range <Pattern>)

template<bool Const>
struct lazy_split_view<V, Pattern>::outer-iterator <Const>::value_type

: view_interface<value_type> {
private:

outer-iterator i_ = outer-iterator (); // exposition only

public:
value_type() = default;
constexpr explicit value_type(outer-iterator i);

constexpr inner-iterator <Const> begin() const;
constexpr default_sentinel_t end() const noexcept;

};
}

constexpr explicit value_type(outer-iterator i);

1 Effects: Initializes i_ with std::move(i).

constexpr inner-iterator <Const> begin() const;

2 Effects: Equivalent to: return inner-iterator <Const>{i_};

constexpr default_sentinel_t end() const noexcept;

3 Effects: Equivalent to: return default_sentinel;

26.7.16.5 Class template lazy_split_view::inner-iterator [range.lazy.split.inner]
namespace std::ranges {

template<input_range V, forward_range Pattern>
requires view<V> && view<Pattern> &&

indirectly_comparable<iterator_t<V>, iterator_t<Pattern>, ranges::equal_to> &&
(forward_range<V> || tiny-range <Pattern>)

template<bool Const>
struct lazy_split_view<V, Pattern>::inner-iterator {
private:

using Base = maybe-const<Const, V>; // exposition only
outer-iterator<Const> i_ = outer-iterator<Const>(); // exposition only
bool incremented_ = false; // exposition only

public:
using iterator_concept = typename outer-iterator <Const>::iterator_concept;

using iterator_category = see below; // present only if Base
// models forward_range

using value_type = range_value_t<Base >;
using difference_type = range_difference_t<Base >;

inner-iterator () = default;
constexpr explicit inner-iterator (outer-iterator <Const> i);

constexpr const iterator_t<Base >& base() const & noexcept;
constexpr iterator_t<Base > base() && requires forward_range<V>;

constexpr decltype(auto) operator*() const { return *i_.current ; }
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constexpr inner-iterator & operator++();
constexpr decltype(auto) operator++(int) {

if constexpr (forward_range<Base >) {
auto tmp = *this;
++*this;
return tmp;

} else
++*this;

}

friend constexpr bool operator==(const inner-iterator & x, const inner-iterator & y)
requires forward_range<Base >;

friend constexpr bool operator==(const inner-iterator & x, default_sentinel_t);

friend constexpr decltype(auto) iter_move(const inner-iterator & i)
noexcept(noexcept(ranges::iter_move(i.i_.current))) {

return ranges::iter_move(i.i_.current);
}

friend constexpr void iter_swap(const inner-iterator & x, const inner-iterator & y)
noexcept(noexcept(ranges::iter_swap(x.i_.current, y.i_.current)))
requires indirectly_swappable<iterator_t<Base >>;

};
}

1 If Base does not model forward_range there is no member iterator_category. Otherwise, the typedef-
name iterator_category denotes:

—(1.1) forward_iterator_tag if iterator_traits<iterator_t<Base >>::iterator_category models
derived_from<forward_iterator_tag>;

—(1.2) otherwise, iterator_traits<iterator_t<Base >>::iterator_category.

constexpr explicit inner-iterator (outer-iterator <Const> i);

2 Effects: Initializes i_ with std::move(i).

constexpr const iterator_t<Base >& base() const & noexcept;

3 Effects: Equivalent to: return i_.current ;

constexpr iterator_t<Base > base() && requires forward_range<V>;

4 Effects: Equivalent to: return std::move(i_.current );

constexpr inner-iterator & operator++();

5 Effects: Equivalent to:
incremented_ = true;
if constexpr (!forward_range<Base >) {

if constexpr (Pattern::size() == 0) {
return *this;

}
}
++i_.current ;
return *this;

friend constexpr bool operator==(const inner-iterator & x, const inner-iterator & y)
requires forward_range<Base >;

6 Effects: Equivalent to: return x.i_.current == y.i_.current ;

friend constexpr bool operator==(const inner-iterator & x, default_sentinel_t);

7 Effects: Equivalent to:
auto [pcur, pend] = subrange{x.i_.parent_->pattern_};
auto end = ranges::end(x.i_.parent_->base_);
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if constexpr (tiny-range <Pattern>) {
const auto & cur = x.i_.current ;
if (cur == end) return true;
if (pcur == pend) return x.incremented_;
return *cur == *pcur;

} else {
auto cur = x.i_.current ;
if (cur == end) return true;
if (pcur == pend) return x.incremented_;
do {

if (*cur != *pcur) return false;
if (++pcur == pend) return true;

} while (++cur != end);
return false;

}

friend constexpr void iter_swap(const inner-iterator & x, const inner-iterator & y)
noexcept(noexcept(ranges::iter_swap(x.i_.current, y.i_.current)))
requires indirectly_swappable<iterator_t<Base >>;

8 Effects: Equivalent to ranges::iter_swap(x.i_.current, y.i_.current).

26.7.17 Split view [range.split]
26.7.17.1 Overview [range.split.overview]

1 split_view takes a view and a delimiter, and splits the view into subranges on the delimiter. The delimiter
can be a single element or a view of elements.

2 The name views::split denotes a range adaptor object (26.7.2). Given subexpressions E and F, the
expression views::split(E, F) is expression-equivalent to split_view(E, F).

3 [Example 1 :
string str{"the quick brown fox"};
for (auto word : views::split(str, ' ')) {

cout << string_view(word) << '*';
}
// The above prints the*quick*brown*fox*

— end example ]

26.7.17.2 Class template split_view [range.split.view]
namespace std::ranges {

template<forward_range V, forward_range Pattern>
requires view<V> && view<Pattern> &&

indirectly_comparable<iterator_t<V>, iterator_t<Pattern>, ranges::equal_to>
class split_view : public view_interface<split_view<V, Pattern>> {
private:

V base_ = V(); // exposition only
Pattern pattern_ = Pattern(); // exposition only

// 26.7.17.3, class split_view::iterator
struct iterator ; // exposition only

// 26.7.17.4, class split_view::sentinel
struct sentinel ; // exposition only

public:
split_view()

requires default_initializable<V> && default_initializable<Pattern> = default;
constexpr explicit split_view(V base, Pattern pattern);

template<forward_range R>
requires constructible_from<V, views::all_t<R>> &&

constructible_from<Pattern, single_view<range_value_t<R>>>
constexpr explicit split_view(R&& r, range_value_t<R> e);
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constexpr V base() const & requires copy_constructible<V> { return base_; }
constexpr V base() && { return std::move(base_); }

constexpr iterator begin();

constexpr auto end() {
if constexpr (common_range<V>) {

return iterator {*this, ranges::end(base_), {}};
} else {

return sentinel {*this};
}

}

constexpr subrange<iterator_t<V>> find-next (iterator_t<V>); // exposition only
};

template<class R, class P>
split_view(R&&, P&&) -> split_view<views::all_t<R>, views::all_t<P>>;

template<forward_range R>
split_view(R&&, range_value_t<R>)

-> split_view<views::all_t<R>, single_view<range_value_t<R>>>;
}

constexpr explicit split_view(V base, Pattern pattern);

1 Effects: Initializes base_ with std::move(base), and pattern_ with std::move(pattern).

template<forward_range R>
requires constructible_from<V, views::all_t<R>> &&

constructible_from<Pattern, single_view<range_value_t<R>>>
constexpr explicit split_view(R&& r, range_value_t<R> e);

2 Effects: Initializes base_ with views::all(std::forward<R>(r)), and pattern_ with views::
single(std::move(e)).

constexpr iterator begin();

3 Returns: {*this, ranges::begin(base_), find-next (ranges::begin(base_))}.
4 Remarks: In order to provide the amortized constant time complexity required by the range concept,

this function caches the result within the split_view for use on subsequent calls.

constexpr subrange<iterator_t<V>> find-next (iterator_t<V> it);

5 Effects: Equivalent to:
auto [b, e] = ranges::search(subrange(it, ranges::end(base_)), pattern_);
if (b != ranges::end(base_) && ranges::empty(pattern_)) {

++b;
++e;

}
return {b, e};

26.7.17.3 Class split_view::iterator [range.split.iterator]
namespace std::ranges {

template<forward_range V, forward_range Pattern>
requires view<V> && view<Pattern> &&

indirectly_comparable<iterator_t<V>, iterator_t<Pattern>, ranges::equal_to>
class split_view<V, Pattern>::iterator {
private:

split_view* parent_ = nullptr; // exposition only
iterator_t<V> cur_ = iterator_t<V>(); // exposition only
subrange<iterator_t<V>> next_ = subrange<iterator_t<V>>(); // exposition only
bool trailing_empty_ = false; // exposition only
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public:
using iterator_concept = forward_iterator_tag;
using iterator_category = input_iterator_tag;
using value_type = subrange<iterator_t<V>>;
using difference_type = range_difference_t<V>;

iterator () = default;
constexpr iterator (split_view& parent, iterator_t<V> current, subrange<iterator_t<V>> next);

constexpr iterator_t<V> base() const;
constexpr value_type operator*() const;

constexpr iterator & operator++();
constexpr iterator operator++(int);

friend constexpr bool operator==(const iterator & x, const iterator & y);
};

}

constexpr iterator (split_view& parent, iterator_t<V> current, subrange<iterator_t<V>> next);

1 Effects: Initializes parent_ with addressof(parent), cur_ with std::move(current), and next_-
with std::move(next).

constexpr iterator_t<V> base() const;

2 Effects: Equivalent to return cur_;

constexpr value_type operator*() const;

3 Effects: Equivalent to return {cur_, next_.begin()};

constexpr iterator & operator++();

4 Effects: Equivalent to:
cur_ = next_.begin();
if (cur_ != ranges::end(parent_->base_)) {

cur_ = next_.end();
if (cur_ == ranges::end(parent_->base_)) {

trailing_empty_ = true;
next_ = {cur_, cur_};

} else {
next_ = parent_->find-next (cur_);

}
} else {

trailing_empty_ = false;
}
return *this;

constexpr iterator operator++(int);

5 Effects: Equivalent to:
auto tmp = *this;
++*this;
return tmp;

friend constexpr bool operator==(const iterator & x, const iterator & y);

6 Effects: Equivalent to:
return x.cur_ == y.cur_ && x.trailing_empty_ == y.trailing_empty_;

26.7.17.4 Class split_view::sentinel [range.split.sentinel]
namespace std::ranges {

template<forward_range V, forward_range Pattern>
requires view<V> && view<Pattern> &&

indirectly_comparable<iterator_t<V>, iterator_t<Pattern>, ranges::equal_to>
struct split_view<V, Pattern>::sentinel {
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private:
sentinel_t<V> end_ = sentinel_t<V>(); // exposition only

public:
sentinel () = default;
constexpr explicit sentinel (split_view& parent);

friend constexpr bool operator==(const iterator & x, const sentinel & y);
};

}

constexpr explicit sentinel (split_view& parent);

1 Effects: Initializes end_ with ranges::end(parent.base_).

friend constexpr bool operator==(const iterator & x, const sentinel & y);

2 Effects: Equivalent to: return x.cur_ == y.end_ && !x.trailing_empty_;

26.7.18 Counted view [range.counted]
1 A counted view presents a view of the elements of the counted range (25.3.1) i + [0, n) for an iterator i and

non-negative integer n.
2 The name views::counted denotes a customization point object (16.3.3.3.5). Let E and F be expressions, let

T be decay_t<decltype((E))>, and let D be iter_difference_t<T>. If decltype((F)) does not model
convertible_to<D>, views::counted(E, F) is ill-formed.
[Note 1 : This case can result in substitution failure when views::counted(E, F) appears in the immediate context
of a template instantiation. — end note ]

Otherwise, views::counted(E, F) is expression-equivalent to:
—(2.1) If T models contiguous_iterator, then span(to_address(E), static_cast<size_t>(static_-

cast<D>(F))).
—(2.2) Otherwise, if T models random_access_iterator, then subrange(E, E + static_cast<D>(F)), ex-

cept that E is evaluated only once.
—(2.3) Otherwise, subrange(counted_iterator(E, F), default_sentinel).

26.7.19 Common view [range.common]
26.7.19.1 Overview [range.common.overview]

1 common_view takes a view which has different types for its iterator and sentinel and turns it into a view of
the same elements with an iterator and sentinel of the same type.

2 [Note 1 : common_view is useful for calling legacy algorithms that expect a range’s iterator and sentinel types to be
the same. — end note ]

3 The name views::common denotes a range adaptor object (26.7.2). Given a subexpression E, the expression
views::common(E) is expression-equivalent to:

—(3.1) views::all(E), if decltype((E)) models common_range and views::all(E) is a well-formed expres-
sion.

—(3.2) Otherwise, common_view{E}.
4 [Example 1 :

// Legacy algorithm:
template<class ForwardIterator>
size_t count(ForwardIterator first, ForwardIterator last);

template<forward_range R>
void my_algo(R&& r) {

auto&& common = views::common(r);
auto cnt = count(common.begin(), common.end());
// ...

}

— end example ]
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26.7.19.2 Class template common_view [range.common.view]
namespace std::ranges {

template<view V>
requires (!common_range<V> && copyable<iterator_t<V>>)

class common_view : public view_interface<common_view<V>> {
private:

V base_ = V(); // exposition only

public:
common_view() requires default_initializable<V> = default;

constexpr explicit common_view(V r);

constexpr V base() const & requires copy_constructible<V> { return base_; }
constexpr V base() && { return std::move(base_); }

constexpr auto begin() {
if constexpr (random_access_range<V> && sized_range<V>)

return ranges::begin(base_);
else

return common_iterator<iterator_t<V>, sentinel_t<V>>(ranges::begin(base_));
}

constexpr auto begin() const requires range<const V> {
if constexpr (random_access_range<const V> && sized_range<const V>)

return ranges::begin(base_);
else

return common_iterator<iterator_t<const V>, sentinel_t<const V>>(ranges::begin(base_));
}

constexpr auto end() {
if constexpr (random_access_range<V> && sized_range<V>)

return ranges::begin(base_) + ranges::distance(base_);
else

return common_iterator<iterator_t<V>, sentinel_t<V>>(ranges::end(base_));
}

constexpr auto end() const requires range<const V> {
if constexpr (random_access_range<const V> && sized_range<const V>)

return ranges::begin(base_) + ranges::distance(base_);
else

return common_iterator<iterator_t<const V>, sentinel_t<const V>>(ranges::end(base_));
}

constexpr auto size() requires sized_range<V> {
return ranges::size(base_);

}
constexpr auto size() const requires sized_range<const V> {

return ranges::size(base_);
}

};

template<class R>
common_view(R&&) -> common_view<views::all_t<R>>;

}

constexpr explicit common_view(V base);

1 Effects: Initializes base_ with std::move(base).
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26.7.20 Reverse view [range.reverse]
26.7.20.1 Overview [range.reverse.overview]

1 reverse_view takes a bidirectional view and produces another view that iterates the same elements in
reverse order.

2 The name views::reverse denotes a range adaptor object (26.7.2). Given a subexpression E, the expression
views::reverse(E) is expression-equivalent to:

—(2.1) If the type of E is a (possibly cv-qualified) specialization of reverse_view, equivalent to E.base().
—(2.2) Otherwise, if the type of E is cv subrange<reverse_iterator<I>, reverse_iterator<I>, K> for

some iterator type I and value K of type subrange_kind,
—(2.2.1) if K is subrange_kind::sized, equivalent to:

subrange<I, I, K>(E.end().base(), E.begin().base(), E.size())

—(2.2.2) otherwise, equivalent to:
subrange<I, I, K>(E.end().base(), E.begin().base())

However, in either case E is evaluated only once.
—(2.3) Otherwise, equivalent to reverse_view{E}.

3 [Example 1 :
vector<int> is {0,1,2,3,4};
for (int i : is | views::reverse)

cout << i << ' '; // prints 4 3 2 1 0

— end example ]

26.7.20.2 Class template reverse_view [range.reverse.view]
namespace std::ranges {

template<view V>
requires bidirectional_range<V>

class reverse_view : public view_interface<reverse_view<V>> {
private:

V base_ = V(); // exposition only

public:
reverse_view() requires default_initializable<V> = default;

constexpr explicit reverse_view(V r);

constexpr V base() const & requires copy_constructible<V> { return base_; }
constexpr V base() && { return std::move(base_); }

constexpr reverse_iterator<iterator_t<V>> begin();
constexpr reverse_iterator<iterator_t<V>> begin() requires common_range<V>;
constexpr auto begin() const requires common_range<const V>;

constexpr reverse_iterator<iterator_t<V>> end();
constexpr auto end() const requires common_range<const V>;

constexpr auto size() requires sized_range<V> {
return ranges::size(base_);

}

constexpr auto size() const requires sized_range<const V> {
return ranges::size(base_);

}
};

template<class R>
reverse_view(R&&) -> reverse_view<views::all_t<R>>;

}
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constexpr explicit reverse_view(V base);

1 Effects: Initializes base_ with std::move(base).

constexpr reverse_iterator<iterator_t<V>> begin();

2 Returns:
make_reverse_iterator(ranges::next(ranges::begin(base_), ranges::end(base_)))

3 Remarks: In order to provide the amortized constant time complexity required by the range concept,
this function caches the result within the reverse_view for use on subsequent calls.

constexpr reverse_iterator<iterator_t<V>> begin() requires common_range<V>;
constexpr auto begin() const requires common_range<const V>;

4 Effects: Equivalent to: return make_reverse_iterator(ranges::end(base_));

constexpr reverse_iterator<iterator_t<V>> end();
constexpr auto end() const requires common_range<const V>;

5 Effects: Equivalent to: return make_reverse_iterator(ranges::begin(base_));

26.7.21 As const view [range.as.const]
26.7.21.1 Overview [range.as.const.overview]

1 as_const_view presents a view of an underlying sequence as constant. That is, the elements of an as_-
const_view cannot be modified.

2 The name views::as_const denotes a range adaptor object (26.7.2). Let E be an expression, let T be
decltype((E)), and let U be remove_cvref_t<T>. The expression views::as_const(E) is expression-
equivalent to:

—(2.1) If views::all_t<T> models constant_range, then views::all(E).
—(2.2) Otherwise, if U denotes empty_view<X> for some type X, then auto(views::empty<const X>).
—(2.3) Otherwise, if U denotes span<X, Extent> for some type X and some extent Extent, then span<const

X, Extent>(E).
—(2.4) Otherwise, if U denotes ref_view<X> for some type X and const X models constant_range, then

ref_view(static_cast<const X&>(E.base())).
—(2.5) Otherwise, if E is an lvalue, const U models constant_range, and U does not model view, then

ref_view(static_cast<const U&>(E)).
—(2.6) Otherwise, as_const_view(E).

3 [Example 1 :
template<constant_range R>
void cant_touch_this(R&&);

vector<char> hammer = {'m', 'c'};
span<char> beat = hammer;
cant_touch_this(views::as_const(beat)); // will not modify the elements of hammer

— end example ]

26.7.21.2 Class template as_const_view [range.as.const.view]
namespace std::ranges {

template<view V>
requires input_range<V>

class as_const_view : public view_interface<as_const_view<V>> {
V base_ = V(); // exposition only

public:
as_const_view() requires default_initializable<V> = default;
constexpr explicit as_const_view(V base);

constexpr V base() const & requires copy_constructible<V> { return base_; }
constexpr V base() && { return std::move(base_); }
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constexpr auto begin() requires (!simple-view <V>) { return ranges::cbegin(base_); }
constexpr auto begin() const requires range<const V> { return ranges::cbegin(base_); }

constexpr auto end() requires (!simple-view <V>) { return ranges::cend(base_); }
constexpr auto end() const requires range<const V> { return ranges::cend(base_); }

constexpr auto size() requires sized_range<V> { return ranges::size(base_); }
constexpr auto size() const requires sized_range<const V> { return ranges::size(base_); }

};

template<class R>
as_const_view(R&&) -> as_const_view<views::all_t<R>>;

}

constexpr explicit as_const_view(V base);

1 Effects: Initializes base_ with std::move(base).

26.7.22 Elements view [range.elements]
26.7.22.1 Overview [range.elements.overview]

1 elements_view takes a view of tuple-like values and a size_t, and produces a view with a value-type of the
N th element of the adapted view’s value-type.

2 The name views::elements<N> denotes a range adaptor object (26.7.2). Given a subexpression E and
constant expression N, the expression views::elements<N>(E) is expression-equivalent to elements_-
view<views::all_t<decltype((E))>, N>{E}.
[Example 1 :

auto historical_figures = map{
pair{"Lovelace"sv, 1815},
{"Turing"sv, 1912},
{"Babbage"sv, 1791},
{"Hamilton"sv, 1936}

};

auto names = historical_figures | views::elements<0>;
for (auto&& name : names) {

cout << name << ' '; // prints Babbage Hamilton Lovelace Turing
}

auto birth_years = historical_figures | views::elements<1>;
for (auto&& born : birth_years) {

cout << born << ' '; // prints 1791 1936 1815 1912
}

— end example ]
3 keys_view is an alias for elements_view<R, 0>, and is useful for extracting keys from associative containers.

[Example 2 :
auto names = historical_figures | views::keys;
for (auto&& name : names) {

cout << name << ' '; // prints Babbage Hamilton Lovelace Turing
}

— end example ]
4 values_view is an alias for elements_view<R, 1>, and is useful for extracting values from associative

containers.
[Example 3 :

auto is_even = [](const auto x) { return x % 2 == 0; };
cout << ranges::count_if(historical_figures | views::values, is_even); // prints 2

— end example ]
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26.7.22.2 Class template elements_view [range.elements.view]
namespace std::ranges {

template<class T, size_t N>
concept has-tuple-element = // exposition only

tuple-like <T> && N < tuple_size_v<T>;

template<class T, size_t N>
concept returnable-element = // exposition only

is_reference_v<T> || move_constructible<tuple_element_t<N, T>>;

template<input_range V, size_t N>
requires view<V> && has-tuple-element <range_value_t<V>, N> &&

has-tuple-element <remove_reference_t<range_reference_t<V>>, N> &&
returnable-element <range_reference_t<V>, N>

class elements_view : public view_interface<elements_view<V, N>> {
public:

elements_view() requires default_initializable<V> = default;
constexpr explicit elements_view(V base);

constexpr V base() const & requires copy_constructible<V> { return base_; }
constexpr V base() && { return std::move(base_); }

constexpr auto begin() requires (!simple-view <V>)
{ return iterator <false>(ranges::begin(base_)); }

constexpr auto begin() const requires range<const V>
{ return iterator <true>(ranges::begin(base_)); }

constexpr auto end() requires (!simple-view <V> && !common_range<V>)
{ return sentinel <false>{ranges::end(base_)}; }

constexpr auto end() requires (!simple-view <V> && common_range<V>)
{ return iterator <false>{ranges::end(base_)}; }

constexpr auto end() const requires range<const V>
{ return sentinel <true>{ranges::end(base_)}; }

constexpr auto end() const requires common_range<const V>
{ return iterator <true>{ranges::end(base_)}; }

constexpr auto size() requires sized_range<V>
{ return ranges::size(base_); }

constexpr auto size() const requires sized_range<const V>
{ return ranges::size(base_); }

private:
// 26.7.22.3, class template elements_view::iterator
template<bool> class iterator ; // exposition only

// 26.7.22.4, class template elements_view::sentinel
template<bool> class sentinel ; // exposition only

V base_ = V(); // exposition only
};

}

constexpr explicit elements_view(V base);

1 Effects: Initializes base_ with std::move(base).

26.7.22.3 Class template elements_view::iterator [range.elements.iterator]
namespace std::ranges {

template<input_range V, size_t N>
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requires view<V> && has-tuple-element <range_value_t<V>, N> &&
has-tuple-element <remove_reference_t<range_reference_t<V>>, N> &&
returnable-element <range_reference_t<V>, N>

template<bool Const>
class elements_view<V, N>::iterator {

using Base = maybe-const <Const, V>; // exposition only

iterator_t<Base > current_ = iterator_t<Base >(); // exposition only

static constexpr decltype(auto) get-element (const iterator_t<Base >& i); // exposition only

public:
using iterator_concept = see below ;
using iterator_category = see below ; // not always present
using value_type = remove_cvref_t<tuple_element_t<N, range_value_t<Base >>>;
using difference_type = range_difference_t<Base >;

iterator () requires default_initializable<iterator_t<Base >> = default;
constexpr explicit iterator (iterator_t<Base > current);
constexpr iterator (iterator <!Const> i)

requires Const && convertible_to<iterator_t<V>, iterator_t<Base >>;

constexpr const iterator_t<Base >& base() const & noexcept;
constexpr iterator_t<Base > base() &&;

constexpr decltype(auto) operator*() const
{ return get-element (current_); }

constexpr iterator & operator++();
constexpr void operator++(int);
constexpr iterator operator++(int) requires forward_range<Base >;

constexpr iterator & operator--() requires bidirectional_range<Base >;
constexpr iterator operator--(int) requires bidirectional_range<Base >;

constexpr iterator & operator+=(difference_type x)
requires random_access_range<Base >;

constexpr iterator & operator-=(difference_type x)
requires random_access_range<Base >;

constexpr decltype(auto) operator[](difference_type n) const
requires random_access_range<Base >

{ return get-element (current_ + n); }

friend constexpr bool operator==(const iterator & x, const iterator & y)
requires equality_comparable<iterator_t<Base >>;

friend constexpr bool operator<(const iterator & x, const iterator & y)
requires random_access_range<Base >;

friend constexpr bool operator>(const iterator & x, const iterator & y)
requires random_access_range<Base >;

friend constexpr bool operator<=(const iterator & x, const iterator & y)
requires random_access_range<Base >;

friend constexpr bool operator>=(const iterator & x, const iterator & y)
requires random_access_range<Base >;

friend constexpr auto operator<=>(const iterator & x, const iterator & y)
requires random_access_range<Base > && three_way_comparable<iterator_t<Base >>;

friend constexpr iterator operator+(const iterator & x, difference_type y)
requires random_access_range<Base >;

friend constexpr iterator operator+(difference_type x, const iterator & y)
requires random_access_range<Base >;

friend constexpr iterator operator-(const iterator & x, difference_type y)
requires random_access_range<Base >;
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friend constexpr difference_type operator-(const iterator & x, const iterator & y)
requires sized_sentinel_for<iterator_t<Base >, iterator_t<Base >>;

};
}

1 The member typedef-name iterator_concept is defined as follows:
—(1.1) If Base models random_access_range, then iterator_concept denotes random_access_iterator_-

tag.
—(1.2) Otherwise, if Base models bidirectional_range, then iterator_concept denotes bidirectional_-

iterator_tag.
—(1.3) Otherwise, if Base models forward_range, then iterator_concept denotes forward_iterator_tag.
—(1.4) Otherwise, iterator_concept denotes input_iterator_tag.

2 The member typedef-name iterator_category is defined if and only if Base models forward_range. In
that case, iterator_category is defined as follows: Let C denote the type iterator_traits<iterator_-
t<Base >>::iterator_category.

—(2.1) If std::get<N>(*current_) is an rvalue, iterator_category denotes input_iterator_tag.
—(2.2) Otherwise, if C models derived_from<random_access_iterator_tag>, iterator_category denotes

random_access_iterator_tag.
—(2.3) Otherwise, iterator_category denotes C.

static constexpr decltype(auto) get-element (const iterator_t<Base >& i);

3 Effects: Equivalent to:
if constexpr (is_reference_v<range_reference_t<Base >>) {

return std::get<N>(*i);
} else {

using E = remove_cv_t<tuple_element_t<N, range_reference_t<Base >>>;
return static_cast<E>(std::get<N>(*i));

}

constexpr explicit iterator (iterator_t<Base > current);

4 Effects: Initializes current_ with std::move(current).

constexpr iterator (iterator <!Const> i)
requires Const && convertible_to<iterator_t<V>, iterator_t<Base >>;

5 Effects: Initializes current_ with std::move(i.current_).

constexpr const iterator_t<Base >& base() const & noexcept;

6 Effects: Equivalent to: return current_;

constexpr iterator_t<Base > base() &&;

7 Effects: Equivalent to: return std::move(current_);

constexpr iterator & operator++();

8 Effects: Equivalent to:
++current_;
return *this;

constexpr void operator++(int);

9 Effects: Equivalent to: ++current_.

constexpr iterator operator++(int) requires forward_range<Base >;

10 Effects: Equivalent to:
auto temp = *this;
++current_;
return temp;
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constexpr iterator & operator--() requires bidirectional_range<Base >;

11 Effects: Equivalent to:
--current_;
return *this;

constexpr iterator operator--(int) requires bidirectional_range<Base >;

12 Effects: Equivalent to:
auto temp = *this;
--current_;
return temp;

constexpr iterator & operator+=(difference_type n)
requires random_access_range<Base >;

13 Effects: Equivalent to:
current_ += n;
return *this;

constexpr iterator & operator-=(difference_type n)
requires random_access_range<Base >;

14 Effects: Equivalent to:
current_ -= n;
return *this;

friend constexpr bool operator==(const iterator & x, const iterator & y)
requires equality_comparable<Base >;

15 Effects: Equivalent to: return x.current_ == y.current_;

friend constexpr bool operator<(const iterator & x, const iterator & y)
requires random_access_range<Base >;

16 Effects: Equivalent to: return x.current_ < y.current_;

friend constexpr bool operator>(const iterator & x, const iterator & y)
requires random_access_range<Base >;

17 Effects: Equivalent to: return y < x;

friend constexpr bool operator<=(const iterator & x, const iterator & y)
requires random_access_range<Base >;

18 Effects: Equivalent to: return !(y < x);

friend constexpr bool operator>=(const iterator & x, const iterator & y)
requires random_access_range<Base >;

19 Effects: Equivalent to: return !(x < y);

friend constexpr auto operator<=>(const iterator & x, const iterator & y)
requires random_access_range<Base > && three_way_comparable<iterator_t<Base >>;

20 Effects: Equivalent to: return x.current_ <=> y.current_;

friend constexpr iterator operator+(const iterator & x, difference_type y)
requires random_access_range<Base >;

21 Effects: Equivalent to: return iterator {x} += y;

friend constexpr iterator operator+(difference_type x, const iterator & y)
requires random_access_range<Base >;

22 Effects: Equivalent to: return y + x;

friend constexpr iterator operator-(const iterator & x, difference_type y)
requires random_access_range<Base >;

23 Effects: Equivalent to: return iterator {x} -= y;
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friend constexpr difference_type operator-(const iterator & x, const iterator & y)
requires sized_sentinel_for<iterator_t<Base >, iterator_t<Base >>;

24 Effects: Equivalent to: return x.current_ - y.current_;

26.7.22.4 Class template elements_view::sentinel [range.elements.sentinel]
namespace std::ranges {

template<input_range V, size_t N>
requires view<V> && has-tuple-element <range_value_t<V>, N> &&

has-tuple-element <remove_reference_t<range_reference_t<V>>, N> &&
returnable-element <range_reference_t<V>, N>

template<bool Const>
class elements_view<V, N>::sentinel {
private:

using Base = maybe-const <Const, V>; // exposition only
sentinel_t<Base > end_ = sentinel_t<Base >(); // exposition only

public:
sentinel () = default;
constexpr explicit sentinel (sentinel_t<Base > end);
constexpr sentinel (sentinel <!Const> other)

requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base >>;

constexpr sentinel_t<Base > base() const;

template<bool OtherConst>
requires sentinel_for<sentinel_t<Base >, iterator_t<maybe-const <OtherConst, V>>>

friend constexpr bool operator==(const iterator <OtherConst>& x, const sentinel & y);

template<bool OtherConst>
requires sized_sentinel_for<sentinel_t<Base >, iterator_t<maybe-const <OtherConst, V>>>

friend constexpr range_difference_t<maybe-const <OtherConst, V>>
operator-(const iterator <OtherConst>& x, const sentinel & y);

template<bool OtherConst>
requires sized_sentinel_for<sentinel_t<Base >, iterator_t<maybe-const <OtherConst, V>>>

friend constexpr range_difference_t<maybe-const <OtherConst, V>>
operator-(const sentinel & x, const iterator <OtherConst>& y);

};
}

constexpr explicit sentinel (sentinel_t<Base > end);

1 Effects: Initializes end_ with end.

constexpr sentinel (sentinel <!Const> other)
requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base >>;

2 Effects: Initializes end_ with std::move(other.end_).

constexpr sentinel_t<Base > base() const;

3 Effects: Equivalent to: return end_;

template<bool OtherConst>
requires sentinel_for<sentinel_t<Base >, iterator_t<maybe-const <OtherConst, V>>>

friend constexpr bool operator==(const iterator <OtherConst>& x, const sentinel & y);

4 Effects: Equivalent to: return x.current_ == y.end_;

template<bool OtherConst>
requires sized_sentinel_for<sentinel_t<Base >, iterator_t<maybe-const <OtherConst, V>>>

friend constexpr range_difference_t<maybe-const <OtherConst, V>>
operator-(const iterator <OtherConst>& x, const sentinel & y);

5 Effects: Equivalent to: return x.current_ - y.end_;

§ 26.7.22.4 1211



© ISO/IEC N4950

template<bool OtherConst>
requires sized_sentinel_for<sentinel_t<Base >, iterator_t<maybe-const <OtherConst, V>>>

friend constexpr range_difference_t<maybe-const <OtherConst, V>>
operator-(const sentinel & x, const iterator <OtherConst>& y);

6 Effects: Equivalent to: return x.end_ - y.current_;

26.7.23 Enumerate view [range.enumerate]
26.7.23.1 Overview [range.enumerate.overview]

1 enumerate_view is a view whose elements represent both the position and value from a sequence of elements.
2 The name views::enumerate denotes a range adaptor object. Given a subexpression E, the expression

views::enumerate(E) is expression-equivalent to enumerate_view<views::all_t<decltype((E))>>(E).
[Example 1 :

vector<int> vec{ 1, 2, 3 };
for (auto [index, value] : views::enumerate(vec))

cout << index << ":" << value << ' '; // prints 0:1 1:2 2:3

— end example ]

26.7.23.2 Class template enumerate_view [range.enumerate.view]
namespace std::ranges {

template<view V>
requires range-with-movable-references <V>

class enumerate_view : public view_interface<enumerate_view<V>> {
V base_ = V(); // exposition only

// 26.7.23.3, class template enumerate_view::iterator
template<bool Const>

class iterator; // exposition only

// 26.7.23.4, class template enumerate_view::sentinel
template<bool Const>

class sentinel; // exposition only

public:
constexpr enumerate_view() requires default_initializable<V> = default;
constexpr explicit enumerate_view(V base);

constexpr auto begin() requires (!simple-view <V>)
{ return iterator <false>(ranges::begin(base_), 0); }
constexpr auto begin() const requires range-with-movable-references <const V>
{ return iterator <true>(ranges::begin(base_), 0); }

constexpr auto end() requires (!simple-view <V>) {
if constexpr (common_range<V> && sized_range<V>)

return iterator <false>(ranges::end(base_), ranges::distance(base_));
else

return sentinel <false>(ranges::end(base_));
}
constexpr auto end() const requires range-with-movable-references <const V> {

if constexpr (common_range<const V> && sized_range<const V>)
return iterator <true>(ranges::end(base_), ranges::distance(base_));

else
return sentinel <true>(ranges::end(base_));

}

constexpr auto size() requires sized_range<V>
{ return ranges::size(base_); }
constexpr auto size() const requires sized_range<const V>
{ return ranges::size(base_); }
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constexpr V base() const & requires copy_constructible<V> { return base_; }
constexpr V base() && { return std::move(base_); }

};

template<class R>
enumerate_view(R&&) -> enumerate_view<views::all_t<R>>;

}

constexpr explicit enumerate_view(V base);

1 Effects: Initializes base_ with std::move(base).

26.7.23.3 Class template enumerate_view::iterator [range.enumerate.iterator]
namespace std::ranges {

template<view V>
requires range-with-movable-references <V>

template<bool Const>
class enumerate_view<V>::iterator {

using Base = maybe-const<Const, V>; // exposition only

public:
using iterator_category = input_iterator_tag;
using iterator_concept = see below ;
using difference_type = range_difference_t<Base >;
using value_type = tuple<difference_type, range_value_t<Base >>;

private:
using reference-type = // exposition only

tuple<difference_type, range_reference_t<Base >>;
iterator_t<Base> current_ = iterator_t<Base>(); // exposition only
difference_type pos_ = 0; // exposition only

constexpr explicit
iterator(iterator_t<Base> current, difference_type pos); // exposition only

public:
iterator () requires default_initializable<iterator_t<Base >> = default;
constexpr iterator (iterator <!Const> i)

requires Const && convertible_to<iterator_t<V>, iterator_t<Base >>;

constexpr const iterator_t<Base >& base() const & noexcept;
constexpr iterator_t<Base > base() &&;

constexpr difference_type index() const noexcept;

constexpr auto operator*() const {
return reference-type (pos_, *current_);

}

constexpr iterator & operator++();
constexpr void operator++(int);
constexpr iterator operator++(int) requires forward_range<Base >;

constexpr iterator & operator--() requires bidirectional_range<Base >;
constexpr iterator operator--(int) requires bidirectional_range<Base >;

constexpr iterator & operator+=(difference_type x)
requires random_access_range<Base >;

constexpr iterator & operator-=(difference_type x)
requires random_access_range<Base >;

constexpr auto operator[](difference_type n) const
requires random_access_range<Base >

{ return reference-type (pos_ + n, current_[n]); }
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friend constexpr bool operator==(const iterator & x, const iterator & y) noexcept;
friend constexpr strong_ordering operator<=>(const iterator & x, const iterator & y) noexcept;

friend constexpr iterator operator+(const iterator & x, difference_type y)
requires random_access_range<Base >;

friend constexpr iterator operator+(difference_type x, const iterator & y)
requires random_access_range<Base >;

friend constexpr iterator operator-(const iterator & x, difference_type y)
requires random_access_range<Base >;

friend constexpr difference_type operator-(const iterator & x, const iterator & y);

friend constexpr auto iter_move(const iterator & i)
noexcept(noexcept(ranges::iter_move(i.current_)) &&

is_nothrow_move_constructible_v<range_rvalue_reference_t<Base >>) {
return tuple<difference_type,

range_rvalue_reference_t<Base >>(i.pos_, ranges::iter_move(i.current_));
}

};
}

1 The member typedef-name iterator ::iterator_concept is defined as follows:
—(1.1) If Base models random_access_range, then iterator_concept denotes random_access_iterator_-

tag.
—(1.2) Otherwise, if Base models bidirectional_range, then iterator_concept denotes bidirectional_-

iterator_tag.
—(1.3) Otherwise, if Base models forward_range, then iterator_concept denotes forward_iterator_tag.
—(1.4) Otherwise, iterator_concept denotes input_iterator_tag.

constexpr explicit iterator (iterator_t<Base > current, difference_type pos);

2 Effects: Initializes current_ with std::move(current) and pos_ with pos.

constexpr iterator (iterator <!Const> i)
requires Const && convertible_to<iterator_t<V>, iterator_t<Base >>;

3 Effects: Initializes current_ with std::move(i.current_) and pos_ with i.pos_.

constexpr const iterator_t<Base >& base() const & noexcept;

4 Effects: Equivalent to: return current_;

constexpr iterator_t<Base > base() &&;

5 Effects: Equivalent to: return std::move(current_);

constexpr difference_type index() const noexcept;

6 Effects: Equivalent to: return pos_;

constexpr iterator & operator++();

7 Effects: Equivalent to:
++current_;
++pos_;
return *this;

constexpr void operator++(int);

8 Effects: Equivalent to ++*this.

constexpr iterator operator++(int) requires forward_range<Base >;

9 Effects: Equivalent to:
auto temp = *this;
++*this;
return temp;
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constexpr iterator & operator--() requires bidirectional_range<Base >;

10 Effects: Equivalent to:
--current_;
--pos_;
return *this;

constexpr iterator operator--(int) requires bidirectional_range<Base >;

11 Effects: Equivalent to:
auto temp = *this;
--*this;
return temp;

constexpr iterator & operator+=(difference_type n)
requires random_access_range<Base >;

12 Effects: Equivalent to:
current_ += n;
pos_ += n;
return *this;

constexpr iterator & operator-=(difference_type n)
requires random_access_range<Base >;

13 Effects: Equivalent to:
current_ -= n;
pos_ -= n;
return *this;

friend constexpr bool operator==(const iterator & x, const iterator & y) noexcept;

14 Effects: Equivalent to: return x.pos_ == y.pos_;

friend constexpr strong_ordering operator<=>(const iterator & x, const iterator & y) noexcept;

15 Effects: Equivalent to: return x.pos_ <=> y.pos_;

friend constexpr iterator operator+(const iterator & x, difference_type y)
requires random_access_range<Base >;

16 Effects: Equivalent to:
auto temp = x;
temp += y;
return temp;

friend constexpr iterator operator+(difference_type x, const iterator & y)
requires random_access_range<Base >;

17 Effects: Equivalent to: return y + x;

friend constexpr iterator operator-(const iterator & x, difference_type y)
requires random_access_range<Base >;

18 Effects: Equivalent to:
auto temp = x;
temp -= y;
return temp;

friend constexpr difference_type operator-(const iterator & x, const iterator & y);

19 Effects: Equivalent to: return x.pos_ - y.pos_;

26.7.23.4 Class template enumerate_view::sentinel [range.enumerate.sentinel]
namespace std::ranges {

template<view V>
requires range-with-movable-references <V>

template<bool Const>
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class enumerate_view<V>::sentinel {
using Base = maybe-const<Const, V>; // exposition only
sentinel_t<Base> end_ = sentinel_t<Base>(); // exposition only
constexpr explicit sentinel(sentinel_t<Base> end); // exposition only

public:
sentinel () = default;
constexpr sentinel (sentinel <!Const> other)

requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base >>;

constexpr sentinel_t<Base > base() const;

template<bool OtherConst>
requires sentinel_for<sentinel_t<Base >, iterator_t<maybe-const <OtherConst, V>>>

friend constexpr bool operator==(const iterator <OtherConst>& x, const sentinel & y);

template<bool OtherConst>
requires sized_sentinel_for<sentinel_t<Base >, iterator_t<maybe-const <OtherConst, V>>>

friend constexpr range_difference_t<maybe-const <OtherConst, V>>
operator-(const iterator <OtherConst>& x, const sentinel & y);

template<bool OtherConst>
requires sized_sentinel_for<sentinel_t<Base >, iterator_t<maybe-const <OtherConst, V>>>

friend constexpr range_difference_t<maybe-const <OtherConst, V>>
operator-(const sentinel & x, const iterator <OtherConst>& y);

};
}

constexpr explicit sentinel (sentinel_t<Base > end);

1 Effects: Initializes end_ with std::move(end).

constexpr sentinel (sentinel <!Const> other)
requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base >>;

2 Effects: Initializes end_ with std::move(other.end_).

constexpr sentinel_t<Base > base() const;

3 Effects: Equivalent to: return end_;

template<bool OtherConst>
requires sentinel_for<sentinel_t<Base >, iterator_t<maybe-const <OtherConst, V>>>

friend constexpr bool operator==(const iterator <OtherConst>& x, const sentinel & y);

4 Effects: Equivalent to: return x.current_ == y.end_;

template<bool OtherConst>
requires sized_sentinel_for<sentinel_t<Base >, iterator_t<maybe-const <OtherConst, V>>>

friend constexpr range_difference_t<maybe-const <OtherConst, V>>
operator-(const iterator <OtherConst>& x, const sentinel & y);

5 Effects: Equivalent to: return x.current_ - y.end_;

template<bool OtherConst>
requires sized_sentinel_for<sentinel_t<Base >, iterator_t<maybe-const <OtherConst, V>>>

friend constexpr range_difference_t<maybe-const <OtherConst, V>>
operator-(const sentinel & x, const iterator <OtherConst>& y);

6 Effects: Equivalent to: return x.end_ - y.current_;

26.7.24 Zip view [range.zip]
26.7.24.1 Overview [range.zip.overview]

1 zip_view takes any number of views and produces a view of tuples of references to the corresponding elements
of the constituent views.

2 The name views::zip denotes a customization point object (16.3.3.3.5). Given a pack of subexpressions
Es..., the expression views::zip(Es...) is expression-equivalent to
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—(2.1) auto(views::empty<tuple<>>) if Es is an empty pack,
—(2.2) otherwise, zip_view<views::all_t<decltype((Es))>...>(Es...).

[Example 1 :
vector v = {1, 2};
list l = {'a', 'b', 'c'};

auto z = views::zip(v, l);
range_reference_t<decltype(z)> f = z.front(); // f is a tuple<int&, char&>

// that refers to the first element of v and l

for (auto&& [x, y] : z) {
cout << '(' << x << ", " << y << ") "; // prints (1, a) (2, b)

}

— end example ]

26.7.24.2 Class template zip_view [range.zip.view]
namespace std::ranges {

template<class... Rs>
concept zip-is-common = // exposition only

(sizeof...(Rs) == 1 && (common_range<Rs> && ...)) ||
(!(bidirectional_range<Rs> && ...) && (common_range<Rs> && ...)) ||
((random_access_range<Rs> && ...) && (sized_range<Rs> && ...));

template<input_range... Views>
requires (view<Views> && ...) && (sizeof...(Views) > 0)

class zip_view : public view_interface<zip_view<Views...>> {
tuple<Views...> views_; // exposition only

// 26.7.24.3, class template zip_view::iterator
template<bool> class iterator; // exposition only

// 26.7.24.4, class template zip_view::sentinel
template<bool> class sentinel; // exposition only

public:
zip_view() = default;
constexpr explicit zip_view(Views... views);

constexpr auto begin() requires (!(simple-view <Views> && ...)) {
return iterator <false>(tuple-transform (ranges::begin, views_));

}
constexpr auto begin() const requires (range<const Views> && ...) {

return iterator <true>(tuple-transform (ranges::begin, views_));
}

constexpr auto end() requires (!(simple-view <Views> && ...)) {
if constexpr (!zip-is-common <Views...>) {

return sentinel <false>(tuple-transform (ranges::end, views_));
} else if constexpr ((random_access_range<Views> && ...)) {

return begin() + iter_difference_t<iterator <false>>(size());
} else {

return iterator <false>(tuple-transform (ranges::end, views_));
}

}

constexpr auto end() const requires (range<const Views> && ...) {
if constexpr (!zip-is-common <const Views...>) {

return sentinel <true>(tuple-transform (ranges::end, views_));
} else if constexpr ((random_access_range<const Views> && ...)) {

return begin() + iter_difference_t<iterator <true>>(size());
} else {

return iterator <true>(tuple-transform (ranges::end, views_));
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}
}

constexpr auto size() requires (sized_range<Views> && ...);
constexpr auto size() const requires (sized_range<const Views> && ...);

};

template<class... Rs>
zip_view(Rs&&...) -> zip_view<views::all_t<Rs>...>;

}

1 Two zip_view objects have the same underlying sequence if and only if the corresponding elements of
views_ are equal (18.2) and have the same underlying sequence.
[Note 1 : In particular, comparison of iterators obtained from zip_view objects that do not have the same underlying
sequence is not required to produce meaningful results (25.3.4.11). — end note ]

constexpr explicit zip_view(Views... views);

2 Effects: Initializes views_ with std::move(views)....

constexpr auto size() requires (sized_range<Views> && ...);
constexpr auto size() const requires (sized_range<const Views> && ...);

3 Effects: Equivalent to:
return apply([](auto... sizes) {

using CT = make-unsigned-like-t <common_type_t<decltype(sizes)...>>;
return ranges::min({CT(sizes)...});

}, tuple-transform (ranges::size, views_));

26.7.24.3 Class template zip_view::iterator [range.zip.iterator]
namespace std::ranges {

template<bool Const, class... Views>
concept all-random-access = // exposition only

(random_access_range<maybe-const <Const, Views>> && ...);
template<bool Const, class... Views>

concept all-bidirectional = // exposition only
(bidirectional_range<maybe-const <Const, Views>> && ...);

template<bool Const, class... Views>
concept all-forward = // exposition only

(forward_range<maybe-const <Const, Views>> && ...);

template<input_range... Views>
requires (view<Views> && ...) && (sizeof...(Views) > 0)

template<bool Const>
class zip_view<Views...>::iterator {

tuple<iterator_t<maybe-const<Const, Views>>...> current_; // exposition only
constexpr explicit iterator(tuple<iterator_t<maybe-const<Const, Views>>...>);

// exposition only
public:

using iterator_category = input_iterator_tag; // not always present
using iterator_concept = see below ;
using value_type = tuple<range_value_t<maybe-const <Const, Views>>...>;
using difference_type = common_type_t<range_difference_t<maybe-const <Const, Views>>...>;

iterator () = default;
constexpr iterator (iterator <!Const> i)

requires Const && (convertible_to<iterator_t<Views>, iterator_t<const Views>> && ...);

constexpr auto operator*() const;
constexpr iterator & operator++();
constexpr void operator++(int);
constexpr iterator operator++(int) requires all-forward <Const, Views...>;

constexpr iterator & operator--() requires all-bidirectional <Const, Views...>;
constexpr iterator operator--(int) requires all-bidirectional <Const, Views...>;
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constexpr iterator & operator+=(difference_type x)
requires all-random-access <Const, Views...>;

constexpr iterator & operator-=(difference_type x)
requires all-random-access <Const, Views...>;

constexpr auto operator[](difference_type n) const
requires all-random-access <Const, Views...>;

friend constexpr bool operator==(const iterator & x, const iterator & y)
requires (equality_comparable<iterator_t<maybe-const <Const, Views>>> && ...);

friend constexpr auto operator<=>(const iterator & x, const iterator & y)
requires all-random-access <Const, Views...>;

friend constexpr iterator operator+(const iterator & i, difference_type n)
requires all-random-access <Const, Views...>;

friend constexpr iterator operator+(difference_type n, const iterator & i)
requires all-random-access <Const, Views...>;

friend constexpr iterator operator-(const iterator & i, difference_type n)
requires all-random-access <Const, Views...>;

friend constexpr difference_type operator-(const iterator & x, const iterator & y)
requires (sized_sentinel_for<iterator_t<maybe-const <Const, Views>>,

iterator_t<maybe-const <Const, Views>>> && ...);

friend constexpr auto iter_move(const iterator & i) noexcept(see below );

friend constexpr void iter_swap(const iterator & l, const iterator & r) noexcept(see below )
requires (indirectly_swappable<iterator_t<maybe-const <Const, Views>>> && ...);

};
}

1 iterator ::iterator_concept is defined as follows:
—(1.1) If all-random-access <Const, Views...> is modeled, then iterator_concept denotes random_-

access_iterator_tag.
—(1.2) Otherwise, if all-bidirectional <Const, Views...> is modeled, then iterator_concept denotes

bidirectional_iterator_tag.
—(1.3) Otherwise, if all-forward <Const, Views...> is modeled, then iterator_concept denotes for-

ward_iterator_tag.
—(1.4) Otherwise, iterator_concept denotes input_iterator_tag.

2 iterator ::iterator_category is present if and only if all-forward <Const, Views...> is modeled.
3 If the invocation of any non-const member function of iterator exits via an exception, the iterator acquires

a singular value.

constexpr explicit iterator (tuple<iterator_t<maybe-const <Const, Views>>...> current);

4 Effects: Initializes current_ with std::move(current).

constexpr iterator (iterator <!Const> i)
requires Const && (convertible_to<iterator_t<Views>, iterator_t<const Views>> && ...);

5 Effects: Initializes current_ with std::move(i.current_).

constexpr auto operator*() const;

6 Effects: Equivalent to:
return tuple-transform ([](auto& i) -> decltype(auto) { return *i; }, current_);

constexpr iterator & operator++();

7 Effects: Equivalent to:
tuple-for-each ([](auto& i) { ++i; }, current_);
return *this;
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constexpr void operator++(int);

8 Effects: Equivalent to ++*this.

constexpr iterator operator++(int) requires all-forward <Const, Views...>;

9 Effects: Equivalent to:
auto tmp = *this;
++*this;
return tmp;

constexpr iterator & operator--() requires all-bidirectional <Const, Views...>;

10 Effects: Equivalent to:
tuple-for-each ([](auto& i) { --i; }, current_);
return *this;

constexpr iterator operator--(int) requires all-bidirectional <Const, Views...>;

11 Effects: Equivalent to:
auto tmp = *this;
--*this;
return tmp;

constexpr iterator & operator+=(difference_type x)
requires all-random-access <Const, Views...>;

12 Effects: Equivalent to:
tuple-for-each ([&]<class I>(I& i) { i += iter_difference_t<I>(x); }, current_);
return *this;

constexpr iterator & operator-=(difference_type x)
requires all-random-access <Const, Views...>;

13 Effects: Equivalent to:
tuple-for-each ([&]<class I>(I& i) { i -= iter_difference_t<I>(x); }, current_);
return *this;

constexpr auto operator[](difference_type n) const
requires all-random-access <Const, Views...>;

14 Effects: Equivalent to:
return tuple-transform ([&]<class I>(I& i) -> decltype(auto) {

return i[iter_difference_t<I>(n)];
}, current_);

friend constexpr bool operator==(const iterator & x, const iterator & y)
requires (equality_comparable<iterator_t<maybe-const <Const, Views>>> && ...);

15 Returns:
—(15.1) x.current_ == y.current_ if all-bidirectional <Const, Views...> is true.
—(15.2) Otherwise, true if there exists an integer 0 ≤ i < sizeof...(Views) such that bool(std::

get<i>(x.current_) == std::get<i>(y.current_)) is true.
[Note 1 : This allows zip_view to model common_range when all constituent views model common_range.

— end note ]

—(15.3) Otherwise, false.

friend constexpr auto operator<=>(const iterator & x, const iterator & y)
requires all-random-access <Const, Views...>;

16 Returns: x.current_ <=> y.current_.

friend constexpr iterator operator+(const iterator & i, difference_type n)
requires all-random-access <Const, Views...>;
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friend constexpr iterator operator+(difference_type n, const iterator & i)
requires all-random-access <Const, Views...>;

17 Effects: Equivalent to:
auto r = i;
r += n;
return r;

friend constexpr iterator operator-(const iterator & i, difference_type n)
requires all-random-access <Const, Views...>;

18 Effects: Equivalent to:
auto r = i;
r -= n;
return r;

friend constexpr difference_type operator-(const iterator & x, const iterator & y)
requires (sized_sentinel_for<iterator_t<maybe-const <Const, Views>>,

iterator_t<maybe-const <Const, Views>>> && ...);

19 Let DIST (i) be difference_type(std::get<i>(x.current_) - std::get<i>(y.current_)).
20 Returns: The value with the smallest absolute value among DIST (n) for all integers 0 ≤ n <

sizeof...(Views).

friend constexpr auto iter_move(const iterator & i) noexcept(see below );

21 Effects: Equivalent to:
return tuple-transform (ranges::iter_move, i.current_);

22 Remarks: The exception specification is equivalent to:
(noexcept(ranges::iter_move(declval<const iterator_t<maybe-const <Const,

Views>>&>())) && ...) &&
(is_nothrow_move_constructible_v<range_rvalue_reference_t<maybe-const <Const,

Views>>> && ...)

friend constexpr void iter_swap(const iterator & l, const iterator & r) noexcept(see below )
requires (indirectly_swappable<iterator_t<maybe-const <Const, Views>>> && ...);

23 Effects: For every integer 0 ≤ i < sizeof...(Views), performs:
ranges::iter_swap(std::get<i>(l.current_), std::get<i>(r.current_))

24 Remarks: The exception specification is equivalent to the logical and of the following expressions:
noexcept(ranges::iter_swap(std::get<i>(l.current_), std::get<i>(r.current_)))

for every integer 0 ≤ i < sizeof...(Views).

26.7.24.4 Class template zip_view::sentinel [range.zip.sentinel]
namespace std::ranges {

template<input_range... Views>
requires (view<Views> && ...) && (sizeof...(Views) > 0)

template<bool Const>
class zip_view<Views...>::sentinel {

tuple<sentinel_t<maybe-const<Const, Views>>...> end_; // exposition only
constexpr explicit sentinel(tuple<sentinel_t<maybe-const<Const, Views>>...> end);

// exposition only
public:

sentinel () = default;
constexpr sentinel (sentinel <!Const> i)

requires Const && (convertible_to<sentinel_t<Views>, sentinel_t<const Views>> && ...);

template<bool OtherConst>
requires (sentinel_for<sentinel_t<maybe-const <Const, Views>>,

iterator_t<maybe-const <OtherConst, Views>>> && ...)
friend constexpr bool operator==(const iterator <OtherConst>& x, const sentinel & y);
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template<bool OtherConst>
requires (sized_sentinel_for<sentinel_t<maybe-const <Const, Views>>,

iterator_t<maybe-const <OtherConst, Views>>> && ...)
friend constexpr common_type_t<range_difference_t<maybe-const <OtherConst, Views>>...>

operator-(const iterator <OtherConst>& x, const sentinel & y);

template<bool OtherConst>
requires (sized_sentinel_for<sentinel_t<maybe-const <Const, Views>>,

iterator_t<maybe-const <OtherConst, Views>>> && ...)
friend constexpr common_type_t<range_difference_t<maybe-const <OtherConst, Views>>...>

operator-(const sentinel & y, const iterator <OtherConst>& x);
};

}

constexpr explicit sentinel (tuple<sentinel_t<maybe-const <Const, Views>>...> end);

1 Effects: Initializes end_ with end.

constexpr sentinel (sentinel <!Const> i)
requires Const && (convertible_to<sentinel_t<Views>, sentinel_t<const Views>> && ...);

2 Effects: Initializes end_ with std::move(i.end_).

template<bool OtherConst>
requires (sentinel_for<sentinel_t<maybe-const <Const, Views>>,

iterator_t<maybe-const<OtherConst, Views>>> && ...)
friend constexpr bool operator==(const iterator <OtherConst>& x, const sentinel & y);

3 Returns: true if there exists an integer 0 ≤ i < sizeof...(Views) such that bool(std::get<i>(x.
current_) == std::get<i>(y.end_)) is true. Otherwise, false.

template<bool OtherConst>
requires (sized_sentinel_for<sentinel_t<maybe-const <Const, Views>>,

iterator_t<maybe-const <OtherConst, Views>>> && ...)
friend constexpr common_type_t<range_difference_t<maybe-const <OtherConst, Views>>...>

operator-(const iterator <OtherConst>& x, const sentinel & y);

4 Let D be the return type. Let DIST (i) be D(std::get<i>(x.current_) - std::get<i>(y.end_)).
5 Returns: The value with the smallest absolute value among DIST (n) for all integers 0 ≤ n <

sizeof...(Views).

template<bool OtherConst>
requires (sized_sentinel_for<sentinel_t<maybe-const <Const, Views>>,

iterator_t<maybe-const <OtherConst, Views>>> && ...)
friend constexpr common_type_t<range_difference_t<maybe-const <OtherConst, Views>>...>

operator-(const sentinel & y, const iterator <OtherConst>& x);

6 Effects: Equivalent to return -(x - y);

26.7.25 Zip transform view [range.zip.transform]
26.7.25.1 Overview [range.zip.transform.overview]

1 zip_transform_view takes an invocable object and any number of views and produces a view whose M th

element is the result of applying the invocable object to the M th elements of all views.
2 The name views::zip_transform denotes a customization point object (16.3.3.3.5). Let F be a subexpression,

and let Es... be a pack of subexpressions.
—(2.1) If Es is an empty pack, let FD be decay_t<decltype((F))>.

—(2.1.1) If move_constructible<FD> && regular_invocable<FD&> is false, or if decay_t<invoke_-
result_t<FD&>> is not an object type, views::zip_transform(F, Es...) is ill-formed.

—(2.1.2) Otherwise, the expression views::zip_transform(F, Es...) is expression-equivalent to
((void)F, auto(views::empty<decay_t<invoke_result_t<FD&>>>))

—(2.2) Otherwise, the expression views::zip_transform(F, Es...) is expression-equivalent to zip_trans-
form_view(F, Es...).
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3 [Example 1 :
vector v1 = {1, 2};
vector v2 = {4, 5, 6};

for (auto i : views::zip_transform(plus(), v1, v2)) {
cout << i << ' '; // prints 5 7

}

— end example ]

26.7.25.2 Class template zip_transform_view [range.zip.transform.view]
namespace std::ranges {

template<move_constructible F, input_range... Views>
requires (view<Views> && ...) && (sizeof...(Views) > 0) && is_object_v<F> &&

regular_invocable<F&, range_reference_t<Views>...> &&
can-reference <invoke_result_t<F&, range_reference_t<Views>...>>

class zip_transform_view : public view_interface<zip_transform_view<F, Views...>> {
movable-box<F> fun_; // exposition only
zip_view<Views...> zip_; // exposition only

using InnerView = zip_view<Views...>; // exposition only
template<bool Const>

using ziperator = iterator_t<maybe-const<Const, InnerView>>; // exposition only
template<bool Const>

using zentinel = sentinel_t<maybe-const<Const, InnerView>>; // exposition only

// 26.7.25.3, class template zip_transform_view::iterator
template<bool> class iterator; // exposition only

// 26.7.25.4, class template zip_transform_view::sentinel
template<bool> class sentinel; // exposition only

public:
zip_transform_view() = default;

constexpr explicit zip_transform_view(F fun, Views... views);

constexpr auto begin() { return iterator <false>(*this, zip_.begin()); }

constexpr auto begin() const
requires range<const InnerView > &&

regular_invocable<const F&, range_reference_t<const Views>...> {
return iterator <true>(*this, zip_.begin());

}

constexpr auto end() {
if constexpr (common_range<InnerView >) {

return iterator <false>(*this, zip_.end());
} else {

return sentinel <false>(zip_.end());
}

}

constexpr auto end() const
requires range<const InnerView > &&

regular_invocable<const F&, range_reference_t<const Views>...> {
if constexpr (common_range<const InnerView >) {

return iterator <true>(*this, zip_.end());
} else {

return sentinel <true>(zip_.end());
}

}
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constexpr auto size() requires sized_range<InnerView > {
return zip_.size();

}

constexpr auto size() const requires sized_range<const InnerView > {
return zip_.size();

}
};

template<class F, class... Rs>
zip_transform_view(F, Rs&&...) -> zip_transform_view<F, views::all_t<Rs>...>;

}

constexpr explicit zip_transform_view(F fun, Views... views);

1 Effects: Initializes fun_ with std::move(fun) and zip_ with std::move(views)....

26.7.25.3 Class template zip_transform_view::iterator [range.zip.transform.iterator]
namespace std::ranges {

template<move_constructible F, input_range... Views>
requires (view<Views> && ...) && (sizeof...(Views) > 0) && is_object_v<F> &&

regular_invocable<F&, range_reference_t<Views>...> &&
can-reference <invoke_result_t<F&, range_reference_t<Views>...>>

template<bool Const>
class zip_transform_view<F, Views...>::iterator {

using Parent = maybe-const<Const, zip_transform_view>; // exposition only
using Base = maybe-const<Const, InnerView>; // exposition only
Parent* parent_ = nullptr; // exposition only
ziperator <Const> inner_; // exposition only

constexpr iterator (Parent & parent, ziperator <Const> inner); // exposition only

public:
using iterator_category = see below; // not always present
using iterator_concept = typename ziperator <Const>::iterator_concept;
using value_type =

remove_cvref_t<invoke_result_t<maybe-const <Const, F>&,
range_reference_t<maybe-const <Const, Views>>...>>;

using difference_type = range_difference_t<Base >;

iterator () = default;
constexpr iterator (iterator <!Const> i)

requires Const && convertible_to<ziperator <false>, ziperator <Const>>;

constexpr decltype(auto) operator*() const noexcept(see below );
constexpr iterator & operator++();
constexpr void operator++(int);
constexpr iterator operator++(int) requires forward_range<Base >;

constexpr iterator & operator--() requires bidirectional_range<Base >;
constexpr iterator operator--(int) requires bidirectional_range<Base >;

constexpr iterator & operator+=(difference_type x) requires random_access_range<Base >;
constexpr iterator & operator-=(difference_type x) requires random_access_range<Base >;

constexpr decltype(auto) operator[](difference_type n) const
requires random_access_range<Base >;

friend constexpr bool operator==(const iterator & x, const iterator & y)
requires equality_comparable<ziperator <Const>>;

friend constexpr auto operator<=>(const iterator & x, const iterator & y)
requires random_access_range<Base >;
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friend constexpr iterator operator+(const iterator & i, difference_type n)
requires random_access_range<Base >;

friend constexpr iterator operator+(difference_type n, const iterator & i)
requires random_access_range<Base >;

friend constexpr iterator operator-(const iterator & i, difference_type n)
requires random_access_range<Base >;

friend constexpr difference_type operator-(const iterator & x, const iterator & y)
requires sized_sentinel_for<ziperator <Const>, ziperator <Const>>;

};
}

1 The member typedef-name iterator ::iterator_category is defined if and only if Base models forward_-
range. In that case, iterator ::iterator_category is defined as follows:

—(1.1) If
invoke_result_t<maybe-const <Const, F>&, range_reference_t<maybe-const <Const, Views>>...>

is not a reference, iterator_category denotes input_iterator_tag.
—(1.2) Otherwise, let Cs denote the pack of types iterator_traits<iterator_t<maybe-const <Const,

Views>>>::iterator_category....
—(1.2.1) If (derived_from<Cs, random_access_iterator_tag> && ...) is true, iterator_category

denotes random_access_iterator_tag.
—(1.2.2) Otherwise, if (derived_from<Cs, bidirectional_iterator_tag> && ...) is true, iterator-

_category denotes bidirectional_iterator_tag.
—(1.2.3) Otherwise, if (derived_from<Cs, forward_iterator_tag> && ...) is true, iterator_cate-

gory denotes forward_iterator_tag.
—(1.2.4) Otherwise, iterator_category denotes input_iterator_tag.

constexpr iterator (Parent & parent, ziperator <Const> inner);

2 Effects: Initializes parent_ with addressof(parent) and inner_ with std::move(inner).

constexpr iterator (iterator <!Const> i)
requires Const && convertible_to<ziperator <false>, ziperator <Const>>;

3 Effects: Initializes parent_ with i.parent_ and inner_ with std::move(i.inner_).

constexpr decltype(auto) operator*() const noexcept(see below );

4 Effects: Equivalent to:
return apply([&](const auto&... iters) -> decltype(auto) {

return invoke(*parent_->fun_, *iters...);
}, inner_.current_);

5 Remarks: Let Is be the pack 0, 1, ..., (sizeof...(Views)-1). The exception specification is
equivalent to: noexcept(invoke(*parent_->fun_, *std::get<Is>(inner_.current_)...)).

constexpr iterator & operator++();

6 Effects: Equivalent to:
++inner_;
return *this;

constexpr void operator++(int);

7 Effects: Equivalent to: ++*this.

constexpr iterator operator++(int) requires forward_range<Base >;

8 Effects: Equivalent to:
auto tmp = *this;
++*this;
return tmp;
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constexpr iterator & operator--() requires bidirectional_range<Base >;

9 Effects: Equivalent to:
--inner_;
return *this;

constexpr iterator operator--(int) requires bidirectional_range<Base >;

10 Effects: Equivalent to:
auto tmp = *this;
--*this;
return tmp;

constexpr iterator & operator+=(difference_type x)
requires random_access_range<Base >;

11 Effects: Equivalent to:
inner_ += x;
return *this;

constexpr iterator & operator-=(difference_type x)
requires random_access_range<Base >;

12 Effects: Equivalent to:
inner_ -= x;
return *this;

constexpr decltype(auto) operator[](difference_type n) const
requires random_access_range<Base >;

13 Effects: Equivalent to:
return apply([&]<class... Is>(const Is&... iters) -> decltype(auto) {

return invoke(*parent_->fun_, iters[iter_difference_t<Is>(n)]...);
}, inner_.current_);

friend constexpr bool operator==(const iterator & x, const iterator & y)
requires equality_comparable<ziperator <Const>>;

friend constexpr auto operator<=>(const iterator & x, const iterator & y)
requires random_access_range<Base >;

14 Let op be the operator.
15 Effects: Equivalent to: return x.inner_ op y.inner_;

friend constexpr iterator operator+(const iterator & i, difference_type n)
requires random_access_range<Base >;

friend constexpr iterator operator+(difference_type n, const iterator & i)
requires random_access_range<Base >;

16 Effects: Equivalent to: return iterator (*i.parent_, i.inner_ + n);

friend constexpr iterator operator-(const iterator & i, difference_type n)
requires random_access_range<Base >;

17 Effects: Equivalent to: return iterator (*i.parent_, i.inner_ - n);

friend constexpr difference_type operator-(const iterator & x, const iterator & y)
requires sized_sentinel_for<ziperator <Const>, ziperator <Const>>;

18 Effects: Equivalent to: return x.inner_ - y.inner_;

26.7.25.4 Class template zip_transform_view::sentinel [range.zip.transform.sentinel]
namespace std::ranges {

template<move_constructible F, input_range... Views>
requires (view<Views> && ...) && (sizeof...(Views) > 0) && is_object_v<F> &&

regular_invocable<F&, range_reference_t<Views>...> &&
can-reference <invoke_result_t<F&, range_reference_t<Views>...>>

template<bool Const>
class zip_transform_view<F, Views...>::sentinel {
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zentinel<Const> inner_; // exposition only
constexpr explicit sentinel(zentinel<Const> inner); // exposition only

public:
sentinel () = default;
constexpr sentinel (sentinel <!Const> i)

requires Const && convertible_to<zentinel <false>, zentinel <Const>>;

template<bool OtherConst>
requires sentinel_for<zentinel <Const>, ziperator <OtherConst>>

friend constexpr bool operator==(const iterator <OtherConst>& x, const sentinel & y);

template<bool OtherConst>
requires sized_sentinel_for<zentinel <Const>, ziperator <OtherConst>>

friend constexpr range_difference_t<maybe-const <OtherConst, InnerView >>
operator-(const iterator <OtherConst>& x, const sentinel & y);

template<bool OtherConst>
requires sized_sentinel_for<zentinel <Const>, ziperator <OtherConst>>

friend constexpr range_difference_t<maybe-const <OtherConst, InnerView >>
operator-(const sentinel & x, const iterator <OtherConst>& y);

};
}

constexpr explicit sentinel (zentinel <Const> inner);

1 Effects: Initializes inner_ with inner.

constexpr sentinel (sentinel <!Const> i)
requires Const && convertible_to<zentinel <false>, zentinel <Const>>;

2 Effects: Initializes inner_ with std::move(i.inner_).

template<bool OtherConst>
requires sentinel_for<zentinel <Const>, ziperator <OtherConst>>

friend constexpr bool operator==(const iterator <OtherConst>& x, const sentinel & y);

3 Effects: Equivalent to: return x.inner_ == y.inner_;

template<bool OtherConst>
requires sized_sentinel_for<zentinel <Const>, ziperator <OtherConst>>

friend constexpr range_difference_t<maybe-const <OtherConst, InnerView >>
operator-(const iterator <OtherConst>& x, const sentinel & y);

template<bool OtherConst>
requires sized_sentinel_for<zentinel <Const>, ziperator <OtherConst>>

friend constexpr range_difference_t<maybe-const <OtherConst, InnerView >>
operator-(const sentinel & x, const iterator <OtherConst>& y);

4 Effects: Equivalent to: return x.inner_ - y.inner_;

26.7.26 Adjacent view [range.adjacent]
26.7.26.1 Overview [range.adjacent.overview]

1 adjacent_view takes a view and produces a view whose M th element is a tuple of references to the M th

through (M + N − 1)th elements of the original view. If the original view has fewer than N elements, the
resulting view is empty.

2 The name views::adjacent<N> denotes a range adaptor object (26.7.2). Given a subexpression E and a
constant expression N, the expression views::adjacent<N>(E) is expression-equivalent to

—(2.1) ((void)E, auto(views::empty<tuple<>>)) if N is equal to 0,
—(2.2) otherwise, adjacent_view<views::all_t<decltype((E))>, N>(E).

[Example 1 :
vector v = {1, 2, 3, 4};
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for (auto i : v | views::adjacent<2>) {
cout << "(" << std::get<0>(i) << ", " << std::get<1>(i) << ") "; // prints (1, 2) (2, 3) (3, 4)

}

— end example ]
3 Define REPEAT (T, N) as a pack of N types, each of which denotes the same type as T.

26.7.26.2 Class template adjacent_view [range.adjacent.view]
namespace std::ranges {

template<forward_range V, size_t N>
requires view<V> && (N > 0)

class adjacent_view : public view_interface<adjacent_view<V, N>> {
V base_ = V(); // exposition only

// 26.7.26.3, class template adjacent_view::iterator
template<bool> class iterator; // exposition only

// 26.7.26.4, class template adjacent_view::sentinel
template<bool> class sentinel; // exposition only

struct as-sentinel{}; // exposition only

public:
adjacent_view() requires default_initializable<V> = default;
constexpr explicit adjacent_view(V base);

constexpr V base() const & requires copy_constructible<V> { return base_; }
constexpr V base() && { return std::move(base_); }

constexpr auto begin() requires (!simple-view <V>) {
return iterator <false>(ranges::begin(base_), ranges::end(base_));

}

constexpr auto begin() const requires range<const V> {
return iterator <true>(ranges::begin(base_), ranges::end(base_));

}

constexpr auto end() requires (!simple-view <V>) {
if constexpr (common_range<V>) {

return iterator <false>(as-sentinel {}, ranges::begin(base_), ranges::end(base_));
} else {

return sentinel <false>(ranges::end(base_));
}

}

constexpr auto end() const requires range<const V> {
if constexpr (common_range<const V>) {

return iterator <true>(as-sentinel {}, ranges::begin(base_), ranges::end(base_));
} else {

return sentinel <true>(ranges::end(base_));
}

}

constexpr auto size() requires sized_range<V>;
constexpr auto size() const requires sized_range<const V>;

};
}

constexpr explicit adjacent_view(V base);

1 Effects: Initializes base_ with std::move(base).

constexpr auto size() requires sized_range<V>;
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constexpr auto size() const requires sized_range<const V>;

2 Effects: Equivalent to:
using ST = decltype(ranges::size(base_));
using CT = common_type_t<ST, size_t>;
auto sz = static_cast<CT>(ranges::size(base_));
sz -= std::min<CT>(sz, N - 1);
return static_cast<ST>(sz);

26.7.26.3 Class template adjacent_view::iterator [range.adjacent.iterator]
namespace std::ranges {

template<forward_range V, size_t N>
requires view<V> && (N > 0)

template<bool Const>
class adjacent_view<V, N>::iterator {

using Base = maybe-const<Const, V>; // exposition only
array<iterator_t<Base>, N> current_ = array<iterator_t<Base>, N>(); // exposition only
constexpr iterator(iterator_t<Base> first, sentinel_t<Base> last); // exposition only
constexpr iterator(as-sentinel, iterator_t<Base> first, iterator_t<Base> last);

// exposition only
public:

using iterator_category = input_iterator_tag;
using iterator_concept = see below ;
using value_type = tuple<REPEAT (range_value_t<Base >, N)...>;
using difference_type = range_difference_t<Base >;

iterator () = default;
constexpr iterator (iterator <!Const> i)

requires Const && convertible_to<iterator_t<V>, iterator_t<Base >>;

constexpr auto operator*() const;
constexpr iterator & operator++();
constexpr iterator operator++(int);

constexpr iterator & operator--() requires bidirectional_range<Base >;
constexpr iterator operator--(int) requires bidirectional_range<Base >;

constexpr iterator & operator+=(difference_type x)
requires random_access_range<Base >;

constexpr iterator & operator-=(difference_type x)
requires random_access_range<Base >;

constexpr auto operator[](difference_type n) const
requires random_access_range<Base >;

friend constexpr bool operator==(const iterator & x, const iterator & y);
friend constexpr bool operator<(const iterator & x, const iterator & y)

requires random_access_range<Base >;
friend constexpr bool operator>(const iterator & x, const iterator & y)

requires random_access_range<Base >;
friend constexpr bool operator<=(const iterator & x, const iterator & y)

requires random_access_range<Base >;
friend constexpr bool operator>=(const iterator & x, const iterator & y)

requires random_access_range<Base >;
friend constexpr auto operator<=>(const iterator & x, const iterator & y)

requires random_access_range<Base > &&
three_way_comparable<iterator_t<Base >>;

friend constexpr iterator operator+(const iterator & i, difference_type n)
requires random_access_range<Base >;

friend constexpr iterator operator+(difference_type n, const iterator & i)
requires random_access_range<Base >;

friend constexpr iterator operator-(const iterator & i, difference_type n)
requires random_access_range<Base >;

§ 26.7.26.3 1229



© ISO/IEC N4950

friend constexpr difference_type operator-(const iterator & x, const iterator & y)
requires sized_sentinel_for<iterator_t<Base >, iterator_t<Base >>;

friend constexpr auto iter_move(const iterator & i) noexcept(see below );
friend constexpr void iter_swap(const iterator & l, const iterator & r) noexcept(see below )

requires indirectly_swappable<iterator_t<Base >>;
};

}

1 iterator ::iterator_concept is defined as follows:
—(1.1) If Base models random_access_range, then iterator_concept denotes random_access_iterator_-

tag.
—(1.2) Otherwise, if Base models bidirectional_range, then iterator_concept denotes bidirectional_-

iterator_tag.
—(1.3) Otherwise, iterator_concept denotes forward_iterator_tag.

2 If the invocation of any non-const member function of iterator exits via an exception, the iterator
acquires a singular value.

constexpr iterator (iterator_t<Base > first, sentinel_t<Base > last);

3 Postconditions: current_[0] == first is true, and for every integer 1 ≤ i < N, current_[i] ==
ranges::next(current_[i-1], 1, last) is true.

constexpr iterator (as-sentinel , iterator_t<Base > first, iterator_t<Base > last);

4 Postconditions: If Base does not model bidirectional_range, each element of current_ is equal to
last . Otherwise, current_[N-1] == last is true, and for every integer 0 ≤ i < (N− 1), current_[i]
== ranges::prev(current_[i+1], 1, first) is true.

constexpr iterator (iterator <!Const> i)
requires Const && convertible_to<iterator_t<V>, iterator_t<Base >>;

5 Effects: Initializes each element of current_ with the corresponding element of i.current_ as an
xvalue.

constexpr auto operator*() const;

6 Effects: Equivalent to:
return tuple-transform ([](auto& i) -> decltype(auto) { return *i; }, current_);

constexpr iterator & operator++();

7 Preconditions: current_.back() is incrementable.
8 Postconditions: Each element of current_ is equal to ranges::next(i), where i is the value of that

element before the call.
9 Returns: *this.

constexpr iterator operator++(int);

10 Effects: Equivalent to:
auto tmp = *this;
++*this;
return tmp;

constexpr iterator & operator--() requires bidirectional_range<Base >;

11 Preconditions: current_.front() is decrementable.
12 Postconditions: Each element of current_ is equal to ranges::prev(i), where i is the value of that

element before the call.
13 Returns: *this.

constexpr iterator operator--(int) requires bidirectional_range<Base >;

14 Effects: Equivalent to:
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auto tmp = *this;
--*this;
return tmp;

constexpr iterator & operator+=(difference_type x)
requires random_access_range<Base >;

15 Preconditions: current_.back() + x has well-defined behavior.
16 Postconditions: Each element of current_ is equal to i + x, where i is the value of that element

before the call.
17 Returns: *this.

constexpr iterator & operator-=(difference_type x)
requires random_access_range<Base >;

18 Preconditions: current_.front() - x has well-defined behavior.
19 Postconditions: Each element of current_ is equal to i - x, where i is the value of that element

before the call.
20 Returns: *this.

constexpr auto operator[](difference_type n) const
requires random_access_range<Base >;

21 Effects: Equivalent to:
return tuple-transform ([&](auto& i) -> decltype(auto) { return i[n]; }, current_);

friend constexpr bool operator==(const iterator & x, const iterator & y);

22 Returns: x.current_.back() == y.current_.back().

friend constexpr bool operator<(const iterator & x, const iterator & y)
requires random_access_range<Base >;

23 Returns: x.current_.back() < y.current_.back().

friend constexpr bool operator>(const iterator & x, const iterator & y)
requires random_access_range<Base >;

24 Effects: Equivalent to: return y < x;

friend constexpr bool operator<=(const iterator & x, const iterator & y)
requires random_access_range<Base >;

25 Effects: Equivalent to: return !(y < x);

friend constexpr bool operator>=(const iterator & x, const iterator & y)
requires random_access_range<Base >;

26 Effects: Equivalent to: return !(x < y);

friend constexpr auto operator<=>(const iterator & x, const iterator & y)
requires random_access_range<Base > &&

three_way_comparable<iterator_t<Base >>;

27 Returns: x.current_.back() <=> y.current_.back().

friend constexpr iterator operator+(const iterator & i, difference_type n)
requires random_access_range<Base >;

friend constexpr iterator operator+(difference_type n, const iterator & i)
requires random_access_range<Base >;

28 Effects: Equivalent to:
auto r = i;
r += n;
return r;
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friend constexpr iterator operator-(const iterator & i, difference_type n)
requires random_access_range<Base >;

29 Effects: Equivalent to:
auto r = i;
r -= n;
return r;

friend constexpr difference_type operator-(const iterator & x, const iterator & y)
requires sized_sentinel_for<iterator_t<Base >, iterator_t<Base >>;

30 Effects: Equivalent to: return x.current_.back() - y.current_.back();

friend constexpr auto iter_move(const iterator & i) noexcept(see below );

31 Effects: Equivalent to: return tuple-transform (ranges::iter_move, i.current_);
32 Remarks: The exception specification is equivalent to:

noexcept(ranges::iter_move(declval<const iterator_t<Base >&>())) &&
is_nothrow_move_constructible_v<range_rvalue_reference_t<Base >>

friend constexpr void iter_swap(const iterator & l, const iterator & r) noexcept(see below )
requires indirectly_swappable<iterator_t<Base >>;

33 Preconditions: None of the iterators in l.current_ is equal to an iterator in r.current_.
34 Effects: For every integer 0 ≤ i < N, performs ranges::iter_swap(l.current_[i], r.current_[i]).
35 Remarks: The exception specification is equivalent to:

noexcept(ranges::iter_swap(declval<iterator_t<Base >>(), declval<iterator_t<Base >>()))

26.7.26.4 Class template adjacent_view::sentinel [range.adjacent.sentinel]
namespace std::ranges {

template<forward_range V, size_t N>
requires view<V> && (N > 0)

template<bool Const>
class adjacent_view<V, N>::sentinel {

using Base = maybe-const <Const, V>; // exposition only
sentinel_t<Base > end_ = sentinel_t<Base >(); // exposition only
constexpr explicit sentinel (sentinel_t<Base > end); // exposition only

public:
sentinel () = default;
constexpr sentinel (sentinel <!Const> i)

requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base >>;

template<bool OtherConst>
requires sentinel_for<sentinel_t<Base >, iterator_t<maybe-const <OtherConst, V>>>

friend constexpr bool operator==(const iterator <OtherConst>& x, const sentinel & y);

template<bool OtherConst>
requires sized_sentinel_for<sentinel_t<Base >, iterator_t<maybe-const <OtherConst, V>>>

friend constexpr range_difference_t<maybe-const <OtherConst, V>>
operator-(const iterator <OtherConst>& x, const sentinel & y);

template<bool OtherConst>
requires sized_sentinel_for<sentinel_t<Base >, iterator_t<maybe-const <OtherConst, V>>>

friend constexpr range_difference_t<maybe-const <OtherConst, V>>
operator-(const sentinel & y, const iterator <OtherConst>& x);

};
}

constexpr explicit sentinel (sentinel_t<Base > end);

1 Effects: Initializes end_ with end.
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constexpr sentinel (sentinel <!Const> i)
requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base >>;

2 Effects: Initializes end_ with std::move(i.end_).

template<bool OtherConst>
requires sentinel_for<sentinel_t<Base >, iterator_t<maybe-const <OtherConst, V>>>

friend constexpr bool operator==(const iterator <OtherConst>& x, const sentinel & y);

3 Effects: Equivalent to: return x.current_.back() == y.end_;

template<bool OtherConst>
requires sized_sentinel_for<sentinel_t<Base >, iterator_t<maybe-const <OtherConst, V>>>

friend constexpr range_difference_t<maybe-const <OtherConst, V>>
operator-(const iterator <OtherConst>& x, const sentinel & y);

4 Effects: Equivalent to: return x.current_.back() - y.end_;

template<bool OtherConst>
requires sized_sentinel_for<sentinel_t<Base >, iterator_t<maybe-const <OtherConst, V>>>

friend constexpr range_difference_t<maybe-const <OtherConst, V>>
operator-(const sentinel & y, const iterator <OtherConst>& x);

5 Effects: Equivalent to: return y.end_ - x.current_.back();

26.7.27 Adjacent transform view [range.adjacent.transform]
26.7.27.1 Overview [range.adjacent.transform.overview]

1 adjacent_transform_view takes an invocable object and a view and produces a view whose M th element is
the result of applying the invocable object to the M th through (M + N − 1)th elements of the original view.
If the original view has fewer than N elements, the resulting view is empty.

2 The name views::adjacent_transform<N> denotes a range adaptor object (26.7.2). Given subexpressions
E and F and a constant expression N:

—(2.1) If N is equal to 0, views::adjacent_transform<N>(E, F) is expression-equivalent to ((void)E,
views::zip_transform(F)), except that the evaluations of E and F are indeterminately sequenced.

—(2.2) Otherwise, the expression views::adjacent_transform<N>(E, F) is expression-equivalent to adja-
cent_transform_view<views::all_t<decltype((E))>, decay_t<decltype((F))>, N>(E, F).

3 [Example 1 :
vector v = {1, 2, 3, 4};

for (auto i : v | views::adjacent_transform<2>(std::multiplies())) {
cout << i << ' '; // prints 2 6 12

}

— end example ]

26.7.27.2 Class template adjacent_transform_view [range.adjacent.transform.view]
namespace std::ranges {

template<forward_range V, move_constructible F, size_t N>
requires view<V> && (N > 0) && is_object_v<F> &&

regular_invocable<F&, REPEAT (range_reference_t<V>, N)...> &&
can-reference <invoke_result_t<F&, REPEAT (range_reference_t<V>, N)...>>

class adjacent_transform_view : public view_interface<adjacent_transform_view<V, F, N>> {
movable-box<F> fun_; // exposition only
adjacent_view<V, N> inner_; // exposition only

using InnerView = adjacent_view<V, N>; // exposition only
template<bool Const>

using inner-iterator = iterator_t<maybe-const <Const, InnerView >>; // exposition only
template<bool Const>

using inner-sentinel = sentinel_t<maybe-const <Const, InnerView >>; // exposition only

// 26.7.27.3, class template adjacent_transform_view::iterator
template<bool> class iterator; // exposition only
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// 26.7.27.4, class template adjacent_transform_view::sentinel
template<bool> class sentinel; // exposition only

public:
adjacent_transform_view() = default;
constexpr explicit adjacent_transform_view(V base, F fun);

constexpr V base() const & requires copy_constructible<InnerView > { return inner_.base(); }
constexpr V base() && { return std::move(inner_).base(); }

constexpr auto begin() {
return iterator <false>(*this, inner_.begin());

}

constexpr auto begin() const
requires range<const InnerView > &&

regular_invocable<const F&, REPEAT (range_reference_t<const V>, N)...> {
return iterator <true>(*this, inner_.begin());

}

constexpr auto end() {
if constexpr (common_range<InnerView >) {

return iterator <false>(*this, inner_.end());
} else {

return sentinel <false>(inner_.end());
}

}

constexpr auto end() const
requires range<const InnerView > &&

regular_invocable<const F&, REPEAT (range_reference_t<const V>, N)...> {
if constexpr (common_range<const InnerView >) {

return iterator <true>(*this, inner_.end());
} else {

return sentinel <true>(inner_.end());
}

}

constexpr auto size() requires sized_range<InnerView > {
return inner_.size();

}

constexpr auto size() const requires sized_range<const InnerView > {
return inner_.size();

}
};

}

constexpr explicit adjacent_transform_view(V base, F fun);

1 Effects: Initializes fun_ with std::move(fun) and inner_ with std::move(base).

26.7.27.3 Class template adjacent_transform_view::iterator
[range.adjacent.transform.iterator]

namespace std::ranges {
template<forward_range V, move_constructible F, size_t N>

requires view<V> && (N > 0) && is_object_v<F> &&
regular_invocable<F&, REPEAT (range_reference_t<V>, N)...> &&
can-reference <invoke_result_t<F&, REPEAT (range_reference_t<V>, N)...>>

template<bool Const>
class adjacent_transform_view<V, F, N>::iterator {

using Parent = maybe-const<Const, adjacent_transform_view>; // exposition only
using Base = maybe-const<Const, V>; // exposition only
Parent* parent_ = nullptr; // exposition only
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inner-iterator<Const> inner_; // exposition only

constexpr iterator(Parent& parent, inner-iterator<Const> inner); // exposition only

public:
using iterator_category = see below ;
using iterator_concept = typename inner-iterator <Const>::iterator_concept;
using value_type =

remove_cvref_t<invoke_result_t<maybe-const <Const, F>&,
REPEAT (range_reference_t<Base >, N)...>>;

using difference_type = range_difference_t<Base >;

iterator () = default;
constexpr iterator (iterator <!Const> i)

requires Const && convertible_to<inner-iterator <false>, inner-iterator <Const>>;

constexpr decltype(auto) operator*() const noexcept(see below );
constexpr iterator & operator++();
constexpr iterator operator++(int);
constexpr iterator & operator--() requires bidirectional_range<Base >;
constexpr iterator operator--(int) requires bidirectional_range<Base >;
constexpr iterator & operator+=(difference_type x) requires random_access_range<Base >;
constexpr iterator & operator-=(difference_type x) requires random_access_range<Base >;

constexpr decltype(auto) operator[](difference_type n) const
requires random_access_range<Base >;

friend constexpr bool operator==(const iterator & x, const iterator & y);
friend constexpr bool operator<(const iterator & x, const iterator & y)

requires random_access_range<Base >;
friend constexpr bool operator>(const iterator & x, const iterator & y)

requires random_access_range<Base >;
friend constexpr bool operator<=(const iterator & x, const iterator & y)

requires random_access_range<Base >;
friend constexpr bool operator>=(const iterator & x, const iterator & y)

requires random_access_range<Base >;
friend constexpr auto operator<=>(const iterator & x, const iterator & y)

requires random_access_range<Base > && three_way_comparable<inner-iterator <Const>>;

friend constexpr iterator operator+(const iterator & i, difference_type n)
requires random_access_range<Base >;

friend constexpr iterator operator+(difference_type n, const iterator & i)
requires random_access_range<Base >;

friend constexpr iterator operator-(const iterator & i, difference_type n)
requires random_access_range<Base >;

friend constexpr difference_type operator-(const iterator & x, const iterator & y)
requires sized_sentinel_for<inner-iterator <Const>, inner-iterator <Const>>;

};
}

1 The member typedef-name iterator ::iterator_category is defined as follows:
—(1.1) If invoke_result_t<maybe-const <Const, F>&, REPEAT (range_reference_t<Base >, N)...> is

not a reference, iterator_category denotes input_iterator_tag.
—(1.2) Otherwise, let C denote the type iterator_traits<iterator_t<Base >>::iterator_category.

—(1.2.1) If derived_from<C, random_access_iterator_tag> is true, iterator_category denotes ran-
dom_access_iterator_tag.

—(1.2.2) Otherwise, if derived_from<C, bidirectional_iterator_tag> is true, iterator_category
denotes bidirectional_iterator_tag.

—(1.2.3) Otherwise, if derived_from<C, forward_iterator_tag> is true, iterator_category denotes
forward_iterator_tag.

—(1.2.4) Otherwise, iterator_category denotes input_iterator_tag.
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constexpr iterator (Parent & parent, inner-iterator <Const> inner);

2 Effects: Initializes parent_ with addressof(parent) and inner_ with std::move(inner).

constexpr iterator (iterator <!Const> i)
requires Const && convertible_to<inner-iterator <false>, inner-iterator <Const>>;

3 Effects: Initializes parent_ with i.parent_ and inner_ with std::move(i.inner_).

constexpr decltype(auto) operator*() const noexcept(see below );

4 Effects: Equivalent to:
return apply([&](const auto&... iters) -> decltype(auto) {

return invoke(*parent_->fun_, *iters...);
}, inner_.current_);

5 Remarks: Let Is be the pack 0, 1, ..., (N-1). The exception specification is equivalent to:
noexcept(invoke(*parent_->fun_, *std::get<Is>(inner_.current_)...))

constexpr iterator & operator++();

6 Effects: Equivalent to:
++inner_;
return *this;

constexpr iterator operator++(int);

7 Effects: Equivalent to:
auto tmp = *this;
++*this;
return tmp;

constexpr iterator & operator--() requires bidirectional_range<Base >;

8 Effects: Equivalent to:
--inner_;
return *this;

constexpr iterator operator--(int) requires bidirectional_range<Base >;

9 Effects: Equivalent to:
auto tmp = *this;
--*this;
return tmp;

constexpr iterator & operator+=(difference_type x) requires random_access_range<Base >;

10 Effects: Equivalent to:
inner_ += x;
return *this;

constexpr iterator & operator-=(difference_type x) requires random_access_range<Base >;

11 Effects: Equivalent to:
inner_ -= x;
return *this;

constexpr decltype(auto) operator[](difference_type n) const
requires random_access_range<Base >;

12 Effects: Equivalent to:
return apply([&](const auto&... iters) -> decltype(auto) {

return invoke(*parent_->fun_, iters[n]...);
}, inner_.current_);

friend constexpr bool operator==(const iterator & x, const iterator & y);
friend constexpr bool operator<(const iterator & x, const iterator & y)

requires random_access_range<Base >;
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friend constexpr bool operator>(const iterator & x, const iterator & y)
requires random_access_range<Base >;

friend constexpr bool operator<=(const iterator & x, const iterator & y)
requires random_access_range<Base >;

friend constexpr bool operator>=(const iterator & x, const iterator & y)
requires random_access_range<Base >;

friend constexpr auto operator<=>(const iterator & x, const iterator & y)
requires random_access_range<Base > && three_way_comparable<inner-iterator <Const>>;

13 Let op be the operator.
14 Effects: Equivalent to: return x.inner_ op y.inner_;

friend constexpr iterator operator+(const iterator & i, difference_type n)
requires random_access_range<Base >;

friend constexpr iterator operator+(difference_type n, const iterator & i)
requires random_access_range<Base >;

15 Effects: Equivalent to: return iterator (*i.parent_, i.inner_ + n);

friend constexpr iterator operator-(const iterator & i, difference_type n)
requires random_access_range<Base >;

16 Effects: Equivalent to: return iterator (*i.parent_, i.inner_ - n);

friend constexpr difference_type operator-(const iterator & x, const iterator & y)
requires sized_sentinel_for<inner-iterator <Const>, inner-iterator <Const>>;

17 Effects: Equivalent to: return x.inner_ - y.inner_;

26.7.27.4 Class template adjacent_transform_view::sentinel
[range.adjacent.transform.sentinel]

namespace std::ranges {
template<forward_range V, move_constructible F, size_t N>

requires view<V> && (N > 0) && is_object_v<F> &&
regular_invocable<F&, REPEAT (range_reference_t<V>, N)...> &&
can-reference <invoke_result_t<F&, REPEAT (range_reference_t<V>, N)...>>

template<bool Const>
class adjacent_transform_view<V, F, N>::sentinel {

inner-sentinel<Const> inner_; // exposition only
constexpr explicit sentinel(inner-sentinel<Const> inner); // exposition only

public:
sentinel () = default;
constexpr sentinel (sentinel <!Const> i)

requires Const && convertible_to<inner-sentinel <false>, inner-sentinel <Const>>;

template<bool OtherConst>
requires sentinel_for<inner-sentinel <Const>, inner-iterator <OtherConst>>

friend constexpr bool operator==(const iterator <OtherConst>& x, const sentinel & y);

template<bool OtherConst>
requires sized_sentinel_for<inner-sentinel <Const>, inner-iterator <OtherConst>>

friend constexpr range_difference_t<maybe-const <OtherConst, InnerView >>
operator-(const iterator <OtherConst>& x, const sentinel & y);

template<bool OtherConst>
requires sized_sentinel_for<inner-sentinel <Const>, inner-iterator <OtherConst>>

friend constexpr range_difference_t<maybe-const <OtherConst, InnerView >>
operator-(const sentinel & x, const iterator <OtherConst>& y);

};
}

constexpr explicit sentinel (inner-sentinel <Const> inner);

1 Effects: Initializes inner_ with inner.
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constexpr sentinel (sentinel <!Const> i)
requires Const && convertible_to<inner-sentinel <false>, inner-sentinel <Const>>;

2 Effects: Initializes inner_ with std::move(i.inner_).

template<bool OtherConst>
requires sentinel_for<inner-sentinel <Const>, inner-iterator <OtherConst>>

friend constexpr bool operator==(const iterator <OtherConst>& x, const sentinel & y);

3 Effects: Equivalent to return x.inner_ == y.inner_;

template<bool OtherConst>
requires sized_sentinel_for<inner-sentinel <Const>, inner-iterator <OtherConst>>

friend constexpr range_difference_t<maybe-const <OtherConst, InnerView >>
operator-(const iterator <OtherConst>& x, const sentinel & y);

template<bool OtherConst>
requires sized_sentinel_for<inner-sentinel <Const>, inner-iterator <OtherConst>>

friend constexpr range_difference_t<maybe-const <OtherConst, InnerView >>
operator-(const sentinel & x, const iterator <OtherConst>& y);

4 Effects: Equivalent to return x.inner_ - y.inner_;

26.7.28 Chunk view [range.chunk]
26.7.28.1 Overview [range.chunk.overview]

1 chunk_view takes a view and a number N and produces a range of views that are N -sized non-overlapping
successive chunks of the elements of the original view, in order. The last view in the range can have fewer
than N elements.

2 The name views::chunk denotes a range adaptor object (26.7.2). Given subexpressions E and N, the
expression views::chunk(E, N) is expression-equivalent to chunk_view(E, N).
[Example 1 :

vector v = {1, 2, 3, 4, 5};

for (auto r : v | views::chunk(2)) {
cout << '[';
auto sep = "";
for (auto i : r) {

cout << sep << i;
sep = ", ";

}
cout << "] ";

}
// The above prints [1, 2] [3, 4] [5]

— end example ]

26.7.28.2 Class template chunk_view for input ranges [range.chunk.view.input]
namespace std::ranges {

template<class I>
constexpr I div-ceil(I num, I denom) { // exposition only

I r = num / denom;
if (num % denom)

++r;
return r;

}

template<view V>
requires input_range<V>

class chunk_view : public view_interface<chunk_view<V>> {
V base_; // exposition only
range_difference_t<V> n_; // exposition only
range_difference_t<V> remainder_ = 0; // exposition only

non-propagating-cache <iterator_t<V>> current_; // exposition only
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// 26.7.28.3, class chunk_view::outer-iterator
class outer-iterator ; // exposition only

// 26.7.28.5, class chunk_view::inner-iterator
class inner-iterator ; // exposition only

public:
constexpr explicit chunk_view(V base, range_difference_t<V> n);

constexpr V base() const & requires copy_constructible<V> { return base_; }
constexpr V base() && { return std::move(base_); }

constexpr outer-iterator begin();
constexpr default_sentinel_t end() const noexcept;

constexpr auto size() requires sized_range<V>;
constexpr auto size() const requires sized_range<const V>;

};

template<class R>
chunk_view(R&&, range_difference_t<R>) -> chunk_view<views::all_t<R>>;

}

constexpr explicit chunk_view(V base, range_difference_t<V> n);

1 Preconditions: n > 0 is true.
2 Effects: Initializes base_ with std::move(base) and n_ with n.

constexpr outer-iterator begin();

3 Effects: Equivalent to:
current_ = ranges::begin(base_);
remainder_ = n_;
return outer-iterator (*this);

constexpr default_sentinel_t end() const noexcept;

4 Returns: default_sentinel.

constexpr auto size() requires sized_range<V>;
constexpr auto size() const requires sized_range<const V>;

5 Effects: Equivalent to:
return to-unsigned-like (div-ceil(ranges::distance(base_), n_));

26.7.28.3 Class chunk_view::outer-iterator [range.chunk.outer.iter]
namespace std::ranges {

template<view V>
requires input_range<V>

class chunk_view<V>::outer-iterator {
chunk_view* parent_; // exposition only

constexpr explicit outer-iterator (chunk_view& parent); // exposition only

public:
using iterator_concept = input_iterator_tag;
using difference_type = range_difference_t<V>;

// 26.7.28.4, class chunk_view::outer-iterator ::value_type
struct value_type;

outer-iterator (outer-iterator &&) = default;
outer-iterator & operator=(outer-iterator &&) = default;
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constexpr value_type operator*() const;
constexpr outer-iterator & operator++();
constexpr void operator++(int);

friend constexpr bool operator==(const outer-iterator & x, default_sentinel_t);

friend constexpr difference_type operator-(default_sentinel_t y, const outer-iterator & x)
requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>;

friend constexpr difference_type operator-(const outer-iterator & x, default_sentinel_t y)
requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>;

};
}

constexpr explicit outer-iterator (chunk_view& parent);

1 Effects: Initializes parent_ with addressof(parent).

constexpr value_type operator*() const;

2 Preconditions: *this == default_sentinel is false.
3 Returns: value_type(*parent_).

constexpr outer-iterator & operator++();

4 Preconditions: *this == default_sentinel is false.
5 Effects: Equivalent to:

ranges::advance(*parent_->current_, parent_->remainder_, ranges::end(parent_->base_));
parent_->remainder_ = parent_->n_;
return *this;

constexpr void operator++(int);

6 Effects: Equivalent to ++*this.

friend constexpr bool operator==(const outer-iterator & x, default_sentinel_t);

7 Effects: Equivalent to:
return *x.parent_->current_ == ranges::end(x.parent_->base_) && x.parent_->remainder_ != 0;

friend constexpr difference_type operator-(default_sentinel_t y, const outer-iterator & x)
requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>;

8 Effects: Equivalent to:
const auto dist = ranges::end(x.parent_->base_) - *x.parent_->current_;
if (dist < x.parent_->remainder_) {

return dist == 0 ? 0 : 1;
}
return div-ceil(dist - x.parent_->remainder_, x.parent_->n_) + 1;

friend constexpr difference_type operator-(const outer-iterator & x, default_sentinel_t y)
requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>;

9 Effects: Equivalent to: return -(y - x);

26.7.28.4 Class chunk_view::outer-iterator::value_type [range.chunk.outer.value]
namespace std::ranges {

template<view V>
requires input_range<V>

struct chunk_view<V>::outer-iterator ::value_type : view_interface<value_type> {
private:

chunk_view* parent_; // exposition only

constexpr explicit value_type(chunk_view& parent); // exposition only

public:
constexpr inner-iterator begin() const noexcept;
constexpr default_sentinel_t end() const noexcept;

§ 26.7.28.4 1240



© ISO/IEC N4950

constexpr auto size() const
requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>;

};
}

constexpr explicit value_type(chunk_view& parent);

1 Effects: Initializes parent_ with addressof(parent).

constexpr inner-iterator begin() const noexcept;

2 Returns: inner-iterator (*parent_).

constexpr default_sentinel_t end() const noexcept;

3 Returns: default_sentinel.

constexpr auto size() const
requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>;

4 Effects: Equivalent to:
return to-unsigned-like (ranges::min(parent_->remainder_,

ranges::end(parent_->base_) - *parent_->current_));

26.7.28.5 Class chunk_view::inner-iterator [range.chunk.inner.iter]
namespace std::ranges {

template<view V>
requires input_range<V>

class chunk_view<V>::inner-iterator {
chunk_view* parent_; // exposition only

constexpr explicit inner-iterator (chunk_view& parent) noexcept; // exposition only

public:
using iterator_concept = input_iterator_tag;
using difference_type = range_difference_t<V>;
using value_type = range_value_t<V>;

inner-iterator (inner-iterator &&) = default;
inner-iterator & operator=(inner-iterator &&) = default;

constexpr const iterator_t<V>& base() const &;

constexpr range_reference_t<V> operator*() const;
constexpr inner-iterator & operator++();
constexpr void operator++(int);

friend constexpr bool operator==(const inner-iterator & x, default_sentinel_t);

friend constexpr difference_type operator-(default_sentinel_t y, const inner-iterator & x)
requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>;

friend constexpr difference_type operator-(const inner-iterator & x, default_sentinel_t y)
requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>;

friend constexpr range_rvalue_reference_t<V> iter_move(const inner-iterator & i)
noexcept(noexcept(ranges::iter_move(*i.parent_->current_)));

friend constexpr void iter_swap(const inner-iterator & x, const inner-iterator & y)
noexcept(noexcept(ranges::iter_swap(*x.parent_->current_, *y.parent_->current_)))
requires indirectly_swappable<iterator_t<V>>;

};
}

constexpr explicit inner-iterator (chunk_view& parent) noexcept;

1 Effects: Initializes parent_ with addressof(parent).
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constexpr const iterator_t<V>& base() const &;

2 Effects: Equivalent to: return *parent_->current_;

constexpr range_reference_t<V> operator*() const;

3 Preconditions: *this == default_sentinel is false.
4 Effects: Equivalent to: return **parent_->current_;

constexpr inner-iterator & operator++();

5 Preconditions: *this == default_sentinel is false.
6 Effects: Equivalent to:

++*parent_->current_;
if (*parent_->current_ == ranges::end(parent_->base_))

parent_->remainder_ = 0;
else

--parent_->remainder_;
return *this;

constexpr void operator++(int);

7 Effects: Equivalent to ++*this.

friend constexpr bool operator==(const inner-iterator & x, default_sentinel_t);

8 Returns: x.parent_->remainder_ == 0.

friend constexpr difference_type operator-(default_sentinel_t y, const inner-iterator & x)
requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>;

9 Effects: Equivalent to:
return ranges::min(x.parent_->remainder_,

ranges::end(x.parent_->base_) - *x.parent_->current_);

friend constexpr difference_type operator-(const inner-iterator & x, default_sentinel_t y)
requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>;

10 Effects: Equivalent to: return -(y - x);

friend constexpr range_rvalue_reference_t<V> iter_move(const inner-iterator & i)
noexcept(noexcept(ranges::iter_move(*i.parent_->current_)));

11 Effects: Equivalent to: return ranges::iter_move(*i.parent_->current_);

friend constexpr void iter_swap(const inner-iterator & x, const inner-iterator & y)
noexcept(noexcept(ranges::iter_swap(*x.parent_->current_, *y.parent_->current_)))
requires indirectly_swappable<iterator_t<V>>;

12 Effects: Equivalent to: ranges::iter_swap(*x.parent_->current_, *y.parent_->current_);

26.7.28.6 Class template chunk_view for forward ranges [range.chunk.view.fwd]
namespace std::ranges {

template<view V>
requires forward_range<V>

class chunk_view<V> : public view_interface<chunk_view<V>> {
V base_; // exposition only
range_difference_t<V> n_; // exposition only

// 26.7.28.7, class template chunk_view::iterator
template<bool> class iterator ; // exposition only

public:
constexpr explicit chunk_view(V base, range_difference_t<V> n);

constexpr V base() const & requires copy_constructible<V> { return base_; }
constexpr V base() && { return std::move(base_); }
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constexpr auto begin() requires (!simple-view <V>) {
return iterator <false>(this, ranges::begin(base_));

}

constexpr auto begin() const requires forward_range<const V> {
return iterator <true>(this, ranges::begin(base_));

}

constexpr auto end() requires (!simple-view <V>) {
if constexpr (common_range<V> && sized_range<V>) {

auto missing = (n_ - ranges::distance(base_) % n_) % n_;
return iterator <false>(this, ranges::end(base_), missing);

} else if constexpr (common_range<V> && !bidirectional_range<V>) {
return iterator <false>(this, ranges::end(base_));

} else {
return default_sentinel;

}
}

constexpr auto end() const requires forward_range<const V> {
if constexpr (common_range<const V> && sized_range<const V>) {

auto missing = (n_ - ranges::distance(base_) % n_) % n_;
return iterator <true>(this, ranges::end(base_), missing);

} else if constexpr (common_range<const V> && !bidirectional_range<const V>) {
return iterator <true>(this, ranges::end(base_));

} else {
return default_sentinel;

}
}

constexpr auto size() requires sized_range<V>;
constexpr auto size() const requires sized_range<const V>;

};
}

constexpr explicit chunk_view(V base, range_difference_t<V> n);

1 Preconditions: n > 0 is true.
2 Effects: Initializes base_ with std::move(base) and n_ with n.

constexpr auto size() requires sized_range<V>;
constexpr auto size() const requires sized_range<const V>;

3 Effects: Equivalent to:
return to-unsigned-like (div-ceil (ranges::distance(base_), n_));

26.7.28.7 Class template chunk_view::iterator for forward ranges [range.chunk.fwd.iter]
namespace std::ranges {

template<view V>
requires forward_range<V>

template<bool Const>
class chunk_view<V>::iterator {

using Parent = maybe-const <Const, chunk_view>; // exposition only
using Base = maybe-const <Const, V>; // exposition only

iterator_t<Base > current_ = iterator_t<Base >(); // exposition only
sentinel_t<Base > end_ = sentinel_t<Base >(); // exposition only
range_difference_t<Base > n_ = 0; // exposition only
range_difference_t<Base > missing_ = 0; // exposition only

constexpr iterator (Parent * parent, iterator_t<Base > current, // exposition only
range_difference_t<Base > missing = 0);
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public:
using iterator_category = input_iterator_tag;
using iterator_concept = see below ;
using value_type = decltype(views::take(subrange(current_, end_), n_));
using difference_type = range_difference_t<Base >;

iterator () = default;
constexpr iterator (iterator <!Const> i)

requires Const && convertible_to<iterator_t<V>, iterator_t<Base >>
&& convertible_to<sentinel_t<V>, sentinel_t<Base >>;

constexpr iterator_t<Base > base() const;

constexpr value_type operator*() const;
constexpr iterator & operator++();
constexpr iterator operator++(int);

constexpr iterator & operator--() requires bidirectional_range<Base >;
constexpr iterator operator--(int) requires bidirectional_range<Base >;

constexpr iterator & operator+=(difference_type x)
requires random_access_range<Base >;

constexpr iterator & operator-=(difference_type x)
requires random_access_range<Base >;

constexpr value_type operator[](difference_type n) const
requires random_access_range<Base >;

friend constexpr bool operator==(const iterator & x, const iterator & y);
friend constexpr bool operator==(const iterator & x, default_sentinel_t);

friend constexpr bool operator<(const iterator & x, const iterator & y)
requires random_access_range<Base >;

friend constexpr bool operator>(const iterator & x, const iterator & y)
requires random_access_range<Base >;

friend constexpr bool operator<=(const iterator & x, const iterator & y)
requires random_access_range<Base >;

friend constexpr bool operator>=(const iterator & x, const iterator & y)
requires random_access_range<Base >;

friend constexpr auto operator<=>(const iterator & x, const iterator & y)
requires random_access_range<Base > &&

three_way_comparable<iterator_t<Base >>;

friend constexpr iterator operator+(const iterator & i, difference_type n)
requires random_access_range<Base >;

friend constexpr iterator operator+(difference_type n, const iterator & i)
requires random_access_range<Base >;

friend constexpr iterator operator-(const iterator & i, difference_type n)
requires random_access_range<Base >;

friend constexpr difference_type operator-(const iterator & x, const iterator & y)
requires sized_sentinel_for<iterator_t<Base >, iterator_t<Base >>;

friend constexpr difference_type operator-(default_sentinel_t y, const iterator & x)
requires sized_sentinel_for<sentinel_t<Base >, iterator_t<Base >>;

friend constexpr difference_type operator-(const iterator & x, default_sentinel_t y)
requires sized_sentinel_for<sentinel_t<Base >, iterator_t<Base >>;

};
}

1 iterator ::iterator_concept is defined as follows:
—(1.1) If Base models random_access_range, then iterator_concept denotes random_access_iterator_-

tag.
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—(1.2) Otherwise, if Base models bidirectional_range, then iterator_concept denotes bidirectional_-
iterator_tag.

—(1.3) Otherwise, iterator_concept denotes forward_iterator_tag.

constexpr iterator (Parent * parent, iterator_t<Base > current,
range_difference_t<Base > missing = 0);

2 Effects: Initializes current_ with current, end_ with ranges::end(parent->base_), n_ with parent
->n_, and missing_ with missing.

constexpr iterator (iterator <!Const> i)
requires Const && convertible_to<iterator_t<V>, iterator_t<Base >>

&& convertible_to<sentinel_t<V>, sentinel_t<Base >>;

3 Effects: Initializes current_ with std::move(i.current_), end_ with std::move(i.end_), n_ with
i.n_, and missing_ with i.missing_.

constexpr iterator_t<Base > base() const;

4 Returns: current_.

constexpr value_type operator*() const;

5 Preconditions: current_ != end_ is true.
6 Returns: views::take(subrange(current_, end_), n_).

constexpr iterator & operator++();

7 Preconditions: current_ != end_ is true.
8 Effects: Equivalent to:

missing_ = ranges::advance(current_, n_, end_);
return *this;

constexpr iterator operator++(int);

9 Effects: Equivalent to:
auto tmp = *this;
++*this;
return tmp;

constexpr iterator & operator--() requires bidirectional_range<Base >;

10 Effects: Equivalent to:
ranges::advance(current_, missing_ - n_);
missing_ = 0;
return *this;

constexpr iterator operator--(int) requires bidirectional_range<Base >;

11 Effects: Equivalent to:
auto tmp = *this;
--*this;
return tmp;

constexpr iterator & operator+=(difference_type x)
requires random_access_range<Base >;

12 Preconditions: If x is positive, ranges::distance(current_, end_) > n_ * (x - 1) is true.
[Note 1 : If x is negative, the Effects paragraph implies a precondition. — end note ]

13 Effects: Equivalent to:
if (x > 0) {

ranges::advance(current_, n_ * (x - 1));
missing_ = ranges::advance(current_, n_, end_);

} else if (x < 0) {
ranges::advance(current_, n_ * x + missing_);
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missing_ = 0;
}
return *this;

constexpr iterator & operator-=(difference_type x)
requires random_access_range<Base >;

14 Effects: Equivalent to: return *this += -x;

constexpr value_type operator[](difference_type n) const
requires random_access_range<Base >;

15 Returns: *(*this + n).

friend constexpr bool operator==(const iterator & x, const iterator & y);

16 Returns: x.current_ == y.current_.

friend constexpr bool operator==(const iterator & x, default_sentinel_t);

17 Returns: x.current_ == x.end_.

friend constexpr bool operator<(const iterator & x, const iterator & y)
requires random_access_range<Base >;

18 Returns: x.current_ < y.current_.

friend constexpr bool operator>(const iterator & x, const iterator & y)
requires random_access_range<Base >;

19 Effects: Equivalent to: return y < x;

friend constexpr bool operator<=(const iterator & x, const iterator & y)
requires random_access_range<Base >;

20 Effects: Equivalent to: return !(y < x);

friend constexpr bool operator>=(const iterator & x, const iterator & y)
requires random_access_range<Base >;

21 Effects: Equivalent to: return !(x < y);

friend constexpr auto operator<=>(const iterator & x, const iterator & y)
requires random_access_range<Base > &&

three_way_comparable<iterator_t<Base >>;

22 Returns: x.current_ <=> y.current_.

friend constexpr iterator operator+(const iterator & i, difference_type n)
requires random_access_range<Base >;

friend constexpr iterator operator+(difference_type n, const iterator & i)
requires random_access_range<Base >;

23 Effects: Equivalent to:
auto r = i;
r += n;
return r;

friend constexpr iterator operator-(const iterator & i, difference_type n)
requires random_access_range<Base >;

24 Effects: Equivalent to:
auto r = i;
r -= n;
return r;

friend constexpr difference_type operator-(const iterator & x, const iterator & y)
requires sized_sentinel_for<iterator_t<Base >, iterator_t<Base >>;

25 Returns: (x.current_ - y.current_ + x.missing_ - y.missing_) / x.n_.
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friend constexpr difference_type operator-(default_sentinel_t y, const iterator & x)
requires sized_sentinel_for<sentinel_t<Base >, iterator_t<Base >>;

26 Returns: div-ceil (x.end_ - x.current_, x.n_).

friend constexpr difference_type operator-(const iterator & x, default_sentinel_t y)
requires sized_sentinel_for<sentinel_t<Base >, iterator_t<Base >>;

27 Effects: Equivalent to: return -(y - x);

26.7.29 Slide view [range.slide]
26.7.29.1 Overview [range.slide.overview]

1 slide_view takes a view and a number N and produces a view whose M th element is a view over the M th

through (M + N − 1)th elements of the original view. If the original view has fewer than N elements, the
resulting view is empty.

2 The name views::slide denotes a range adaptor object (26.7.2). Given subexpressions E and N, the
expression views::slide(E, N) is expression-equivalent to slide_view(E, N).
[Example 1 :

vector v = {1, 2, 3, 4};

for (auto i : v | views::slide(2)) {
cout << '[' << i[0] << ", " << i[1] << "] "; // prints [1, 2] [2, 3] [3, 4]

}

— end example ]

26.7.29.2 Class template slide_view [range.slide.view]
namespace std::ranges {

template<class V>
concept slide-caches-nothing = random_access_range<V> && sized_range<V>; // exposition only

template<class V>
concept slide-caches-last = // exposition only

!slide-caches-nothing <V> && bidirectional_range<V> && common_range<V>;

template<class V>
concept slide-caches-first = // exposition only

!slide-caches-nothing <V> && !slide-caches-last <V>;

template<forward_range V>
requires view<V>

class slide_view : public view_interface<slide_view<V>> {
V base_; // exposition only
range_difference_t<V> n_; // exposition only

// 26.7.29.3, class template slide_view::iterator
template<bool> class iterator ; // exposition only

// 26.7.29.4, class slide_view::sentinel
class sentinel ; // exposition only

public:
constexpr explicit slide_view(V base, range_difference_t<V> n);

constexpr V base() const & requires copy_constructible<V> { return base_; }
constexpr V base() && { return std::move(base_); }

constexpr auto begin()
requires (!(simple-view <V> && slide-caches-nothing <const V>));

constexpr auto begin() const requires slide-caches-nothing <const V>;

constexpr auto end()
requires (!(simple-view <V> && slide-caches-nothing <const V>));
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constexpr auto end() const requires slide-caches-nothing <const V>;

constexpr auto size() requires sized_range<V>;
constexpr auto size() const requires sized_range<const V>;

};

template<class R>
slide_view(R&&, range_difference_t<R>) -> slide_view<views::all_t<R>>;

}

constexpr explicit slide_view(V base, range_difference_t<V> n);

1 Preconditions: n > 0 is true.
2 Effects: Initializes base_ with std::move(base) and n_ with n.

constexpr auto begin()
requires (!(simple-view <V> && slide-caches-nothing <const V>));

3 Returns:
—(3.1) If V models slide-caches-first ,

iterator <false>(ranges::begin(base_),
ranges::next(ranges::begin(base_), n_ - 1, ranges::end(base_)), n_)

—(3.2) Otherwise, iterator <false>(ranges::begin(base_), n_).
4 Remarks: In order to provide the amortized constant-time complexity required by the range concept,

this function caches the result within the slide_view for use on subsequent calls when V models
slide-caches-first .

constexpr auto begin() const requires slide-caches-nothing <const V>;

5 Returns: iterator <true>(ranges::begin(base_), n_).

constexpr auto end()
requires (!(simple-view <V> && slide-caches-nothing <const V>));

6 Returns:
—(6.1) If V models slide-caches-nothing ,

iterator <false>(ranges::begin(base_) + range_difference_t<V>(size()), n_)

—(6.2) Otherwise, if V models slide-caches-last ,
iterator <false>(ranges::prev(ranges::end(base_), n_ - 1, ranges::begin(base_)), n_)

—(6.3) Otherwise, if V models common_range,
iterator <false>(ranges::end(base_), ranges::end(base_), n_)

—(6.4) Otherwise, sentinel (ranges::end(base_)).
7 Remarks: In order to provide the amortized constant-time complexity required by the range concept,

this function caches the result within the slide_view for use on subsequent calls when V models
slide-caches-last .

constexpr auto end() const requires slide-caches-nothing <const V>;

8 Returns: begin() + range_difference_t<const V>(size()).

constexpr auto size() requires sized_range<V>;
constexpr auto size() const requires sized_range<const V>;

9 Effects: Equivalent to:
auto sz = ranges::distance(base_) - n_ + 1;
if (sz < 0) sz = 0;
return to-unsigned-like (sz);

26.7.29.3 Class template slide_view::iterator [range.slide.iterator]
namespace std::ranges {

template<forward_range V>
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requires view<V>
template<bool Const>
class slide_view<V>::iterator {

using Base = maybe-const <Const, V>; // exposition only
iterator_t<Base > current_ = iterator_t<Base >(); // exposition only
iterator_t<Base > last_ele_ = iterator_t<Base >(); // exposition only,

// present only if Base models slide-caches-first
range_difference_t<Base > n_ = 0; // exposition only

constexpr iterator (iterator_t<Base > current, range_difference_t<Base > n) // exposition only
requires (!slide-caches-first <Base >);

constexpr iterator (iterator_t<Base > current, iterator_t<Base > last_ele, // exposition only
range_difference_t<Base > n)

requires slide-caches-first <Base >;

public:
using iterator_category = input_iterator_tag;
using iterator_concept = see below ;
using value_type = decltype(views::counted(current_, n_));
using difference_type = range_difference_t<Base >;

iterator () = default;
constexpr iterator (iterator <!Const> i)

requires Const && convertible_to<iterator_t<V>, iterator_t<Base >>;

constexpr auto operator*() const;
constexpr iterator & operator++();
constexpr iterator operator++(int);

constexpr iterator & operator--() requires bidirectional_range<Base >;
constexpr iterator operator--(int) requires bidirectional_range<Base >;

constexpr iterator & operator+=(difference_type x)
requires random_access_range<Base >;

constexpr iterator & operator-=(difference_type x)
requires random_access_range<Base >;

constexpr auto operator[](difference_type n) const
requires random_access_range<Base >;

friend constexpr bool operator==(const iterator & x, const iterator & y);

friend constexpr bool operator<(const iterator & x, const iterator & y)
requires random_access_range<Base >;

friend constexpr bool operator>(const iterator & x, const iterator & y)
requires random_access_range<Base >;

friend constexpr bool operator<=(const iterator & x, const iterator & y)
requires random_access_range<Base >;

friend constexpr bool operator>=(const iterator & x, const iterator & y)
requires random_access_range<Base >;

friend constexpr auto operator<=>(const iterator & x, const iterator & y)
requires random_access_range<Base > &&

three_way_comparable<iterator_t<Base >>;

friend constexpr iterator operator+(const iterator & i, difference_type n)
requires random_access_range<Base >;

friend constexpr iterator operator+(difference_type n, const iterator & i)
requires random_access_range<Base >;

friend constexpr iterator operator-(const iterator & i, difference_type n)
requires random_access_range<Base >;

friend constexpr difference_type operator-(const iterator & x, const iterator & y)
requires sized_sentinel_for<iterator_t<Base >, iterator_t<Base >>;
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};
}

1 iterator ::iterator_concept is defined as follows:
—(1.1) If Base models random_access_range, then iterator_concept denotes random_access_iterator_-

tag.
—(1.2) Otherwise, if Base models bidirectional_range, then iterator_concept denotes bidirectional_-

iterator_tag.
—(1.3) Otherwise, iterator_concept denotes forward_iterator_tag.

2 If the invocation of any non-const member function of iterator exits via an exception, the iterator
acquires a singular value.

constexpr iterator (iterator_t<Base > current, range_difference_t<Base > n)
requires (!slide-caches-first <Base >);

3 Effects: Initializes current_ with current and n_ with n.

constexpr iterator (iterator_t<Base > current, iterator_t<Base > last_ele,
range_difference_t<Base > n)

requires slide-caches-first <Base >;

4 Effects: Initializes current_ with current, last_ele_ with last_ele, and n_ with n.

constexpr iterator (iterator <!Const> i)
requires Const && convertible_to<iterator_t<V>, iterator_t<Base >>;

5 Effects: Initializes current_ with std::move(i.current_) and n_ with i.n_.
[Note 1 : iterator <true> can only be formed when Base models slide-caches-nothing , in which case
last_ele_ is not present. — end note ]

constexpr auto operator*() const;

6 Returns: views::counted(current_, n_).

constexpr iterator & operator++();

7 Preconditions: current_ and last_ele_ (if present) are incrementable.
8 Postconditions: current_ and last_ele_ (if present) are each equal to ranges::next(i), where i is

the value of that data member before the call.
9 Returns: *this.

constexpr iterator operator++(int);

10 Effects: Equivalent to:
auto tmp = *this;
++*this;
return tmp;

constexpr iterator & operator--() requires bidirectional_range<Base >;

11 Preconditions: current_ and last_ele_ (if present) are decrementable.
12 Postconditions: current_ and last_ele_ (if present) are each equal to ranges::prev(i), where i is

the value of that data member before the call.
13 Returns: *this.

constexpr iterator operator--(int) requires bidirectional_range<Base >;

14 Effects: Equivalent to:
auto tmp = *this;
--*this;
return tmp;
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constexpr iterator & operator+=(difference_type x)
requires random_access_range<Base >;

15 Preconditions: current_ + x and last_ele_ + x (if last_ele_ is present) have well-defined behavior.
16 Postconditions: current_ and last_ele_ (if present) are each equal to i + x, where i is the value of

that data member before the call.
17 Returns: *this.

constexpr iterator & operator-=(difference_type x)
requires random_access_range<Base >;

18 Preconditions: current_ - x and last_ele_ - x (if last_ele_ is present) have well-defined behavior.
19 Postconditions: current_ and last_ele_ (if present) are each equal to i - x, where i is the value of

that data member before the call.
20 Returns: *this.

constexpr auto operator[](difference_type n) const
requires random_access_range<Base >;

21 Effects: Equivalent to: return views::counted(current_ + n, n_);

friend constexpr bool operator==(const iterator & x, const iterator & y);

22 Returns: If last_ele_ is present, x.last_ele_ == y.last_ele_; otherwise, x.current_ == y.cur-
rent_.

friend constexpr bool operator<(const iterator & x, const iterator & y)
requires random_access_range<Base >;

23 Returns: x.current_ < y.current_.

friend constexpr bool operator>(const iterator & x, const iterator & y)
requires random_access_range<Base >;

24 Effects: Equivalent to: return y < x;

friend constexpr bool operator<=(const iterator & x, const iterator & y)
requires random_access_range<Base >;

25 Effects: Equivalent to: return !(y < x);

friend constexpr bool operator>=(const iterator & x, const iterator & y)
requires random_access_range<Base >;

26 Effects: Equivalent to: return !(x < y);

friend constexpr auto operator<=>(const iterator & x, const iterator & y)
requires random_access_range<Base > &&

three_way_comparable<iterator_t<Base >>;

27 Returns: x.current_ <=> y.current_.

friend constexpr iterator operator+(const iterator & i, difference_type n)
requires random_access_range<Base >;

friend constexpr iterator operator+(difference_type n, const iterator & i)
requires random_access_range<Base >;

28 Effects: Equivalent to:
auto r = i;
r += n;
return r;

friend constexpr iterator operator-(const iterator & i, difference_type n)
requires random_access_range<Base >;

29 Effects: Equivalent to:
auto r = i;
r -= n;
return r;
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friend constexpr difference_type operator-(const iterator & x, const iterator & y)
requires sized_sentinel_for<iterator_t<Base >, iterator_t<Base >>;

30 Returns: If last_ele_ is present, x.last_ele_ - y.last_ele_; otherwise, x.current_ - y.cur-
rent_.

26.7.29.4 Class slide_view::sentinel [range.slide.sentinel]
namespace std::ranges {

template<forward_range V>
requires view<V>

class slide_view<V>::sentinel {
sentinel_t<V> end_ = sentinel_t<V>(); // exposition only
constexpr explicit sentinel (sentinel_t<V> end); // exposition only

public:
sentinel () = default;

friend constexpr bool operator==(const iterator <false>& x, const sentinel & y);

friend constexpr range_difference_t<V>
operator-(const iterator <false>& x, const sentinel & y)

requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>;

friend constexpr range_difference_t<V>
operator-(const sentinel & y, const iterator <false>& x)

requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>;
};

}
1 [Note 1 : sentinel is used only when slide-caches-first <V> is true. — end note ]

constexpr explicit sentinel (sentinel_t<V> end);

2 Effects: Initializes end_ with end.

friend constexpr bool operator==(const iterator <false>& x, const sentinel & y);

3 Returns: x.last_ele_ == y.end_.

friend constexpr range_difference_t<V>
operator-(const iterator <false>& x, const sentinel & y)

requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>;

4 Returns: x.last_ele_ - y.end_.

friend constexpr range_difference_t<V>
operator-(const sentinel & y, const iterator <false>& x)

requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>;

5 Returns: y.end_ - x.last_ele_.

26.7.30 Chunk by view [range.chunk.by]
26.7.30.1 Overview [range.chunk.by.overview]

1 chunk_by_view takes a view and a predicate, and splits the view into subranges between each pair of
adjacent elements for which the predicate returns false.

2 The name views::chunk_by denotes a range adaptor object (26.7.2). Given subexpressions E and F, the
expression views::chunk_by(E, F) is expression-equivalent to chunk_by_view(E, F).
[Example 1 :

vector v = {1, 2, 2, 3, 0, 4, 5, 2};

for (auto r : v | views::chunk_by(ranges::less_equal{})) {
cout << '[';
auto sep = "";
for (auto i : r) {

cout << sep << i;
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sep = ", ";
}
cout << "] ";

}
// The above prints [1, 2, 2, 3] [0, 4, 5] [2]

— end example ]

26.7.30.2 Class template chunk_by_view [range.chunk.by.view]
namespace std::ranges {

template<forward_range V, indirect_binary_predicate<iterator_t<V>, iterator_t<V>> Pred>
requires view<V> && is_object_v<Pred>

class chunk_by_view : public view_interface<chunk_by_view<V, Pred>> {
V base_ = V(); // exposition only
movable-box<Pred> pred_; // exposition only

// 26.7.30.3, class chunk_by_view::iterator
class iterator; // exposition only

public:
chunk_by_view() requires default_initializable<V> && default_initializable<Pred> = default;
constexpr explicit chunk_by_view(V base, Pred pred);

constexpr V base() const & requires copy_constructible<V> { return base_; }
constexpr V base() && { return std::move(base_); }

constexpr const Pred& pred() const;

constexpr iterator begin();
constexpr auto end();

constexpr iterator_t<V> find-next(iterator_t<V>); // exposition only
constexpr iterator_t<V> find-prev(iterator_t<V>) // exposition only

requires bidirectional_range<V>;
};

template<class R, class Pred>
chunk_by_view(R&&, Pred) -> chunk_by_view<views::all_t<R>, Pred>;

}

constexpr explicit chunk_by_view(V base, Pred pred);

1 Effects: Initializes base_ with std::move(base) and pred_ with std::move(pred).

constexpr const Pred& pred() const;

2 Effects: Equivalent to: return *pred_;

constexpr iterator begin();

3 Preconditions: pred_.has_value() is true.
4 Returns: iterator (*this, ranges::begin(base_), find-next (ranges::begin(base_))).
5 Remarks: In order to provide the amortized constant-time complexity required by the range concept,

this function caches the result within the chunk_by_view for use on subsequent calls.

constexpr auto end();

6 Effects: Equivalent to:
if constexpr (common_range<V>) {

return iterator (*this, ranges::end(base_), ranges::end(base_));
} else {

return default_sentinel;
}
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constexpr iterator_t<V> find-next (iterator_t<V> current);

7 Preconditions: pred_.has_value() is true.
8 Returns:

ranges::next(ranges::adjacent_find(current, ranges::end(base_), not_fn(ref(*pred_))),
1, ranges::end(base_))

constexpr iterator_t<V> find-prev (iterator_t<V> current) requires bidirectional_range<V>;

9 Preconditions:
—(9.1) current is not equal to ranges::begin(base_).
—(9.2) pred_.has_value() is true.

10 Returns: An iterator i in the range [ranges::begin(base_), current) such that:
—(10.1) ranges::adjacent_find(i, current, not_fn(ref(*pred_))) is equal to current; and
—(10.2) if i is not equal to ranges::begin(base_), then bool(invoke(*pred_, *ranges::prev(i),

*i)) is false.

26.7.30.3 Class chunk_by_view::iterator [range.chunk.by.iter]
namespace std::ranges {

template<forward_range V, indirect_binary_predicate<iterator_t<V>, iterator_t<V>> Pred>
requires view<V> && is_object_v<Pred>

class chunk_by_view<V, Pred>::iterator {
chunk_by_view* parent_ = nullptr; // exposition only
iterator_t<V> current_ = iterator_t<V>(); // exposition only
iterator_t<V> next_ = iterator_t<V>(); // exposition only

constexpr iterator (chunk_by_view& parent, iterator_t<V> current, // exposition only
iterator_t<V> next);

public:
using value_type = subrange<iterator_t<V>>;
using difference_type = range_difference_t<V>;
using iterator_category = input_iterator_tag;
using iterator_concept = see below ;

iterator () = default;

constexpr value_type operator*() const;
constexpr iterator & operator++();
constexpr iterator operator++(int);

constexpr iterator & operator--() requires bidirectional_range<V>;
constexpr iterator operator--(int) requires bidirectional_range<V>;

friend constexpr bool operator==(const iterator & x, const iterator & y);
friend constexpr bool operator==(const iterator & x, default_sentinel_t);

};
}

1 iterator ::iterator_concept is defined as follows:
—(1.1) If V models bidirectional_range, then iterator_concept denotes bidirectional_iterator_tag.
—(1.2) Otherwise, iterator_concept denotes forward_iterator_tag.

constexpr iterator (chunk_by_view& parent, iterator_t<V> current, iterator_t<V> next);

2 Effects: Initializes parent_ with addressof(parent), current_ with current, and next_ with next.

constexpr value_type operator*() const;

3 Preconditions: current_ is not equal to next_.
4 Returns: subrange(current_, next_).
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constexpr iterator & operator++();

5 Preconditions: current_ is not equal to next_.
6 Effects: Equivalent to:

current_ = next_;
next_ = parent_->find-next (current_);
return *this;

constexpr iterator operator++(int);

7 Effects: Equivalent to:
auto tmp = *this;
++*this;
return tmp;

constexpr iterator & operator--() requires bidirectional_range<V>;

8 Effects: Equivalent to:
next_ = current_;
current_ = parent_->find-prev (next_);
return *this;

constexpr iterator operator--(int) requires bidirectional_range<V>;

9 Effects: Equivalent to:
auto tmp = *this;
--*this;
return tmp;

friend constexpr bool operator==(const iterator & x, const iterator & y);

10 Returns: x.current_ == y.current_.

friend constexpr bool operator==(const iterator & x, default_sentinel_t);

11 Returns: x.current_ == x.next_.

26.7.31 Stride view [range.stride]
26.7.31.1 Overview [range.stride.overview]

1 stride_view presents a view of an underlying sequence, advancing over n elements at a time, as opposed to
the usual single-step succession.

2 The name views::stride denotes a range adaptor object (26.7.2). Given subexpressions E and N, the
expression views::stride(E, N) is expression-equivalent to stride_view(E, N).

3 [Example 1 :
auto input = views::iota(0, 12) | views::stride(3);
ranges::copy(input, ostream_iterator<int>(cout, " ")); // prints 0 3 6 9
ranges::copy(input | views::reverse, ostream_iterator<int>(cout, " ")); // prints 9 6 3 0

— end example ]

26.7.31.2 Class template stride_view [range.stride.view]
namespace std::ranges {

template<input_range V>
requires view<V>

class stride_view : public view_interface<stride_view<V>> {
V base_; // exposition only
range_difference_t<V> stride_; // exposition only
// 26.7.31.3, class template stride_view::iterator
template<bool> class iterator ; // exposition only

public:
constexpr explicit stride_view(V base, range_difference_t<V> stride);

constexpr V base() const & requires copy_constructible<V> { return base_; }
constexpr V base() && { return std::move(base_); }
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constexpr range_difference_t<V> stride() const noexcept;

constexpr auto begin() requires (!simple-view <V>) {
return iterator <false>(this, ranges::begin(base_));

}

constexpr auto begin() const requires range<const V> {
return iterator <true>(this, ranges::begin(base_));

}

constexpr auto end() requires (!simple-view <V>) {
if constexpr (common_range<V> && sized_range<V> && forward_range<V>) {

auto missing = (stride_ - ranges::distance(base_) % stride_) % stride_;
return iterator <false>(this, ranges::end(base_), missing);

} else if constexpr (common_range<V> && !bidirectional_range<V>) {
return iterator <false>(this, ranges::end(base_));

} else {
return default_sentinel;

}
}

constexpr auto end() const requires range<const V> {
if constexpr (common_range<const V> && sized_range<const V> && forward_range<const V>) {

auto missing = (stride_ - ranges::distance(base_) % stride_) % stride_;
return iterator <true>(this, ranges::end(base_), missing);

} else if constexpr (common_range<const V> && !bidirectional_range<const V>) {
return iterator <true>(this, ranges::end(base_));

} else {
return default_sentinel;

}
}

constexpr auto size() requires sized_range<V>;
constexpr auto size() const requires sized_range<const V>;

};

template<class R>
stride_view(R&&, range_difference_t<R>) -> stride_view<views::all_t<R>>;

}

constexpr stride_view(V base, range_difference_t<V> stride);

1 Preconditions: stride > 0 is true.
2 Effects: Initializes base_ with std::move(base) and stride_ with stride.

constexpr range_difference_t<V> stride() const noexcept;

3 Returns: stride_.

constexpr auto size() requires sized_range<V>;
constexpr auto size() const requires sized_range<const V>;

4 Effects: Equivalent to:
return to-unsigned-like (div-ceil (ranges::distance(base_), stride_));

26.7.31.3 Class template stride_view::iterator [range.stride.iterator]
namespace std::ranges {

template<input_range V>
requires view<V>

template<bool Const>
class stride_view<V>::iterator {

using Parent = maybe-const <Const, stride_view>; // exposition only
using Base = maybe-const <Const, V>; // exposition only
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iterator_t<Base > current_ = iterator_t<Base >(); // exposition only
sentinel_t<Base > end_ = sentinel_t<Base >(); // exposition only
range_difference_t<Base > stride_ = 0; // exposition only
range_difference_t<Base > missing_ = 0; // exposition only

constexpr iterator (Parent * parent, iterator_t<Base > current, // exposition only
range_difference_t<Base > missing = 0);

public:
using difference_type = range_difference_t<Base >;
using value_type = range_value_t<Base >;
using iterator_concept = see below ;
using iterator_category = see below ; // not always present

iterator () requires default_initializable<iterator_t<Base >> = default;

constexpr iterator (iterator <!Const> other)
requires Const && convertible_to<iterator_t<V>, iterator_t<Base >>

&& convertible_to<sentinel_t<V>, sentinel_t<Base >>;

constexpr iterator_t<Base > base() &&;
constexpr const iterator_t<Base >& base() const & noexcept;

constexpr decltype(auto) operator*() const { return *current_; }

constexpr iterator & operator++();
constexpr void operator++(int);
constexpr iterator operator++(int) requires forward_range<Base >;

constexpr iterator & operator--() requires bidirectional_range<Base >;
constexpr iterator operator--(int) requires bidirectional_range<Base >;

constexpr iterator & operator+=(difference_type n) requires random_access_range<Base >;
constexpr iterator & operator-=(difference_type n) requires random_access_range<Base >;

constexpr decltype(auto) operator[](difference_type n) const
requires random_access_range<Base >

{ return *(*this + n); }

friend constexpr bool operator==(const iterator & x, default_sentinel_t);

friend constexpr bool operator==(const iterator & x, const iterator & y)
requires equality_comparable<iterator_t<Base >>;

friend constexpr bool operator<(const iterator & x, const iterator & y)
requires random_access_range<Base >;

friend constexpr bool operator>(const iterator & x, const iterator & y)
requires random_access_range<Base >;

friend constexpr bool operator<=(const iterator & x, const iterator & y)
requires random_access_range<Base >;

friend constexpr bool operator>=(const iterator & x, const iterator & y)
requires random_access_range<Base >;

friend constexpr auto operator<=>(const iterator & x, const iterator & y)
requires random_access_range<Base > && three_way_comparable<iterator_t<Base >>;

friend constexpr iterator operator+(const iterator & x, difference_type n)
requires random_access_range<Base >;

friend constexpr iterator operator+(difference_type n, const iterator & x)
requires random_access_range<Base >;

friend constexpr iterator operator-(const iterator & x, difference_type n)
requires random_access_range<Base >;

§ 26.7.31.3 1257



© ISO/IEC N4950

friend constexpr difference_type operator-(const iterator & x, const iterator & y)
requires sized_sentinel_for<iterator_t<Base >, iterator_t<Base >>;

friend constexpr difference_type operator-(default_sentinel_t y, const iterator & x)
requires sized_sentinel_for<sentinel_t<Base >, iterator_t<Base >>;

friend constexpr difference_type operator-(const iterator & x, default_sentinel_t y)
requires sized_sentinel_for<sentinel_t<Base >, iterator_t<Base >>;

friend constexpr range_rvalue_reference_t<Base > iter_move(const iterator & i)
noexcept(noexcept(ranges::iter_move(i.current_)));

friend constexpr void iter_swap(const iterator & x, const iterator & y)
noexcept(noexcept(ranges::iter_swap(x.current_, y.current_)))
requires indirectly_swappable<iterator_t<Base >>;

};
}

1 iterator ::iterator_concept is defined as follows:
—(1.1) If Base models random_access_range, then iterator_concept denotes random_access_iterator_-

tag.
—(1.2) Otherwise, if Base models bidirectional_range, then iterator_concept denotes bidirectional_-

iterator_tag.
—(1.3) Otherwise, if Base models forward_range, then iterator_concept denotes forward_iterator_tag.
—(1.4) Otherwise, iterator_concept denotes input_iterator_tag.

2 The member typedef-name iterator_category is defined if and only if Base models forward_range. In
that case, iterator ::iterator_category is defined as follows:

—(2.1) Let C denote the type iterator_traits<iterator_t<Base >>::iterator_category.
—(2.2) If C models derived_from<random_access_iterator_tag>, then iterator_category denotes ran-

dom_access_iterator_tag.
—(2.3) Otherwise, iterator_category denotes C.

constexpr iterator (Parent * parent, iterator_t<Base > current,
range_difference_t<Base > missing = 0);

3 Effects: Initializes current_ with std::move(current), end_ with ranges::end(parent->base_),
stride_ with parent->stride_, and missing_ with missing.

constexpr iterator (iterator <!Const> i)
requires Const && convertible_to<iterator_t<V>, iterator_t<Base >>

&& convertible_to<sentinel_t<V>, sentinel_t<Base >>;

4 Effects: Initializes current_ with std::move(i.current_), end_ with std::move(i.end_), stride_-
with i.stride_, and missing_ with i.missing_.

constexpr iterator_t<Base > base() &&;

5 Returns: std::move(current_).

constexpr const iterator_t<Base >& base() const & noexcept;

6 Returns: current_.

constexpr iterator & operator++();

7 Preconditions: current_ != end_ is true.
8 Effects: Equivalent to:

missing_ = ranges::advance(current_, stride_, end_);
return *this;

constexpr void operator++(int);

9 Effects: Equivalent to: ++*this;
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constexpr iterator operator++(int) requires forward_range<Base >;

10 Effects: Equivalent to:
auto tmp = *this;
++*this;
return tmp;

constexpr iterator & operator--() requires bidirectional_range<Base >;

11 Effects: Equivalent to:
ranges::advance(current_, missing_ - stride_);
missing_ = 0;
return *this;

constexpr iterator operator--(int) requires bidirectional_range<Base >;

12 Effects: Equivalent to:
auto tmp = *this;
--*this;
return tmp;

constexpr iterator & operator+=(difference_type n) requires random_access_range<Base >;

13 Preconditions: If n is positive, ranges::distance(current_, end_) > stride_ * (n - 1) is true.
[Note 1 : If n is negative, the Effects paragraph implies a precondition. — end note ]

14 Effects: Equivalent to:
if (n > 0) {

ranges::advance(current_, stride_ * (n - 1));
missing_ = ranges::advance(current_, stride_, end_);

} else if (n < 0) {
ranges::advance(current_, stride_ * n + missing_);
missing_ = 0;

}
return *this;

constexpr iterator & operator-=(difference_type x)
requires random_access_range<Base >;

15 Effects: Equivalent to: return *this += -x;

friend constexpr bool operator==(const iterator & x, default_sentinel_t);

16 Returns: x.current_ == x.end_.

friend constexpr bool operator==(const iterator & x, const iterator & y)
requires equality_comparable<iterator_t<Base >>;

17 Returns: x.current_ == y.current_.

friend constexpr bool operator<(const iterator & x, const iterator & y)
requires random_access_range<Base >;

18 Returns: x.current_ < y.current_.

friend constexpr bool operator>(const iterator & x, const iterator & y)
requires random_access_range<Base >;

19 Effects: Equivalent to: return y < x;

friend constexpr bool operator<=(const iterator & x, const iterator & y)
requires random_access_range<Base >;

20 Effects: Equivalent to: return !(y < x);

friend constexpr bool operator>=(const iterator & x, const iterator & y)
requires random_access_range<Base >;

21 Effects: Equivalent to: return !(x < y);
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friend constexpr auto operator<=>(const iterator & x, const iterator & y)
requires random_access_range<Base > && three_way_comparable<iterator_t<Base >>;

22 Returns: x.current_ <=> y.current_.

friend constexpr iterator operator+(const iterator & i, difference_type n)
requires random_access_range<Base >;

friend constexpr iterator operator+(difference_type n, const iterator & i)
requires random_access_range<Base >;

23 Effects: Equivalent to:
auto r = i;
r += n;
return r;

friend constexpr iterator operator-(const iterator & i, difference_type n)
requires random_access_range<Base >;

24 Effects: Equivalent to:
auto r = i;
r -= n;
return r;

friend constexpr difference_type operator-(const iterator & x, const iterator & y)
requires sized_sentinel_for<iterator_t<Base >, iterator_t<Base >>;

25 Returns: Let N be (x.current_ - y.current_).
—(25.1) If Base models forward_range, (N + x.missing_ - y.missing_) / x.stride_.
—(25.2) Otherwise, if N is negative, -div-ceil (-N, x.stride_).
—(25.3) Otherwise, div-ceil (N, x.stride_).

friend constexpr difference_type operator-(default_sentinel_t y, const iterator & x)
requires sized_sentinel_for<sentinel_t<Base >, iterator_t<Base >>;

26 Returns: div-ceil (x.end_ - x.current_, x.stride_).

friend constexpr difference_type operator-(const iterator & x, default_sentinel_t y)
requires sized_sentinel_for<sentinel_t<Base >, iterator_t<Base >>;

27 Effects: Equivalent to: return -(y - x);

friend constexpr range_rvalue_reference_t<Base > iter_move(const iterator & i)
noexcept(noexcept(ranges::iter_move(i.current_)));

28 Effects: Equivalent to: return ranges::iter_move(i.current_);

friend constexpr void iter_swap(const iterator & x, const iterator & y)
noexcept(noexcept(ranges::iter_swap(x.current_, y.current_)))
requires indirectly_swappable<iterator_t<Base >>;

29 Effects: Equivalent to: ranges::iter_swap(x.current_, y.current_);

26.7.32 Cartesian product view [range.cartesian]
26.7.32.1 Overview [range.cartesian.overview]

1 cartesian_product_view takes any non-zero number of ranges n and produces a view of tuples calculated
by the n-ary cartesian product of the provided ranges.

2 The name views::cartesian_product denotes a customization point object (16.3.3.3.5). Given a pack of
subexpressions Es, the expression views::cartesian_product(Es...) is expression-equivalent to

—(2.1) views::single(tuple()) if Es is an empty pack,
—(2.2) otherwise, cartesian_product_view<views::all_t<decltype((Es))>...>(Es...).

3 [Example 1 :
vector<int> v { 0, 1, 2 };
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for (auto&& [a, b, c] : views::cartesian_product(v, v, v)) {
cout << a << ' ' << b << ' ' << c << '\n';

}
// The above prints
// 0 0 0
// 0 0 1
// 0 0 2
// 0 1 0
// 0 1 1
// ...

— end example ]

26.7.32.2 Class template cartesian_product_view [range.cartesian.view]
namespace std::ranges {

template<bool Const, class First, class... Vs>
concept cartesian-product-is-random-access = // exposition only

(random_access_range<maybe-const <Const, First>> && ... &&
(random_access_range<maybe-const <Const, Vs>>

&& sized_range<maybe-const <Const, Vs>>));

template<class R>
concept cartesian-product-common-arg = // exposition only

common_range<R> || (sized_range<R> && random_access_range<R>);

template<bool Const, class First, class... Vs>
concept cartesian-product-is-bidirectional = // exposition only

(bidirectional_range<maybe-const <Const, First>> && ... &&
(bidirectional_range<maybe-const <Const, Vs>>

&& cartesian-product-common-arg <maybe-const <Const, Vs>>));

template<class First, class... Vs>
concept cartesian-product-is-common = // exposition only

cartesian-product-common-arg <First>;

template<class... Vs>
concept cartesian-product-is-sized = // exposition only

(sized_range<Vs> && ...);

template<bool Const, template<class> class FirstSent, class First, class... Vs>
concept cartesian-is-sized-sentinel = // exposition only

(sized_sentinel_for<FirstSent<maybe-const <Const, First>>,
iterator_t<maybe-const <Const, First>>> && ...

&& (sized_range<maybe-const <Const, Vs>>
&& sized_sentinel_for<iterator_t<maybe-const <Const, Vs>>,

iterator_t<maybe-const <Const, Vs>>>));

template<cartesian-product-common-arg R>
constexpr auto cartesian-common-arg-end (R& r) { // exposition only

if constexpr (common_range<R>) {
return ranges::end(r);

} else {
return ranges::begin(r) + ranges::distance(r);

}
}

template<input_range First, forward_range... Vs>
requires (view<First> && ... && view<Vs>)

class cartesian_product_view : public view_interface<cartesian_product_view<First, Vs...>> {
private:

tuple<First, Vs...> bases_; // exposition only
// 26.7.32.3, class template cartesian_product_view::iterator
template<bool Const> class iterator ; // exposition only
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public:
constexpr cartesian_product_view() = default;
constexpr explicit cartesian_product_view(First first_base, Vs... bases);

constexpr iterator <false> begin()
requires (!simple-view <First> || ... || !simple-view <Vs>);

constexpr iterator <true> begin() const
requires (range<const First> && ... && range<const Vs>);

constexpr iterator <false> end()
requires ((!simple-view <First> || ... || !simple-view <Vs>) &&

cartesian-product-is-common <First, Vs...>);
constexpr iterator <true> end() const

requires cartesian-product-is-common <const First, const Vs...>;
constexpr default_sentinel_t end() const noexcept;

constexpr see below size()
requires cartesian-product-is-sized <First, Vs...>;

constexpr see below size() const
requires cartesian-product-is-sized <const First, const Vs...>;

};

template<class... Vs>
cartesian_product_view(Vs&&...) -> cartesian_product_view<views::all_t<Vs>...>;

}

constexpr explicit cartesian_product_view(First first_base, Vs... bases);

1 Effects: Initializes bases_ with std::move(first_base), std::move(bases)....

constexpr iterator <false> begin()
requires (!simple-view <First> || ... || !simple-view <Vs>);

2 Effects: Equivalent to:
return iterator <false>(*this, tuple-transform (ranges::begin, bases_));

constexpr iterator <true> begin() const
requires (range<const First> && ... && range<const Vs>);

3 Effects: Equivalent to:
return iterator <true>(*this, tuple-transform (ranges::begin, bases_));

constexpr iterator <false> end()
requires ((!simple-view <First> || ... || !simple-view <Vs>)

&& cartesian-product-is-common <First, Vs...>);
constexpr iterator <true> end() const

requires cartesian-product-is-common <const First, const Vs...>;

4 Let:
—(4.1) is-const be true for the const-qualified overload, and false otherwise;
—(4.2) is-empty be true if the expression ranges::empty(rng) is true for any rng among the underlying

ranges except the first one and false otherwise; and
—(4.3) begin-or-first-end (rng) be expression-equivalent to is-empty ? ranges::begin(rng) :

cartesian-common-arg-end (rng) if rng is the first underlying range and ranges::begin(rng)
otherwise.

5 Effects: Equivalent to:
iterator <is-const > it(*this, tuple-transform (

[](auto& rng){ return begin-or-first-end (rng); }, bases_));
return it;

constexpr default_sentinel_t end() const noexcept;

6 Returns: default_sentinel.
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constexpr see below size()
requires cartesian-product-is-sized <First, Vs...>;

constexpr see below size() const
requires cartesian-product-is-sized <const First, const Vs...>;

7 The return type is an implementation-defined unsigned-integer-like type.
8 Recommended practice: The return type should be the smallest unsigned-integer-like type that is

sufficiently wide to store the product of the maximum sizes of all the underlying ranges, if such a type
exists.

9 Let p be the product of the sizes of all the ranges in bases_.
10 Preconditions: p can be represented by the return type.
11 Returns: p.

26.7.32.3 Class template cartesian_product_view::iterator [range.cartesian.iterator]
namespace std::ranges {

template<input_range First, forward_range... Vs>
requires (view<First> && ... && view<Vs>)

template<bool Const>
class cartesian_product_view<First, Vs...>::iterator {
public:

using iterator_category = input_iterator_tag;
using iterator_concept = see below ;
using value_type = tuple<range_value_t<maybe-const <Const, First>>,

range_value_t<maybe-const <Const, Vs>>...>;
using reference = tuple<range_reference_t<maybe-const <Const, First>>,

range_reference_t<maybe-const <Const, Vs>>...>;
using difference_type = see below ;

iterator () = default;

constexpr iterator (iterator <!Const> i) requires Const &&
(convertible_to<iterator_t<First>, iterator_t<const First>> &&

... && convertible_to<iterator_t<Vs>, iterator_t<const Vs>>);

constexpr auto operator*() const;
constexpr iterator & operator++();
constexpr void operator++(int);
constexpr iterator operator++(int) requires forward_range<maybe-const <Const, First>>;

constexpr iterator & operator--()
requires cartesian-product-is-bidirectional <Const, First, Vs...>;

constexpr iterator operator--(int)
requires cartesian-product-is-bidirectional <Const, First, Vs...>;

constexpr iterator & operator+=(difference_type x)
requires cartesian-product-is-random-access <Const, First, Vs...>;

constexpr iterator & operator-=(difference_type x)
requires cartesian-product-is-random-access <Const, First, Vs...>;

constexpr reference operator[](difference_type n) const
requires cartesian-product-is-random-access <Const, First, Vs...>;

friend constexpr bool operator==(const iterator & x, const iterator & y)
requires equality_comparable<iterator_t<maybe-const <Const, First>>>;

friend constexpr bool operator==(const iterator & x, default_sentinel_t);

friend constexpr auto operator<=>(const iterator & x, const iterator & y)
requires all-random-access <Const, First, Vs...>;

friend constexpr iterator operator+(const iterator & x, difference_type y)
requires cartesian-product-is-random-access <Const, First, Vs...>;
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friend constexpr iterator operator+(difference_type x, const iterator & y)
requires cartesian-product-is-random-access <Const, First, Vs...>;

friend constexpr iterator operator-(const iterator & x, difference_type y)
requires cartesian-product-is-random-access <Const, First, Vs...>;

friend constexpr difference_type operator-(const iterator & x, const iterator & y)
requires cartesian-is-sized-sentinel <Const, iterator_t, First, Vs...>;

friend constexpr difference_type operator-(const iterator & i, default_sentinel_t)
requires cartesian-is-sized-sentinel <Const, sentinel_t, First, Vs...>;

friend constexpr difference_type operator-(default_sentinel_t, const iterator & i)
requires cartesian-is-sized-sentinel <Const, sentinel_t, First, Vs...>;

friend constexpr auto iter_move(const iterator & i) noexcept(see below );

friend constexpr void iter_swap(const iterator & l, const iterator & r) noexcept(see below )
requires (indirectly_swappable<iterator_t<maybe-const <Const, First>>> && ... &&

indirectly_swappable<iterator_t<maybe-const <Const, Vs>>>);

private:
using Parent = maybe-const<Const, cartesian_product_view>; // exposition only
Parent* parent_ = nullptr; // exposition only
tuple<iterator_t<maybe-const <Const, First>>,

iterator_t<maybe-const<Const, Vs>>...> current_; // exposition only

template<size_t N = sizeof...(Vs)>
constexpr void next(); // exposition only

template<size_t N = sizeof...(Vs)>
constexpr void prev(); // exposition only

template<class Tuple>
constexpr difference_type distance-from(const Tuple& t) const; // exposition only

constexpr iterator (Parent & parent, tuple<iterator_t<maybe-const <Const, First>>,
iterator_t<maybe-const<Const, Vs>>...> current); // exposition only

};
}

1 iterator ::iterator_concept is defined as follows:
—(1.1) If cartesian-product-is-random-access <Const, First, Vs...> is modeled, then iterator_con-

cept denotes random_access_iterator_tag.
—(1.2) Otherwise, if cartesian-product-is-bidirectional <Const, First, Vs...> is modeled, then it-

erator_concept denotes bidirectional_iterator_tag.
—(1.3) Otherwise, if maybe-const <Const, First> models forward_range, then iterator_concept denotes

forward_iterator_tag.
—(1.4) Otherwise, iterator_concept denotes input_iterator_tag.

2 iterator ::difference_type is an implementation-defined signed-integer-like type.
3 Recommended practice: iterator ::difference_type should be the smallest signed-integer-like type that is

sufficiently wide to store the product of the maximum sizes of all underlying ranges if such a type exists.

4 template<size_t N = sizeof...(Vs)>
constexpr void next ();

5 Effects: Equivalent to:
auto& it = std::get<N>(current_);
++it;
if constexpr (N > 0) {

if (it == ranges::end(std::get<N>(parent_->bases_))) {
it = ranges::begin(std::get<N>(parent_->bases_));
next <N - 1>();
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}
}

template<size_t N = sizeof...(Vs)>
constexpr void prev ();

6 Effects: Equivalent to:
auto& it = std::get<N>(current_);
if constexpr (N > 0) {

if (it == ranges::begin(std::get<N>(parent_->bases_))) {
it = cartesian-common-arg-end (std::get<N>(parent_->bases_));
prev <N - 1>();

}
}
--it;

template<class Tuple>
constexpr difference_type distance-from (const Tuple& t) const;

7 Let:
—(7.1) scaled-size (N) be the product of static_cast<difference_type>(ranges::size(std::get<

N>(parent_->bases_))) and scaled-size (N + 1) if N ≤ sizeof...(Vs), otherwise static_-
cast<difference_type>(1);

—(7.2) scaled-distance (N) be the product of static_cast<difference_type>(std::get<N>(cur-
rent_) - std::get<N>(t)) and scaled-size (N + 1); and

—(7.3) scaled-sum be the sum of scaled-distance (N) for every integer 0 ≤ N ≤ sizeof...(Vs).
8 Preconditions: scaled-sum can be represented by difference_type.
9 Returns: scaled-sum .

constexpr iterator (Parent & parent, tuple<iterator_t<maybe-const <Const, First>>,
iterator_t<maybe-const <Const, Vs>>...> current);

10 Effects: Initializes parent_ with addressof(parent) and current_ with std::move(current).

constexpr iterator (iterator <!Const> i) requires Const &&
(convertible_to<iterator_t<First>, iterator_t<const First>> &&

... && convertible_to<iterator_t<Vs>, iterator_t<const Vs>>);

11 Effects: Initializes parent_ with i.parent_ and current_ with std::move(i.current_).

constexpr auto operator*() const;

12 Effects: Equivalent to:
return tuple-transform ([](auto& i) -> decltype(auto) { return *i; }, current_);

constexpr iterator & operator++();

13 Effects: Equivalent to:
next ();
return *this;

constexpr void operator++(int);

14 Effects: Equivalent to ++*this.

constexpr iterator operator++(int) requires forward_range<maybe-const <Const, First>>;

15 Effects: Equivalent to:
auto tmp = *this;
++*this;
return tmp;

constexpr iterator & operator--()
requires cartesian-product-is-bidirectional <Const, First, Vs...>;

16 Effects: Equivalent to:
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prev ();
return *this;

constexpr iterator operator--(int)
requires cartesian-product-is-bidirectional <Const, First, Vs...>;

17 Effects: Equivalent to:
auto tmp = *this;
--*this;
return tmp;

constexpr iterator & operator+=(difference_type x)
requires cartesian-product-is-random-access <Const, First, Vs...>;

18 Let orig be the value of *this before the call.
Let ret be:

—(18.1) If x > 0, the value of *this had next been called x times.
—(18.2) Otherwise, if x < 0, the value of *this had prev been called -x times.
—(18.3) Otherwise, orig.

19 Preconditions: x is in the range [ranges::distance(*this, ranges::begin(*parent_)),
ranges::distance(*this, ranges::end(*parent_))].

20 Effects: Sets the value of *this to ret.
21 Returns: *this.
22 Complexity: Constant.

constexpr iterator & operator-=(difference_type x)
requires cartesian-product-is-random-access <Const, First, Vs...>;

23 Effects: Equivalent to:
*this += -x;
return *this;

constexpr reference operator[](difference_type n) const
requires cartesian-product-is-random-access <Const, First, Vs...>;

24 Effects: Equivalent to: return *((*this) + n);

friend constexpr bool operator==(const iterator & x, const iterator & y)
requires equality_comparable<iterator_t<maybe-const <Const, First>>>;

25 Effects: Equivalent to: return x.current_ == y.current_;

friend constexpr bool operator==(const iterator & x, default_sentinel_t);

26 Returns: true if std::get<i>(x.current_) == ranges::end(std::get<i>(x.parent_->bases_))
is true for any integer 0 ≤ i ≤ sizeof...(Vs); otherwise, false.

friend constexpr auto operator<=>(const iterator & x, const iterator & y)
requires all-random-access <Const, First, Vs...>;

27 Effects: Equivalent to: return x.current_ <=> y.current_;

friend constexpr iterator operator+(const iterator & x, difference_type y)
requires cartesian-product-is-random-access <Const, First, Vs...>;

28 Effects: Equivalent to: return iterator (x) += y;

friend constexpr iterator operator+(difference_type x, const iterator & y)
requires cartesian-product-is-random-access <Const, First, Vs...>;

29 Effects: Equivalent to: return y + x;

friend constexpr iterator operator-(const iterator & x, difference_type y)
requires cartesian-product-is-random-access <Const, First, Vs...>;

30 Effects: Equivalent to: return iterator (x) -= y;
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friend constexpr difference_type operator-(const iterator & x, const iterator & y)
requires cartesian-is-sized-sentinel <Const, iterator_t, First, Vs...>;

31 Effects: Equivalent to: return x.distance-from (y.current_);

friend constexpr difference_type operator-(const iterator & i, default_sentinel_t)
requires cartesian-is-sized-sentinel <Const, sentinel_t, First, Vs...>;

32 Let end-tuple be an object of a type that is a specialization of tuple, such that:
—(32.1) std::get<0>(end-tuple ) has the same value as ranges::end(std::get<0>(i.parent_->ba-

ses_));
—(32.2) std::get<N>(end-tuple ) has the same value as ranges::begin(std::get<N>(i.parent_-

->bases_)) for every integer 1 ≤ N ≤ sizeof...(Vs).
33 Effects: Equivalent to: return i.distance-from (end-tuple );

friend constexpr difference_type operator-(default_sentinel_t s, const iterator & i)
requires cartesian-is-sized-sentinel <Const, sentinel_t, First, Vs...>;

34 Effects: Equivalent to: return -(i - s);

friend constexpr auto iter_move(const iterator & i) noexcept(see below );

35 Effects: Equivalent to: return tuple-transform (ranges::iter_move, i.current_);
36 Remarks: The exception specification is equivalent to the logical and of the following expressions:

—(36.1) noexcept(ranges::iter_move(std::get<N>(i.current_))) for every integer
0 ≤ N ≤ sizeof...(Vs),

—(36.2) is_nothrow_move_constructible_v<range_rvalue_reference_t<maybe-const <Const, T>>>
for every type T in First, Vs....

friend constexpr void iter_swap(const iterator & l, const iterator & r) noexcept(see below )
requires (indirectly_swappable<iterator_t<maybe-const <Const, First>>> && ... &&

indirectly_swappable<iterator_t<maybe-const <Const, Vs>>>);

37 Effects: For every integer 0 ≤ i ≤ sizeof...(Vs), performs:
ranges::iter_swap(std::get<i>(l.current_), std::get<i>(r.current_))

38 Remarks: The exception specification is equivalent to the logical and of the following expressions:
—(38.1) noexcept(ranges::iter_swap(std::get<i>(l.current_), std::get<i>(r.current_))) for

every integer 0 ≤ i ≤ sizeof...(Vs).

26.8 Range generators [coro.generator]
26.8.1 Overview [coroutine.generator.overview]

1 Class template generator presents a view of the elements yielded by the evaluation of a coroutine.
2 A generator generates a sequence of elements by repeatedly resuming the coroutine from which it was

returned. Elements of the sequence are produced by the coroutine each time a co_yield statement is
evaluated. When the co_yield statement is of the form co_yield elements_of(r), each element of the
range r is successively produced as an element of the sequence.
[Example 1 :

generator<int> ints(int start = 0) {
while (true)

co_yield start++;
}

void f() {
for (auto i : ints() | views::take(3))

cout << i << ' '; // prints 0 1 2
}

— end example ]
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26.8.2 Header <generator> synopsis [generator.syn]
namespace std {

// 26.8.3, class template generator
template<class Ref, class V = void, class Allocator = void>

class generator;

namespace pmr {
template<class R, class V = void>

using generator = std::generator<R, V, polymorphic_allocator<>>;
}

}

26.8.3 Class template generator [coro.generator.class]
namespace std {

template<class Ref, class V = void, class Allocator = void>
class generator : public ranges::view_interface<generator<Ref, V, Allocator>> {
private:

using value = conditional_t<is_void_v<V>, remove_cvref_t<Ref>, V>; // exposition only
using reference = conditional_t<is_void_v<V>, Ref&&, Ref>; // exposition only

// 26.8.6, class generator::iterator
class iterator; // exposition only

public:
using yielded =

conditional_t<is_reference_v<reference >, reference , const reference &>;

// 26.8.5, class generator::promise_type
class promise_type;

generator(const generator&) = delete;
generator(generator&& other) noexcept;

~generator();

generator& operator=(generator other) noexcept;

iterator begin();
default_sentinel_t end() const noexcept;

private:
coroutine_handle<promise_type> coroutine_ = nullptr; // exposition only
unique_ptr<stack<coroutine_handle<>>> active_; // exposition only

};
}

1 Mandates:
—(1.1) If Allocator is not void, allocator_traits<Allocator>::pointer is a pointer type.
—(1.2) value is a cv-unqualified object type.
—(1.3) reference is either a reference type, or a cv-unqualified object type that models copy_constructible.
—(1.4) Let RRef denote remove_reference_t<reference >&& if reference is a reference type, and reference

otherwise. Each of:
—(1.4.1) common_reference_with<reference &&, value &>,
—(1.4.2) common_reference_with<reference &&, RRef&&>, and
—(1.4.3) common_reference_with<RRef&&, const value &>

is modeled.
[Note 1 : These requirements ensure the exposition-only iterator type can model indirectly_readable and
thus input_iterator. — end note ]
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2 If Allocator is not void, it shall meet the Cpp17Allocator requirements.
3 Specializations of generator model view and input_range.
4 The behavior of a program that adds a specialization for generator is undefined.

26.8.4 Members [coro.generator.members]
generator(generator&& other) noexcept;

1 Effects: Initializes coroutine_ with exchange(other.coroutine_, {}) and active_ with exchange(
other.active_, nullptr).

2 [Note 1 : Iterators previously obtained from other are not invalidated; they become iterators into *this. — end
note ]

~generator();

3 Effects: Equivalent to:
if (coroutine_) {

coroutine_.destroy();
}

4 [Note 2 : Ownership of recursively yielded generators is held in awaitable objects in the coroutine frame of the
yielding generator, so destroying the root generator effectively destroys the entire stack of yielded generators.

— end note ]

generator& operator=(generator other) noexcept;

5 Effects: Equivalent to:
swap(coroutine_, other.coroutine_);
swap(active_, other.active_);

6 Returns: *this.
7 [Note 3 : Iterators previously obtained from other are not invalidated; they become iterators into *this. — end

note ]

iterator begin();

8 Preconditions: coroutine_ refers to a coroutine suspended at its initial suspend point (9.5.4).
9 Effects: Pushes coroutine_ into *active_, then evaluates coroutine_.resume().

10 Returns: An iterator object whose member coroutine_ refers to the same coroutine as does
coroutine_.

11 [Note 4 : A program that calls begin more than once on the same generator has undefined behavior. — end
note ]

default_sentinel_t end() const noexcept;

12 Returns: default_sentinel.

26.8.5 Class generator::promise_type [coro.generator.promise]
namespace std {

template<class Ref, class V, class Allocator>
class generator<Ref, V, Allocator>::promise_type {
public:

generator get_return_object() noexcept;

suspend_always initial_suspend() const noexcept { return {}; }
auto final_suspend() noexcept;

suspend_always yield_value(yielded val) noexcept;

auto yield_value(const remove_reference_t<yielded>& lval)
requires is_rvalue_reference_v<yielded> &&

constructible_from<remove_cvref_t<yielded>, const remove_reference_t<yielded>&>;
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template<class R2, class V2, class Alloc2, class Unused>
requires same_as<typename generator<R2, V2, Alloc2>::yielded, yielded>

auto yield_value(ranges::elements_of<generator<R2, V2, Alloc2>&&, Unused> g) noexcept;

template<ranges::input_range R, class Alloc>
requires convertible_to<ranges::range_reference_t<R>, yielded>

auto yield_value(ranges::elements_of<R, Alloc> r) noexcept;

void await_transform() = delete;

void return_void() const noexcept {}
void unhandled_exception();

void* operator new(size_t size)
requires same_as<Allocator, void> || default_initializable<Allocator>;

template<class Alloc, class... Args>
requires same_as<Allocator, void> || convertible_to<const Alloc&, Allocator>

void* operator new(size_t size, allocator_arg_t, const Alloc& alloc, const Args&...);

template<class This, class Alloc, class... Args>
requires same_as<Allocator, void> || convertible_to<const Alloc&, Allocator>

void* operator new(size_t size, const This&, allocator_arg_t, const Alloc& alloc,
const Args&...);

void operator delete(void* pointer, size_t size) noexcept;

private:
add_pointer_t<yielded> value_ = nullptr; // exposition only
exception_ptr except_; // exposition only

};
}

generator get_return_object() noexcept;

1 Returns: A generator object whose member coroutine_ is coroutine_handle<promise_type>::
from_promise(*this), and whose member active_ points to an empty stack.

auto final_suspend() noexcept;

2 Preconditions: A handle referring to the coroutine whose promise object is *this is at the top of
*active_ of some generator object x. This function is called by that coroutine upon reaching its final
suspend point (9.5.4).

3 Returns: An awaitable object of unspecified type (7.6.2.4) whose member functions arrange for the
calling coroutine to be suspended, pop the coroutine handle from the top of *x.active_, and resume
execution of the coroutine referred to by x.active_->top() if *x.active_ is not empty. If it is empty,
control flow returns to the current coroutine caller or resumer (9.5.4).

suspend_always yield_value(yielded val) noexcept;

4 Effects: Equivalent to value_ = addressof(val).
5 Returns: {}.

auto yield_value(const remove_reference_t<yielded>& lval)
requires is_rvalue_reference_v<yielded> &&

constructible_from<remove_cvref_t<yielded>, const remove_reference_t<yielded>&>;

6 Preconditions: A handle referring to the coroutine whose promise object is *this is at the top of
*active_ of some generator object.

7 Returns: An awaitable object of an unspecified type (7.6.2.4) that stores an object of type remove_-
cvref_t<yielded> direct-non-list-initialized with lval, whose member functions arrange for value_ to
point to that stored object and then suspend the coroutine.

8 Throws: Any exception thrown by the initialization of the stored object.
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9 Remarks: A yield-expression that calls this function has type void (7.6.17).

template<class R2, class V2, class Alloc2, class Unused>
requires same_as<typename generator<R2, V2, Alloc2>::yielded, yielded>
auto yield_value(ranges::elements_of<generator<R2, V2, Alloc2>&&, Unused> g) noexcept;

10 Preconditions: A handle referring to the coroutine whose promise object is *this is at the top of
*active_ of some generator object x. The coroutine referred to by g.range.coroutine_ is suspended
at its initial suspend point.

11 Returns: An awaitable object of an unspecified type (7.6.2.4) into which g.range is moved, whose
member await_ready returns false, whose member await_suspend pushes g.range.coroutine_
into *x.active_ and resumes execution of the coroutine referred to by g.range.coroutine_, and
whose member await_resume evaluates rethrow_exception(except_) if bool(except_) is true. If
bool(except_) is false, the await_resume member has no effects.

12 Remarks: A yield-expression that calls this function has type void (7.6.17).

template<ranges::input_range R, class Alloc>
requires convertible_to<ranges::range_reference_t<R>, yielded>
auto yield_value(ranges::elements_of<R, Alloc> r) noexcept;

13 Effects: Equivalent to:
auto nested = [](allocator_arg_t, Alloc, ranges::iterator_t<R> i, ranges::sentinel_t<R> s)

-> generator<yielded, ranges::range_value_t<R>, Alloc> {
for (; i != s; ++i) {

co_yield static_cast<yielded>(*i);
}

};
return yield_value(ranges::elements_of(nested(

allocator_arg, r.allocator, ranges::begin(r.range), ranges::end(r.range))));
14 [Note 1 : A yield-expression that calls this function has type void (7.6.17). — end note ]

void unhandled_exception();

15 Preconditions: A handle referring to the coroutine whose promise object is *this is at the top of
*active_ of some generator object x.

16 Effects: If the handle referring to the coroutine whose promise object is *this is the sole element of
*x.active_, equivalent to throw, otherwise, assigns current_exception() to except_.

void* operator new(size_t size)
requires same_as<Allocator, void> || default_initializable<Allocator>;

template<class Alloc, class... Args>
requires same_as<Allocator, void> || convertible_to<const Alloc&, Allocator>
void* operator new(size_t size, allocator_arg_t, const Alloc& alloc, const Args&...);

template<class This, class Alloc, class... Args>
requires same_as<Allocator, void> || convertible_to<const Alloc&, Allocator>
void* operator new(size_t size, const This&, allocator_arg_t, const Alloc& alloc,

const Args&...);

17 Let A be
—(17.1) Allocator, if it is not void,
—(17.2) Alloc for the overloads with a template parameter Alloc, or
—(17.3) allocator<void> otherwise.

Let B be allocator_traits<A>::template rebind_alloc<U> where U is an unspecified type whose
size and alignment are both __STDCPP_DEFAULT_NEW_ALIGNMENT__.

18 Mandates: allocator_traits<B>::pointer is a pointer type.
19 Effects: Initializes an allocator b of type B with A(alloc), for the overloads with a function parameter

alloc, and with A() otherwise. Uses b to allocate storage for the smallest array of U sufficient to
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provide storage for a coroutine state of size size, and unspecified additional state necessary to ensure
that operator delete can later deallocate this memory block with an allocator equal to b.

20 Returns: A pointer to the allocated storage.

void operator delete(void* pointer, size_t size) noexcept;

21 Preconditions: pointer was returned from an invocation of one of the above overloads of operator
new with a size argument equal to size.

22 Effects: Deallocates the storage pointed to by pointer using an allocator equivalent to that used to
allocate it.

26.8.6 Class generator::iterator [coro.generator.iterator]
namespace std {

template<class Ref, class V, class Allocator>
class generator<Ref, V, Allocator>::iterator {
public:

using value_type = value ;
using difference_type = ptrdiff_t;

iterator (iterator && other) noexcept;
iterator & operator=(iterator && other) noexcept;

reference operator*() const noexcept(is_nothrow_copy_constructible_v<reference >);
iterator & operator++();
void operator++(int);

friend bool operator==(const iterator & i, default_sentinel_t);

private:
coroutine_handle<promise_type> coroutine_; // exposition only

};
}

iterator (iterator && other) noexcept;

1 Effects: Initializes coroutine_ with exchange(other.coroutine_, {}).

iterator & operator=(iterator && other) noexcept;

2 Effects: Equivalent to coroutine_ = exchange(other.coroutine_, {}).
3 Returns: *this.

reference operator*() const noexcept(is_nothrow_copy_constructible_v<reference >);

4 Preconditions: For some generator object x, coroutine_ is in *x.active_ and x.active_->top()
refers to a suspended coroutine with promise object p.

5 Effects: Equivalent to: return static_cast<reference >(*p.value_);

iterator & operator++();

6 Preconditions: For some generator object x, coroutine_ is in *x.active_.
7 Effects: Equivalent to x.active_->top().resume().
8 Returns: *this.

void operator++(int);

9 Effects: Equivalent to ++*this.

friend bool operator==(const iterator & i, default_sentinel_t);

10 Effects: Equivalent to: return i.coroutine_.done();
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27 Algorithms library [algorithms]
27.1 General [algorithms.general]

1 This Clause describes components that C++ programs may use to perform algorithmic operations on
containers (Clause 24) and other sequences.

2 The following subclauses describe components for non-modifying sequence operations, mutating sequence
operations, sorting and related operations, and algorithms from the ISO C library, as summarized in Table 93.

Table 93: Algorithms library summary [tab:algorithms.summary]

Subclause Header
27.2 Algorithms requirements
27.3 Parallel algorithms
27.5 Algorithm result types <algorithm>
27.6 Non-modifying sequence operations
27.7 Mutating sequence operations
27.8 Sorting and related operations
27.10 Generalized numeric operations <numeric>
27.11 Specialized <memory> algorithms <memory>
27.12 C library algorithms <cstdlib>

27.2 Algorithms requirements [algorithms.requirements]
1 All of the algorithms are separated from the particular implementations of data structures and are parame-

terized by iterator types. Because of this, they can work with program-defined data structures, as long as
these data structures have iterator types satisfying the assumptions on the algorithms.

2 The entities defined in the std::ranges namespace in this Clause are not found by argument-dependent
name lookup (6.5.4). When found by unqualified (6.5.3) name lookup for the postfix-expression in a function
call (7.6.1.3), they inhibit argument-dependent name lookup.
[Example 1 :

void foo() {
using namespace std::ranges;
std::vector<int> vec{1,2,3};
find(begin(vec), end(vec), 2); // #1

}

The function call expression at #1 invokes std::ranges::find, not std::find, despite that (a) the iterator type
returned from begin(vec) and end(vec) may be associated with namespace std and (b) std::find is more specialized
(13.7.7.3) than std::ranges::find since the former requires its first two parameters to have the same type. — end
example ]

3 For purposes of determining the existence of data races, algorithms shall not modify objects referenced
through an iterator argument unless the specification requires such modification.

4 Throughout this Clause, where the template parameters are not constrained, the names of template parameters
are used to express type requirements.

—(4.1) If an algorithm’s Effects element specifies that a value pointed to by any iterator passed as an argument
is modified, then the type of that argument shall meet the requirements of a mutable iterator (25.3).

—(4.2) If an algorithm’s template parameter is named InputIterator, InputIterator1, or InputIterator2,
the template argument shall meet the Cpp17InputIterator requirements (25.3.5.3).

—(4.3) If an algorithm’s template parameter is named OutputIterator, OutputIterator1, or Output-
Iterator2, the template argument shall meet the Cpp17OutputIterator requirements (25.3.5.4).

—(4.4) If an algorithm’s template parameter is named ForwardIterator, ForwardIterator1, ForwardItera-
tor2, or NoThrowForwardIterator, the template argument shall meet the Cpp17ForwardIterator
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requirements (25.3.5.5) if it is required to be a mutable iterator, or model forward_iterator (25.3.4.11)
otherwise.

—(4.5) If an algorithm’s template parameter is named NoThrowForwardIterator, the template argument
is also required to have the property that no exceptions are thrown from increment, assignment, or
comparison of, or indirection through, valid iterators.

—(4.6) If an algorithm’s template parameter is named BidirectionalIterator, BidirectionalIterator1,
or BidirectionalIterator2, the template argument shall meet the Cpp17BidirectionalIterator require-
ments (25.3.5.6) if it is required to be a mutable iterator, or model bidirectional_iterator (25.3.4.12)
otherwise.

—(4.7) If an algorithm’s template parameter is named RandomAccessIterator, RandomAccessIterator1, or
RandomAccessIterator2, the template argument shall meet the Cpp17RandomAccessIterator require-
ments (25.3.5.7) if it is required to be a mutable iterator, or model random_access_iterator (25.3.4.13)
otherwise.

[Note 1 : These requirements do not affect iterator arguments that are constrained, for which iterator category and
mutability requirements are expressed explicitly. — end note ]

5 Both in-place and copying versions are provided for certain algorithms.214 When such a version is provided
for algorithm it is called algorithm_copy. Algorithms that take predicates end with the suffix _if (which
follows the suffix _copy).

6 When not otherwise constrained, the Predicate parameter is used whenever an algorithm expects a function
object (22.10) that, when applied to the result of dereferencing the corresponding iterator, returns a value
testable as true. If an algorithm takes Predicate pred as its argument and first as its iterator argument
with value type T, the expression pred(*first) shall be well-formed and the type decltype(pred(*first))
shall model boolean-testable (18.5.2). The function object pred shall not apply any non-constant function
through its argument. Given a glvalue u of type (possibly const) T that designates the same object as *first,
pred(u) shall be a valid expression that is equal to pred(*first).

7 When not otherwise constrained, the BinaryPredicate parameter is used whenever an algorithm expects a
function object that, when applied to the result of dereferencing two corresponding iterators or to dereferencing
an iterator and type T when T is part of the signature, returns a value testable as true. If an algorithm takes
BinaryPredicate binary_pred as its argument and first1 and first2 as its iterator arguments with
respective value types T1 and T2, the expression binary_pred(*first1, *first2) shall be well-formed and
the type decltype(binary_pred(*first1, *first2)) shall model boolean-testable . Unless otherwise
specified, BinaryPredicate always takes the first iterator’s value_type as its first argument, that is, in
those cases when T value is part of the signature, the expression binary_pred(*first1, value) shall
be well-formed and the type decltype(binary_pred(*first1, value)) shall model boolean-testable .
binary_pred shall not apply any non-constant function through any of its arguments. Given a glvalue u of
type (possibly const) T1 that designates the same object as *first1, and a glvalue v of type (possibly const)
T2 that designates the same object as *first2, binary_pred(u, *first2), binary_pred(*first1, v),
and binary_pred(u, v) shall each be a valid expression that is equal to binary_pred(*first1, *first2),
and binary_pred(u, value) shall be a valid expression that is equal to binary_pred(*first1, value).

8 The parameters UnaryOperation, BinaryOperation, BinaryOperation1, and BinaryOperation2 are used
whenever an algorithm expects a function object (22.10).

9 [Note 2 : Unless otherwise specified, algorithms that take function objects as arguments can copy those function
objects freely. If object identity is important, a wrapper class that points to a non-copied implementation object such
as reference_wrapper<T> (22.10.6), or some equivalent solution, can be used. — end note ]

10 When the description of an algorithm gives an expression such as *first == value for a condition, the
expression shall evaluate to either true or false in boolean contexts.

11 In the description of the algorithms, operator + is used for some of the iterator categories for which it does
not have to be defined. In these cases the semantics of a + n are the same as those of

auto tmp = a;
for (; n < 0; ++n) --tmp;
for (; n > 0; --n) ++tmp;
return tmp;

214) The decision whether to include a copying version was usually based on complexity considerations. When the cost of doing
the operation dominates the cost of copy, the copying version is not included. For example, sort_copy is not included because
the cost of sorting is much more significant, and users can invoke copy followed by sort.
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Similarly, operator - is used for some combinations of iterators and sentinel types for which it does not have
to be defined. If [a, b) denotes a range, the semantics of b - a in these cases are the same as those of

iter_difference_t<decltype(a)> n = 0;
for (auto tmp = a; tmp != b; ++tmp) ++n;
return n;

and if [b, a) denotes a range, the same as those of
iter_difference_t<decltype(b)> n = 0;
for (auto tmp = b; tmp != a; ++tmp) --n;
return n;

12 In the description of the algorithms, given an iterator a whose difference type is D, and an expression n of
integer-like type other than cv D, the semantics of a + n and a - n are, respectively, those of a + D(n) and
a - D(n).

13 In the description of algorithm return values, a sentinel value s denoting the end of a range [i, s) is sometimes
returned where an iterator is expected. In these cases, the semantics are as if the sentinel is converted into
an iterator using ranges::next(i, s).

14 Overloads of algorithms that take range arguments (26.4.2) behave as if they are implemented by calling
ranges::begin and ranges::end on the range(s) and dispatching to the overload in namespace ranges
that takes separate iterator and sentinel arguments.

15 The well-formedness and behavior of a call to an algorithm with an explicitly-specified template argument
list is unspecified, except where explicitly stated otherwise.
[Note 3 : Consequently, an implementation can declare an algorithm with different template parameters than those
presented. — end note ]

27.3 Parallel algorithms [algorithms.parallel]
27.3.1 Preamble [algorithms.parallel.defns]

1 Subclause 27.3 describes components that C++ programs may use to perform operations on containers and
other sequences in parallel.

2 A parallel algorithm is a function template listed in this document with a template parameter named
ExecutionPolicy.

3 Parallel algorithms access objects indirectly accessible via their arguments by invoking the following functions:
—(3.1) All operations of the categories of the iterators that the algorithm is instantiated with.
—(3.2) Operations on those sequence elements that are required by its specification.
—(3.3) User-provided function objects to be applied during the execution of the algorithm, if required by the

specification.
—(3.4) Operations on those function objects required by the specification.

[Note 1 : See 27.2. — end note ]

These functions are herein called element access functions.
[Example 1 : The sort function may invoke the following element access functions:

—(3.5) Operations of the random-access iterator of the actual template argument (as per 25.3.5.7), as implied by the
name of the template parameter RandomAccessIterator.

—(3.6) The swap function on the elements of the sequence (as per the preconditions specified in 27.8.2.1).
—(3.7) The user-provided Compare function object.

— end example ]
4 A standard library function is vectorization-unsafe if it is specified to synchronize with another function

invocation, or another function invocation is specified to synchronize with it, and if it is not a memory
allocation or deallocation function.
[Note 2 : Implementations must ensure that internal synchronization inside standard library functions does not prevent
forward progress when those functions are executed by threads of execution with weakly parallel forward progress
guarantees. — end note ]
[Example 2 :

int x = 0;
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std::mutex m;
void f() {

int a[] = {1,2};
std::for_each(std::execution::par_unseq, std::begin(a), std::end(a), [&](int) {

std::lock_guard<mutex> guard(m); // incorrect: lock_guard constructor calls m.lock()
++x;
});

}

The above program may result in two consecutive calls to m.lock() on the same thread of execution (which may
deadlock), because the applications of the function object are not guaranteed to run on different threads of execution.

— end example ]

27.3.2 Requirements on user-provided function objects [algorithms.parallel.user]
1 Unless otherwise specified, function objects passed into parallel algorithms as objects of type Predicate,

BinaryPredicate, Compare, UnaryOperation, BinaryOperation, BinaryOperation1, BinaryOperation2,
and the operators used by the analogous overloads to these parallel algorithms that are formed by an
invocation with the specified default predicate or operation (where applicable) shall not directly or indirectly
modify objects via their arguments, nor shall they rely on the identity of the provided objects.

27.3.3 Effect of execution policies on algorithm execution [algorithms.parallel.exec]
1 Parallel algorithms have template parameters named ExecutionPolicy (22.12) which describe the manner in

which the execution of these algorithms may be parallelized and the manner in which they apply the element
access functions.

2 If an object is modified by an element access function, the algorithm will perform no other unsynchronized
accesses to that object. The modifying element access functions are those which are specified as modifying
the object.
[Note 1 : For example, swap, ++, --, @=, and assignments modify the object. For the assignment and @= operators,
only the left argument is modified. — end note ]

3 Unless otherwise stated, implementations may make arbitrary copies of elements (with type T) from sequences
where is_trivially_copy_constructible_v<T> and is_trivially_destructible_v<T> are true.
[Note 2 : This implies that user-supplied function objects cannot rely on object identity of arguments for such input
sequences. If object identity of the arguments to these function objects is important, a wrapping iterator that returns
a non-copied implementation object such as reference_wrapper<T> (22.10.6), or some equivalent solution, can be
used. — end note ]

4 The invocations of element access functions in parallel algorithms invoked with an execution policy object of
type execution::sequenced_policy all occur in the calling thread of execution.
[Note 3 : The invocations are not interleaved; see 6.9.1. — end note ]

5 The invocations of element access functions in parallel algorithms invoked with an execution policy object
of type execution::unsequenced_policy are permitted to execute in an unordered fashion in the calling
thread of execution, unsequenced with respect to one another in the calling thread of execution.
[Note 4 : This means that multiple function object invocations can be interleaved on a single thread of execution,
which overrides the usual guarantee from 6.9.1 that function executions do not overlap with one another. — end note ]

The behavior of a program is undefined if it invokes a vectorization-unsafe standard library function from
user code called from an execution::unsequenced_policy algorithm.
[Note 5 : Because execution::unsequenced_policy allows the execution of element access functions to be interleaved
on a single thread of execution, blocking synchronization, including the use of mutexes, risks deadlock. — end note ]

6 The invocations of element access functions in parallel algorithms invoked with an execution policy object
of type execution::parallel_policy are permitted to execute either in the invoking thread of execution
or in a thread of execution implicitly created by the library to support parallel algorithm execution. If the
threads of execution created by thread (33.4.3) or jthread (33.4.4) provide concurrent forward progress
guarantees (6.9.2.3), then a thread of execution implicitly created by the library will provide parallel forward
progress guarantees; otherwise, the provided forward progress guarantee is implementation-defined. Any such
invocations executing in the same thread of execution are indeterminately sequenced with respect to each
other.
[Note 6 : It is the caller’s responsibility to ensure that the invocation does not introduce data races or deadlocks.

— end note ]
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[Example 1 :
int a[] = {0,1};
std::vector<int> v;
std::for_each(std::execution::par, std::begin(a), std::end(a), [&](int i) {

v.push_back(i*2+1); // incorrect: data race
});

The program above has a data race because of the unsynchronized access to the container v. — end example ]
[Example 2 :

std::atomic<int> x{0};
int a[] = {1,2};
std::for_each(std::execution::par, std::begin(a), std::end(a), [&](int) {

x.fetch_add(1, std::memory_order::relaxed);
// spin wait for another iteration to change the value of x
while (x.load(std::memory_order::relaxed) == 1) { } // incorrect: assumes execution order

});

The above example depends on the order of execution of the iterations, and will not terminate if both iterations are
executed sequentially on the same thread of execution. — end example ]
[Example 3 :

int x = 0;
std::mutex m;
int a[] = {1,2};
std::for_each(std::execution::par, std::begin(a), std::end(a), [&](int) {

std::lock_guard<mutex> guard(m);
++x;

});

The above example synchronizes access to object x ensuring that it is incremented correctly. — end example ]
7 The invocations of element access functions in parallel algorithms invoked with an execution policy object

of type execution::parallel_unsequenced_policy are permitted to execute in an unordered fashion in
unspecified threads of execution, and unsequenced with respect to one another within each thread of execution.
These threads of execution are either the invoking thread of execution or threads of execution implicitly
created by the library; the latter will provide weakly parallel forward progress guarantees.
[Note 7 : This means that multiple function object invocations can be interleaved on a single thread of execution,
which overrides the usual guarantee from 6.9.1 that function executions do not overlap with one another. — end note ]

The behavior of a program is undefined if it invokes a vectorization-unsafe standard library function from
user code called from an execution::parallel_unsequenced_policy algorithm.
[Note 8 : Because execution::parallel_unsequenced_policy allows the execution of element access functions to be
interleaved on a single thread of execution, blocking synchronization, including the use of mutexes, risks deadlock.

— end note ]
8 [Note 9 : The semantics of invocation with execution::unsequenced_policy, execution::parallel_policy, or

execution::parallel_unsequenced_policy allow the implementation to fall back to sequential execution if the
system cannot parallelize an algorithm invocation, e.g., due to lack of resources. — end note ]

9 If an invocation of a parallel algorithm uses threads of execution implicitly created by the library, then the
invoking thread of execution will either

—(9.1) temporarily block with forward progress guarantee delegation (6.9.2.3) on the completion of these
library-managed threads of execution, or

—(9.2) eventually execute an element access function;
the thread of execution will continue to do so until the algorithm is finished.
[Note 10 : In blocking with forward progress guarantee delegation in this context, a thread of execution created by
the library is considered to have finished execution as soon as it has finished the execution of the particular element
access function that the invoking thread of execution logically depends on. — end note ]

10 The semantics of parallel algorithms invoked with an execution policy object of implementation-defined type
are implementation-defined.
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27.3.4 Parallel algorithm exceptions [algorithms.parallel.exceptions]
1 During the execution of a parallel algorithm, if temporary memory resources are required for parallelization

and none are available, the algorithm throws a bad_alloc exception.
2 During the execution of a parallel algorithm, if the invocation of an element access function exits via an

uncaught exception, the behavior is determined by the ExecutionPolicy.

27.3.5 ExecutionPolicy algorithm overloads [algorithms.parallel.overloads]
1 Parallel algorithms are algorithm overloads. Each parallel algorithm overload has an additional template

type parameter named ExecutionPolicy, which is the first template parameter. Additionally, each parallel
algorithm overload has an additional function parameter of type ExecutionPolicy&&, which is the first
function parameter.
[Note 1 : Not all algorithms have parallel algorithm overloads. — end note ]

2 Unless otherwise specified, the semantics of ExecutionPolicy algorithm overloads are identical to their
overloads without.

3 Unless otherwise specified, the complexity requirements of ExecutionPolicy algorithm overloads are relaxed
from the complexity requirements of the overloads without as follows: when the guarantee says “at most
expr” or “exactly expr” and does not specify the number of assignments or swaps, and expr is not already
expressed with O() notation, the complexity of the algorithm shall be O(expr).

4 Parallel algorithms shall not participate in overload resolution unless is_execution_policy_v<remove_-
cvref_t<ExecutionPolicy>> is true.

27.4 Header <algorithm> synopsis [algorithm.syn]
#include <initializer_list> // see 17.10.2

namespace std {
namespace ranges {

// 27.5, algorithm result types
template<class I, class F>

struct in_fun_result;

template<class I1, class I2>
struct in_in_result;

template<class I, class O>
struct in_out_result;

template<class I1, class I2, class O>
struct in_in_out_result;

template<class I, class O1, class O2>
struct in_out_out_result;

template<class T>
struct min_max_result;

template<class I>
struct in_found_result;

template<class I, class T>
struct in_value_result;

template<class O, class T>
struct out_value_result;

}

// 27.6, non-modifying sequence operations
// 27.6.1, all of
template<class InputIterator, class Predicate>

constexpr bool all_of(InputIterator first, InputIterator last, Predicate pred);
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template<class ExecutionPolicy, class ForwardIterator, class Predicate>
bool all_of(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last, Predicate pred);

namespace ranges {
template<input_iterator I, sentinel_for<I> S, class Proj = identity,

indirect_unary_predicate<projected<I, Proj>> Pred>
constexpr bool all_of(I first, S last, Pred pred, Proj proj = {});

template<input_range R, class Proj = identity,
indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>

constexpr bool all_of(R&& r, Pred pred, Proj proj = {});
}

// 27.6.2, any of
template<class InputIterator, class Predicate>

constexpr bool any_of(InputIterator first, InputIterator last, Predicate pred);
template<class ExecutionPolicy, class ForwardIterator, class Predicate>

bool any_of(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, ForwardIterator last, Predicate pred);

namespace ranges {
template<input_iterator I, sentinel_for<I> S, class Proj = identity,

indirect_unary_predicate<projected<I, Proj>> Pred>
constexpr bool any_of(I first, S last, Pred pred, Proj proj = {});

template<input_range R, class Proj = identity,
indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>

constexpr bool any_of(R&& r, Pred pred, Proj proj = {});
}

// 27.6.3, none of
template<class InputIterator, class Predicate>

constexpr bool none_of(InputIterator first, InputIterator last, Predicate pred);
template<class ExecutionPolicy, class ForwardIterator, class Predicate>

bool none_of(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, ForwardIterator last, Predicate pred);

namespace ranges {
template<input_iterator I, sentinel_for<I> S, class Proj = identity,

indirect_unary_predicate<projected<I, Proj>> Pred>
constexpr bool none_of(I first, S last, Pred pred, Proj proj = {});

template<input_range R, class Proj = identity,
indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>

constexpr bool none_of(R&& r, Pred pred, Proj proj = {});
}

// 27.6.4, contains
namespace ranges {

template<input_iterator I, sentinel_for<I> S, class T, class Proj = identity>
requires indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*>
constexpr bool contains(I first, S last, const T& value, Proj proj = {});

template<input_range R, class T, class Proj = identity>
requires

indirect_binary_predicate<ranges::equal_to, projected<iterator_t<R>, Proj>, const T*>
constexpr bool contains(R&& r, const T& value, Proj proj = {});

template<forward_iterator I1, sentinel_for<I1> S1,
forward_iterator I2, sentinel_for<I2> S2,
class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>

requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
constexpr bool contains_subrange(I1 first1, S1 last1, I2 first2, S2 last2,

Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
template<forward_range R1, forward_range R2,

class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>
requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
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constexpr bool contains_subrange(R1&& r1, R2&& r2,
Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {});

}

// 27.6.5, for each
template<class InputIterator, class Function>

constexpr Function for_each(InputIterator first, InputIterator last, Function f);
template<class ExecutionPolicy, class ForwardIterator, class Function>

void for_each(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, ForwardIterator last, Function f);

namespace ranges {
template<class I, class F>

using for_each_result = in_fun_result<I, F>;

template<input_iterator I, sentinel_for<I> S, class Proj = identity,
indirectly_unary_invocable<projected<I, Proj>> Fun>

constexpr for_each_result<I, Fun>
for_each(I first, S last, Fun f, Proj proj = {});

template<input_range R, class Proj = identity,
indirectly_unary_invocable<projected<iterator_t<R>, Proj>> Fun>

constexpr for_each_result<borrowed_iterator_t<R>, Fun>
for_each(R&& r, Fun f, Proj proj = {});

}

template<class InputIterator, class Size, class Function>
constexpr InputIterator for_each_n(InputIterator first, Size n, Function f);

template<class ExecutionPolicy, class ForwardIterator, class Size, class Function>
ForwardIterator for_each_n(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, Size n, Function f);

namespace ranges {
template<class I, class F>

using for_each_n_result = in_fun_result<I, F>;

template<input_iterator I, class Proj = identity,
indirectly_unary_invocable<projected<I, Proj>> Fun>

constexpr for_each_n_result<I, Fun>
for_each_n(I first, iter_difference_t<I> n, Fun f, Proj proj = {});

}

// 27.6.6, find
template<class InputIterator, class T>

constexpr InputIterator find(InputIterator first, InputIterator last,
const T& value);

template<class ExecutionPolicy, class ForwardIterator, class T>
ForwardIterator find(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last,
const T& value);

template<class InputIterator, class Predicate>
constexpr InputIterator find_if(InputIterator first, InputIterator last,

Predicate pred);
template<class ExecutionPolicy, class ForwardIterator, class Predicate>

ForwardIterator find_if(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, ForwardIterator last,
Predicate pred);

template<class InputIterator, class Predicate>
constexpr InputIterator find_if_not(InputIterator first, InputIterator last,

Predicate pred);
template<class ExecutionPolicy, class ForwardIterator, class Predicate>

ForwardIterator find_if_not(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, ForwardIterator last,
Predicate pred);
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namespace ranges {
template<input_iterator I, sentinel_for<I> S, class T, class Proj = identity>

requires indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*>
constexpr I find(I first, S last, const T& value, Proj proj = {});

template<input_range R, class T, class Proj = identity>
requires indirect_binary_predicate<ranges::equal_to,

projected<iterator_t<R>, Proj>, const T*>
constexpr borrowed_iterator_t<R>

find(R&& r, const T& value, Proj proj = {});
template<input_iterator I, sentinel_for<I> S, class Proj = identity,

indirect_unary_predicate<projected<I, Proj>> Pred>
constexpr I find_if(I first, S last, Pred pred, Proj proj = {});

template<input_range R, class Proj = identity,
indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>

constexpr borrowed_iterator_t<R>
find_if(R&& r, Pred pred, Proj proj = {});

template<input_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_unary_predicate<projected<I, Proj>> Pred>

constexpr I find_if_not(I first, S last, Pred pred, Proj proj = {});
template<input_range R, class Proj = identity,

indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
constexpr borrowed_iterator_t<R>

find_if_not(R&& r, Pred pred, Proj proj = {});
}

// 27.6.7, find last
namespace ranges {

template<forward_iterator I, sentinel_for<I> S, class T, class Proj = identity>
requires indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*>
constexpr subrange<I> find_last(I first, S last, const T& value, Proj proj = {});

template<forward_range R, class T, class Proj = identity>
requires

indirect_binary_predicate<ranges::equal_to, projected<iterator_t<R>, Proj>, const T*>
constexpr borrowed_subrange_t<R> find_last(R&& r, const T& value, Proj proj = {});

template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_unary_predicate<projected<I, Proj>> Pred>

constexpr subrange<I> find_last_if(I first, S last, Pred pred, Proj proj = {});
template<forward_range R, class Proj = identity,

indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
constexpr borrowed_subrange_t<R> find_last_if(R&& r, Pred pred, Proj proj = {});

template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_unary_predicate<projected<I, Proj>> Pred>

constexpr subrange<I> find_last_if_not(I first, S last, Pred pred, Proj proj = {});
template<forward_range R, class Proj = identity,

indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
constexpr borrowed_subrange_t<R> find_last_if_not(R&& r, Pred pred, Proj proj = {});

}

// 27.6.8, find end
template<class ForwardIterator1, class ForwardIterator2>

constexpr ForwardIterator1
find_end(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, ForwardIterator2 last2);
template<class ForwardIterator1, class ForwardIterator2, class BinaryPredicate>

constexpr ForwardIterator1
find_end(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
ForwardIterator1

find_end(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);
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template<class ExecutionPolicy, class ForwardIterator1,
class ForwardIterator2, class BinaryPredicate>

ForwardIterator1
find_end(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

namespace ranges {
template<forward_iterator I1, sentinel_for<I1> S1, forward_iterator I2, sentinel_for<I2> S2,

class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>
requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
constexpr subrange<I1>

find_end(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

template<forward_range R1, forward_range R2,
class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>

requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
constexpr borrowed_subrange_t<R1>

find_end(R1&& r1, R2&& r2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

}

// 27.6.9, find first
template<class InputIterator, class ForwardIterator>

constexpr InputIterator
find_first_of(InputIterator first1, InputIterator last1,

ForwardIterator first2, ForwardIterator last2);
template<class InputIterator, class ForwardIterator, class BinaryPredicate>

constexpr InputIterator
find_first_of(InputIterator first1, InputIterator last1,

ForwardIterator first2, ForwardIterator last2,
BinaryPredicate pred);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
ForwardIterator1

find_first_of(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);

template<class ExecutionPolicy, class ForwardIterator1,
class ForwardIterator2, class BinaryPredicate>

ForwardIterator1
find_first_of(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

namespace ranges {
template<input_iterator I1, sentinel_for<I1> S1, forward_iterator I2, sentinel_for<I2> S2,

class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>
requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
constexpr I1 find_first_of(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},

Proj1 proj1 = {}, Proj2 proj2 = {});
template<input_range R1, forward_range R2,

class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>
requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
constexpr borrowed_iterator_t<R1>

find_first_of(R1&& r1, R2&& r2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

}

// 27.6.10, adjacent find
template<class ForwardIterator>

constexpr ForwardIterator
adjacent_find(ForwardIterator first, ForwardIterator last);

§ 27.4 1282



© ISO/IEC N4950

template<class ForwardIterator, class BinaryPredicate>
constexpr ForwardIterator

adjacent_find(ForwardIterator first, ForwardIterator last,
BinaryPredicate pred);

template<class ExecutionPolicy, class ForwardIterator>
ForwardIterator

adjacent_find(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, ForwardIterator last);

template<class ExecutionPolicy, class ForwardIterator, class BinaryPredicate>
ForwardIterator

adjacent_find(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, ForwardIterator last,
BinaryPredicate pred);

namespace ranges {
template<forward_iterator I, sentinel_for<I> S, class Proj = identity,

indirect_binary_predicate<projected<I, Proj>,
projected<I, Proj>> Pred = ranges::equal_to>

constexpr I adjacent_find(I first, S last, Pred pred = {},
Proj proj = {});

template<forward_range R, class Proj = identity,
indirect_binary_predicate<projected<iterator_t<R>, Proj>,

projected<iterator_t<R>, Proj>> Pred = ranges::equal_to>
constexpr borrowed_iterator_t<R>

adjacent_find(R&& r, Pred pred = {}, Proj proj = {});
}

// 27.6.11, count
template<class InputIterator, class T>

constexpr typename iterator_traits<InputIterator>::difference_type
count(InputIterator first, InputIterator last, const T& value);

template<class ExecutionPolicy, class ForwardIterator, class T>
typename iterator_traits<ForwardIterator>::difference_type

count(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, ForwardIterator last, const T& value);

template<class InputIterator, class Predicate>
constexpr typename iterator_traits<InputIterator>::difference_type

count_if(InputIterator first, InputIterator last, Predicate pred);
template<class ExecutionPolicy, class ForwardIterator, class Predicate>

typename iterator_traits<ForwardIterator>::difference_type
count_if(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last, Predicate pred);

namespace ranges {
template<input_iterator I, sentinel_for<I> S, class T, class Proj = identity>

requires indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*>
constexpr iter_difference_t<I>

count(I first, S last, const T& value, Proj proj = {});
template<input_range R, class T, class Proj = identity>

requires indirect_binary_predicate<ranges::equal_to,
projected<iterator_t<R>, Proj>, const T*>

constexpr range_difference_t<R>
count(R&& r, const T& value, Proj proj = {});

template<input_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_unary_predicate<projected<I, Proj>> Pred>

constexpr iter_difference_t<I>
count_if(I first, S last, Pred pred, Proj proj = {});

template<input_range R, class Proj = identity,
indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>

constexpr range_difference_t<R>
count_if(R&& r, Pred pred, Proj proj = {});

}
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// 27.6.12, mismatch
template<class InputIterator1, class InputIterator2>

constexpr pair<InputIterator1, InputIterator2>
mismatch(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2);
template<class InputIterator1, class InputIterator2, class BinaryPredicate>

constexpr pair<InputIterator1, InputIterator2>
mismatch(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, BinaryPredicate pred);
template<class InputIterator1, class InputIterator2>

constexpr pair<InputIterator1, InputIterator2>
mismatch(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2);
template<class InputIterator1, class InputIterator2, class BinaryPredicate>

constexpr pair<InputIterator1, InputIterator2>
mismatch(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
BinaryPredicate pred);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
pair<ForwardIterator1, ForwardIterator2>

mismatch(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

pair<ForwardIterator1, ForwardIterator2>
mismatch(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, BinaryPredicate pred);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
pair<ForwardIterator1, ForwardIterator2>

mismatch(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

pair<ForwardIterator1, ForwardIterator2>
mismatch(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

namespace ranges {
template<class I1, class I2>

using mismatch_result = in_in_result<I1, I2>;

template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>

requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
constexpr mismatch_result<I1, I2>

mismatch(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

template<input_range R1, input_range R2,
class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>

requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
constexpr mismatch_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>>

mismatch(R1&& r1, R2&& r2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

}

// 27.6.13, equal
template<class InputIterator1, class InputIterator2>

constexpr bool equal(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2);
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template<class InputIterator1, class InputIterator2, class BinaryPredicate>
constexpr bool equal(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, BinaryPredicate pred);
template<class InputIterator1, class InputIterator2>

constexpr bool equal(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2);

template<class InputIterator1, class InputIterator2, class BinaryPredicate>
constexpr bool equal(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
BinaryPredicate pred);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
bool equal(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

bool equal(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, BinaryPredicate pred);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
bool equal(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

bool equal(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

namespace ranges {
template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,

class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>
requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
constexpr bool equal(I1 first1, S1 last1, I2 first2, S2 last2,

Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

template<input_range R1, input_range R2, class Pred = ranges::equal_to,
class Proj1 = identity, class Proj2 = identity>

requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
constexpr bool equal(R1&& r1, R2&& r2, Pred pred = {},

Proj1 proj1 = {}, Proj2 proj2 = {});
}

// 27.6.14, is permutation
template<class ForwardIterator1, class ForwardIterator2>

constexpr bool is_permutation(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2);

template<class ForwardIterator1, class ForwardIterator2, class BinaryPredicate>
constexpr bool is_permutation(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, BinaryPredicate pred);
template<class ForwardIterator1, class ForwardIterator2>

constexpr bool is_permutation(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);

template<class ForwardIterator1, class ForwardIterator2, class BinaryPredicate>
constexpr bool is_permutation(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

namespace ranges {
template<forward_iterator I1, sentinel_for<I1> S1, forward_iterator I2,

sentinel_for<I2> S2, class Proj1 = identity, class Proj2 = identity,
indirect_equivalence_relation<projected<I1, Proj1>,

projected<I2, Proj2>> Pred = ranges::equal_to>
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constexpr bool is_permutation(I1 first1, S1 last1, I2 first2, S2 last2,
Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

template<forward_range R1, forward_range R2,
class Proj1 = identity, class Proj2 = identity,
indirect_equivalence_relation<projected<iterator_t<R1>, Proj1>,

projected<iterator_t<R2>, Proj2>>
Pred = ranges::equal_to>

constexpr bool is_permutation(R1&& r1, R2&& r2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

}

// 27.6.15, search
template<class ForwardIterator1, class ForwardIterator2>

constexpr ForwardIterator1
search(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, ForwardIterator2 last2);
template<class ForwardIterator1, class ForwardIterator2, class BinaryPredicate>

constexpr ForwardIterator1
search(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
ForwardIterator1

search(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

ForwardIterator1
search(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

namespace ranges {
template<forward_iterator I1, sentinel_for<I1> S1, forward_iterator I2,

sentinel_for<I2> S2, class Pred = ranges::equal_to,
class Proj1 = identity, class Proj2 = identity>

requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
constexpr subrange<I1>

search(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

template<forward_range R1, forward_range R2, class Pred = ranges::equal_to,
class Proj1 = identity, class Proj2 = identity>

requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
constexpr borrowed_subrange_t<R1>

search(R1&& r1, R2&& r2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

}

template<class ForwardIterator, class Size, class T>
constexpr ForwardIterator

search_n(ForwardIterator first, ForwardIterator last,
Size count, const T& value);

template<class ForwardIterator, class Size, class T, class BinaryPredicate>
constexpr ForwardIterator

search_n(ForwardIterator first, ForwardIterator last,
Size count, const T& value, BinaryPredicate pred);

template<class ExecutionPolicy, class ForwardIterator, class Size, class T>
ForwardIterator

search_n(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, ForwardIterator last,
Size count, const T& value);
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template<class ExecutionPolicy, class ForwardIterator, class Size, class T,
class BinaryPredicate>

ForwardIterator
search_n(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last,
Size count, const T& value,
BinaryPredicate pred);

namespace ranges {
template<forward_iterator I, sentinel_for<I> S, class T,

class Pred = ranges::equal_to, class Proj = identity>
requires indirectly_comparable<I, const T*, Pred, Proj>
constexpr subrange<I>

search_n(I first, S last, iter_difference_t<I> count,
const T& value, Pred pred = {}, Proj proj = {});

template<forward_range R, class T, class Pred = ranges::equal_to,
class Proj = identity>

requires indirectly_comparable<iterator_t<R>, const T*, Pred, Proj>
constexpr borrowed_subrange_t<R>

search_n(R&& r, range_difference_t<R> count,
const T& value, Pred pred = {}, Proj proj = {});

}

template<class ForwardIterator, class Searcher>
constexpr ForwardIterator

search(ForwardIterator first, ForwardIterator last, const Searcher& searcher);

namespace ranges {
// 27.6.16, starts with
template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,

class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>
requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
constexpr bool starts_with(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},

Proj1 proj1 = {}, Proj2 proj2 = {});
template<input_range R1, input_range R2, class Pred = ranges::equal_to,

class Proj1 = identity, class Proj2 = identity>
requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
constexpr bool starts_with(R1&& r1, R2&& r2, Pred pred = {},

Proj1 proj1 = {}, Proj2 proj2 = {});

// 27.6.17, ends with
template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,

class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>
requires (forward_iterator<I1> || sized_sentinel_for<S1, I1>) &&

(forward_iterator<I2> || sized_sentinel_for<S2, I2>) &&
indirectly_comparable<I1, I2, Pred, Proj1, Proj2>

constexpr bool ends_with(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

template<input_range R1, input_range R2, class Pred = ranges::equal_to,
class Proj1 = identity, class Proj2 = identity>

requires (forward_range<R1> || sized_range<R1>) &&
(forward_range<R2> || sized_range<R2>) &&
indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>

constexpr bool ends_with(R1&& r1, R2&& r2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

// 27.6.18, fold
template<class F>
class flipped { // exposition only

F f ; // exposition only

public:
template<class T, class U> requires invocable<F&, U, T>
invoke_result_t<F&, U, T> operator()(T&&, U&&);

§ 27.4 1287



© ISO/IEC N4950

};

template<class F, class T, class I, class U>
concept indirectly-binary-left-foldable-impl = // exposition only

movable<T> && movable<U> &&
convertible_to<T, U> && invocable<F&, U, iter_reference_t<I>> &&
assignable_from<U&, invoke_result_t<F&, U, iter_reference_t<I>>>;

template<class F, class T, class I>
concept indirectly-binary-left-foldable = // exposition only

copy_constructible<F> && indirectly_readable<I> &&
invocable<F&, T, iter_reference_t<I>> &&
convertible_to<invoke_result_t<F&, T, iter_reference_t<I>>,

decay_t<invoke_result_t<F&, T, iter_reference_t<I>>>> &&
indirectly-binary-left-foldable-impl <F, T, I,

decay_t<invoke_result_t<F&, T, iter_reference_t<I>>>>;

template<class F, class T, class I>
concept indirectly-binary-right-foldable = // exposition only

indirectly-binary-left-foldable <flipped <F>, T, I>;

template<input_iterator I, sentinel_for<I> S, class T,
indirectly-binary-left-foldable <T, I> F>

constexpr auto fold_left(I first, S last, T init, F f);

template<input_range R, class T, indirectly-binary-left-foldable <T, iterator_t<R>> F>
constexpr auto fold_left(R&& r, T init, F f);

template<input_iterator I, sentinel_for<I> S,
indirectly-binary-left-foldable <iter_value_t<I>, I> F>

requires constructible_from<iter_value_t<I>, iter_reference_t<I>>
constexpr auto fold_left_first(I first, S last, F f);

template<input_range R, indirectly-binary-left-foldable <range_value_t<R>, iterator_t<R>> F>
requires constructible_from<range_value_t<R>, range_reference_t<R>>
constexpr auto fold_left_first(R&& r, F f);

template<bidirectional_iterator I, sentinel_for<I> S, class T,
indirectly-binary-right-foldable <T, I> F>

constexpr auto fold_right(I first, S last, T init, F f);

template<bidirectional_range R, class T,
indirectly-binary-right-foldable <T, iterator_t<R>> F>

constexpr auto fold_right(R&& r, T init, F f);

template<bidirectional_iterator I, sentinel_for<I> S,
indirectly-binary-right-foldable <iter_value_t<I>, I> F>

requires constructible_from<iter_value_t<I>, iter_reference_t<I>>
constexpr auto fold_right_last(I first, S last, F f);

template<bidirectional_range R,
indirectly-binary-right-foldable <range_value_t<R>, iterator_t<R>> F>

requires constructible_from<range_value_t<R>, range_reference_t<R>>
constexpr auto fold_right_last(R&& r, F f);

template<class I, class T>
using fold_left_with_iter_result = in_value_result<I, T>;

template<class I, class T>
using fold_left_first_with_iter_result = in_value_result<I, T>;

template<input_iterator I, sentinel_for<I> S, class T,
indirectly-binary-left-foldable <T, I> F>

constexpr see below fold_left_with_iter(I first, S last, T init, F f);
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template<input_range R, class T, indirectly-binary-left-foldable <T, iterator_t<R>> F>
constexpr see below fold_left_with_iter(R&& r, T init, F f);

template<input_iterator I, sentinel_for<I> S,
indirectly-binary-left-foldable <iter_value_t<I>, I> F>

requires constructible_from<iter_value_t<I>, iter_reference_t<I>>
constexpr see below fold_left_first_with_iter(I first, S last, F f);

template<input_range R,
indirectly-binary-left-foldable <range_value_t<R>, iterator_t<R>> F>

requires constructible_from<range_value_t<R>, range_reference_t<R>>
constexpr see below fold_left_first_with_iter(R&& r, F f);

}

// 27.7, mutating sequence operations
// 27.7.1, copy
template<class InputIterator, class OutputIterator>

constexpr OutputIterator copy(InputIterator first, InputIterator last,
OutputIterator result);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
ForwardIterator2 copy(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result);

namespace ranges {
template<class I, class O>

using copy_result = in_out_result<I, O>;

template<input_iterator I, sentinel_for<I> S, weakly_incrementable O>
requires indirectly_copyable<I, O>
constexpr copy_result<I, O>

copy(I first, S last, O result);
template<input_range R, weakly_incrementable O>

requires indirectly_copyable<iterator_t<R>, O>
constexpr copy_result<borrowed_iterator_t<R>, O>

copy(R&& r, O result);
}

template<class InputIterator, class Size, class OutputIterator>
constexpr OutputIterator copy_n(InputIterator first, Size n,

OutputIterator result);
template<class ExecutionPolicy, class ForwardIterator1, class Size,

class ForwardIterator2>
ForwardIterator2 copy_n(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first, Size n,
ForwardIterator2 result);

namespace ranges {
template<class I, class O>

using copy_n_result = in_out_result<I, O>;

template<input_iterator I, weakly_incrementable O>
requires indirectly_copyable<I, O>
constexpr copy_n_result<I, O>

copy_n(I first, iter_difference_t<I> n, O result);
}

template<class InputIterator, class OutputIterator, class Predicate>
constexpr OutputIterator copy_if(InputIterator first, InputIterator last,

OutputIterator result, Predicate pred);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,

class Predicate>
ForwardIterator2 copy_if(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first, ForwardIterator1 last,
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ForwardIterator2 result, Predicate pred);

namespace ranges {
template<class I, class O>

using copy_if_result = in_out_result<I, O>;

template<input_iterator I, sentinel_for<I> S, weakly_incrementable O, class Proj = identity,
indirect_unary_predicate<projected<I, Proj>> Pred>

requires indirectly_copyable<I, O>
constexpr copy_if_result<I, O>

copy_if(I first, S last, O result, Pred pred, Proj proj = {});
template<input_range R, weakly_incrementable O, class Proj = identity,

indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
requires indirectly_copyable<iterator_t<R>, O>
constexpr copy_if_result<borrowed_iterator_t<R>, O>

copy_if(R&& r, O result, Pred pred, Proj proj = {});
}

template<class BidirectionalIterator1, class BidirectionalIterator2>
constexpr BidirectionalIterator2

copy_backward(BidirectionalIterator1 first, BidirectionalIterator1 last,
BidirectionalIterator2 result);

namespace ranges {
template<class I1, class I2>

using copy_backward_result = in_out_result<I1, I2>;

template<bidirectional_iterator I1, sentinel_for<I1> S1, bidirectional_iterator I2>
requires indirectly_copyable<I1, I2>
constexpr copy_backward_result<I1, I2>

copy_backward(I1 first, S1 last, I2 result);
template<bidirectional_range R, bidirectional_iterator I>

requires indirectly_copyable<iterator_t<R>, I>
constexpr copy_backward_result<borrowed_iterator_t<R>, I>

copy_backward(R&& r, I result);
}

// 27.7.2, move
template<class InputIterator, class OutputIterator>

constexpr OutputIterator move(InputIterator first, InputIterator last,
OutputIterator result);

template<class ExecutionPolicy, class ForwardIterator1,
class ForwardIterator2>

ForwardIterator2 move(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result);

namespace ranges {
template<class I, class O>

using move_result = in_out_result<I, O>;

template<input_iterator I, sentinel_for<I> S, weakly_incrementable O>
requires indirectly_movable<I, O>
constexpr move_result<I, O>

move(I first, S last, O result);
template<input_range R, weakly_incrementable O>

requires indirectly_movable<iterator_t<R>, O>
constexpr move_result<borrowed_iterator_t<R>, O>

move(R&& r, O result);
}
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template<class BidirectionalIterator1, class BidirectionalIterator2>
constexpr BidirectionalIterator2

move_backward(BidirectionalIterator1 first, BidirectionalIterator1 last,
BidirectionalIterator2 result);

namespace ranges {
template<class I1, class I2>

using move_backward_result = in_out_result<I1, I2>;

template<bidirectional_iterator I1, sentinel_for<I1> S1, bidirectional_iterator I2>
requires indirectly_movable<I1, I2>
constexpr move_backward_result<I1, I2>

move_backward(I1 first, S1 last, I2 result);
template<bidirectional_range R, bidirectional_iterator I>

requires indirectly_movable<iterator_t<R>, I>
constexpr move_backward_result<borrowed_iterator_t<R>, I>

move_backward(R&& r, I result);
}

// 27.7.3, swap
template<class ForwardIterator1, class ForwardIterator2>

constexpr ForwardIterator2 swap_ranges(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
ForwardIterator2 swap_ranges(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2);

namespace ranges {
template<class I1, class I2>

using swap_ranges_result = in_in_result<I1, I2>;

template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2>
requires indirectly_swappable<I1, I2>
constexpr swap_ranges_result<I1, I2>

swap_ranges(I1 first1, S1 last1, I2 first2, S2 last2);
template<input_range R1, input_range R2>

requires indirectly_swappable<iterator_t<R1>, iterator_t<R2>>
constexpr swap_ranges_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>>

swap_ranges(R1&& r1, R2&& r2);
}

template<class ForwardIterator1, class ForwardIterator2>
constexpr void iter_swap(ForwardIterator1 a, ForwardIterator2 b);

// 27.7.4, transform
template<class InputIterator, class OutputIterator, class UnaryOperation>

constexpr OutputIterator
transform(InputIterator first1, InputIterator last1,

OutputIterator result, UnaryOperation op);
template<class InputIterator1, class InputIterator2, class OutputIterator,

class BinaryOperation>
constexpr OutputIterator

transform(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, OutputIterator result,
BinaryOperation binary_op);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class UnaryOperation>

ForwardIterator2
transform(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 result, UnaryOperation op);
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template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator, class BinaryOperation>

ForwardIterator
transform(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator result,
BinaryOperation binary_op);

namespace ranges {
template<class I, class O>

using unary_transform_result = in_out_result<I, O>;

template<input_iterator I, sentinel_for<I> S, weakly_incrementable O,
copy_constructible F, class Proj = identity>

requires indirectly_writable<O, indirect_result_t<F&, projected<I, Proj>>>
constexpr unary_transform_result<I, O>

transform(I first1, S last1, O result, F op, Proj proj = {});
template<input_range R, weakly_incrementable O, copy_constructible F,

class Proj = identity>
requires indirectly_writable<O, indirect_result_t<F&, projected<iterator_t<R>, Proj>>>
constexpr unary_transform_result<borrowed_iterator_t<R>, O>

transform(R&& r, O result, F op, Proj proj = {});

template<class I1, class I2, class O>
using binary_transform_result = in_in_out_result<I1, I2, O>;

template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
weakly_incrementable O, copy_constructible F, class Proj1 = identity,
class Proj2 = identity>

requires indirectly_writable<O, indirect_result_t<F&, projected<I1, Proj1>,
projected<I2, Proj2>>>

constexpr binary_transform_result<I1, I2, O>
transform(I1 first1, S1 last1, I2 first2, S2 last2, O result,

F binary_op, Proj1 proj1 = {}, Proj2 proj2 = {});
template<input_range R1, input_range R2, weakly_incrementable O,

copy_constructible F, class Proj1 = identity, class Proj2 = identity>
requires indirectly_writable<O, indirect_result_t<F&, projected<iterator_t<R1>, Proj1>,

projected<iterator_t<R2>, Proj2>>>
constexpr binary_transform_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>, O>

transform(R1&& r1, R2&& r2, O result,
F binary_op, Proj1 proj1 = {}, Proj2 proj2 = {});

}

// 27.7.5, replace
template<class ForwardIterator, class T>

constexpr void replace(ForwardIterator first, ForwardIterator last,
const T& old_value, const T& new_value);

template<class ExecutionPolicy, class ForwardIterator, class T>
void replace(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last,
const T& old_value, const T& new_value);

template<class ForwardIterator, class Predicate, class T>
constexpr void replace_if(ForwardIterator first, ForwardIterator last,

Predicate pred, const T& new_value);
template<class ExecutionPolicy, class ForwardIterator, class Predicate, class T>

void replace_if(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, ForwardIterator last,
Predicate pred, const T& new_value);

namespace ranges {
template<input_iterator I, sentinel_for<I> S, class T1, class T2, class Proj = identity>

requires indirectly_writable<I, const T2&> &&
indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T1*>

constexpr I
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replace(I first, S last, const T1& old_value, const T2& new_value, Proj proj = {});
template<input_range R, class T1, class T2, class Proj = identity>

requires indirectly_writable<iterator_t<R>, const T2&> &&
indirect_binary_predicate<ranges::equal_to,

projected<iterator_t<R>, Proj>, const T1*>
constexpr borrowed_iterator_t<R>

replace(R&& r, const T1& old_value, const T2& new_value, Proj proj = {});
template<input_iterator I, sentinel_for<I> S, class T, class Proj = identity,

indirect_unary_predicate<projected<I, Proj>> Pred>
requires indirectly_writable<I, const T&>
constexpr I replace_if(I first, S last, Pred pred, const T& new_value, Proj proj = {});

template<input_range R, class T, class Proj = identity,
indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>

requires indirectly_writable<iterator_t<R>, const T&>
constexpr borrowed_iterator_t<R>

replace_if(R&& r, Pred pred, const T& new_value, Proj proj = {});
}

template<class InputIterator, class OutputIterator, class T>
constexpr OutputIterator replace_copy(InputIterator first, InputIterator last,

OutputIterator result,
const T& old_value, const T& new_value);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2, class T>
ForwardIterator2 replace_copy(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result,
const T& old_value, const T& new_value);

template<class InputIterator, class OutputIterator, class Predicate, class T>
constexpr OutputIterator replace_copy_if(InputIterator first, InputIterator last,

OutputIterator result,
Predicate pred, const T& new_value);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class Predicate, class T>

ForwardIterator2 replace_copy_if(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result,
Predicate pred, const T& new_value);

namespace ranges {
template<class I, class O>

using replace_copy_result = in_out_result<I, O>;

template<input_iterator I, sentinel_for<I> S, class T1, class T2,
output_iterator<const T2&> O, class Proj = identity>

requires indirectly_copyable<I, O> &&
indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T1*>

constexpr replace_copy_result<I, O>
replace_copy(I first, S last, O result, const T1& old_value, const T2& new_value,

Proj proj = {});
template<input_range R, class T1, class T2, output_iterator<const T2&> O,

class Proj = identity>
requires indirectly_copyable<iterator_t<R>, O> &&

indirect_binary_predicate<ranges::equal_to,
projected<iterator_t<R>, Proj>, const T1*>

constexpr replace_copy_result<borrowed_iterator_t<R>, O>
replace_copy(R&& r, O result, const T1& old_value, const T2& new_value,

Proj proj = {});

template<class I, class O>
using replace_copy_if_result = in_out_result<I, O>;
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template<input_iterator I, sentinel_for<I> S, class T, output_iterator<const T&> O,
class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred>

requires indirectly_copyable<I, O>
constexpr replace_copy_if_result<I, O>

replace_copy_if(I first, S last, O result, Pred pred, const T& new_value,
Proj proj = {});

template<input_range R, class T, output_iterator<const T&> O, class Proj = identity,
indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>

requires indirectly_copyable<iterator_t<R>, O>
constexpr replace_copy_if_result<borrowed_iterator_t<R>, O>

replace_copy_if(R&& r, O result, Pred pred, const T& new_value,
Proj proj = {});

}

// 27.7.6, fill
template<class ForwardIterator, class T>

constexpr void fill(ForwardIterator first, ForwardIterator last, const T& value);
template<class ExecutionPolicy, class ForwardIterator, class T>

void fill(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, ForwardIterator last, const T& value);

template<class OutputIterator, class Size, class T>
constexpr OutputIterator fill_n(OutputIterator first, Size n, const T& value);

template<class ExecutionPolicy, class ForwardIterator,
class Size, class T>

ForwardIterator fill_n(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, Size n, const T& value);

namespace ranges {
template<class T, output_iterator<const T&> O, sentinel_for<O> S>

constexpr O fill(O first, S last, const T& value);
template<class T, output_range<const T&> R>

constexpr borrowed_iterator_t<R> fill(R&& r, const T& value);
template<class T, output_iterator<const T&> O>

constexpr O fill_n(O first, iter_difference_t<O> n, const T& value);
}

// 27.7.7, generate
template<class ForwardIterator, class Generator>

constexpr void generate(ForwardIterator first, ForwardIterator last,
Generator gen);

template<class ExecutionPolicy, class ForwardIterator, class Generator>
void generate(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last,
Generator gen);

template<class OutputIterator, class Size, class Generator>
constexpr OutputIterator generate_n(OutputIterator first, Size n, Generator gen);

template<class ExecutionPolicy, class ForwardIterator, class Size, class Generator>
ForwardIterator generate_n(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, Size n, Generator gen);

namespace ranges {
template<input_or_output_iterator O, sentinel_for<O> S, copy_constructible F>

requires invocable<F&> && indirectly_writable<O, invoke_result_t<F&>>
constexpr O generate(O first, S last, F gen);

template<class R, copy_constructible F>
requires invocable<F&> && output_range<R, invoke_result_t<F&>>
constexpr borrowed_iterator_t<R> generate(R&& r, F gen);

template<input_or_output_iterator O, copy_constructible F>
requires invocable<F&> && indirectly_writable<O, invoke_result_t<F&>>
constexpr O generate_n(O first, iter_difference_t<O> n, F gen);

}
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// 27.7.8, remove
template<class ForwardIterator, class T>

constexpr ForwardIterator remove(ForwardIterator first, ForwardIterator last,
const T& value);

template<class ExecutionPolicy, class ForwardIterator, class T>
ForwardIterator remove(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last,
const T& value);

template<class ForwardIterator, class Predicate>
constexpr ForwardIterator remove_if(ForwardIterator first, ForwardIterator last,

Predicate pred);
template<class ExecutionPolicy, class ForwardIterator, class Predicate>

ForwardIterator remove_if(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, ForwardIterator last,
Predicate pred);

namespace ranges {
template<permutable I, sentinel_for<I> S, class T, class Proj = identity>

requires indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*>
constexpr subrange<I> remove(I first, S last, const T& value, Proj proj = {});

template<forward_range R, class T, class Proj = identity>
requires permutable<iterator_t<R>> &&

indirect_binary_predicate<ranges::equal_to,
projected<iterator_t<R>, Proj>, const T*>

constexpr borrowed_subrange_t<R>
remove(R&& r, const T& value, Proj proj = {});

template<permutable I, sentinel_for<I> S, class Proj = identity,
indirect_unary_predicate<projected<I, Proj>> Pred>

constexpr subrange<I> remove_if(I first, S last, Pred pred, Proj proj = {});
template<forward_range R, class Proj = identity,

indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
requires permutable<iterator_t<R>>
constexpr borrowed_subrange_t<R>

remove_if(R&& r, Pred pred, Proj proj = {});
}

template<class InputIterator, class OutputIterator, class T>
constexpr OutputIterator

remove_copy(InputIterator first, InputIterator last,
OutputIterator result, const T& value);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class T>

ForwardIterator2
remove_copy(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result, const T& value);

template<class InputIterator, class OutputIterator, class Predicate>
constexpr OutputIterator

remove_copy_if(InputIterator first, InputIterator last,
OutputIterator result, Predicate pred);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class Predicate>

ForwardIterator2
remove_copy_if(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result, Predicate pred);

namespace ranges {
template<class I, class O>

using remove_copy_result = in_out_result<I, O>;
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template<input_iterator I, sentinel_for<I> S, weakly_incrementable O, class T,
class Proj = identity>

requires indirectly_copyable<I, O> &&
indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*>

constexpr remove_copy_result<I, O>
remove_copy(I first, S last, O result, const T& value, Proj proj = {});

template<input_range R, weakly_incrementable O, class T, class Proj = identity>
requires indirectly_copyable<iterator_t<R>, O> &&

indirect_binary_predicate<ranges::equal_to,
projected<iterator_t<R>, Proj>, const T*>

constexpr remove_copy_result<borrowed_iterator_t<R>, O>
remove_copy(R&& r, O result, const T& value, Proj proj = {});

template<class I, class O>
using remove_copy_if_result = in_out_result<I, O>;

template<input_iterator I, sentinel_for<I> S, weakly_incrementable O,
class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred>

requires indirectly_copyable<I, O>
constexpr remove_copy_if_result<I, O>

remove_copy_if(I first, S last, O result, Pred pred, Proj proj = {});
template<input_range R, weakly_incrementable O, class Proj = identity,

indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
requires indirectly_copyable<iterator_t<R>, O>
constexpr remove_copy_if_result<borrowed_iterator_t<R>, O>

remove_copy_if(R&& r, O result, Pred pred, Proj proj = {});
}

// 27.7.9, unique
template<class ForwardIterator>

constexpr ForwardIterator unique(ForwardIterator first, ForwardIterator last);
template<class ForwardIterator, class BinaryPredicate>

constexpr ForwardIterator unique(ForwardIterator first, ForwardIterator last,
BinaryPredicate pred);

template<class ExecutionPolicy, class ForwardIterator>
ForwardIterator unique(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last);
template<class ExecutionPolicy, class ForwardIterator, class BinaryPredicate>

ForwardIterator unique(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, ForwardIterator last,
BinaryPredicate pred);

namespace ranges {
template<permutable I, sentinel_for<I> S, class Proj = identity,

indirect_equivalence_relation<projected<I, Proj>> C = ranges::equal_to>
constexpr subrange<I> unique(I first, S last, C comp = {}, Proj proj = {});

template<forward_range R, class Proj = identity,
indirect_equivalence_relation<projected<iterator_t<R>, Proj>> C = ranges::equal_to>

requires permutable<iterator_t<R>>
constexpr borrowed_subrange_t<R>

unique(R&& r, C comp = {}, Proj proj = {});
}

template<class InputIterator, class OutputIterator>
constexpr OutputIterator

unique_copy(InputIterator first, InputIterator last,
OutputIterator result);

template<class InputIterator, class OutputIterator, class BinaryPredicate>
constexpr OutputIterator

unique_copy(InputIterator first, InputIterator last,
OutputIterator result, BinaryPredicate pred);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
ForwardIterator2

unique_copy(ExecutionPolicy&& exec, // see 27.3.5
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ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

ForwardIterator2
unique_copy(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result, BinaryPredicate pred);

namespace ranges {
template<class I, class O>

using unique_copy_result = in_out_result<I, O>;

template<input_iterator I, sentinel_for<I> S, weakly_incrementable O, class Proj = identity,
indirect_equivalence_relation<projected<I, Proj>> C = ranges::equal_to>

requires indirectly_copyable<I, O> &&
(forward_iterator<I> ||
(input_iterator<O> && same_as<iter_value_t<I>, iter_value_t<O>>) ||
indirectly_copyable_storable<I, O>)

constexpr unique_copy_result<I, O>
unique_copy(I first, S last, O result, C comp = {}, Proj proj = {});

template<input_range R, weakly_incrementable O, class Proj = identity,
indirect_equivalence_relation<projected<iterator_t<R>, Proj>> C = ranges::equal_to>

requires indirectly_copyable<iterator_t<R>, O> &&
(forward_iterator<iterator_t<R>> ||
(input_iterator<O> && same_as<range_value_t<R>, iter_value_t<O>>) ||
indirectly_copyable_storable<iterator_t<R>, O>)

constexpr unique_copy_result<borrowed_iterator_t<R>, O>
unique_copy(R&& r, O result, C comp = {}, Proj proj = {});

}

// 27.7.10, reverse
template<class BidirectionalIterator>

constexpr void reverse(BidirectionalIterator first, BidirectionalIterator last);
template<class ExecutionPolicy, class BidirectionalIterator>

void reverse(ExecutionPolicy&& exec, // see 27.3.5
BidirectionalIterator first, BidirectionalIterator last);

namespace ranges {
template<bidirectional_iterator I, sentinel_for<I> S>

requires permutable<I>
constexpr I reverse(I first, S last);

template<bidirectional_range R>
requires permutable<iterator_t<R>>
constexpr borrowed_iterator_t<R> reverse(R&& r);

}

template<class BidirectionalIterator, class OutputIterator>
constexpr OutputIterator

reverse_copy(BidirectionalIterator first, BidirectionalIterator last,
OutputIterator result);

template<class ExecutionPolicy, class BidirectionalIterator, class ForwardIterator>
ForwardIterator

reverse_copy(ExecutionPolicy&& exec, // see 27.3.5
BidirectionalIterator first, BidirectionalIterator last,
ForwardIterator result);

namespace ranges {
template<class I, class O>

using reverse_copy_result = in_out_result<I, O>;
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template<bidirectional_iterator I, sentinel_for<I> S, weakly_incrementable O>
requires indirectly_copyable<I, O>
constexpr reverse_copy_result<I, O>

reverse_copy(I first, S last, O result);
template<bidirectional_range R, weakly_incrementable O>

requires indirectly_copyable<iterator_t<R>, O>
constexpr reverse_copy_result<borrowed_iterator_t<R>, O>

reverse_copy(R&& r, O result);
}

// 27.7.11, rotate
template<class ForwardIterator>

constexpr ForwardIterator rotate(ForwardIterator first,
ForwardIterator middle,
ForwardIterator last);

template<class ExecutionPolicy, class ForwardIterator>
ForwardIterator rotate(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first,
ForwardIterator middle,
ForwardIterator last);

namespace ranges {
template<permutable I, sentinel_for<I> S>

constexpr subrange<I> rotate(I first, I middle, S last);
template<forward_range R>

requires permutable<iterator_t<R>>
constexpr borrowed_subrange_t<R> rotate(R&& r, iterator_t<R> middle);

}

template<class ForwardIterator, class OutputIterator>
constexpr OutputIterator

rotate_copy(ForwardIterator first, ForwardIterator middle,
ForwardIterator last, OutputIterator result);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
ForwardIterator2

rotate_copy(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator1 first, ForwardIterator1 middle,
ForwardIterator1 last, ForwardIterator2 result);

namespace ranges {
template<class I, class O>

using rotate_copy_result = in_out_result<I, O>;

template<forward_iterator I, sentinel_for<I> S, weakly_incrementable O>
requires indirectly_copyable<I, O>
constexpr rotate_copy_result<I, O>

rotate_copy(I first, I middle, S last, O result);
template<forward_range R, weakly_incrementable O>

requires indirectly_copyable<iterator_t<R>, O>
constexpr rotate_copy_result<borrowed_iterator_t<R>, O>

rotate_copy(R&& r, iterator_t<R> middle, O result);
}

// 27.7.12, sample
template<class PopulationIterator, class SampleIterator,

class Distance, class UniformRandomBitGenerator>
SampleIterator sample(PopulationIterator first, PopulationIterator last,

SampleIterator out, Distance n,
UniformRandomBitGenerator&& g);

namespace ranges {
template<input_iterator I, sentinel_for<I> S,

weakly_incrementable O, class Gen>
requires (forward_iterator<I> || random_access_iterator<O>) &&
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indirectly_copyable<I, O> &&
uniform_random_bit_generator<remove_reference_t<Gen>>

O sample(I first, S last, O out, iter_difference_t<I> n, Gen&& g);
template<input_range R, weakly_incrementable O, class Gen>

requires (forward_range<R> || random_access_iterator<O>) &&
indirectly_copyable<iterator_t<R>, O> &&
uniform_random_bit_generator<remove_reference_t<Gen>>

O sample(R&& r, O out, range_difference_t<R> n, Gen&& g);
}

// 27.7.13, shuffle
template<class RandomAccessIterator, class UniformRandomBitGenerator>

void shuffle(RandomAccessIterator first,
RandomAccessIterator last,
UniformRandomBitGenerator&& g);

namespace ranges {
template<random_access_iterator I, sentinel_for<I> S, class Gen>

requires permutable<I> &&
uniform_random_bit_generator<remove_reference_t<Gen>>

I shuffle(I first, S last, Gen&& g);
template<random_access_range R, class Gen>

requires permutable<iterator_t<R>> &&
uniform_random_bit_generator<remove_reference_t<Gen>>

borrowed_iterator_t<R> shuffle(R&& r, Gen&& g);
}

// 27.7.14, shift
template<class ForwardIterator>

constexpr ForwardIterator
shift_left(ForwardIterator first, ForwardIterator last,

typename iterator_traits<ForwardIterator>::difference_type n);
template<class ExecutionPolicy, class ForwardIterator>

ForwardIterator
shift_left(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last,
typename iterator_traits<ForwardIterator>::difference_type n);

namespace ranges {
template<permutable I, sentinel_for<I> S>

constexpr subrange<I> shift_left(I first, S last, iter_difference_t<I> n);
template<forward_range R>

requires permutable<iterator_t<R>>
constexpr borrowed_subrange_t<R> shift_left(R&& r, range_difference_t<R> n);

}

template<class ForwardIterator>
constexpr ForwardIterator

shift_right(ForwardIterator first, ForwardIterator last,
typename iterator_traits<ForwardIterator>::difference_type n);

template<class ExecutionPolicy, class ForwardIterator>
ForwardIterator

shift_right(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, ForwardIterator last,
typename iterator_traits<ForwardIterator>::difference_type n);

namespace ranges {
template<permutable I, sentinel_for<I> S>

constexpr subrange<I> shift_right(I first, S last, iter_difference_t<I> n);
template<forward_range R>

requires permutable<iterator_t<R>>
constexpr borrowed_subrange_t<R> shift_right(R&& r, range_difference_t<R> n);

}
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// 27.8, sorting and related operations
// 27.8.2, sorting
template<class RandomAccessIterator>

constexpr void sort(RandomAccessIterator first, RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>

constexpr void sort(RandomAccessIterator first, RandomAccessIterator last,
Compare comp);

template<class ExecutionPolicy, class RandomAccessIterator>
void sort(ExecutionPolicy&& exec, // see 27.3.5

RandomAccessIterator first, RandomAccessIterator last);
template<class ExecutionPolicy, class RandomAccessIterator, class Compare>

void sort(ExecutionPolicy&& exec, // see 27.3.5
RandomAccessIterator first, RandomAccessIterator last,
Compare comp);

namespace ranges {
template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,

class Proj = identity>
requires sortable<I, Comp, Proj>
constexpr I

sort(I first, S last, Comp comp = {}, Proj proj = {});
template<random_access_range R, class Comp = ranges::less, class Proj = identity>

requires sortable<iterator_t<R>, Comp, Proj>
constexpr borrowed_iterator_t<R>

sort(R&& r, Comp comp = {}, Proj proj = {});
}

template<class RandomAccessIterator>
void stable_sort(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void stable_sort(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);
template<class ExecutionPolicy, class RandomAccessIterator>

void stable_sort(ExecutionPolicy&& exec, // see 27.3.5
RandomAccessIterator first, RandomAccessIterator last);

template<class ExecutionPolicy, class RandomAccessIterator, class Compare>
void stable_sort(ExecutionPolicy&& exec, // see 27.3.5

RandomAccessIterator first, RandomAccessIterator last,
Compare comp);

namespace ranges {
template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,

class Proj = identity>
requires sortable<I, Comp, Proj>
I stable_sort(I first, S last, Comp comp = {}, Proj proj = {});

template<random_access_range R, class Comp = ranges::less, class Proj = identity>
requires sortable<iterator_t<R>, Comp, Proj>
borrowed_iterator_t<R>

stable_sort(R&& r, Comp comp = {}, Proj proj = {});
}

template<class RandomAccessIterator>
constexpr void partial_sort(RandomAccessIterator first, RandomAccessIterator middle,

RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>

constexpr void partial_sort(RandomAccessIterator first, RandomAccessIterator middle,
RandomAccessIterator last, Compare comp);

template<class ExecutionPolicy, class RandomAccessIterator>
void partial_sort(ExecutionPolicy&& exec, // see 27.3.5

RandomAccessIterator first, RandomAccessIterator middle,
RandomAccessIterator last);

template<class ExecutionPolicy, class RandomAccessIterator, class Compare>
void partial_sort(ExecutionPolicy&& exec, // see 27.3.5

RandomAccessIterator first, RandomAccessIterator middle,
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RandomAccessIterator last, Compare comp);

namespace ranges {
template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,

class Proj = identity>
requires sortable<I, Comp, Proj>
constexpr I

partial_sort(I first, I middle, S last, Comp comp = {}, Proj proj = {});
template<random_access_range R, class Comp = ranges::less, class Proj = identity>

requires sortable<iterator_t<R>, Comp, Proj>
constexpr borrowed_iterator_t<R>

partial_sort(R&& r, iterator_t<R> middle, Comp comp = {},
Proj proj = {});

}

template<class InputIterator, class RandomAccessIterator>
constexpr RandomAccessIterator

partial_sort_copy(InputIterator first, InputIterator last,
RandomAccessIterator result_first,
RandomAccessIterator result_last);

template<class InputIterator, class RandomAccessIterator, class Compare>
constexpr RandomAccessIterator

partial_sort_copy(InputIterator first, InputIterator last,
RandomAccessIterator result_first,
RandomAccessIterator result_last,
Compare comp);

template<class ExecutionPolicy, class ForwardIterator, class RandomAccessIterator>
RandomAccessIterator

partial_sort_copy(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, ForwardIterator last,
RandomAccessIterator result_first,
RandomAccessIterator result_last);

template<class ExecutionPolicy, class ForwardIterator, class RandomAccessIterator,
class Compare>

RandomAccessIterator
partial_sort_copy(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last,
RandomAccessIterator result_first,
RandomAccessIterator result_last,
Compare comp);

namespace ranges {
template<class I, class O>

using partial_sort_copy_result = in_out_result<I, O>;

template<input_iterator I1, sentinel_for<I1> S1,
random_access_iterator I2, sentinel_for<I2> S2,
class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity>

requires indirectly_copyable<I1, I2> && sortable<I2, Comp, Proj2> &&
indirect_strict_weak_order<Comp, projected<I1, Proj1>, projected<I2, Proj2>>

constexpr partial_sort_copy_result<I1, I2>
partial_sort_copy(I1 first, S1 last, I2 result_first, S2 result_last,

Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
template<input_range R1, random_access_range R2, class Comp = ranges::less,

class Proj1 = identity, class Proj2 = identity>
requires indirectly_copyable<iterator_t<R1>, iterator_t<R2>> &&

sortable<iterator_t<R2>, Comp, Proj2> &&
indirect_strict_weak_order<Comp, projected<iterator_t<R1>, Proj1>,

projected<iterator_t<R2>, Proj2>>
constexpr partial_sort_copy_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>>

partial_sort_copy(R1&& r, R2&& result_r, Comp comp = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

}
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template<class ForwardIterator>
constexpr bool is_sorted(ForwardIterator first, ForwardIterator last);

template<class ForwardIterator, class Compare>
constexpr bool is_sorted(ForwardIterator first, ForwardIterator last,

Compare comp);
template<class ExecutionPolicy, class ForwardIterator>

bool is_sorted(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, ForwardIterator last);

template<class ExecutionPolicy, class ForwardIterator, class Compare>
bool is_sorted(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last,
Compare comp);

namespace ranges {
template<forward_iterator I, sentinel_for<I> S, class Proj = identity,

indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>
constexpr bool is_sorted(I first, S last, Comp comp = {}, Proj proj = {});

template<forward_range R, class Proj = identity,
indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>

constexpr bool is_sorted(R&& r, Comp comp = {}, Proj proj = {});
}

template<class ForwardIterator>
constexpr ForwardIterator

is_sorted_until(ForwardIterator first, ForwardIterator last);
template<class ForwardIterator, class Compare>

constexpr ForwardIterator
is_sorted_until(ForwardIterator first, ForwardIterator last,

Compare comp);
template<class ExecutionPolicy, class ForwardIterator>

ForwardIterator
is_sorted_until(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last);
template<class ExecutionPolicy, class ForwardIterator, class Compare>

ForwardIterator
is_sorted_until(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last,
Compare comp);

namespace ranges {
template<forward_iterator I, sentinel_for<I> S, class Proj = identity,

indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>
constexpr I is_sorted_until(I first, S last, Comp comp = {}, Proj proj = {});

template<forward_range R, class Proj = identity,
indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>

constexpr borrowed_iterator_t<R>
is_sorted_until(R&& r, Comp comp = {}, Proj proj = {});

}

// 27.8.3, Nth element
template<class RandomAccessIterator>

constexpr void nth_element(RandomAccessIterator first, RandomAccessIterator nth,
RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
constexpr void nth_element(RandomAccessIterator first, RandomAccessIterator nth,

RandomAccessIterator last, Compare comp);
template<class ExecutionPolicy, class RandomAccessIterator>

void nth_element(ExecutionPolicy&& exec, // see 27.3.5
RandomAccessIterator first, RandomAccessIterator nth,
RandomAccessIterator last);

template<class ExecutionPolicy, class RandomAccessIterator, class Compare>
void nth_element(ExecutionPolicy&& exec, // see 27.3.5

RandomAccessIterator first, RandomAccessIterator nth,
RandomAccessIterator last, Compare comp);
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namespace ranges {
template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,

class Proj = identity>
requires sortable<I, Comp, Proj>
constexpr I

nth_element(I first, I nth, S last, Comp comp = {}, Proj proj = {});
template<random_access_range R, class Comp = ranges::less, class Proj = identity>

requires sortable<iterator_t<R>, Comp, Proj>
constexpr borrowed_iterator_t<R>

nth_element(R&& r, iterator_t<R> nth, Comp comp = {}, Proj proj = {});
}

// 27.8.4, binary search
template<class ForwardIterator, class T>

constexpr ForwardIterator
lower_bound(ForwardIterator first, ForwardIterator last,

const T& value);
template<class ForwardIterator, class T, class Compare>

constexpr ForwardIterator
lower_bound(ForwardIterator first, ForwardIterator last,

const T& value, Compare comp);

namespace ranges {
template<forward_iterator I, sentinel_for<I> S, class T, class Proj = identity,

indirect_strict_weak_order<const T*, projected<I, Proj>> Comp = ranges::less>
constexpr I lower_bound(I first, S last, const T& value, Comp comp = {},

Proj proj = {});
template<forward_range R, class T, class Proj = identity,

indirect_strict_weak_order<const T*, projected<iterator_t<R>, Proj>> Comp =
ranges::less>

constexpr borrowed_iterator_t<R>
lower_bound(R&& r, const T& value, Comp comp = {}, Proj proj = {});

}

template<class ForwardIterator, class T>
constexpr ForwardIterator

upper_bound(ForwardIterator first, ForwardIterator last,
const T& value);

template<class ForwardIterator, class T, class Compare>
constexpr ForwardIterator

upper_bound(ForwardIterator first, ForwardIterator last,
const T& value, Compare comp);

namespace ranges {
template<forward_iterator I, sentinel_for<I> S, class T, class Proj = identity,

indirect_strict_weak_order<const T*, projected<I, Proj>> Comp = ranges::less>
constexpr I upper_bound(I first, S last, const T& value, Comp comp = {}, Proj proj = {});

template<forward_range R, class T, class Proj = identity,
indirect_strict_weak_order<const T*, projected<iterator_t<R>, Proj>> Comp =

ranges::less>
constexpr borrowed_iterator_t<R>

upper_bound(R&& r, const T& value, Comp comp = {}, Proj proj = {});
}

template<class ForwardIterator, class T>
constexpr pair<ForwardIterator, ForwardIterator>

equal_range(ForwardIterator first, ForwardIterator last,
const T& value);

template<class ForwardIterator, class T, class Compare>
constexpr pair<ForwardIterator, ForwardIterator>

equal_range(ForwardIterator first, ForwardIterator last,
const T& value, Compare comp);
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namespace ranges {
template<forward_iterator I, sentinel_for<I> S, class T, class Proj = identity,

indirect_strict_weak_order<const T*, projected<I, Proj>> Comp = ranges::less>
constexpr subrange<I>

equal_range(I first, S last, const T& value, Comp comp = {}, Proj proj = {});
template<forward_range R, class T, class Proj = identity,

indirect_strict_weak_order<const T*, projected<iterator_t<R>, Proj>> Comp =
ranges::less>

constexpr borrowed_subrange_t<R>
equal_range(R&& r, const T& value, Comp comp = {}, Proj proj = {});

}

template<class ForwardIterator, class T>
constexpr bool

binary_search(ForwardIterator first, ForwardIterator last,
const T& value);

template<class ForwardIterator, class T, class Compare>
constexpr bool

binary_search(ForwardIterator first, ForwardIterator last,
const T& value, Compare comp);

namespace ranges {
template<forward_iterator I, sentinel_for<I> S, class T, class Proj = identity,

indirect_strict_weak_order<const T*, projected<I, Proj>> Comp = ranges::less>
constexpr bool binary_search(I first, S last, const T& value, Comp comp = {},

Proj proj = {});
template<forward_range R, class T, class Proj = identity,

indirect_strict_weak_order<const T*, projected<iterator_t<R>, Proj>> Comp =
ranges::less>

constexpr bool binary_search(R&& r, const T& value, Comp comp = {},
Proj proj = {});

}

// 27.8.5, partitions
template<class InputIterator, class Predicate>

constexpr bool is_partitioned(InputIterator first, InputIterator last, Predicate pred);
template<class ExecutionPolicy, class ForwardIterator, class Predicate>

bool is_partitioned(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, ForwardIterator last, Predicate pred);

namespace ranges {
template<input_iterator I, sentinel_for<I> S, class Proj = identity,

indirect_unary_predicate<projected<I, Proj>> Pred>
constexpr bool is_partitioned(I first, S last, Pred pred, Proj proj = {});

template<input_range R, class Proj = identity,
indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>

constexpr bool is_partitioned(R&& r, Pred pred, Proj proj = {});
}

template<class ForwardIterator, class Predicate>
constexpr ForwardIterator partition(ForwardIterator first,

ForwardIterator last,
Predicate pred);

template<class ExecutionPolicy, class ForwardIterator, class Predicate>
ForwardIterator partition(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first,
ForwardIterator last,
Predicate pred);

namespace ranges {
template<permutable I, sentinel_for<I> S, class Proj = identity,

indirect_unary_predicate<projected<I, Proj>> Pred>
constexpr subrange<I>

partition(I first, S last, Pred pred, Proj proj = {});
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template<forward_range R, class Proj = identity,
indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>

requires permutable<iterator_t<R>>
constexpr borrowed_subrange_t<R>

partition(R&& r, Pred pred, Proj proj = {});
}

template<class BidirectionalIterator, class Predicate>
BidirectionalIterator stable_partition(BidirectionalIterator first,

BidirectionalIterator last,
Predicate pred);

template<class ExecutionPolicy, class BidirectionalIterator, class Predicate>
BidirectionalIterator stable_partition(ExecutionPolicy&& exec, // see 27.3.5

BidirectionalIterator first,
BidirectionalIterator last,
Predicate pred);

namespace ranges {
template<bidirectional_iterator I, sentinel_for<I> S, class Proj = identity,

indirect_unary_predicate<projected<I, Proj>> Pred>
requires permutable<I>
subrange<I> stable_partition(I first, S last, Pred pred, Proj proj = {});

template<bidirectional_range R, class Proj = identity,
indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>

requires permutable<iterator_t<R>>
borrowed_subrange_t<R> stable_partition(R&& r, Pred pred, Proj proj = {});

}

template<class InputIterator, class OutputIterator1,
class OutputIterator2, class Predicate>

constexpr pair<OutputIterator1, OutputIterator2>
partition_copy(InputIterator first, InputIterator last,

OutputIterator1 out_true, OutputIterator2 out_false,
Predicate pred);

template<class ExecutionPolicy, class ForwardIterator, class ForwardIterator1,
class ForwardIterator2, class Predicate>

pair<ForwardIterator1, ForwardIterator2>
partition_copy(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last,
ForwardIterator1 out_true, ForwardIterator2 out_false,
Predicate pred);

namespace ranges {
template<class I, class O1, class O2>

using partition_copy_result = in_out_out_result<I, O1, O2>;

template<input_iterator I, sentinel_for<I> S,
weakly_incrementable O1, weakly_incrementable O2,
class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred>

requires indirectly_copyable<I, O1> && indirectly_copyable<I, O2>
constexpr partition_copy_result<I, O1, O2>

partition_copy(I first, S last, O1 out_true, O2 out_false, Pred pred,
Proj proj = {});

template<input_range R, weakly_incrementable O1, weakly_incrementable O2,
class Proj = identity,
indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>

requires indirectly_copyable<iterator_t<R>, O1> &&
indirectly_copyable<iterator_t<R>, O2>

constexpr partition_copy_result<borrowed_iterator_t<R>, O1, O2>
partition_copy(R&& r, O1 out_true, O2 out_false, Pred pred, Proj proj = {});

}
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template<class ForwardIterator, class Predicate>
constexpr ForwardIterator

partition_point(ForwardIterator first, ForwardIterator last,
Predicate pred);

namespace ranges {
template<forward_iterator I, sentinel_for<I> S, class Proj = identity,

indirect_unary_predicate<projected<I, Proj>> Pred>
constexpr I partition_point(I first, S last, Pred pred, Proj proj = {});

template<forward_range R, class Proj = identity,
indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>

constexpr borrowed_iterator_t<R>
partition_point(R&& r, Pred pred, Proj proj = {});

}

// 27.8.6, merge
template<class InputIterator1, class InputIterator2, class OutputIterator>

constexpr OutputIterator
merge(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class InputIterator1, class InputIterator2, class OutputIterator,
class Compare>

constexpr OutputIterator
merge(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator>

ForwardIterator
merge(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
ForwardIterator result);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator, class Compare>

ForwardIterator
merge(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
ForwardIterator result, Compare comp);

namespace ranges {
template<class I1, class I2, class O>

using merge_result = in_in_out_result<I1, I2, O>;

template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
weakly_incrementable O, class Comp = ranges::less, class Proj1 = identity,
class Proj2 = identity>

requires mergeable<I1, I2, O, Comp, Proj1, Proj2>
constexpr merge_result<I1, I2, O>

merge(I1 first1, S1 last1, I2 first2, S2 last2, O result,
Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});

template<input_range R1, input_range R2, weakly_incrementable O, class Comp = ranges::less,
class Proj1 = identity, class Proj2 = identity>

requires mergeable<iterator_t<R1>, iterator_t<R2>, O, Comp, Proj1, Proj2>
constexpr merge_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>, O>

merge(R1&& r1, R2&& r2, O result,
Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});

}
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template<class BidirectionalIterator>
void inplace_merge(BidirectionalIterator first,

BidirectionalIterator middle,
BidirectionalIterator last);

template<class BidirectionalIterator, class Compare>
void inplace_merge(BidirectionalIterator first,

BidirectionalIterator middle,
BidirectionalIterator last, Compare comp);

template<class ExecutionPolicy, class BidirectionalIterator>
void inplace_merge(ExecutionPolicy&& exec, // see 27.3.5

BidirectionalIterator first,
BidirectionalIterator middle,
BidirectionalIterator last);

template<class ExecutionPolicy, class BidirectionalIterator, class Compare>
void inplace_merge(ExecutionPolicy&& exec, // see 27.3.5

BidirectionalIterator first,
BidirectionalIterator middle,
BidirectionalIterator last, Compare comp);

namespace ranges {
template<bidirectional_iterator I, sentinel_for<I> S, class Comp = ranges::less,

class Proj = identity>
requires sortable<I, Comp, Proj>
I inplace_merge(I first, I middle, S last, Comp comp = {}, Proj proj = {});

template<bidirectional_range R, class Comp = ranges::less, class Proj = identity>
requires sortable<iterator_t<R>, Comp, Proj>
borrowed_iterator_t<R>

inplace_merge(R&& r, iterator_t<R> middle, Comp comp = {},
Proj proj = {});

}

// 27.8.7, set operations
template<class InputIterator1, class InputIterator2>

constexpr bool includes(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2);

template<class InputIterator1, class InputIterator2, class Compare>
constexpr bool includes(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
Compare comp);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
bool includes(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class Compare>

bool includes(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
Compare comp);

namespace ranges {
template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,

class Proj1 = identity, class Proj2 = identity,
indirect_strict_weak_order<projected<I1, Proj1>, projected<I2, Proj2>> Comp =

ranges::less>
constexpr bool includes(I1 first1, S1 last1, I2 first2, S2 last2, Comp comp = {},

Proj1 proj1 = {}, Proj2 proj2 = {});
template<input_range R1, input_range R2, class Proj1 = identity,

class Proj2 = identity,
indirect_strict_weak_order<projected<iterator_t<R1>, Proj1>,

projected<iterator_t<R2>, Proj2>> Comp = ranges::less>
constexpr bool includes(R1&& r1, R2&& r2, Comp comp = {},

Proj1 proj1 = {}, Proj2 proj2 = {});
}
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template<class InputIterator1, class InputIterator2, class OutputIterator>
constexpr OutputIterator

set_union(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class InputIterator1, class InputIterator2, class OutputIterator, class Compare>
constexpr OutputIterator

set_union(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator>

ForwardIterator
set_union(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
ForwardIterator result);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator, class Compare>

ForwardIterator
set_union(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
ForwardIterator result, Compare comp);

namespace ranges {
template<class I1, class I2, class O>

using set_union_result = in_in_out_result<I1, I2, O>;

template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
weakly_incrementable O, class Comp = ranges::less,
class Proj1 = identity, class Proj2 = identity>

requires mergeable<I1, I2, O, Comp, Proj1, Proj2>
constexpr set_union_result<I1, I2, O>

set_union(I1 first1, S1 last1, I2 first2, S2 last2, O result, Comp comp = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

template<input_range R1, input_range R2, weakly_incrementable O,
class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity>

requires mergeable<iterator_t<R1>, iterator_t<R2>, O, Comp, Proj1, Proj2>
constexpr set_union_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>, O>

set_union(R1&& r1, R2&& r2, O result, Comp comp = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

}

template<class InputIterator1, class InputIterator2, class OutputIterator>
constexpr OutputIterator

set_intersection(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class InputIterator1, class InputIterator2, class OutputIterator, class Compare>
constexpr OutputIterator

set_intersection(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator>

ForwardIterator
set_intersection(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
ForwardIterator result);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator, class Compare>

ForwardIterator
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set_intersection(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
ForwardIterator result, Compare comp);

namespace ranges {
template<class I1, class I2, class O>

using set_intersection_result = in_in_out_result<I1, I2, O>;

template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
weakly_incrementable O, class Comp = ranges::less,
class Proj1 = identity, class Proj2 = identity>

requires mergeable<I1, I2, O, Comp, Proj1, Proj2>
constexpr set_intersection_result<I1, I2, O>

set_intersection(I1 first1, S1 last1, I2 first2, S2 last2, O result,
Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});

template<input_range R1, input_range R2, weakly_incrementable O,
class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity>

requires mergeable<iterator_t<R1>, iterator_t<R2>, O, Comp, Proj1, Proj2>
constexpr set_intersection_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>, O>

set_intersection(R1&& r1, R2&& r2, O result,
Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});

}

template<class InputIterator1, class InputIterator2, class OutputIterator>
constexpr OutputIterator

set_difference(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class InputIterator1, class InputIterator2, class OutputIterator, class Compare>
constexpr OutputIterator

set_difference(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator>

ForwardIterator
set_difference(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
ForwardIterator result);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator, class Compare>

ForwardIterator
set_difference(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
ForwardIterator result, Compare comp);

namespace ranges {
template<class I, class O>

using set_difference_result = in_out_result<I, O>;

template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
weakly_incrementable O, class Comp = ranges::less,
class Proj1 = identity, class Proj2 = identity>

requires mergeable<I1, I2, O, Comp, Proj1, Proj2>
constexpr set_difference_result<I1, O>

set_difference(I1 first1, S1 last1, I2 first2, S2 last2, O result,
Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});

template<input_range R1, input_range R2, weakly_incrementable O,
class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity>

requires mergeable<iterator_t<R1>, iterator_t<R2>, O, Comp, Proj1, Proj2>
constexpr set_difference_result<borrowed_iterator_t<R1>, O>
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set_difference(R1&& r1, R2&& r2, O result,
Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});

}

template<class InputIterator1, class InputIterator2, class OutputIterator>
constexpr OutputIterator

set_symmetric_difference(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class InputIterator1, class InputIterator2, class OutputIterator, class Compare>
constexpr OutputIterator

set_symmetric_difference(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator>

ForwardIterator
set_symmetric_difference(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
ForwardIterator result);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator, class Compare>

ForwardIterator
set_symmetric_difference(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
ForwardIterator result, Compare comp);

namespace ranges {
template<class I1, class I2, class O>

using set_symmetric_difference_result = in_in_out_result<I1, I2, O>;

template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
weakly_incrementable O, class Comp = ranges::less,
class Proj1 = identity, class Proj2 = identity>

requires mergeable<I1, I2, O, Comp, Proj1, Proj2>
constexpr set_symmetric_difference_result<I1, I2, O>

set_symmetric_difference(I1 first1, S1 last1, I2 first2, S2 last2, O result,
Comp comp = {}, Proj1 proj1 = {},
Proj2 proj2 = {});

template<input_range R1, input_range R2, weakly_incrementable O,
class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity>

requires mergeable<iterator_t<R1>, iterator_t<R2>, O, Comp, Proj1, Proj2>
constexpr set_symmetric_difference_result<borrowed_iterator_t<R1>,

borrowed_iterator_t<R2>, O>
set_symmetric_difference(R1&& r1, R2&& r2, O result, Comp comp = {},

Proj1 proj1 = {}, Proj2 proj2 = {});
}

// 27.8.8, heap operations
template<class RandomAccessIterator>

constexpr void push_heap(RandomAccessIterator first, RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>

constexpr void push_heap(RandomAccessIterator first, RandomAccessIterator last,
Compare comp);

namespace ranges {
template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,

class Proj = identity>
requires sortable<I, Comp, Proj>
constexpr I

push_heap(I first, S last, Comp comp = {}, Proj proj = {});
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template<random_access_range R, class Comp = ranges::less, class Proj = identity>
requires sortable<iterator_t<R>, Comp, Proj>
constexpr borrowed_iterator_t<R>

push_heap(R&& r, Comp comp = {}, Proj proj = {});
}

template<class RandomAccessIterator>
constexpr void pop_heap(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
constexpr void pop_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

namespace ranges {
template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,

class Proj = identity>
requires sortable<I, Comp, Proj>
constexpr I

pop_heap(I first, S last, Comp comp = {}, Proj proj = {});
template<random_access_range R, class Comp = ranges::less, class Proj = identity>

requires sortable<iterator_t<R>, Comp, Proj>
constexpr borrowed_iterator_t<R>

pop_heap(R&& r, Comp comp = {}, Proj proj = {});
}

template<class RandomAccessIterator>
constexpr void make_heap(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
constexpr void make_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

namespace ranges {
template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,

class Proj = identity>
requires sortable<I, Comp, Proj>
constexpr I

make_heap(I first, S last, Comp comp = {}, Proj proj = {});
template<random_access_range R, class Comp = ranges::less, class Proj = identity>

requires sortable<iterator_t<R>, Comp, Proj>
constexpr borrowed_iterator_t<R>

make_heap(R&& r, Comp comp = {}, Proj proj = {});
}

template<class RandomAccessIterator>
constexpr void sort_heap(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
constexpr void sort_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

namespace ranges {
template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,

class Proj = identity>
requires sortable<I, Comp, Proj>
constexpr I

sort_heap(I first, S last, Comp comp = {}, Proj proj = {});
template<random_access_range R, class Comp = ranges::less, class Proj = identity>

requires sortable<iterator_t<R>, Comp, Proj>
constexpr borrowed_iterator_t<R>

sort_heap(R&& r, Comp comp = {}, Proj proj = {});
}

template<class RandomAccessIterator>
constexpr bool is_heap(RandomAccessIterator first, RandomAccessIterator last);
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template<class RandomAccessIterator, class Compare>
constexpr bool is_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);
template<class ExecutionPolicy, class RandomAccessIterator>

bool is_heap(ExecutionPolicy&& exec, // see 27.3.5
RandomAccessIterator first, RandomAccessIterator last);

template<class ExecutionPolicy, class RandomAccessIterator, class Compare>
bool is_heap(ExecutionPolicy&& exec, // see 27.3.5

RandomAccessIterator first, RandomAccessIterator last,
Compare comp);

namespace ranges {
template<random_access_iterator I, sentinel_for<I> S, class Proj = identity,

indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>
constexpr bool is_heap(I first, S last, Comp comp = {}, Proj proj = {});

template<random_access_range R, class Proj = identity,
indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>

constexpr bool is_heap(R&& r, Comp comp = {}, Proj proj = {});
}

template<class RandomAccessIterator>
constexpr RandomAccessIterator

is_heap_until(RandomAccessIterator first, RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>

constexpr RandomAccessIterator
is_heap_until(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);
template<class ExecutionPolicy, class RandomAccessIterator>

RandomAccessIterator
is_heap_until(ExecutionPolicy&& exec, // see 27.3.5

RandomAccessIterator first, RandomAccessIterator last);
template<class ExecutionPolicy, class RandomAccessIterator, class Compare>

RandomAccessIterator
is_heap_until(ExecutionPolicy&& exec, // see 27.3.5

RandomAccessIterator first, RandomAccessIterator last,
Compare comp);

namespace ranges {
template<random_access_iterator I, sentinel_for<I> S, class Proj = identity,

indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>
constexpr I is_heap_until(I first, S last, Comp comp = {}, Proj proj = {});

template<random_access_range R, class Proj = identity,
indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>

constexpr borrowed_iterator_t<R>
is_heap_until(R&& r, Comp comp = {}, Proj proj = {});

}

// 27.8.9, minimum and maximum
template<class T> constexpr const T& min(const T& a, const T& b);
template<class T, class Compare>

constexpr const T& min(const T& a, const T& b, Compare comp);
template<class T>

constexpr T min(initializer_list<T> t);
template<class T, class Compare>

constexpr T min(initializer_list<T> t, Compare comp);

namespace ranges {
template<class T, class Proj = identity,

indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>
constexpr const T& min(const T& a, const T& b, Comp comp = {}, Proj proj = {});

template<copyable T, class Proj = identity,
indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>

constexpr T min(initializer_list<T> r, Comp comp = {}, Proj proj = {});
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template<input_range R, class Proj = identity,
indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>

requires indirectly_copyable_storable<iterator_t<R>, range_value_t<R>*>
constexpr range_value_t<R>

min(R&& r, Comp comp = {}, Proj proj = {});
}

template<class T> constexpr const T& max(const T& a, const T& b);
template<class T, class Compare>

constexpr const T& max(const T& a, const T& b, Compare comp);
template<class T>

constexpr T max(initializer_list<T> t);
template<class T, class Compare>

constexpr T max(initializer_list<T> t, Compare comp);

namespace ranges {
template<class T, class Proj = identity,

indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>
constexpr const T& max(const T& a, const T& b, Comp comp = {}, Proj proj = {});

template<copyable T, class Proj = identity,
indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>

constexpr T max(initializer_list<T> r, Comp comp = {}, Proj proj = {});
template<input_range R, class Proj = identity,

indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>
requires indirectly_copyable_storable<iterator_t<R>, range_value_t<R>*>
constexpr range_value_t<R>

max(R&& r, Comp comp = {}, Proj proj = {});
}

template<class T> constexpr pair<const T&, const T&> minmax(const T& a, const T& b);
template<class T, class Compare>

constexpr pair<const T&, const T&> minmax(const T& a, const T& b, Compare comp);
template<class T>

constexpr pair<T, T> minmax(initializer_list<T> t);
template<class T, class Compare>

constexpr pair<T, T> minmax(initializer_list<T> t, Compare comp);

namespace ranges {
template<class T>

using minmax_result = min_max_result<T>;

template<class T, class Proj = identity,
indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>

constexpr minmax_result<const T&>
minmax(const T& a, const T& b, Comp comp = {}, Proj proj = {});

template<copyable T, class Proj = identity,
indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>

constexpr minmax_result<T>
minmax(initializer_list<T> r, Comp comp = {}, Proj proj = {});

template<input_range R, class Proj = identity,
indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>

requires indirectly_copyable_storable<iterator_t<R>, range_value_t<R>*>
constexpr minmax_result<range_value_t<R>>

minmax(R&& r, Comp comp = {}, Proj proj = {});
}

template<class ForwardIterator>
constexpr ForwardIterator min_element(ForwardIterator first, ForwardIterator last);

template<class ForwardIterator, class Compare>
constexpr ForwardIterator min_element(ForwardIterator first, ForwardIterator last,

Compare comp);
template<class ExecutionPolicy, class ForwardIterator>

ForwardIterator min_element(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, ForwardIterator last);
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template<class ExecutionPolicy, class ForwardIterator, class Compare>
ForwardIterator min_element(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last,
Compare comp);

namespace ranges {
template<forward_iterator I, sentinel_for<I> S, class Proj = identity,

indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>
constexpr I min_element(I first, S last, Comp comp = {}, Proj proj = {});

template<forward_range R, class Proj = identity,
indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>

constexpr borrowed_iterator_t<R>
min_element(R&& r, Comp comp = {}, Proj proj = {});

}

template<class ForwardIterator>
constexpr ForwardIterator max_element(ForwardIterator first, ForwardIterator last);

template<class ForwardIterator, class Compare>
constexpr ForwardIterator max_element(ForwardIterator first, ForwardIterator last,

Compare comp);
template<class ExecutionPolicy, class ForwardIterator>

ForwardIterator max_element(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, ForwardIterator last);

template<class ExecutionPolicy, class ForwardIterator, class Compare>
ForwardIterator max_element(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last,
Compare comp);

namespace ranges {
template<forward_iterator I, sentinel_for<I> S, class Proj = identity,

indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>
constexpr I max_element(I first, S last, Comp comp = {}, Proj proj = {});

template<forward_range R, class Proj = identity,
indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>

constexpr borrowed_iterator_t<R>
max_element(R&& r, Comp comp = {}, Proj proj = {});

}

template<class ForwardIterator>
constexpr pair<ForwardIterator, ForwardIterator>

minmax_element(ForwardIterator first, ForwardIterator last);
template<class ForwardIterator, class Compare>

constexpr pair<ForwardIterator, ForwardIterator>
minmax_element(ForwardIterator first, ForwardIterator last, Compare comp);

template<class ExecutionPolicy, class ForwardIterator>
pair<ForwardIterator, ForwardIterator>

minmax_element(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, ForwardIterator last);

template<class ExecutionPolicy, class ForwardIterator, class Compare>
pair<ForwardIterator, ForwardIterator>

minmax_element(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, ForwardIterator last, Compare comp);

namespace ranges {
template<class I>

using minmax_element_result = min_max_result<I>;

template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>

constexpr minmax_element_result<I>
minmax_element(I first, S last, Comp comp = {}, Proj proj = {});

template<forward_range R, class Proj = identity,
indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>

constexpr minmax_element_result<borrowed_iterator_t<R>>
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minmax_element(R&& r, Comp comp = {}, Proj proj = {});
}

// 27.8.10, bounded value
template<class T>

constexpr const T& clamp(const T& v, const T& lo, const T& hi);
template<class T, class Compare>

constexpr const T& clamp(const T& v, const T& lo, const T& hi, Compare comp);

namespace ranges {
template<class T, class Proj = identity,

indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>
constexpr const T&

clamp(const T& v, const T& lo, const T& hi, Comp comp = {}, Proj proj = {});
}

// 27.8.11, lexicographical comparison
template<class InputIterator1, class InputIterator2>

constexpr bool
lexicographical_compare(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2);
template<class InputIterator1, class InputIterator2, class Compare>

constexpr bool
lexicographical_compare(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
Compare comp);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
bool

lexicographical_compare(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class Compare>

bool
lexicographical_compare(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
Compare comp);

namespace ranges {
template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,

class Proj1 = identity, class Proj2 = identity,
indirect_strict_weak_order<projected<I1, Proj1>, projected<I2, Proj2>> Comp =

ranges::less>
constexpr bool

lexicographical_compare(I1 first1, S1 last1, I2 first2, S2 last2,
Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});

template<input_range R1, input_range R2, class Proj1 = identity,
class Proj2 = identity,
indirect_strict_weak_order<projected<iterator_t<R1>, Proj1>,

projected<iterator_t<R2>, Proj2>> Comp = ranges::less>
constexpr bool

lexicographical_compare(R1&& r1, R2&& r2, Comp comp = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

}

// 27.8.12, three-way comparison algorithms
template<class InputIterator1, class InputIterator2, class Cmp>

constexpr auto
lexicographical_compare_three_way(InputIterator1 b1, InputIterator1 e1,

InputIterator2 b2, InputIterator2 e2,
Cmp comp)

-> decltype(comp(*b1, *b2));
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template<class InputIterator1, class InputIterator2>
constexpr auto

lexicographical_compare_three_way(InputIterator1 b1, InputIterator1 e1,
InputIterator2 b2, InputIterator2 e2);

// 27.8.13, permutations
template<class BidirectionalIterator>

constexpr bool next_permutation(BidirectionalIterator first,
BidirectionalIterator last);

template<class BidirectionalIterator, class Compare>
constexpr bool next_permutation(BidirectionalIterator first,

BidirectionalIterator last, Compare comp);

namespace ranges {
template<class I>

using next_permutation_result = in_found_result<I>;

template<bidirectional_iterator I, sentinel_for<I> S, class Comp = ranges::less,
class Proj = identity>

requires sortable<I, Comp, Proj>
constexpr next_permutation_result<I>

next_permutation(I first, S last, Comp comp = {}, Proj proj = {});
template<bidirectional_range R, class Comp = ranges::less,

class Proj = identity>
requires sortable<iterator_t<R>, Comp, Proj>
constexpr next_permutation_result<borrowed_iterator_t<R>>

next_permutation(R&& r, Comp comp = {}, Proj proj = {});
}

template<class BidirectionalIterator>
constexpr bool prev_permutation(BidirectionalIterator first,

BidirectionalIterator last);
template<class BidirectionalIterator, class Compare>

constexpr bool prev_permutation(BidirectionalIterator first,
BidirectionalIterator last, Compare comp);

namespace ranges {
template<class I>

using prev_permutation_result = in_found_result<I>;

template<bidirectional_iterator I, sentinel_for<I> S, class Comp = ranges::less,
class Proj = identity>

requires sortable<I, Comp, Proj>
constexpr prev_permutation_result<I>

prev_permutation(I first, S last, Comp comp = {}, Proj proj = {});
template<bidirectional_range R, class Comp = ranges::less,

class Proj = identity>
requires sortable<iterator_t<R>, Comp, Proj>
constexpr prev_permutation_result<borrowed_iterator_t<R>>

prev_permutation(R&& r, Comp comp = {}, Proj proj = {});
}

}

27.5 Algorithm result types [algorithms.results]
1 Each of the class templates specified in this subclause has the template parameters, data members, and

special members specified below, and has no base classes or members other than those specified.
namespace std::ranges {

template<class I, class F>
struct in_fun_result {

[[no_unique_address]] I in;
[[no_unique_address]] F fun;
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template<class I2, class F2>
requires convertible_to<const I&, I2> && convertible_to<const F&, F2>

constexpr operator in_fun_result<I2, F2>() const & {
return {in, fun};

}

template<class I2, class F2>
requires convertible_to<I, I2> && convertible_to<F, F2>

constexpr operator in_fun_result<I2, F2>() && {
return {std::move(in), std::move(fun)};

}
};

template<class I1, class I2>
struct in_in_result {

[[no_unique_address]] I1 in1;
[[no_unique_address]] I2 in2;

template<class II1, class II2>
requires convertible_to<const I1&, II1> && convertible_to<const I2&, II2>

constexpr operator in_in_result<II1, II2>() const & {
return {in1, in2};

}

template<class II1, class II2>
requires convertible_to<I1, II1> && convertible_to<I2, II2>

constexpr operator in_in_result<II1, II2>() && {
return {std::move(in1), std::move(in2)};

}
};

template<class I, class O>
struct in_out_result {

[[no_unique_address]] I in;
[[no_unique_address]] O out;

template<class I2, class O2>
requires convertible_to<const I&, I2> && convertible_to<const O&, O2>

constexpr operator in_out_result<I2, O2>() const & {
return {in, out};

}

template<class I2, class O2>
requires convertible_to<I, I2> && convertible_to<O, O2>

constexpr operator in_out_result<I2, O2>() && {
return {std::move(in), std::move(out)};

}
};

template<class I1, class I2, class O>
struct in_in_out_result {

[[no_unique_address]] I1 in1;
[[no_unique_address]] I2 in2;
[[no_unique_address]] O out;

template<class II1, class II2, class OO>
requires convertible_to<const I1&, II1> &&

convertible_to<const I2&, II2> &&
convertible_to<const O&, OO>

constexpr operator in_in_out_result<II1, II2, OO>() const & {
return {in1, in2, out};

}
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template<class II1, class II2, class OO>
requires convertible_to<I1, II1> &&

convertible_to<I2, II2> &&
convertible_to<O, OO>

constexpr operator in_in_out_result<II1, II2, OO>() && {
return {std::move(in1), std::move(in2), std::move(out)};

}
};

template<class I, class O1, class O2>
struct in_out_out_result {

[[no_unique_address]] I in;
[[no_unique_address]] O1 out1;
[[no_unique_address]] O2 out2;

template<class II, class OO1, class OO2>
requires convertible_to<const I&, II> &&

convertible_to<const O1&, OO1> &&
convertible_to<const O2&, OO2>

constexpr operator in_out_out_result<II, OO1, OO2>() const & {
return {in, out1, out2};

}

template<class II, class OO1, class OO2>
requires convertible_to<I, II> &&

convertible_to<O1, OO1> &&
convertible_to<O2, OO2>

constexpr operator in_out_out_result<II, OO1, OO2>() && {
return {std::move(in), std::move(out1), std::move(out2)};

}
};

template<class T>
struct min_max_result {

[[no_unique_address]] T min;
[[no_unique_address]] T max;

template<class T2>
requires convertible_to<const T&, T2>

constexpr operator min_max_result<T2>() const & {
return {min, max};

}

template<class T2>
requires convertible_to<T, T2>

constexpr operator min_max_result<T2>() && {
return {std::move(min), std::move(max)};

}
};

template<class I>
struct in_found_result {

[[no_unique_address]] I in;
bool found;

template<class I2>
requires convertible_to<const I&, I2>

constexpr operator in_found_result<I2>() const & {
return {in, found};

}
template<class I2>

requires convertible_to<I, I2>
constexpr operator in_found_result<I2>() && {

return {std::move(in), found};
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}
};

template<class I, class T>
struct in_value_result {

[[no_unique_address]] I in;
[[no_unique_address]] T value;

template<class I2, class T2>
requires convertible_to<const I&, I2> && convertible_to<const T&, T2>

constexpr operator in_value_result<I2, T2>() const & {
return {in, value};

}

template<class I2, class T2>
requires convertible_to<I, I2> && convertible_to<T, T2>

constexpr operator in_value_result<I2, T2>() && {
return {std::move(in), std::move(value)};

}
};

template<class O, class T>
struct out_value_result {

[[no_unique_address]] O out;
[[no_unique_address]] T value;

template<class O2, class T2>
requires convertible_to<const O&, O2> && convertible_to<const T&, T2>

constexpr operator out_value_result<O2, T2>() const & {
return {out, value};

}

template<class O2, class T2>
requires convertible_to<O, O2> && convertible_to<T, T2>

constexpr operator out_value_result<O2, T2>() && {
return {std::move(out), std::move(value)};

}
};

}

27.6 Non-modifying sequence operations [alg.nonmodifying]
27.6.1 All of [alg.all.of]
template<class InputIterator, class Predicate>

constexpr bool all_of(InputIterator first, InputIterator last, Predicate pred);
template<class ExecutionPolicy, class ForwardIterator, class Predicate>

bool all_of(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last,
Predicate pred);

template<input_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_unary_predicate<projected<I, Proj>> Pred>

constexpr bool ranges::all_of(I first, S last, Pred pred, Proj proj = {});
template<input_range R, class Proj = identity,

indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
constexpr bool ranges::all_of(R&& r, Pred pred, Proj proj = {});

1 Let E be:
—(1.1) pred(*i) for the overloads in namespace std;
—(1.2) invoke(pred, invoke(proj, *i)) for the overloads in namespace ranges.

2 Returns: false if E is false for some iterator i in the range [first, last), and true otherwise.
3 Complexity: At most last - first applications of the predicate and any projection.
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27.6.2 Any of [alg.any.of]
template<class InputIterator, class Predicate>

constexpr bool any_of(InputIterator first, InputIterator last, Predicate pred);
template<class ExecutionPolicy, class ForwardIterator, class Predicate>

bool any_of(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last,
Predicate pred);

template<input_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_unary_predicate<projected<I, Proj>> Pred>

constexpr bool ranges::any_of(I first, S last, Pred pred, Proj proj = {});
template<input_range R, class Proj = identity,

indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
constexpr bool ranges::any_of(R&& r, Pred pred, Proj proj = {});

1 Let E be:
—(1.1) pred(*i) for the overloads in namespace std;
—(1.2) invoke(pred, invoke(proj, *i)) for the overloads in namespace ranges.

2 Returns: true if E is true for some iterator i in the range [first, last), and false otherwise.
3 Complexity: At most last - first applications of the predicate and any projection.

27.6.3 None of [alg.none.of]
template<class InputIterator, class Predicate>

constexpr bool none_of(InputIterator first, InputIterator last, Predicate pred);
template<class ExecutionPolicy, class ForwardIterator, class Predicate>

bool none_of(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last,
Predicate pred);

template<input_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_unary_predicate<projected<I, Proj>> Pred>

constexpr bool ranges::none_of(I first, S last, Pred pred, Proj proj = {});
template<input_range R, class Proj = identity,

indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
constexpr bool ranges::none_of(R&& r, Pred pred, Proj proj = {});

1 Let E be:
—(1.1) pred(*i) for the overloads in namespace std;
—(1.2) invoke(pred, invoke(proj, *i)) for the overloads in namespace ranges.

2 Returns: false if E is true for some iterator i in the range [first, last), and true otherwise.
3 Complexity: At most last - first applications of the predicate and any projection.

27.6.4 Contains [alg.contains]
template<input_iterator I, sentinel_for<I> S, class T, class Proj = identity>

requires indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*>
constexpr bool ranges::contains(I first, S last, const T& value, Proj proj = {});

template<input_range R, class T, class Proj = identity>
requires indirect_binary_predicate<ranges::equal_to, projected<iterator_t<R>, Proj>, const T*>
constexpr bool ranges::contains(R&& r, const T& value, Proj proj = {});

1 Returns: ranges::find(std::move(first), last, value, proj) != last.

template<forward_iterator I1, sentinel_for<I1> S1,
forward_iterator I2, sentinel_for<I2> S2,
class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>

requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
constexpr bool ranges::contains_subrange(I1 first1, S1 last1, I2 first2, S2 last2,

Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
template<forward_range R1, forward_range R2,

class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>
requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
constexpr bool ranges::contains_subrange(R1&& r1, R2&& r2, Pred pred = {},

§ 27.6.4 1320



© ISO/IEC N4950

Proj1 proj1 = {}, Proj2 proj2 = {});

2 Returns: first2 == last2 || !ranges::search(first1, last1, first2, last2, pred, proj1,
proj2).empty().

27.6.5 For each [alg.foreach]
template<class InputIterator, class Function>

constexpr Function for_each(InputIterator first, InputIterator last, Function f);

1 Preconditions: Function meets the Cpp17MoveConstructible requirements (Table 31).
[Note 1 : Function need not meet the requirements of Cpp17CopyConstructible (Table 32). — end note ]

2 Effects: Applies f to the result of dereferencing every iterator in the range [first, last), starting from
first and proceeding to last - 1.
[Note 2 : If the type of first meets the requirements of a mutable iterator, f can apply non-constant functions
through the dereferenced iterator. — end note ]

3 Returns: f.
4 Complexity: Applies f exactly last - first times.
5 Remarks: If f returns a result, the result is ignored.

template<class ExecutionPolicy, class ForwardIterator, class Function>
void for_each(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator last,
Function f);

6 Preconditions: Function meets the Cpp17CopyConstructible requirements.
7 Effects: Applies f to the result of dereferencing every iterator in the range [first, last).

[Note 3 : If the type of first meets the requirements of a mutable iterator, f can apply non-constant functions
through the dereferenced iterator. — end note ]

8 Complexity: Applies f exactly last - first times.
9 Remarks: If f returns a result, the result is ignored. Implementations do not have the freedom granted

under 27.3.3 to make arbitrary copies of elements from the input sequence.
10 [Note 4 : Does not return a copy of its Function parameter, since parallelization often does not permit efficient

state accumulation. — end note ]

template<input_iterator I, sentinel_for<I> S, class Proj = identity,
indirectly_unary_invocable<projected<I, Proj>> Fun>

constexpr ranges::for_each_result<I, Fun>
ranges::for_each(I first, S last, Fun f, Proj proj = {});

template<input_range R, class Proj = identity,
indirectly_unary_invocable<projected<iterator_t<R>, Proj>> Fun>

constexpr ranges::for_each_result<borrowed_iterator_t<R>, Fun>
ranges::for_each(R&& r, Fun f, Proj proj = {});

11 Effects: Calls invoke(f, invoke(proj, *i)) for every iterator i in the range [first, last), starting
from first and proceeding to last - 1.
[Note 5 : If the result of invoke(proj, *i) is a mutable reference, f can apply non-constant functions. — end
note ]

12 Returns: {last, std::move(f)}.
13 Complexity: Applies f and proj exactly last - first times.
14 Remarks: If f returns a result, the result is ignored.
15 [Note 6 : The overloads in namespace ranges require Fun to model copy_constructible. — end note ]

template<class InputIterator, class Size, class Function>
constexpr InputIterator for_each_n(InputIterator first, Size n, Function f);

16 Mandates: The type Size is convertible to an integral type (7.3.9, 11.4.8).
17 Preconditions: n >= 0 is true. Function meets the Cpp17MoveConstructible requirements.

[Note 7 : Function need not meet the requirements of Cpp17CopyConstructible. — end note ]
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18 Effects: Applies f to the result of dereferencing every iterator in the range [first, first + n) in order.
[Note 8 : If the type of first meets the requirements of a mutable iterator, f can apply non-constant functions
through the dereferenced iterator. — end note ]

19 Returns: first + n.
20 Remarks: If f returns a result, the result is ignored.

template<class ExecutionPolicy, class ForwardIterator, class Size, class Function>
ForwardIterator for_each_n(ExecutionPolicy&& exec, ForwardIterator first, Size n,

Function f);

21 Mandates: The type Size is convertible to an integral type (7.3.9, 11.4.8).
22 Preconditions: n >= 0 is true. Function meets the Cpp17CopyConstructible requirements.
23 Effects: Applies f to the result of dereferencing every iterator in the range [first, first + n).

[Note 9 : If the type of first meets the requirements of a mutable iterator, f can apply non-constant functions
through the dereferenced iterator. — end note ]

24 Returns: first + n.
25 Remarks: If f returns a result, the result is ignored. Implementations do not have the freedom granted

under 27.3.3 to make arbitrary copies of elements from the input sequence.

template<input_iterator I, class Proj = identity,
indirectly_unary_invocable<projected<I, Proj>> Fun>

constexpr ranges::for_each_n_result<I, Fun>
ranges::for_each_n(I first, iter_difference_t<I> n, Fun f, Proj proj = {});

26 Preconditions: n >= 0 is true.
27 Effects: Calls invoke(f, invoke(proj, *i)) for every iterator i in the range [first, first + n) in

order.
[Note 10 : If the result of invoke(proj, *i) is a mutable reference, f can apply non-constant functions. — end
note ]

28 Returns: {first + n, std::move(f)}.
29 Remarks: If f returns a result, the result is ignored.
30 [Note 11 : The overload in namespace ranges requires Fun to model copy_constructible. — end note ]

27.6.6 Find [alg.find]
template<class InputIterator, class T>

constexpr InputIterator find(InputIterator first, InputIterator last,
const T& value);

template<class ExecutionPolicy, class ForwardIterator, class T>
ForwardIterator find(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last,

const T& value);

template<class InputIterator, class Predicate>
constexpr InputIterator find_if(InputIterator first, InputIterator last,

Predicate pred);
template<class ExecutionPolicy, class ForwardIterator, class Predicate>

ForwardIterator find_if(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last,
Predicate pred);

template<class InputIterator, class Predicate>
constexpr InputIterator find_if_not(InputIterator first, InputIterator last,

Predicate pred);
template<class ExecutionPolicy, class ForwardIterator, class Predicate>

ForwardIterator find_if_not(ExecutionPolicy&& exec,
ForwardIterator first, ForwardIterator last,
Predicate pred);

template<input_iterator I, sentinel_for<I> S, class T, class Proj = identity>
requires indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*>
constexpr I ranges::find(I first, S last, const T& value, Proj proj = {});
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template<input_range R, class T, class Proj = identity>
requires indirect_binary_predicate<ranges::equal_to, projected<iterator_t<R>, Proj>, const T*>
constexpr borrowed_iterator_t<R>

ranges::find(R&& r, const T& value, Proj proj = {});
template<input_iterator I, sentinel_for<I> S, class Proj = identity,

indirect_unary_predicate<projected<I, Proj>> Pred>
constexpr I ranges::find_if(I first, S last, Pred pred, Proj proj = {});

template<input_range R, class Proj = identity,
indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>

constexpr borrowed_iterator_t<R>
ranges::find_if(R&& r, Pred pred, Proj proj = {});

template<input_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_unary_predicate<projected<I, Proj>> Pred>

constexpr I ranges::find_if_not(I first, S last, Pred pred, Proj proj = {});
template<input_range R, class Proj = identity,

indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
constexpr borrowed_iterator_t<R>

ranges::find_if_not(R&& r, Pred pred, Proj proj = {});

1 Let E be:
—(1.1) *i == value for find;
—(1.2) pred(*i) != false for find_if;
—(1.3) pred(*i) == false for find_if_not;
—(1.4) bool(invoke(proj, *i) == value) for ranges::find;
—(1.5) bool(invoke(pred, invoke(proj, *i))) for ranges::find_if;
—(1.6) bool(!invoke(pred, invoke(proj, *i))) for ranges::find_if_not.

2 Returns: The first iterator i in the range [first, last) for which E is true. Returns last if no such
iterator is found.

3 Complexity: At most last - first applications of the corresponding predicate and any projection.

27.6.7 Find last [alg.find.last]
template<forward_iterator I, sentinel_for<I> S, class T, class Proj = identity>

requires indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*>
constexpr subrange<I> ranges::find_last(I first, S last, const T& value, Proj proj = {});

template<forward_range R, class T, class Proj = identity>
requires indirect_binary_predicate<ranges::equal_to, projected<iterator_t<R>, Proj>, const T*>
constexpr borrowed_subrange_t<R> ranges::find_last(R&& r, const T& value, Proj proj = {});

template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_unary_predicate<projected<I, Proj>> Pred>

constexpr subrange<I> ranges::find_last_if(I first, S last, Pred pred, Proj proj = {});
template<forward_range R, class Proj = identity,

indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
constexpr borrowed_subrange_t<R> ranges::find_last_if(R&& r, Pred pred, Proj proj = {});

template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_unary_predicate<projected<I, Proj>> Pred>

constexpr subrange<I> ranges::find_last_if_not(I first, S last, Pred pred, Proj proj = {});
template<forward_range R, class Proj = identity,

indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
constexpr borrowed_subrange_t<R> ranges::find_last_if_not(R&& r, Pred pred, Proj proj = {});

1 Let E be:
—(1.1) bool(invoke(proj, *i) == value) for ranges::find_last;
—(1.2) bool(invoke(pred, invoke(proj, *i))) for ranges::find_last_if;
—(1.3) bool(!invoke(pred, invoke(proj, *i))) for ranges::find_last_if_not.

2 Returns: Let i be the last iterator in the range [first, last) for which E is true. Returns {i, last},
or {last, last} if no such iterator is found.

3 Complexity: At most last - first applications of the corresponding predicate and projection.
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27.6.8 Find end [alg.find.end]
template<class ForwardIterator1, class ForwardIterator2>

constexpr ForwardIterator1
find_end(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, ForwardIterator2 last2);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>

ForwardIterator1
find_end(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);

template<class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

constexpr ForwardIterator1
find_end(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

ForwardIterator1
find_end(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

template<forward_iterator I1, sentinel_for<I1> S1, forward_iterator I2, sentinel_for<I2> S2,
class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>

requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
constexpr subrange<I1>

ranges::find_end(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

template<forward_range R1, forward_range R2,
class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>

requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
constexpr borrowed_subrange_t<R1>

ranges::find_end(R1&& r1, R2&& r2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

1 Let:
—(1.1) pred be equal_to{} for the overloads with no parameter pred;
—(1.2) E be:

—(1.2.1) pred(*(i + n), *(first2 + n)) for the overloads in namespace std;
—(1.2.2) invoke(pred, invoke(proj1, *(i + n)), invoke(proj2, *(first2 + n))) for the over-

loads in namespace ranges;
—(1.3) i be last1 if [first2, last2) is empty, or if (last2 - first2) > (last1 - first1) is true,

or if there is no iterator in the range [first1, last1 - (last2 - first2)) such that for every
non-negative integer n < (last2 - first2), E is true. Otherwise i is the last such iterator in
[first1, last1 - (last2 - first2)).

2 Returns:
—(2.1) i for the overloads in namespace std.
—(2.2) {i, i + (i == last1 ? 0 : last2 - first2)} for the overloads in namespace ranges.

3 Complexity: At most (last2 - first2) * (last1 - first1 - (last2 - first2) + 1) applica-
tions of the corresponding predicate and any projections.

27.6.9 Find first [alg.find.first.of]
template<class InputIterator, class ForwardIterator>

constexpr InputIterator
find_first_of(InputIterator first1, InputIterator last1,
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ForwardIterator first2, ForwardIterator last2);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>

ForwardIterator1
find_first_of(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);

template<class InputIterator, class ForwardIterator,
class BinaryPredicate>

constexpr InputIterator
find_first_of(InputIterator first1, InputIterator last1,

ForwardIterator first2, ForwardIterator last2,
BinaryPredicate pred);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

ForwardIterator1
find_first_of(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

template<input_iterator I1, sentinel_for<I1> S1, forward_iterator I2, sentinel_for<I2> S2,
class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>

requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
constexpr I1 ranges::find_first_of(I1 first1, S1 last1, I2 first2, S2 last2,

Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

template<input_range R1, forward_range R2,
class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>

requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
constexpr borrowed_iterator_t<R1>

ranges::find_first_of(R1&& r1, R2&& r2,
Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

1 Let E be:
—(1.1) *i == *j for the overloads with no parameter pred;
—(1.2) pred(*i, *j) != false for the overloads with a parameter pred and no parameter proj1;
—(1.3) bool(invoke(pred, invoke(proj1, *i), invoke(proj2, *j))) for the overloads with param-

eters pred and proj1.
2 Effects: Finds an element that matches one of a set of values.
3 Returns: The first iterator i in the range [first1, last1) such that for some iterator j in the range

[first2, last2) E holds. Returns last1 if [first2, last2) is empty or if no such iterator is found.
4 Complexity: At most (last1-first1) * (last2-first2) applications of the corresponding predicate

and any projections.

27.6.10 Adjacent find [alg.adjacent.find]
template<class ForwardIterator>

constexpr ForwardIterator
adjacent_find(ForwardIterator first, ForwardIterator last);

template<class ExecutionPolicy, class ForwardIterator>
ForwardIterator

adjacent_find(ExecutionPolicy&& exec,
ForwardIterator first, ForwardIterator last);

template<class ForwardIterator, class BinaryPredicate>
constexpr ForwardIterator

adjacent_find(ForwardIterator first, ForwardIterator last,
BinaryPredicate pred);
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template<class ExecutionPolicy, class ForwardIterator, class BinaryPredicate>
ForwardIterator

adjacent_find(ExecutionPolicy&& exec,
ForwardIterator first, ForwardIterator last,
BinaryPredicate pred);

template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_binary_predicate<projected<I, Proj>,

projected<I, Proj>> Pred = ranges::equal_to>
constexpr I ranges::adjacent_find(I first, S last, Pred pred = {}, Proj proj = {});

template<forward_range R, class Proj = identity,
indirect_binary_predicate<projected<iterator_t<R>, Proj>,

projected<iterator_t<R>, Proj>> Pred = ranges::equal_to>
constexpr borrowed_iterator_t<R> ranges::adjacent_find(R&& r, Pred pred = {}, Proj proj = {});

1 Let E be:
—(1.1) *i == *(i + 1) for the overloads with no parameter pred;
—(1.2) pred(*i, *(i + 1)) != false for the overloads with a parameter pred and no parameter proj;
—(1.3) bool(invoke(pred, invoke(proj, *i), invoke(proj, *(i + 1)))) for the overloads with

both parameters pred and proj.
2 Returns: The first iterator i such that both i and i + 1 are in the range [first, last) for which E

holds. Returns last if no such iterator is found.
3 Complexity: For the overloads with no ExecutionPolicy, exactly

min((i - first) + 1, (last - first) - 1)

applications of the corresponding predicate, where i is adjacent_find’s return value. For the overloads
with an ExecutionPolicy, O(last - first) applications of the corresponding predicate, and no more
than twice as many applications of any projection.

27.6.11 Count [alg.count]
template<class InputIterator, class T>

constexpr typename iterator_traits<InputIterator>::difference_type
count(InputIterator first, InputIterator last, const T& value);

template<class ExecutionPolicy, class ForwardIterator, class T>
typename iterator_traits<ForwardIterator>::difference_type

count(ExecutionPolicy&& exec,
ForwardIterator first, ForwardIterator last, const T& value);

template<class InputIterator, class Predicate>
constexpr typename iterator_traits<InputIterator>::difference_type

count_if(InputIterator first, InputIterator last, Predicate pred);
template<class ExecutionPolicy, class ForwardIterator, class Predicate>

typename iterator_traits<ForwardIterator>::difference_type
count_if(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator last, Predicate pred);

template<input_iterator I, sentinel_for<I> S, class T, class Proj = identity>
requires indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*>
constexpr iter_difference_t<I>

ranges::count(I first, S last, const T& value, Proj proj = {});
template<input_range R, class T, class Proj = identity>

requires indirect_binary_predicate<ranges::equal_to, projected<iterator_t<R>, Proj>, const T*>
constexpr range_difference_t<R>

ranges::count(R&& r, const T& value, Proj proj = {});
template<input_iterator I, sentinel_for<I> S, class Proj = identity,

indirect_unary_predicate<projected<I, Proj>> Pred>
constexpr iter_difference_t<I>

ranges::count_if(I first, S last, Pred pred, Proj proj = {});
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template<input_range R, class Proj = identity,
indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>

constexpr range_difference_t<R>
ranges::count_if(R&& r, Pred pred, Proj proj = {});

1 Let E be:
—(1.1) *i == value for the overloads with no parameter pred or proj;
—(1.2) pred(*i) != false for the overloads with a parameter pred but no parameter proj;
—(1.3) invoke(proj, *i) == value for the overloads with a parameter proj but no parameter pred;
—(1.4) bool(invoke(pred, invoke(proj, *i))) for the overloads with both parameters proj and

pred.
2 Effects: Returns the number of iterators i in the range [first, last) for which E holds.
3 Complexity: Exactly last - first applications of the corresponding predicate and any projection.

27.6.12 Mismatch [mismatch]
template<class InputIterator1, class InputIterator2>

constexpr pair<InputIterator1, InputIterator2>
mismatch(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>

pair<ForwardIterator1, ForwardIterator2>
mismatch(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2);

template<class InputIterator1, class InputIterator2,
class BinaryPredicate>

constexpr pair<InputIterator1, InputIterator2>
mismatch(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, BinaryPredicate pred);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,

class BinaryPredicate>
pair<ForwardIterator1, ForwardIterator2>

mismatch(ExecutionPolicy&& exec,
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, BinaryPredicate pred);

template<class InputIterator1, class InputIterator2>
constexpr pair<InputIterator1, InputIterator2>

mismatch(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
pair<ForwardIterator1, ForwardIterator2>

mismatch(ExecutionPolicy&& exec,
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);

template<class InputIterator1, class InputIterator2,
class BinaryPredicate>

constexpr pair<InputIterator1, InputIterator2>
mismatch(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
BinaryPredicate pred);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

pair<ForwardIterator1, ForwardIterator2>
mismatch(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);
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template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>

requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
constexpr ranges::mismatch_result<I1, I2>

ranges::mismatch(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

template<input_range R1, input_range R2,
class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>

requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
constexpr ranges::mismatch_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>>

ranges::mismatch(R1&& r1, R2&& r2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

1 Let last2 be first2 + (last1 - first1) for the overloads with no parameter last2 or r2.
2 Let E be:

—(2.1) !(*(first1 + n) == *(first2 + n)) for the overloads with no parameter pred;
—(2.2) pred(*(first1 + n), *(first2 + n)) == false for the overloads with a parameter pred and

no parameter proj1;
—(2.3) !invoke(pred, invoke(proj1, *(first1 + n)), invoke(proj2, *(first2 + n))) for the

overloads with both parameters pred and proj1.
3 Let N be min(last1 - first1, last2 - first2).
4 Returns: { first1 + n, first2 + n }, where n is the smallest integer in [0, N) such that E holds,

or N if no such integer exists.
5 Complexity: At most N applications of the corresponding predicate and any projections.

27.6.13 Equal [alg.equal]
template<class InputIterator1, class InputIterator2>

constexpr bool equal(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
bool equal(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2);

template<class InputIterator1, class InputIterator2,
class BinaryPredicate>

constexpr bool equal(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, BinaryPredicate pred);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

bool equal(ExecutionPolicy&& exec,
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, BinaryPredicate pred);

template<class InputIterator1, class InputIterator2>
constexpr bool equal(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>

bool equal(ExecutionPolicy&& exec,
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);

template<class InputIterator1, class InputIterator2,
class BinaryPredicate>

constexpr bool equal(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
BinaryPredicate pred);
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template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

bool equal(ExecutionPolicy&& exec,
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>

requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
constexpr bool ranges::equal(I1 first1, S1 last1, I2 first2, S2 last2,

Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

template<input_range R1, input_range R2, class Pred = ranges::equal_to,
class Proj1 = identity, class Proj2 = identity>

requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
constexpr bool ranges::equal(R1&& r1, R2&& r2, Pred pred = {},

Proj1 proj1 = {}, Proj2 proj2 = {});

1 Let:
—(1.1) last2 be first2 + (last1 - first1) for the overloads with no parameter last2 or r2;
—(1.2) pred be equal_to{} for the overloads with no parameter pred;
—(1.3) E be:

—(1.3.1) pred(*i, *(first2 + (i - first1))) for the overloads with no parameter proj1;
—(1.3.2) invoke(pred, invoke(proj1, *i), invoke(proj2, *(first2 + (i - first1)))) for

the overloads with parameter proj1.
2 Returns: If last1 - first1 != last2 - first2, return false. Otherwise return true if E holds

for every iterator i in the range [first1, last1). Otherwise, returns false.
3 Complexity: If

—(3.1) the types of first1, last1, first2, and last2 meet the Cpp17RandomAccessIterator require-
ments (25.3.5.7) and last1 - first1 != last2 - first2 for the overloads in namespace std;

—(3.2) the types of first1, last1, first2, and last2 pairwise model sized_sentinel_for (25.3.4.8)
and last1 - first1 != last2 - first2 for the first overload in namespace ranges,

—(3.3) R1 and R2 each model sized_range and ranges::distance(r1) != ranges::distance(r2) for
the second overload in namespace ranges,

then no applications of the corresponding predicate and each projection; otherwise,
—(3.4) For the overloads with no ExecutionPolicy, at most min(last1 - first1, last2 - first2)

applications of the corresponding predicate and any projections.
—(3.5) For the overloads with an ExecutionPolicy, O(min(last1 - first1, last2 - first2)) appli-

cations of the corresponding predicate.

27.6.14 Is permutation [alg.is.permutation]
template<class ForwardIterator1, class ForwardIterator2>

constexpr bool is_permutation(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2);

template<class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

constexpr bool is_permutation(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, BinaryPredicate pred);

template<class ForwardIterator1, class ForwardIterator2>
constexpr bool is_permutation(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, ForwardIterator2 last2);
template<class ForwardIterator1, class ForwardIterator2,

class BinaryPredicate>
constexpr bool is_permutation(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, ForwardIterator2 last2,
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BinaryPredicate pred);

1 Let last2 be first2 + (last1 - first1) for the overloads with no parameter named last2, and
let pred be equal_to{} for the overloads with no parameter pred.

2 Mandates: ForwardIterator1 and ForwardIterator2 have the same value type.
3 Preconditions: The comparison function is an equivalence relation.
4 Returns: If last1 - first1 != last2 - first2, return false. Otherwise return true if there exists

a permutation of the elements in the range [first2, last2), beginning with ForwardIterator2 begin,
such that equal(first1, last1, begin, pred) returns true; otherwise, returns false.

5 Complexity: No applications of the corresponding predicate if ForwardIterator1 and ForwardIter-
ator2 meet the requirements of random access iterators and last1 - first1 != last2 - first2.
Otherwise, exactly last1 - first1 applications of the corresponding predicate if equal(first1,
last1, first2, last2, pred) would return true; otherwise, at worst O(N2), where N has the value
last1 - first1.

template<forward_iterator I1, sentinel_for<I1> S1, forward_iterator I2,
sentinel_for<I2> S2, class Proj1 = identity, class Proj2 = identity,
indirect_equivalence_relation<projected<I1, Proj1>,

projected<I2, Proj2>> Pred = ranges::equal_to>
constexpr bool ranges::is_permutation(I1 first1, S1 last1, I2 first2, S2 last2,

Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

template<forward_range R1, forward_range R2,
class Proj1 = identity, class Proj2 = identity,
indirect_equivalence_relation<projected<iterator_t<R1>, Proj1>,

projected<iterator_t<R2>, Proj2>> Pred = ranges::equal_to>
constexpr bool ranges::is_permutation(R1&& r1, R2&& r2, Pred pred = {},

Proj1 proj1 = {}, Proj2 proj2 = {});

6 Returns: If last1 - first1 != last2 - first2, return false. Otherwise return true if there exists
a permutation of the elements in the range [first2, last2), bounded by [pfirst, plast), such that
ranges::equal(first1, last1, pfirst, plast, pred, proj1, proj2) returns true; otherwise,
returns false.

7 Complexity: No applications of the corresponding predicate and projections if:
—(7.1) for the first overload,

—(7.1.1) S1 and I1 model sized_sentinel_for<S1, I1>,
—(7.1.2) S2 and I2 model sized_sentinel_for<S2, I2>, and
—(7.1.3) last1 - first1 != last2 - first2;

—(7.2) for the second overload, R1 and R2 each model sized_range, and ranges::distance(r1) !=
ranges::distance(r2).

Otherwise, exactly last1 - first1 applications of the corresponding predicate and projections if
ranges::equal(first1, last1, first2, last2, pred, proj1, proj2) would return true; other-
wise, at worst O(N2), where N has the value last1 - first1.

27.6.15 Search [alg.search]
template<class ForwardIterator1, class ForwardIterator2>

constexpr ForwardIterator1
search(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, ForwardIterator2 last2);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>

ForwardIterator1
search(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);
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template<class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

constexpr ForwardIterator1
search(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

ForwardIterator1
search(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

1 Returns: The first iterator i in the range [first1, last1 - (last2-first2)) such that for every non-
negative integer n less than last2 - first2 the following corresponding conditions hold: *(i + n) ==
*(first2 + n), pred(*(i + n), *(first2 + n)) != false. Returns first1 if [first2, last2) is
empty, otherwise returns last1 if no such iterator is found.

2 Complexity: At most (last1 - first1) * (last2 - first2) applications of the corresponding
predicate.

template<forward_iterator I1, sentinel_for<I1> S1, forward_iterator I2,
sentinel_for<I2> S2, class Pred = ranges::equal_to,
class Proj1 = identity, class Proj2 = identity>

requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
constexpr subrange<I1>

ranges::search(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

template<forward_range R1, forward_range R2, class Pred = ranges::equal_to,
class Proj1 = identity, class Proj2 = identity>

requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
constexpr borrowed_subrange_t<R1>

ranges::search(R1&& r1, R2&& r2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

3 Returns:
—(3.1) {i, i + (last2 - first2)}, where i is the first iterator in the range [first1, last1 - (last2

- first2)) such that for every non-negative integer n less than last2 - first2 the condition
bool(invoke(pred, invoke(proj1, *(i + n)), invoke(proj2, *(first2 + n))))

is true.
—(3.2) Returns {last1, last1} if no such iterator exists.

4 Complexity: At most (last1 - first1) * (last2 - first2) applications of the corresponding
predicate and projections.

template<class ForwardIterator, class Size, class T>
constexpr ForwardIterator

search_n(ForwardIterator first, ForwardIterator last,
Size count, const T& value);

template<class ExecutionPolicy, class ForwardIterator, class Size, class T>
ForwardIterator

search_n(ExecutionPolicy&& exec,
ForwardIterator first, ForwardIterator last,
Size count, const T& value);

template<class ForwardIterator, class Size, class T,
class BinaryPredicate>

constexpr ForwardIterator
search_n(ForwardIterator first, ForwardIterator last,

Size count, const T& value,
BinaryPredicate pred);
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template<class ExecutionPolicy, class ForwardIterator, class Size, class T,
class BinaryPredicate>

ForwardIterator
search_n(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator last,
Size count, const T& value,
BinaryPredicate pred);

5 Mandates: The type Size is convertible to an integral type (7.3.9, 11.4.8).
6 Returns: The first iterator i in the range [first, last-count) such that for every non-negative integer

n less than count the following corresponding conditions hold: *(i + n) == value, pred(*(i + n),
value) != false. Returns last if no such iterator is found.

7 Complexity: At most last - first applications of the corresponding predicate.

template<forward_iterator I, sentinel_for<I> S, class T,
class Pred = ranges::equal_to, class Proj = identity>

requires indirectly_comparable<I, const T*, Pred, Proj>
constexpr subrange<I>

ranges::search_n(I first, S last, iter_difference_t<I> count,
const T& value, Pred pred = {}, Proj proj = {});

template<forward_range R, class T, class Pred = ranges::equal_to,
class Proj = identity>

requires indirectly_comparable<iterator_t<R>, const T*, Pred, Proj>
constexpr borrowed_subrange_t<R>

ranges::search_n(R&& r, range_difference_t<R> count,
const T& value, Pred pred = {}, Proj proj = {});

8 Returns: {i, i + count} where i is the first iterator in the range [first, last - count) such
that for every non-negative integer n less than count, the following condition holds: invoke(pred,
invoke(proj, *(i + n)), value). Returns {last, last} if no such iterator is found.

9 Complexity: At most last - first applications of the corresponding predicate and projection.

template<class ForwardIterator, class Searcher>
constexpr ForwardIterator

search(ForwardIterator first, ForwardIterator last, const Searcher& searcher);

10 Effects: Equivalent to: return searcher(first, last).first;
11 Remarks: Searcher need not meet the Cpp17CopyConstructible requirements.

27.6.16 Starts with [alg.starts.with]
template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,

class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>
requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
constexpr bool ranges::starts_with(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},

Proj1 proj1 = {}, Proj2 proj2 = {});
template<input_range R1, input_range R2, class Pred = ranges::equal_to, class Proj1 = identity,

class Proj2 = identity>
requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>
constexpr bool ranges::starts_with(R1&& r1, R2&& r2, Pred pred = {},

Proj1 proj1 = {}, Proj2 proj2 = {});

1 Returns:
ranges::mismatch(std::move(first1), last1, std::move(first2), last2,

pred, proj1, proj2).in2 == last2

27.6.17 Ends with [alg.ends.with]
template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,

class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity>
requires (forward_iterator<I1> || sized_sentinel_for<S1, I1>) &&

(forward_iterator<I2> || sized_sentinel_for<S2, I2>) &&
indirectly_comparable<I1, I2, Pred, Proj1, Proj2>

constexpr bool ranges::ends_with(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},
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Proj1 proj1 = {}, Proj2 proj2 = {});

1 Let N1 be last1 - first1 and N2 be last2 - first2.
2 Returns: false if N1 < N2, otherwise

ranges::equal(std::move(first1) + (N1 - N2), last1, std::move(first2), last2,
pred, proj1, proj2)

template<input_range R1, input_range R2, class Pred = ranges::equal_to, class Proj1 = identity,
class Proj2 = identity>

requires (forward_range<R1> || sized_range<R1>) &&
(forward_range<R2> || sized_range<R2>) &&
indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2>

constexpr bool ranges::ends_with(R1&& r1, R2&& r2, Pred pred = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

3 Let N1 be ranges::distance(r1) and N2 be ranges::distance(r2).
4 Returns: false if N1 < N2, otherwise

ranges::equal(ranges::drop_view(ranges::ref_view(r1), N1 - N2), r2, pred, proj1, proj2)

27.6.18 Fold [alg.fold]
template<input_iterator I, sentinel_for<I> S, class T, indirectly-binary-left-foldable <T, I> F>

constexpr auto ranges::fold_left(I first, S last, T init, F f);
template<input_range R, class T, indirectly-binary-left-foldable <T, iterator_t<R>> F>

constexpr auto ranges::fold_left(R&& r, T init, F f);

1 Returns:
ranges::fold_left_with_iter(std::move(first), last, std::move(init), f).value

template<input_iterator I, sentinel_for<I> S,
indirectly-binary-left-foldable <iter_value_t<I>, I> F>

requires constructible_from<iter_value_t<I>, iter_reference_t<I>>
constexpr auto ranges::fold_left_first(I first, S last, F f);

template<input_range R, indirectly-binary-left-foldable <range_value_t<R>, iterator_t<R>> F>
requires constructible_from<range_value_t<R>, range_reference_t<R>>
constexpr auto ranges::fold_left_first(R&& r, F f);

2 Returns:
ranges::fold_left_first_with_iter(std::move(first), last, f).value

template<bidirectional_iterator I, sentinel_for<I> S, class T,
indirectly-binary-right-foldable <T, I> F>

constexpr auto ranges::fold_right(I first, S last, T init, F f);
template<bidirectional_range R, class T,

indirectly-binary-right-foldable <T, iterator_t<R>> F>
constexpr auto ranges::fold_right(R&& r, T init, F f);

3 Effects: Equivalent to:
using U = decay_t<invoke_result_t<F&, iter_reference_t<I>, T>>;
if (first == last)

return U(std::move(init));
I tail = ranges::next(first, last);
U accum = invoke(f, *--tail, std::move(init));
while (first != tail)

accum = invoke(f, *--tail, std::move(accum));
return accum;

template<bidirectional_iterator I, sentinel_for<I> S,
indirectly-binary-right-foldable <iter_value_t<I>, I> F>

requires constructible_from<iter_value_t<I>, iter_reference_t<I>>
constexpr auto ranges::fold_right_last(I first, S last, F f);

template<bidirectional_range R,
indirectly-binary-right-foldable <range_value_t<R>, iterator_t<R>> F>

requires constructible_from<range_value_t<R>, range_reference_t<R>>
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constexpr auto ranges::fold_right_last(R&& r, F f);

4 Let U be decltype(ranges::fold_right(first, last, iter_value_t<I>(*first), f)).
5 Effects: Equivalent to:

if (first == last)
return optional<U>();

I tail = ranges::prev(ranges::next(first, std::move(last)));
return optional<U>(in_place,

ranges::fold_right(std::move(first), tail, iter_value_t<I>(*tail), std::move(f)));

template<input_iterator I, sentinel_for<I> S, class T,
indirectly-binary-left-foldable <T, I> F>

constexpr see below ranges::fold_left_with_iter(I first, S last, T init, F f);
template<input_range R, class T, indirectly-binary-left-foldable <T, iterator_t<R>> F>

constexpr see below ranges::fold_left_with_iter(R&& r, T init, F f);

6 Let U be decay_t<invoke_result_t<F&, T, iter_reference_t<I>>>.
7 Effects: Equivalent to:

if (first == last)
return {std::move(first), U(std::move(init))};

U accum = invoke(f, std::move(init), *first);
for (++first; first != last; ++first)

accum = invoke(f, std::move(accum), *first);
return {std::move(first), std::move(accum)};

8 Remarks: The return type is fold_left_with_iter_result<I, U> for the first overload and fold_-
left_with_iter_result<borrowed_iterator_t<R>, U> for the second overload.

template<input_iterator I, sentinel_for<I> S,
indirectly-binary-left-foldable <iter_value_t<I>, I> F>

requires constructible_from<iter_value_t<I>, iter_reference_t<I>>
constexpr see below ranges::fold_left_first_with_iter(I first, S last, F f);

template<input_range R, indirectly-binary-left-foldable <range_value_t<R>, iterator_t<R>> F>
requires constructible_from<range_value_t<R>, range_reference_t<R>>
constexpr see below ranges::fold_left_first_with_iter(R&& r, F f);

9 Let U be
decltype(ranges::fold_left(std::move(first), last, iter_value_t<I>(*first), f))

10 Effects: Equivalent to:
if (first == last)

return {std::move(first), optional<U>()};
optional<U> init(in_place, *first);
for (++first; first != last; ++first)

*init = invoke(f, std::move(*init), *first);
return {std::move(first), std::move(init)};

11 Remarks: The return type is fold_left_first_with_iter_result<I, optional<U>> for the first
overload and fold_left_first_with_iter_result<borrowed_iterator_t<R>, optional<U>> for
the second overload.

27.7 Mutating sequence operations [alg.modifying.operations]
27.7.1 Copy [alg.copy]
template<class InputIterator, class OutputIterator>

constexpr OutputIterator copy(InputIterator first, InputIterator last,
OutputIterator result);

template<input_iterator I, sentinel_for<I> S, weakly_incrementable O>
requires indirectly_copyable<I, O>
constexpr ranges::copy_result<I, O> ranges::copy(I first, S last, O result);
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template<input_range R, weakly_incrementable O>
requires indirectly_copyable<iterator_t<R>, O>
constexpr ranges::copy_result<borrowed_iterator_t<R>, O> ranges::copy(R&& r, O result);

1 Let N be last - first.
2 Preconditions: result is not in the range [first, last).
3 Effects: Copies elements in the range [first, last) into the range [result, result + N) starting from

first and proceeding to last. For each non-negative integer n < N , performs *(result + n) =
*(first + n).

4 Returns:
—(4.1) result + N for the overload in namespace std.
—(4.2) {last, result + N} for the overloads in namespace ranges.

5 Complexity: Exactly N assignments.

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
ForwardIterator2 copy(ExecutionPolicy&& policy,

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result);

6 Preconditions: The ranges [first, last) and [result, result + (last - first)) do not overlap.
7 Effects: Copies elements in the range [first, last) into the range [result, result + (last - first)).

For each non-negative integer n < (last - first), performs *(result + n) = *(first + n).
8 Returns: result + (last - first).
9 Complexity: Exactly last - first assignments.

template<class InputIterator, class Size, class OutputIterator>
constexpr OutputIterator copy_n(InputIterator first, Size n,

OutputIterator result);
template<class ExecutionPolicy, class ForwardIterator1, class Size, class ForwardIterator2>

ForwardIterator2 copy_n(ExecutionPolicy&& exec,
ForwardIterator1 first, Size n,
ForwardIterator2 result);

template<input_iterator I, weakly_incrementable O>
requires indirectly_copyable<I, O>
constexpr ranges::copy_n_result<I, O>

ranges::copy_n(I first, iter_difference_t<I> n, O result);

10 Let N be max(0, n).
11 Mandates: The type Size is convertible to an integral type (7.3.9, 11.4.8).
12 Effects: For each non-negative integer i < N , performs *(result + i) = *(first + i).
13 Returns:

—(13.1) result + N for the overloads in namespace std.
—(13.2) {first + N, result + N} for the overload in namespace ranges.

14 Complexity: Exactly N assignments.

template<class InputIterator, class OutputIterator, class Predicate>
constexpr OutputIterator copy_if(InputIterator first, InputIterator last,

OutputIterator result, Predicate pred);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,

class Predicate>
ForwardIterator2 copy_if(ExecutionPolicy&& exec,

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result, Predicate pred);

template<input_iterator I, sentinel_for<I> S, weakly_incrementable O, class Proj = identity,
indirect_unary_predicate<projected<I, Proj>> Pred>

requires indirectly_copyable<I, O>
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constexpr ranges::copy_if_result<I, O>
ranges::copy_if(I first, S last, O result, Pred pred, Proj proj = {});

template<input_range R, weakly_incrementable O, class Proj = identity,
indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>

requires indirectly_copyable<iterator_t<R>, O>
constexpr ranges::copy_if_result<borrowed_iterator_t<R>, O>

ranges::copy_if(R&& r, O result, Pred pred, Proj proj = {});

15 Let E be:
—(15.1) bool(pred(*i)) for the overloads in namespace std;
—(15.2) bool(invoke(pred, invoke(proj, *i))) for the overloads in namespace ranges,

and N be the number of iterators i in the range [first, last) for which the condition E holds.
16 Preconditions: The ranges [first, last) and [result, result + (last - first)) do not overlap.

[Note 1 : For the overload with an ExecutionPolicy, there might be a performance cost if iterator_traits<For-
wardIterator1>::value_type is not Cpp17MoveConstructible (Table 31). — end note ]

17 Effects: Copies all of the elements referred to by the iterator i in the range [first, last) for which E
is true.

18 Returns:
—(18.1) result + N for the overloads in namespace std.
—(18.2) {last, result + N} for the overloads in namespace ranges.

19 Complexity: Exactly last - first applications of the corresponding predicate and any projection.
20 Remarks: Stable (16.4.6.8).

template<class BidirectionalIterator1, class BidirectionalIterator2>
constexpr BidirectionalIterator2

copy_backward(BidirectionalIterator1 first,
BidirectionalIterator1 last,
BidirectionalIterator2 result);

template<bidirectional_iterator I1, sentinel_for<I1> S1, bidirectional_iterator I2>
requires indirectly_copyable<I1, I2>
constexpr ranges::copy_backward_result<I1, I2>

ranges::copy_backward(I1 first, S1 last, I2 result);
template<bidirectional_range R, bidirectional_iterator I>

requires indirectly_copyable<iterator_t<R>, I>
constexpr ranges::copy_backward_result<borrowed_iterator_t<R>, I>

ranges::copy_backward(R&& r, I result);

21 Let N be last - first.
22 Preconditions: result is not in the range (first, last].
23 Effects: Copies elements in the range [first, last) into the range [result - N, result) starting from

last - 1 and proceeding to first.215 For each positive integer n ≤ N , performs *(result - n) =
*(last - n).

24 Returns:
—(24.1) result - N for the overload in namespace std.
—(24.2) {last, result - N} for the overloads in namespace ranges.

25 Complexity: Exactly N assignments.

27.7.2 Move [alg.move]
template<class InputIterator, class OutputIterator>

constexpr OutputIterator move(InputIterator first, InputIterator last,
OutputIterator result);

215) copy_backward can be used instead of copy when last is in the range [result - N, result).
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template<input_iterator I, sentinel_for<I> S, weakly_incrementable O>
requires indirectly_movable<I, O>
constexpr ranges::move_result<I, O>

ranges::move(I first, S last, O result);
template<input_range R, weakly_incrementable O>

requires indirectly_movable<iterator_t<R>, O>
constexpr ranges::move_result<borrowed_iterator_t<R>, O>

ranges::move(R&& r, O result);

1 Let E be
—(1.1) std::move(*(first + n)) for the overload in namespace std;
—(1.2) ranges::iter_move(first + n) for the overloads in namespace ranges.

Let N be last - first.
2 Preconditions: result is not in the range [first, last).
3 Effects: Moves elements in the range [first, last) into the range [result, result + N) starting from

first and proceeding to last. For each non-negative integer n < N , performs *(result + n) = E.
4 Returns:

—(4.1) result + N for the overload in namespace std.
—(4.2) {last, result + N} for the overloads in namespace ranges.

5 Complexity: Exactly N assignments.

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
ForwardIterator2 move(ExecutionPolicy&& policy,

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result);

6 Let N be last - first.
7 Preconditions: The ranges [first, last) and [result, result + N) do not overlap.
8 Effects: Moves elements in the range [first, last) into the range [result, result + N). For each

non-negative integer n < N , performs *(result + n) = std::move(*(first + n)).
9 Returns: result + N .

10 Complexity: Exactly N assignments.

template<class BidirectionalIterator1, class BidirectionalIterator2>
constexpr BidirectionalIterator2

move_backward(BidirectionalIterator1 first, BidirectionalIterator1 last,
BidirectionalIterator2 result);

template<bidirectional_iterator I1, sentinel_for<I1> S1, bidirectional_iterator I2>
requires indirectly_movable<I1, I2>
constexpr ranges::move_backward_result<I1, I2>

ranges::move_backward(I1 first, S1 last, I2 result);
template<bidirectional_range R, bidirectional_iterator I>

requires indirectly_movable<iterator_t<R>, I>
constexpr ranges::move_backward_result<borrowed_iterator_t<R>, I>

ranges::move_backward(R&& r, I result);

11 Let E be
—(11.1) std::move(*(last - n)) for the overload in namespace std;
—(11.2) ranges::iter_move(last - n) for the overloads in namespace ranges.

Let N be last - first.
12 Preconditions: result is not in the range (first, last].
13 Effects: Moves elements in the range [first, last) into the range [result - N, result) starting from

last - 1 and proceeding to first.216 For each positive integer n ≤ N , performs *(result - n) =
E.

216) move_backward can be used instead of move when last is in the range [result - N, result).
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14 Returns:
—(14.1) result - N for the overload in namespace std.
—(14.2) {last, result - N} for the overloads in namespace ranges.

15 Complexity: Exactly N assignments.

27.7.3 Swap [alg.swap]
template<class ForwardIterator1, class ForwardIterator2>

constexpr ForwardIterator2
swap_ranges(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>

ForwardIterator2
swap_ranges(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2);

template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2>
requires indirectly_swappable<I1, I2>
constexpr ranges::swap_ranges_result<I1, I2>

ranges::swap_ranges(I1 first1, S1 last1, I2 first2, S2 last2);
template<input_range R1, input_range R2>

requires indirectly_swappable<iterator_t<R1>, iterator_t<R2>>
constexpr ranges::swap_ranges_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>>

ranges::swap_ranges(R1&& r1, R2&& r2);

1 Let:
—(1.1) last2 be first2 + (last1 - first1) for the overloads with no parameter named last2;
—(1.2) M be min(last1 - first1, last2 - first2).

2 Preconditions: The two ranges [first1, last1) and [first2, last2) do not overlap. For the overloads
in namespace std, *(first1 + n) is swappable with (16.4.4.3) *(first2 + n).

3 Effects: For each non-negative integer n < M performs:
—(3.1) swap(*(first1 + n), *(first2 + n)) for the overloads in namespace std;
—(3.2) ranges::iter_swap(first1 + n, first2 + n) for the overloads in namespace ranges.

4 Returns:
—(4.1) last2 for the overloads in namespace std.
—(4.2) {first1 + M, first2 + M} for the overloads in namespace ranges.

5 Complexity: Exactly M swaps.

template<class ForwardIterator1, class ForwardIterator2>
constexpr void iter_swap(ForwardIterator1 a, ForwardIterator2 b);

6 Preconditions: a and b are dereferenceable. *a is swappable with (16.4.4.3) *b.
7 Effects: As if by swap(*a, *b).

27.7.4 Transform [alg.transform]
template<class InputIterator, class OutputIterator,

class UnaryOperation>
constexpr OutputIterator

transform(InputIterator first1, InputIterator last1,
OutputIterator result, UnaryOperation op);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class UnaryOperation>

ForwardIterator2
transform(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 result, UnaryOperation op);
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template<class InputIterator1, class InputIterator2,
class OutputIterator, class BinaryOperation>

constexpr OutputIterator
transform(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, OutputIterator result,
BinaryOperation binary_op);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator, class BinaryOperation>

ForwardIterator
transform(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator result,
BinaryOperation binary_op);

template<input_iterator I, sentinel_for<I> S, weakly_incrementable O,
copy_constructible F, class Proj = identity>

requires indirectly_writable<O, indirect_result_t<F&, projected<I, Proj>>>
constexpr ranges::unary_transform_result<I, O>

ranges::transform(I first1, S last1, O result, F op, Proj proj = {});
template<input_range R, weakly_incrementable O, copy_constructible F,

class Proj = identity>
requires indirectly_writable<O, indirect_result_t<F&, projected<iterator_t<R>, Proj>>>
constexpr ranges::unary_transform_result<borrowed_iterator_t<R>, O>

ranges::transform(R&& r, O result, F op, Proj proj = {});
template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,

weakly_incrementable O, copy_constructible F, class Proj1 = identity,
class Proj2 = identity>

requires indirectly_writable<O, indirect_result_t<F&, projected<I1, Proj1>,
projected<I2, Proj2>>>

constexpr ranges::binary_transform_result<I1, I2, O>
ranges::transform(I1 first1, S1 last1, I2 first2, S2 last2, O result,

F binary_op, Proj1 proj1 = {}, Proj2 proj2 = {});
template<input_range R1, input_range R2, weakly_incrementable O,

copy_constructible F, class Proj1 = identity, class Proj2 = identity>
requires indirectly_writable<O, indirect_result_t<F&, projected<iterator_t<R1>, Proj1>,

projected<iterator_t<R2>, Proj2>>>
constexpr ranges::binary_transform_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>, O>

ranges::transform(R1&& r1, R2&& r2, O result,
F binary_op, Proj1 proj1 = {}, Proj2 proj2 = {});

1 Let:
—(1.1) last2 be first2 + (last1 - first1) for the overloads with parameter first2 but no parameter

last2;
—(1.2) N be last1 - first1 for unary transforms, or min(last1 - first1, last2 - first2) for

binary transforms;
—(1.3) E be

—(1.3.1) op(*(first1 + (i - result))) for unary transforms defined in namespace std;
—(1.3.2) binary_op(*(first1 + (i - result)), *(first2 + (i - result))) for binary trans-

forms defined in namespace std;
—(1.3.3) invoke(op, invoke(proj, *(first1 + (i - result)))) for unary transforms defined in

namespace ranges;
—(1.3.4) invoke(binary_op, invoke(proj1, *(first1 + (i - result))), invoke(proj2,

*(first2 + (i - result)))) for binary transforms defined in namespace ranges.
2 Preconditions: op and binary_op do not invalidate iterators or subranges, nor modify elements in the

ranges
—(2.1) [first1, first1 + N ],
—(2.2) [first2, first2 + N ], and
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—(2.3) [result, result + N ].217

3 Effects: Assigns through every iterator i in the range [result, result + N) a new corresponding value
equal to E.

4 Returns:
—(4.1) result + N for the overloads defined in namespace std.
—(4.2) {first1 + N, result + N} for unary transforms defined in namespace ranges.
—(4.3) {first1 + N, first2 + N, result + N} for binary transforms defined in namespace ranges.

5 Complexity: Exactly N applications of op or binary_op, and any projections. This requirement also
applies to the overload with an ExecutionPolicy.

6 Remarks: result may be equal to first1 or first2.

27.7.5 Replace [alg.replace]
template<class ForwardIterator, class T>

constexpr void replace(ForwardIterator first, ForwardIterator last,
const T& old_value, const T& new_value);

template<class ExecutionPolicy, class ForwardIterator, class T>
void replace(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator last,
const T& old_value, const T& new_value);

template<class ForwardIterator, class Predicate, class T>
constexpr void replace_if(ForwardIterator first, ForwardIterator last,

Predicate pred, const T& new_value);
template<class ExecutionPolicy, class ForwardIterator, class Predicate, class T>

void replace_if(ExecutionPolicy&& exec,
ForwardIterator first, ForwardIterator last,
Predicate pred, const T& new_value);

template<input_iterator I, sentinel_for<I> S, class T1, class T2, class Proj = identity>
requires indirectly_writable<I, const T2&> &&

indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T1*>
constexpr I

ranges::replace(I first, S last, const T1& old_value, const T2& new_value, Proj proj = {});
template<input_range R, class T1, class T2, class Proj = identity>

requires indirectly_writable<iterator_t<R>, const T2&> &&
indirect_binary_predicate<ranges::equal_to, projected<iterator_t<R>, Proj>, const T1*>

constexpr borrowed_iterator_t<R>
ranges::replace(R&& r, const T1& old_value, const T2& new_value, Proj proj = {});

template<input_iterator I, sentinel_for<I> S, class T, class Proj = identity,
indirect_unary_predicate<projected<I, Proj>> Pred>

requires indirectly_writable<I, const T&>
constexpr I ranges::replace_if(I first, S last, Pred pred, const T& new_value, Proj proj = {});

template<input_range R, class T, class Proj = identity,
indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>

requires indirectly_writable<iterator_t<R>, const T&>
constexpr borrowed_iterator_t<R>

ranges::replace_if(R&& r, Pred pred, const T& new_value, Proj proj = {});

1 Let E be
—(1.1) bool(*i == old_value) for replace;
—(1.2) bool(pred(*i)) for replace_if;
—(1.3) bool(invoke(proj, *i) == old_value) for ranges::replace;
—(1.4) bool(invoke(pred, invoke(proj, *i))) for ranges::replace_if.

217) The use of fully closed ranges is intentional.
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2 Mandates: new_value is writable (25.3.1) to first.
3 Effects: Substitutes elements referred by the iterator i in the range [first, last) with new_value,

when E is true.
4 Returns: last for the overloads in namespace ranges.
5 Complexity: Exactly last - first applications of the corresponding predicate and any projection.

template<class InputIterator, class OutputIterator, class T>
constexpr OutputIterator

replace_copy(InputIterator first, InputIterator last,
OutputIterator result,
const T& old_value, const T& new_value);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2, class T>
ForwardIterator2

replace_copy(ExecutionPolicy&& exec,
ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result,
const T& old_value, const T& new_value);

template<class InputIterator, class OutputIterator, class Predicate, class T>
constexpr OutputIterator

replace_copy_if(InputIterator first, InputIterator last,
OutputIterator result,
Predicate pred, const T& new_value);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class Predicate, class T>

ForwardIterator2
replace_copy_if(ExecutionPolicy&& exec,

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result,
Predicate pred, const T& new_value);

template<input_iterator I, sentinel_for<I> S, class T1, class T2, output_iterator<const T2&> O,
class Proj = identity>

requires indirectly_copyable<I, O> &&
indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T1*>

constexpr ranges::replace_copy_result<I, O>
ranges::replace_copy(I first, S last, O result, const T1& old_value, const T2& new_value,

Proj proj = {});
template<input_range R, class T1, class T2, output_iterator<const T2&> O,

class Proj = identity>
requires indirectly_copyable<iterator_t<R>, O> &&

indirect_binary_predicate<ranges::equal_to, projected<iterator_t<R>, Proj>, const T1*>
constexpr ranges::replace_copy_result<borrowed_iterator_t<R>, O>

ranges::replace_copy(R&& r, O result, const T1& old_value, const T2& new_value,
Proj proj = {});

template<input_iterator I, sentinel_for<I> S, class T, output_iterator<const T&> O,
class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred>

requires indirectly_copyable<I, O>
constexpr ranges::replace_copy_if_result<I, O>

ranges::replace_copy_if(I first, S last, O result, Pred pred, const T& new_value,
Proj proj = {});

template<input_range R, class T, output_iterator<const T&> O, class Proj = identity,
indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>

requires indirectly_copyable<iterator_t<R>, O>
constexpr ranges::replace_copy_if_result<borrowed_iterator_t<R>, O>

ranges::replace_copy_if(R&& r, O result, Pred pred, const T& new_value,
Proj proj = {});

6 Let E be
—(6.1) bool(*(first + (i - result)) == old_value) for replace_copy;
—(6.2) bool(pred(*(first + (i - result)))) for replace_copy_if;
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—(6.3) bool(invoke(proj, *(first + (i - result))) == old_value) for ranges::replace_copy;
—(6.4) bool(invoke(pred, invoke(proj, *(first + (i - result))))) for ranges::replace_-

copy_if.
7 Mandates: The results of the expressions *first and new_value are writable (25.3.1) to result.
8 Preconditions: The ranges [first, last) and [result, result + (last - first)) do not overlap.
9 Effects: Assigns through every iterator i in the range [result, result + (last - first)) a new

corresponding value
—(9.1) new_value if E is true or
—(9.2) *(first + (i - result)) otherwise.

10 Returns:
—(10.1) result + (last - first) for the overloads in namespace std.
—(10.2) {last, result + (last - first)} for the overloads in namespace ranges.

11 Complexity: Exactly last - first applications of the corresponding predicate and any projection.

27.7.6 Fill [alg.fill]
template<class ForwardIterator, class T>

constexpr void fill(ForwardIterator first, ForwardIterator last, const T& value);
template<class ExecutionPolicy, class ForwardIterator, class T>

void fill(ExecutionPolicy&& exec,
ForwardIterator first, ForwardIterator last, const T& value);

template<class OutputIterator, class Size, class T>
constexpr OutputIterator fill_n(OutputIterator first, Size n, const T& value);

template<class ExecutionPolicy, class ForwardIterator, class Size, class T>
ForwardIterator fill_n(ExecutionPolicy&& exec,

ForwardIterator first, Size n, const T& value);

template<class T, output_iterator<const T&> O, sentinel_for<O> S>
constexpr O ranges::fill(O first, S last, const T& value);

template<class T, output_range<const T&> R>
constexpr borrowed_iterator_t<R> ranges::fill(R&& r, const T& value);

template<class T, output_iterator<const T&> O>
constexpr O ranges::fill_n(O first, iter_difference_t<O> n, const T& value);

1 Let N be max(0, n) for the fill_n algorithms, and last - first for the fill algorithms.
2 Mandates: The expression value is writable (25.3.1) to the output iterator. The type Size is convertible

to an integral type (7.3.9, 11.4.8).
3 Effects: Assigns value through all the iterators in the range [first, first + N).
4 Returns: first + N .
5 Complexity: Exactly N assignments.

27.7.7 Generate [alg.generate]
template<class ForwardIterator, class Generator>

constexpr void generate(ForwardIterator first, ForwardIterator last,
Generator gen);

template<class ExecutionPolicy, class ForwardIterator, class Generator>
void generate(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator last,
Generator gen);

template<class OutputIterator, class Size, class Generator>
constexpr OutputIterator generate_n(OutputIterator first, Size n, Generator gen);

template<class ExecutionPolicy, class ForwardIterator, class Size, class Generator>
ForwardIterator generate_n(ExecutionPolicy&& exec,

ForwardIterator first, Size n, Generator gen);
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template<input_or_output_iterator O, sentinel_for<O> S, copy_constructible F>
requires invocable<F&> && indirectly_writable<O, invoke_result_t<F&>>
constexpr O ranges::generate(O first, S last, F gen);

template<class R, copy_constructible F>
requires invocable<F&> && output_range<R, invoke_result_t<F&>>
constexpr borrowed_iterator_t<R> ranges::generate(R&& r, F gen);

template<input_or_output_iterator O, copy_constructible F>
requires invocable<F&> && indirectly_writable<O, invoke_result_t<F&>>
constexpr O ranges::generate_n(O first, iter_difference_t<O> n, F gen);

1 Let N be max(0, n) for the generate_n algorithms, and last - first for the generate algorithms.
2 Mandates: Size is convertible to an integral type (7.3.9, 11.4.8).
3 Effects: Assigns the result of successive evaluations of gen() through each iterator in the range

[first, first + N).
4 Returns: first + N .
5 Complexity: Exactly N evaluations of gen() and assignments.

27.7.8 Remove [alg.remove]
template<class ForwardIterator, class T>

constexpr ForwardIterator remove(ForwardIterator first, ForwardIterator last,
const T& value);

template<class ExecutionPolicy, class ForwardIterator, class T>
ForwardIterator remove(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator last,
const T& value);

template<class ForwardIterator, class Predicate>
constexpr ForwardIterator remove_if(ForwardIterator first, ForwardIterator last,

Predicate pred);
template<class ExecutionPolicy, class ForwardIterator, class Predicate>

ForwardIterator remove_if(ExecutionPolicy&& exec,
ForwardIterator first, ForwardIterator last,
Predicate pred);

template<permutable I, sentinel_for<I> S, class T, class Proj = identity>
requires indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*>
constexpr subrange<I> ranges::remove(I first, S last, const T& value, Proj proj = {});

template<forward_range R, class T, class Proj = identity>
requires permutable<iterator_t<R>> &&

indirect_binary_predicate<ranges::equal_to, projected<iterator_t<R>, Proj>, const T*>
constexpr borrowed_subrange_t<R>

ranges::remove(R&& r, const T& value, Proj proj = {});
template<permutable I, sentinel_for<I> S, class Proj = identity,

indirect_unary_predicate<projected<I, Proj>> Pred>
constexpr subrange<I> ranges::remove_if(I first, S last, Pred pred, Proj proj = {});

template<forward_range R, class Proj = identity,
indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>

requires permutable<iterator_t<R>>
constexpr borrowed_subrange_t<R>

ranges::remove_if(R&& r, Pred pred, Proj proj = {});

1 Let E be
—(1.1) bool(*i == value) for remove;
—(1.2) bool(pred(*i)) for remove_if;
—(1.3) bool(invoke(proj, *i) == value) for ranges::remove;
—(1.4) bool(invoke(pred, invoke(proj, *i))) for ranges::remove_if.

2 Preconditions: For the algorithms in namespace std, the type of *first meets the Cpp17MoveAssignable
requirements (Table 33).
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3 Effects: Eliminates all the elements referred to by iterator i in the range [first, last) for which E
holds.

4 Returns: Let j be the end of the resulting range. Returns:
—(4.1) j for the overloads in namespace std.
—(4.2) {j, last} for the overloads in namespace ranges.

5 Complexity: Exactly last - first applications of the corresponding predicate and any projection.
6 Remarks: Stable (16.4.6.8).
7 [Note 1 : Each element in the range [ret, last), where ret is the returned value, has a valid but unspecified

state, because the algorithms can eliminate elements by moving from elements that were originally in that
range. — end note ]

template<class InputIterator, class OutputIterator, class T>
constexpr OutputIterator

remove_copy(InputIterator first, InputIterator last,
OutputIterator result, const T& value);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class T>

ForwardIterator2
remove_copy(ExecutionPolicy&& exec,

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result, const T& value);

template<class InputIterator, class OutputIterator, class Predicate>
constexpr OutputIterator

remove_copy_if(InputIterator first, InputIterator last,
OutputIterator result, Predicate pred);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class Predicate>

ForwardIterator2
remove_copy_if(ExecutionPolicy&& exec,

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result, Predicate pred);

template<input_iterator I, sentinel_for<I> S, weakly_incrementable O, class T,
class Proj = identity>

requires indirectly_copyable<I, O> &&
indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*>

constexpr ranges::remove_copy_result<I, O>
ranges::remove_copy(I first, S last, O result, const T& value, Proj proj = {});

template<input_range R, weakly_incrementable O, class T, class Proj = identity>
requires indirectly_copyable<iterator_t<R>, O> &&

indirect_binary_predicate<ranges::equal_to, projected<iterator_t<R>, Proj>, const T*>
constexpr ranges::remove_copy_result<borrowed_iterator_t<R>, O>

ranges::remove_copy(R&& r, O result, const T& value, Proj proj = {});
template<input_iterator I, sentinel_for<I> S, weakly_incrementable O,

class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred>
requires indirectly_copyable<I, O>
constexpr ranges::remove_copy_if_result<I, O>

ranges::remove_copy_if(I first, S last, O result, Pred pred, Proj proj = {});
template<input_range R, weakly_incrementable O, class Proj = identity,

indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
requires indirectly_copyable<iterator_t<R>, O>
constexpr ranges::remove_copy_if_result<borrowed_iterator_t<R>, O>

ranges::remove_copy_if(R&& r, O result, Pred pred, Proj proj = {});

8 Let E be
—(8.1) bool(*i == value) for remove_copy;
—(8.2) bool(pred(*i)) for remove_copy_if;
—(8.3) bool(invoke(proj, *i) == value) for ranges::remove_copy;
—(8.4) bool(invoke(pred, invoke(proj, *i))) for ranges::remove_copy_if.
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9 Let N be the number of elements in [first, last) for which E is false.
10 Mandates: *first is writable (25.3.1) to result.
11 Preconditions: The ranges [first, last) and [result, result + (last - first)) do not overlap.

[Note 2 : For the overloads with an ExecutionPolicy, there might be a performance cost if iterator_-
traits<ForwardIterator1>::value_type does not meet the Cpp17MoveConstructible (Table 31) requirements.

— end note ]
12 Effects: Copies all the elements referred to by the iterator i in the range [first, last) for which E is

false.
13 Returns:

—(13.1) result + N , for the algorithms in namespace std.
—(13.2) {last, result + N}, for the algorithms in namespace ranges.

14 Complexity: Exactly last - first applications of the corresponding predicate and any projection.
15 Remarks: Stable (16.4.6.8).

27.7.9 Unique [alg.unique]
template<class ForwardIterator>

constexpr ForwardIterator unique(ForwardIterator first, ForwardIterator last);
template<class ExecutionPolicy, class ForwardIterator>

ForwardIterator unique(ExecutionPolicy&& exec,
ForwardIterator first, ForwardIterator last);

template<class ForwardIterator, class BinaryPredicate>
constexpr ForwardIterator unique(ForwardIterator first, ForwardIterator last,

BinaryPredicate pred);
template<class ExecutionPolicy, class ForwardIterator, class BinaryPredicate>

ForwardIterator unique(ExecutionPolicy&& exec,
ForwardIterator first, ForwardIterator last,
BinaryPredicate pred);

template<permutable I, sentinel_for<I> S, class Proj = identity,
indirect_equivalence_relation<projected<I, Proj>> C = ranges::equal_to>

constexpr subrange<I> ranges::unique(I first, S last, C comp = {}, Proj proj = {});
template<forward_range R, class Proj = identity,

indirect_equivalence_relation<projected<iterator_t<R>, Proj>> C = ranges::equal_to>
requires permutable<iterator_t<R>>
constexpr borrowed_subrange_t<R>

ranges::unique(R&& r, C comp = {}, Proj proj = {});

1 Let pred be equal_to{} for the overloads with no parameter pred, and let E be
—(1.1) bool(pred(*(i - 1), *i)) for the overloads in namespace std;
—(1.2) bool(invoke(comp, invoke(proj, *(i - 1)), invoke(proj, *i))) for the overloads in

namespace ranges.
2 Preconditions: For the overloads in namespace std, pred is an equivalence relation and the type of

*first meets the Cpp17MoveAssignable requirements (Table 33).
3 Effects: For a nonempty range, eliminates all but the first element from every consecutive group of

equivalent elements referred to by the iterator i in the range [first + 1, last) for which E is true.
4 Returns: Let j be the end of the resulting range. Returns:

—(4.1) j for the overloads in namespace std.
—(4.2) {j, last} for the overloads in namespace ranges.

5 Complexity: For nonempty ranges, exactly (last - first) - 1 applications of the corresponding
predicate and no more than twice as many applications of any projection.

template<class InputIterator, class OutputIterator>
constexpr OutputIterator

unique_copy(InputIterator first, InputIterator last,
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OutputIterator result);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>

ForwardIterator2
unique_copy(ExecutionPolicy&& exec,

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result);

template<class InputIterator, class OutputIterator,
class BinaryPredicate>

constexpr OutputIterator
unique_copy(InputIterator first, InputIterator last,

OutputIterator result, BinaryPredicate pred);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,

class BinaryPredicate>
ForwardIterator2

unique_copy(ExecutionPolicy&& exec,
ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result, BinaryPredicate pred);

template<input_iterator I, sentinel_for<I> S, weakly_incrementable O, class Proj = identity,
indirect_equivalence_relation<projected<I, Proj>> C = ranges::equal_to>

requires indirectly_copyable<I, O> &&
(forward_iterator<I> ||
(input_iterator<O> && same_as<iter_value_t<I>, iter_value_t<O>>) ||
indirectly_copyable_storable<I, O>)

constexpr ranges::unique_copy_result<I, O>
ranges::unique_copy(I first, S last, O result, C comp = {}, Proj proj = {});

template<input_range R, weakly_incrementable O, class Proj = identity,
indirect_equivalence_relation<projected<iterator_t<R>, Proj>> C = ranges::equal_to>

requires indirectly_copyable<iterator_t<R>, O> &&
(forward_iterator<iterator_t<R>> ||
(input_iterator<O> && same_as<range_value_t<R>, iter_value_t<O>>) ||
indirectly_copyable_storable<iterator_t<R>, O>)

constexpr ranges::unique_copy_result<borrowed_iterator_t<R>, O>
ranges::unique_copy(R&& r, O result, C comp = {}, Proj proj = {});

6 Let pred be equal_to{} for the overloads in namespace std with no parameter pred, and let E be
—(6.1) bool(pred(*i, *(i - 1))) for the overloads in namespace std;
—(6.2) bool(invoke(comp, invoke(proj, *i), invoke(proj, *(i - 1)))) for the overloads in

namespace ranges.
7 Mandates: *first is writable (25.3.1) to result.
8 Preconditions:

—(8.1) The ranges [first, last) and [result, result+(last-first)) do not overlap.
—(8.2) For the overloads in namespace std:

—(8.2.1) The comparison function is an equivalence relation.
—(8.2.2) For the overloads with no ExecutionPolicy, let T be the value type of InputIterator. If

InputIterator models forward_iterator (25.3.4.11), then there are no additional require-
ments for T. Otherwise, if OutputIterator meets the Cpp17ForwardIterator requirements and
its value type is the same as T, then T meets the Cpp17CopyAssignable (Table 34) requirements.
Otherwise, T meets both the Cpp17CopyConstructible (Table 32) and Cpp17CopyAssignable
requirements.
[Note 1 : For the overloads with an ExecutionPolicy, there might be a performance cost if the value
type of ForwardIterator1 does not meet both the Cpp17CopyConstructible and Cpp17CopyAssignable
requirements. — end note ]

9 Effects: Copies only the first element from every consecutive group of equal elements referred to by the
iterator i in the range [first, last) for which E holds.

10 Returns:
—(10.1) result + N for the overloads in namespace std.
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—(10.2) {last, result + N} for the overloads in namespace ranges.
11 Complexity: Exactly last - first - 1 applications of the corresponding predicate and no more than

twice as many applications of any projection.

27.7.10 Reverse [alg.reverse]
template<class BidirectionalIterator>

constexpr void reverse(BidirectionalIterator first, BidirectionalIterator last);
template<class ExecutionPolicy, class BidirectionalIterator>

void reverse(ExecutionPolicy&& exec,
BidirectionalIterator first, BidirectionalIterator last);

template<bidirectional_iterator I, sentinel_for<I> S>
requires permutable<I>
constexpr I ranges::reverse(I first, S last);

template<bidirectional_range R>
requires permutable<iterator_t<R>>
constexpr borrowed_iterator_t<R> ranges::reverse(R&& r);

1 Preconditions: For the overloads in namespace std, BidirectionalIterator meets the Cpp17Value-
Swappable requirements (16.4.4.3).

2 Effects: For each non-negative integer i < (last - first) / 2, applies std::iter_swap, or ranges::
iter_swap for the overloads in namespace ranges, to all pairs of iterators first + i, (last - i) -
1.

3 Returns: last for the overloads in namespace ranges.
4 Complexity: Exactly (last - first)/2 swaps.

template<class BidirectionalIterator, class OutputIterator>
constexpr OutputIterator

reverse_copy(BidirectionalIterator first, BidirectionalIterator last,
OutputIterator result);

template<class ExecutionPolicy, class BidirectionalIterator, class ForwardIterator>
ForwardIterator

reverse_copy(ExecutionPolicy&& exec,
BidirectionalIterator first, BidirectionalIterator last,
ForwardIterator result);

template<bidirectional_iterator I, sentinel_for<I> S, weakly_incrementable O>
requires indirectly_copyable<I, O>
constexpr ranges::reverse_copy_result<I, O>

ranges::reverse_copy(I first, S last, O result);
template<bidirectional_range R, weakly_incrementable O>

requires indirectly_copyable<iterator_t<R>, O>
constexpr ranges::reverse_copy_result<borrowed_iterator_t<R>, O>

ranges::reverse_copy(R&& r, O result);

5 Let N be last - first.
6 Preconditions: The ranges [first, last) and [result, result + N) do not overlap.
7 Effects: Copies the range [first, last) to the range [result, result + N) such that for every non-

negative integer i < N the following assignment takes place: *(result + N - 1 - i) = *(first +
i).

8 Returns:
—(8.1) result + N for the overloads in namespace std.
—(8.2) {last, result + N} for the overloads in namespace ranges.

9 Complexity: Exactly N assignments.

27.7.11 Rotate [alg.rotate]
template<class ForwardIterator>

constexpr ForwardIterator
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rotate(ForwardIterator first, ForwardIterator middle, ForwardIterator last);
template<class ExecutionPolicy, class ForwardIterator>

ForwardIterator
rotate(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator middle, ForwardIterator last);

template<permutable I, sentinel_for<I> S>
constexpr subrange<I> ranges::rotate(I first, I middle, S last);

1 Preconditions: [first, middle) and [middle, last) are valid ranges. For the overloads in namespace
std, ForwardIterator meets the Cpp17ValueSwappable requirements (16.4.4.3), and the type of *first
meets the Cpp17MoveConstructible (Table 31) and Cpp17MoveAssignable (Table 33) requirements.

2 Effects: For each non-negative integer i < (last - first), places the element from the position
first + i into position first + (i + (last - middle)) % (last - first).
[Note 1 : This is a left rotate. — end note ]

3 Returns:
—(3.1) first + (last - middle) for the overloads in namespace std.
—(3.2) {first + (last - middle), last} for the overload in namespace ranges.

4 Complexity: At most last - first swaps.

template<forward_range R>
requires permutable<iterator_t<R>>
constexpr borrowed_subrange_t<R> ranges::rotate(R&& r, iterator_t<R> middle);

5 Effects: Equivalent to: return ranges::rotate(ranges::begin(r), middle, ranges::end(r));

template<class ForwardIterator, class OutputIterator>
constexpr OutputIterator

rotate_copy(ForwardIterator first, ForwardIterator middle, ForwardIterator last,
OutputIterator result);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
ForwardIterator2

rotate_copy(ExecutionPolicy&& exec,
ForwardIterator1 first, ForwardIterator1 middle, ForwardIterator1 last,
ForwardIterator2 result);

template<forward_iterator I, sentinel_for<I> S, weakly_incrementable O>
requires indirectly_copyable<I, O>
constexpr ranges::rotate_copy_result<I, O>

ranges::rotate_copy(I first, I middle, S last, O result);

6 Let N be last - first.
7 Preconditions: [first, middle) and [middle, last) are valid ranges. The ranges [first, last) and

[result, result + N) do not overlap.
8 Effects: Copies the range [first, last) to the range [result, result + N) such that for each non-

negative integer i < N the following assignment takes place: *(result + i) = *(first + (i +
(middle - first)) % N).

9 Returns:
—(9.1) result + N for the overloads in namespace std.
—(9.2) {last, result + N} for the overload in namespace ranges.

10 Complexity: Exactly N assignments.

template<forward_range R, weakly_incrementable O>
requires indirectly_copyable<iterator_t<R>, O>
constexpr ranges::rotate_copy_result<borrowed_iterator_t<R>, O>

ranges::rotate_copy(R&& r, iterator_t<R> middle, O result);

11 Effects: Equivalent to:
return ranges::rotate_copy(ranges::begin(r), middle, ranges::end(r), std::move(result));
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27.7.12 Sample [alg.random.sample]
template<class PopulationIterator, class SampleIterator,

class Distance, class UniformRandomBitGenerator>
SampleIterator sample(PopulationIterator first, PopulationIterator last,

SampleIterator out, Distance n,
UniformRandomBitGenerator&& g);

template<input_iterator I, sentinel_for<I> S, weakly_incrementable O, class Gen>
requires (forward_iterator<I> || random_access_iterator<O>) &&

indirectly_copyable<I, O> &&
uniform_random_bit_generator<remove_reference_t<Gen>>

O ranges::sample(I first, S last, O out, iter_difference_t<I> n, Gen&& g);
template<input_range R, weakly_incrementable O, class Gen>

requires (forward_range<R> || random_access_iterator<O>) &&
indirectly_copyable<iterator_t<R>, O> &&
uniform_random_bit_generator<remove_reference_t<Gen>>

O ranges::sample(R&& r, O out, range_difference_t<R> n, Gen&& g);

1 Mandates: For the overload in namespace std, Distance is an integer type and *first is writable
(25.3.1) to out.

2 Preconditions: out is not in the range [first, last). For the overload in namespace std:
—(2.1) PopulationIterator meets the Cpp17InputIterator requirements (25.3.5.3).
—(2.2) SampleIterator meets the Cpp17OutputIterator requirements (25.3.5.4).
—(2.3) SampleIterator meets the Cpp17RandomAccessIterator requirements (25.3.5.7) unless Populat-

ionIterator models forward_iterator (25.3.4.11).
—(2.4) remove_reference_t<UniformRandomBitGenerator> meets the requirements of a uniform ran-

dom bit generator type (28.5.3.3).
3 Effects: Copies min(last - first, n) elements (the sample) from [first, last) (the population) to

out such that each possible sample has equal probability of appearance.
[Note 1 : Algorithms that obtain such effects include selection sampling and reservoir sampling. — end note ]

4 Returns: The end of the resulting sample range.
5 Complexity: O(last - first).
6 Remarks:

—(6.1) For the overload in namespace std, stable if and only if PopulationIterator models forward_-
iterator. For the first overload in namespace ranges, stable if and only if I models forward_-
iterator.

—(6.2) To the extent that the implementation of this function makes use of random numbers, the object
g serves as the implementation’s source of randomness.

27.7.13 Shuffle [alg.random.shuffle]
template<class RandomAccessIterator, class UniformRandomBitGenerator>

void shuffle(RandomAccessIterator first,
RandomAccessIterator last,
UniformRandomBitGenerator&& g);

template<random_access_iterator I, sentinel_for<I> S, class Gen>
requires permutable<I> &&

uniform_random_bit_generator<remove_reference_t<Gen>>
I ranges::shuffle(I first, S last, Gen&& g);

template<random_access_range R, class Gen>
requires permutable<iterator_t<R>> &&

uniform_random_bit_generator<remove_reference_t<Gen>>
borrowed_iterator_t<R> ranges::shuffle(R&& r, Gen&& g);

1 Preconditions: For the overload in namespace std:
—(1.1) RandomAccessIterator meets the Cpp17ValueSwappable requirements (16.4.4.3).
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—(1.2) The type remove_reference_t<UniformRandomBitGenerator> meets the uniform random bit
generator (28.5.3.3) requirements.

2 Effects: Permutes the elements in the range [first, last) such that each possible permutation of those
elements has equal probability of appearance.

3 Returns: last for the overloads in namespace ranges.
4 Complexity: Exactly (last - first) - 1 swaps.
5 Remarks: To the extent that the implementation of this function makes use of random numbers, the

object referenced by g shall serve as the implementation’s source of randomness.

27.7.14 Shift [alg.shift]
template<class ForwardIterator>

constexpr ForwardIterator
shift_left(ForwardIterator first, ForwardIterator last,

typename iterator_traits<ForwardIterator>::difference_type n);
template<class ExecutionPolicy, class ForwardIterator>

ForwardIterator
shift_left(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last,

typename iterator_traits<ForwardIterator>::difference_type n);

template<permutable I, sentinel_for<I> S>
constexpr subrange<I> ranges::shift_left(I first, S last, iter_difference_t<I> n);

template<forward_range R>
requires permutable<iterator_t<R>>
constexpr borrowed_subrange_t<R> ranges::shift_left(R&& r, range_difference_t<R> n)

1 Preconditions: n >= 0 is true. For the overloads in namespace std, the type of *first meets the
Cpp17MoveAssignable requirements.

2 Effects: If n == 0 or n >= last - first, does nothing. Otherwise, moves the element from position
first + n + i into position first + i for each non-negative integer i < (last - first) - n. For
the overloads without an ExecutionPolicy template parameter, does so in order starting from i = 0
and proceeding to i = (last - first) - n - 1.

3 Returns: Let NEW_LAST be first + (last - first - n) if n < last - first, otherwise first.
—(3.1) NEW_LAST for the overloads in namespace std.
—(3.2) {first, NEW_LAST } for the overloads in namespace ranges.

4 Complexity: At most (last - first) - n assignments.

template<class ForwardIterator>
constexpr ForwardIterator

shift_right(ForwardIterator first, ForwardIterator last,
typename iterator_traits<ForwardIterator>::difference_type n);

template<class ExecutionPolicy, class ForwardIterator>
ForwardIterator

shift_right(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last,
typename iterator_traits<ForwardIterator>::difference_type n);

template<permutable I, sentinel_for<I> S>
constexpr subrange<I> ranges::shift_right(I first, S last, iter_difference_t<I> n);

template<forward_range R>
requires permutable<iterator_t<R>>
constexpr borrowed_subrange_t<R> ranges::shift_right(R&& r, range_difference_t<R> n);

5 Preconditions: n >= 0 is true. For the overloads in namespace std, the type of *first meets
the Cpp17MoveAssignable requirements, and ForwardIterator meets the Cpp17BidirectionalIterator
requirements (25.3.5.6) or the Cpp17ValueSwappable requirements.

6 Effects: If n == 0 or n >= last - first, does nothing. Otherwise, moves the element from position
first + i into position first + n + i for each non-negative integer i < (last - first) - n. Does
so in order starting from i = (last - first) - n - 1 and proceeding to i = 0 if:
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—(6.1) for the overload in namespace std without an ExecutionPolicy template parameter, Forward-
Iterator meets the Cpp17BidirectionalIterator requirements,

—(6.2) for the overloads in namespace ranges, I models bidirectional_iterator.
7 Returns: Let NEW_FIRST be first + n if n < last - first, otherwise last.

—(7.1) NEW_FIRST for the overloads in namespace std.
—(7.2) {NEW_FIRST , last} for the overloads in namespace ranges.

8 Complexity: At most (last - first) - n assignments or swaps.

27.8 Sorting and related operations [alg.sorting]
27.8.1 General [alg.sorting.general]

1 The operations in 27.8 defined directly in namespace std have two versions: one that takes a function object
of type Compare and one that uses an operator<.

2 Compare is a function object type (22.10) that meets the requirements for a template parameter named
BinaryPredicate (27.2). The return value of the function call operation applied to an object of type Compare,
when converted to bool, yields true if the first argument of the call is less than the second, and false
otherwise. Compare comp is used throughout for algorithms assuming an ordering relation.

3 For all algorithms that take Compare, there is a version that uses operator< instead. That is, comp(*i, *j)
!= false defaults to *i < *j != false. For algorithms other than those described in 27.8.4, comp shall
induce a strict weak ordering on the values.

4 The term strict refers to the requirement of an irreflexive relation (!comp(x, x) for all x), and the term
weak to requirements that are not as strong as those for a total ordering, but stronger than those for a partial
ordering. If we define equiv(a, b) as !comp(a, b) && !comp(b, a), then the requirements are that comp
and equiv both be transitive relations:

—(4.1) comp(a, b) && comp(b, c) implies comp(a, c)
—(4.2) equiv(a, b) && equiv(b, c) implies equiv(a, c)

[Note 1 : Under these conditions, it can be shown that
—(4.3) equiv is an equivalence relation,
—(4.4) comp induces a well-defined relation on the equivalence classes determined by equiv, and
—(4.5) the induced relation is a strict total ordering.

— end note ]
5 A sequence is sorted with respect to a comp and proj for a comparator and projection comp and proj if for

every iterator i pointing to the sequence and every non-negative integer n such that i + n is a valid iterator
pointing to an element of the sequence,

bool(invoke(comp, invoke(proj, *(i + n)), invoke(proj, *i)))

is false.
6 A sequence is sorted with respect to a comparator comp for a comparator comp if it is sorted with respect to

comp and identity{} (the identity projection).
7 A sequence [start, finish) is partitioned with respect to an expression f(e) if there exists an integer n such

that for all 0 <= i < (finish - start), f(*(start + i)) is true if and only if i < n.
8 In the descriptions of the functions that deal with ordering relationships we frequently use a notion of

equivalence to describe concepts such as stability. The equivalence to which we refer is not necessarily an
operator==, but an equivalence relation induced by the strict weak ordering. That is, two elements a and b
are considered equivalent if and only if !(a < b) && !(b < a).

27.8.2 Sorting [alg.sort]
27.8.2.1 sort [sort]

template<class RandomAccessIterator>
constexpr void sort(RandomAccessIterator first, RandomAccessIterator last);

template<class ExecutionPolicy, class RandomAccessIterator>
void sort(ExecutionPolicy&& exec,

RandomAccessIterator first, RandomAccessIterator last);
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template<class RandomAccessIterator, class Compare>
constexpr void sort(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);
template<class ExecutionPolicy, class RandomAccessIterator, class Compare>

void sort(ExecutionPolicy&& exec,
RandomAccessIterator first, RandomAccessIterator last,
Compare comp);

template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,
class Proj = identity>

requires sortable<I, Comp, Proj>
constexpr I

ranges::sort(I first, S last, Comp comp = {}, Proj proj = {});
template<random_access_range R, class Comp = ranges::less, class Proj = identity>

requires sortable<iterator_t<R>, Comp, Proj>
constexpr borrowed_iterator_t<R>

ranges::sort(R&& r, Comp comp = {}, Proj proj = {});

1 Let comp be less{} and proj be identity{} for the overloads with no parameters by those names.
2 Preconditions: For the overloads in namespace std, RandomAccessIterator meets the Cpp17Value-

Swappable requirements (16.4.4.3) and the type of *first meets the Cpp17MoveConstructible (Table 31)
and Cpp17MoveAssignable (Table 33) requirements.

3 Effects: Sorts the elements in the range [first, last) with respect to comp and proj.
4 Returns: last for the overloads in namespace ranges.
5 Complexity: Let N be last - first. O(N log N) comparisons and projections.

27.8.2.2 stable_sort [stable.sort]

template<class RandomAccessIterator>
void stable_sort(RandomAccessIterator first, RandomAccessIterator last);

template<class ExecutionPolicy, class RandomAccessIterator>
void stable_sort(ExecutionPolicy&& exec,

RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void stable_sort(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);
template<class ExecutionPolicy, class RandomAccessIterator, class Compare>

void stable_sort(ExecutionPolicy&& exec,
RandomAccessIterator first, RandomAccessIterator last,
Compare comp);

template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,
class Proj = identity>

requires sortable<I, Comp, Proj>
I ranges::stable_sort(I first, S last, Comp comp = {}, Proj proj = {});

template<random_access_range R, class Comp = ranges::less, class Proj = identity>
requires sortable<iterator_t<R>, Comp, Proj>
borrowed_iterator_t<R>

ranges::stable_sort(R&& r, Comp comp = {}, Proj proj = {});

1 Let comp be less{} and proj be identity{} for the overloads with no parameters by those names.
2 Preconditions: For the overloads in namespace std, RandomAccessIterator meets the Cpp17Value-

Swappable requirements (16.4.4.3) and the type of *first meets the Cpp17MoveConstructible (Table 31)
and Cpp17MoveAssignable (Table 33) requirements.

3 Effects: Sorts the elements in the range [first, last) with respect to comp and proj.
4 Returns: last for the overloads in namespace ranges.
5 Complexity: Let N be last - first. If enough extra memory is available, N log(N) comparisons.

Otherwise, at most N log2(N) comparisons. In either case, twice as many projections as the number of
comparisons.

§ 27.8.2.2 1352



© ISO/IEC N4950

6 Remarks: Stable (16.4.6.8).

27.8.2.3 partial_sort [partial.sort]

template<class RandomAccessIterator>
constexpr void partial_sort(RandomAccessIterator first,

RandomAccessIterator middle,
RandomAccessIterator last);

template<class ExecutionPolicy, class RandomAccessIterator>
void partial_sort(ExecutionPolicy&& exec,

RandomAccessIterator first,
RandomAccessIterator middle,
RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
constexpr void partial_sort(RandomAccessIterator first,

RandomAccessIterator middle,
RandomAccessIterator last,
Compare comp);

template<class ExecutionPolicy, class RandomAccessIterator, class Compare>
void partial_sort(ExecutionPolicy&& exec,

RandomAccessIterator first,
RandomAccessIterator middle,
RandomAccessIterator last,
Compare comp);

template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,
class Proj = identity>

requires sortable<I, Comp, Proj>
constexpr I

ranges::partial_sort(I first, I middle, S last, Comp comp = {}, Proj proj = {});

1 Let comp be less{} and proj be identity{} for the overloads with no parameters by those names.
2 Preconditions: [first, middle) and [middle, last) are valid ranges. For the overloads in namespace std,

RandomAccessIterator meets the Cpp17ValueSwappable requirements (16.4.4.3) and the type of *first
meets the Cpp17MoveConstructible (Table 31) and Cpp17MoveAssignable (Table 33) requirements.

3 Effects: Places the first middle - first elements from the range [first, last) as sorted with respect
to comp and proj into the range [first, middle). The rest of the elements in the range [middle, last)
are placed in an unspecified order.

4 Returns: last for the overload in namespace ranges.
5 Complexity: Approximately (last - first) * log(middle - first) comparisons, and twice as

many projections.

template<random_access_range R, class Comp = ranges::less, class Proj = identity>
requires sortable<iterator_t<R>, Comp, Proj>
constexpr borrowed_iterator_t<R>

ranges::partial_sort(R&& r, iterator_t<R> middle, Comp comp = {}, Proj proj = {});

6 Effects: Equivalent to:
return ranges::partial_sort(ranges::begin(r), middle, ranges::end(r), comp, proj);

27.8.2.4 partial_sort_copy [partial.sort.copy]

template<class InputIterator, class RandomAccessIterator>
constexpr RandomAccessIterator

partial_sort_copy(InputIterator first, InputIterator last,
RandomAccessIterator result_first,
RandomAccessIterator result_last);

template<class ExecutionPolicy, class ForwardIterator, class RandomAccessIterator>
RandomAccessIterator

partial_sort_copy(ExecutionPolicy&& exec,
ForwardIterator first, ForwardIterator last,
RandomAccessIterator result_first,
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RandomAccessIterator result_last);

template<class InputIterator, class RandomAccessIterator,
class Compare>

constexpr RandomAccessIterator
partial_sort_copy(InputIterator first, InputIterator last,

RandomAccessIterator result_first,
RandomAccessIterator result_last,
Compare comp);

template<class ExecutionPolicy, class ForwardIterator, class RandomAccessIterator,
class Compare>

RandomAccessIterator
partial_sort_copy(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator last,
RandomAccessIterator result_first,
RandomAccessIterator result_last,
Compare comp);

template<input_iterator I1, sentinel_for<I1> S1, random_access_iterator I2, sentinel_for<I2> S2,
class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity>

requires indirectly_copyable<I1, I2> && sortable<I2, Comp, Proj2> &&
indirect_strict_weak_order<Comp, projected<I1, Proj1>, projected<I2, Proj2>>

constexpr ranges::partial_sort_copy_result<I1, I2>
ranges::partial_sort_copy(I1 first, S1 last, I2 result_first, S2 result_last,

Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
template<input_range R1, random_access_range R2, class Comp = ranges::less,

class Proj1 = identity, class Proj2 = identity>
requires indirectly_copyable<iterator_t<R1>, iterator_t<R2>> &&

sortable<iterator_t<R2>, Comp, Proj2> &&
indirect_strict_weak_order<Comp, projected<iterator_t<R1>, Proj1>,

projected<iterator_t<R2>, Proj2>>
constexpr ranges::partial_sort_copy_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>>

ranges::partial_sort_copy(R1&& r, R2&& result_r, Comp comp = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

1 Let N be min(last - first, result_last - result_first). Let comp be less{}, and proj1 and
proj2 be identity{} for the overloads with no parameters by those names.

2 Mandates: For the overloads in namespace std, the expression *first is writable (25.3.1) to result_-
first.

3 Preconditions: For the overloads in namespace std, RandomAccessIterator meets the Cpp17Value-
Swappable requirements (16.4.4.3), the type of *result_first meets the Cpp17MoveConstructible
(Table 31) and Cpp17MoveAssignable (Table 33) requirements.

4 For iterators a1 and b1 in [first, last), and iterators x2 and y2 in [result_first, result_last),
after evaluating the assignment *y2 = *b1, let E be the value of

bool(invoke(comp, invoke(proj1, *a1), invoke(proj2, *y2))).

Then, after evaluating the assignment *x2 = *a1, E is equal to
bool(invoke(comp, invoke(proj2, *x2), invoke(proj2, *y2))).

[Note 1 : Writing a value from the input range into the output range does not affect how it is ordered by comp
and proj1 or proj2. — end note ]

5 Effects: Places the first N elements as sorted with respect to comp and proj2 into the range [result_-
first, result_first + N).

6 Returns:
—(6.1) result_first + N for the overloads in namespace std.
—(6.2) {last, result_first + N} for the overloads in namespace ranges.

7 Complexity: Approximately (last - first) * log N comparisons, and twice as many projections.
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27.8.2.5 is_sorted [is.sorted]

template<class ForwardIterator>
constexpr bool is_sorted(ForwardIterator first, ForwardIterator last);

1 Effects: Equivalent to: return is_sorted_until(first, last) == last;

template<class ExecutionPolicy, class ForwardIterator>
bool is_sorted(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator last);

2 Effects: Equivalent to:
return is_sorted_until(std::forward<ExecutionPolicy>(exec), first, last) == last;

template<class ForwardIterator, class Compare>
constexpr bool is_sorted(ForwardIterator first, ForwardIterator last,

Compare comp);

3 Effects: Equivalent to: return is_sorted_until(first, last, comp) == last;

template<class ExecutionPolicy, class ForwardIterator, class Compare>
bool is_sorted(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator last,
Compare comp);

4 Effects: Equivalent to:
return is_sorted_until(std::forward<ExecutionPolicy>(exec), first, last, comp) == last;

template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>

constexpr bool ranges::is_sorted(I first, S last, Comp comp = {}, Proj proj = {});
template<forward_range R, class Proj = identity,

indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>
constexpr bool ranges::is_sorted(R&& r, Comp comp = {}, Proj proj = {});

5 Effects: Equivalent to: return ranges::is_sorted_until(first, last, comp, proj) == last;

template<class ForwardIterator>
constexpr ForwardIterator

is_sorted_until(ForwardIterator first, ForwardIterator last);
template<class ExecutionPolicy, class ForwardIterator>

ForwardIterator
is_sorted_until(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator last);

template<class ForwardIterator, class Compare>
constexpr ForwardIterator

is_sorted_until(ForwardIterator first, ForwardIterator last,
Compare comp);

template<class ExecutionPolicy, class ForwardIterator, class Compare>
ForwardIterator

is_sorted_until(ExecutionPolicy&& exec,
ForwardIterator first, ForwardIterator last,
Compare comp);

template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>

constexpr I ranges::is_sorted_until(I first, S last, Comp comp = {}, Proj proj = {});
template<forward_range R, class Proj = identity,

indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>
constexpr borrowed_iterator_t<R>

ranges::is_sorted_until(R&& r, Comp comp = {}, Proj proj = {});

6 Let comp be less{} and proj be identity{} for the overloads with no parameters by those names.
7 Returns: The last iterator i in [first, last] for which the range [first, i) is sorted with respect to

comp and proj.
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8 Complexity: Linear.

27.8.3 Nth element [alg.nth.element]
template<class RandomAccessIterator>

constexpr void nth_element(RandomAccessIterator first, RandomAccessIterator nth,
RandomAccessIterator last);

template<class ExecutionPolicy, class RandomAccessIterator>
void nth_element(ExecutionPolicy&& exec,

RandomAccessIterator first, RandomAccessIterator nth,
RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
constexpr void nth_element(RandomAccessIterator first, RandomAccessIterator nth,

RandomAccessIterator last, Compare comp);
template<class ExecutionPolicy, class RandomAccessIterator, class Compare>

void nth_element(ExecutionPolicy&& exec,
RandomAccessIterator first, RandomAccessIterator nth,
RandomAccessIterator last, Compare comp);

template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,
class Proj = identity>

requires sortable<I, Comp, Proj>
constexpr I

ranges::nth_element(I first, I nth, S last, Comp comp = {}, Proj proj = {});

1 Let comp be less{} and proj be identity{} for the overloads with no parameters by those names.
2 Preconditions: [first, nth) and [nth, last) are valid ranges. For the overloads in namespace std,

RandomAccessIterator meets the Cpp17ValueSwappable requirements (16.4.4.3), and the type of
*first meets the Cpp17MoveConstructible (Table 31) and Cpp17MoveAssignable (Table 33) require-
ments.

3 Effects: After nth_element the element in the position pointed to by nth is the element that would be
in that position if the whole range were sorted with respect to comp and proj, unless nth == last.
Also for every iterator i in the range [first, nth) and every iterator j in the range [nth, last) it holds
that: bool(invoke(comp, invoke(proj, *j), invoke(proj, *i))) is false.

4 Returns: last for the overload in namespace ranges.
5 Complexity: For the overloads with no ExecutionPolicy, linear on average. For the overloads

with an ExecutionPolicy, O(N) applications of the predicate, and O(N log N) swaps, where N =
last - first.

template<random_access_range R, class Comp = ranges::less, class Proj = identity>
requires sortable<iterator_t<R>, Comp, Proj>
constexpr borrowed_iterator_t<R>

ranges::nth_element(R&& r, iterator_t<R> nth, Comp comp = {}, Proj proj = {});

6 Effects: Equivalent to:
return ranges::nth_element(ranges::begin(r), nth, ranges::end(r), comp, proj);

27.8.4 Binary search [alg.binary.search]
27.8.4.1 General [alg.binary.search.general]

1 All of the algorithms in 27.8.4 are versions of binary search and assume that the sequence being searched is
partitioned with respect to an expression formed by binding the search key to an argument of the comparison
function. They work on non-random access iterators minimizing the number of comparisons, which will be
logarithmic for all types of iterators. They are especially appropriate for random access iterators, because
these algorithms do a logarithmic number of steps through the data structure. For non-random access
iterators they execute a linear number of steps.

27.8.4.2 lower_bound [lower.bound]

template<class ForwardIterator, class T>
constexpr ForwardIterator
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lower_bound(ForwardIterator first, ForwardIterator last,
const T& value);

template<class ForwardIterator, class T, class Compare>
constexpr ForwardIterator

lower_bound(ForwardIterator first, ForwardIterator last,
const T& value, Compare comp);

template<forward_iterator I, sentinel_for<I> S, class T, class Proj = identity,
indirect_strict_weak_order<const T*, projected<I, Proj>> Comp = ranges::less>

constexpr I ranges::lower_bound(I first, S last, const T& value, Comp comp = {},
Proj proj = {});

template<forward_range R, class T, class Proj = identity,
indirect_strict_weak_order<const T*, projected<iterator_t<R>, Proj>> Comp =

ranges::less>
constexpr borrowed_iterator_t<R>

ranges::lower_bound(R&& r, const T& value, Comp comp = {}, Proj proj = {});

1 Let comp be less{} and proj be identity{} for overloads with no parameters by those names.
2 Preconditions: The elements e of [first, last) are partitioned with respect to the expression

bool(invoke(comp, invoke(proj, e), value)).
3 Returns: The furthermost iterator i in the range [first, last] such that for every iterator j in the

range [first, i), bool(invoke(comp, invoke(proj, *j), value)) is true.
4 Complexity: At most log2(last - first) + O(1) comparisons and projections.

27.8.4.3 upper_bound [upper.bound]

template<class ForwardIterator, class T>
constexpr ForwardIterator

upper_bound(ForwardIterator first, ForwardIterator last,
const T& value);

template<class ForwardIterator, class T, class Compare>
constexpr ForwardIterator

upper_bound(ForwardIterator first, ForwardIterator last,
const T& value, Compare comp);

template<forward_iterator I, sentinel_for<I> S, class T, class Proj = identity,
indirect_strict_weak_order<const T*, projected<I, Proj>> Comp = ranges::less>

constexpr I ranges::upper_bound(I first, S last, const T& value, Comp comp = {}, Proj proj = {});
template<forward_range R, class T, class Proj = identity,

indirect_strict_weak_order<const T*, projected<iterator_t<R>, Proj>> Comp =
ranges::less>

constexpr borrowed_iterator_t<R>
ranges::upper_bound(R&& r, const T& value, Comp comp = {}, Proj proj = {});

1 Let comp be less{} and proj be identity{} for overloads with no parameters by those names.
2 Preconditions: The elements e of [first, last) are partitioned with respect to the expression

!bool(invoke(comp, value, invoke(proj, e))).
3 Returns: The furthermost iterator i in the range [first, last] such that for every iterator j in the

range [first, i), !bool(invoke(comp, value, invoke(proj, *j))) is true.
4 Complexity: At most log2(last - first) + O(1) comparisons and projections.

27.8.4.4 equal_range [equal.range]

template<class ForwardIterator, class T>
constexpr pair<ForwardIterator, ForwardIterator>

equal_range(ForwardIterator first,
ForwardIterator last, const T& value);
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template<class ForwardIterator, class T, class Compare>
constexpr pair<ForwardIterator, ForwardIterator>

equal_range(ForwardIterator first,
ForwardIterator last, const T& value,
Compare comp);

template<forward_iterator I, sentinel_for<I> S, class T, class Proj = identity,
indirect_strict_weak_order<const T*, projected<I, Proj>> Comp = ranges::less>

constexpr subrange<I>
ranges::equal_range(I first, S last, const T& value, Comp comp = {}, Proj proj = {});

template<forward_range R, class T, class Proj = identity,
indirect_strict_weak_order<const T*, projected<iterator_t<R>, Proj>> Comp =

ranges::less>
constexpr borrowed_subrange_t<R>

ranges::equal_range(R&& r, const T& value, Comp comp = {}, Proj proj = {});

1 Let comp be less{} and proj be identity{} for overloads with no parameters by those names.
2 Preconditions: The elements e of [first, last) are partitioned with respect to the expressions

bool(invoke(comp, invoke(proj, e), value)) and !bool(invoke(comp, value, invoke(proj,
e))). Also, for all elements e of [first, last), bool(comp(e, value)) implies !bool(comp(value,
e)) for the overloads in namespace std.

3 Returns:
—(3.1) For the overloads in namespace std:

{lower_bound(first, last, value, comp),
upper_bound(first, last, value, comp)}

—(3.2) For the overloads in namespace ranges:
{ranges::lower_bound(first, last, value, comp, proj),
ranges::upper_bound(first, last, value, comp, proj)}

4 Complexity: At most 2 ∗ log2(last - first) + O(1) comparisons and projections.

27.8.4.5 binary_search [binary.search]

template<class ForwardIterator, class T>
constexpr bool

binary_search(ForwardIterator first, ForwardIterator last,
const T& value);

template<class ForwardIterator, class T, class Compare>
constexpr bool

binary_search(ForwardIterator first, ForwardIterator last,
const T& value, Compare comp);

template<forward_iterator I, sentinel_for<I> S, class T, class Proj = identity,
indirect_strict_weak_order<const T*, projected<I, Proj>> Comp = ranges::less>

constexpr bool ranges::binary_search(I first, S last, const T& value, Comp comp = {},
Proj proj = {});

template<forward_range R, class T, class Proj = identity,
indirect_strict_weak_order<const T*, projected<iterator_t<R>, Proj>> Comp =

ranges::less>
constexpr bool ranges::binary_search(R&& r, const T& value, Comp comp = {},

Proj proj = {});

1 Let comp be less{} and proj be identity{} for overloads with no parameters by those names.
2 Preconditions: The elements e of [first, last) are partitioned with respect to the expressions

bool(invoke(comp, invoke(proj, e), value)) and !bool(invoke(comp, value, invoke(proj,
e))). Also, for all elements e of [first, last), bool(comp(e, value)) implies !bool(comp(value,
e)) for the overloads in namespace std.

3 Returns: true if and only if for some iterator i in the range [first, last), !bool(invoke(comp,
invoke(proj, *i), value)) && !bool(invoke(comp, value, invoke(proj, *i))) is true.

4 Complexity: At most log2(last - first) + O(1) comparisons and projections.
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27.8.5 Partitions [alg.partitions]
template<class InputIterator, class Predicate>

constexpr bool is_partitioned(InputIterator first, InputIterator last, Predicate pred);
template<class ExecutionPolicy, class ForwardIterator, class Predicate>

bool is_partitioned(ExecutionPolicy&& exec,
ForwardIterator first, ForwardIterator last, Predicate pred);

template<input_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_unary_predicate<projected<I, Proj>> Pred>

constexpr bool ranges::is_partitioned(I first, S last, Pred pred, Proj proj = {});
template<input_range R, class Proj = identity,

indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
constexpr bool ranges::is_partitioned(R&& r, Pred pred, Proj proj = {});

1 Let proj be identity{} for the overloads with no parameter named proj.
2 Returns: true if and only if the elements e of [first, last) are partitioned with respect to the

expression bool(invoke(pred, invoke(proj, e))).
3 Complexity: Linear. At most last - first applications of pred and proj.

template<class ForwardIterator, class Predicate>
constexpr ForwardIterator

partition(ForwardIterator first, ForwardIterator last, Predicate pred);
template<class ExecutionPolicy, class ForwardIterator, class Predicate>

ForwardIterator
partition(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator last, Predicate pred);

template<permutable I, sentinel_for<I> S, class Proj = identity,
indirect_unary_predicate<projected<I, Proj>> Pred>

constexpr subrange<I>
ranges::partition(I first, S last, Pred pred, Proj proj = {});

template<forward_range R, class Proj = identity,
indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>

requires permutable<iterator_t<R>>
constexpr borrowed_subrange_t<R>

ranges::partition(R&& r, Pred pred, Proj proj = {});

4 Let proj be identity{} for the overloads with no parameter named proj and let E(x) be bool(invoke(
pred, invoke(proj, x))).

5 Preconditions: For the overloads in namespace std, ForwardIterator meets the Cpp17ValueSwappable
requirements (16.4.4.3).

6 Effects: Places all the elements e in [first, last) that satisfy E(e) before all the elements that do not.
7 Returns: Let i be an iterator such that E(*j) is true for every iterator j in [first, i) and false for

every iterator j in [i, last). Returns:
—(7.1) i for the overloads in namespace std.
—(7.2) {i, last} for the overloads in namespace ranges.

8 Complexity: Let N = last - first:
—(8.1) For the overload with no ExecutionPolicy, exactly N applications of the predicate and projection.

At most N/2 swaps if the type of first meets the Cpp17BidirectionalIterator requirements for the
overloads in namespace std or models bidirectional_iterator for the overloads in namespace
ranges, and at most N swaps otherwise.

—(8.2) For the overload with an ExecutionPolicy, O(N log N) swaps and O(N) applications of the
predicate.

template<class BidirectionalIterator, class Predicate>
BidirectionalIterator

stable_partition(BidirectionalIterator first, BidirectionalIterator last, Predicate pred);
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template<class ExecutionPolicy, class BidirectionalIterator, class Predicate>
BidirectionalIterator

stable_partition(ExecutionPolicy&& exec,
BidirectionalIterator first, BidirectionalIterator last, Predicate pred);

template<bidirectional_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_unary_predicate<projected<I, Proj>> Pred>

requires permutable<I>
subrange<I> ranges::stable_partition(I first, S last, Pred pred, Proj proj = {});

template<bidirectional_range R, class Proj = identity,
indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>

requires permutable<iterator_t<R>>
borrowed_subrange_t<R> ranges::stable_partition(R&& r, Pred pred, Proj proj = {});

9 Let proj be identity{} for the overloads with no parameter named proj and let E(x) be bool(invoke(
pred, invoke(proj, x))).

10 Preconditions: For the overloads in namespace std, BidirectionalIterator meets the Cpp17Value-
Swappable requirements (16.4.4.3) and the type of *first meets the Cpp17MoveConstructible (Table 31)
and Cpp17MoveAssignable (Table 33) requirements.

11 Effects: Places all the elements e in [first, last) that satisfy E(e) before all the elements that do not.
The relative order of the elements in both groups is preserved.

12 Returns: Let i be an iterator such that for every iterator j in [first, i), E(*j) is true, and for every
iterator j in the range [i, last), E(*j) is false. Returns:

—(12.1) i for the overloads in namespace std.
—(12.2) {i, last} for the overloads in namespace ranges.

13 Complexity: Let N = last - first:
—(13.1) For the overloads with no ExecutionPolicy, at most N log2 N swaps, but only O(N) swaps if

there is enough extra memory. Exactly N applications of the predicate and projection.
—(13.2) For the overload with an ExecutionPolicy, O(N log N) swaps and O(N) applications of the

predicate.

template<class InputIterator, class OutputIterator1, class OutputIterator2, class Predicate>
constexpr pair<OutputIterator1, OutputIterator2>

partition_copy(InputIterator first, InputIterator last,
OutputIterator1 out_true, OutputIterator2 out_false, Predicate pred);

template<class ExecutionPolicy, class ForwardIterator, class ForwardIterator1,
class ForwardIterator2, class Predicate>

pair<ForwardIterator1, ForwardIterator2>
partition_copy(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator last,
ForwardIterator1 out_true, ForwardIterator2 out_false, Predicate pred);

template<input_iterator I, sentinel_for<I> S, weakly_incrementable O1, weakly_incrementable O2,
class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred>

requires indirectly_copyable<I, O1> && indirectly_copyable<I, O2>
constexpr ranges::partition_copy_result<I, O1, O2>

ranges::partition_copy(I first, S last, O1 out_true, O2 out_false, Pred pred,
Proj proj = {});

template<input_range R, weakly_incrementable O1, weakly_incrementable O2,
class Proj = identity,
indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>

requires indirectly_copyable<iterator_t<R>, O1> &&
indirectly_copyable<iterator_t<R>, O2>

constexpr ranges::partition_copy_result<borrowed_iterator_t<R>, O1, O2>
ranges::partition_copy(R&& r, O1 out_true, O2 out_false, Pred pred, Proj proj = {});

14 Let proj be identity{} for the overloads with no parameter named proj and let E(x) be bool(invoke(
pred, invoke(proj, x))).

15 Mandates: For the overloads in namespace std, the expression *first is writable (25.3.1) to out_true
and out_false.
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16 Preconditions: The input range and output ranges do not overlap.
[Note 1 : For the overload with an ExecutionPolicy, there might be a performance cost if first’s value type
does not meet the Cpp17CopyConstructible requirements. — end note ]

17 Effects: For each iterator i in [first, last), copies *i to the output range beginning with out_true if
E(*i) is true, or to the output range beginning with out_false otherwise.

18 Returns: Let o1 be the end of the output range beginning at out_true, and o2 the end of the output
range beginning at out_false. Returns

—(18.1) {o1, o2} for the overloads in namespace std.
—(18.2) {last, o1, o2} for the overloads in namespace ranges.

19 Complexity: Exactly last - first applications of pred and proj.

template<class ForwardIterator, class Predicate>
constexpr ForwardIterator

partition_point(ForwardIterator first, ForwardIterator last, Predicate pred);

template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_unary_predicate<projected<I, Proj>> Pred>

constexpr I ranges::partition_point(I first, S last, Pred pred, Proj proj = {});
template<forward_range R, class Proj = identity,

indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
constexpr borrowed_iterator_t<R>

ranges::partition_point(R&& r, Pred pred, Proj proj = {});

20 Let proj be identity{} for the overloads with no parameter named proj and let E(x) be bool(invoke(
pred, invoke(proj, x))).

21 Preconditions: The elements e of [first, last) are partitioned with respect to E(e).
22 Returns: An iterator mid such that E(*i) is true for all iterators i in [first, mid), and false for all

iterators i in [mid, last).
23 Complexity: O(log(last - first)) applications of pred and proj.

27.8.6 Merge [alg.merge]
template<class InputIterator1, class InputIterator2,

class OutputIterator>
constexpr OutputIterator

merge(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator>

ForwardIterator
merge(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
ForwardIterator result);

template<class InputIterator1, class InputIterator2,
class OutputIterator, class Compare>

constexpr OutputIterator
merge(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator, class Compare>

ForwardIterator
merge(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
ForwardIterator result, Compare comp);
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template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
weakly_incrementable O, class Comp = ranges::less, class Proj1 = identity,
class Proj2 = identity>

requires mergeable<I1, I2, O, Comp, Proj1, Proj2>
constexpr ranges::merge_result<I1, I2, O>

ranges::merge(I1 first1, S1 last1, I2 first2, S2 last2, O result,
Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});

template<input_range R1, input_range R2, weakly_incrementable O, class Comp = ranges::less,
class Proj1 = identity, class Proj2 = identity>

requires mergeable<iterator_t<R1>, iterator_t<R2>, O, Comp, Proj1, Proj2>
constexpr ranges::merge_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>, O>

ranges::merge(R1&& r1, R2&& r2, O result,
Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});

1 Let N be (last1 - first1) + (last2 - first2). Let comp be less{}, proj1 be identity{}, and
proj2 be identity{}, for the overloads with no parameters by those names.

2 Preconditions: The ranges [first1, last1) and [first2, last2) are sorted with respect to comp and
proj1 or proj2, respectively. The resulting range does not overlap with either of the original ranges.

3 Effects: Copies all the elements of the two ranges [first1, last1) and [first2, last2) into the range
[result, result_last), where result_last is result + N . If an element a precedes b in an input
range, a is copied into the output range before b. If e1 is an element of [first1, last1) and e2
of [first2, last2), e2 is copied into the output range before e1 if and only if bool(invoke(comp,
invoke(proj2, e2), invoke(proj1, e1))) is true.

4 Returns:
—(4.1) result_last for the overloads in namespace std.
—(4.2) {last1, last2, result_last} for the overloads in namespace ranges.

5 Complexity:
—(5.1) For the overloads with no ExecutionPolicy, at most N − 1 comparisons and applications of each

projection.
—(5.2) For the overloads with an ExecutionPolicy, O(N) comparisons.

6 Remarks: Stable (16.4.6.8).

template<class BidirectionalIterator>
void inplace_merge(BidirectionalIterator first,

BidirectionalIterator middle,
BidirectionalIterator last);

template<class ExecutionPolicy, class BidirectionalIterator>
void inplace_merge(ExecutionPolicy&& exec,

BidirectionalIterator first,
BidirectionalIterator middle,
BidirectionalIterator last);

template<class BidirectionalIterator, class Compare>
void inplace_merge(BidirectionalIterator first,

BidirectionalIterator middle,
BidirectionalIterator last, Compare comp);

template<class ExecutionPolicy, class BidirectionalIterator, class Compare>
void inplace_merge(ExecutionPolicy&& exec,

BidirectionalIterator first,
BidirectionalIterator middle,
BidirectionalIterator last, Compare comp);

template<bidirectional_iterator I, sentinel_for<I> S, class Comp = ranges::less,
class Proj = identity>

requires sortable<I, Comp, Proj>
I ranges::inplace_merge(I first, I middle, S last, Comp comp = {}, Proj proj = {});

7 Let comp be less{} and proj be identity{} for the overloads with no parameters by those names.
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8 Preconditions: [first, middle) and [middle, last) are valid ranges sorted with respect to comp and
proj. For the overloads in namespace std, BidirectionalIterator meets the Cpp17ValueSwappable
requirements (16.4.4.3) and the type of *first meets the Cpp17MoveConstructible (Table 31) and
Cpp17MoveAssignable (Table 33) requirements.

9 Effects: Merges two sorted consecutive ranges [first, middle) and [middle, last), putting the result
of the merge into the range [first, last). The resulting range is sorted with respect to comp and proj.

10 Returns: last for the overload in namespace ranges.
11 Complexity: Let N = last - first:

—(11.1) For the overloads with no ExecutionPolicy, and if enough additional memory is available, exactly
N − 1 comparisons.

—(11.2) Otherwise, O(N log N) comparisons.
In either case, twice as many projections as comparisons.

12 Remarks: Stable (16.4.6.8).

template<bidirectional_range R, class Comp = ranges::less, class Proj = identity>
requires sortable<iterator_t<R>, Comp, Proj>
borrowed_iterator_t<R>

ranges::inplace_merge(R&& r, iterator_t<R> middle, Comp comp = {}, Proj proj = {});

13 Effects: Equivalent to:
return ranges::inplace_merge(ranges::begin(r), middle, ranges::end(r), comp, proj);

27.8.7 Set operations on sorted structures [alg.set.operations]
27.8.7.1 General [alg.set.operations.general]

1 Subclause 27.8.7 defines all the basic set operations on sorted structures. They also work with multisets
(24.4.7) containing multiple copies of equivalent elements. The semantics of the set operations are generalized
to multisets in a standard way by defining set_union to contain the maximum number of occurrences of
every element, set_intersection to contain the minimum, and so on.

27.8.7.2 includes [includes]

template<class InputIterator1, class InputIterator2>
constexpr bool includes(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>

bool includes(ExecutionPolicy&& exec,
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);

template<class InputIterator1, class InputIterator2, class Compare>
constexpr bool includes(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
Compare comp);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2, class Compare>
bool includes(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
Compare comp);

template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
class Proj1 = identity, class Proj2 = identity,
indirect_strict_weak_order<projected<I1, Proj1>,

projected<I2, Proj2>> Comp = ranges::less>
constexpr bool ranges::includes(I1 first1, S1 last1, I2 first2, S2 last2, Comp comp = {},

Proj1 proj1 = {}, Proj2 proj2 = {});
template<input_range R1, input_range R2, class Proj1 = identity,

class Proj2 = identity,
indirect_strict_weak_order<projected<iterator_t<R1>, Proj1>,

projected<iterator_t<R2>, Proj2>> Comp = ranges::less>
constexpr bool ranges::includes(R1&& r1, R2&& r2, Comp comp = {},
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Proj1 proj1 = {}, Proj2 proj2 = {});

1 Let comp be less{}, proj1 be identity{}, and proj2 be identity{}, for the overloads with no
parameters by those names.

2 Preconditions: The ranges [first1, last1) and [first2, last2) are sorted with respect to comp and
proj1 or proj2, respectively.

3 Returns: true if and only if [first2, last2) is a subsequence of [first1, last1).
[Note 1 : A sequence S is a subsequence of another sequence T if S can be obtained from T by removing some,
all, or none of T ’s elements and keeping the remaining elements in the same order. — end note ]

4 Complexity: At most 2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons and applica-
tions of each projection.

27.8.7.3 set_union [set.union]

template<class InputIterator1, class InputIterator2, class OutputIterator>
constexpr OutputIterator

set_union(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator>

ForwardIterator
set_union(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
ForwardIterator result);

template<class InputIterator1, class InputIterator2, class OutputIterator, class Compare>
constexpr OutputIterator

set_union(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator, class Compare>

ForwardIterator
set_union(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
ForwardIterator result, Compare comp);

template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
weakly_incrementable O, class Comp = ranges::less,
class Proj1 = identity, class Proj2 = identity>

requires mergeable<I1, I2, O, Comp, Proj1, Proj2>
constexpr ranges::set_union_result<I1, I2, O>

ranges::set_union(I1 first1, S1 last1, I2 first2, S2 last2, O result, Comp comp = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

template<input_range R1, input_range R2, weakly_incrementable O,
class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity>

requires mergeable<iterator_t<R1>, iterator_t<R2>, O, Comp, Proj1, Proj2>
constexpr ranges::set_union_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>, O>

ranges::set_union(R1&& r1, R2&& r2, O result, Comp comp = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

1 Let comp be less{}, and proj1 and proj2 be identity{} for the overloads with no parameters by
those names.

2 Preconditions: The ranges [first1, last1) and [first2, last2) are sorted with respect to comp and
proj1 or proj2, respectively. The resulting range does not overlap with either of the original ranges.

3 Effects: Constructs a sorted union of the elements from the two ranges; that is, the set of elements that
are present in one or both of the ranges.

4 Returns: Let result_last be the end of the constructed range. Returns
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—(4.1) result_last for the overloads in namespace std.
—(4.2) {last1, last2, result_last} for the overloads in namespace ranges.

5 Complexity: At most 2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons and applica-
tions of each projection.

6 Remarks: Stable (16.4.6.8). If [first1, last1) contains m elements that are equivalent to each other
and [first2, last2) contains n elements that are equivalent to them, then all m elements from the
first range are copied to the output range, in order, and then the final max(n − m, 0) elements from
the second range are copied to the output range, in order.

27.8.7.4 set_intersection [set.intersection]

template<class InputIterator1, class InputIterator2,
class OutputIterator>

constexpr OutputIterator
set_intersection(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator>

ForwardIterator
set_intersection(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
ForwardIterator result);

template<class InputIterator1, class InputIterator2,
class OutputIterator, class Compare>

constexpr OutputIterator
set_intersection(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator, class Compare>

ForwardIterator
set_intersection(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
ForwardIterator result, Compare comp);

template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
weakly_incrementable O, class Comp = ranges::less,
class Proj1 = identity, class Proj2 = identity>

requires mergeable<I1, I2, O, Comp, Proj1, Proj2>
constexpr ranges::set_intersection_result<I1, I2, O>

ranges::set_intersection(I1 first1, S1 last1, I2 first2, S2 last2, O result,
Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});

template<input_range R1, input_range R2, weakly_incrementable O,
class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity>

requires mergeable<iterator_t<R1>, iterator_t<R2>, O, Comp, Proj1, Proj2>
constexpr ranges::set_intersection_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>, O>

ranges::set_intersection(R1&& r1, R2&& r2, O result,
Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});

1 Let comp be less{}, and proj1 and proj2 be identity{} for the overloads with no parameters by
those names.

2 Preconditions: The ranges [first1, last1) and [first2, last2) are sorted with respect to comp and
proj1 or proj2, respectively. The resulting range does not overlap with either of the original ranges.

3 Effects: Constructs a sorted intersection of the elements from the two ranges; that is, the set of elements
that are present in both of the ranges.

4 Returns: Let result_last be the end of the constructed range. Returns
—(4.1) result_last for the overloads in namespace std.
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—(4.2) {last1, last2, result_last} for the overloads in namespace ranges.
5 Complexity: At most 2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons and applica-

tions of each projection.
6 Remarks: Stable (16.4.6.8). If [first1, last1) contains m elements that are equivalent to each other

and [first2, last2) contains n elements that are equivalent to them, the first min(m, n) elements are
copied from the first range to the output range, in order.

27.8.7.5 set_difference [set.difference]

template<class InputIterator1, class InputIterator2,
class OutputIterator>

constexpr OutputIterator
set_difference(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator>

ForwardIterator
set_difference(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
ForwardIterator result);

template<class InputIterator1, class InputIterator2,
class OutputIterator, class Compare>

constexpr OutputIterator
set_difference(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator, class Compare>

ForwardIterator
set_difference(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
ForwardIterator result, Compare comp);

template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
weakly_incrementable O, class Comp = ranges::less,
class Proj1 = identity, class Proj2 = identity>

requires mergeable<I1, I2, O, Comp, Proj1, Proj2>
constexpr ranges::set_difference_result<I1, O>

ranges::set_difference(I1 first1, S1 last1, I2 first2, S2 last2, O result,
Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});

template<input_range R1, input_range R2, weakly_incrementable O,
class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity>

requires mergeable<iterator_t<R1>, iterator_t<R2>, O, Comp, Proj1, Proj2>
constexpr ranges::set_difference_result<borrowed_iterator_t<R1>, O>

ranges::set_difference(R1&& r1, R2&& r2, O result,
Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});

1 Let comp be less{}, and proj1 and proj2 be identity{} for the overloads with no parameters by
those names.

2 Preconditions: The ranges [first1, last1) and [first2, last2) are sorted with respect to comp and
proj1 or proj2, respectively. The resulting range does not overlap with either of the original ranges.

3 Effects: Copies the elements of the range [first1, last1) which are not present in the range [first2,
last2) to the range beginning at result. The elements in the constructed range are sorted.

4 Returns: Let result_last be the end of the constructed range. Returns
—(4.1) result_last for the overloads in namespace std.
—(4.2) {last1, result_last} for the overloads in namespace ranges.
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5 Complexity: At most 2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons and applica-
tions of each projection.

6 Remarks: If [first1, last1) contains m elements that are equivalent to each other and [first2, last2)
contains n elements that are equivalent to them, the last max(m − n, 0) elements from [first1, last1)
are copied to the output range, in order.

27.8.7.6 set_symmetric_difference [set.symmetric.difference]

template<class InputIterator1, class InputIterator2,
class OutputIterator>

constexpr OutputIterator
set_symmetric_difference(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator>

ForwardIterator
set_symmetric_difference(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
ForwardIterator result);

template<class InputIterator1, class InputIterator2,
class OutputIterator, class Compare>

constexpr OutputIterator
set_symmetric_difference(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class ForwardIterator, class Compare>

ForwardIterator
set_symmetric_difference(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
ForwardIterator result, Compare comp);

template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
weakly_incrementable O, class Comp = ranges::less,
class Proj1 = identity, class Proj2 = identity>

requires mergeable<I1, I2, O, Comp, Proj1, Proj2>
constexpr ranges::set_symmetric_difference_result<I1, I2, O>

ranges::set_symmetric_difference(I1 first1, S1 last1, I2 first2, S2 last2, O result,
Comp comp = {}, Proj1 proj1 = {},
Proj2 proj2 = {});

template<input_range R1, input_range R2, weakly_incrementable O,
class Comp = ranges::less, class Proj1 = identity, class Proj2 = identity>

requires mergeable<iterator_t<R1>, iterator_t<R2>, O, Comp, Proj1, Proj2>
constexpr ranges::set_symmetric_difference_result<borrowed_iterator_t<R1>,

borrowed_iterator_t<R2>, O>
ranges::set_symmetric_difference(R1&& r1, R2&& r2, O result, Comp comp = {},

Proj1 proj1 = {}, Proj2 proj2 = {});

1 Let comp be less{}, and proj1 and proj2 be identity{} for the overloads with no parameters by
those names.

2 Preconditions: The ranges [first1, last1) and [first2, last2) are sorted with respect to comp and
proj1 or proj2, respectively. The resulting range does not overlap with either of the original ranges.

3 Effects: Copies the elements of the range [first1, last1) that are not present in the range [first2,
last2), and the elements of the range [first2, last2) that are not present in the range [first1, last1)
to the range beginning at result. The elements in the constructed range are sorted.

4 Returns: Let result_last be the end of the constructed range. Returns
—(4.1) result_last for the overloads in namespace std.
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—(4.2) {last1, last2, result_last} for the overloads in namespace ranges.
5 Complexity: At most 2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons and applica-

tions of each projection.
6 Remarks: Stable (16.4.6.8). If [first1, last1) contains m elements that are equivalent to each other

and [first2, last2) contains n elements that are equivalent to them, then |m − n| of those elements
shall be copied to the output range: the last m − n of these elements from [first1, last1) if m > n,
and the last n − m of these elements from [first2, last2) if m < n. In either case, the elements are
copied in order.

27.8.8 Heap operations [alg.heap.operations]
27.8.8.1 General [alg.heap.operations.general]

1 A random access range [a, b) is a heap with respect to comp and proj for a comparator and projection comp
and proj if its elements are organized such that:

—(1.1) With N = b - a, for all i, 0 < i < N , bool(invoke(comp, invoke(proj, a[
⌊

i−1
2
⌋
]), invoke(

proj, a[i]))) is false.
—(1.2) *a may be removed by pop_heap, or a new element added by push_heap, in O(log N) time.

2 These properties make heaps useful as priority queues.
3 make_heap converts a range into a heap and sort_heap turns a heap into a sorted sequence.

27.8.8.2 push_heap [push.heap]

template<class RandomAccessIterator>
constexpr void push_heap(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
constexpr void push_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,
class Proj = identity>

requires sortable<I, Comp, Proj>
constexpr I

ranges::push_heap(I first, S last, Comp comp = {}, Proj proj = {});
template<random_access_range R, class Comp = ranges::less, class Proj = identity>

requires sortable<iterator_t<R>, Comp, Proj>
constexpr borrowed_iterator_t<R>

ranges::push_heap(R&& r, Comp comp = {}, Proj proj = {});

1 Let comp be less{} and proj be identity{} for the overloads with no parameters by those names.
2 Preconditions: The range [first, last - 1) is a valid heap with respect to comp and proj. For the

overloads in namespace std, RandomAccessIterator meets the Cpp17ValueSwappable requirements
(16.4.4.3) and the type of *first meets the Cpp17MoveConstructible requirements (Table 31) and the
Cpp17MoveAssignable requirements (Table 33).

3 Effects: Places the value in the location last - 1 into the resulting heap [first, last).
4 Returns: last for the overloads in namespace ranges.
5 Complexity: At most log(last - first) comparisons and twice as many projections.

27.8.8.3 pop_heap [pop.heap]

template<class RandomAccessIterator>
constexpr void pop_heap(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
constexpr void pop_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);
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template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,
class Proj = identity>

requires sortable<I, Comp, Proj>
constexpr I

ranges::pop_heap(I first, S last, Comp comp = {}, Proj proj = {});
template<random_access_range R, class Comp = ranges::less, class Proj = identity>

requires sortable<iterator_t<R>, Comp, Proj>
constexpr borrowed_iterator_t<R>

ranges::pop_heap(R&& r, Comp comp = {}, Proj proj = {});

1 Let comp be less{} and proj be identity{} for the overloads with no parameters by those names.
2 Preconditions: The range [first, last) is a valid non-empty heap with respect to comp and proj.

For the overloads in namespace std, RandomAccessIterator meets the Cpp17ValueSwappable re-
quirements (16.4.4.3) and the type of *first meets the Cpp17MoveConstructible (Table 31) and
Cpp17MoveAssignable (Table 33) requirements.

3 Effects: Swaps the value in the location first with the value in the location last - 1 and makes
[first, last - 1) into a heap with respect to comp and proj.

4 Returns: last for the overloads in namespace ranges.
5 Complexity: At most 2 log(last - first) comparisons and twice as many projections.

27.8.8.4 make_heap [make.heap]

template<class RandomAccessIterator>
constexpr void make_heap(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
constexpr void make_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,
class Proj = identity>

requires sortable<I, Comp, Proj>
constexpr I

ranges::make_heap(I first, S last, Comp comp = {}, Proj proj = {});
template<random_access_range R, class Comp = ranges::less, class Proj = identity>

requires sortable<iterator_t<R>, Comp, Proj>
constexpr borrowed_iterator_t<R>

ranges::make_heap(R&& r, Comp comp = {}, Proj proj = {});

1 Let comp be less{} and proj be identity{} for the overloads with no parameters by those names.
2 Preconditions: For the overloads in namespace std, RandomAccessIterator meets the Cpp17ValueSwap-

pable requirements (16.4.4.3) and the type of *first meets the Cpp17MoveConstructible (Table 31)
and Cpp17MoveAssignable (Table 33) requirements.

3 Effects: Constructs a heap with respect to comp and proj out of the range [first, last).
4 Returns: last for the overloads in namespace ranges.
5 Complexity: At most 3(last - first) comparisons and twice as many projections.

27.8.8.5 sort_heap [sort.heap]

template<class RandomAccessIterator>
constexpr void sort_heap(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
constexpr void sort_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,
class Proj = identity>

requires sortable<I, Comp, Proj>
constexpr I

ranges::sort_heap(I first, S last, Comp comp = {}, Proj proj = {});
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template<random_access_range R, class Comp = ranges::less, class Proj = identity>
requires sortable<iterator_t<R>, Comp, Proj>
constexpr borrowed_iterator_t<R>

ranges::sort_heap(R&& r, Comp comp = {}, Proj proj = {});

1 Let comp be less{} and proj be identity{} for the overloads with no parameters by those names.
2 Preconditions: The range [first, last) is a valid heap with respect to comp and proj. For the overloads

in namespace std, RandomAccessIterator meets the Cpp17ValueSwappable requirements (16.4.4.3)
and the type of *first meets the Cpp17MoveConstructible (Table 31) and Cpp17MoveAssignable
(Table 33) requirements.

3 Effects: Sorts elements in the heap [first, last) with respect to comp and proj.
4 Returns: last for the overloads in namespace ranges.
5 Complexity: At most 2N log N comparisons, where N = last - first, and twice as many projections.

27.8.8.6 is_heap [is.heap]

template<class RandomAccessIterator>
constexpr bool is_heap(RandomAccessIterator first, RandomAccessIterator last);

1 Effects: Equivalent to: return is_heap_until(first, last) == last;

template<class ExecutionPolicy, class RandomAccessIterator>
bool is_heap(ExecutionPolicy&& exec,

RandomAccessIterator first, RandomAccessIterator last);

2 Effects: Equivalent to:
return is_heap_until(std::forward<ExecutionPolicy>(exec), first, last) == last;

template<class RandomAccessIterator, class Compare>
constexpr bool is_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

3 Effects: Equivalent to: return is_heap_until(first, last, comp) == last;

template<class ExecutionPolicy, class RandomAccessIterator, class Compare>
bool is_heap(ExecutionPolicy&& exec,

RandomAccessIterator first, RandomAccessIterator last,
Compare comp);

4 Effects: Equivalent to:
return is_heap_until(std::forward<ExecutionPolicy>(exec), first, last, comp) == last;

template<random_access_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>

constexpr bool ranges::is_heap(I first, S last, Comp comp = {}, Proj proj = {});
template<random_access_range R, class Proj = identity,

indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>
constexpr bool ranges::is_heap(R&& r, Comp comp = {}, Proj proj = {});

5 Effects: Equivalent to: return ranges::is_heap_until(first, last, comp, proj) == last;

template<class RandomAccessIterator>
constexpr RandomAccessIterator

is_heap_until(RandomAccessIterator first, RandomAccessIterator last);
template<class ExecutionPolicy, class RandomAccessIterator>

RandomAccessIterator
is_heap_until(ExecutionPolicy&& exec,

RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
constexpr RandomAccessIterator

is_heap_until(RandomAccessIterator first, RandomAccessIterator last,
Compare comp);
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template<class ExecutionPolicy, class RandomAccessIterator, class Compare>
RandomAccessIterator

is_heap_until(ExecutionPolicy&& exec,
RandomAccessIterator first, RandomAccessIterator last,
Compare comp);

template<random_access_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>

constexpr I ranges::is_heap_until(I first, S last, Comp comp = {}, Proj proj = {});
template<random_access_range R, class Proj = identity,

indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>
constexpr borrowed_iterator_t<R>

ranges::is_heap_until(R&& r, Comp comp = {}, Proj proj = {});

6 Let comp be less{} and proj be identity{} for the overloads with no parameters by those names.
7 Returns: The last iterator i in [first, last] for which the range [first, i) is a heap with respect to

comp and proj.
8 Complexity: Linear.

27.8.9 Minimum and maximum [alg.min.max]
template<class T>

constexpr const T& min(const T& a, const T& b);
template<class T, class Compare>

constexpr const T& min(const T& a, const T& b, Compare comp);

template<class T, class Proj = identity,
indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>

constexpr const T& ranges::min(const T& a, const T& b, Comp comp = {}, Proj proj = {});

1 Preconditions: For the first form, T meets the Cpp17LessThanComparable requirements (Table 29).
2 Returns: The smaller value. Returns the first argument when the arguments are equivalent.
3 Complexity: Exactly one comparison and two applications of the projection, if any.
4 Remarks: An invocation may explicitly specify an argument for the template parameter T of the

overloads in namespace std.

template<class T>
constexpr T min(initializer_list<T> r);

template<class T, class Compare>
constexpr T min(initializer_list<T> r, Compare comp);

template<copyable T, class Proj = identity,
indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>

constexpr T ranges::min(initializer_list<T> r, Comp comp = {}, Proj proj = {});
template<input_range R, class Proj = identity,

indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>
requires indirectly_copyable_storable<iterator_t<R>, range_value_t<R>*>
constexpr range_value_t<R>

ranges::min(R&& r, Comp comp = {}, Proj proj = {});

5 Preconditions: ranges::distance(r) > 0. For the overloads in namespace std, T meets the Cpp17-
CopyConstructible requirements. For the first form, T meets the Cpp17LessThanComparable requirements
(Table 29).

6 Returns: The smallest value in the input range. Returns a copy of the leftmost element when several
elements are equivalent to the smallest.

7 Complexity: Exactly ranges::distance(r) - 1 comparisons and twice as many applications of the
projection, if any.

8 Remarks: An invocation may explicitly specify an argument for the template parameter T of the
overloads in namespace std.

§ 27.8.9 1371



© ISO/IEC N4950

template<class T>
constexpr const T& max(const T& a, const T& b);

template<class T, class Compare>
constexpr const T& max(const T& a, const T& b, Compare comp);

template<class T, class Proj = identity,
indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>

constexpr const T& ranges::max(const T& a, const T& b, Comp comp = {}, Proj proj = {});

9 Preconditions: For the first form, T meets the Cpp17LessThanComparable requirements (Table 29).
10 Returns: The larger value. Returns the first argument when the arguments are equivalent.
11 Complexity: Exactly one comparison and two applications of the projection, if any.
12 Remarks: An invocation may explicitly specify an argument for the template parameter T of the

overloads in namespace std.

template<class T>
constexpr T max(initializer_list<T> r);

template<class T, class Compare>
constexpr T max(initializer_list<T> r, Compare comp);

template<copyable T, class Proj = identity,
indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>

constexpr T ranges::max(initializer_list<T> r, Comp comp = {}, Proj proj = {});
template<input_range R, class Proj = identity,

indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>
requires indirectly_copyable_storable<iterator_t<R>, range_value_t<R>*>
constexpr range_value_t<R>

ranges::max(R&& r, Comp comp = {}, Proj proj = {});

13 Preconditions: ranges::distance(r) > 0. For the overloads in namespace std, T meets the Cpp17-
CopyConstructible requirements. For the first form, T meets the Cpp17LessThanComparable requirements
(Table 29).

14 Returns: The largest value in the input range. Returns a copy of the leftmost element when several
elements are equivalent to the largest.

15 Complexity: Exactly ranges::distance(r) - 1 comparisons and twice as many applications of the
projection, if any.

16 Remarks: An invocation may explicitly specify an argument for the template parameter T of the
overloads in namespace std.

template<class T>
constexpr pair<const T&, const T&> minmax(const T& a, const T& b);

template<class T, class Compare>
constexpr pair<const T&, const T&> minmax(const T& a, const T& b, Compare comp);

template<class T, class Proj = identity,
indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>

constexpr ranges::minmax_result<const T&>
ranges::minmax(const T& a, const T& b, Comp comp = {}, Proj proj = {});

17 Preconditions: For the first form, T meets the Cpp17LessThanComparable requirements (Table 29).
18 Returns: {b, a} if b is smaller than a, and {a, b} otherwise.
19 Complexity: Exactly one comparison and two applications of the projection, if any.
20 Remarks: An invocation may explicitly specify an argument for the template parameter T of the

overloads in namespace std.

template<class T>
constexpr pair<T, T> minmax(initializer_list<T> t);

template<class T, class Compare>
constexpr pair<T, T> minmax(initializer_list<T> t, Compare comp);
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template<copyable T, class Proj = identity,
indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>

constexpr ranges::minmax_result<T>
ranges::minmax(initializer_list<T> r, Comp comp = {}, Proj proj = {});

template<input_range R, class Proj = identity,
indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>

requires indirectly_copyable_storable<iterator_t<R>, range_value_t<R>*>
constexpr ranges::minmax_result<range_value_t<R>>

ranges::minmax(R&& r, Comp comp = {}, Proj proj = {});

21 Preconditions: ranges::distance(r) > 0. For the overloads in namespace std, T meets the Cpp17-
CopyConstructible requirements. For the first form, type T meets the Cpp17LessThanComparable
requirements (Table 29).

22 Returns: Let X be the return type. Returns X{x, y}, where x is a copy of the leftmost element with
the smallest value and y a copy of the rightmost element with the largest value in the input range.

23 Complexity: At most (3/2)ranges::distance(r) applications of the corresponding predicate and twice
as many applications of the projection, if any.

24 Remarks: An invocation may explicitly specify an argument for the template parameter T of the
overloads in namespace std.

template<class ForwardIterator>
constexpr ForwardIterator min_element(ForwardIterator first, ForwardIterator last);

template<class ExecutionPolicy, class ForwardIterator>
ForwardIterator min_element(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator last);

template<class ForwardIterator, class Compare>
constexpr ForwardIterator min_element(ForwardIterator first, ForwardIterator last,

Compare comp);
template<class ExecutionPolicy, class ForwardIterator, class Compare>

ForwardIterator min_element(ExecutionPolicy&& exec,
ForwardIterator first, ForwardIterator last, Compare comp);

template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>

constexpr I ranges::min_element(I first, S last, Comp comp = {}, Proj proj = {});
template<forward_range R, class Proj = identity,

indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>
constexpr borrowed_iterator_t<R>

ranges::min_element(R&& r, Comp comp = {}, Proj proj = {});

25 Let comp be less{} and proj be identity{} for the overloads with no parameters by those names.
26 Returns: The first iterator i in the range [first, last) such that for every iterator j in the range

[first, last),
bool(invoke(comp, invoke(proj, *j), invoke(proj, *i)))

is false. Returns last if first == last.
27 Complexity: Exactly max(last - first - 1, 0) comparisons and twice as many projections.

template<class ForwardIterator>
constexpr ForwardIterator max_element(ForwardIterator first, ForwardIterator last);

template<class ExecutionPolicy, class ForwardIterator>
ForwardIterator max_element(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator last);

template<class ForwardIterator, class Compare>
constexpr ForwardIterator max_element(ForwardIterator first, ForwardIterator last,

Compare comp);
template<class ExecutionPolicy, class ForwardIterator, class Compare>

ForwardIterator max_element(ExecutionPolicy&& exec,
ForwardIterator first, ForwardIterator last,
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Compare comp);

template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>

constexpr I ranges::max_element(I first, S last, Comp comp = {}, Proj proj = {});
template<forward_range R, class Proj = identity,

indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>
constexpr borrowed_iterator_t<R>

ranges::max_element(R&& r, Comp comp = {}, Proj proj = {});

28 Let comp be less{} and proj be identity{} for the overloads with no parameters by those names.
29 Returns: The first iterator i in the range [first, last) such that for every iterator j in the range

[first, last),
bool(invoke(comp, invoke(proj, *i), invoke(proj, *j)))

is false. Returns last if first == last.
30 Complexity: Exactly max(last - first - 1, 0) comparisons and twice as many projections.

template<class ForwardIterator>
constexpr pair<ForwardIterator, ForwardIterator>

minmax_element(ForwardIterator first, ForwardIterator last);
template<class ExecutionPolicy, class ForwardIterator>

pair<ForwardIterator, ForwardIterator>
minmax_element(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator last);

template<class ForwardIterator, class Compare>
constexpr pair<ForwardIterator, ForwardIterator>

minmax_element(ForwardIterator first, ForwardIterator last, Compare comp);
template<class ExecutionPolicy, class ForwardIterator, class Compare>

pair<ForwardIterator, ForwardIterator>
minmax_element(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator last, Compare comp);

template<forward_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_strict_weak_order<projected<I, Proj>> Comp = ranges::less>

constexpr ranges::minmax_element_result<I>
ranges::minmax_element(I first, S last, Comp comp = {}, Proj proj = {});

template<forward_range R, class Proj = identity,
indirect_strict_weak_order<projected<iterator_t<R>, Proj>> Comp = ranges::less>

constexpr ranges::minmax_element_result<borrowed_iterator_t<R>>
ranges::minmax_element(R&& r, Comp comp = {}, Proj proj = {});

31 Returns: {first, first} if [first, last) is empty, otherwise {m, M}, where m is the first iterator in
[first, last) such that no iterator in the range refers to a smaller element, and where M is the last
iterator218 in [first, last) such that no iterator in the range refers to a larger element.

32 Complexity: Let N be last - first. At most max(
⌊ 3

2 (N − 1)
⌋
, 0) comparisons and twice as many

applications of the projection, if any.

27.8.10 Bounded value [alg.clamp]
template<class T>

constexpr const T& clamp(const T& v, const T& lo, const T& hi);
template<class T, class Compare>

constexpr const T& clamp(const T& v, const T& lo, const T& hi, Compare comp);
template<class T, class Proj = identity,

indirect_strict_weak_order<projected<const T*, Proj>> Comp = ranges::less>
constexpr const T&

ranges::clamp(const T& v, const T& lo, const T& hi, Comp comp = {}, Proj proj = {});

1 Let comp be less{} for the overloads with no parameter comp, and let proj be identity{} for the
overloads with no parameter proj.

218) This behavior intentionally differs from max_element.
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2 Preconditions: bool(invoke(comp, invoke(proj, hi), invoke(proj, lo))) is false. For the first
form, type T meets the Cpp17LessThanComparable requirements (Table 29).

3 Returns: lo if bool(invoke(comp, invoke(proj, v), invoke(proj, lo))) is true, hi if bool(
invoke(comp, invoke(proj, hi), invoke(proj, v))) is true, otherwise v.

4 [Note 1 : If NaN is avoided, T can be a floating-point type. — end note ]
5 Complexity: At most two comparisons and three applications of the projection.

27.8.11 Lexicographical comparison [alg.lex.comparison]
template<class InputIterator1, class InputIterator2>

constexpr bool
lexicographical_compare(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>

bool
lexicographical_compare(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);

template<class InputIterator1, class InputIterator2, class Compare>
constexpr bool

lexicographical_compare(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
Compare comp);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class Compare>

bool
lexicographical_compare(ExecutionPolicy&& exec,

ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
Compare comp);

template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
class Proj1 = identity, class Proj2 = identity,
indirect_strict_weak_order<projected<I1, Proj1>,

projected<I2, Proj2>> Comp = ranges::less>
constexpr bool

ranges::lexicographical_compare(I1 first1, S1 last1, I2 first2, S2 last2,
Comp comp = {}, Proj1 proj1 = {}, Proj2 proj2 = {});

template<input_range R1, input_range R2, class Proj1 = identity,
class Proj2 = identity,
indirect_strict_weak_order<projected<iterator_t<R1>, Proj1>,

projected<iterator_t<R2>, Proj2>> Comp = ranges::less>
constexpr bool

ranges::lexicographical_compare(R1&& r1, R2&& r2, Comp comp = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

1 Returns: true if and only if the sequence of elements defined by the range [first1, last1) is lexico-
graphically less than the sequence of elements defined by the range [first2, last2).

2 Complexity: At most 2 min(last1 - first1, last2 - first2) applications of the corresponding
comparison and each projection, if any.

3 Remarks: If two sequences have the same number of elements and their corresponding elements (if
any) are equivalent, then neither sequence is lexicographically less than the other. If one sequence is a
proper prefix of the other, then the shorter sequence is lexicographically less than the longer sequence.
Otherwise, the lexicographical comparison of the sequences yields the same result as the comparison of
the first corresponding pair of elements that are not equivalent.

4 [Example 1 : ranges::lexicographical_compare(I1, S1, I2, S2, Comp, Proj1, Proj2) can be implemen-
ted as:

for ( ; first1 != last1 && first2 != last2 ; ++first1, (void) ++first2) {
if (invoke(comp, invoke(proj1, *first1), invoke(proj2, *first2))) return true;
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if (invoke(comp, invoke(proj2, *first2), invoke(proj1, *first1))) return false;
}
return first1 == last1 && first2 != last2;

— end example ]
5 [Note 1 : An empty sequence is lexicographically less than any non-empty sequence, but not less than any empty

sequence. — end note ]

27.8.12 Three-way comparison algorithms [alg.three.way]
template<class InputIterator1, class InputIterator2, class Cmp>

constexpr auto
lexicographical_compare_three_way(InputIterator1 b1, InputIterator1 e1,

InputIterator2 b2, InputIterator2 e2,
Cmp comp)

-> decltype(comp(*b1, *b2));

1 Let N be min(e1 - b1, e2 - b2). Let E(n) be comp(*(b1 + n), *(b2 + n)).
2 Mandates: decltype(comp(*b1, *b2)) is a comparison category type.
3 Returns: E(i), where i is the smallest integer in [0, N) such that E(i) != 0 is true, or (e1 - b1) <=>

(e2 - b2) if no such integer exists.
4 Complexity: At most N applications of comp.

template<class InputIterator1, class InputIterator2>
constexpr auto

lexicographical_compare_three_way(InputIterator1 b1, InputIterator1 e1,
InputIterator2 b2, InputIterator2 e2);

5 Effects: Equivalent to:
return lexicographical_compare_three_way(b1, e1, b2, e2, compare_three_way());

27.8.13 Permutation generators [alg.permutation.generators]
template<class BidirectionalIterator>

constexpr bool next_permutation(BidirectionalIterator first,
BidirectionalIterator last);

template<class BidirectionalIterator, class Compare>
constexpr bool next_permutation(BidirectionalIterator first,

BidirectionalIterator last, Compare comp);

template<bidirectional_iterator I, sentinel_for<I> S, class Comp = ranges::less,
class Proj = identity>

requires sortable<I, Comp, Proj>
constexpr ranges::next_permutation_result<I>

ranges::next_permutation(I first, S last, Comp comp = {}, Proj proj = {});
template<bidirectional_range R, class Comp = ranges::less,

class Proj = identity>
requires sortable<iterator_t<R>, Comp, Proj>
constexpr ranges::next_permutation_result<borrowed_iterator_t<R>>

ranges::next_permutation(R&& r, Comp comp = {}, Proj proj = {});

1 Let comp be less{} and proj be identity{} for overloads with no parameters by those names.
2 Preconditions: For the overloads in namespace std, BidirectionalIterator meets the Cpp17Value-

Swappable requirements (16.4.4.3).
3 Effects: Takes a sequence defined by the range [first, last) and transforms it into the next permutation.

The next permutation is found by assuming that the set of all permutations is lexicographically sorted
with respect to comp and proj. If no such permutation exists, transforms the sequence into the first
permutation; that is, the ascendingly-sorted one.

4 Returns: Let B be true if a next permutation was found and otherwise false. Returns:
—(4.1) B for the overloads in namespace std.
—(4.2) { last, B } for the overloads in namespace ranges.
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5 Complexity: At most (last - first) / 2 swaps.

template<class BidirectionalIterator>
constexpr bool prev_permutation(BidirectionalIterator first,

BidirectionalIterator last);

template<class BidirectionalIterator, class Compare>
constexpr bool prev_permutation(BidirectionalIterator first,

BidirectionalIterator last, Compare comp);

template<bidirectional_iterator I, sentinel_for<I> S, class Comp = ranges::less,
class Proj = identity>

requires sortable<I, Comp, Proj>
constexpr ranges::prev_permutation_result<I>

ranges::prev_permutation(I first, S last, Comp comp = {}, Proj proj = {});
template<bidirectional_range R, class Comp = ranges::less,

class Proj = identity>
requires sortable<iterator_t<R>, Comp, Proj>
constexpr ranges::prev_permutation_result<borrowed_iterator_t<R>>

ranges::prev_permutation(R&& r, Comp comp = {}, Proj proj = {});

6 Let comp be less{} and proj be identity{} for overloads with no parameters by those names.
7 Preconditions: For the overloads in namespace std, BidirectionalIterator meets the Cpp17Value-

Swappable requirements (16.4.4.3).
8 Effects: Takes a sequence defined by the range [first, last) and transforms it into the previous

permutation. The previous permutation is found by assuming that the set of all permutations is
lexicographically sorted with respect to comp and proj. If no such permutation exists, transforms the
sequence into the last permutation; that is, the descendingly-sorted one.

9 Returns: Let B be true if a previous permutation was found and otherwise false. Returns:
—(9.1) B for the overloads in namespace std.
—(9.2) { last, B } for the overloads in namespace ranges.

10 Complexity: At most (last - first) / 2 swaps.

27.9 Header <numeric> synopsis [numeric.ops.overview]
namespace std {

// 27.10.3, accumulate
template<class InputIterator, class T>

constexpr T accumulate(InputIterator first, InputIterator last, T init);
template<class InputIterator, class T, class BinaryOperation>

constexpr T accumulate(InputIterator first, InputIterator last, T init,
BinaryOperation binary_op);

// 27.10.4, reduce
template<class InputIterator>

constexpr typename iterator_traits<InputIterator>::value_type
reduce(InputIterator first, InputIterator last);

template<class InputIterator, class T>
constexpr T reduce(InputIterator first, InputIterator last, T init);

template<class InputIterator, class T, class BinaryOperation>
constexpr T reduce(InputIterator first, InputIterator last, T init,

BinaryOperation binary_op);
template<class ExecutionPolicy, class ForwardIterator>

typename iterator_traits<ForwardIterator>::value_type
reduce(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last);
template<class ExecutionPolicy, class ForwardIterator, class T>

T reduce(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, ForwardIterator last, T init);

template<class ExecutionPolicy, class ForwardIterator, class T, class BinaryOperation>
T reduce(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last, T init, BinaryOperation binary_op);
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// 27.10.5, inner product
template<class InputIterator1, class InputIterator2, class T>

constexpr T inner_product(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, T init);

template<class InputIterator1, class InputIterator2, class T,
class BinaryOperation1, class BinaryOperation2>

constexpr T inner_product(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, T init,
BinaryOperation1 binary_op1, BinaryOperation2 binary_op2);

// 27.10.6, transform reduce
template<class InputIterator1, class InputIterator2, class T>

constexpr T transform_reduce(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, T init);

template<class InputIterator1, class InputIterator2, class T,
class BinaryOperation1, class BinaryOperation2>

constexpr T transform_reduce(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, T init,
BinaryOperation1 binary_op1, BinaryOperation2 binary_op2);

template<class InputIterator, class T,
class BinaryOperation, class UnaryOperation>

constexpr T transform_reduce(InputIterator first, InputIterator last, T init,
BinaryOperation binary_op, UnaryOperation unary_op);

template<class ExecutionPolicy,
class ForwardIterator1, class ForwardIterator2, class T>

T transform_reduce(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, T init);

template<class ExecutionPolicy,
class ForwardIterator1, class ForwardIterator2, class T,
class BinaryOperation1, class BinaryOperation2>

T transform_reduce(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, T init,
BinaryOperation1 binary_op1, BinaryOperation2 binary_op2);

template<class ExecutionPolicy, class ForwardIterator, class T,
class BinaryOperation, class UnaryOperation>

T transform_reduce(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, ForwardIterator last, T init,
BinaryOperation binary_op, UnaryOperation unary_op);

// 27.10.7, partial sum
template<class InputIterator, class OutputIterator>

constexpr OutputIterator
partial_sum(InputIterator first, InputIterator last,

OutputIterator result);
template<class InputIterator, class OutputIterator, class BinaryOperation>

constexpr OutputIterator
partial_sum(InputIterator first, InputIterator last,

OutputIterator result, BinaryOperation binary_op);

// 27.10.8, exclusive scan
template<class InputIterator, class OutputIterator, class T>

constexpr OutputIterator
exclusive_scan(InputIterator first, InputIterator last,

OutputIterator result, T init);
template<class InputIterator, class OutputIterator, class T, class BinaryOperation>

constexpr OutputIterator
exclusive_scan(InputIterator first, InputIterator last,

OutputIterator result, T init, BinaryOperation binary_op);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2, class T>

ForwardIterator2
exclusive_scan(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first, ForwardIterator1 last,
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ForwardIterator2 result, T init);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2, class T,

class BinaryOperation>
ForwardIterator2

exclusive_scan(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result, T init, BinaryOperation binary_op);

// 27.10.9, inclusive scan
template<class InputIterator, class OutputIterator>

constexpr OutputIterator
inclusive_scan(InputIterator first, InputIterator last,

OutputIterator result);
template<class InputIterator, class OutputIterator, class BinaryOperation>

constexpr OutputIterator
inclusive_scan(InputIterator first, InputIterator last,

OutputIterator result, BinaryOperation binary_op);
template<class InputIterator, class OutputIterator, class BinaryOperation, class T>

constexpr OutputIterator
inclusive_scan(InputIterator first, InputIterator last,

OutputIterator result, BinaryOperation binary_op, T init);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>

ForwardIterator2
inclusive_scan(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class BinaryOperation>

ForwardIterator2
inclusive_scan(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result, BinaryOperation binary_op);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class BinaryOperation, class T>

ForwardIterator2
inclusive_scan(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result, BinaryOperation binary_op, T init);

// 27.10.10, transform exclusive scan
template<class InputIterator, class OutputIterator, class T,

class BinaryOperation, class UnaryOperation>
constexpr OutputIterator

transform_exclusive_scan(InputIterator first, InputIterator last,
OutputIterator result, T init,
BinaryOperation binary_op, UnaryOperation unary_op);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2, class T,
class BinaryOperation, class UnaryOperation>

ForwardIterator2
transform_exclusive_scan(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result, T init,
BinaryOperation binary_op, UnaryOperation unary_op);

// 27.10.11, transform inclusive scan
template<class InputIterator, class OutputIterator,

class BinaryOperation, class UnaryOperation>
constexpr OutputIterator

transform_inclusive_scan(InputIterator first, InputIterator last,
OutputIterator result,
BinaryOperation binary_op, UnaryOperation unary_op);

template<class InputIterator, class OutputIterator,
class BinaryOperation, class UnaryOperation, class T>

constexpr OutputIterator
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transform_inclusive_scan(InputIterator first, InputIterator last,
OutputIterator result,
BinaryOperation binary_op, UnaryOperation unary_op, T init);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class BinaryOperation, class UnaryOperation>

ForwardIterator2
transform_inclusive_scan(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result, BinaryOperation binary_op,
UnaryOperation unary_op);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class BinaryOperation, class UnaryOperation, class T>

ForwardIterator2
transform_inclusive_scan(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result,
BinaryOperation binary_op, UnaryOperation unary_op, T init);

// 27.10.12, adjacent difference
template<class InputIterator, class OutputIterator>

constexpr OutputIterator
adjacent_difference(InputIterator first, InputIterator last,

OutputIterator result);
template<class InputIterator, class OutputIterator, class BinaryOperation>

constexpr OutputIterator
adjacent_difference(InputIterator first, InputIterator last,

OutputIterator result, BinaryOperation binary_op);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>

ForwardIterator2
adjacent_difference(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class BinaryOperation>

ForwardIterator2
adjacent_difference(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result, BinaryOperation binary_op);

// 27.10.13, iota
template<class ForwardIterator, class T>

constexpr void iota(ForwardIterator first, ForwardIterator last, T value);

namespace ranges {
template<class O, class T>

using iota_result = out_value_result<O, T>;

template<input_or_output_iterator O, sentinel_for<O> S, weakly_incrementable T>
requires indirectly_writable<O, const T&>
constexpr iota_result<O, T> iota(O first, S last, T value);

template<weakly_incrementable T, output_range<const T&> R>
constexpr iota_result<borrowed_iterator_t<R>, T> iota(R&& r, T value);

}

// 27.10.14, greatest common divisor
template<class M, class N>

constexpr common_type_t<M, N> gcd(M m, N n);

// 27.10.15, least common multiple
template<class M, class N>

constexpr common_type_t<M, N> lcm(M m, N n);
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// 27.10.16, midpoint
template<class T>

constexpr T midpoint(T a, T b) noexcept;
template<class T>

constexpr T* midpoint(T* a, T* b);
}

27.10 Generalized numeric operations [numeric.ops]
27.10.1 General [numeric.ops.general]

1 [Note 1 : The use of closed ranges as well as semi-open ranges to specify requirements throughout 27.10 is intentional.
— end note ]

27.10.2 Definitions [numerics.defns]
1 Define GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, ..., aN) as follows:

—(1.1) a1 when N is 1, otherwise
—(1.2) op(GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, ..., aK),

GENERALIZED_NONCOMMUTATIVE_SUM(op, aM, ..., aN)) for any K where 1 < K + 1 = M ≤ N.
2 Define GENERALIZED_SUM(op, a1, ..., aN) as GENERALIZED_NONCOMMUTATIVE_SUM(op, b1, ..., bN),

where b1, ..., bN may be any permutation of a1, ..., aN.

27.10.3 Accumulate [accumulate]
template<class InputIterator, class T>

constexpr T accumulate(InputIterator first, InputIterator last, T init);
template<class InputIterator, class T, class BinaryOperation>

constexpr T accumulate(InputIterator first, InputIterator last, T init,
BinaryOperation binary_op);

1 Preconditions: T meets the Cpp17CopyConstructible (Table 32) and Cpp17CopyAssignable (Table 34)
requirements. In the range [first, last], binary_op neither modifies elements nor invalidates iterators
or subranges.219

2 Effects: Computes its result by initializing the accumulator acc with the initial value init and then
modifies it with acc = std::move(acc) + *i or acc = binary_op(std::move(acc), *i) for every
iterator i in the range [first, last) in order.220

27.10.4 Reduce [reduce]
template<class InputIterator>

constexpr typename iterator_traits<InputIterator>::value_type
reduce(InputIterator first, InputIterator last);

1 Effects: Equivalent to:
return reduce(first, last,

typename iterator_traits<InputIterator>::value_type{});

template<class ExecutionPolicy, class ForwardIterator>
typename iterator_traits<ForwardIterator>::value_type

reduce(ExecutionPolicy&& exec,
ForwardIterator first, ForwardIterator last);

2 Effects: Equivalent to:
return reduce(std::forward<ExecutionPolicy>(exec), first, last,

typename iterator_traits<ForwardIterator>::value_type{});

template<class InputIterator, class T>
constexpr T reduce(InputIterator first, InputIterator last, T init);

3 Effects: Equivalent to:
return reduce(first, last, init, plus<>());

219) The use of fully closed ranges is intentional.
220) accumulate is similar to the APL reduction operator and Common Lisp reduce function, but it avoids the difficulty of
defining the result of reduction on an empty sequence by always requiring an initial value.
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template<class ExecutionPolicy, class ForwardIterator, class T>
T reduce(ExecutionPolicy&& exec,

ForwardIterator first, ForwardIterator last, T init);

4 Effects: Equivalent to:
return reduce(std::forward<ExecutionPolicy>(exec), first, last, init, plus<>());

template<class InputIterator, class T, class BinaryOperation>
constexpr T reduce(InputIterator first, InputIterator last, T init,

BinaryOperation binary_op);
template<class ExecutionPolicy, class ForwardIterator, class T, class BinaryOperation>

T reduce(ExecutionPolicy&& exec,
ForwardIterator first, ForwardIterator last, T init,
BinaryOperation binary_op);

5 Mandates: All of
—(5.1) binary_op(init, *first),
—(5.2) binary_op(*first, init),
—(5.3) binary_op(init, init), and
—(5.4) binary_op(*first, *first)

are convertible to T.
6 Preconditions:

—(6.1) T meets the Cpp17MoveConstructible (Table 31) requirements.
—(6.2) binary_op neither invalidates iterators or subranges, nor modifies elements in the range [first,

last].
7 Returns: GENERALIZED_SUM(binary_op, init, *i, ...) for every i in [first, last).
8 Complexity: O(last - first) applications of binary_op.
9 [Note 1 : The difference between reduce and accumulate is that reduce applies binary_op in an unspecified

order, which yields a nondeterministic result for non-associative or non-commutative binary_op such as
floating-point addition. — end note ]

27.10.5 Inner product [inner.product]
template<class InputIterator1, class InputIterator2, class T>

constexpr T inner_product(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, T init);

template<class InputIterator1, class InputIterator2, class T,
class BinaryOperation1, class BinaryOperation2>

constexpr T inner_product(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, T init,
BinaryOperation1 binary_op1,
BinaryOperation2 binary_op2);

1 Preconditions: T meets the Cpp17CopyConstructible (Table 32) and Cpp17CopyAssignable (Table 34)
requirements. In the ranges [first1, last1] and [first2, first2 + (last1 - first1)] binary_op1
and binary_op2 neither modifies elements nor invalidates iterators or subranges.221

2 Effects: Computes its result by initializing the accumulator acc with the initial value init and then
modifying it with acc = std::move(acc) + (*i1) * (*i2) or acc = binary_op1(std::move(acc),
binary_op2(*i1, *i2)) for every iterator i1 in the range [first1, last1) and iterator i2 in the range
[first2, first2 + (last1 - first1)) in order.

27.10.6 Transform reduce [transform.reduce]
template<class InputIterator1, class InputIterator2, class T>

constexpr T transform_reduce(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2,
T init);

1 Effects: Equivalent to:
221) The use of fully closed ranges is intentional.
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return transform_reduce(first1, last1, first2, init, plus<>(), multiplies<>());

template<class ExecutionPolicy,
class ForwardIterator1, class ForwardIterator2, class T>

T transform_reduce(ExecutionPolicy&& exec,
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2,
T init);

2 Effects: Equivalent to:
return transform_reduce(std::forward<ExecutionPolicy>(exec),

first1, last1, first2, init, plus<>(), multiplies<>());

template<class InputIterator1, class InputIterator2, class T,
class BinaryOperation1, class BinaryOperation2>

constexpr T transform_reduce(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2,
T init,
BinaryOperation1 binary_op1,
BinaryOperation2 binary_op2);

template<class ExecutionPolicy,
class ForwardIterator1, class ForwardIterator2, class T,
class BinaryOperation1, class BinaryOperation2>

T transform_reduce(ExecutionPolicy&& exec,
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2,
T init,
BinaryOperation1 binary_op1,
BinaryOperation2 binary_op2);

3 Mandates: All of
—(3.1) binary_op1(init, init),
—(3.2) binary_op1(init, binary_op2(*first1, *first2)),
—(3.3) binary_op1(binary_op2(*first1, *first2), init), and
—(3.4) binary_op1(binary_op2(*first1, *first2), binary_op2(*first1, *first2))

are convertible to T.
4 Preconditions:

—(4.1) T meets the Cpp17MoveConstructible (Table 31) requirements.
—(4.2) Neither binary_op1 nor binary_op2 invalidates subranges, nor modifies elements in the ranges

[first1, last1] and [first2, first2 + (last1 - first1)].
5 Returns:

GENERALIZED_SUM(binary_op1, init, binary_op2(*i, *(first2 + (i - first1))), ...)

for every iterator i in [first1, last1).
6 Complexity: O(last1 - first1) applications each of binary_op1 and binary_op2.

template<class InputIterator, class T,
class BinaryOperation, class UnaryOperation>

constexpr T transform_reduce(InputIterator first, InputIterator last, T init,
BinaryOperation binary_op, UnaryOperation unary_op);

template<class ExecutionPolicy,
class ForwardIterator, class T,
class BinaryOperation, class UnaryOperation>

T transform_reduce(ExecutionPolicy&& exec,
ForwardIterator first, ForwardIterator last,
T init, BinaryOperation binary_op, UnaryOperation unary_op);

7 Mandates: All of
—(7.1) binary_op(init, init),
—(7.2) binary_op(init, unary_op(*first)),
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—(7.3) binary_op(unary_op(*first), init), and
—(7.4) binary_op(unary_op(*first), unary_op(*first))

are convertible to T.
8 Preconditions:

—(8.1) T meets the Cpp17MoveConstructible (Table 31) requirements.
—(8.2) Neither unary_op nor binary_op invalidates subranges, nor modifies elements in the range

[first, last].
9 Returns:

GENERALIZED_SUM(binary_op, init, unary_op(*i), ...)

for every iterator i in [first, last).
10 Complexity: O(last - first) applications each of unary_op and binary_op.
11 [Note 1 : transform_reduce does not apply unary_op to init. — end note ]

27.10.7 Partial sum [partial.sum]
template<class InputIterator, class OutputIterator>

constexpr OutputIterator
partial_sum(InputIterator first, InputIterator last,

OutputIterator result);
template<class InputIterator, class OutputIterator, class BinaryOperation>

constexpr OutputIterator
partial_sum(InputIterator first, InputIterator last,

OutputIterator result, BinaryOperation binary_op);

1 Mandates: InputIterator’s value type is constructible from *first. The result of the expression
std::move(acc) + *i or binary_op(std::move(acc), *i) is implicitly convertible to InputItera-
tor’s value type. acc is writable (25.3.1) to result.

2 Preconditions: In the ranges [first, last] and [result, result + (last - first)] binary_op neither
modifies elements nor invalidates iterators or subranges.222

3 Effects: For a non-empty range, the function creates an accumulator acc whose type is InputIterator’s
value type, initializes it with *first, and assigns the result to *result. For every iterator i in
[first + 1, last) in order, acc is then modified by acc = std::move(acc) + *i or acc = binary_-
op(std::move(acc), *i) and the result is assigned to *(result + (i - first)).

4 Returns: result + (last - first).
5 Complexity: Exactly (last - first) - 1 applications of the binary operation.
6 Remarks: result may be equal to first.

27.10.8 Exclusive scan [exclusive.scan]
template<class InputIterator, class OutputIterator, class T>

constexpr OutputIterator
exclusive_scan(InputIterator first, InputIterator last,

OutputIterator result, T init);

1 Effects: Equivalent to:
return exclusive_scan(first, last, result, init, plus<>());

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2, class T>
ForwardIterator2

exclusive_scan(ExecutionPolicy&& exec,
ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result, T init);

2 Effects: Equivalent to:
return exclusive_scan(std::forward<ExecutionPolicy>(exec),

first, last, result, init, plus<>());

222) The use of fully closed ranges is intentional.
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template<class InputIterator, class OutputIterator, class T, class BinaryOperation>
constexpr OutputIterator

exclusive_scan(InputIterator first, InputIterator last,
OutputIterator result, T init, BinaryOperation binary_op);

template<class ExecutionPolicy,
class ForwardIterator1, class ForwardIterator2, class T, class BinaryOperation>

ForwardIterator2
exclusive_scan(ExecutionPolicy&& exec,

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result, T init, BinaryOperation binary_op);

3 Mandates: All of
—(3.1) binary_op(init, init),
—(3.2) binary_op(init, *first), and
—(3.3) binary_op(*first, *first)

are convertible to T.
4 Preconditions:

—(4.1) T meets the Cpp17MoveConstructible (Table 31) requirements.
—(4.2) binary_op neither invalidates iterators or subranges, nor modifies elements in the ranges [first,

last] or [result, result + (last - first)].
5 Effects: For each integer K in [0, last - first) assigns through result + K the value of:

GENERALIZED_NONCOMMUTATIVE_SUM(
binary_op, init, *(first + 0), *(first + 1), ..., *(first + K - 1))

6 Returns: The end of the resulting range beginning at result.
7 Complexity: O(last - first) applications of binary_op.
8 Remarks: result may be equal to first.
9 [Note 1 : The difference between exclusive_scan and inclusive_scan is that exclusive_scan excludes the ith

input element from the ith sum. If binary_op is not mathematically associative, the behavior of exclusive_scan
can be nondeterministic. — end note ]

27.10.9 Inclusive scan [inclusive.scan]
template<class InputIterator, class OutputIterator>

constexpr OutputIterator
inclusive_scan(InputIterator first, InputIterator last,

OutputIterator result);

1 Effects: Equivalent to:
return inclusive_scan(first, last, result, plus<>());

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>
ForwardIterator2

inclusive_scan(ExecutionPolicy&& exec,
ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result);

2 Effects: Equivalent to:
return inclusive_scan(std::forward<ExecutionPolicy>(exec), first, last, result, plus<>());

template<class InputIterator, class OutputIterator, class BinaryOperation>
constexpr OutputIterator

inclusive_scan(InputIterator first, InputIterator last,
OutputIterator result, BinaryOperation binary_op);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class BinaryOperation>

ForwardIterator2
inclusive_scan(ExecutionPolicy&& exec,

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result, BinaryOperation binary_op);
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template<class InputIterator, class OutputIterator, class BinaryOperation, class T>
constexpr OutputIterator

inclusive_scan(InputIterator first, InputIterator last,
OutputIterator result, BinaryOperation binary_op, T init);

template<class ExecutionPolicy,
class ForwardIterator1, class ForwardIterator2, class BinaryOperation, class T>

ForwardIterator2
inclusive_scan(ExecutionPolicy&& exec,

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result, BinaryOperation binary_op, T init);

3 Let U be the value type of decltype(first).
4 Mandates: If init is provided, all of

—(4.1) binary_op(init, init),
—(4.2) binary_op(init, *first), and
—(4.3) binary_op(*first, *first)

are convertible to T; otherwise, binary_op(*first, *first) is convertible to U.
5 Preconditions:

—(5.1) If init is provided, T meets the Cpp17MoveConstructible (Table 31) requirements; otherwise, U
meets the Cpp17MoveConstructible requirements.

—(5.2) binary_op neither invalidates iterators or subranges, nor modifies elements in the ranges [first,
last] or [result, result + (last - first)].

6 Effects: For each integer K in [0, last - first) assigns through result + K the value of
—(6.1) GENERALIZED_NONCOMMUTATIVE_SUM(

binary_op, init, *(first + 0), *(first + 1), ..., *(first + K))
if init is provided, or

—(6.2) GENERALIZED_NONCOMMUTATIVE_SUM(
binary_op, *(first + 0), *(first + 1), ..., *(first + K))

otherwise.
7 Returns: The end of the resulting range beginning at result.
8 Complexity: O(last - first) applications of binary_op.
9 Remarks: result may be equal to first.

10 [Note 1 : The difference between exclusive_scan and inclusive_scan is that inclusive_scan includes the ith

input element in the ith sum. If binary_op is not mathematically associative, the behavior of inclusive_scan
can be nondeterministic. — end note ]

27.10.10 Transform exclusive scan [transform.exclusive.scan]
template<class InputIterator, class OutputIterator, class T,

class BinaryOperation, class UnaryOperation>
constexpr OutputIterator

transform_exclusive_scan(InputIterator first, InputIterator last,
OutputIterator result, T init,
BinaryOperation binary_op, UnaryOperation unary_op);

template<class ExecutionPolicy,
class ForwardIterator1, class ForwardIterator2, class T,
class BinaryOperation, class UnaryOperation>

ForwardIterator2
transform_exclusive_scan(ExecutionPolicy&& exec,

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result, T init,
BinaryOperation binary_op, UnaryOperation unary_op);

1 Mandates: All of
—(1.1) binary_op(init, init),
—(1.2) binary_op(init, unary_op(*first)), and
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—(1.3) binary_op(unary_op(*first), unary_op(*first))
are convertible to T.

2 Preconditions:
—(2.1) T meets the Cpp17MoveConstructible (Table 31) requirements.
—(2.2) Neither unary_op nor binary_op invalidates iterators or subranges, nor modifies elements in the

ranges [first, last] or [result, result + (last - first)].
3 Effects: For each integer K in [0, last - first) assigns through result + K the value of:

GENERALIZED_NONCOMMUTATIVE_SUM(
binary_op, init,
unary_op(*(first + 0)), unary_op(*(first + 1)), ..., unary_op(*(first + K - 1)))

4 Returns: The end of the resulting range beginning at result.
5 Complexity: O(last - first) applications each of unary_op and binary_op.
6 Remarks: result may be equal to first.
7 [Note 1 : The difference between transform_exclusive_scan and transform_inclusive_scan is that trans-

form_exclusive_scan excludes the ith input element from the ith sum. If binary_op is not mathematically
associative, the behavior of transform_exclusive_scan can be nondeterministic. transform_exclusive_scan
does not apply unary_op to init. — end note ]

27.10.11 Transform inclusive scan [transform.inclusive.scan]
template<class InputIterator, class OutputIterator,

class BinaryOperation, class UnaryOperation>
constexpr OutputIterator

transform_inclusive_scan(InputIterator first, InputIterator last,
OutputIterator result,
BinaryOperation binary_op, UnaryOperation unary_op);

template<class ExecutionPolicy,
class ForwardIterator1, class ForwardIterator2,
class BinaryOperation, class UnaryOperation>

ForwardIterator2
transform_inclusive_scan(ExecutionPolicy&& exec,

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result,
BinaryOperation binary_op, UnaryOperation unary_op);

template<class InputIterator, class OutputIterator,
class BinaryOperation, class UnaryOperation, class T>

constexpr OutputIterator
transform_inclusive_scan(InputIterator first, InputIterator last,

OutputIterator result,
BinaryOperation binary_op, UnaryOperation unary_op,
T init);

template<class ExecutionPolicy,
class ForwardIterator1, class ForwardIterator2,
class BinaryOperation, class UnaryOperation, class T>

ForwardIterator2
transform_inclusive_scan(ExecutionPolicy&& exec,

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result,
BinaryOperation binary_op, UnaryOperation unary_op,
T init);

1 Let U be the value type of decltype(first).
2 Mandates: If init is provided, all of

—(2.1) binary_op(init, init),
—(2.2) binary_op(init, unary_op(*first)), and
—(2.3) binary_op(unary_op(*first), unary_op(*first))
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are convertible to T; otherwise, binary_op(unary_op(*first), unary_op(*first)) is convertible to
U.

3 Preconditions:
—(3.1) If init is provided, T meets the Cpp17MoveConstructible (Table 31) requirements; otherwise, U

meets the Cpp17MoveConstructible requirements.
—(3.2) Neither unary_op nor binary_op invalidates iterators or subranges, nor modifies elements in the

ranges [first, last] or [result, result + (last - first)].
4 Effects: For each integer K in [0, last - first) assigns through result + K the value of

—(4.1) GENERALIZED_NONCOMMUTATIVE_SUM(
binary_op, init,
unary_op(*(first + 0)), unary_op(*(first + 1)), ..., unary_op(*(first + K)))

if init is provided, or
—(4.2) GENERALIZED_NONCOMMUTATIVE_SUM(

binary_op,
unary_op(*(first + 0)), unary_op(*(first + 1)), ..., unary_op(*(first + K)))

otherwise.
5 Returns: The end of the resulting range beginning at result.
6 Complexity: O(last - first) applications each of unary_op and binary_op.
7 Remarks: result may be equal to first.
8 [Note 1 : The difference between transform_exclusive_scan and transform_inclusive_scan is that trans-

form_inclusive_scan includes the ith input element in the ith sum. If binary_op is not mathematically
associative, the behavior of transform_inclusive_scan can be nondeterministic. transform_inclusive_scan
does not apply unary_op to init. — end note ]

27.10.12 Adjacent difference [adjacent.difference]
template<class InputIterator, class OutputIterator>

constexpr OutputIterator
adjacent_difference(InputIterator first, InputIterator last,

OutputIterator result);
template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2>

ForwardIterator2
adjacent_difference(ExecutionPolicy&& exec,

ForwardIterator1 first, ForwardIterator1 last, ForwardIterator2 result);

template<class InputIterator, class OutputIterator, class BinaryOperation>
constexpr OutputIterator

adjacent_difference(InputIterator first, InputIterator last,
OutputIterator result, BinaryOperation binary_op);

template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2,
class BinaryOperation>

ForwardIterator2
adjacent_difference(ExecutionPolicy&& exec,

ForwardIterator1 first, ForwardIterator1 last,
ForwardIterator2 result, BinaryOperation binary_op);

1 Let T be the value type of decltype(first). For the overloads that do not take an argument binary_op,
let binary_op be an lvalue that denotes an object of type minus<>.

2 Mandates:
—(2.1) For the overloads with no ExecutionPolicy, T is constructible from *first. acc (defined below)

is writable (25.3.1) to the result output iterator. The result of the expression binary_op(val,
std::move(acc)) is writable to result.

—(2.2) For the overloads with an ExecutionPolicy, the result of the expressions binary_op(*first,
*first) and *first are writable to result.

3 Preconditions:
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—(3.1) For the overloads with no ExecutionPolicy, T meets the Cpp17MoveAssignable (Table 33)
requirements.

—(3.2) For all overloads, in the ranges [first, last] and [result, result + (last - first)], binary_-
op neither modifies elements nor invalidates iterators or subranges.223

4 Effects: For the overloads with no ExecutionPolicy and a non-empty range, the function creates an
accumulator acc of type T, initializes it with *first, and assigns the result to *result. For every
iterator i in [first + 1, last) in order, creates an object val whose type is T, initializes it with *i,
computes binary_op(val, std::move(acc)), assigns the result to *(result + (i - first)), and
move assigns from val to acc.

5 For the overloads with an ExecutionPolicy and a non-empty range, performs *result = *first.
Then, for every d in [1, last - first - 1], performs *(result + d) = binary_op(*(first + d),
*(first + (d - 1))).

6 Returns: result + (last - first).
7 Complexity: Exactly (last - first) - 1 applications of the binary operation.
8 Remarks: For the overloads with no ExecutionPolicy, result may be equal to first. For the overloads

with an ExecutionPolicy, the ranges [first, last) and [result, result + (last - first)) shall
not overlap.

27.10.13 Iota [numeric.iota]
template<class ForwardIterator, class T>

constexpr void iota(ForwardIterator first, ForwardIterator last, T value);

1 Mandates: T is convertible to ForwardIterator’s value type. The expression ++val, where val has
type T, is well-formed.

2 Effects: For each element referred to by the iterator i in the range [first, last), assigns *i = value
and increments value as if by ++value.

3 Complexity: Exactly last - first increments and assignments.

template<input_or_output_iterator O, sentinel_for<O> S, weakly_incrementable T>
requires indirectly_writable<O, const T&>
constexpr ranges::iota_result<O, T> ranges::iota(O first, S last, T value);

template<weakly_incrementable T, output_range<const T&> R>
constexpr ranges::iota_result<borrowed_iterator_t<R>, T> ranges::iota(R&& r, T value);

4 Effects: Equivalent to:
while (first != last) {

*first = as_const(value);
++first;
++value;

}
return {std::move(first), std::move(value)};

27.10.14 Greatest common divisor [numeric.ops.gcd]
template<class M, class N>

constexpr common_type_t<M, N> gcd(M m, N n);

1 Mandates: M and N both are integer types other than cv bool.
2 Preconditions: |m| and |n| are representable as a value of common_type_t<M, N>.

[Note 1 : These requirements ensure, for example, that gcd(m, m) = |m| is representable as a value of type M.
— end note ]

3 Returns: Zero when m and n are both zero. Otherwise, returns the greatest common divisor of |m| and
|n|.

4 Throws: Nothing.

223) The use of fully closed ranges is intentional.
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27.10.15 Least common multiple [numeric.ops.lcm]
template<class M, class N>

constexpr common_type_t<M, N> lcm(M m, N n);

1 Mandates: M and N both are integer types other than cv bool.
2 Preconditions: |m| and |n| are representable as a value of common_type_t<M, N>. The least common

multiple of |m| and |n| is representable as a value of type common_type_t<M, N>.
3 Returns: Zero when either m or n is zero. Otherwise, returns the least common multiple of |m| and |n|.
4 Throws: Nothing.

27.10.16 Midpoint [numeric.ops.midpoint]
template<class T>

constexpr T midpoint(T a, T b) noexcept;

1 Constraints: T is an arithmetic type other than bool.
2 Returns: Half the sum of a and b. If T is an integer type and the sum is odd, the result is rounded

towards a.
3 Remarks: No overflow occurs. If T is a floating-point type, at most one inexact operation occurs.

template<class T>
constexpr T* midpoint(T* a, T* b);

4 Constraints: T is an object type.
5 Mandates: T is a complete type.
6 Preconditions: a and b point to, respectively, elements i and j of the same array object x.

[Note 1 : As specified in 6.8.4, an object that is not an array element is considered to belong to a single-element
array for this purpose and a pointer past the last element of an array of n elements is considered to be equivalent
to a pointer to a hypothetical array element n for this purpose. — end note ]

7 Returns: A pointer to array element i + j−i
2 of x, where the result of the division is truncated towards

zero.

27.11 Specialized <memory> algorithms [specialized.algorithms]
27.11.1 General [specialized.algorithms.general]

1 The contents specified in 27.11 are declared in the header <memory> (20.2.2).
2 Unless otherwise specified, if an exception is thrown in the following algorithms, objects constructed by a

placement new-expression (7.6.2.8) are destroyed in an unspecified order before allowing the exception to
propagate.

3 Some algorithms specified in 27.11 make use of the exposition-only function voidify :
template<class T>

constexpr void* voidify(T& obj) noexcept {
return addressof(obj);

}

27.11.2 Special memory concepts [special.mem.concepts]
1 Some algorithms in this subclause are constrained with the following exposition-only concepts:

template<class I>
concept nothrow-input-iterator = // exposition only

input_iterator<I> &&
is_lvalue_reference_v<iter_reference_t<I>> &&
same_as<remove_cvref_t<iter_reference_t<I>>, iter_value_t<I>>;

2 A type I models nothrow-input-iterator only if no exceptions are thrown from increment, copy
construction, move construction, copy assignment, move assignment, or indirection through valid
iterators.

3 [Note 1 : This concept allows some input_iterator (25.3.4.9) operations to throw exceptions. — end note ]
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template<class S, class I>
concept nothrow-sentinel-for = sentinel_for<S, I>; // exposition only

4 Types S and I model nothrow-sentinel-for only if no exceptions are thrown from copy construction,
move construction, copy assignment, move assignment, or comparisons between valid values of type I
and S.

5 [Note 2 : This concept allows some sentinel_for (25.3.4.7) operations to throw exceptions. — end note ]

template<class R>
concept nothrow-input-range = // exposition only

range<R> &&
nothrow-input-iterator <iterator_t<R>> &&
nothrow-sentinel-for <sentinel_t<R>, iterator_t<R>>;

6 A type R models nothrow-input-range only if no exceptions are thrown from calls to ranges::begin
and ranges::end on an object of type R.

template<class I>
concept nothrow-forward-iterator = // exposition only

nothrow-input-iterator <I> &&
forward_iterator<I> &&
nothrow-sentinel-for <I, I>;

7 [Note 3 : This concept allows some forward_iterator (25.3.4.11) operations to throw exceptions. — end note ]

template<class R>
concept nothrow-forward-range = // exposition only

nothrow-input-range <R> &&
nothrow-forward-iterator <iterator_t<R>>;

27.11.3 uninitialized_default_construct [uninitialized.construct.default]
template<class NoThrowForwardIterator>

void uninitialized_default_construct(NoThrowForwardIterator first, NoThrowForwardIterator last);

1 Effects: Equivalent to:
for (; first != last; ++first)

::new (voidify(*first))
typename iterator_traits<NoThrowForwardIterator>::value_type;

namespace ranges {
template<nothrow-forward-iterator I, nothrow-sentinel-for <I> S>

requires default_initializable<iter_value_t<I>>
I uninitialized_default_construct(I first, S last);

template<nothrow-forward-range R>
requires default_initializable<range_value_t<R>>
borrowed_iterator_t<R> uninitialized_default_construct(R&& r);

}

2 Effects: Equivalent to:
for (; first != last; ++first)

::new (voidify(*first)) remove_reference_t<iter_reference_t<I>>;
return first;

template<class NoThrowForwardIterator, class Size>
NoThrowForwardIterator uninitialized_default_construct_n(NoThrowForwardIterator first, Size n);

3 Effects: Equivalent to:
for (; n > 0; (void)++first, --n)

::new (voidify(*first))
typename iterator_traits<NoThrowForwardIterator>::value_type;

return first;

namespace ranges {
template<nothrow-forward-iterator I>

requires default_initializable<iter_value_t<I>>
I uninitialized_default_construct_n(I first, iter_difference_t<I> n);
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}

4 Effects: Equivalent to:
return uninitialized_default_construct(counted_iterator(first, n),

default_sentinel).base();

27.11.4 uninitialized_value_construct [uninitialized.construct.value]
template<class NoThrowForwardIterator>

void uninitialized_value_construct(NoThrowForwardIterator first, NoThrowForwardIterator last);

1 Effects: Equivalent to:
for (; first != last; ++first)

::new (voidify(*first))
typename iterator_traits<NoThrowForwardIterator>::value_type();

namespace ranges {
template<nothrow-forward-iterator I, nothrow-sentinel-for <I> S>

requires default_initializable<iter_value_t<I>>
I uninitialized_value_construct(I first, S last);

template<nothrow-forward-range R>
requires default_initializable<range_value_t<R>>
borrowed_iterator_t<R> uninitialized_value_construct(R&& r);

}

2 Effects: Equivalent to:
for (; first != last; ++first)

::new (voidify(*first)) remove_reference_t<iter_reference_t<I>>();
return first;

template<class NoThrowForwardIterator, class Size>
NoThrowForwardIterator uninitialized_value_construct_n(NoThrowForwardIterator first, Size n);

3 Effects: Equivalent to:
for (; n > 0; (void)++first, --n)

::new (voidify(*first))
typename iterator_traits<NoThrowForwardIterator>::value_type();

return first;

namespace ranges {
template<nothrow-forward-iterator I>

requires default_initializable<iter_value_t<I>>
I uninitialized_value_construct_n(I first, iter_difference_t<I> n);

}

4 Effects: Equivalent to:
return uninitialized_value_construct(counted_iterator(first, n),

default_sentinel).base();

27.11.5 uninitialized_copy [uninitialized.copy]
template<class InputIterator, class NoThrowForwardIterator>

NoThrowForwardIterator uninitialized_copy(InputIterator first, InputIterator last,
NoThrowForwardIterator result);

1 Preconditions: result + [0, (last - first)) does not overlap with [first, last).
2 Effects: Equivalent to:

for (; first != last; ++result, (void) ++first)
::new (voidify(*result))

typename iterator_traits<NoThrowForwardIterator>::value_type(*first);

3 Returns: result.
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namespace ranges {
template<input_iterator I, sentinel_for<I> S1,

nothrow-forward-iterator O, nothrow-sentinel-for <O> S2>
requires constructible_from<iter_value_t<O>, iter_reference_t<I>>
uninitialized_copy_result<I, O>

uninitialized_copy(I ifirst, S1 ilast, O ofirst, S2 olast);
template<input_range IR, nothrow-forward-range OR>

requires constructible_from<range_value_t<OR>, range_reference_t<IR>>
uninitialized_copy_result<borrowed_iterator_t<IR>, borrowed_iterator_t<OR>>

uninitialized_copy(IR&& in_range, OR&& out_range);
}

4 Preconditions: [ofirst, olast) does not overlap with [ifirst, ilast).
5 Effects: Equivalent to:

for (; ifirst != ilast && ofirst != olast; ++ofirst, (void)++ifirst)
::new (voidify(*ofirst)) remove_reference_t<iter_reference_t<O>>(*ifirst);

return {std::move(ifirst), ofirst};

template<class InputIterator, class Size, class NoThrowForwardIterator>
NoThrowForwardIterator uninitialized_copy_n(InputIterator first, Size n,

NoThrowForwardIterator result);

6 Preconditions: result + [0, n) does not overlap with first + [0, n).
7 Effects: Equivalent to:

for ( ; n > 0; ++result, (void) ++first, --n)
::new (voidify(*result))

typename iterator_traits<NoThrowForwardIterator>::value_type(*first);

8 Returns: result.

namespace ranges {
template<input_iterator I, nothrow-forward-iterator O, nothrow-sentinel-for <O> S>

requires constructible_from<iter_value_t<O>, iter_reference_t<I>>
uninitialized_copy_n_result<I, O>

uninitialized_copy_n(I ifirst, iter_difference_t<I> n, O ofirst, S olast);
}

9 Preconditions: [ofirst, olast) does not overlap with ifirst + [0, n).
10 Effects: Equivalent to:

auto t = uninitialized_copy(counted_iterator(std::move(ifirst), n),
default_sentinel, ofirst, olast);

return {std::move(t.in).base(), t.out};

27.11.6 uninitialized_move [uninitialized.move]
template<class InputIterator, class NoThrowForwardIterator>

NoThrowForwardIterator uninitialized_move(InputIterator first, InputIterator last,
NoThrowForwardIterator result);

1 Preconditions: result + [0, (last - first)) does not overlap with [first, last).
2 Effects: Equivalent to:

for (; first != last; (void)++result, ++first)
::new (voidify(*result))

typename iterator_traits<NoThrowForwardIterator>::value_type(std::move(*first));
return result;

namespace ranges {
template<input_iterator I, sentinel_for<I> S1,

nothrow-forward-iterator O, nothrow-sentinel-for <O> S2>
requires constructible_from<iter_value_t<O>, iter_rvalue_reference_t<I>>
uninitialized_move_result<I, O>

uninitialized_move(I ifirst, S1 ilast, O ofirst, S2 olast);
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template<input_range IR, nothrow-forward-range OR>
requires constructible_from<range_value_t<OR>, range_rvalue_reference_t<IR>>
uninitialized_move_result<borrowed_iterator_t<IR>, borrowed_iterator_t<OR>>

uninitialized_move(IR&& in_range, OR&& out_range);
}

3 Preconditions: [ofirst, olast) does not overlap with [ifirst, ilast).
4 Effects: Equivalent to:

for (; ifirst != ilast && ofirst != olast; ++ofirst, (void)++ifirst)
::new (voidify (*ofirst))

remove_reference_t<iter_reference_t<O>>(ranges::iter_move(ifirst));
return {std::move(ifirst), ofirst};

5 [Note 1 : If an exception is thrown, some objects in the range [ifirst, ilast) are left in a valid, but unspecified
state. — end note ]

template<class InputIterator, class Size, class NoThrowForwardIterator>
pair<InputIterator, NoThrowForwardIterator>

uninitialized_move_n(InputIterator first, Size n, NoThrowForwardIterator result);

6 Preconditions: result + [0, n) does not overlap with first + [0, n).
7 Effects: Equivalent to:

for (; n > 0; ++result, (void) ++first, --n)
::new (voidify(*result))

typename iterator_traits<NoThrowForwardIterator>::value_type(std::move(*first));
return {first, result};

namespace ranges {
template<input_iterator I, nothrow-forward-iterator O, nothrow-sentinel-for <O> S>

requires constructible_from<iter_value_t<O>, iter_rvalue_reference_t<I>>
uninitialized_move_n_result<I, O>

uninitialized_move_n(I ifirst, iter_difference_t<I> n, O ofirst, S olast);
}

8 Preconditions: [ofirst, olast) does not overlap with ifirst + [0, n).
9 Effects: Equivalent to:

auto t = uninitialized_move(counted_iterator(std::move(ifirst), n),
default_sentinel, ofirst, olast);

return {std::move(t.in).base(), t.out};
10 [Note 2 : If an exception is thrown, some objects in the range ifirst + [0, n) are left in a valid but unspecified

state. — end note ]

27.11.7 uninitialized_fill [uninitialized.fill]
template<class NoThrowForwardIterator, class T>

void uninitialized_fill(NoThrowForwardIterator first, NoThrowForwardIterator last, const T& x);

1 Effects: Equivalent to:
for (; first != last; ++first)

::new (voidify(*first))
typename iterator_traits<NoThrowForwardIterator>::value_type(x);

namespace ranges {
template<nothrow-forward-iterator I, nothrow-sentinel-for <I> S, class T>

requires constructible_from<iter_value_t<I>, const T&>
I uninitialized_fill(I first, S last, const T& x);

template<nothrow-forward-range R, class T>
requires constructible_from<range_value_t<R>, const T&>
borrowed_iterator_t<R> uninitialized_fill(R&& r, const T& x);

}

2 Effects: Equivalent to:
for (; first != last; ++first)

::new (voidify(*first)) remove_reference_t<iter_reference_t<I>>(x);
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return first;

template<class NoThrowForwardIterator, class Size, class T>
NoThrowForwardIterator uninitialized_fill_n(NoThrowForwardIterator first, Size n, const T& x);

3 Effects: Equivalent to:
for (; n--; ++first)

::new (voidify(*first))
typename iterator_traits<NoThrowForwardIterator>::value_type(x);

return first;

namespace ranges {
template<nothrow-forward-iterator I, class T>

requires constructible_from<iter_value_t<I>, const T&>
I uninitialized_fill_n(I first, iter_difference_t<I> n, const T& x);

}

4 Effects: Equivalent to:
return uninitialized_fill(counted_iterator(first, n), default_sentinel, x).base();

27.11.8 construct_at [specialized.construct]
template<class T, class... Args>

constexpr T* construct_at(T* location, Args&&... args);

namespace ranges {
template<class T, class... Args>

constexpr T* construct_at(T* location, Args&&... args);
}

1 Constraints: The expression ::new (declval<void*>()) T(declval<Args>()...) is well-formed
when treated as an unevaluated operand (7.2.3).

2 Effects: Equivalent to:
return ::new (voidify(*location)) T(std::forward<Args>(args)...);

27.11.9 destroy [specialized.destroy]
template<class T>

constexpr void destroy_at(T* location);
namespace ranges {

template<destructible T>
constexpr void destroy_at(T* location) noexcept;

}

1 Effects:
—(1.1) If T is an array type, equivalent to destroy(begin(*location), end(*location)).
—(1.2) Otherwise, equivalent to location->~T().

template<class NoThrowForwardIterator>
constexpr void destroy(NoThrowForwardIterator first, NoThrowForwardIterator last);

2 Effects: Equivalent to:
for (; first != last; ++first)

destroy_at(addressof(*first));

namespace ranges {
template<nothrow-input-iterator I, nothrow-sentinel-for <I> S>

requires destructible<iter_value_t<I>>
constexpr I destroy(I first, S last) noexcept;

template<nothrow-input-range R>
requires destructible<range_value_t<R>>
constexpr borrowed_iterator_t<R> destroy(R&& r) noexcept;

}

3 Effects: Equivalent to:
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for (; first != last; ++first)
destroy_at(addressof(*first));

return first;

template<class NoThrowForwardIterator, class Size>
constexpr NoThrowForwardIterator destroy_n(NoThrowForwardIterator first, Size n);

4 Effects: Equivalent to:
for (; n > 0; (void)++first, --n)

destroy_at(addressof(*first));
return first;

namespace ranges {
template<nothrow-input-iterator I>

requires destructible<iter_value_t<I>>
constexpr I destroy_n(I first, iter_difference_t<I> n) noexcept;

}

5 Effects: Equivalent to:
return destroy(counted_iterator(std::move(first), n), default_sentinel).base();

27.12 C library algorithms [alg.c.library]
1 [Note 1 : The header <cstdlib> (17.2.2) declares the functions described in this subclause. — end note ]

void* bsearch(const void* key, const void* base, size_t nmemb, size_t size,
c-compare-pred * compar);

void* bsearch(const void* key, const void* base, size_t nmemb, size_t size,
compare-pred * compar);

void qsort(void* base, size_t nmemb, size_t size, c-compare-pred * compar);
void qsort(void* base, size_t nmemb, size_t size, compare-pred * compar);

2 Preconditions: For qsort, the objects in the array pointed to by base are of trivially copyable type.
3 Effects: These functions have the semantics specified in the C standard library.
4 Throws: Any exception thrown by compar (16.4.6.13).

See also: ISO/IEC 9899:2018, 7.22.5
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28 Numerics library [numerics]
28.1 General [numerics.general]

1 This Clause describes components that C++ programs may use to perform seminumerical operations.
2 The following subclauses describe components for complex number types, random number generation,

numeric (n-at-a-time) arrays, generalized numeric algorithms, and mathematical constants and functions for
floating-point types, as summarized in Table 94.

Table 94: Numerics library summary [tab:numerics.summary]

Subclause Header
28.2 Requirements
28.3 Floating-point environment <cfenv>
28.4 Complex numbers <complex>
28.5 Random number generation <random>
28.6 Numeric arrays <valarray>
28.7 Mathematical functions for floating-point types <cmath>, <cstdlib>
28.8 Numbers <numbers>

28.2 Numeric type requirements [numeric.requirements]
1 The complex and valarray components are parameterized by the type of information they contain and

manipulate. A C++ program shall instantiate these components only with a numeric type. A numeric
type is a cv-unqualified object type T that meets the Cpp17DefaultConstructible, Cpp17CopyConstructible,
Cpp17CopyAssignable, and Cpp17Destructible requirements (16.4.4.2).224

2 If any operation on T throws an exception the effects are undefined.
3 In addition, many member and related functions of valarray<T> can be successfully instantiated and will

exhibit well-defined behavior if and only if T meets additional requirements specified for each such member
or related function.

4 [Example 1 : It is valid to instantiate valarray<complex>, but operator>() will not be successfully instantiated for
valarray<complex> operands, since complex does not have any ordering operators. — end example ]

28.3 The floating-point environment [cfenv]
28.3.1 Header <cfenv> synopsis [cfenv.syn]

#define FE_ALL_EXCEPT see below
#define FE_DIVBYZERO see below // optional
#define FE_INEXACT see below // optional
#define FE_INVALID see below // optional
#define FE_OVERFLOW see below // optional
#define FE_UNDERFLOW see below // optional

#define FE_DOWNWARD see below // optional
#define FE_TONEAREST see below // optional
#define FE_TOWARDZERO see below // optional
#define FE_UPWARD see below // optional

#define FE_DFL_ENV see below

namespace std {
// types
using fenv_t = object type ;
using fexcept_t = integer type ;

224) In other words, value types. These include arithmetic types, pointers, the library class complex, and instantiations of
valarray for value types.
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// functions
int feclearexcept(int except);
int fegetexceptflag(fexcept_t* pflag, int except);
int feraiseexcept(int except);
int fesetexceptflag(const fexcept_t* pflag, int except);
int fetestexcept(int except);

int fegetround();
int fesetround(int mode);

int fegetenv(fenv_t* penv);
int feholdexcept(fenv_t* penv);
int fesetenv(const fenv_t* penv);
int feupdateenv(const fenv_t* penv);

}

1 The contents and meaning of the header <cfenv> are the same as the C standard library header <fenv.h>.
[Note 1 : This document does not require an implementation to support the FENV_ACCESS pragma; it is implementa-
tion-defined (15.9) whether the pragma is supported. As a consequence, it is implementation-defined whether these
functions can be used to test floating-point status flags, set floating-point control modes, or run under non-default
mode settings. If the pragma is used to enable control over the floating-point environment, this document does not
specify the effect on floating-point evaluation in constant expressions. — end note ]

See also: ISO/IEC 9899:2018, 7.6

28.3.2 Threads [cfenv.thread]
1 The floating-point environment has thread storage duration (6.7.5.3). The initial state for a thread’s

floating-point environment is the state of the floating-point environment of the thread that constructs the
corresponding thread object (33.4.3) or jthread object (33.4.4) at the time it constructed the object.
[Note 1 : That is, the child thread gets the floating-point state of the parent thread at the time of the child’s creation.

— end note ]
2 A separate floating-point environment is maintained for each thread. Each function accesses the environment

corresponding to its calling thread.

28.4 Complex numbers [complex.numbers]
28.4.1 General [complex.numbers.general]

1 The header <complex> defines a class template, and numerous functions for representing and manipulating
complex numbers.

2 The effect of instantiating the template complex for any type that is not a cv-unqualified floating-point
type (6.8.2) is unspecified. Specializations of complex for cv-unqualified floating-point types are trivially-
copyable literal types (6.8.1).

3 If the result of a function is not mathematically defined or not in the range of representable values for its
type, the behavior is undefined.

4 If z is an lvalue of type cv complex<T> then:
—(4.1) the expression reinterpret_cast<cv T(&)[2]>(z) is well-formed,
—(4.2) reinterpret_cast<cv T(&)[2]>(z)[0] designates the real part of z, and
—(4.3) reinterpret_cast<cv T(&)[2]>(z)[1] designates the imaginary part of z.

Moreover, if a is an expression of type cv complex<T>* and the expression a[i] is well-defined for an integer
expression i, then:

—(4.4) reinterpret_cast<cv T*>(a)[2*i] designates the real part of a[i], and
—(4.5) reinterpret_cast<cv T*>(a)[2*i + 1] designates the imaginary part of a[i].

28.4.2 Header <complex> synopsis [complex.syn]
namespace std {

// 28.4.3, class template complex
template<class T> class complex;
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// 28.4.6, operators
template<class T> constexpr complex<T> operator+(const complex<T>&, const complex<T>&);
template<class T> constexpr complex<T> operator+(const complex<T>&, const T&);
template<class T> constexpr complex<T> operator+(const T&, const complex<T>&);

template<class T> constexpr complex<T> operator-(const complex<T>&, const complex<T>&);
template<class T> constexpr complex<T> operator-(const complex<T>&, const T&);
template<class T> constexpr complex<T> operator-(const T&, const complex<T>&);

template<class T> constexpr complex<T> operator*(const complex<T>&, const complex<T>&);
template<class T> constexpr complex<T> operator*(const complex<T>&, const T&);
template<class T> constexpr complex<T> operator*(const T&, const complex<T>&);

template<class T> constexpr complex<T> operator/(const complex<T>&, const complex<T>&);
template<class T> constexpr complex<T> operator/(const complex<T>&, const T&);
template<class T> constexpr complex<T> operator/(const T&, const complex<T>&);

template<class T> constexpr complex<T> operator+(const complex<T>&);
template<class T> constexpr complex<T> operator-(const complex<T>&);

template<class T> constexpr bool operator==(const complex<T>&, const complex<T>&);
template<class T> constexpr bool operator==(const complex<T>&, const T&);

template<class T, class charT, class traits>
basic_istream<charT, traits>& operator>>(basic_istream<charT, traits>&, complex<T>&);

template<class T, class charT, class traits>
basic_ostream<charT, traits>& operator<<(basic_ostream<charT, traits>&, const complex<T>&);

// 28.4.7, values
template<class T> constexpr T real(const complex<T>&);
template<class T> constexpr T imag(const complex<T>&);

template<class T> T abs(const complex<T>&);
template<class T> T arg(const complex<T>&);
template<class T> constexpr T norm(const complex<T>&);

template<class T> constexpr complex<T> conj(const complex<T>&);
template<class T> complex<T> proj(const complex<T>&);
template<class T> complex<T> polar(const T&, const T& = T());

// 28.4.8, transcendentals
template<class T> complex<T> acos(const complex<T>&);
template<class T> complex<T> asin(const complex<T>&);
template<class T> complex<T> atan(const complex<T>&);

template<class T> complex<T> acosh(const complex<T>&);
template<class T> complex<T> asinh(const complex<T>&);
template<class T> complex<T> atanh(const complex<T>&);

template<class T> complex<T> cos (const complex<T>&);
template<class T> complex<T> cosh (const complex<T>&);
template<class T> complex<T> exp (const complex<T>&);
template<class T> complex<T> log (const complex<T>&);
template<class T> complex<T> log10(const complex<T>&);

template<class T> complex<T> pow (const complex<T>&, const T&);
template<class T> complex<T> pow (const complex<T>&, const complex<T>&);
template<class T> complex<T> pow (const T&, const complex<T>&);

template<class T> complex<T> sin (const complex<T>&);
template<class T> complex<T> sinh (const complex<T>&);
template<class T> complex<T> sqrt (const complex<T>&);
template<class T> complex<T> tan (const complex<T>&);
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template<class T> complex<T> tanh (const complex<T>&);

// 28.4.10, complex literals
inline namespace literals {
inline namespace complex_literals {

constexpr complex<long double> operator""il(long double);
constexpr complex<long double> operator""il(unsigned long long);
constexpr complex<double> operator""i(long double);
constexpr complex<double> operator""i(unsigned long long);
constexpr complex<float> operator""if(long double);
constexpr complex<float> operator""if(unsigned long long);

}
}

}

28.4.3 Class template complex [complex]
namespace std {

template<class T> class complex {
public:

using value_type = T;

constexpr complex(const T& re = T(), const T& im = T());
constexpr complex(const complex&) = default;
template<class X> constexpr explicit(see below ) complex(const complex<X>&);

constexpr T real() const;
constexpr void real(T);
constexpr T imag() const;
constexpr void imag(T);

constexpr complex& operator= (const T&);
constexpr complex& operator+=(const T&);
constexpr complex& operator-=(const T&);
constexpr complex& operator*=(const T&);
constexpr complex& operator/=(const T&);

constexpr complex& operator=(const complex&);
template<class X> constexpr complex& operator= (const complex<X>&);
template<class X> constexpr complex& operator+=(const complex<X>&);
template<class X> constexpr complex& operator-=(const complex<X>&);
template<class X> constexpr complex& operator*=(const complex<X>&);
template<class X> constexpr complex& operator/=(const complex<X>&);

};
}

1 The class complex describes an object that can store the Cartesian components, real() and imag(), of a
complex number.

28.4.4 Member functions [complex.members]
constexpr complex(const T& re = T(), const T& im = T());

1 Postconditions: real() == re && imag() == im is true.

template<class X> constexpr explicit(see below ) complex(const complex<X>& other);

2 Effects: Initializes the real part with other.real() and the imaginary part with other.imag().
3 Remarks: The expression inside explicit evaluates to false if and only if the floating-point conversion

rank of T is greater than or equal to the floating-point conversion rank of X.

constexpr T real() const;

4 Returns: The value of the real component.
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constexpr void real(T val);

5 Effects: Assigns val to the real component.

constexpr T imag() const;

6 Returns: The value of the imaginary component.

constexpr void imag(T val);

7 Effects: Assigns val to the imaginary component.

28.4.5 Member operators [complex.member.ops]
constexpr complex& operator+=(const T& rhs);

1 Effects: Adds the scalar value rhs to the real part of the complex value *this and stores the result in
the real part of *this, leaving the imaginary part unchanged.

2 Returns: *this.

constexpr complex& operator-=(const T& rhs);

3 Effects: Subtracts the scalar value rhs from the real part of the complex value *this and stores the
result in the real part of *this, leaving the imaginary part unchanged.

4 Returns: *this.

constexpr complex& operator*=(const T& rhs);

5 Effects: Multiplies the scalar value rhs by the complex value *this and stores the result in *this.
6 Returns: *this.

constexpr complex& operator/=(const T& rhs);

7 Effects: Divides the scalar value rhs into the complex value *this and stores the result in *this.
8 Returns: *this.

template<class X> constexpr complex& operator+=(const complex<X>& rhs);

9 Effects: Adds the complex value rhs to the complex value *this and stores the sum in *this.
10 Returns: *this.

template<class X> constexpr complex& operator-=(const complex<X>& rhs);

11 Effects: Subtracts the complex value rhs from the complex value *this and stores the difference in
*this.

12 Returns: *this.

template<class X> constexpr complex& operator*=(const complex<X>& rhs);

13 Effects: Multiplies the complex value rhs by the complex value *this and stores the product in *this.
14 Returns: *this.

template<class X> constexpr complex& operator/=(const complex<X>& rhs);

15 Effects: Divides the complex value rhs into the complex value *this and stores the quotient in *this.
16 Returns: *this.

28.4.6 Non-member operations [complex.ops]
template<class T> constexpr complex<T> operator+(const complex<T>& lhs);

1 Returns: complex<T>(lhs).

template<class T> constexpr complex<T> operator+(const complex<T>& lhs, const complex<T>& rhs);
template<class T> constexpr complex<T> operator+(const complex<T>& lhs, const T& rhs);
template<class T> constexpr complex<T> operator+(const T& lhs, const complex<T>& rhs);

2 Returns: complex<T>(lhs) += rhs.
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template<class T> constexpr complex<T> operator-(const complex<T>& lhs);

3 Returns: complex<T>(-lhs.real(),-lhs.imag()).

template<class T> constexpr complex<T> operator-(const complex<T>& lhs, const complex<T>& rhs);
template<class T> constexpr complex<T> operator-(const complex<T>& lhs, const T& rhs);
template<class T> constexpr complex<T> operator-(const T& lhs, const complex<T>& rhs);

4 Returns: complex<T>(lhs) -= rhs.

template<class T> constexpr complex<T> operator*(const complex<T>& lhs, const complex<T>& rhs);
template<class T> constexpr complex<T> operator*(const complex<T>& lhs, const T& rhs);
template<class T> constexpr complex<T> operator*(const T& lhs, const complex<T>& rhs);

5 Returns: complex<T>(lhs) *= rhs.

template<class T> constexpr complex<T> operator/(const complex<T>& lhs, const complex<T>& rhs);
template<class T> constexpr complex<T> operator/(const complex<T>& lhs, const T& rhs);
template<class T> constexpr complex<T> operator/(const T& lhs, const complex<T>& rhs);

6 Returns: complex<T>(lhs) /= rhs.

template<class T> constexpr bool operator==(const complex<T>& lhs, const complex<T>& rhs);
template<class T> constexpr bool operator==(const complex<T>& lhs, const T& rhs);

7 Returns: lhs.real() == rhs.real() && lhs.imag() == rhs.imag().
8 Remarks: The imaginary part is assumed to be T(), or 0.0, for the T arguments.

template<class T, class charT, class traits>
basic_istream<charT, traits>& operator>>(basic_istream<charT, traits>& is, complex<T>& x);

9 Preconditions: The input values are convertible to T.
10 Effects: Extracts a complex number x of the form: u, (u), or (u,v), where u is the real part and v is

the imaginary part (31.7.5.3).
11 If bad input is encountered, calls is.setstate(ios_base::failbit) (which may throw ios_base::

failure (31.5.4.4)).
12 Returns: is.
13 Remarks: This extraction is performed as a series of simpler extractions. Therefore, the skipping of

whitespace is specified to be the same for each of the simpler extractions.

template<class T, class charT, class traits>
basic_ostream<charT, traits>& operator<<(basic_ostream<charT, traits>& o, const complex<T>& x);

14 Effects: Inserts the complex number x onto the stream o as if it were implemented as follows:
basic_ostringstream<charT, traits> s;
s.flags(o.flags());
s.imbue(o.getloc());
s.precision(o.precision());
s << '(' << x.real() << ',' << x.imag() << ')';
return o << s.str();

15 [Note 1 : In a locale in which comma is used as a decimal point character, the use of comma as a field separator
can be ambiguous. Inserting showpoint into the output stream forces all outputs to show an explicit decimal
point character; as a result, all inserted sequences of complex numbers can be extracted unambiguously. — end
note ]

28.4.7 Value operations [complex.value.ops]
template<class T> constexpr T real(const complex<T>& x);

1 Returns: x.real().

template<class T> constexpr T imag(const complex<T>& x);

2 Returns: x.imag().

template<class T> T abs(const complex<T>& x);

3 Returns: The magnitude of x.
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template<class T> T arg(const complex<T>& x);

4 Returns: The phase angle of x, or atan2(imag(x), real(x)).

template<class T> constexpr T norm(const complex<T>& x);

5 Returns: The squared magnitude of x.

template<class T> constexpr complex<T> conj(const complex<T>& x);

6 Returns: The complex conjugate of x.

template<class T> complex<T> proj(const complex<T>& x);

7 Returns: The projection of x onto the Riemann sphere.
8 Remarks: Behaves the same as the C function cproj. See also: ISO/IEC 9899:2018, 7.3.9.5

template<class T> complex<T> polar(const T& rho, const T& theta = T());

9 Preconditions: rho is non-negative and non-NaN. theta is finite.
10 Returns: The complex value corresponding to a complex number whose magnitude is rho and whose

phase angle is theta.

28.4.8 Transcendentals [complex.transcendentals]
template<class T> complex<T> acos(const complex<T>& x);

1 Returns: The complex arc cosine of x.
2 Remarks: Behaves the same as the C function cacos. See also: ISO/IEC 9899:2018, 7.3.5.1

template<class T> complex<T> asin(const complex<T>& x);

3 Returns: The complex arc sine of x.
4 Remarks: Behaves the same as the C function casin. See also: ISO/IEC 9899:2018, 7.3.5.2

template<class T> complex<T> atan(const complex<T>& x);

5 Returns: The complex arc tangent of x.
6 Remarks: Behaves the same as the C function catan. See also: ISO/IEC 9899:2018, 7.3.5.3

template<class T> complex<T> acosh(const complex<T>& x);

7 Returns: The complex arc hyperbolic cosine of x.
8 Remarks: Behaves the same as the C function cacosh. See also: ISO/IEC 9899:2018, 7.3.6.1

template<class T> complex<T> asinh(const complex<T>& x);

9 Returns: The complex arc hyperbolic sine of x.
10 Remarks: Behaves the same as the C function casinh. See also: ISO/IEC 9899:2018, 7.3.6.2

template<class T> complex<T> atanh(const complex<T>& x);

11 Returns: The complex arc hyperbolic tangent of x.
12 Remarks: Behaves the same as the C function catanh. See also: ISO/IEC 9899:2018, 7.3.6.3

template<class T> complex<T> cos(const complex<T>& x);

13 Returns: The complex cosine of x.

template<class T> complex<T> cosh(const complex<T>& x);

14 Returns: The complex hyperbolic cosine of x.

template<class T> complex<T> exp(const complex<T>& x);

15 Returns: The complex base-e exponential of x.

template<class T> complex<T> log(const complex<T>& x);

16 Returns: The complex natural (base-e) logarithm of x. For all x, imag(log(x)) lies in the interval
[−π, π].
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[Note 1 : The semantics of this function are intended to be the same in C++ as they are for clog in C. — end
note ]

17 Remarks: The branch cuts are along the negative real axis.

template<class T> complex<T> log10(const complex<T>& x);

18 Returns: The complex common (base-10) logarithm of x, defined as log(x) / log(10).
19 Remarks: The branch cuts are along the negative real axis.

template<class T> complex<T> pow(const complex<T>& x, const complex<T>& y);
template<class T> complex<T> pow(const complex<T>& x, const T& y);
template<class T> complex<T> pow(const T& x, const complex<T>& y);

20 Returns: The complex power of base x raised to the yth power, defined as exp(y * log(x)). The
value returned for pow(0, 0) is implementation-defined.

21 Remarks: The branch cuts are along the negative real axis.

template<class T> complex<T> sin(const complex<T>& x);

22 Returns: The complex sine of x.

template<class T> complex<T> sinh(const complex<T>& x);

23 Returns: The complex hyperbolic sine of x.

template<class T> complex<T> sqrt(const complex<T>& x);

24 Returns: The complex square root of x, in the range of the right half-plane.
[Note 2 : The semantics of this function are intended to be the same in C++ as they are for csqrt in C. — end
note ]

25 Remarks: The branch cuts are along the negative real axis.

template<class T> complex<T> tan(const complex<T>& x);

26 Returns: The complex tangent of x.

template<class T> complex<T> tanh(const complex<T>& x);

27 Returns: The complex hyperbolic tangent of x.

28.4.9 Additional overloads [cmplx.over]
1 The following function templates shall have additional overloads:

arg norm
conj proj
imag real

where norm, conj, imag, and real are constexpr overloads.
2 The additional overloads shall be sufficient to ensure:

—(2.1) If the argument has a floating-point type T, then it is effectively cast to complex<T>.
—(2.2) Otherwise, if the argument has integer type, then it is effectively cast to complex<double>.

3 Function template pow has additional overloads sufficient to ensure, for a call with one argument of type
complex<T1> and the other argument of type T2 or complex<T2>, both arguments are effectively cast to
complex<common_type_t<T1, T2>>. If common_type_t<T1, T2> is not well-formed, then the program is
ill-formed.

28.4.10 Suffixes for complex number literals [complex.literals]
1 This subclause describes literal suffixes for constructing complex number literals. The suffixes i, il, and

if create complex numbers of the types complex<double>, complex<long double>, and complex<float>
respectively, with their imaginary part denoted by the given literal number and the real part being zero.

constexpr complex<long double> operator""il(long double d);
constexpr complex<long double> operator""il(unsigned long long d);

2 Returns: complex<long double>{0.0L, static_cast<long double>(d)}.
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constexpr complex<double> operator""i(long double d);
constexpr complex<double> operator""i(unsigned long long d);

3 Returns: complex<double>{0.0, static_cast<double>(d)}.

constexpr complex<float> operator""if(long double d);
constexpr complex<float> operator""if(unsigned long long d);

4 Returns: complex<float>{0.0f, static_cast<float>(d)}.

28.5 Random number generation [rand]
28.5.1 General [rand.general]

1 Subclause 28.5 defines a facility for generating (pseudo-)random numbers.
2 In addition to a few utilities, four categories of entities are described: uniform random bit generators, random

number engines, random number engine adaptors, and random number distributions. These categorizations
are applicable to types that meet the corresponding requirements, to objects instantiated from such types,
and to templates producing such types when instantiated.
[Note 1 : These entities are specified in such a way as to permit the binding of any uniform random bit generator
object e as the argument to any random number distribution object d, thus producing a zero-argument function object
such as given by bind(d,e). — end note ]

3 Each of the entities specified in 28.5 has an associated arithmetic type (6.8.2) identified as result_type.
With T as the result_type thus associated with such an entity, that entity is characterized:

—(3.1) as boolean or equivalently as boolean-valued, if T is bool;
—(3.2) otherwise as integral or equivalently as integer-valued, if numeric_limits<T>::is_integer is true;
—(3.3) otherwise as floating-point or equivalently as real-valued.

If integer-valued, an entity may optionally be further characterized as signed or unsigned, according to
numeric_limits<T>::is_signed.

4 Unless otherwise specified, all descriptions of calculations in 28.5 use mathematical real numbers.
5 Throughout 28.5, the operators bitand, bitor, and xor denote the respective conventional bitwise operations.

Further:
—(5.1) the operator rshift denotes a bitwise right shift with zero-valued bits appearing in the high bits of the

result, and
—(5.2) the operator lshiftw denotes a bitwise left shift with zero-valued bits appearing in the low bits of the

result, and whose result is always taken modulo 2w.

28.5.2 Header <random> synopsis [rand.synopsis]
#include <initializer_list> // see 17.10.2

namespace std {
// 28.5.3.3, uniform random bit generator requirements
template<class G>

concept uniform_random_bit_generator = see below ;

// 28.5.4.2, class template linear_congruential_engine
template<class UIntType, UIntType a, UIntType c, UIntType m>

class linear_congruential_engine;

// 28.5.4.3, class template mersenne_twister_engine
template<class UIntType, size_t w, size_t n, size_t m, size_t r,

UIntType a, size_t u, UIntType d, size_t s,
UIntType b, size_t t,
UIntType c, size_t l, UIntType f>

class mersenne_twister_engine;

// 28.5.4.4, class template subtract_with_carry_engine
template<class UIntType, size_t w, size_t s, size_t r>

class subtract_with_carry_engine;
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// 28.5.5.2, class template discard_block_engine
template<class Engine, size_t p, size_t r>

class discard_block_engine;

// 28.5.5.3, class template independent_bits_engine
template<class Engine, size_t w, class UIntType>

class independent_bits_engine;

// 28.5.5.4, class template shuffle_order_engine
template<class Engine, size_t k>

class shuffle_order_engine;

// 28.5.6, engines and engine adaptors with predefined parameters
using minstd_rand0 = see below ;
using minstd_rand = see below ;
using mt19937 = see below ;
using mt19937_64 = see below ;
using ranlux24_base = see below ;
using ranlux48_base = see below ;
using ranlux24 = see below ;
using ranlux48 = see below ;
using knuth_b = see below ;

using default_random_engine = see below ;

// 28.5.7, class random_device
class random_device;

// 28.5.8.1, class seed_seq
class seed_seq;

// 28.5.8.2, function template generate_canonical
template<class RealType, size_t bits, class URBG>

RealType generate_canonical(URBG& g);

// 28.5.9.2.1, class template uniform_int_distribution
template<class IntType = int>

class uniform_int_distribution;

// 28.5.9.2.2, class template uniform_real_distribution
template<class RealType = double>

class uniform_real_distribution;

// 28.5.9.3.1, class bernoulli_distribution
class bernoulli_distribution;

// 28.5.9.3.2, class template binomial_distribution
template<class IntType = int>

class binomial_distribution;

// 28.5.9.3.3, class template geometric_distribution
template<class IntType = int>

class geometric_distribution;

// 28.5.9.3.4, class template negative_binomial_distribution
template<class IntType = int>

class negative_binomial_distribution;

// 28.5.9.4.1, class template poisson_distribution
template<class IntType = int>

class poisson_distribution;
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// 28.5.9.4.2, class template exponential_distribution
template<class RealType = double>

class exponential_distribution;

// 28.5.9.4.3, class template gamma_distribution
template<class RealType = double>

class gamma_distribution;

// 28.5.9.4.4, class template weibull_distribution
template<class RealType = double>

class weibull_distribution;

// 28.5.9.4.5, class template extreme_value_distribution
template<class RealType = double>

class extreme_value_distribution;

// 28.5.9.5.1, class template normal_distribution
template<class RealType = double>

class normal_distribution;

// 28.5.9.5.2, class template lognormal_distribution
template<class RealType = double>

class lognormal_distribution;

// 28.5.9.5.3, class template chi_squared_distribution
template<class RealType = double>

class chi_squared_distribution;

// 28.5.9.5.4, class template cauchy_distribution
template<class RealType = double>

class cauchy_distribution;

// 28.5.9.5.5, class template fisher_f_distribution
template<class RealType = double>

class fisher_f_distribution;

// 28.5.9.5.6, class template student_t_distribution
template<class RealType = double>

class student_t_distribution;

// 28.5.9.6.1, class template discrete_distribution
template<class IntType = int>

class discrete_distribution;

// 28.5.9.6.2, class template piecewise_constant_distribution
template<class RealType = double>

class piecewise_constant_distribution;

// 28.5.9.6.3, class template piecewise_linear_distribution
template<class RealType = double>

class piecewise_linear_distribution;
}

28.5.3 Requirements [rand.req]
28.5.3.1 General requirements [rand.req.genl]

1 Throughout this subclause 28.5, the effect of instantiating a template:
—(1.1) that has a template type parameter named Sseq is undefined unless the corresponding template

argument is cv-unqualified and meets the requirements of seed sequence (28.5.3.2).
—(1.2) that has a template type parameter named URBG is undefined unless the corresponding template

argument is cv-unqualified and meets the requirements of uniform random bit generator (28.5.3.3).
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—(1.3) that has a template type parameter named Engine is undefined unless the corresponding template
argument is cv-unqualified and meets the requirements of random number engine (28.5.3.4).

—(1.4) that has a template type parameter named RealType is undefined unless the corresponding template
argument is cv-unqualified and is one of float, double, or long double.

—(1.5) that has a template type parameter named IntType is undefined unless the corresponding template
argument is cv-unqualified and is one of short, int, long, long long, unsigned short, unsigned
int, unsigned long, or unsigned long long.

—(1.6) that has a template type parameter named UIntType is undefined unless the corresponding template
argument is cv-unqualified and is one of unsigned short, unsigned int, unsigned long, or unsigned
long long.

2 Throughout this subclause 28.5, phrases of the form “x is an iterator of a specific kind” shall be interpreted
as equivalent to the more formal requirement that “x is a value of a type meeting the requirements of the
specified iterator type”.

3 Throughout this subclause 28.5, any constructor that can be called with a single argument and that meets a
requirement specified in this subclause shall be declared explicit.

28.5.3.2 Seed sequence requirements [rand.req.seedseq]
1 A seed sequence is an object that consumes a sequence of integer-valued data and produces a requested

number of unsigned integer values i, 0 ≤ i < 232, based on the consumed data.
[Note 1 : Such an object provides a mechanism to avoid replication of streams of random variates. This can be useful,
for example, in applications requiring large numbers of random number engines. — end note ]

2 A class S meets the requirements of a seed sequence if the expressions shown in Table 95 are valid and have
the indicated semantics, and if S also meets all other requirements of this subclause 28.5.3.2. In that Table
and throughout this subclause:

—(2.1) T is the type named by S’s associated result_type;
—(2.2) q is a value of type S and r is a value of type S or const S;
—(2.3) ib and ie are input iterators with an unsigned integer value_type of at least 32 bits;
—(2.4) rb and re are mutable random access iterators with an unsigned integer value_type of at least 32 bits;
—(2.5) ob is an output iterator; and
—(2.6) il is a value of type initializer_list<T>.

Table 95: Seed sequence requirements [tab:rand.req.seedseq]

Expression Return type Pre/post-condition Complexity
S::result_type T T is an unsigned integer

type (6.8.2) of at least 32 bits.
compile-time

S() Creates a seed sequence with
the same initial state as all
other default-constructed seed
sequences of type S.

constant

S(ib,ie) Creates a seed sequence having
internal state that depends on
some or all of the bits of the
supplied sequence [ib, ie).

O(ie − ib)

S(il) Same as S(il.begin(),
il.end()).

same as
S(il.begin(),
il.end())
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Table 95: Seed sequence requirements (continued)

Expression Return type Pre/post-condition Complexity
q.generate(rb,re) void Does nothing if rb == re.

Otherwise, fills the supplied
sequence [rb, re) with 32-bit
quantities that depend on the
sequence supplied to the
constructor and possibly also
depend on the history of
generate’s previous
invocations.

O(re − rb)

r.size() size_t The number of 32-bit units that
would be copied by a call to
r.param.

constant

r.param(ob) void Copies to the given destination
a sequence of 32-bit units that
can be provided to the
constructor of a second object of
type S, and that would
reproduce in that second object
a state indistinguishable from
the state of the first object.

O(r.size())

28.5.3.3 Uniform random bit generator requirements [rand.req.urng]
1 A uniform random bit generator g of type G is a function object returning unsigned integer values such that

each value in the range of possible results has (ideally) equal probability of being returned.
[Note 1 : The degree to which g’s results approximate the ideal is often determined statistically. — end note ]

template<class G>
concept uniform_random_bit_generator =

invocable<G&> && unsigned_integral<invoke_result_t<G&>> &&
requires {

{ G::min() } -> same_as<invoke_result_t<G&>>;
{ G::max() } -> same_as<invoke_result_t<G&>>;
requires bool_constant<(G::min() < G::max())>::value;

};

2 Let g be an object of type G. G models uniform_random_bit_generator only if
—(2.1) G::min() <= g(),
—(2.2) g() <= G::max(), and
—(2.3) g() has amortized constant complexity.

3 A class G meets the uniform random bit generator requirements if G models uniform_random_bit_generator,
invoke_result_t<G&> is an unsigned integer type (6.8.2), and G provides a nested typedef-name result_type
that denotes the same type as invoke_result_t<G&>.

28.5.3.4 Random number engine requirements [rand.req.eng]
1 A random number engine (commonly shortened to engine) e of type E is a uniform random bit generator

that additionally meets the requirements (e.g., for seeding and for input/output) specified in this subclause.
2 At any given time, e has a state ei for some integer i ≥ 0. Upon construction, e has an initial state e0. An

engine’s state may be established via a constructor, a seed function, assignment, or a suitable operator>>.
3 E’s specification shall define:

—(3.1) the size of E’s state in multiples of the size of result_type, given as an integral constant expression;
—(3.2) the transition algorithm TA by which e’s state ei is advanced to its successor state ei+1; and
—(3.3) the generation algorithm GA by which an engine’s state is mapped to a value of type result_type.
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4 A class E that meets the requirements of a uniform random bit generator (28.5.3.3) also meets the requirements
of a random number engine if the expressions shown in Table 96 are valid and have the indicated semantics,
and if E also meets all other requirements of this subclause 28.5.3.4. In that Table and throughout this
subclause:

—(4.1) T is the type named by E’s associated result_type;
—(4.2) e is a value of E, v is an lvalue of E, x and y are (possibly const) values of E;
—(4.3) s is a value of T;
—(4.4) q is an lvalue meeting the requirements of a seed sequence (28.5.3.2);
—(4.5) z is a value of type unsigned long long;
—(4.6) os is an lvalue of the type of some class template specialization basic_ostream<charT, traits>; and
—(4.7) is is an lvalue of the type of some class template specialization basic_istream<charT, traits>;

where charT and traits are constrained according to Clause 23 and Clause 31.

Table 96: Random number engine requirements [tab:rand.req.eng]

Expression Return type Pre/post-condition Complexity
E() Creates an engine with the same

initial state as all other
default-constructed engines of
type E.

O(size of state)

E(x) Creates an engine that compares
equal to x.

O(size of state)

E(s) Creates an engine with initial
state determined by s.

O(size of state)

E(q)225 Creates an engine with an initial
state that depends on a
sequence produced by one call
to q.generate.

same as
complexity of
q.generate
called on a
sequence whose
length is size of
state

e.seed() void Postconditions: e == E(). same as E()
e.seed(s) void Postconditions: e == E(s). same as E(s)
e.seed(q) void Postconditions: e == E(q). same as E(q)
e() T Advances e’s state ei to ei+1

= TA(ei) and returns GA(ei).
per 28.5.3.3

e.discard(z)226 void Advances e’s state ei to ei+z by
any means equivalent to z
consecutive calls e().

no worse than
the complexity
of z consecutive
calls e()

x == y bool This operator is an equivalence
relation. With Sx and Sy as the
infinite sequences of values that
would be generated by repeated
future calls to x() and y(),
respectively, returns true if
Sx = Sy; else returns false.

O(size of state)

x != y bool !(x == y). O(size of state)

225) This constructor (as well as the subsequent corresponding seed() function) can be particularly useful to applications
requiring a large number of independent random sequences.
226) This operation is common in user code, and can often be implemented in an engine-specific manner so as to provide
significant performance improvements over an equivalent naive loop that makes z consecutive calls e().
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Expression Return type Pre/post-condition Complexity
os << x reference to the type of

os
With os.fmtflags set to ios_-
base::dec|ios_base::left
and the fill character set to the
space character, writes to os the
textual representation of x’s
current state. In the output,
adjacent numbers are separated
by one or more space characters.
Postconditions: The os.fmtflags
and fill character are unchanged.

O(size of state)

is >> v reference to the type of
is

With is.fmtflags set to
ios_base::dec, sets v’s state
as determined by reading its
textual representation from is.
If bad input is encountered,
ensures that v’s state is
unchanged by the operation and
calls is.setstate(ios_-
base::failbit) (which may
throw
ios_base::failure (31.5.4.4)).
If a textual representation
written via os << x was
subsequently read via is >> v,
then x == v provided that there
have been no intervening
invocations of x or of v.
Preconditions: is provides a
textual representation that was
previously written using an
output stream whose imbued
locale was the same as that of
is, and whose type’s template
specialization arguments charT
and traits were respectively
the same as those of is.
Postconditions: The is.fmtflags
are unchanged.

O(size of state)

5 E shall meet the Cpp17CopyConstructible (Table 32) and Cpp17CopyAssignable (Table 34) requirements.
These operations shall each be of complexity no worse than O(size of state).

28.5.3.5 Random number engine adaptor requirements [rand.req.adapt]
1 A random number engine adaptor (commonly shortened to adaptor) a of type A is a random number engine

that takes values produced by some other random number engine, and applies an algorithm to those values
in order to deliver a sequence of values with different randomness properties. An engine b of type B adapted
in this way is termed a base engine in this context. The expression a.base() shall be valid and shall return
a const reference to a’s base engine.

2 The requirements of a random number engine type shall be interpreted as follows with respect to a random
number engine adaptor type.

A::A();

3 Effects: The base engine is initialized as if by its default constructor.

bool operator==(const A& a1, const A& a2);

4 Returns: true if a1’s base engine is equal to a2’s base engine. Otherwise returns false.
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A::A(result_type s);

5 Effects: The base engine is initialized with s.

template<class Sseq> A::A(Sseq& q);

6 Effects: The base engine is initialized with q.

void seed();

7 Effects: With b as the base engine, invokes b.seed().

void seed(result_type s);

8 Effects: With b as the base engine, invokes b.seed(s).

template<class Sseq> void seed(Sseq& q);

9 Effects: With b as the base engine, invokes b.seed(q).
10 A shall also meet the following additional requirements:

—(10.1) The complexity of each function shall not exceed the complexity of the corresponding function applied
to the base engine.

—(10.2) The state of A shall include the state of its base engine. The size of A’s state shall be no less than the
size of the base engine.

—(10.3) Copying A’s state (e.g., during copy construction or copy assignment) shall include copying the state of
the base engine of A.

—(10.4) The textual representation of A shall include the textual representation of its base engine.

28.5.3.6 Random number distribution requirements [rand.req.dist]
1 A random number distribution (commonly shortened to distribution) d of type D is a function object returning

values that are distributed according to an associated mathematical probability density function p(z) or
according to an associated discrete probability function P (zi). A distribution’s specification identifies its
associated probability function p(z) or P (zi).

2 An associated probability function is typically expressed using certain externally-supplied quantities known
as the parameters of the distribution. Such distribution parameters are identified in this context by writing,
for example, p(z | a, b) or P (zi | a, b), to name specific parameters, or by writing, for example, p(z | {p}) or
P (zi | {p}), to denote a distribution’s parameters p taken as a whole.

3 A class D meets the requirements of a random number distribution if the expressions shown in Table 97 are
valid and have the indicated semantics, and if D and its associated types also meet all other requirements of
this subclause 28.5.3.6. In that Table and throughout this subclause,

—(3.1) T is the type named by D’s associated result_type;
—(3.2) P is the type named by D’s associated param_type;
—(3.3) d is a value of D, and x and y are (possibly const) values of D;
—(3.4) glb and lub are values of T respectively corresponding to the greatest lower bound and the least upper

bound on the values potentially returned by d’s operator(), as determined by the current values of
d’s parameters;

—(3.5) p is a (possibly const) value of P;
—(3.6) g, g1, and g2 are lvalues of a type meeting the requirements of a uniform random bit generator (28.5.3.3);
—(3.7) os is an lvalue of the type of some class template specialization basic_ostream<charT, traits>; and
—(3.8) is is an lvalue of the type of some class template specialization basic_istream<charT, traits>;

where charT and traits are constrained according to Clause 23 and Clause 31.

Table 97: Random number distribution requirements [tab:rand.req.dist]

Expression Return type Pre/post-condition Complexity
D::result_type T T is an arithmetic type (6.8.2). compile-time
D::param_type P compile-time
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Expression Return type Pre/post-condition Complexity
D() Creates a distribution whose

behavior is indistinguishable
from that of any other newly
default-constructed distribution
of type D.

constant

D(p) Creates a distribution whose
behavior is indistinguishable
from that of a distribution
newly constructed directly from
the values used to construct p.

same as p’s
construction

d.reset() void Subsequent uses of d do not
depend on values produced by
any engine prior to invoking
reset.

constant

x.param() P Returns a value p such that
D(p).param() == p.

no worse than
the complexity
of D(p)

d.param(p) void Postconditions: d.param() ==
p.

no worse than
the complexity
of D(p)

d(g) T With p = d.param(), the
sequence of numbers returned by
successive invocations with the
same object g is randomly
distributed according to the
associated p(z | {p}) or
P (zi | {p}) function.

amortized
constant
number of
invocations of g

d(g,p) T The sequence of numbers
returned by successive
invocations with the same
objects g and p is randomly
distributed according to the
associated p(z | {p}) or
P (zi | {p}) function.

amortized
constant
number of
invocations of g

x.min() T Returns glb. constant
x.max() T Returns lub. constant
x == y bool This operator is an equivalence

relation. Returns true if
x.param() == y.param() and
S1 = S2, where S1 and S2 are
the infinite sequences of values
that would be generated,
respectively, by repeated future
calls to x(g1) and y(g2)
whenever g1 == g2. Otherwise
returns false.

constant

x != y bool !(x == y). same as x == y.
os << x reference to the type of

os
Writes to os a textual
representation for the
parameters and the additional
internal data of x.
Postconditions: The os.fmtflags
and fill character are unchanged.
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Expression Return type Pre/post-condition Complexity
is >> d reference to the type of

is
Restores from is the parameters
and additional internal data of
the lvalue d. If bad input is
encountered, ensures that d is
unchanged by the operation and
calls is.setstate(ios_-
base::failbit) (which may
throw
ios_base::failure (31.5.4.4)).
Preconditions: is provides a
textual representation that was
previously written using an os
whose imbued locale and whose
type’s template specialization
arguments charT and traits
were the same as those of is.
Postconditions: The is.fmtflags
are unchanged.

4 D shall meet the Cpp17CopyConstructible (Table 32) and Cpp17CopyAssignable (Table 34) requirements.
5 The sequence of numbers produced by repeated invocations of d(g) shall be independent of any invocation

of os << d or of any const member function of D between any of the invocations of d(g).
6 If a textual representation is written using os << x and that representation is restored into the same or

a different object y of the same type using is >> y, repeated invocations of y(g) shall produce the same
sequence of numbers as would repeated invocations of x(g).

7 It is unspecified whether D::param_type is declared as a (nested) class or via a typedef. In this subclause
28.5, declarations of D::param_type are in the form of typedefs for convenience of exposition only.

8 P shall meet the Cpp17CopyConstructible (Table 32), Cpp17CopyAssignable (Table 34), and Cpp17Equality-
Comparable (Table 28) requirements.

9 For each of the constructors of D taking arguments corresponding to parameters of the distribution, P shall
have a corresponding constructor subject to the same requirements and taking arguments identical in number,
type, and default values. Moreover, for each of the member functions of D that return values corresponding
to parameters of the distribution, P shall have a corresponding member function with the identical name,
type, and semantics.

10 P shall have a declaration of the form
using distribution_type = D;

28.5.4 Random number engine class templates [rand.eng]
28.5.4.1 General [rand.eng.general]

1 Each type instantiated from a class template specified in 28.5.4 meets the requirements of a random number
engine (28.5.3.4) type.

2 Except where specified otherwise, the complexity of each function specified in 28.5.4 is constant.
3 Except where specified otherwise, no function described in 28.5.4 throws an exception.
4 Every function described in 28.5.4 that has a function parameter q of type Sseq& for a template type parameter

named Sseq that is different from type seed_seq throws what and when the invocation of q.generate
throws.

5 Descriptions are provided in 28.5.4 only for engine operations that are not described in 28.5.3.4 or for
operations where there is additional semantic information. In particular, declarations for copy constructors,
for copy assignment operators, for streaming operators, and for equality and inequality operators are not
shown in the synopses.
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6 Each template specified in 28.5.4 requires one or more relationships, involving the value(s) of its non-type
template parameter(s), to hold. A program instantiating any of these templates is ill-formed if any such
required relationship fails to hold.

7 For every random number engine and for every random number engine adaptor X defined in 28.5.4 and in
28.5.5:

—(7.1) if the constructor
template<class Sseq> explicit X(Sseq& q);

is called with a type Sseq that does not qualify as a seed sequence, then this constructor shall not
participate in overload resolution;

—(7.2) if the member function
template<class Sseq> void seed(Sseq& q);

is called with a type Sseq that does not qualify as a seed sequence, then this function shall not
participate in overload resolution.

The extent to which an implementation determines that a type cannot be a seed sequence is unspecified,
except that as a minimum a type shall not qualify as a seed sequence if it is implicitly convertible to
X::result_type.

28.5.4.2 Class template linear_congruential_engine [rand.eng.lcong]
1 A linear_congruential_engine random number engine produces unsigned integer random numbers. The

state xi of a linear_congruential_engine object x is of size 1 and consists of a single integer. The transition
algorithm is a modular linear function of the form TA(xi) = (a · xi + c) mod m; the generation algorithm is
GA(xi) = xi+1.

namespace std {
template<class UIntType, UIntType a, UIntType c, UIntType m>
class linear_congruential_engine {
public:

// types
using result_type = UIntType;

// engine characteristics
static constexpr result_type multiplier = a;
static constexpr result_type increment = c;
static constexpr result_type modulus = m;
static constexpr result_type min() { return c == 0u ? 1u: 0u; }
static constexpr result_type max() { return m - 1u; }
static constexpr result_type default_seed = 1u;

// constructors and seeding functions
linear_congruential_engine() : linear_congruential_engine(default_seed) {}
explicit linear_congruential_engine(result_type s);
template<class Sseq> explicit linear_congruential_engine(Sseq& q);
void seed(result_type s = default_seed);
template<class Sseq> void seed(Sseq& q);

// equality operators
friend bool operator==(const linear_congruential_engine& x,

const linear_congruential_engine& y);

// generating functions
result_type operator()();
void discard(unsigned long long z);

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const linear_congruential_engine& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, linear_congruential_engine& x);
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};
}

2 If the template parameter m is 0, the modulus m used throughout this subclause 28.5.4.2 is numeric_-
limits<result_type>::max() plus 1.
[Note 1 : m need not be representable as a value of type result_type. — end note ]

3 If the template parameter m is not 0, the following relations shall hold: a < m and c < m.
4 The textual representation consists of the value of xi.

explicit linear_congruential_engine(result_type s);

5 Effects: If c mod m is 0 and s mod m is 0, sets the engine’s state to 1, otherwise sets the engine’s state
to s mod m.

template<class Sseq> explicit linear_congruential_engine(Sseq& q);

6 Effects: With k =
⌈

log2 m
32

⌉
and a an array (or equivalent) of length k + 3, invokes q.generate(a + 0,

a + k + 3) and then computes S =
(∑k−1

j=0 aj+3 · 232j
)

mod m. If c mod m is 0 and S is 0, sets the
engine’s state to 1, else sets the engine’s state to S.

28.5.4.3 Class template mersenne_twister_engine [rand.eng.mers]
1 A mersenne_twister_engine random number engine227 produces unsigned integer random numbers in the

closed interval [0, 2w − 1]. The state xi of a mersenne_twister_engine object x is of size n and consists of
a sequence X of n values of the type delivered by x; all subscripts applied to X are to be taken modulo n.

2 The transition algorithm employs a twisted generalized feedback shift register defined by shift values n and
m, a twist value r, and a conditional xor-mask a. To improve the uniformity of the result, the bits of the
raw shift register are additionally tempered (i.e., scrambled) according to a bit-scrambling matrix defined by
values u, d, s, b, t, c, and ℓ.
The state transition is performed as follows:

—(2.1) Concatenate the upper w − r bits of Xi−n with the lower r bits of Xi+1−n to obtain an unsigned integer
value Y .

—(2.2) With α = a · (Y bitand 1), set Xi to Xi+m−n xor (Y rshift 1) xor α.
The sequence X is initialized with the help of an initialization multiplier f .

3 The generation algorithm determines the unsigned integer values z1, z2, z3, z4 as follows, then delivers z4 as
its result:

—(3.1) Let z1 = Xi xor
(
(Xi rshift u) bitand d

)
.

—(3.2) Let z2 = z1 xor
(
(z1 lshiftw s) bitand b

)
.

—(3.3) Let z3 = z2 xor
(
(z2 lshiftw t) bitand c

)
.

—(3.4) Let z4 = z3 xor (z3 rshift ℓ).
namespace std {

template<class UIntType, size_t w, size_t n, size_t m, size_t r,
UIntType a, size_t u, UIntType d, size_t s,
UIntType b, size_t t,
UIntType c, size_t l, UIntType f>

class mersenne_twister_engine {
public:

// types
using result_type = UIntType;

// engine characteristics
static constexpr size_t word_size = w;
static constexpr size_t state_size = n;
static constexpr size_t shift_size = m;
static constexpr size_t mask_bits = r;

227) The name of this engine refers, in part, to a property of its period: For properly-selected values of the parameters, the
period is closely related to a large Mersenne prime number.
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static constexpr UIntType xor_mask = a;
static constexpr size_t tempering_u = u;
static constexpr UIntType tempering_d = d;
static constexpr size_t tempering_s = s;
static constexpr UIntType tempering_b = b;
static constexpr size_t tempering_t = t;
static constexpr UIntType tempering_c = c;
static constexpr size_t tempering_l = l;
static constexpr UIntType initialization_multiplier = f;
static constexpr result_type min() { return 0; }
static constexpr result_type max() { return 2w − 1; }
static constexpr result_type default_seed = 5489u;

// constructors and seeding functions
mersenne_twister_engine() : mersenne_twister_engine(default_seed) {}
explicit mersenne_twister_engine(result_type value);
template<class Sseq> explicit mersenne_twister_engine(Sseq& q);
void seed(result_type value = default_seed);
template<class Sseq> void seed(Sseq& q);

// equality operators
friend bool operator==(const mersenne_twister_engine& x, const mersenne_twister_engine& y);

// generating functions
result_type operator()();
void discard(unsigned long long z);

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const mersenne_twister_engine& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, mersenne_twister_engine& x);
};

}

4 The following relations shall hold: 0 < m, m <= n, 2u < w, r <= w, u <= w, s <= w, t <= w, l <= w, w <=
numeric_limits<UIntType>::digits, a <= (1u<<w) - 1u, b <= (1u<<w) - 1u, c <= (1u<<w) - 1u, d
<= (1u<<w) - 1u, and f <= (1u<<w) - 1u.

5 The textual representation of xi consists of the values of Xi−n, . . . , Xi−1, in that order.

explicit mersenne_twister_engine(result_type value);

6 Effects: Sets X−n to value mod 2w. Then, iteratively for i = 1 − n, . . . , −1, sets Xi to[
f ·
(
Xi−1 xor

(
Xi−1 rshift (w − 2)

))
+ i mod n

]
mod 2w .

7 Complexity: O(n).

template<class Sseq> explicit mersenne_twister_engine(Sseq& q);

8 Effects: With k = ⌈w/32⌉ and a an array (or equivalent) of length n · k, invokes q.generate(a + 0,
a + n · k) and then, iteratively for i = −n, . . . , −1, sets Xi to

(∑k−1
j=0 ak(i+n)+j · 232j

)
mod 2w. Finally,

if the most significant w − r bits of X−n are zero, and if each of the other resulting Xi is 0, changes
X−n to 2w−1.

28.5.4.4 Class template subtract_with_carry_engine [rand.eng.sub]
1 A subtract_with_carry_engine random number engine produces unsigned integer random numbers.
2 The state xi of a subtract_with_carry_engine object x is of size O(r), and consists of a sequence X of

r integer values 0 ≤ Xi < m = 2w; all subscripts applied to X are to be taken modulo r. The state xi

additionally consists of an integer c (known as the carry) whose value is either 0 or 1.
3 The state transition is performed as follows:
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—(3.1) Let Y = Xi−s − Xi−r − c.
—(3.2) Set Xi to y = Y mod m. Set c to 1 if Y < 0, otherwise set c to 0.

[Note 1 : This algorithm corresponds to a modular linear function of the form TA(xi) = (a · xi) mod b, where b is of
the form mr − ms + 1 and a = b − (b − 1)/m. — end note ]

4 The generation algorithm is given by GA(xi) = y, where y is the value produced as a result of advancing the
engine’s state as described above.

namespace std {
template<class UIntType, size_t w, size_t s, size_t r>
class subtract_with_carry_engine {
public:

// types
using result_type = UIntType;

// engine characteristics
static constexpr size_t word_size = w;
static constexpr size_t short_lag = s;
static constexpr size_t long_lag = r;
static constexpr result_type min() { return 0; }
static constexpr result_type max() { return m − 1; }
static constexpr result_type default_seed = 19780503u;

// constructors and seeding functions
subtract_with_carry_engine() : subtract_with_carry_engine(default_seed) {}
explicit subtract_with_carry_engine(result_type value);
template<class Sseq> explicit subtract_with_carry_engine(Sseq& q);
void seed(result_type value = default_seed);
template<class Sseq> void seed(Sseq& q);

// equality operators
friend bool operator==(const subtract_with_carry_engine& x,

const subtract_with_carry_engine& y);

// generating functions
result_type operator()();
void discard(unsigned long long z);

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const subtract_with_carry_engine& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, subtract_with_carry_engine& x);
};

}

5 The following relations shall hold: 0u < s, s < r, 0 < w, and w <= numeric_limits<UIntType>::digits.
6 The textual representation consists of the values of Xi−r, . . . , Xi−1, in that order, followed by c.

explicit subtract_with_carry_engine(result_type value);

7 Effects: Sets the values of X−r, . . . , X−1, in that order, as specified below. If X−1 is then 0, sets c to 1;
otherwise sets c to 0.
To set the values Xk, first construct e, a linear_congruential_engine object, as if by the following
definition:

linear_congruential_engine<result_type,
40014u,0u,2147483563u> e(value == 0u ? default_seed : value);

Then, to set each Xk, obtain new values z0, . . . , zn−1 from n = ⌈w/32⌉ successive invocations of e. Set
Xk to

(∑n−1
j=0 zj · 232j

)
mod m.

8 Complexity: Exactly n · r invocations of e.
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template<class Sseq> explicit subtract_with_carry_engine(Sseq& q);

9 Effects: With k = ⌈w/32⌉ and a an array (or equivalent) of length r · k, invokes q.generate(a + 0,
a + r · k) and then, iteratively for i = −r, . . . , −1, sets Xi to

(∑k−1
j=0 ak(i+r)+j · 232j

)
mod m. If X−1

is then 0, sets c to 1; otherwise sets c to 0.

28.5.5 Random number engine adaptor class templates [rand.adapt]
28.5.5.1 In general [rand.adapt.general]

1 Each type instantiated from a class template specified in this subclause 28.5.5 meets the requirements of a
random number engine adaptor (28.5.3.5) type.

2 Except where specified otherwise, the complexity of each function specified in this subclause 28.5.5 is constant.
3 Except where specified otherwise, no function described in this subclause 28.5.5 throws an exception.
4 Every function described in this subclause 28.5.5 that has a function parameter q of type Sseq& for a template

type parameter named Sseq that is different from type seed_seq throws what and when the invocation of
q.generate throws.

5 Descriptions are provided in this subclause 28.5.5 only for adaptor operations that are not described in
subclause 28.5.3.5 or for operations where there is additional semantic information. In particular, declarations
for copy constructors, for copy assignment operators, for streaming operators, and for equality and inequality
operators are not shown in the synopses.

6 Each template specified in this subclause 28.5.5 requires one or more relationships, involving the value(s) of
its non-type template parameter(s), to hold. A program instantiating any of these templates is ill-formed if
any such required relationship fails to hold.

28.5.5.2 Class template discard_block_engine [rand.adapt.disc]
1 A discard_block_engine random number engine adaptor produces random numbers selected from those

produced by some base engine e. The state xi of a discard_block_engine engine adaptor object x consists
of the state ei of its base engine e and an additional integer n. The size of the state is the size of e’s state
plus 1.

2 The transition algorithm discards all but r > 0 values from each block of p ≥ r values delivered by e. The
state transition is performed as follows: If n ≥ r, advance the state of e from ei to ei+p−r and set n to 0. In
any case, then increment n and advance e’s then-current state ej to ej+1.

3 The generation algorithm yields the value returned by the last invocation of e() while advancing e’s state as
described above.

namespace std {
template<class Engine, size_t p, size_t r>
class discard_block_engine {
public:

// types
using result_type = typename Engine::result_type;

// engine characteristics
static constexpr size_t block_size = p;
static constexpr size_t used_block = r;
static constexpr result_type min() { return Engine::min(); }
static constexpr result_type max() { return Engine::max(); }

// constructors and seeding functions
discard_block_engine();
explicit discard_block_engine(const Engine& e);
explicit discard_block_engine(Engine&& e);
explicit discard_block_engine(result_type s);
template<class Sseq> explicit discard_block_engine(Sseq& q);
void seed();
void seed(result_type s);
template<class Sseq> void seed(Sseq& q);

// equality operators
friend bool operator==(const discard_block_engine& x, const discard_block_engine& y);
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// generating functions
result_type operator()();
void discard(unsigned long long z);

// property functions
const Engine& base() const noexcept { return e; }

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const discard_block_engine& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, discard_block_engine& x);

private:
Engine e; // exposition only
size_t n; // exposition only

};
}

4 The following relations shall hold: 0 < r and r <= p.
5 The textual representation consists of the textual representation of e followed by the value of n.
6 In addition to its behavior pursuant to subclause 28.5.3.5, each constructor that is not a copy constructor

sets n to 0.

28.5.5.3 Class template independent_bits_engine [rand.adapt.ibits]
1 An independent_bits_engine random number engine adaptor combines random numbers that are produced

by some base engine e, so as to produce random numbers with a specified number of bits w. The state xi of
an independent_bits_engine engine adaptor object x consists of the state ei of its base engine e; the size
of the state is the size of e’s state.

2 The transition and generation algorithms are described in terms of the following integral constants:
—(2.1) Let R = e.max() - e.min() + 1 and m = ⌊log2 R⌋.
—(2.2) With n as determined below, let w0 = ⌊w/n⌋, n0 = n − w mod n, y0 = 2w0 ⌊R/2w0⌋, and y1 =

2w0+1 ⌊R/2w0+1⌋.
—(2.3) Let n = ⌈w/m⌉ if and only if the relation R−y0 ≤ ⌊y0/n⌋ holds as a result. Otherwise let n = 1+⌈w/m⌉.

[Note 1 : The relation w = n0w0 + (n − n0)(w0 + 1) always holds. — end note ]
3 The transition algorithm is carried out by invoking e() as often as needed to obtain n0 values less than

y0 + e.min() and n − n0 values less than y1 + e.min().
4 The generation algorithm uses the values produced while advancing the state as described above to yield a

quantity S obtained as if by the following algorithm:
S = 0;
for (k = 0; k ̸= n0; k += 1) {
do u = e() - e.min(); while (u ≥ y0);
S = 2w0 · S + u mod 2w0 ;

}
for (k = n0; k ̸= n; k += 1) {
do u = e() - e.min(); while (u ≥ y1);
S = 2w0+1 · S + u mod 2w0+1;

}

template<class Engine, size_t w, class UIntType>
class independent_bits_engine {
public:

// types
using result_type = UIntType;

// engine characteristics
static constexpr result_type min() { return 0; }
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static constexpr result_type max() { return 2w − 1; }

// constructors and seeding functions
independent_bits_engine();
explicit independent_bits_engine(const Engine& e);
explicit independent_bits_engine(Engine&& e);
explicit independent_bits_engine(result_type s);
template<class Sseq> explicit independent_bits_engine(Sseq& q);
void seed();
void seed(result_type s);
template<class Sseq> void seed(Sseq& q);

// equality operators
friend bool operator==(const independent_bits_engine& x, const independent_bits_engine& y);

// generating functions
result_type operator()();
void discard(unsigned long long z);

// property functions
const Engine& base() const noexcept { return e; }

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const independent_bits_engine& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, independent_bits_engine& x);

private:
Engine e; // exposition only

};

5 The following relations shall hold: 0 < w and w <= numeric_limits<result_type>::digits.
6 The textual representation consists of the textual representation of e.

28.5.5.4 Class template shuffle_order_engine [rand.adapt.shuf]
1 A shuffle_order_engine random number engine adaptor produces the same random numbers that are

produced by some base engine e, but delivers them in a different sequence. The state xi of a shuffle_-
order_engine engine adaptor object x consists of the state ei of its base engine e, an additional value Y of
the type delivered by e, and an additional sequence V of k values also of the type delivered by e. The size of
the state is the size of e’s state plus k + 1.

2 The transition algorithm permutes the values produced by e. The state transition is performed as follows:

—(2.1) Calculate an integer j =
⌊

k·(Y −emin)
emax−emin+1

⌋
.

—(2.2) Set Y to Vj and then set Vj to e().
3 The generation algorithm yields the last value of Y produced while advancing e’s state as described above.

namespace std {
template<class Engine, size_t k>
class shuffle_order_engine {
public:

// types
using result_type = typename Engine::result_type;

// engine characteristics
static constexpr size_t table_size = k;
static constexpr result_type min() { return Engine::min(); }
static constexpr result_type max() { return Engine::max(); }
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// constructors and seeding functions
shuffle_order_engine();
explicit shuffle_order_engine(const Engine& e);
explicit shuffle_order_engine(Engine&& e);
explicit shuffle_order_engine(result_type s);
template<class Sseq> explicit shuffle_order_engine(Sseq& q);
void seed();
void seed(result_type s);
template<class Sseq> void seed(Sseq& q);

// equality operators
friend bool operator==(const shuffle_order_engine& x, const shuffle_order_engine& y);

// generating functions
result_type operator()();
void discard(unsigned long long z);

// property functions
const Engine& base() const noexcept { return e; }

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const shuffle_order_engine& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, shuffle_order_engine& x);

private:
Engine e; // exposition only
result_type V[k]; // exposition only
result_type Y; // exposition only

};
}

4 The following relation shall hold: 0 < k.
5 The textual representation consists of the textual representation of e, followed by the k values of V , followed

by the value of Y .
6 In addition to its behavior pursuant to subclause 28.5.3.5, each constructor that is not a copy constructor

initializes V[0], . . . , V[k-1] and Y , in that order, with values returned by successive invocations of e().

28.5.6 Engines and engine adaptors with predefined parameters [rand.predef]
using minstd_rand0 =

linear_congruential_engine<uint_fast32_t, 16’807, 0, 2’147’483’647>;

1 Required behavior : The 10000th consecutive invocation of a default-constructed object of type minstd_-
rand0 produces the value 1043618065.

using minstd_rand =
linear_congruential_engine<uint_fast32_t, 48’271, 0, 2’147’483’647>;

2 Required behavior : The 10000th consecutive invocation of a default-constructed object of type minstd_-
rand produces the value 399268537.

using mt19937 =
mersenne_twister_engine<uint_fast32_t, 32, 624, 397, 31,
0x9908’b0df, 11, 0xffff’ffff, 7, 0x9d2c’5680, 15, 0xefc6’0000, 18, 1’812’433’253>;

3 Required behavior : The 10000th consecutive invocation of a default-constructed object of type mt19937
produces the value 4123659995.

using mt19937_64 =
mersenne_twister_engine<uint_fast64_t, 64, 312, 156, 31,
0xb502’6f5a’a966’19e9, 29, 0x5555’5555’5555’5555, 17,
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0x71d6’7fff’eda6’0000, 37, 0xfff7’eee0’0000’0000, 43, 6’364’136’223’846’793’005>;

4 Required behavior : The 10000th consecutive invocation of a default-constructed object of type mt19937_-
64 produces the value 9981545732273789042.

using ranlux24_base =
subtract_with_carry_engine<uint_fast32_t, 24, 10, 24>;

5 Required behavior : The 10000th consecutive invocation of a default-constructed object of type ran-
lux24_base produces the value 7937952.

using ranlux48_base =
subtract_with_carry_engine<uint_fast64_t, 48, 5, 12>;

6 Required behavior : The 10000th consecutive invocation of a default-constructed object of type ran-
lux48_base produces the value 61839128582725.

using ranlux24 = discard_block_engine<ranlux24_base, 223, 23>;

7 Required behavior : The 10000th consecutive invocation of a default-constructed object of type ranlux24
produces the value 9901578.

using ranlux48 = discard_block_engine<ranlux48_base, 389, 11>;

8 Required behavior : The 10000th consecutive invocation of a default-constructed object of type ranlux48
produces the value 249142670248501.

using knuth_b = shuffle_order_engine<minstd_rand0,256>;

9 Required behavior : The 10000th consecutive invocation of a default-constructed object of type knuth_b
produces the value 1112339016.

using default_random_engine = implementation-defined ;

10 Remarks: The choice of engine type named by this typedef is implementation-defined.
[Note 1 : The implementation can select this type on the basis of performance, size, quality, or any combination
of such factors, so as to provide at least acceptable engine behavior for relatively casual, inexpert, and/or
lightweight use. Because different implementations can select different underlying engine types, code that uses
this typedef need not generate identical sequences across implementations. — end note ]

28.5.7 Class random_device [rand.device]
1 A random_device uniform random bit generator produces nondeterministic random numbers.
2 If implementation limitations prevent generating nondeterministic random numbers, the implementation may

employ a random number engine.
namespace std {

class random_device {
public:

// types
using result_type = unsigned int;

// generator characteristics
static constexpr result_type min() { return numeric_limits<result_type>::min(); }
static constexpr result_type max() { return numeric_limits<result_type>::max(); }

// constructors
random_device() : random_device(implementation-defined ) {}
explicit random_device(const string& token);

// generating functions
result_type operator()();

// property functions
double entropy() const noexcept;

// no copy functions
random_device(const random_device&) = delete;
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void operator=(const random_device&) = delete;
};

}

explicit random_device(const string& token);

3 Throws: A value of an implementation-defined type derived from exception if the random_device
cannot be initialized.

4 Remarks: The semantics of the token parameter and the token value used by the default constructor
are implementation-defined.228

double entropy() const noexcept;

5 Returns: If the implementation employs a random number engine, returns 0.0. Otherwise, returns
an entropy estimate229 for the random numbers returned by operator(), in the range min() to
log2(max() + 1).

result_type operator()();

6 Returns: A nondeterministic random value, uniformly distributed between min() and max() (inclusive).
It is implementation-defined how these values are generated.

7 Throws: A value of an implementation-defined type derived from exception if a random number
cannot be obtained.

28.5.8 Utilities [rand.util]
28.5.8.1 Class seed_seq [rand.util.seedseq]

namespace std {
class seed_seq {
public:

// types
using result_type = uint_least32_t;

// constructors
seed_seq() noexcept;
template<class T>

seed_seq(initializer_list<T> il);
template<class InputIterator>

seed_seq(InputIterator begin, InputIterator end);

// generating functions
template<class RandomAccessIterator>

void generate(RandomAccessIterator begin, RandomAccessIterator end);

// property functions
size_t size() const noexcept;
template<class OutputIterator>

void param(OutputIterator dest) const;

// no copy functions
seed_seq(const seed_seq&) = delete;
void operator=(const seed_seq&) = delete;

private:
vector<result_type> v; // exposition only

};
}

seed_seq() noexcept;

1 Postconditions: v.empty() is true.

228) The parameter is intended to allow an implementation to differentiate between different sources of randomness.
229) If a device has n states whose respective probabilities are P0, . . . , Pn−1, the device entropy S is defined as
S = −

∑n−1
i=0 Pi · log Pi.
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template<class T>
seed_seq(initializer_list<T> il);

2 Constraints: T is an integer type.
3 Effects: Same as seed_seq(il.begin(), il.end()).

template<class InputIterator>
seed_seq(InputIterator begin, InputIterator end);

4 Mandates: iterator_traits<InputIterator>::value_type is an integer type.
5 Preconditions: InputIterator meets the Cpp17InputIterator requirements (25.3.5.3).
6 Effects: Initializes v by the following algorithm:

for (InputIterator s = begin; s != end; ++s)
v.push_back((*s)mod232);

template<class RandomAccessIterator>
void generate(RandomAccessIterator begin, RandomAccessIterator end);

7 Mandates: iterator_traits<RandomAccessIterator>::value_type is an unsigned integer type ca-
pable of accommodating 32-bit quantities.

8 Preconditions: RandomAccessIterator meets the Cpp17RandomAccessIterator requirements (25.3.5.7)
and the requirements of a mutable iterator.

9 Effects: Does nothing if begin == end. Otherwise, with s = v.size() and n = end − begin, fills
the supplied range [begin, end) according to the following algorithm in which each operation is to be
carried out modulo 232, each indexing operator applied to begin is to be taken modulo n, and T (x) is
defined as x xor (x rshift 27):

—(9.1) By way of initialization, set each element of the range to the value 0x8b8b8b8b. Additionally, for
use in subsequent steps, let p = (n − t)/2 and let q = p + t, where

t = (n ≥ 623) ? 11 : (n ≥ 68) ? 7 : (n ≥ 39) ? 5 : (n ≥ 7) ? 3 : (n − 1)/2;

—(9.2) With m as the larger of s + 1 and n, transform the elements of the range: iteratively for
k = 0, . . . , m − 1, calculate values

r1 = 1664525 · T (begin[k] xor begin[k + p] xor begin[k − 1])

r2 = r1 +

 s , k = 0
k mod n + v[k − 1] , 0 < k ≤ s

k mod n , s < k

and, in order, increment begin[k + p] by r1, increment begin[k + q] by r2, and set begin[k] to
r2.

—(9.3) Transform the elements of the range again, beginning where the previous step ended: iteratively
for k = m, . . . , m + n − 1, calculate values

r3 = 1566083941 · T (begin[k] + begin[k + p] + begin[k − 1])
r4 = r3 − (k mod n)

and, in order, update begin[k + p] by xoring it with r3, update begin[k + q] by xoring it with
r4, and set begin[k] to r4.

10 Throws: What and when RandomAccessIterator operations of begin and end throw.

size_t size() const noexcept;

11 Returns: The number of 32-bit units that would be returned by a call to param().
12 Complexity: Constant time.

template<class OutputIterator>
void param(OutputIterator dest) const;

13 Mandates: Values of type result_type are writable (25.3.1) to dest.
14 Preconditions: OutputIterator meets the Cpp17OutputIterator requirements (25.3.5.4).
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15 Effects: Copies the sequence of prepared 32-bit units to the given destination, as if by executing the
following statement:

copy(v.begin(), v.end(), dest);

16 Throws: What and when OutputIterator operations of dest throw.

28.5.8.2 Function template generate_canonical [rand.util.canonical]

template<class RealType, size_t bits, class URBG>
RealType generate_canonical(URBG& g);

1 Effects: Invokes g() k times to obtain values g0, . . . , gk−1, respectively. Calculates a quantity

S =
k−1∑
i=0

(gi − g.min()) · Ri

using arithmetic of type RealType.
2 Returns: S/Rk.

[Note 1 : 0 ≤ S/Rk < 1. — end note ]
3 Throws: What and when g throws.
4 Complexity: Exactly k = max(1, ⌈b/ log2 R⌉) invocations of g, where b230 is the lesser of numeric_-

limits<RealType>::digits and bits, and R is the value of g.max() − g.min() + 1.
5 [Note 2 : If the values gi produced by g are uniformly distributed, the instantiation’s results are distributed

as uniformly as possible. Obtaining a value in this way can be a useful step in the process of transforming a
value generated by a uniform random bit generator into a value that can be delivered by a random number
distribution. — end note ]

28.5.9 Random number distribution class templates [rand.dist]
28.5.9.1 In general [rand.dist.general]

1 Each type instantiated from a class template specified in this subclause 28.5.9 meets the requirements of a
random number distribution (28.5.3.6) type.

2 Descriptions are provided in this subclause 28.5.9 only for distribution operations that are not described
in 28.5.3.6 or for operations where there is additional semantic information. In particular, declarations for
copy constructors, for copy assignment operators, for streaming operators, and for equality and inequality
operators are not shown in the synopses.

3 The algorithms for producing each of the specified distributions are implementation-defined.
4 The value of each probability density function p(z) and of each discrete probability function P (zi) specified

in this subclause is 0 everywhere outside its stated domain.

28.5.9.2 Uniform distributions [rand.dist.uni]
28.5.9.2.1 Class template uniform_int_distribution [rand.dist.uni.int]

1 A uniform_int_distribution random number distribution produces random integers i, a ≤ i ≤ b, dis-
tributed according to the constant discrete probability function

P (i | a, b) = 1/(b − a + 1) .

namespace std {
template<class IntType = int>
class uniform_int_distribution {
public:

// types
using result_type = IntType;
using param_type = unspecified ;

230) b is introduced to avoid any attempt to produce more bits of randomness than can be held in RealType.
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// constructors and reset functions
uniform_int_distribution() : uniform_int_distribution(0) {}
explicit uniform_int_distribution(IntType a, IntType b = numeric_limits<IntType>::max());
explicit uniform_int_distribution(const param_type& parm);
void reset();

// equality operators
friend bool operator==(const uniform_int_distribution& x, const uniform_int_distribution& y);

// generating functions
template<class URBG>

result_type operator()(URBG& g);
template<class URBG>

result_type operator()(URBG& g, const param_type& parm);

// property functions
result_type a() const;
result_type b() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const uniform_int_distribution& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, uniform_int_distribution& x);
};

}

explicit uniform_int_distribution(IntType a, IntType b = numeric_limits<IntType>::max());

2 Preconditions: a ≤ b.
3 Remarks: a and b correspond to the respective parameters of the distribution.

result_type a() const;

4 Returns: The value of the a parameter with which the object was constructed.

result_type b() const;

5 Returns: The value of the b parameter with which the object was constructed.

28.5.9.2.2 Class template uniform_real_distribution [rand.dist.uni.real]
1 A uniform_real_distribution random number distribution produces random numbers x, a ≤ x < b,

distributed according to the constant probability density function

p(x | a, b) = 1/(b − a) .

[Note 1 : This implies that p(x | a, b) is undefined when a == b. — end note ]
namespace std {

template<class RealType = double>
class uniform_real_distribution {
public:

// types
using result_type = RealType;
using param_type = unspecified ;

// constructors and reset functions
uniform_real_distribution() : uniform_real_distribution(0.0) {}
explicit uniform_real_distribution(RealType a, RealType b = 1.0);
explicit uniform_real_distribution(const param_type& parm);
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void reset();

// equality operators
friend bool operator==(const uniform_real_distribution& x,

const uniform_real_distribution& y);

// generating functions
template<class URBG>

result_type operator()(URBG& g);
template<class URBG>

result_type operator()(URBG& g, const param_type& parm);

// property functions
result_type a() const;
result_type b() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const uniform_real_distribution& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, uniform_real_distribution& x);
};

}

explicit uniform_real_distribution(RealType a, RealType b = 1.0);

2 Preconditions: a ≤ b and b − a ≤ numeric_limits<RealType>::max().
3 Remarks: a and b correspond to the respective parameters of the distribution.

result_type a() const;

4 Returns: The value of the a parameter with which the object was constructed.

result_type b() const;

5 Returns: The value of the b parameter with which the object was constructed.

28.5.9.3 Bernoulli distributions [rand.dist.bern]
28.5.9.3.1 Class bernoulli_distribution [rand.dist.bern.bernoulli]

1 A bernoulli_distribution random number distribution produces bool values b distributed according to
the discrete probability function

P (b | p) =
{

p if b = true, or
1 − p if b = false.

namespace std {
class bernoulli_distribution {
public:

// types
using result_type = bool;
using param_type = unspecified ;

// constructors and reset functions
bernoulli_distribution() : bernoulli_distribution(0.5) {}
explicit bernoulli_distribution(double p);
explicit bernoulli_distribution(const param_type& parm);
void reset();
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// equality operators
friend bool operator==(const bernoulli_distribution& x, const bernoulli_distribution& y);

// generating functions
template<class URBG>

result_type operator()(URBG& g);
template<class URBG>

result_type operator()(URBG& g, const param_type& parm);

// property functions
double p() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const bernoulli_distribution& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, bernoulli_distribution& x);
};

}

explicit bernoulli_distribution(double p);

2 Preconditions: 0 ≤ p ≤ 1.
3 Remarks: p corresponds to the parameter of the distribution.

double p() const;

4 Returns: The value of the p parameter with which the object was constructed.

28.5.9.3.2 Class template binomial_distribution [rand.dist.bern.bin]
1 A binomial_distribution random number distribution produces integer values i ≥ 0 distributed according

to the discrete probability function

P (i | t, p) =
(

t

i

)
· pi · (1 − p)t−i .

namespace std {
template<class IntType = int>
class binomial_distribution {
public:

// types
using result_type = IntType;
using param_type = unspecified ;

// constructors and reset functions
binomial_distribution() : binomial_distribution(1) {}
explicit binomial_distribution(IntType t, double p = 0.5);
explicit binomial_distribution(const param_type& parm);
void reset();

// equality operators
friend bool operator==(const binomial_distribution& x, const binomial_distribution& y);

// generating functions
template<class URBG>

result_type operator()(URBG& g);
template<class URBG>

result_type operator()(URBG& g, const param_type& parm);
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// property functions
IntType t() const;
double p() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const binomial_distribution& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, binomial_distribution& x);
};

}

explicit binomial_distribution(IntType t, double p = 0.5);

2 Preconditions: 0 ≤ p ≤ 1 and 0 ≤ t.
3 Remarks: t and p correspond to the respective parameters of the distribution.

IntType t() const;

4 Returns: The value of the t parameter with which the object was constructed.

double p() const;

5 Returns: The value of the p parameter with which the object was constructed.

28.5.9.3.3 Class template geometric_distribution [rand.dist.bern.geo]
1 A geometric_distribution random number distribution produces integer values i ≥ 0 distributed according

to the discrete probability function
P (i | p) = p · (1 − p)i .

namespace std {
template<class IntType = int>
class geometric_distribution {
public:

// types
using result_type = IntType;
using param_type = unspecified ;

// constructors and reset functions
geometric_distribution() : geometric_distribution(0.5) {}
explicit geometric_distribution(double p);
explicit geometric_distribution(const param_type& parm);
void reset();

// equality operators
friend bool operator==(const geometric_distribution& x, const geometric_distribution& y);

// generating functions
template<class URBG>

result_type operator()(URBG& g);
template<class URBG>

result_type operator()(URBG& g, const param_type& parm);

// property functions
double p() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
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// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const geometric_distribution& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, geometric_distribution& x);
};

}

explicit geometric_distribution(double p);

2 Preconditions: 0 < p < 1.
3 Remarks: p corresponds to the parameter of the distribution.

double p() const;

4 Returns: The value of the p parameter with which the object was constructed.

28.5.9.3.4 Class template negative_binomial_distribution [rand.dist.bern.negbin]
1 A negative_binomial_distribution random number distribution produces random integers i ≥ 0 dis-

tributed according to the discrete probability function

P (i | k, p) =
(

k + i − 1
i

)
· pk · (1 − p)i .

[Note 1 : This implies that P (i | k, p) is undefined when p == 1. — end note ]
namespace std {

template<class IntType = int>
class negative_binomial_distribution {
public:

// types
using result_type = IntType;
using param_type = unspecified ;

// constructor and reset functions
negative_binomial_distribution() : negative_binomial_distribution(1) {}
explicit negative_binomial_distribution(IntType k, double p = 0.5);
explicit negative_binomial_distribution(const param_type& parm);
void reset();

// equality operators
friend bool operator==(const negative_binomial_distribution& x,

const negative_binomial_distribution& y);

// generating functions
template<class URBG>

result_type operator()(URBG& g);
template<class URBG>

result_type operator()(URBG& g, const param_type& parm);

// property functions
IntType k() const;
double p() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const negative_binomial_distribution& x);

§ 28.5.9.3.4 1431



© ISO/IEC N4950

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, negative_binomial_distribution& x);
};

}

explicit negative_binomial_distribution(IntType k, double p = 0.5);

2 Preconditions: 0 < p ≤ 1 and 0 < k.
3 Remarks: k and p correspond to the respective parameters of the distribution.

IntType k() const;

4 Returns: The value of the k parameter with which the object was constructed.

double p() const;

5 Returns: The value of the p parameter with which the object was constructed.

28.5.9.4 Poisson distributions [rand.dist.pois]
28.5.9.4.1 Class template poisson_distribution [rand.dist.pois.poisson]

1 A poisson_distribution random number distribution produces integer values i ≥ 0 distributed according
to the discrete probability function

P (i | µ) = e−µµi

i ! .

The distribution parameter µ is also known as this distribution’s mean.
template<class IntType = int>

class poisson_distribution
{
public:

// types
using result_type = IntType;
using param_type = unspecified ;

// constructors and reset functions
poisson_distribution() : poisson_distribution(1.0) {}
explicit poisson_distribution(double mean);
explicit poisson_distribution(const param_type& parm);
void reset();

// equality operators
friend bool operator==(const poisson_distribution& x, const poisson_distribution& y);

// generating functions
template<class URBG>

result_type operator()(URBG& g);
template<class URBG>

result_type operator()(URBG& g, const param_type& parm);

// property functions
double mean() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const poisson_distribution& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, poisson_distribution& x);
};
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explicit poisson_distribution(double mean);

2 Preconditions: 0 < mean.
3 Remarks: mean corresponds to the parameter of the distribution.

double mean() const;

4 Returns: The value of the mean parameter with which the object was constructed.

28.5.9.4.2 Class template exponential_distribution [rand.dist.pois.exp]
1 An exponential_distribution random number distribution produces random numbers x > 0 distributed

according to the probability density function

p(x | λ) = λe−λx .

namespace std {
template<class RealType = double>
class exponential_distribution {
public:

// types
using result_type = RealType;
using param_type = unspecified ;

// constructors and reset functions
exponential_distribution() : exponential_distribution(1.0) {}
explicit exponential_distribution(RealType lambda);
explicit exponential_distribution(const param_type& parm);
void reset();

// equality operators
friend bool operator==(const exponential_distribution& x, const exponential_distribution& y);

// generating functions
template<class URBG>

result_type operator()(URBG& g);
template<class URBG>

result_type operator()(URBG& g, const param_type& parm);

// property functions
RealType lambda() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const exponential_distribution& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, exponential_distribution& x);
};

}

explicit exponential_distribution(RealType lambda);

2 Preconditions: 0 < lambda.
3 Remarks: lambda corresponds to the parameter of the distribution.

RealType lambda() const;

4 Returns: The value of the lambda parameter with which the object was constructed.
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28.5.9.4.3 Class template gamma_distribution [rand.dist.pois.gamma]
1 A gamma_distribution random number distribution produces random numbers x > 0 distributed according

to the probability density function

p(x | α, β) = e−x/β

βα · Γ(α) · x α−1 .

namespace std {
template<class RealType = double>
class gamma_distribution {
public:

// types
using result_type = RealType;
using param_type = unspecified ;

// constructors and reset functions
gamma_distribution() : gamma_distribution(1.0) {}
explicit gamma_distribution(RealType alpha, RealType beta = 1.0);
explicit gamma_distribution(const param_type& parm);
void reset();

// equality operators
friend bool operator==(const gamma_distribution& x, const gamma_distribution& y);

// generating functions
template<class URBG>

result_type operator()(URBG& g);
template<class URBG>

result_type operator()(URBG& g, const param_type& parm);

// property functions
RealType alpha() const;
RealType beta() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const gamma_distribution& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, gamma_distribution& x);
};

}

explicit gamma_distribution(RealType alpha, RealType beta = 1.0);

2 Preconditions: 0 < alpha and 0 < beta.
3 Remarks: alpha and beta correspond to the parameters of the distribution.

RealType alpha() const;

4 Returns: The value of the alpha parameter with which the object was constructed.

RealType beta() const;

5 Returns: The value of the beta parameter with which the object was constructed.
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28.5.9.4.4 Class template weibull_distribution [rand.dist.pois.weibull]
1 A weibull_distribution random number distribution produces random numbers x ≥ 0 distributed according

to the probability density function

p(x | a, b) = a

b
·
(x

b

)a−1
· exp

(
−
(x

b

)a)
.

namespace std {
template<class RealType = double>
class weibull_distribution {
public:

// types
using result_type = RealType;
using param_type = unspecified ;

// constructor and reset functions
weibull_distribution() : weibull_distribution(1.0) {}
explicit weibull_distribution(RealType a, RealType b = 1.0);
explicit weibull_distribution(const param_type& parm);
void reset();

// equality operators
friend bool operator==(const weibull_distribution& x, const weibull_distribution& y);

// generating functions
template<class URBG>

result_type operator()(URBG& g);
template<class URBG>

result_type operator()(URBG& g, const param_type& parm);

// property functions
RealType a() const;
RealType b() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const weibull_distribution& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, weibull_distribution& x);
};

}

explicit weibull_distribution(RealType a, RealType b = 1.0);

2 Preconditions: 0 < a and 0 < b.
3 Remarks: a and b correspond to the respective parameters of the distribution.

RealType a() const;

4 Returns: The value of the a parameter with which the object was constructed.

RealType b() const;

5 Returns: The value of the b parameter with which the object was constructed.
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28.5.9.4.5 Class template extreme_value_distribution [rand.dist.pois.extreme]
1 An extreme_value_distribution random number distribution produces random numbers x distributed

according to the probability density function231

p(x | a, b) = 1
b

· exp
(

a − x

b
− exp

(
a − x

b

))
.

namespace std {
template<class RealType = double>
class extreme_value_distribution {
public:

// types
using result_type = RealType;
using param_type = unspecified ;

// constructor and reset functions
extreme_value_distribution() : extreme_value_distribution(0.0) {}
explicit extreme_value_distribution(RealType a, RealType b = 1.0);
explicit extreme_value_distribution(const param_type& parm);
void reset();

// equality operators
friend bool operator==(const extreme_value_distribution& x,

const extreme_value_distribution& y);

// generating functions
template<class URBG>

result_type operator()(URBG& g);
template<class URBG>

result_type operator()(URBG& g, const param_type& parm);

// property functions
RealType a() const;
RealType b() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const extreme_value_distribution& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, extreme_value_distribution& x);
};

}

explicit extreme_value_distribution(RealType a, RealType b = 1.0);

2 Preconditions: 0 < b.
3 Remarks: a and b correspond to the respective parameters of the distribution.

RealType a() const;

4 Returns: The value of the a parameter with which the object was constructed.

RealType b() const;

5 Returns: The value of the b parameter with which the object was constructed.

231) The distribution corresponding to this probability density function is also known (with a possible change of variable) as the
Gumbel Type I, the log-Weibull, or the Fisher-Tippett Type I distribution.
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28.5.9.5 Normal distributions [rand.dist.norm]
28.5.9.5.1 Class template normal_distribution [rand.dist.norm.normal]

1 A normal_distribution random number distribution produces random numbers x distributed according to
the probability density function

p(x | µ, σ) = 1
σ

√
2π

· exp
(

− (x − µ)2

2σ2

)
.

The distribution parameters µ and σ are also known as this distribution’s mean and standard deviation.
namespace std {

template<class RealType = double>
class normal_distribution {
public:

// types
using result_type = RealType;
using param_type = unspecified ;

// constructors and reset functions
normal_distribution() : normal_distribution(0.0) {}
explicit normal_distribution(RealType mean, RealType stddev = 1.0);
explicit normal_distribution(const param_type& parm);
void reset();

// equality operators
friend bool operator==(const normal_distribution& x, const normal_distribution& y);

// generating functions
template<class URBG>

result_type operator()(URBG& g);
template<class URBG>

result_type operator()(URBG& g, const param_type& parm);

// property functions
RealType mean() const;
RealType stddev() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const normal_distribution& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, normal_distribution& x);
};

}

explicit normal_distribution(RealType mean, RealType stddev = 1.0);

2 Preconditions: 0 < stddev.
3 Remarks: mean and stddev correspond to the respective parameters of the distribution.

RealType mean() const;

4 Returns: The value of the mean parameter with which the object was constructed.

RealType stddev() const;

5 Returns: The value of the stddev parameter with which the object was constructed.
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28.5.9.5.2 Class template lognormal_distribution [rand.dist.norm.lognormal]
1 A lognormal_distribution random number distribution produces random numbers x > 0 distributed

according to the probability density function

p(x | m, s) = 1
sx

√
2π

· exp
(

− (ln x − m)2

2s2

)
.

namespace std {
template<class RealType = double>
class lognormal_distribution {
public:

// types
using result_type = RealType;
using param_type = unspecified ;

// constructor and reset functions
lognormal_distribution() : lognormal_distribution(0.0) {}
explicit lognormal_distribution(RealType m, RealType s = 1.0);
explicit lognormal_distribution(const param_type& parm);
void reset();

// equality operators
friend bool operator==(const lognormal_distribution& x, const lognormal_distribution& y);

// generating functions
template<class URBG>

result_type operator()(URBG& g);
template<class URBG>

result_type operator()(URBG& g, const param_type& parm);

// property functions
RealType m() const;
RealType s() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const lognormal_distribution& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, lognormal_distribution& x);
};

}

explicit lognormal_distribution(RealType m, RealType s = 1.0);

2 Preconditions: 0 < s.
3 Remarks: m and s correspond to the respective parameters of the distribution.

RealType m() const;

4 Returns: The value of the m parameter with which the object was constructed.

RealType s() const;

5 Returns: The value of the s parameter with which the object was constructed.
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28.5.9.5.3 Class template chi_squared_distribution [rand.dist.norm.chisq]
1 A chi_squared_distribution random number distribution produces random numbers x > 0 distributed

according to the probability density function

p(x | n) = x(n/2)−1 · e−x/2

Γ(n/2) · 2n/2 .

namespace std {
template<class RealType = double>
class chi_squared_distribution {
public:

// types
using result_type = RealType;
using param_type = unspecified ;

// constructor and reset functions
chi_squared_distribution() : chi_squared_distribution(1.0) {}
explicit chi_squared_distribution(RealType n);
explicit chi_squared_distribution(const param_type& parm);
void reset();

// equality operators
friend bool operator==(const chi_squared_distribution& x, const chi_squared_distribution& y);

// generating functions
template<class URBG>

result_type operator()(URBG& g);
template<class URBG>

result_type operator()(URBG& g, const param_type& parm);

// property functions
RealType n() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const chi_squared_distribution& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, chi_squared_distribution& x);
};

}

explicit chi_squared_distribution(RealType n);

2 Preconditions: 0 < n.
3 Remarks: n corresponds to the parameter of the distribution.

RealType n() const;

4 Returns: The value of the n parameter with which the object was constructed.

28.5.9.5.4 Class template cauchy_distribution [rand.dist.norm.cauchy]
1 A cauchy_distribution random number distribution produces random numbers x distributed according to

the probability density function

p(x | a, b) =
(

πb

(
1 +

(
x − a

b

)2
))−1

.
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namespace std {
template<class RealType = double>
class cauchy_distribution {
public:

// types
using result_type = RealType;
using param_type = unspecified ;

// constructor and reset functions
cauchy_distribution() : cauchy_distribution(0.0) {}
explicit cauchy_distribution(RealType a, RealType b = 1.0);
explicit cauchy_distribution(const param_type& parm);
void reset();

// equality operators
friend bool operator==(const cauchy_distribution& x, const cauchy_distribution& y);

// generating functions
template<class URBG>

result_type operator()(URBG& g);
template<class URBG>

result_type operator()(URBG& g, const param_type& parm);

// property functions
RealType a() const;
RealType b() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const cauchy_distribution& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, cauchy_distribution& x);
};

}

explicit cauchy_distribution(RealType a, RealType b = 1.0);

2 Preconditions: 0 < b.
3 Remarks: a and b correspond to the respective parameters of the distribution.

RealType a() const;

4 Returns: The value of the a parameter with which the object was constructed.

RealType b() const;

5 Returns: The value of the b parameter with which the object was constructed.

28.5.9.5.5 Class template fisher_f_distribution [rand.dist.norm.f]
1 A fisher_f_distribution random number distribution produces random numbers x ≥ 0 distributed

according to the probability density function

p(x | m, n) =
Γ
(
(m + n)/2

)
Γ(m/2) Γ(n/2) ·

(m

n

)m/2
· x(m/2)−1 ·

(
1 + mx

n

)−(m+n)/2
.
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namespace std {
template<class RealType = double>
class fisher_f_distribution {
public:

// types
using result_type = RealType;
using param_type = unspecified ;

// constructor and reset functions
fisher_f_distribution() : fisher_f_distribution(1.0) {}
explicit fisher_f_distribution(RealType m, RealType n = 1.0);
explicit fisher_f_distribution(const param_type& parm);
void reset();

// equality operators
friend bool operator==(const fisher_f_distribution& x, const fisher_f_distribution& y);

// generating functions
template<class URBG>

result_type operator()(URBG& g);
template<class URBG>

result_type operator()(URBG& g, const param_type& parm);

// property functions
RealType m() const;
RealType n() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const fisher_f_distribution& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, fisher_f_distribution& x);
};

}

explicit fisher_f_distribution(RealType m, RealType n = 1);

2 Preconditions: 0 < m and 0 < n.
3 Remarks: m and n correspond to the respective parameters of the distribution.

RealType m() const;

4 Returns: The value of the m parameter with which the object was constructed.

RealType n() const;

5 Returns: The value of the n parameter with which the object was constructed.

28.5.9.5.6 Class template student_t_distribution [rand.dist.norm.t]
1 A student_t_distribution random number distribution produces random numbers x distributed according

to the probability density function

p(x | n) = 1√
nπ

·
Γ
(
(n + 1)/2

)
Γ(n/2) ·

(
1 + x2

n

)−(n+1)/2

.
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namespace std {
template<class RealType = double>
class student_t_distribution {
public:

// types
using result_type = RealType;
using param_type = unspecified ;

// constructor and reset functions
student_t_distribution() : student_t_distribution(1.0) {}
explicit student_t_distribution(RealType n);
explicit student_t_distribution(const param_type& parm);
void reset();

// equality operators
friend bool operator==(const student_t_distribution& x, const student_t_distribution& y);

// generating functions
template<class URBG>

result_type operator()(URBG& g);
template<class URBG>

result_type operator()(URBG& g, const param_type& parm);

// property functions
RealType n() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const student_t_distribution& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, student_t_distribution& x);
};

}

explicit student_t_distribution(RealType n);

2 Preconditions: 0 < n.
3 Remarks: n corresponds to the parameter of the distribution.

RealType n() const;

4 Returns: The value of the n parameter with which the object was constructed.

28.5.9.6 Sampling distributions [rand.dist.samp]
28.5.9.6.1 Class template discrete_distribution [rand.dist.samp.discrete]

1 A discrete_distribution random number distribution produces random integers i, 0 ≤ i < n, distributed
according to the discrete probability function

P (i | p0, . . . , pn−1) = pi .

2 Unless specified otherwise, the distribution parameters are calculated as: pk = wk/S for k = 0, . . . , n − 1,
in which the values wk, commonly known as the weights, shall be non-negative, non-NaN, and non-infinity.
Moreover, the following relation shall hold: 0 < S = w0 + · · · + wn−1.

namespace std {
template<class IntType = int>
class discrete_distribution {
public:
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// types
using result_type = IntType;
using param_type = unspecified ;

// constructor and reset functions
discrete_distribution();
template<class InputIterator>

discrete_distribution(InputIterator firstW, InputIterator lastW);
discrete_distribution(initializer_list<double> wl);
template<class UnaryOperation>

discrete_distribution(size_t nw, double xmin, double xmax, UnaryOperation fw);
explicit discrete_distribution(const param_type& parm);
void reset();

// equality operators
friend bool operator==(const discrete_distribution& x, const discrete_distribution& y);

// generating functions
template<class URBG>

result_type operator()(URBG& g);
template<class URBG>

result_type operator()(URBG& g, const param_type& parm);

// property functions
vector<double> probabilities() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const discrete_distribution& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, discrete_distribution& x);
};

}

discrete_distribution();

3 Effects: Constructs a discrete_distribution object with n = 1 and p0 = 1.
[Note 1 : Such an object will always deliver the value 0. — end note ]

template<class InputIterator>
discrete_distribution(InputIterator firstW, InputIterator lastW);

4 Mandates: is_convertible_v<iterator_traits<InputIterator>::value_type, double> is true.
5 Preconditions: InputIterator meets the Cpp17InputIterator requirements (25.3.5.3). If firstW ==

lastW, let n = 1 and w0 = 1. Otherwise,
[
firstW, lastW

)
forms a sequence w of length n > 0.

6 Effects: Constructs a discrete_distribution object with probabilities given by the formula above.

discrete_distribution(initializer_list<double> wl);

7 Effects: Same as discrete_distribution(wl.begin(), wl.end()).

template<class UnaryOperation>
discrete_distribution(size_t nw, double xmin, double xmax, UnaryOperation fw);

8 Mandates: is_invocable_r_v<double, UnaryOperation&, double> is true.
9 Preconditions: If nw = 0, let n = 1, otherwise let n = nw. The relation 0 < δ = (xmax − xmin)/n holds.
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10 Effects: Constructs a discrete_distribution object with probabilities given by the formula above,
using the following values: If nw = 0, let w0 = 1. Otherwise, let wk = fw(xmin + k · δ + δ/2) for
k = 0, . . . , n − 1.

11 Complexity: The number of invocations of fw does not exceed n.

vector<double> probabilities() const;

12 Returns: A vector<double> whose size member returns n and whose operator[] member returns
pk when invoked with argument k for k = 0, . . . , n − 1.

28.5.9.6.2 Class template piecewise_constant_distribution [rand.dist.samp.pconst]
1 A piecewise_constant_distribution random number distribution produces random numbers x, b0 ≤ x <

bn, uniformly distributed over each subinterval [bi, bi+1) according to the probability density function

p(x | b0, . . . , bn, ρ0, . . . , ρn−1) = ρi , for bi ≤ x < bi+1.

2 The n + 1 distribution parameters bi, also known as this distribution’s interval boundaries, shall satisfy the
relation bi < bi+1 for i = 0, . . . , n − 1. Unless specified otherwise, the remaining n distribution parameters
are calculated as:

ρk = wk

S · (bk+1 − bk) for k = 0, . . . , n − 1 ,

in which the values wk, commonly known as the weights, shall be non-negative, non-NaN, and non-infinity.
Moreover, the following relation shall hold: 0 < S = w0 + · · · + wn−1.

namespace std {
template<class RealType = double>
class piecewise_constant_distribution {
public:

// types
using result_type = RealType;
using param_type = unspecified ;

// constructor and reset functions
piecewise_constant_distribution();
template<class InputIteratorB, class InputIteratorW>

piecewise_constant_distribution(InputIteratorB firstB, InputIteratorB lastB,
InputIteratorW firstW);

template<class UnaryOperation>
piecewise_constant_distribution(initializer_list<RealType> bl, UnaryOperation fw);

template<class UnaryOperation>
piecewise_constant_distribution(size_t nw, RealType xmin, RealType xmax,

UnaryOperation fw);
explicit piecewise_constant_distribution(const param_type& parm);
void reset();

// equality operators
friend bool operator==(const piecewise_constant_distribution& x,

const piecewise_constant_distribution& y);

// generating functions
template<class URBG>

result_type operator()(URBG& g);
template<class URBG>

result_type operator()(URBG& g, const param_type& parm);

// property functions
vector<result_type> intervals() const;
vector<result_type> densities() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
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// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const piecewise_constant_distribution& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, piecewise_constant_distribution& x);
};

}

piecewise_constant_distribution();

3 Effects: Constructs a piecewise_constant_distribution object with n = 1, ρ0 = 1, b0 = 0, and
b1 = 1.

template<class InputIteratorB, class InputIteratorW>
piecewise_constant_distribution(InputIteratorB firstB, InputIteratorB lastB,

InputIteratorW firstW);

4 Mandates: Both of
—(4.1) is_convertible_v<iterator_traits<InputIteratorB>::value_type, double>
—(4.2) is_convertible_v<iterator_traits<InputIteratorW>::value_type, double>

are true.
5 Preconditions: InputIteratorB and InputIteratorW each meet the Cpp17InputIterator requirements

(25.3.5.3). If firstB == lastB or ++firstB == lastB, let n = 1, w0 = 1, b0 = 0, and b1 = 1.
Otherwise,

[
firstB, lastB

)
forms a sequence b of length n + 1, the length of the sequence w starting

from firstW is at least n, and any wk for k ≥ n are ignored by the distribution.
6 Effects: Constructs a piecewise_constant_distribution object with parameters as specified above.

template<class UnaryOperation>
piecewise_constant_distribution(initializer_list<RealType> bl, UnaryOperation fw);

7 Mandates: is_invocable_r_v<double, UnaryOperation&, double> is true.
8 Effects: Constructs a piecewise_constant_distribution object with parameters taken or calculated

from the following values: If bl.size() < 2, let n = 1, w0 = 1, b0 = 0, and b1 = 1. Otherwise, let[
bl.begin(), bl.end()

)
form a sequence b0, . . . , bn, and let wk = fw

((
bk+1 +bk

)
/2
)

for k = 0, . . . , n−1.
9 Complexity: The number of invocations of fw does not exceed n.

template<class UnaryOperation>
piecewise_constant_distribution(size_t nw, RealType xmin, RealType xmax, UnaryOperation fw);

10 Mandates: is_invocable_r_v<double, UnaryOperation&, double> is true.
11 Preconditions: If nw = 0, let n = 1, otherwise let n = nw. The relation 0 < δ = (xmax − xmin)/n holds.
12 Effects: Constructs a piecewise_constant_distribution object with parameters taken or calculated

from the following values: Let bk = xmin+k·δ for k = 0, . . . , n, and wk = fw(bk+δ/2) for k = 0, . . . , n−1.
13 Complexity: The number of invocations of fw does not exceed n.

vector<result_type> intervals() const;

14 Returns: A vector<result_type> whose size member returns n + 1 and whose operator[] member
returns bk when invoked with argument k for k = 0, . . . , n.

vector<result_type> densities() const;

15 Returns: A vector<result_type> whose size member returns n and whose operator[] member
returns ρk when invoked with argument k for k = 0, . . . , n − 1.

28.5.9.6.3 Class template piecewise_linear_distribution [rand.dist.samp.plinear]
1 A piecewise_linear_distribution random number distribution produces random numbers x, b0 ≤ x < bn,

distributed over each subinterval [bi, bi+1) according to the probability density function

p(x | b0, . . . , bn, ρ0, . . . , ρn) = ρi · bi+1 − x

bi+1 − bi
+ ρi+1 · x − bi

bi+1 − bi
, for bi ≤ x < bi+1.
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2 The n + 1 distribution parameters bi, also known as this distribution’s interval boundaries, shall satisfy the
relation bi < bi+1 for i = 0, . . . , n − 1. Unless specified otherwise, the remaining n + 1 distribution parameters
are calculated as ρk = wk/S for k = 0, . . . , n, in which the values wk, commonly known as the weights at
boundaries, shall be non-negative, non-NaN, and non-infinity. Moreover, the following relation shall hold:

0 < S = 1
2 ·

n−1∑
k=0

(wk + wk+1) · (bk+1 − bk) .

namespace std {
template<class RealType = double>
class piecewise_linear_distribution {
public:

// types
using result_type = RealType;
using param_type = unspecified ;

// constructor and reset functions
piecewise_linear_distribution();
template<class InputIteratorB, class InputIteratorW>

piecewise_linear_distribution(InputIteratorB firstB, InputIteratorB lastB,
InputIteratorW firstW);

template<class UnaryOperation>
piecewise_linear_distribution(initializer_list<RealType> bl, UnaryOperation fw);

template<class UnaryOperation>
piecewise_linear_distribution(size_t nw, RealType xmin, RealType xmax, UnaryOperation fw);

explicit piecewise_linear_distribution(const param_type& parm);
void reset();

// equality operators
friend bool operator==(const piecewise_linear_distribution& x,

const piecewise_linear_distribution& y);

// generating functions
template<class URBG>

result_type operator()(URBG& g);
template<class URBG>

result_type operator()(URBG& g, const param_type& parm);

// property functions
vector<result_type> intervals() const;
vector<result_type> densities() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;

// inserters and extractors
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const piecewise_linear_distribution& x);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, piecewise_linear_distribution& x);
};

}

piecewise_linear_distribution();

3 Effects: Constructs a piecewise_linear_distribution object with n = 1, ρ0 = ρ1 = 1, b0 = 0, and
b1 = 1.
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template<class InputIteratorB, class InputIteratorW>
piecewise_linear_distribution(InputIteratorB firstB, InputIteratorB lastB,

InputIteratorW firstW);

4 Mandates: is_invocable_r_v<double, UnaryOperation&, double> is true.
5 Preconditions: InputIteratorB and InputIteratorW each meet the Cpp17InputIterator requirements

(25.3.5.3). If firstB == lastB or ++firstB == lastB, let n = 1, ρ0 = ρ1 = 1, b0 = 0, and b1 = 1.
Otherwise,

[
firstB, lastB

)
forms a sequence b of length n + 1, the length of the sequence w starting

from firstW is at least n + 1, and any wk for k ≥ n + 1 are ignored by the distribution.
6 Effects: Constructs a piecewise_linear_distribution object with parameters as specified above.

template<class UnaryOperation>
piecewise_linear_distribution(initializer_list<RealType> bl, UnaryOperation fw);

7 Mandates: is_invocable_r_v<double, UnaryOperation&, double> is true.
8 Effects: Constructs a piecewise_linear_distribution object with parameters taken or calculated

from the following values: If bl.size() < 2, let n = 1, ρ0 = ρ1 = 1, b0 = 0, and b1 = 1. Otherwise, let[
bl.begin(),bl.end()

)
form a sequence b0, . . . , bn, and let wk = fw(bk) for k = 0, . . . , n.

9 Complexity: The number of invocations of fw does not exceed n + 1.

template<class UnaryOperation>
piecewise_linear_distribution(size_t nw, RealType xmin, RealType xmax, UnaryOperation fw);

10 Mandates: is_invocable_r_v<double, UnaryOperation&, double> is true.
11 Preconditions: If nw = 0, let n = 1, otherwise let n = nw. The relation 0 < δ = (xmax − xmin)/n holds.
12 Effects: Constructs a piecewise_linear_distribution object with parameters taken or calculated

from the following values: Let bk = xmin + k · δ for k = 0, . . . , n, and wk = fw(bk) for k = 0, . . . , n.
13 Complexity: The number of invocations of fw does not exceed n + 1.

vector<result_type> intervals() const;

14 Returns: A vector<result_type> whose size member returns n + 1 and whose operator[] member
returns bk when invoked with argument k for k = 0, . . . , n.

vector<result_type> densities() const;

15 Returns: A vector<result_type> whose size member returns n and whose operator[] member
returns ρk when invoked with argument k for k = 0, . . . , n.

28.5.10 Low-quality random number generation [c.math.rand]
1 [Note 1 : The header <cstdlib> (17.2.2) declares the functions described in this subclause. — end note ]

int rand();
void srand(unsigned int seed);

2 Effects: The rand and srand functions have the semantics specified in the C standard library.
3 Remarks: The implementation may specify that particular library functions may call rand. It is

implementation-defined whether the rand function may introduce data races (16.4.6.10).
[Note 2 : The other random number generation facilities in this document (28.5) are often preferable to rand,
because rand’s underlying algorithm is unspecified. Use of rand therefore continues to be non-portable, with
unpredictable and oft-questionable quality and performance. — end note ]

See also: ISO/IEC 9899:2018, 7.22.2

28.6 Numeric arrays [numarray]
28.6.1 Header <valarray> synopsis [valarray.syn]

#include <initializer_list> // see 17.10.2

namespace std {
template<class T> class valarray; // An array of type T
class slice; // a BLAS-like slice out of an array
template<class T> class slice_array;
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class gslice; // a generalized slice out of an array
template<class T> class gslice_array;
template<class T> class mask_array; // a masked array
template<class T> class indirect_array; // an indirected array

template<class T> void swap(valarray<T>&, valarray<T>&) noexcept;

template<class T> valarray<T> operator* (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator* (const valarray<T>&,

const typename valarray<T>::value_type&);
template<class T> valarray<T> operator* (const typename valarray<T>::value_type&,

const valarray<T>&);

template<class T> valarray<T> operator/ (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator/ (const valarray<T>&,

const typename valarray<T>::value_type&);
template<class T> valarray<T> operator/ (const typename valarray<T>::value_type&,

const valarray<T>&);

template<class T> valarray<T> operator% (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator% (const valarray<T>&,

const typename valarray<T>::value_type&);
template<class T> valarray<T> operator% (const typename valarray<T>::value_type&,

const valarray<T>&);

template<class T> valarray<T> operator+ (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator+ (const valarray<T>&,

const typename valarray<T>::value_type&);
template<class T> valarray<T> operator+ (const typename valarray<T>::value_type&,

const valarray<T>&);

template<class T> valarray<T> operator- (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator- (const valarray<T>&,

const typename valarray<T>::value_type&);
template<class T> valarray<T> operator- (const typename valarray<T>::value_type&,

const valarray<T>&);

template<class T> valarray<T> operator^ (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator^ (const valarray<T>&,

const typename valarray<T>::value_type&);
template<class T> valarray<T> operator^ (const typename valarray<T>::value_type&,

const valarray<T>&);

template<class T> valarray<T> operator& (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator& (const valarray<T>&,

const typename valarray<T>::value_type&);
template<class T> valarray<T> operator& (const typename valarray<T>::value_type&,

const valarray<T>&);

template<class T> valarray<T> operator| (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator| (const valarray<T>&,

const typename valarray<T>::value_type&);
template<class T> valarray<T> operator| (const typename valarray<T>::value_type&,

const valarray<T>&);

template<class T> valarray<T> operator<<(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator<<(const valarray<T>&,

const typename valarray<T>::value_type&);
template<class T> valarray<T> operator<<(const typename valarray<T>::value_type&,

const valarray<T>&);

template<class T> valarray<T> operator>>(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator>>(const valarray<T>&,

const typename valarray<T>::value_type&);
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template<class T> valarray<T> operator>>(const typename valarray<T>::value_type&,
const valarray<T>&);

template<class T> valarray<bool> operator&&(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator&&(const valarray<T>&,

const typename valarray<T>::value_type&);
template<class T> valarray<bool> operator&&(const typename valarray<T>::value_type&,

const valarray<T>&);

template<class T> valarray<bool> operator||(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator||(const valarray<T>&,

const typename valarray<T>::value_type&);
template<class T> valarray<bool> operator||(const typename valarray<T>::value_type&,

const valarray<T>&);

template<class T> valarray<bool> operator==(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator==(const valarray<T>&,

const typename valarray<T>::value_type&);
template<class T> valarray<bool> operator==(const typename valarray<T>::value_type&,

const valarray<T>&);
template<class T> valarray<bool> operator!=(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator!=(const valarray<T>&,

const typename valarray<T>::value_type&);
template<class T> valarray<bool> operator!=(const typename valarray<T>::value_type&,

const valarray<T>&);

template<class T> valarray<bool> operator< (const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator< (const valarray<T>&,

const typename valarray<T>::value_type&);
template<class T> valarray<bool> operator< (const typename valarray<T>::value_type&,

const valarray<T>&);
template<class T> valarray<bool> operator> (const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator> (const valarray<T>&,

const typename valarray<T>::value_type&);
template<class T> valarray<bool> operator> (const typename valarray<T>::value_type&,

const valarray<T>&);
template<class T> valarray<bool> operator<=(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator<=(const valarray<T>&,

const typename valarray<T>::value_type&);
template<class T> valarray<bool> operator<=(const typename valarray<T>::value_type&,

const valarray<T>&);
template<class T> valarray<bool> operator>=(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator>=(const valarray<T>&,

const typename valarray<T>::value_type&);
template<class T> valarray<bool> operator>=(const typename valarray<T>::value_type&,

const valarray<T>&);

template<class T> valarray<T> abs (const valarray<T>&);
template<class T> valarray<T> acos (const valarray<T>&);
template<class T> valarray<T> asin (const valarray<T>&);
template<class T> valarray<T> atan (const valarray<T>&);

template<class T> valarray<T> atan2(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> atan2(const valarray<T>&,

const typename valarray<T>::value_type&);
template<class T> valarray<T> atan2(const typename valarray<T>::value_type&,

const valarray<T>&);

template<class T> valarray<T> cos (const valarray<T>&);
template<class T> valarray<T> cosh (const valarray<T>&);
template<class T> valarray<T> exp (const valarray<T>&);
template<class T> valarray<T> log (const valarray<T>&);
template<class T> valarray<T> log10(const valarray<T>&);
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template<class T> valarray<T> pow(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> pow(const valarray<T>&, const typename valarray<T>::value_type&);
template<class T> valarray<T> pow(const typename valarray<T>::value_type&, const valarray<T>&);

template<class T> valarray<T> sin (const valarray<T>&);
template<class T> valarray<T> sinh (const valarray<T>&);
template<class T> valarray<T> sqrt (const valarray<T>&);
template<class T> valarray<T> tan (const valarray<T>&);
template<class T> valarray<T> tanh (const valarray<T>&);

template<class T> unspecified 1 begin(valarray<T>& v);
template<class T> unspecified 2 begin(const valarray<T>& v);
template<class T> unspecified 1 end(valarray<T>& v);
template<class T> unspecified 2 end(const valarray<T>& v);

}

1 The header <valarray> defines five class templates (valarray, slice_array, gslice_array, mask_array,
and indirect_array), two classes (slice and gslice), and a series of related function templates for
representing and manipulating arrays of values.

2 The valarray array classes are defined to be free of certain forms of aliasing, thus allowing operations on
these classes to be optimized.

3 Any function returning a valarray<T> is permitted to return an object of another type, provided all the
const member functions of valarray<T> are also applicable to this type. This return type shall not add
more than two levels of template nesting over the most deeply nested argument type.232

4 Implementations introducing such replacement types shall provide additional functions and operators as
follows:

—(4.1) for every function taking a const valarray<T>& other than begin and end (28.6.10), identical functions
taking the replacement types shall be added;

—(4.2) for every function taking two const valarray<T>& arguments, identical functions taking every combi-
nation of const valarray<T>& and replacement types shall be added.

5 In particular, an implementation shall allow a valarray<T> to be constructed from such replacement types
and shall allow assignments and compound assignments of such types to valarray<T>, slice_array<T>,
gslice_array<T>, mask_array<T> and indirect_array<T> objects.

6 These library functions are permitted to throw a bad_alloc (17.6.4.1) exception if there are not sufficient
resources available to carry out the operation. Note that the exception is not mandated.

28.6.2 Class template valarray [template.valarray]
28.6.2.1 Overview [template.valarray.overview]

namespace std {
template<class T> class valarray {
public:

using value_type = T;

// 28.6.2.2, construct/destroy
valarray();
explicit valarray(size_t);
valarray(const T&, size_t);
valarray(const T*, size_t);
valarray(const valarray&);
valarray(valarray&&) noexcept;
valarray(const slice_array<T>&);
valarray(const gslice_array<T>&);
valarray(const mask_array<T>&);
valarray(const indirect_array<T>&);
valarray(initializer_list<T>);
~valarray();

232) Annex B recommends a minimum number of recursively nested template instantiations. This requirement thus indirectly
suggests a minimum allowable complexity for valarray expressions.
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// 28.6.2.3, assignment
valarray& operator=(const valarray&);
valarray& operator=(valarray&&) noexcept;
valarray& operator=(initializer_list<T>);
valarray& operator=(const T&);
valarray& operator=(const slice_array<T>&);
valarray& operator=(const gslice_array<T>&);
valarray& operator=(const mask_array<T>&);
valarray& operator=(const indirect_array<T>&);

// 28.6.2.4, element access
const T& operator[](size_t) const;
T& operator[](size_t);

// 28.6.2.5, subset operations
valarray operator[](slice) const;
slice_array<T> operator[](slice);
valarray operator[](const gslice&) const;
gslice_array<T> operator[](const gslice&);
valarray operator[](const valarray<bool>&) const;
mask_array<T> operator[](const valarray<bool>&);
valarray operator[](const valarray<size_t>&) const;
indirect_array<T> operator[](const valarray<size_t>&);

// 28.6.2.6, unary operators
valarray operator+() const;
valarray operator-() const;
valarray operator~() const;
valarray<bool> operator!() const;

// 28.6.2.7, compound assignment
valarray& operator*= (const T&);
valarray& operator/= (const T&);
valarray& operator%= (const T&);
valarray& operator+= (const T&);
valarray& operator-= (const T&);
valarray& operator^= (const T&);
valarray& operator&= (const T&);
valarray& operator|= (const T&);
valarray& operator<<=(const T&);
valarray& operator>>=(const T&);

valarray& operator*= (const valarray&);
valarray& operator/= (const valarray&);
valarray& operator%= (const valarray&);
valarray& operator+= (const valarray&);
valarray& operator-= (const valarray&);
valarray& operator^= (const valarray&);
valarray& operator|= (const valarray&);
valarray& operator&= (const valarray&);
valarray& operator<<=(const valarray&);
valarray& operator>>=(const valarray&);

// 28.6.2.8, member functions
void swap(valarray&) noexcept;

size_t size() const;

T sum() const;
T min() const;
T max() const;

valarray shift (int) const;
valarray cshift(int) const;
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valarray apply(T func(T)) const;
valarray apply(T func(const T&)) const;
void resize(size_t sz, T c = T());

};

template<class T, size_t cnt> valarray(const T(&)[cnt], size_t) -> valarray<T>;
}

1 The class template valarray<T> is a one-dimensional smart array, with elements numbered sequentially from
zero. It is a representation of the mathematical concept of an ordered set of values. For convenience, an
object of type valarray<T> is referred to as an “array” throughout the remainder of 28.6. The illusion of
higher dimensionality may be produced by the familiar idiom of computed indices, together with the powerful
subsetting capabilities provided by the generalized subscript operators.233

28.6.2.2 Constructors [valarray.cons]

valarray();

1 Effects: Constructs a valarray that has zero length.234

explicit valarray(size_t n);

2 Effects: Constructs a valarray that has length n. Each element of the array is value-initialized (9.4).

valarray(const T& v, size_t n);

3 Effects: Constructs a valarray that has length n. Each element of the array is initialized with v.

valarray(const T* p, size_t n);

4 Preconditions: [p, p + n) is a valid range.
5 Effects: Constructs a valarray that has length n. The values of the elements of the array are initialized

with the first n values pointed to by the first argument.235

valarray(const valarray& v);

6 Effects: Constructs a valarray that has the same length as v. The elements are initialized with the
values of the corresponding elements of v.236

valarray(valarray&& v) noexcept;

7 Effects: Constructs a valarray that has the same length as v. The elements are initialized with the
values of the corresponding elements of v.

8 Complexity: Constant.

valarray(initializer_list<T> il);

9 Effects: Equivalent to valarray(il.begin(), il.size()).

valarray(const slice_array<T>&);
valarray(const gslice_array<T>&);
valarray(const mask_array<T>&);
valarray(const indirect_array<T>&);

10 These conversion constructors convert one of the four reference templates to a valarray.

~valarray();

11 Effects: The destructor is applied to every element of *this; an implementation may return all allocated
memory.

233) The intent is to specify an array template that has the minimum functionality necessary to address aliasing ambiguities
and the proliferation of temporary objects. Thus, the valarray template is neither a matrix class nor a field class. However, it
is a very useful building block for designing such classes.
234) This default constructor is essential, since arrays of valarray can be useful. After initialization, the length of an empty
array can be increased with the resize member function.
235) This constructor is the preferred method for converting a C array to a valarray object.
236) This copy constructor creates a distinct array rather than an alias. Implementations in which arrays share storage are
permitted, but they would need to implement a copy-on-reference mechanism to ensure that arrays are conceptually distinct.
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28.6.2.3 Assignment [valarray.assign]

valarray& operator=(const valarray& v);

1 Effects: Each element of the *this array is assigned the value of the corresponding element of v. If the
length of v is not equal to the length of *this, resizes *this to make the two arrays the same length,
as if by calling resize(v.size()), before performing the assignment.

2 Postconditions: size() == v.size().
3 Returns: *this.

valarray& operator=(valarray&& v) noexcept;

4 Effects: *this obtains the value of v. The value of v after the assignment is not specified.
5 Returns: *this.
6 Complexity: Linear.

valarray& operator=(initializer_list<T> il);

7 Effects: Equivalent to: return *this = valarray(il);

valarray& operator=(const T& v);

8 Effects: Assigns v to each element of *this.
9 Returns: *this.

valarray& operator=(const slice_array<T>&);
valarray& operator=(const gslice_array<T>&);
valarray& operator=(const mask_array<T>&);
valarray& operator=(const indirect_array<T>&);

10 Preconditions: The length of the array to which the argument refers equals size(). The value of
an element in the left-hand side of a valarray assignment operator does not depend on the value of
another element in that left-hand side.

11 These operators allow the results of a generalized subscripting operation to be assigned directly to a
valarray.

28.6.2.4 Element access [valarray.access]

const T& operator[](size_t n) const;
T& operator[](size_t n);

1 Preconditions: n < size() is true.
2 Returns: A reference to the corresponding element of the array.

[Note 1 : The expression (a[i] = q, a[i]) == q evaluates to true for any non-constant valarray<T> a, any
T q, and for any size_t i such that the value of i is less than the length of a. — end note ]

3 Remarks: The expression addressof(a[i+j]) == addressof(a[i]) + j evaluates to true for all
size_t i and size_t j such that i+j < a.size().

4 The expression addressof(a[i]) != addressof(b[j]) evaluates to true for any two arrays a and b
and for any size_t i and size_t j such that i < a.size() and j < b.size().
[Note 2 : This property indicates an absence of aliasing and can be used to advantage by optimizing compilers.
Compilers can take advantage of inlining, constant propagation, loop fusion, tracking of pointers obtained from
operator new, and other techniques to generate efficient valarrays. — end note ]

5 The reference returned by the subscript operator for an array shall be valid until the member function
resize(size_t, T) (28.6.2.8) is called for that array or until the lifetime of that array ends, whichever
happens first.

28.6.2.5 Subset operations [valarray.sub]
1 The member operator[] is overloaded to provide several ways to select sequences of elements from among

those controlled by *this. Each of these operations returns a subset of the array. The const-qualified versions
return this subset as a new valarray object. The non-const versions return a class template object which
has reference semantics to the original array, working in conjunction with various overloads of operator=
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and other assigning operators to allow selective replacement (slicing) of the controlled sequence. In each case
the selected element(s) shall exist.

valarray operator[](slice slicearr) const;

2 Returns: A valarray containing those elements of the controlled sequence designated by slicearr.
[Example 1 :

const valarray<char> v0("abcdefghijklmnop", 16);
// v0[slice(2, 5, 3)] returns valarray<char>("cfilo", 5)

— end example ]

slice_array<T> operator[](slice slicearr);

3 Returns: An object that holds references to elements of the controlled sequence selected by slicearr.
[Example 2 :

valarray<char> v0("abcdefghijklmnop", 16);
valarray<char> v1("ABCDE", 5);
v0[slice(2, 5, 3)] = v1;
// v0 == valarray<char>("abAdeBghCjkDmnEp", 16);

— end example ]

valarray operator[](const gslice& gslicearr) const;

4 Returns: A valarray containing those elements of the controlled sequence designated by gslicearr.
[Example 3 :

const valarray<char> v0("abcdefghijklmnop", 16);
const size_t lv[] = { 2, 3 };
const size_t dv[] = { 7, 2 };
const valarray<size_t> len(lv, 2), str(dv, 2);
// v0[gslice(3, len, str)] returns
// valarray<char>("dfhkmo", 6)

— end example ]

gslice_array<T> operator[](const gslice& gslicearr);

5 Returns: An object that holds references to elements of the controlled sequence selected by gslicearr.
[Example 4 :

valarray<char> v0("abcdefghijklmnop", 16);
valarray<char> v1("ABCDEF", 6);
const size_t lv[] = { 2, 3 };
const size_t dv[] = { 7, 2 };
const valarray<size_t> len(lv, 2), str(dv, 2);
v0[gslice(3, len, str)] = v1;
// v0 == valarray<char>("abcAeBgCijDlEnFp", 16)

— end example ]

valarray operator[](const valarray<bool>& boolarr) const;

6 Returns: A valarray containing those elements of the controlled sequence designated by boolarr.
[Example 5 :

const valarray<char> v0("abcdefghijklmnop", 16);
const bool vb[] = { false, false, true, true, false, true };
// v0[valarray<bool>(vb, 6)] returns
// valarray<char>("cdf", 3)

— end example ]

mask_array<T> operator[](const valarray<bool>& boolarr);

7 Returns: An object that holds references to elements of the controlled sequence selected by boolarr.
[Example 6 :

valarray<char> v0("abcdefghijklmnop", 16);
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valarray<char> v1("ABC", 3);
const bool vb[] = { false, false, true, true, false, true };
v0[valarray<bool>(vb, 6)] = v1;
// v0 == valarray<char>("abABeCghijklmnop", 16)

— end example ]

valarray operator[](const valarray<size_t>& indarr) const;

8 Returns: A valarray containing those elements of the controlled sequence designated by indarr.
[Example 7 :

const valarray<char> v0("abcdefghijklmnop", 16);
const size_t vi[] = { 7, 5, 2, 3, 8 };
// v0[valarray<size_t>(vi, 5)] returns
// valarray<char>("hfcdi", 5)

— end example ]

indirect_array<T> operator[](const valarray<size_t>& indarr);

9 Returns: An object that holds references to elements of the controlled sequence selected by indarr.
[Example 8 :

valarray<char> v0("abcdefghijklmnop", 16);
valarray<char> v1("ABCDE", 5);
const size_t vi[] = { 7, 5, 2, 3, 8 };
v0[valarray<size_t>(vi, 5)] = v1;
// v0 == valarray<char>("abCDeBgAEjklmnop", 16)

— end example ]

28.6.2.6 Unary operators [valarray.unary]

valarray operator+() const;
valarray operator-() const;
valarray operator~() const;
valarray<bool> operator!() const;

1 Mandates: The indicated operator can be applied to operands of type T and returns a value of type
T (bool for operator!) or which may be unambiguously implicitly converted to type T (bool for
operator!).

2 Returns: A valarray whose length is size(). Each element of the returned array is initialized with
the result of applying the indicated operator to the corresponding element of the array.

28.6.2.7 Compound assignment [valarray.cassign]

valarray& operator*= (const valarray& v);
valarray& operator/= (const valarray& v);
valarray& operator%= (const valarray& v);
valarray& operator+= (const valarray& v);
valarray& operator-= (const valarray& v);
valarray& operator^= (const valarray& v);
valarray& operator&= (const valarray& v);
valarray& operator|= (const valarray& v);
valarray& operator<<=(const valarray& v);
valarray& operator>>=(const valarray& v);

1 Mandates: The indicated operator can be applied to two operands of type T.
2 Preconditions: size() == v.size() is true.

The value of an element in the left-hand side of a valarray compound assignment operator does not
depend on the value of another element in that left hand side.

3 Effects: Each of these operators performs the indicated operation on each of the elements of *this and
the corresponding element of v.

4 Returns: *this.
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5 Remarks: The appearance of an array on the left-hand side of a compound assignment does not
invalidate references or pointers.

valarray& operator*= (const T& v);
valarray& operator/= (const T& v);
valarray& operator%= (const T& v);
valarray& operator+= (const T& v);
valarray& operator-= (const T& v);
valarray& operator^= (const T& v);
valarray& operator&= (const T& v);
valarray& operator|= (const T& v);
valarray& operator<<=(const T& v);
valarray& operator>>=(const T& v);

6 Mandates: The indicated operator can be applied to two operands of type T.
7 Effects: Each of these operators applies the indicated operation to each element of *this and v.
8 Returns: *this
9 Remarks: The appearance of an array on the left-hand side of a compound assignment does not

invalidate references or pointers to the elements of the array.

28.6.2.8 Member functions [valarray.members]

void swap(valarray& v) noexcept;

1 Effects: *this obtains the value of v. v obtains the value of *this.
2 Complexity: Constant.

size_t size() const;

3 Returns: The number of elements in the array.
4 Complexity: Constant time.

T sum() const;

5 Mandates: operator+= can be applied to operands of type T.
6 Preconditions: size() > 0 is true.
7 Returns: The sum of all the elements of the array. If the array has length 1, returns the value of

element 0. Otherwise, the returned value is calculated by applying operator+= to a copy of an element
of the array and all other elements of the array in an unspecified order.

T min() const;

8 Preconditions: size() > 0 is true.
9 Returns: The minimum value contained in *this. For an array of length 1, the value of element 0 is

returned. For all other array lengths, the determination is made using operator<.

T max() const;

10 Preconditions: size() > 0 is true.
11 Returns: The maximum value contained in *this. For an array of length 1, the value of element 0 is

returned. For all other array lengths, the determination is made using operator<.

valarray shift(int n) const;

12 Returns: A valarray of length size(), each of whose elements I is (*this)[I + n] if I + n is
non-negative and less than size(), otherwise T().
[Note 1 : If element zero is taken as the leftmost element, a positive value of n shifts the elements left n places,
with zero fill. — end note ]

13 [Example 1 : If the argument has the value −2, the first two elements of the result will be value-initialized (9.4);
the third element of the result will be assigned the value of the first element of *this; etc. — end example ]
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valarray cshift(int n) const;

14 Returns: A valarray of length size() that is a circular shift of *this. If element zero is taken as the
leftmost element, a non-negative value of n shifts the elements circularly left n places and a negative
value of n shifts the elements circularly right −n places.

valarray apply(T func(T)) const;
valarray apply(T func(const T&)) const;

15 Returns: A valarray whose length is size(). Each element of the returned array is assigned the value
returned by applying the argument function to the corresponding element of *this.

void resize(size_t sz, T c = T());

16 Effects: Changes the length of the *this array to sz and then assigns to each element the value of the
second argument. Resizing invalidates all pointers and references to elements in the array.

28.6.3 valarray non-member operations [valarray.nonmembers]
28.6.3.1 Binary operators [valarray.binary]

template<class T> valarray<T> operator* (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator/ (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator% (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator+ (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator- (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator^ (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator& (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator| (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator<<(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator>>(const valarray<T>&, const valarray<T>&);

1 Mandates: The indicated operator can be applied to operands of type T and returns a value of type T
or which can be unambiguously implicitly converted to T.

2 Preconditions: The argument arrays have the same length.
3 Returns: A valarray whose length is equal to the lengths of the argument arrays. Each element of the

returned array is initialized with the result of applying the indicated operator to the corresponding
elements of the argument arrays.

template<class T> valarray<T> operator* (const valarray<T>&,
const typename valarray<T>::value_type&);

template<class T> valarray<T> operator* (const typename valarray<T>::value_type&,
const valarray<T>&);

template<class T> valarray<T> operator/ (const valarray<T>&,
const typename valarray<T>::value_type&);

template<class T> valarray<T> operator/ (const typename valarray<T>::value_type&,
const valarray<T>&);

template<class T> valarray<T> operator% (const valarray<T>&,
const typename valarray<T>::value_type&);

template<class T> valarray<T> operator% (const typename valarray<T>::value_type&,
const valarray<T>&);

template<class T> valarray<T> operator+ (const valarray<T>&,
const typename valarray<T>::value_type&);

template<class T> valarray<T> operator+ (const typename valarray<T>::value_type&,
const valarray<T>&);

template<class T> valarray<T> operator- (const valarray<T>&,
const typename valarray<T>::value_type&);

template<class T> valarray<T> operator- (const typename valarray<T>::value_type&,
const valarray<T>&);

template<class T> valarray<T> operator^ (const valarray<T>&,
const typename valarray<T>::value_type&);

template<class T> valarray<T> operator^ (const typename valarray<T>::value_type&,
const valarray<T>&);

template<class T> valarray<T> operator& (const valarray<T>&,
const typename valarray<T>::value_type&);
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template<class T> valarray<T> operator& (const typename valarray<T>::value_type&,
const valarray<T>&);

template<class T> valarray<T> operator| (const valarray<T>&,
const typename valarray<T>::value_type&);

template<class T> valarray<T> operator| (const typename valarray<T>::value_type&,
const valarray<T>&);

template<class T> valarray<T> operator<<(const valarray<T>&,
const typename valarray<T>::value_type&);

template<class T> valarray<T> operator<<(const typename valarray<T>::value_type&,
const valarray<T>&);

template<class T> valarray<T> operator>>(const valarray<T>&,
const typename valarray<T>::value_type&);

template<class T> valarray<T> operator>>(const typename valarray<T>::value_type&,
const valarray<T>&);

4 Mandates: The indicated operator can be applied to operands of type T and returns a value of type T
or which can be unambiguously implicitly converted to T.

5 Returns: A valarray whose length is equal to the length of the array argument. Each element of the
returned array is initialized with the result of applying the indicated operator to the corresponding
element of the array argument and the non-array argument.

28.6.3.2 Logical operators [valarray.comparison]

template<class T> valarray<bool> operator==(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator!=(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator< (const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator> (const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator<=(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator>=(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator&&(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator||(const valarray<T>&, const valarray<T>&);

1 Mandates: The indicated operator can be applied to operands of type T and returns a value of type
bool or which can be unambiguously implicitly converted to bool.

2 Preconditions: The two array arguments have the same length.
3 Returns: A valarray<bool> whose length is equal to the length of the array arguments. Each element

of the returned array is initialized with the result of applying the indicated operator to the corresponding
elements of the argument arrays.

template<class T> valarray<bool> operator==(const valarray<T>&,
const typename valarray<T>::value_type&);

template<class T> valarray<bool> operator==(const typename valarray<T>::value_type&,
const valarray<T>&);

template<class T> valarray<bool> operator!=(const valarray<T>&,
const typename valarray<T>::value_type&);

template<class T> valarray<bool> operator!=(const typename valarray<T>::value_type&,
const valarray<T>&);

template<class T> valarray<bool> operator< (const valarray<T>&,
const typename valarray<T>::value_type&);

template<class T> valarray<bool> operator< (const typename valarray<T>::value_type&,
const valarray<T>&);

template<class T> valarray<bool> operator> (const valarray<T>&,
const typename valarray<T>::value_type&);

template<class T> valarray<bool> operator> (const typename valarray<T>::value_type&,
const valarray<T>&);

template<class T> valarray<bool> operator<=(const valarray<T>&,
const typename valarray<T>::value_type&);

template<class T> valarray<bool> operator<=(const typename valarray<T>::value_type&,
const valarray<T>&);

template<class T> valarray<bool> operator>=(const valarray<T>&,
const typename valarray<T>::value_type&);

template<class T> valarray<bool> operator>=(const typename valarray<T>::value_type&,
const valarray<T>&);
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template<class T> valarray<bool> operator&&(const valarray<T>&,
const typename valarray<T>::value_type&);

template<class T> valarray<bool> operator&&(const typename valarray<T>::value_type&,
const valarray<T>&);

template<class T> valarray<bool> operator||(const valarray<T>&,
const typename valarray<T>::value_type&);

template<class T> valarray<bool> operator||(const typename valarray<T>::value_type&,
const valarray<T>&);

4 Mandates: The indicated operator can be applied to operands of type T and returns a value of type
bool or which can be unambiguously implicitly converted to bool.

5 Returns: A valarray<bool> whose length is equal to the length of the array argument. Each element of
the returned array is initialized with the result of applying the indicated operator to the corresponding
element of the array and the non-array argument.

28.6.3.3 Transcendentals [valarray.transcend]

template<class T> valarray<T> abs (const valarray<T>&);
template<class T> valarray<T> acos (const valarray<T>&);
template<class T> valarray<T> asin (const valarray<T>&);
template<class T> valarray<T> atan (const valarray<T>&);
template<class T> valarray<T> atan2(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> atan2(const valarray<T>&, const typename valarray<T>::value_type&);
template<class T> valarray<T> atan2(const typename valarray<T>::value_type&, const valarray<T>&);
template<class T> valarray<T> cos (const valarray<T>&);
template<class T> valarray<T> cosh (const valarray<T>&);
template<class T> valarray<T> exp (const valarray<T>&);
template<class T> valarray<T> log (const valarray<T>&);
template<class T> valarray<T> log10(const valarray<T>&);
template<class T> valarray<T> pow (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> pow (const valarray<T>&, const typename valarray<T>::value_type&);
template<class T> valarray<T> pow (const typename valarray<T>::value_type&, const valarray<T>&);
template<class T> valarray<T> sin (const valarray<T>&);
template<class T> valarray<T> sinh (const valarray<T>&);
template<class T> valarray<T> sqrt (const valarray<T>&);
template<class T> valarray<T> tan (const valarray<T>&);
template<class T> valarray<T> tanh (const valarray<T>&);

1 Mandates: A unique function with the indicated name can be applied (unqualified) to an operand of
type T. This function returns a value of type T or which can be unambiguously implicitly converted to
type T.

28.6.3.4 Specialized algorithms [valarray.special]

template<class T> void swap(valarray<T>& x, valarray<T>& y) noexcept;

1 Effects: Equivalent to x.swap(y).

28.6.4 Class slice [class.slice]
28.6.4.1 Overview [class.slice.overview]

namespace std {
class slice {
public:

slice();
slice(size_t, size_t, size_t);
slice(const slice&);

size_t start() const;
size_t size() const;
size_t stride() const;

friend bool operator==(const slice& x, const slice& y);
};

}
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1 The slice class represents a BLAS-like slice from an array. Such a slice is specified by a starting index, a
length, and a stride.237

28.6.4.2 Constructors [cons.slice]

slice();
slice(size_t start, size_t length, size_t stride);

1 The default constructor is equivalent to slice(0, 0, 0). A default constructor is provided only to
permit the declaration of arrays of slices. The constructor with arguments for a slice takes a start,
length, and stride parameter.

2 [Example 1 : slice(3, 8, 2) constructs a slice which selects elements 3, 5, 7, . . . , 17 from an array. — end
example ]

28.6.4.3 Access functions [slice.access]

size_t start() const;
size_t size() const;
size_t stride() const;

1 Returns: The start, length, or stride specified by a slice object.
2 Complexity: Constant time.

28.6.4.4 Operators [slice.ops]

friend bool operator==(const slice& x, const slice& y);

1 Effects: Equivalent to:
return x.start() == y.start() && x.size() == y.size() && x.stride() == y.stride();

28.6.5 Class template slice_array [template.slice.array]
28.6.5.1 Overview [template.slice.array.overview]

namespace std {
template<class T> class slice_array {
public:

using value_type = T;

void operator= (const valarray<T>&) const;
void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

slice_array(const slice_array&);
~slice_array();
const slice_array& operator=(const slice_array&) const;
void operator=(const T&) const;

slice_array() = delete; // as implied by declaring copy constructor above
};

}

1 This template is a helper template used by the slice subscript operator
slice_array<T> valarray<T>::operator[](slice);

237) BLAS stands for Basic Linear Algebra Subprograms. C++ programs can instantiate this class. See, for example, Dongarra,
Du Croz, Duff, and Hammerling: A set of Level 3 Basic Linear Algebra Subprograms; Technical Report MCS-P1-0888, Argonne
National Laboratory (USA), Mathematics and Computer Science Division, August, 1988.
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2 It has reference semantics to a subset of an array specified by a slice object.
[Example 1 : The expression a[slice(1, 5, 3)] = b; has the effect of assigning the elements of b to a slice of the
elements in a. For the slice shown, the elements selected from a are 1, 4, . . . , 13. — end example ]

28.6.5.2 Assignment [slice.arr.assign]

void operator=(const valarray<T>&) const;
const slice_array& operator=(const slice_array&) const;

1 These assignment operators have reference semantics, assigning the values of the argument array
elements to selected elements of the valarray<T> object to which the slice_array object refers.

28.6.5.3 Compound assignment [slice.arr.comp.assign]

void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

1 These compound assignments have reference semantics, applying the indicated operation to the elements
of the argument array and selected elements of the valarray<T> object to which the slice_array
object refers.

28.6.5.4 Fill function [slice.arr.fill]

void operator=(const T&) const;

1 This function has reference semantics, assigning the value of its argument to the elements of the
valarray<T> object to which the slice_array object refers.

28.6.6 The gslice class [class.gslice]
28.6.6.1 Overview [class.gslice.overview]

namespace std {
class gslice {
public:

gslice();
gslice(size_t s, const valarray<size_t>& l, const valarray<size_t>& d);

size_t start() const;
valarray<size_t> size() const;
valarray<size_t> stride() const;

};
}

1 This class represents a generalized slice out of an array. A gslice is defined by a starting offset (s), a set of
lengths (lj), and a set of strides (dj). The number of lengths shall equal the number of strides.

2 A gslice represents a mapping from a set of indices (ij), equal in number to the number of strides, to a
single index k. It is useful for building multidimensional array classes using the valarray template, which is
one-dimensional. The set of one-dimensional index values specified by a gslice are

k = s +
∑

j

ijdj

where the multidimensional indices ij range in value from 0 to lij − 1.
3 [Example 1 : The gslice specification

start = 3
length = {2, 4, 3}
stride = {19, 4, 1}
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yields the sequence of one-dimensional indices

k = 3 + (0, 1) × 19 + (0, 1, 2, 3) × 4 + (0, 1, 2) × 1

which are ordered as shown in the following table:

(i0, i1, i2, k) =
(0, 0, 0, 3),
(0, 0, 1, 4),
(0, 0, 2, 5),
(0, 1, 0, 7),
(0, 1, 1, 8),
(0, 1, 2, 9),
(0, 2, 0, 11),
(0, 2, 1, 12),
(0, 2, 2, 13),
(0, 3, 0, 15),
(0, 3, 1, 16),
(0, 3, 2, 17),
(1, 0, 0, 22),
(1, 0, 1, 23),
. . .
(1, 3, 2, 36)

That is, the highest-ordered index turns fastest. — end example ]
4 It is possible to have degenerate generalized slices in which an address is repeated.
5 [Example 2 : If the stride parameters in the previous example are changed to {1, 1, 1}, the first few elements of the

resulting sequence of indices will be

(0, 0, 0, 3),
(0, 0, 1, 4),
(0, 0, 2, 5),
(0, 1, 0, 4),
(0, 1, 1, 5),
(0, 1, 2, 6),
. . .

— end example ]
6 If a degenerate slice is used as the argument to the non-const version of operator[](const gslice&), the

behavior is undefined.

28.6.6.2 Constructors [gslice.cons]

gslice();
gslice(size_t start, const valarray<size_t>& lengths,

const valarray<size_t>& strides);

1 The default constructor is equivalent to gslice(0, valarray<size_t>(), valarray<size_t>()).
The constructor with arguments builds a gslice based on a specification of start, lengths, and strides,
as explained in the previous subclause.

28.6.6.3 Access functions [gslice.access]

size_t start() const;
valarray<size_t> size() const;
valarray<size_t> stride() const;

1 Returns: The representation of the start, lengths, or strides specified for the gslice.
2 Complexity: start() is constant time. size() and stride() are linear in the number of strides.
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28.6.7 Class template gslice_array [template.gslice.array]
28.6.7.1 Overview [template.gslice.array.overview]

namespace std {
template<class T> class gslice_array {
public:

using value_type = T;

void operator= (const valarray<T>&) const;
void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

gslice_array(const gslice_array&);
~gslice_array();
const gslice_array& operator=(const gslice_array&) const;
void operator=(const T&) const;

gslice_array() = delete; // as implied by declaring copy constructor above
};

}

1 This template is a helper template used by the gslice subscript operator

gslice_array<T> valarray<T>::operator[](const gslice&);

2 It has reference semantics to a subset of an array specified by a gslice object. Thus, the expression
a[gslice(1, length, stride)] = b has the effect of assigning the elements of b to a generalized slice of
the elements in a.

28.6.7.2 Assignment [gslice.array.assign]

void operator=(const valarray<T>&) const;
const gslice_array& operator=(const gslice_array&) const;

1 These assignment operators have reference semantics, assigning the values of the argument array
elements to selected elements of the valarray<T> object to which the gslice_array refers.

28.6.7.3 Compound assignment [gslice.array.comp.assign]

void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

1 These compound assignments have reference semantics, applying the indicated operation to the elements
of the argument array and selected elements of the valarray<T> object to which the gslice_array
object refers.

28.6.7.4 Fill function [gslice.array.fill]

void operator=(const T&) const;

1 This function has reference semantics, assigning the value of its argument to the elements of the
valarray<T> object to which the gslice_array object refers.
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28.6.8 Class template mask_array [template.mask.array]
28.6.8.1 Overview [template.mask.array.overview]

namespace std {
template<class T> class mask_array {
public:

using value_type = T;

void operator= (const valarray<T>&) const;
void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

mask_array(const mask_array&);
~mask_array();
const mask_array& operator=(const mask_array&) const;
void operator=(const T&) const;

mask_array() = delete; // as implied by declaring copy constructor above
};

}

1 This template is a helper template used by the mask subscript operator:

mask_array<T> valarray<T>::operator[](const valarray<bool>&);

2 It has reference semantics to a subset of an array specified by a boolean mask. Thus, the expression a[mask] =
b; has the effect of assigning the elements of b to the masked elements in a (those for which the corresponding
element in mask is true).

28.6.8.2 Assignment [mask.array.assign]

void operator=(const valarray<T>&) const;
const mask_array& operator=(const mask_array&) const;

1 These assignment operators have reference semantics, assigning the values of the argument array
elements to selected elements of the valarray<T> object to which the mask_array object refers.

28.6.8.3 Compound assignment [mask.array.comp.assign]

void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

1 These compound assignments have reference semantics, applying the indicated operation to the elements
of the argument array and selected elements of the valarray<T> object to which the mask_array object
refers.

28.6.8.4 Fill function [mask.array.fill]

void operator=(const T&) const;

1 This function has reference semantics, assigning the value of its argument to the elements of the
valarray<T> object to which the mask_array object refers.
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28.6.9 Class template indirect_array [template.indirect.array]
28.6.9.1 Overview [template.indirect.array.overview]

namespace std {
template<class T> class indirect_array {
public:

using value_type = T;

void operator= (const valarray<T>&) const;
void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

indirect_array(const indirect_array&);
~indirect_array();
const indirect_array& operator=(const indirect_array&) const;
void operator=(const T&) const;

indirect_array() = delete; // as implied by declaring copy constructor above
};

}

1 This template is a helper template used by the indirect subscript operator

indirect_array<T> valarray<T>::operator[](const valarray<size_t>&);

2 It has reference semantics to a subset of an array specified by an indirect_array. Thus, the expression
a[indirect] = b; has the effect of assigning the elements of b to the elements in a whose indices appear in
indirect.

28.6.9.2 Assignment [indirect.array.assign]

void operator=(const valarray<T>&) const;
const indirect_array& operator=(const indirect_array&) const;

1 These assignment operators have reference semantics, assigning the values of the argument array
elements to selected elements of the valarray<T> object to which it refers.

2 If the indirect_array specifies an element in the valarray<T> object to which it refers more than
once, the behavior is undefined.

3 [Example 1 :
int addr[] = {2, 3, 1, 4, 4};
valarray<size_t> indirect(addr, 5);
valarray<double> a(0., 10), b(1., 5);
a[indirect] = b;

results in undefined behavior since element 4 is specified twice in the indirection. — end example ]

28.6.9.3 Compound assignment [indirect.array.comp.assign]

void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
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void operator>>=(const valarray<T>&) const;

1 These compound assignments have reference semantics, applying the indicated operation to the elements
of the argument array and selected elements of the valarray<T> object to which the indirect_array
object refers.

2 If the indirect_array specifies an element in the valarray<T> object to which it refers more than
once, the behavior is undefined.

28.6.9.4 Fill function [indirect.array.fill]

void operator=(const T&) const;

1 This function has reference semantics, assigning the value of its argument to the elements of the
valarray<T> object to which the indirect_array object refers.

28.6.10 valarray range access [valarray.range]
1 In the begin and end function templates that follow, unspecified 1 is a type that meets the requirements

of a mutable Cpp17RandomAccessIterator (25.3.5.7) and models contiguous_iterator (25.3.4.14), whose
value_type is the template parameter T and whose reference type is T&. unspecified 2 is a type that
meets the requirements of a constant Cpp17RandomAccessIterator and models contiguous_iterator, whose
value_type is the template parameter T and whose reference type is const T&.

2 The iterators returned by begin and end for an array are guaranteed to be valid until the member function
resize(size_t, T) (28.6.2.8) is called for that array or until the lifetime of that array ends, whichever
happens first.

template<class T> unspecified 1 begin(valarray<T>& v);
template<class T> unspecified 2 begin(const valarray<T>& v);

3 Returns: An iterator referencing the first value in the array.

template<class T> unspecified 1 end(valarray<T>& v);
template<class T> unspecified 2 end(const valarray<T>& v);

4 Returns: An iterator referencing one past the last value in the array.

28.7 Mathematical functions for floating-point types [c.math]
28.7.1 Header <cmath> synopsis [cmath.syn]

namespace std {
using float_t = see below ;
using double_t = see below ;

}

#define HUGE_VAL see below
#define HUGE_VALF see below
#define HUGE_VALL see below
#define INFINITY see below
#define NAN see below
#define FP_INFINITE see below
#define FP_NAN see below
#define FP_NORMAL see below
#define FP_SUBNORMAL see below
#define FP_ZERO see below
#define FP_FAST_FMA see below
#define FP_FAST_FMAF see below
#define FP_FAST_FMAL see below
#define FP_ILOGB0 see below
#define FP_ILOGBNAN see below
#define MATH_ERRNO see below
#define MATH_ERREXCEPT see below

#define math_errhandling see below
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namespace std {
floating-point-type acos(floating-point-type x);
float acosf(float x);
long double acosl(long double x);

floating-point-type asin(floating-point-type x);
float asinf(float x);
long double asinl(long double x);

floating-point-type atan(floating-point-type x);
float atanf(float x);
long double atanl(long double x);

floating-point-type atan2(floating-point-type y, floating-point-type x);
float atan2f(float y, float x);
long double atan2l(long double y, long double x);

floating-point-type cos(floating-point-type x);
float cosf(float x);
long double cosl(long double x);

floating-point-type sin(floating-point-type x);
float sinf(float x);
long double sinl(long double x);

floating-point-type tan(floating-point-type x);
float tanf(float x);
long double tanl(long double x);

floating-point-type acosh(floating-point-type x);
float acoshf(float x);
long double acoshl(long double x);

floating-point-type asinh(floating-point-type x);
float asinhf(float x);
long double asinhl(long double x);

floating-point-type atanh(floating-point-type x);
float atanhf(float x);
long double atanhl(long double x);

floating-point-type cosh(floating-point-type x);
float coshf(float x);
long double coshl(long double x);

floating-point-type sinh(floating-point-type x);
float sinhf(float x);
long double sinhl(long double x);

floating-point-type tanh(floating-point-type x);
float tanhf(float x);
long double tanhl(long double x);

floating-point-type exp(floating-point-type x);
float expf(float x);
long double expl(long double x);

floating-point-type exp2(floating-point-type x);
float exp2f(float x);
long double exp2l(long double x);

floating-point-type expm1(floating-point-type x);
float expm1f(float x);
long double expm1l(long double x);
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constexpr floating-point-type frexp(floating-point-type value, int* exp);
constexpr float frexpf(float value, int* exp);
constexpr long double frexpl(long double value, int* exp);

constexpr int ilogb(floating-point-type x);
constexpr int ilogbf(float x);
constexpr int ilogbl(long double x);

constexpr floating-point-type ldexp(floating-point-type x, int exp);
constexpr float ldexpf(float x, int exp);
constexpr long double ldexpl(long double x, int exp);

floating-point-type log(floating-point-type x);
float logf(float x);
long double logl(long double x);

floating-point-type log10(floating-point-type x);
float log10f(float x);
long double log10l(long double x);

floating-point-type log1p(floating-point-type x);
float log1pf(float x);
long double log1pl(long double x);

floating-point-type log2(floating-point-type x);
float log2f(float x);
long double log2l(long double x);

constexpr floating-point-type logb(floating-point-type x);
constexpr float logbf(float x);
constexpr long double logbl(long double x);

constexpr floating-point-type modf(floating-point-type value, floating-point-type * iptr);
constexpr float modff(float value, float* iptr);
constexpr long double modfl(long double value, long double* iptr);

constexpr floating-point-type scalbn(floating-point-type x, int n);
constexpr float scalbnf(float x, int n);
constexpr long double scalbnl(long double x, int n);

constexpr floating-point-type scalbln(floating-point-type x, long int n);
constexpr float scalblnf(float x, long int n);
constexpr long double scalblnl(long double x, long int n);

floating-point-type cbrt(floating-point-type x);
float cbrtf(float x);
long double cbrtl(long double x);

// 28.7.2, absolute values
constexpr int abs(int j);
constexpr long int abs(long int j);
constexpr long long int abs(long long int j);
constexpr floating-point-type abs(floating-point-type j);

constexpr floating-point-type fabs(floating-point-type x);
constexpr float fabsf(float x);
constexpr long double fabsl(long double x);

floating-point-type hypot(floating-point-type x, floating-point-type y);
float hypotf(float x, float y);
long double hypotl(long double x, long double y);
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// 28.7.3, three-dimensional hypotenuse
floating-point-type hypot(floating-point-type x, floating-point-type y,

floating-point-type z);

floating-point-type pow(floating-point-type x, floating-point-type y);
float powf(float x, float y);
long double powl(long double x, long double y);

floating-point-type sqrt(floating-point-type x);
float sqrtf(float x);
long double sqrtl(long double x);

floating-point-type erf(floating-point-type x);
float erff(float x);
long double erfl(long double x);

floating-point-type erfc(floating-point-type x);
float erfcf(float x);
long double erfcl(long double x);

floating-point-type lgamma(floating-point-type x);
float lgammaf(float x);
long double lgammal(long double x);

floating-point-type tgamma(floating-point-type x);
float tgammaf(float x);
long double tgammal(long double x);

constexpr floating-point-type ceil(floating-point-type x);
constexpr float ceilf(float x);
constexpr long double ceill(long double x);

constexpr floating-point-type floor(floating-point-type x);
constexpr float floorf(float x);
constexpr long double floorl(long double x);

floating-point-type nearbyint(floating-point-type x);
float nearbyintf(float x);
long double nearbyintl(long double x);

floating-point-type rint(floating-point-type x);
float rintf(float x);
long double rintl(long double x);

long int lrint(floating-point-type x);
long int lrintf(float x);
long int lrintl(long double x);

long long int llrint(floating-point-type x);
long long int llrintf(float x);
long long int llrintl(long double x);

constexpr floating-point-type round(floating-point-type x);
constexpr float roundf(float x);
constexpr long double roundl(long double x);

constexpr long int lround(floating-point-type x);
constexpr long int lroundf(float x);
constexpr long int lroundl(long double x);

constexpr long long int llround(floating-point-type x);
constexpr long long int llroundf(float x);
constexpr long long int llroundl(long double x);
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constexpr floating-point-type trunc(floating-point-type x);
constexpr float truncf(float x);
constexpr long double truncl(long double x);

constexpr floating-point-type fmod(floating-point-type x, floating-point-type y);
constexpr float fmodf(float x, float y);
constexpr long double fmodl(long double x, long double y);

constexpr floating-point-type remainder(floating-point-type x, floating-point-type y);
constexpr float remainderf(float x, float y);
constexpr long double remainderl(long double x, long double y);

constexpr floating-point-type remquo(floating-point-type x, floating-point-type y, int* quo);
constexpr float remquof(float x, float y, int* quo);
constexpr long double remquol(long double x, long double y, int* quo);

constexpr floating-point-type copysign(floating-point-type x, floating-point-type y);
constexpr float copysignf(float x, float y);
constexpr long double copysignl(long double x, long double y);

double nan(const char* tagp);
float nanf(const char* tagp);
long double nanl(const char* tagp);

constexpr floating-point-type nextafter(floating-point-type x, floating-point-type y);
constexpr float nextafterf(float x, float y);
constexpr long double nextafterl(long double x, long double y);

constexpr floating-point-type nexttoward(floating-point-type x, long double y);
constexpr float nexttowardf(float x, long double y);
constexpr long double nexttowardl(long double x, long double y);

constexpr floating-point-type fdim(floating-point-type x, floating-point-type y);
constexpr float fdimf(float x, float y);
constexpr long double fdiml(long double x, long double y);

constexpr floating-point-type fmax(floating-point-type x, floating-point-type y);
constexpr float fmaxf(float x, float y);
constexpr long double fmaxl(long double x, long double y);

constexpr floating-point-type fmin(floating-point-type x, floating-point-type y);
constexpr float fminf(float x, float y);
constexpr long double fminl(long double x, long double y);

constexpr floating-point-type fma(floating-point-type x, floating-point-type y,
floating-point-type z);

constexpr float fmaf(float x, float y, float z);
constexpr long double fmal(long double x, long double y, long double z);

// 28.7.4, linear interpolation
constexpr floating-point-type lerp(floating-point-type a, floating-point-type b,

floating-point-type t) noexcept;

// 28.7.5, classification / comparison functions
constexpr int fpclassify(floating-point-type x);
constexpr bool isfinite(floating-point-type x);
constexpr bool isinf(floating-point-type x);
constexpr bool isnan(floating-point-type x);
constexpr bool isnormal(floating-point-type x);
constexpr bool signbit(floating-point-type x);
constexpr bool isgreater(floating-point-type x, floating-point-type y);
constexpr bool isgreaterequal(floating-point-type x, floating-point-type y);
constexpr bool isless(floating-point-type x, floating-point-type y);
constexpr bool islessequal(floating-point-type x, floating-point-type y);
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constexpr bool islessgreater(floating-point-type x, floating-point-type y);
constexpr bool isunordered(floating-point-type x, floating-point-type y);

// 28.7.6, mathematical special functions

// 28.7.6.2, associated Laguerre polynomials
floating-point-type assoc_laguerre(unsigned n, unsigned m, floating-point-type x);
float assoc_laguerref(unsigned n, unsigned m, float x);
long double assoc_laguerrel(unsigned n, unsigned m, long double x);

// 28.7.6.3, associated Legendre functions
floating-point-type assoc_legendre(unsigned l, unsigned m, floating-point-type x);
float assoc_legendref(unsigned l, unsigned m, float x);
long double assoc_legendrel(unsigned l, unsigned m, long double x);

// 28.7.6.4, beta function
floating-point-type beta(floating-point-type x, floating-point-type y);
float betaf(float x, float y);
long double betal(long double x, long double y);

// 28.7.6.5, complete elliptic integral of the first kind
floating-point-type comp_ellint_1(floating-point-type k);
float comp_ellint_1f(float k);
long double comp_ellint_1l(long double k);

// 28.7.6.6, complete elliptic integral of the second kind
floating-point-type comp_ellint_2(floating-point-type k);
float comp_ellint_2f(float k);
long double comp_ellint_2l(long double k);

// 28.7.6.7, complete elliptic integral of the third kind
floating-point-type comp_ellint_3(floating-point-type k, floating-point-type nu);
float comp_ellint_3f(float k, float nu);
long double comp_ellint_3l(long double k, long double nu);

// 28.7.6.8, regular modified cylindrical Bessel functions
floating-point-type cyl_bessel_i(floating-point-type nu, floating-point-type x);
float cyl_bessel_if(float nu, float x);
long double cyl_bessel_il(long double nu, long double x);

// 28.7.6.9, cylindrical Bessel functions of the first kind
floating-point-type cyl_bessel_j(floating-point-type nu, floating-point-type x);
float cyl_bessel_jf(float nu, float x);
long double cyl_bessel_jl(long double nu, long double x);

// 28.7.6.10, irregular modified cylindrical Bessel functions
floating-point-type cyl_bessel_k(floating-point-type nu, floating-point-type x);
float cyl_bessel_kf(float nu, float x);
long double cyl_bessel_kl(long double nu, long double x);

// 28.7.6.11, cylindrical Neumann functions
// cylindrical Bessel functions of the second kind
floating-point-type cyl_neumann(floating-point-type nu, floating-point-type x);
float cyl_neumannf(float nu, float x);
long double cyl_neumannl(long double nu, long double x);

// 28.7.6.12, incomplete elliptic integral of the first kind
floating-point-type ellint_1(floating-point-type k, floating-point-type phi);
float ellint_1f(float k, float phi);
long double ellint_1l(long double k, long double phi);

// 28.7.6.13, incomplete elliptic integral of the second kind
floating-point-type ellint_2(floating-point-type k, floating-point-type phi);
float ellint_2f(float k, float phi);
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long double ellint_2l(long double k, long double phi);

// 28.7.6.14, incomplete elliptic integral of the third kind
floating-point-type ellint_3(floating-point-type k, floating-point-type nu,

floating-point-type phi);
float ellint_3f(float k, float nu, float phi);
long double ellint_3l(long double k, long double nu, long double phi);

// 28.7.6.15, exponential integral
floating-point-type expint(floating-point-type x);
float expintf(float x);
long double expintl(long double x);

// 28.7.6.16, Hermite polynomials
floating-point-type hermite(unsigned n, floating-point-type x);
float hermitef(unsigned n, float x);
long double hermitel(unsigned n, long double x);

// 28.7.6.17, Laguerre polynomials
floating-point-type laguerre(unsigned n, floating-point-type x);
float laguerref(unsigned n, float x);
long double laguerrel(unsigned n, long double x);

// 28.7.6.18, Legendre polynomials
floating-point-type legendre(unsigned l, floating-point-type x);
float legendref(unsigned l, float x);
long double legendrel(unsigned l, long double x);

// 28.7.6.19, Riemann zeta function
floating-point-type riemann_zeta(floating-point-type x);
float riemann_zetaf(float x);
long double riemann_zetal(long double x);

// 28.7.6.20, spherical Bessel functions of the first kind
floating-point-type sph_bessel(unsigned n, floating-point-type x);
float sph_besself(unsigned n, float x);
long double sph_bessell(unsigned n, long double x);

// 28.7.6.21, spherical associated Legendre functions
floating-point-type sph_legendre(unsigned l, unsigned m, floating-point-type theta);
float sph_legendref(unsigned l, unsigned m, float theta);
long double sph_legendrel(unsigned l, unsigned m, long double theta);

// 28.7.6.22, spherical Neumann functions;
// spherical Bessel functions of the second kind
floating-point-type sph_neumann(unsigned n, floating-point-type x);
float sph_neumannf(unsigned n, float x);
long double sph_neumannl(unsigned n, long double x);

}

1 The contents and meaning of the header <cmath> are the same as the C standard library header <math.h>,
with the addition of a three-dimensional hypotenuse function (28.7.3), a linear interpolation function (28.7.4),
and the mathematical special functions described in 28.7.6.
[Note 1 : Several functions have additional overloads in this document, but they have the same behavior as in the C
standard library (16.2). — end note ]

2 For each function with at least one parameter of type floating-point-type, the implementation provides an
overload for each cv-unqualified floating-point type (6.8.2) where all uses of floating-point-type in the function
signature are replaced with that floating-point type.

3 For each function with at least one parameter of type floating-point-type other than abs, the implementation
also provides additional overloads sufficient to ensure that, if every argument corresponding to a floating-point-
type parameter has arithmetic type, then every such argument is effectively cast to the floating-point type with
the greatest floating-point conversion rank and greatest floating-point conversion subrank among the types of
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all such arguments, where arguments of integer type are considered to have the same floating-point conversion
rank as double. If no such floating-point type with the greatest rank and subrank exists, then overload
resolution does not result in a usable candidate (12.2.1) from the overloads provided by the implementation.

4 An invocation of nexttoward is ill-formed if the argument corresponding to the floating-point-type parameter
has extended floating-point type.
See also: ISO/IEC 9899:2018, 7.12

28.7.2 Absolute values [c.math.abs]
1 [Note 1 : The headers <cstdlib> (17.2.2) and <cmath> (28.7.1) declare the functions described in this subclause.

— end note ]

constexpr int abs(int j);
constexpr long int abs(long int j);
constexpr long long int abs(long long int j);

2 Effects: These functions have the semantics specified in the C standard library for the functions abs,
labs, and llabs, respectively.

3 Remarks: If abs is called with an argument of type X for which is_unsigned_v<X> is true and if X
cannot be converted to int by integral promotion (7.3.7), the program is ill-formed.
[Note 2 : Arguments that can be promoted to int are permitted for compatibility with C. — end note ]

constexpr floating-point-type abs(floating-point-type x);

4 Returns: The absolute value of x.
See also: ISO/IEC 9899:2018, 7.12.7.2, 7.22.6.1

28.7.3 Three-dimensional hypotenuse [c.math.hypot3]
floating-point-type hypot(floating-point-type x, floating-point-type y, floating-point-type z);

1 Returns:
√

x2 + y2 + z2.

28.7.4 Linear interpolation [c.math.lerp]
constexpr floating-point-type lerp(floating-point-type a, floating-point-type b,

floating-point-type t) noexcept;

1 Returns: a + t(b − a).
2 Remarks: Let r be the value returned. If isfinite(a) && isfinite(b), then:

—(2.1) If t == 0, then r == a.
—(2.2) If t == 1, then r == b.
—(2.3) If t >= 0 && t <= 1, then isfinite(r).
—(2.4) If isfinite(t) && a == b, then r == a.
—(2.5) If isfinite(t) || !isnan(t) && b-a != 0, then !isnan(r).

Let CMP (x,y) be 1 if x > y, -1 if x < y, and 0 otherwise. For any t1 and t2, the product of
CMP (lerp(a, b, t2), lerp(a, b, t1)), CMP (t2, t1), and CMP (b, a) is non-negative.

28.7.5 Classification / comparison functions [c.math.fpclass]
1 The classification / comparison functions behave the same as the C macros with the corresponding names

defined in the C standard library.
See also: ISO/IEC 9899:2018, 7.12.3, 7.12.4

28.7.6 Mathematical special functions [sf.cmath]
28.7.6.1 General [sf.cmath.general]

1 If any argument value to any of the functions specified in 28.7.6 is a NaN (Not a Number), the function shall
return a NaN but it shall not report a domain error. Otherwise, the function shall report a domain error for
just those argument values for which:
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—(1.1) the function description’s Returns: element explicitly specifies a domain and those argument values fall
outside the specified domain, or

—(1.2) the corresponding mathematical function value has a nonzero imaginary component, or
—(1.3) the corresponding mathematical function is not mathematically defined.238

2 Unless otherwise specified, each function is defined for all finite values, for negative infinity, and for positive
infinity.

28.7.6.2 Associated Laguerre polynomials [sf.cmath.assoc.laguerre]

floating-point-type assoc_laguerre(unsigned n, unsigned m, floating-point-type x);
float assoc_laguerref(unsigned n, unsigned m, float x);
long double assoc_laguerrel(unsigned n, unsigned m, long double x);

1 Effects: These functions compute the associated Laguerre polynomials of their respective arguments n,
m, and x.

2 Returns:
Lm

n (x) = (−1)m dm

dxm
Ln+m(x) , for x ≥ 0,

where n is n, m is m, and x is x.
3 Remarks: The effect of calling each of these functions is implementation-defined if n >= 128 or if m >=

128.

28.7.6.3 Associated Legendre functions [sf.cmath.assoc.legendre]

floating-point-type assoc_legendre(unsigned l, unsigned m, floating-point-type x);
float assoc_legendref(unsigned l, unsigned m, float x);
long double assoc_legendrel(unsigned l, unsigned m, long double x);

1 Effects: These functions compute the associated Legendre functions of their respective arguments l, m,
and x.

2 Returns:
Pm

ℓ (x) = (1 − x2)m/2 dm

dxm
Pℓ(x) , for |x| ≤ 1,

where l is l, m is m, and x is x.
3 Remarks: The effect of calling each of these functions is implementation-defined if l >= 128.

28.7.6.4 Beta function [sf.cmath.beta]

floating-point-type beta(floating-point-type x, floating-point-type y);
float betaf(float x, float y);
long double betal(long double x, long double y);

1 Effects: These functions compute the beta function of their respective arguments x and y.
2 Returns:

B(x, y) = Γ(x) Γ(y)
Γ(x + y) , for x > 0, y > 0,

where x is x and y is y.

28.7.6.5 Complete elliptic integral of the first kind [sf.cmath.comp.ellint.1]

floating-point-type comp_ellint_1(floating-point-type k);
float comp_ellint_1f(float k);
long double comp_ellint_1l(long double k);

1 Effects: These functions compute the complete elliptic integral of the first kind of their respective
arguments k.

2 Returns:
K(k) = F(k, π/2) , for |k| ≤ 1,

where k is k.

238) A mathematical function is mathematically defined for a given set of argument values (a) if it is explicitly defined for that
set of argument values, or (b) if its limiting value exists and does not depend on the direction of approach.
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3 See also 28.7.6.12.

28.7.6.6 Complete elliptic integral of the second kind [sf.cmath.comp.ellint.2]

floating-point-type comp_ellint_2(floating-point-type k);
float comp_ellint_2f(float k);
long double comp_ellint_2l(long double k);

1 Effects: These functions compute the complete elliptic integral of the second kind of their respective
arguments k.

2 Returns:
E(k) = E(k, π/2) , for |k| ≤ 1,

where k is k.
3 See also 28.7.6.13.

28.7.6.7 Complete elliptic integral of the third kind [sf.cmath.comp.ellint.3]

floating-point-type comp_ellint_3(floating-point-type k, floating-point-type nu);
float comp_ellint_3f(float k, float nu);
long double comp_ellint_3l(long double k, long double nu);

1 Effects: These functions compute the complete elliptic integral of the third kind of their respective
arguments k and nu.

2 Returns:
Π(ν, k) = Π(ν, k, π/2) , for |k| ≤ 1,

where k is k and ν is nu.
3 See also 28.7.6.14.

28.7.6.8 Regular modified cylindrical Bessel functions [sf.cmath.cyl.bessel.i]

floating-point-type cyl_bessel_i(floating-point-type nu, floating-point-type x);
float cyl_bessel_if(float nu, float x);
long double cyl_bessel_il(long double nu, long double x);

1 Effects: These functions compute the regular modified cylindrical Bessel functions of their respective
arguments nu and x.

2 Returns:

Iν(x) = i−νJν(ix) =
∞∑

k=0

(x/2)ν+2k

k! Γ(ν + k + 1) , for x ≥ 0,

where ν is nu and x is x.
3 Remarks: The effect of calling each of these functions is implementation-defined if nu >= 128.
4 See also 28.7.6.9.

28.7.6.9 Cylindrical Bessel functions of the first kind [sf.cmath.cyl.bessel.j]

floating-point-type cyl_bessel_j(floating-point-type nu, floating-point-type x);
float cyl_bessel_jf(float nu, float x);
long double cyl_bessel_jl(long double nu, long double x);

1 Effects: These functions compute the cylindrical Bessel functions of the first kind of their respective
arguments nu and x.

2 Returns:

Jν(x) =
∞∑

k=0

(−1)k(x/2)ν+2k

k! Γ(ν + k + 1) , for x ≥ 0,

where ν is nu and x is x.
3 Remarks: The effect of calling each of these functions is implementation-defined if nu >= 128.
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28.7.6.10 Irregular modified cylindrical Bessel functions [sf.cmath.cyl.bessel.k]

floating-point-type cyl_bessel_k(floating-point-type nu, floating-point-type x);
float cyl_bessel_kf(float nu, float x);
long double cyl_bessel_kl(long double nu, long double x);

1 Effects: These functions compute the irregular modified cylindrical Bessel functions of their respective
arguments nu and x.

2 Returns:

Kν(x) = (π/2)iν+1(Jν(ix) + iNν(ix)) =


π

2
I−ν(x) − Iν(x)

sin νπ
, for x ≥ 0 and non-integral ν

π

2 lim
µ→ν

I−µ(x) − Iµ(x)
sin µπ

, for x ≥ 0 and integral ν

where ν is nu and x is x.
3 Remarks: The effect of calling each of these functions is implementation-defined if nu >= 128.
4 See also 28.7.6.8, 28.7.6.9, 28.7.6.11.

28.7.6.11 Cylindrical Neumann functions [sf.cmath.cyl.neumann]

floating-point-type cyl_neumann(floating-point-type nu, floating-point-type x);
float cyl_neumannf(float nu, float x);
long double cyl_neumannl(long double nu, long double x);

1 Effects: These functions compute the cylindrical Neumann functions, also known as the cylindrical
Bessel functions of the second kind, of their respective arguments nu and x.

2 Returns:

Nν(x) =


Jν(x) cos νπ − J−ν(x)

sin νπ
, for x ≥ 0 and non-integral ν

lim
µ→ν

Jµ(x) cos µπ − J−µ(x)
sin µπ

, for x ≥ 0 and integral ν

where ν is nu and x is x.
3 Remarks: The effect of calling each of these functions is implementation-defined if nu >= 128.
4 See also 28.7.6.9.

28.7.6.12 Incomplete elliptic integral of the first kind [sf.cmath.ellint.1]

floating-point-type ellint_1(floating-point-type k, floating-point-type phi);
float ellint_1f(float k, float phi);
long double ellint_1l(long double k, long double phi);

1 Effects: These functions compute the incomplete elliptic integral of the first kind of their respective
arguments k and phi (phi measured in radians).

2 Returns:
F(k, ϕ) =

∫ ϕ

0

dθ√
1 − k2 sin2 θ

, for |k| ≤ 1,

where k is k and ϕ is phi.

28.7.6.13 Incomplete elliptic integral of the second kind [sf.cmath.ellint.2]

floating-point-type ellint_2(floating-point-type k, floating-point-type phi);
float ellint_2f(float k, float phi);
long double ellint_2l(long double k, long double phi);

1 Effects: These functions compute the incomplete elliptic integral of the second kind of their respective
arguments k and phi (phi measured in radians).

2 Returns:
E(k, ϕ) =

∫ ϕ

0

√
1 − k2 sin2 θ dθ , for |k| ≤ 1,

where k is k and ϕ is phi.
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28.7.6.14 Incomplete elliptic integral of the third kind [sf.cmath.ellint.3]

floating-point-type ellint_3(floating-point-type k, floating-point-type nu,
floating-point-type phi);

float ellint_3f(float k, float nu, float phi);
long double ellint_3l(long double k, long double nu, long double phi);

1 Effects: These functions compute the incomplete elliptic integral of the third kind of their respective
arguments k, nu, and phi (phi measured in radians).

2 Returns:
Π(ν, k, ϕ) =

∫ ϕ

0

dθ

(1 − ν sin2 θ)
√

1 − k2 sin2 θ
, for |k| ≤ 1,

where ν is nu, k is k, and ϕ is phi.

28.7.6.15 Exponential integral [sf.cmath.expint]

floating-point-type expint(floating-point-type x);
float expintf(float x);
long double expintl(long double x);

1 Effects: These functions compute the exponential integral of their respective arguments x.
2 Returns:

Ei(x) = −
∫ ∞

−x

e−t

t
dt

where x is x.

28.7.6.16 Hermite polynomials [sf.cmath.hermite]

floating-point-type hermite(unsigned n, floating-point-type x);
float hermitef(unsigned n, float x);
long double hermitel(unsigned n, long double x);

1 Effects: These functions compute the Hermite polynomials of their respective arguments n and x.
2 Returns:

Hn(x) = (−1)nex2 dn

dxn
e−x2

where n is n and x is x.
3 Remarks: The effect of calling each of these functions is implementation-defined if n >= 128.

28.7.6.17 Laguerre polynomials [sf.cmath.laguerre]

floating-point-type laguerre(unsigned n, floating-point-type x);
float laguerref(unsigned n, float x);
long double laguerrel(unsigned n, long double x);

1 Effects: These functions compute the Laguerre polynomials of their respective arguments n and x.
2 Returns:

Ln(x) = ex

n!
dn

dxn
(xne−x) , for x ≥ 0,

where n is n and x is x.
3 Remarks: The effect of calling each of these functions is implementation-defined if n >= 128.

28.7.6.18 Legendre polynomials [sf.cmath.legendre]

floating-point-type legendre(unsigned l, floating-point-type x);
float legendref(unsigned l, float x);
long double legendrel(unsigned l, long double x);

1 Effects: These functions compute the Legendre polynomials of their respective arguments l and x.
2 Returns:

Pℓ(x) = 1
2ℓ ℓ!

dℓ

dxℓ
(x2 − 1)ℓ , for |x| ≤ 1,

where l is l and x is x.
3 Remarks: The effect of calling each of these functions is implementation-defined if l >= 128.
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28.7.6.19 Riemann zeta function [sf.cmath.riemann.zeta]

floating-point-type riemann_zeta(floating-point-type x);
float riemann_zetaf(float x);
long double riemann_zetal(long double x);

1 Effects: These functions compute the Riemann zeta function of their respective arguments x.
2 Returns:

ζ(x) =



∞∑
k=1

k−x, for x > 1

1
1 − 21−x

∞∑
k=1

(−1)k−1k−x, for 0 ≤ x ≤ 1

2xπx−1 sin(πx

2 ) Γ(1 − x) ζ(1 − x), for x < 0

where x is x.

28.7.6.20 Spherical Bessel functions of the first kind [sf.cmath.sph.bessel]

floating-point-type sph_bessel(unsigned n, floating-point-type x);
float sph_besself(unsigned n, float x);
long double sph_bessell(unsigned n, long double x);

1 Effects: These functions compute the spherical Bessel functions of the first kind of their respective
arguments n and x.

2 Returns:
jn(x) = (π/2x)1/2Jn+1/2(x) , for x ≥ 0,

where n is n and x is x.
3 Remarks: The effect of calling each of these functions is implementation-defined if n >= 128.
4 See also 28.7.6.9.

28.7.6.21 Spherical associated Legendre functions [sf.cmath.sph.legendre]

floating-point-type sph_legendre(unsigned l, unsigned m, floating-point-type theta);
float sph_legendref(unsigned l, unsigned m, float theta);
long double sph_legendrel(unsigned l, unsigned m, long double theta);

1 Effects: These functions compute the spherical associated Legendre functions of their respective
arguments l, m, and theta (theta measured in radians).

2 Returns:
Ym

ℓ (θ, 0)

where

Ym
ℓ (θ, ϕ) = (−1)m

[
(2ℓ + 1)

4π

(ℓ − m)!
(ℓ + m)!

]1/2
Pm

ℓ (cos θ)eimϕ , for |m| ≤ ℓ,

and l is l, m is m, and θ is theta.
3 Remarks: The effect of calling each of these functions is implementation-defined if l >= 128.
4 See also 28.7.6.3.

28.7.6.22 Spherical Neumann functions [sf.cmath.sph.neumann]

floating-point-type sph_neumann(unsigned n, floating-point-type x);
float sph_neumannf(unsigned n, float x);
long double sph_neumannl(unsigned n, long double x);

1 Effects: These functions compute the spherical Neumann functions, also known as the spherical Bessel
functions of the second kind, of their respective arguments n and x.

2 Returns:
nn(x) = (π/2x)1/2Nn+1/2(x) , for x ≥ 0,
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where n is n and x is x.
3 Remarks: The effect of calling each of these functions is implementation-defined if n >= 128.
4 See also 28.7.6.11.

28.8 Numbers [numbers]
28.8.1 Header <numbers> synopsis [numbers.syn]

namespace std::numbers {
template<class T> constexpr T e_v = unspecified ;
template<class T> constexpr T log2e_v = unspecified ;
template<class T> constexpr T log10e_v = unspecified ;
template<class T> constexpr T pi_v = unspecified ;
template<class T> constexpr T inv_pi_v = unspecified ;
template<class T> constexpr T inv_sqrtpi_v = unspecified ;
template<class T> constexpr T ln2_v = unspecified ;
template<class T> constexpr T ln10_v = unspecified ;
template<class T> constexpr T sqrt2_v = unspecified ;
template<class T> constexpr T sqrt3_v = unspecified ;
template<class T> constexpr T inv_sqrt3_v = unspecified ;
template<class T> constexpr T egamma_v = unspecified ;
template<class T> constexpr T phi_v = unspecified ;

template<floating_point T> constexpr T e_v<T> = see below ;
template<floating_point T> constexpr T log2e_v<T> = see below ;
template<floating_point T> constexpr T log10e_v<T> = see below ;
template<floating_point T> constexpr T pi_v<T> = see below ;
template<floating_point T> constexpr T inv_pi_v<T> = see below ;
template<floating_point T> constexpr T inv_sqrtpi_v<T> = see below ;
template<floating_point T> constexpr T ln2_v<T> = see below ;
template<floating_point T> constexpr T ln10_v<T> = see below ;
template<floating_point T> constexpr T sqrt2_v<T> = see below ;
template<floating_point T> constexpr T sqrt3_v<T> = see below ;
template<floating_point T> constexpr T inv_sqrt3_v<T> = see below ;
template<floating_point T> constexpr T egamma_v<T> = see below ;
template<floating_point T> constexpr T phi_v<T> = see below ;

inline constexpr double e = e_v<double>;
inline constexpr double log2e = log2e_v<double>;
inline constexpr double log10e = log10e_v<double>;
inline constexpr double pi = pi_v<double>;
inline constexpr double inv_pi = inv_pi_v<double>;
inline constexpr double inv_sqrtpi = inv_sqrtpi_v<double>;
inline constexpr double ln2 = ln2_v<double>;
inline constexpr double ln10 = ln10_v<double>;
inline constexpr double sqrt2 = sqrt2_v<double>;
inline constexpr double sqrt3 = sqrt3_v<double>;
inline constexpr double inv_sqrt3 = inv_sqrt3_v<double>;
inline constexpr double egamma = egamma_v<double>;
inline constexpr double phi = phi_v<double>;

}

28.8.2 Mathematical constants [math.constants]
1 The library-defined partial specializations of mathematical constant variable templates are initialized with

the nearest representable values of e, log2 e, log10 e, π, 1
π , 1√

π
, ln 2, ln 10,

√
2,

√
3, 1√

3 , the Euler-Mascheroni
γ constant, and the golden ratio ϕ constant 1+

√
5

2 , respectively.
2 Pursuant to 16.4.5.2.1, a program may partially or explicitly specialize a mathematical constant variable

template provided that the specialization depends on a program-defined type.
3 A program that instantiates a primary template of a mathematical constant variable template is ill-formed.
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29 Time library [time]
29.1 General [time.general]

1 This Clause describes the chrono library (29.2) and various C functions (29.14) that provide generally useful
time utilities, as summarized in Table 98.

Table 98: Time library summary [tab:time.summary]

Subclause Header
29.3 Cpp17Clock requirements
29.4 Time-related traits <chrono>
29.5 Class template duration
29.6 Class template time_point
29.7 Clocks
29.8 Civil calendar
29.9 Class template hh_mm_ss
29.10 12/24 hour functions
29.11 Time zones
29.12 Formatting
29.13 Parsing
29.14 C library time utilities <ctime>

2 Let STATICALLY-WIDEN <charT>("...") be "..." if charT is char and L"..." if charT is wchar_t.

29.2 Header <chrono> synopsis [time.syn]
#include <compare> // see 17.11.1

namespace std::chrono {
// 29.5, class template duration
template<class Rep, class Period = ratio<1>> class duration;

// 29.6, class template time_point
template<class Clock, class Duration = typename Clock::duration> class time_point;

}

namespace std {
// 29.4.3, common_type specializations
template<class Rep1, class Period1, class Rep2, class Period2>

struct common_type<chrono::duration<Rep1, Period1>,
chrono::duration<Rep2, Period2>>;

template<class Clock, class Duration1, class Duration2>
struct common_type<chrono::time_point<Clock, Duration1>,

chrono::time_point<Clock, Duration2>>;
}

namespace std::chrono {
// 29.4, customization traits
template<class Rep> struct treat_as_floating_point;
template<class Rep>

constexpr bool treat_as_floating_point_v = treat_as_floating_point<Rep>::value;

template<class Rep> struct duration_values;

template<class T> struct is_clock;
template<class T> constexpr bool is_clock_v = is_clock<T>::value;
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// 29.5.6, duration arithmetic
template<class Rep1, class Period1, class Rep2, class Period2>

constexpr common_type_t<duration<Rep1, Period1>, duration<Rep2, Period2>>
operator+(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);

template<class Rep1, class Period1, class Rep2, class Period2>
constexpr common_type_t<duration<Rep1, Period1>, duration<Rep2, Period2>>

operator-(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);
template<class Rep1, class Period, class Rep2>

constexpr duration<common_type_t<Rep1, Rep2>, Period>
operator*(const duration<Rep1, Period>& d, const Rep2& s);

template<class Rep1, class Rep2, class Period>
constexpr duration<common_type_t<Rep1, Rep2>, Period>

operator*(const Rep1& s, const duration<Rep2, Period>& d);
template<class Rep1, class Period, class Rep2>

constexpr duration<common_type_t<Rep1, Rep2>, Period>
operator/(const duration<Rep1, Period>& d, const Rep2& s);

template<class Rep1, class Period1, class Rep2, class Period2>
constexpr common_type_t<Rep1, Rep2>

operator/(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);
template<class Rep1, class Period, class Rep2>

constexpr duration<common_type_t<Rep1, Rep2>, Period>
operator%(const duration<Rep1, Period>& d, const Rep2& s);

template<class Rep1, class Period1, class Rep2, class Period2>
constexpr common_type_t<duration<Rep1, Period1>, duration<Rep2, Period2>>

operator%(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);

// 29.5.7, duration comparisons
template<class Rep1, class Period1, class Rep2, class Period2>

constexpr bool operator==(const duration<Rep1, Period1>& lhs,
const duration<Rep2, Period2>& rhs);

template<class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator< (const duration<Rep1, Period1>& lhs,

const duration<Rep2, Period2>& rhs);
template<class Rep1, class Period1, class Rep2, class Period2>

constexpr bool operator> (const duration<Rep1, Period1>& lhs,
const duration<Rep2, Period2>& rhs);

template<class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator<=(const duration<Rep1, Period1>& lhs,

const duration<Rep2, Period2>& rhs);
template<class Rep1, class Period1, class Rep2, class Period2>

constexpr bool operator>=(const duration<Rep1, Period1>& lhs,
const duration<Rep2, Period2>& rhs);

template<class Rep1, class Period1, class Rep2, class Period2>
requires see below
constexpr auto operator<=>(const duration<Rep1, Period1>& lhs,

const duration<Rep2, Period2>& rhs);

// 29.5.8, conversions
template<class ToDuration, class Rep, class Period>

constexpr ToDuration duration_cast(const duration<Rep, Period>& d);
template<class ToDuration, class Rep, class Period>

constexpr ToDuration floor(const duration<Rep, Period>& d);
template<class ToDuration, class Rep, class Period>

constexpr ToDuration ceil(const duration<Rep, Period>& d);
template<class ToDuration, class Rep, class Period>

constexpr ToDuration round(const duration<Rep, Period>& d);

// 29.5.11, duration I/O
template<class charT, class traits, class Rep, class Period>

basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os,

const duration<Rep, Period>& d);
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template<class charT, class traits, class Rep, class Period, class Alloc = allocator<charT>>
basic_istream<charT, traits>&

from_stream(basic_istream<charT, traits>& is, const charT* fmt,
duration<Rep, Period>& d,
basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

// convenience typedefs
using nanoseconds = duration<signed integer type of at least 64 bits , nano>;
using microseconds = duration<signed integer type of at least 55 bits , micro>;
using milliseconds = duration<signed integer type of at least 45 bits , milli>;
using seconds = duration<signed integer type of at least 35 bits >;
using minutes = duration<signed integer type of at least 29 bits , ratio< 60>>;
using hours = duration<signed integer type of at least 23 bits , ratio<3600>>;
using days = duration<signed integer type of at least 25 bits ,

ratio_multiply<ratio<24>, hours::period>>;
using weeks = duration<signed integer type of at least 22 bits ,

ratio_multiply<ratio<7>, days::period>>;
using years = duration<signed integer type of at least 17 bits ,

ratio_multiply<ratio<146097, 400>, days::period>>;
using months = duration<signed integer type of at least 20 bits ,

ratio_divide<years::period, ratio<12>>>;

// 29.6.6, time_point arithmetic
template<class Clock, class Duration1, class Rep2, class Period2>

constexpr time_point<Clock, common_type_t<Duration1, duration<Rep2, Period2>>>
operator+(const time_point<Clock, Duration1>& lhs, const duration<Rep2, Period2>& rhs);

template<class Rep1, class Period1, class Clock, class Duration2>
constexpr time_point<Clock, common_type_t<duration<Rep1, Period1>, Duration2>>

operator+(const duration<Rep1, Period1>& lhs, const time_point<Clock, Duration2>& rhs);
template<class Clock, class Duration1, class Rep2, class Period2>

constexpr time_point<Clock, common_type_t<Duration1, duration<Rep2, Period2>>>
operator-(const time_point<Clock, Duration1>& lhs, const duration<Rep2, Period2>& rhs);

template<class Clock, class Duration1, class Duration2>
constexpr common_type_t<Duration1, Duration2>

operator-(const time_point<Clock, Duration1>& lhs,
const time_point<Clock, Duration2>& rhs);

// 29.6.7, time_point comparisons
template<class Clock, class Duration1, class Duration2>

constexpr bool operator==(const time_point<Clock, Duration1>& lhs,
const time_point<Clock, Duration2>& rhs);

template<class Clock, class Duration1, class Duration2>
constexpr bool operator< (const time_point<Clock, Duration1>& lhs,

const time_point<Clock, Duration2>& rhs);
template<class Clock, class Duration1, class Duration2>

constexpr bool operator> (const time_point<Clock, Duration1>& lhs,
const time_point<Clock, Duration2>& rhs);

template<class Clock, class Duration1, class Duration2>
constexpr bool operator<=(const time_point<Clock, Duration1>& lhs,

const time_point<Clock, Duration2>& rhs);
template<class Clock, class Duration1, class Duration2>

constexpr bool operator>=(const time_point<Clock, Duration1>& lhs,
const time_point<Clock, Duration2>& rhs);

template<class Clock, class Duration1, three_way_comparable_with<Duration1> Duration2>
constexpr auto operator<=>(const time_point<Clock, Duration1>& lhs,

const time_point<Clock, Duration2>& rhs);

// 29.6.8, conversions
template<class ToDuration, class Clock, class Duration>

constexpr time_point<Clock, ToDuration>
time_point_cast(const time_point<Clock, Duration>& t);

template<class ToDuration, class Clock, class Duration>
constexpr time_point<Clock, ToDuration> floor(const time_point<Clock, Duration>& tp);
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template<class ToDuration, class Clock, class Duration>
constexpr time_point<Clock, ToDuration> ceil(const time_point<Clock, Duration>& tp);

template<class ToDuration, class Clock, class Duration>
constexpr time_point<Clock, ToDuration> round(const time_point<Clock, Duration>& tp);

// 29.5.10, specialized algorithms
template<class Rep, class Period>

constexpr duration<Rep, Period> abs(duration<Rep, Period> d);

// 29.7.2, class system_clock
class system_clock;

template<class Duration>
using sys_time = time_point<system_clock, Duration>;

using sys_seconds = sys_time<seconds>;
using sys_days = sys_time<days>;

template<class charT, class traits, class Duration>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const sys_time<Duration>& tp);

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const sys_days& dp);

template<class charT, class traits, class Duration, class Alloc = allocator<charT>>
basic_istream<charT, traits>&

from_stream(basic_istream<charT, traits>& is, const charT* fmt,
sys_time<Duration>& tp,
basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

// 29.7.3, class utc_clock
class utc_clock;

template<class Duration>
using utc_time = time_point<utc_clock, Duration>;

using utc_seconds = utc_time<seconds>;

template<class charT, class traits, class Duration>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const utc_time<Duration>& t);
template<class charT, class traits, class Duration, class Alloc = allocator<charT>>

basic_istream<charT, traits>&
from_stream(basic_istream<charT, traits>& is, const charT* fmt,

utc_time<Duration>& tp,
basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

struct leap_second_info;

template<class Duration>
leap_second_info get_leap_second_info(const utc_time<Duration>& ut);

// 29.7.4, class tai_clock
class tai_clock;

template<class Duration>
using tai_time = time_point<tai_clock, Duration>;

using tai_seconds = tai_time<seconds>;

template<class charT, class traits, class Duration>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const tai_time<Duration>& t);
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template<class charT, class traits, class Duration, class Alloc = allocator<charT>>
basic_istream<charT, traits>&

from_stream(basic_istream<charT, traits>& is, const charT* fmt,
tai_time<Duration>& tp,
basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

// 29.7.5, class gps_clock
class gps_clock;

template<class Duration>
using gps_time = time_point<gps_clock, Duration>;

using gps_seconds = gps_time<seconds>;

template<class charT, class traits, class Duration>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const gps_time<Duration>& t);
template<class charT, class traits, class Duration, class Alloc = allocator<charT>>

basic_istream<charT, traits>&
from_stream(basic_istream<charT, traits>& is, const charT* fmt,

gps_time<Duration>& tp,
basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

// 29.7.6, type file_clock
using file_clock = see below ;

template<class Duration>
using file_time = time_point<file_clock, Duration>;

template<class charT, class traits, class Duration>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const file_time<Duration>& tp);
template<class charT, class traits, class Duration, class Alloc = allocator<charT>>

basic_istream<charT, traits>&
from_stream(basic_istream<charT, traits>& is, const charT* fmt,

file_time<Duration>& tp,
basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

// 29.7.7, class steady_clock
class steady_clock;

// 29.7.8, class high_resolution_clock
class high_resolution_clock;

// 29.7.9, local time
struct local_t {};
template<class Duration>

using local_time = time_point<local_t, Duration>;
using local_seconds = local_time<seconds>;
using local_days = local_time<days>;

template<class charT, class traits, class Duration>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const local_time<Duration>& tp);
template<class charT, class traits, class Duration, class Alloc = allocator<charT>>

basic_istream<charT, traits>&
from_stream(basic_istream<charT, traits>& is, const charT* fmt,

local_time<Duration>& tp,
basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);
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// 29.7.10, time_point conversions
template<class DestClock, class SourceClock>

struct clock_time_conversion;

template<class DestClock, class SourceClock, class Duration>
auto clock_cast(const time_point<SourceClock, Duration>& t);

// 29.8.2, class last_spec
struct last_spec;

// 29.8.3, class day
class day;

constexpr bool operator==(const day& x, const day& y) noexcept;
constexpr strong_ordering operator<=>(const day& x, const day& y) noexcept;

constexpr day operator+(const day& x, const days& y) noexcept;
constexpr day operator+(const days& x, const day& y) noexcept;
constexpr day operator-(const day& x, const days& y) noexcept;
constexpr days operator-(const day& x, const day& y) noexcept;

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const day& d);
template<class charT, class traits, class Alloc = allocator<charT>>

basic_istream<charT, traits>&
from_stream(basic_istream<charT, traits>& is, const charT* fmt,

day& d, basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

// 29.8.4, class month
class month;

constexpr bool operator==(const month& x, const month& y) noexcept;
constexpr strong_ordering operator<=>(const month& x, const month& y) noexcept;

constexpr month operator+(const month& x, const months& y) noexcept;
constexpr month operator+(const months& x, const month& y) noexcept;
constexpr month operator-(const month& x, const months& y) noexcept;
constexpr months operator-(const month& x, const month& y) noexcept;

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const month& m);
template<class charT, class traits, class Alloc = allocator<charT>>

basic_istream<charT, traits>&
from_stream(basic_istream<charT, traits>& is, const charT* fmt,

month& m, basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

// 29.8.5, class year
class year;

constexpr bool operator==(const year& x, const year& y) noexcept;
constexpr strong_ordering operator<=>(const year& x, const year& y) noexcept;

constexpr year operator+(const year& x, const years& y) noexcept;
constexpr year operator+(const years& x, const year& y) noexcept;
constexpr year operator-(const year& x, const years& y) noexcept;
constexpr years operator-(const year& x, const year& y) noexcept;

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const year& y);
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template<class charT, class traits, class Alloc = allocator<charT>>
basic_istream<charT, traits>&

from_stream(basic_istream<charT, traits>& is, const charT* fmt,
year& y, basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

// 29.8.6, class weekday
class weekday;

constexpr bool operator==(const weekday& x, const weekday& y) noexcept;

constexpr weekday operator+(const weekday& x, const days& y) noexcept;
constexpr weekday operator+(const days& x, const weekday& y) noexcept;
constexpr weekday operator-(const weekday& x, const days& y) noexcept;
constexpr days operator-(const weekday& x, const weekday& y) noexcept;

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const weekday& wd);

template<class charT, class traits, class Alloc = allocator<charT>>
basic_istream<charT, traits>&

from_stream(basic_istream<charT, traits>& is, const charT* fmt,
weekday& wd, basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

// 29.8.7, class weekday_indexed
class weekday_indexed;

constexpr bool operator==(const weekday_indexed& x, const weekday_indexed& y) noexcept;

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const weekday_indexed& wdi);

// 29.8.8, class weekday_last
class weekday_last;

constexpr bool operator==(const weekday_last& x, const weekday_last& y) noexcept;

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const weekday_last& wdl);

// 29.8.9, class month_day
class month_day;

constexpr bool operator==(const month_day& x, const month_day& y) noexcept;
constexpr strong_ordering operator<=>(const month_day& x, const month_day& y) noexcept;

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const month_day& md);

template<class charT, class traits, class Alloc = allocator<charT>>
basic_istream<charT, traits>&

from_stream(basic_istream<charT, traits>& is, const charT* fmt,
month_day& md, basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

// 29.8.10, class month_day_last
class month_day_last;
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constexpr bool operator==(const month_day_last& x, const month_day_last& y) noexcept;
constexpr strong_ordering operator<=>(const month_day_last& x,

const month_day_last& y) noexcept;

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const month_day_last& mdl);

// 29.8.11, class month_weekday
class month_weekday;

constexpr bool operator==(const month_weekday& x, const month_weekday& y) noexcept;

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const month_weekday& mwd);

// 29.8.12, class month_weekday_last
class month_weekday_last;

constexpr bool operator==(const month_weekday_last& x, const month_weekday_last& y) noexcept;

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const month_weekday_last& mwdl);

// 29.8.13, class year_month
class year_month;

constexpr bool operator==(const year_month& x, const year_month& y) noexcept;
constexpr strong_ordering operator<=>(const year_month& x, const year_month& y) noexcept;

constexpr year_month operator+(const year_month& ym, const months& dm) noexcept;
constexpr year_month operator+(const months& dm, const year_month& ym) noexcept;
constexpr year_month operator-(const year_month& ym, const months& dm) noexcept;
constexpr months operator-(const year_month& x, const year_month& y) noexcept;
constexpr year_month operator+(const year_month& ym, const years& dy) noexcept;
constexpr year_month operator+(const years& dy, const year_month& ym) noexcept;
constexpr year_month operator-(const year_month& ym, const years& dy) noexcept;

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const year_month& ym);

template<class charT, class traits, class Alloc = allocator<charT>>
basic_istream<charT, traits>&

from_stream(basic_istream<charT, traits>& is, const charT* fmt,
year_month& ym, basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

// 29.8.14, class year_month_day
class year_month_day;

constexpr bool operator==(const year_month_day& x, const year_month_day& y) noexcept;
constexpr strong_ordering operator<=>(const year_month_day& x,

const year_month_day& y) noexcept;

constexpr year_month_day operator+(const year_month_day& ymd, const months& dm) noexcept;
constexpr year_month_day operator+(const months& dm, const year_month_day& ymd) noexcept;
constexpr year_month_day operator+(const year_month_day& ymd, const years& dy) noexcept;
constexpr year_month_day operator+(const years& dy, const year_month_day& ymd) noexcept;
constexpr year_month_day operator-(const year_month_day& ymd, const months& dm) noexcept;
constexpr year_month_day operator-(const year_month_day& ymd, const years& dy) noexcept;
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template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const year_month_day& ymd);

template<class charT, class traits, class Alloc = allocator<charT>>
basic_istream<charT, traits>&

from_stream(basic_istream<charT, traits>& is, const charT* fmt,
year_month_day& ymd,
basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

// 29.8.15, class year_month_day_last
class year_month_day_last;

constexpr bool operator==(const year_month_day_last& x,
const year_month_day_last& y) noexcept;

constexpr strong_ordering operator<=>(const year_month_day_last& x,
const year_month_day_last& y) noexcept;

constexpr year_month_day_last
operator+(const year_month_day_last& ymdl, const months& dm) noexcept;

constexpr year_month_day_last
operator+(const months& dm, const year_month_day_last& ymdl) noexcept;

constexpr year_month_day_last
operator+(const year_month_day_last& ymdl, const years& dy) noexcept;

constexpr year_month_day_last
operator+(const years& dy, const year_month_day_last& ymdl) noexcept;

constexpr year_month_day_last
operator-(const year_month_day_last& ymdl, const months& dm) noexcept;

constexpr year_month_day_last
operator-(const year_month_day_last& ymdl, const years& dy) noexcept;

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const year_month_day_last& ymdl);

// 29.8.16, class year_month_weekday
class year_month_weekday;

constexpr bool operator==(const year_month_weekday& x,
const year_month_weekday& y) noexcept;

constexpr year_month_weekday
operator+(const year_month_weekday& ymwd, const months& dm) noexcept;

constexpr year_month_weekday
operator+(const months& dm, const year_month_weekday& ymwd) noexcept;

constexpr year_month_weekday
operator+(const year_month_weekday& ymwd, const years& dy) noexcept;

constexpr year_month_weekday
operator+(const years& dy, const year_month_weekday& ymwd) noexcept;

constexpr year_month_weekday
operator-(const year_month_weekday& ymwd, const months& dm) noexcept;

constexpr year_month_weekday
operator-(const year_month_weekday& ymwd, const years& dy) noexcept;

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const year_month_weekday& ymwd);

// 29.8.17, class year_month_weekday_last
class year_month_weekday_last;

constexpr bool operator==(const year_month_weekday_last& x,
const year_month_weekday_last& y) noexcept;
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constexpr year_month_weekday_last
operator+(const year_month_weekday_last& ymwdl, const months& dm) noexcept;

constexpr year_month_weekday_last
operator+(const months& dm, const year_month_weekday_last& ymwdl) noexcept;

constexpr year_month_weekday_last
operator+(const year_month_weekday_last& ymwdl, const years& dy) noexcept;

constexpr year_month_weekday_last
operator+(const years& dy, const year_month_weekday_last& ymwdl) noexcept;

constexpr year_month_weekday_last
operator-(const year_month_weekday_last& ymwdl, const months& dm) noexcept;

constexpr year_month_weekday_last
operator-(const year_month_weekday_last& ymwdl, const years& dy) noexcept;

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const year_month_weekday_last& ymwdl);

// 29.8.18, civil calendar conventional syntax operators
constexpr year_month

operator/(const year& y, const month& m) noexcept;
constexpr year_month

operator/(const year& y, int m) noexcept;
constexpr month_day

operator/(const month& m, const day& d) noexcept;
constexpr month_day

operator/(const month& m, int d) noexcept;
constexpr month_day

operator/(int m, const day& d) noexcept;
constexpr month_day

operator/(const day& d, const month& m) noexcept;
constexpr month_day

operator/(const day& d, int m) noexcept;
constexpr month_day_last

operator/(const month& m, last_spec) noexcept;
constexpr month_day_last

operator/(int m, last_spec) noexcept;
constexpr month_day_last

operator/(last_spec, const month& m) noexcept;
constexpr month_day_last

operator/(last_spec, int m) noexcept;
constexpr month_weekday

operator/(const month& m, const weekday_indexed& wdi) noexcept;
constexpr month_weekday

operator/(int m, const weekday_indexed& wdi) noexcept;
constexpr month_weekday

operator/(const weekday_indexed& wdi, const month& m) noexcept;
constexpr month_weekday

operator/(const weekday_indexed& wdi, int m) noexcept;
constexpr month_weekday_last

operator/(const month& m, const weekday_last& wdl) noexcept;
constexpr month_weekday_last

operator/(int m, const weekday_last& wdl) noexcept;
constexpr month_weekday_last

operator/(const weekday_last& wdl, const month& m) noexcept;
constexpr month_weekday_last

operator/(const weekday_last& wdl, int m) noexcept;
constexpr year_month_day

operator/(const year_month& ym, const day& d) noexcept;
constexpr year_month_day

operator/(const year_month& ym, int d) noexcept;
constexpr year_month_day

operator/(const year& y, const month_day& md) noexcept;
constexpr year_month_day

operator/(int y, const month_day& md) noexcept;
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constexpr year_month_day
operator/(const month_day& md, const year& y) noexcept;

constexpr year_month_day
operator/(const month_day& md, int y) noexcept;

constexpr year_month_day_last
operator/(const year_month& ym, last_spec) noexcept;

constexpr year_month_day_last
operator/(const year& y, const month_day_last& mdl) noexcept;

constexpr year_month_day_last
operator/(int y, const month_day_last& mdl) noexcept;

constexpr year_month_day_last
operator/(const month_day_last& mdl, const year& y) noexcept;

constexpr year_month_day_last
operator/(const month_day_last& mdl, int y) noexcept;

constexpr year_month_weekday
operator/(const year_month& ym, const weekday_indexed& wdi) noexcept;

constexpr year_month_weekday
operator/(const year& y, const month_weekday& mwd) noexcept;

constexpr year_month_weekday
operator/(int y, const month_weekday& mwd) noexcept;

constexpr year_month_weekday
operator/(const month_weekday& mwd, const year& y) noexcept;

constexpr year_month_weekday
operator/(const month_weekday& mwd, int y) noexcept;

constexpr year_month_weekday_last
operator/(const year_month& ym, const weekday_last& wdl) noexcept;

constexpr year_month_weekday_last
operator/(const year& y, const month_weekday_last& mwdl) noexcept;

constexpr year_month_weekday_last
operator/(int y, const month_weekday_last& mwdl) noexcept;

constexpr year_month_weekday_last
operator/(const month_weekday_last& mwdl, const year& y) noexcept;

constexpr year_month_weekday_last
operator/(const month_weekday_last& mwdl, int y) noexcept;

// 29.9, class template hh_mm_ss
template<class Duration> class hh_mm_ss;

template<class charT, class traits, class Duration>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const hh_mm_ss<Duration>& hms);

// 29.10, 12/24 hour functions
constexpr bool is_am(const hours& h) noexcept;
constexpr bool is_pm(const hours& h) noexcept;
constexpr hours make12(const hours& h) noexcept;
constexpr hours make24(const hours& h, bool is_pm) noexcept;

// 29.11.2, time zone database
struct tzdb;
class tzdb_list;

// 29.11.2.3, time zone database access
const tzdb& get_tzdb();
tzdb_list& get_tzdb_list();
const time_zone* locate_zone(string_view tz_name);
const time_zone* current_zone();

// 29.11.2.4, remote time zone database support
const tzdb& reload_tzdb();
string remote_version();

// 29.11.3, exception classes
class nonexistent_local_time;
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class ambiguous_local_time;

// 29.11.4, information classes
struct sys_info;
template<class charT, class traits>

basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const sys_info& si);

struct local_info;
template<class charT, class traits>

basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const local_info& li);

// 29.11.5, class time_zone
enum class choose {earliest, latest};
class time_zone;

bool operator==(const time_zone& x, const time_zone& y) noexcept;
strong_ordering operator<=>(const time_zone& x, const time_zone& y) noexcept;

// 29.11.6, class template zoned_traits
template<class T> struct zoned_traits;

// 29.11.7, class template zoned_time
template<class Duration, class TimeZonePtr = const time_zone*> class zoned_time;

using zoned_seconds = zoned_time<seconds>;

template<class Duration1, class Duration2, class TimeZonePtr>
bool operator==(const zoned_time<Duration1, TimeZonePtr>& x,

const zoned_time<Duration2, TimeZonePtr>& y);

template<class charT, class traits, class Duration, class TimeZonePtr>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os,
const zoned_time<Duration, TimeZonePtr>& t);

// 29.11.8, leap second support
class leap_second;

constexpr bool operator==(const leap_second& x, const leap_second& y);
constexpr strong_ordering operator<=>(const leap_second& x, const leap_second& y);

template<class Duration>
constexpr bool operator==(const leap_second& x, const sys_time<Duration>& y);

template<class Duration>
constexpr bool operator< (const leap_second& x, const sys_time<Duration>& y);

template<class Duration>
constexpr bool operator< (const sys_time<Duration>& x, const leap_second& y);

template<class Duration>
constexpr bool operator> (const leap_second& x, const sys_time<Duration>& y);

template<class Duration>
constexpr bool operator> (const sys_time<Duration>& x, const leap_second& y);

template<class Duration>
constexpr bool operator<=(const leap_second& x, const sys_time<Duration>& y);

template<class Duration>
constexpr bool operator<=(const sys_time<Duration>& x, const leap_second& y);

template<class Duration>
constexpr bool operator>=(const leap_second& x, const sys_time<Duration>& y);

template<class Duration>
constexpr bool operator>=(const sys_time<Duration>& x, const leap_second& y);

template<class Duration>
requires three_way_comparable_with<sys_seconds, sys_time<Duration>>
constexpr auto operator<=>(const leap_second& x, const sys_time<Duration>& y);
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// 29.11.9, class time_zone_link
class time_zone_link;

bool operator==(const time_zone_link& x, const time_zone_link& y);
strong_ordering operator<=>(const time_zone_link& x, const time_zone_link& y);

// 29.12, formatting
template<class Duration> struct local-time-format-t ; // exposition only
template<class Duration>

local-time-format-t <Duration>
local_time_format(local_time<Duration> time, const string* abbrev = nullptr,

const seconds* offset_sec = nullptr);
}

namespace std {
template<class Rep, class Period, class charT>

struct formatter<chrono::duration<Rep, Period>, charT>;
template<class Duration, class charT>

struct formatter<chrono::sys_time<Duration>, charT>;
template<class Duration, class charT>

struct formatter<chrono::utc_time<Duration>, charT>;
template<class Duration, class charT>

struct formatter<chrono::tai_time<Duration>, charT>;
template<class Duration, class charT>

struct formatter<chrono::gps_time<Duration>, charT>;
template<class Duration, class charT>

struct formatter<chrono::file_time<Duration>, charT>;
template<class Duration, class charT>

struct formatter<chrono::local_time<Duration>, charT>;
template<class Duration, class charT>

struct formatter<chrono::local-time-format-t <Duration>, charT>;
template<class charT> struct formatter<chrono::day, charT>;
template<class charT> struct formatter<chrono::month, charT>;
template<class charT> struct formatter<chrono::year, charT>;
template<class charT> struct formatter<chrono::weekday, charT>;
template<class charT> struct formatter<chrono::weekday_indexed, charT>;
template<class charT> struct formatter<chrono::weekday_last, charT>;
template<class charT> struct formatter<chrono::month_day, charT>;
template<class charT> struct formatter<chrono::month_day_last, charT>;
template<class charT> struct formatter<chrono::month_weekday, charT>;
template<class charT> struct formatter<chrono::month_weekday_last, charT>;
template<class charT> struct formatter<chrono::year_month, charT>;
template<class charT> struct formatter<chrono::year_month_day, charT>;
template<class charT> struct formatter<chrono::year_month_day_last, charT>;
template<class charT> struct formatter<chrono::year_month_weekday, charT>;
template<class charT> struct formatter<chrono::year_month_weekday_last, charT>;
template<class Rep, class Period, class charT>

struct formatter<chrono::hh_mm_ss<duration<Rep, Period>>, charT>;
template<class charT> struct formatter<chrono::sys_info, charT>;
template<class charT> struct formatter<chrono::local_info, charT>;
template<class Duration, class TimeZonePtr, class charT>

struct formatter<chrono::zoned_time<Duration, TimeZonePtr>, charT>;
}

namespace std::chrono {
// 29.13, parsing
template<class charT, class Parsable>

unspecified
parse(const charT* fmt, Parsable& tp);

template<class charT, class traits, class Alloc, class Parsable>
unspecified

parse(const basic_string<charT, traits, Alloc>& fmt, Parsable& tp);
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template<class charT, class traits, class Alloc, class Parsable>
unspecified

parse(const charT* fmt, Parsable& tp,
basic_string<charT, traits, Alloc>& abbrev);

template<class charT, class traits, class Alloc, class Parsable>
unspecified

parse(const basic_string<charT, traits, Alloc>& fmt, Parsable& tp,
basic_string<charT, traits, Alloc>& abbrev);

template<class charT, class Parsable>
unspecified

parse(const charT* fmt, Parsable& tp, minutes& offset);
template<class charT, class traits, class Alloc, class Parsable>

unspecified
parse(const basic_string<charT, traits, Alloc>& fmt, Parsable& tp,

minutes& offset);

template<class charT, class traits, class Alloc, class Parsable>
unspecified

parse(const charT* fmt, Parsable& tp,
basic_string<charT, traits, Alloc>& abbrev, minutes& offset);

template<class charT, class traits, class Alloc, class Parsable>
unspecified

parse(const basic_string<charT, traits, Alloc>& fmt, Parsable& tp,
basic_string<charT, traits, Alloc>& abbrev, minutes& offset);

// calendrical constants
inline constexpr last_spec last{};

inline constexpr weekday Sunday{0};
inline constexpr weekday Monday{1};
inline constexpr weekday Tuesday{2};
inline constexpr weekday Wednesday{3};
inline constexpr weekday Thursday{4};
inline constexpr weekday Friday{5};
inline constexpr weekday Saturday{6};

inline constexpr month January{1};
inline constexpr month February{2};
inline constexpr month March{3};
inline constexpr month April{4};
inline constexpr month May{5};
inline constexpr month June{6};
inline constexpr month July{7};
inline constexpr month August{8};
inline constexpr month September{9};
inline constexpr month October{10};
inline constexpr month November{11};
inline constexpr month December{12};

}

namespace std::inline literals::inline chrono_literals {
// 29.5.9, suffixes for duration literals
constexpr chrono::hours operator""h(unsigned long long);
constexpr chrono::duration<unspecified, ratio<3600, 1>> operator""h(long double);

constexpr chrono::minutes operator""min(unsigned long long);
constexpr chrono::duration<unspecified, ratio<60, 1>> operator""min(long double);

constexpr chrono::seconds operator""s(unsigned long long);
constexpr chrono::duration<unspecified > operator""s(long double);

constexpr chrono::milliseconds operator""ms(unsigned long long);
constexpr chrono::duration<unspecified, milli> operator""ms(long double);
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constexpr chrono::microseconds operator""us(unsigned long long);
constexpr chrono::duration<unspecified, micro> operator""us(long double);

constexpr chrono::nanoseconds operator""ns(unsigned long long);
constexpr chrono::duration<unspecified, nano> operator""ns(long double);

// 29.8.3.3, non-member functions
constexpr chrono::day operator""d(unsigned long long d) noexcept;

// 29.8.5.3, non-member functions
constexpr chrono::year operator""y(unsigned long long y) noexcept;

}

namespace std::chrono {
using namespace literals::chrono_literals;

}

29.3 Cpp17Clock requirements [time.clock.req]
1 A clock is a bundle consisting of a duration, a time_point, and a function now() to get the current

time_point. The origin of the clock’s time_point is referred to as the clock’s epoch. A clock shall meet the
requirements in Table 99.

2 In Table 99 C1 and C2 denote clock types. t1 and t2 are values returned by C1::now() where the call returning
t1 happens before (6.9.2) the call returning t2 and both of these calls occur before C1::time_point::max().
[Note 1 : This means C1 did not wrap around between t1 and t2. — end note ]

Table 99: Cpp17Clock requirements [tab:time.clock]

Expression Return type Operational semantics
C1::rep An arithmetic type or a class

emulating an arithmetic type
The representation type of
C1::duration.

C1::period a specialization of ratio The tick period of the clock in
seconds.

C1::duration chrono::duration<C1::rep,
C1::period>

The duration type of the
clock.

C1::time_point chrono::time_point<C1> or
chrono::time_point<C2,
C1::duration>

The time_point type of the
clock. C1 and C2 shall refer to
the same epoch.

C1::is_steady const bool true if t1 <= t2 is always
true and the time between
clock ticks is constant,
otherwise false.

C1::now() C1::time_point Returns a time_point object
representing the current point
in time.

3 [Note 2 : The relative difference in durations between those reported by a given clock and the SI definition is a measure
of the quality of implementation. — end note ]

4 A type TC meets the Cpp17TrivialClock requirements if:
—(4.1) TC meets the Cpp17Clock requirements,
—(4.2) the types TC::rep, TC::duration, and TC::time_point meet the Cpp17EqualityComparable (Table 28)

and Cpp17LessThanComparable (Table 29) and Cpp17Swappable (16.4.4.3) requirements and the
requirements of numeric types (28.2),
[Note 3 : This means, in particular, that operations on these types will not throw exceptions. — end note ]

—(4.3) the function TC::now() does not throw exceptions, and
—(4.4) the type TC::time_point::clock meets the Cpp17TrivialClock requirements, recursively.

§ 29.3 1494



© ISO/IEC N4950

29.4 Time-related traits [time.traits]
29.4.1 treat_as_floating_point [time.traits.is.fp]
template<class Rep> struct treat_as_floating_point : is_floating_point<Rep> { };

1 The duration template uses the treat_as_floating_point trait to help determine if a duration object
can be converted to another duration with a different tick period. If treat_as_floating_point_v<Rep> is
true, then implicit conversions are allowed among durations. Otherwise, the implicit convertibility depends
on the tick periods of the durations.
[Note 1 : The intention of this trait is to indicate whether a given class behaves like a floating-point type, and thus
allows division of one value by another with acceptable loss of precision. If treat_as_floating_point_v<Rep> is
false, Rep will be treated as if it behaved like an integral type for the purpose of these conversions. — end note ]

29.4.2 duration_values [time.traits.duration.values]
template<class Rep>

struct duration_values {
public:

static constexpr Rep zero() noexcept;
static constexpr Rep min() noexcept;
static constexpr Rep max() noexcept;

};

1 The duration template uses the duration_values trait to construct special values of the duration’s
representation (Rep). This is done because the representation can be a class type with behavior that requires
some other implementation to return these special values. In that case, the author of that class type should
specialize duration_values to return the indicated values.

static constexpr Rep zero() noexcept;

2 Returns: Rep(0).
[Note 1 : Rep(0) is specified instead of Rep() because Rep() can have some other meaning, such as an
uninitialized value. — end note ]

3 Remarks: The value returned shall be the additive identity.

static constexpr Rep min() noexcept;

4 Returns: numeric_limits<Rep>::lowest().
5 Remarks: The value returned shall compare less than or equal to zero().

static constexpr Rep max() noexcept;

6 Returns: numeric_limits<Rep>::max().
7 Remarks: The value returned shall compare greater than zero().

29.4.3 Specializations of common_type [time.traits.specializations]
template<class Rep1, class Period1, class Rep2, class Period2>

struct common_type<chrono::duration<Rep1, Period1>, chrono::duration<Rep2, Period2>> {
using type = chrono::duration<common_type_t<Rep1, Rep2>, see below >;

};

1 The period of the duration indicated by this specialization of common_type is the greatest common divisor
of Period1 and Period2.
[Note 1 : This can be computed by forming a ratio of the greatest common divisor of Period1::num and Period2::num
and the least common multiple of Period1::den and Period2::den. — end note ]

2 [Note 2 : The typedef name type is a synonym for the duration with the largest tick period possible where both
duration arguments will convert to it without requiring a division operation. The representation of this type is
intended to be able to hold any value resulting from this conversion with no truncation error, although floating-point
durations can have round-off errors. — end note ]

template<class Clock, class Duration1, class Duration2>
struct common_type<chrono::time_point<Clock, Duration1>, chrono::time_point<Clock, Duration2>> {

using type = chrono::time_point<Clock, common_type_t<Duration1, Duration2>>;
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};

3 The common type of two time_point types is a time_point with the same clock as the two types and the
common type of their two durations.

29.4.4 Class template is_clock [time.traits.is.clock]
template<class T> struct is_clock;

1 is_clock is a Cpp17UnaryTypeTrait (21.3.2) with a base characteristic of true_type if T meets the
Cpp17Clock requirements (29.3), otherwise false_type. For the purposes of the specification of this trait,
the extent to which an implementation determines that a type cannot meet the Cpp17Clock requirements is
unspecified, except that as a minimum a type T shall not qualify as a Cpp17Clock unless it meets all of the
following conditions:

—(1.1) the qualified-ids T::rep, T::period, T::duration, and T::time_point are valid and each denotes a
type (13.10.3),

—(1.2) the expression T::is_steady is well-formed when treated as an unevaluated operand (7.2.3),
—(1.3) the expression T::now() is well-formed when treated as an unevaluated operand.

2 The behavior of a program that adds specializations for is_clock is undefined.

29.5 Class template duration [time.duration]
29.5.1 General [time.duration.general]

1 A duration type measures time between two points in time (time_points). A duration has a representation
which holds a count of ticks and a tick period. The tick period is the amount of time which occurs from one
tick to the next, in units of seconds. It is expressed as a rational constant using the template ratio.

namespace std::chrono {
template<class Rep, class Period = ratio<1>>
class duration {
public:

using rep = Rep;
using period = typename Period::type;

private:
rep rep_; // exposition only

public:
// 29.5.2, construct/copy/destroy
constexpr duration() = default;
template<class Rep2>

constexpr explicit duration(const Rep2& r);
template<class Rep2, class Period2>

constexpr duration(const duration<Rep2, Period2>& d);
~duration() = default;
duration(const duration&) = default;
duration& operator=(const duration&) = default;

// 29.5.3, observer
constexpr rep count() const;

// 29.5.4, arithmetic
constexpr common_type_t<duration> operator+() const;
constexpr common_type_t<duration> operator-() const;
constexpr duration& operator++();
constexpr duration operator++(int);
constexpr duration& operator--();
constexpr duration operator--(int);

constexpr duration& operator+=(const duration& d);
constexpr duration& operator-=(const duration& d);
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constexpr duration& operator*=(const rep& rhs);
constexpr duration& operator/=(const rep& rhs);
constexpr duration& operator%=(const rep& rhs);
constexpr duration& operator%=(const duration& rhs);

// 29.5.5, special values
static constexpr duration zero() noexcept;
static constexpr duration min() noexcept;
static constexpr duration max() noexcept;

};
}

2 Rep shall be an arithmetic type or a class emulating an arithmetic type. If duration is instantiated with a
duration type as the argument for the template parameter Rep, the program is ill-formed.

3 If Period is not a specialization of ratio, the program is ill-formed. If Period::num is not positive, the
program is ill-formed.

4 Members of duration do not throw exceptions other than those thrown by the indicated operations on their
representations.

5 The defaulted copy constructor of duration shall be a constexpr function if and only if the required initialization
of the member rep_ for copy and move, respectively, would be constexpr-suitable (9.2.6).

6 [Example 1 :
duration<long, ratio<60>> d0; // holds a count of minutes using a long
duration<long long, milli> d1; // holds a count of milliseconds using a long long
duration<double, ratio<1, 30>> d2; // holds a count with a tick period of 1

30 of a second
// (30 Hz) using a double

— end example ]

29.5.2 Constructors [time.duration.cons]
template<class Rep2>

constexpr explicit duration(const Rep2& r);

1 Constraints: is_convertible_v<const Rep2&, rep> is true and
—(1.1) treat_as_floating_point_v<rep> is true or
—(1.2) treat_as_floating_point_v<Rep2> is false.

[Example 1 :
duration<int, milli> d(3); // OK
duration<int, milli> d(3.5); // error

— end example ]
2 Effects: Initializes rep_ with r.

template<class Rep2, class Period2>
constexpr duration(const duration<Rep2, Period2>& d);

3 Constraints: No overflow is induced in the conversion and treat_as_floating_point_v<rep> is
true or both ratio_divide<Period2, period>::den is 1 and treat_as_floating_point_v<Rep2>
is false.
[Note 1 : This requirement prevents implicit truncation error when converting between integral-based duration
types. Such a construction could easily lead to confusion about the value of the duration. — end note ]
[Example 2 :

duration<int, milli> ms(3);
duration<int, micro> us = ms; // OK
duration<int, milli> ms2 = us; // error

— end example ]
4 Effects: Initializes rep_ with duration_cast<duration>(d).count().
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29.5.3 Observer [time.duration.observer]
constexpr rep count() const;

1 Returns: rep_.

29.5.4 Arithmetic [time.duration.arithmetic]
constexpr common_type_t<duration> operator+() const;

1 Returns: common_type_t<duration>(*this).

constexpr common_type_t<duration> operator-() const;

2 Returns: common_type_t<duration>(-rep_).

constexpr duration& operator++();

3 Effects: Equivalent to: ++rep_.
4 Returns: *this.

constexpr duration operator++(int);

5 Effects: Equivalent to: return duration(rep_++);

constexpr duration& operator--();

6 Effects: Equivalent to: --rep_.
7 Returns: *this.

constexpr duration operator--(int);

8 Effects: Equivalent to: return duration(rep_--);

constexpr duration& operator+=(const duration& d);

9 Effects: Equivalent to: rep_ += d.count().
10 Returns: *this.

constexpr duration& operator-=(const duration& d);

11 Effects: Equivalent to: rep_ -= d.count().
12 Returns: *this.

constexpr duration& operator*=(const rep& rhs);

13 Effects: Equivalent to: rep_ *= rhs.
14 Returns: *this.

constexpr duration& operator/=(const rep& rhs);

15 Effects: Equivalent to: rep_ /= rhs.
16 Returns: *this.

constexpr duration& operator%=(const rep& rhs);

17 Effects: Equivalent to: rep_ %= rhs.
18 Returns: *this.

constexpr duration& operator%=(const duration& rhs);

19 Effects: Equivalent to: rep_ %= rhs.count().
20 Returns: *this.

29.5.5 Special values [time.duration.special]
static constexpr duration zero() noexcept;

1 Returns: duration(duration_values<rep>::zero()).
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static constexpr duration min() noexcept;

2 Returns: duration(duration_values<rep>::min()).

static constexpr duration max() noexcept;

3 Returns: duration(duration_values<rep>::max()).

29.5.6 Non-member arithmetic [time.duration.nonmember]
1 In the function descriptions that follow, unless stated otherwise, let CD represent the return type of the

function.

template<class Rep1, class Period1, class Rep2, class Period2>
constexpr common_type_t<duration<Rep1, Period1>, duration<Rep2, Period2>>

operator+(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);

2 Returns: CD(CD(lhs).count() + CD(rhs).count()).

template<class Rep1, class Period1, class Rep2, class Period2>
constexpr common_type_t<duration<Rep1, Period1>, duration<Rep2, Period2>>
operator-(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);

3 Returns: CD(CD(lhs).count() - CD(rhs).count()).

template<class Rep1, class Period, class Rep2>
constexpr duration<common_type_t<Rep1, Rep2>, Period>

operator*(const duration<Rep1, Period>& d, const Rep2& s);

4 Constraints: is_convertible_v<const Rep2&, common_type_t<Rep1, Rep2>> is true.
5 Returns: CD(CD(d).count() * s).

template<class Rep1, class Rep2, class Period>
constexpr duration<common_type_t<Rep1, Rep2>, Period>

operator*(const Rep1& s, const duration<Rep2, Period>& d);

6 Constraints: is_convertible_v<const Rep1&, common_type_t<Rep1, Rep2>> is true.
7 Returns: d * s.

template<class Rep1, class Period, class Rep2>
constexpr duration<common_type_t<Rep1, Rep2>, Period>

operator/(const duration<Rep1, Period>& d, const Rep2& s);

8 Constraints: is_convertible_v<const Rep2&, common_type_t<Rep1, Rep2>> is true and Rep2 is
not a specialization of duration.

9 Returns: CD(CD(d).count() / s).

template<class Rep1, class Period1, class Rep2, class Period2>
constexpr common_type_t<Rep1, Rep2>

operator/(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);

10 Let CD be common_type_t<duration<Rep1, Period1>, duration<Rep2, Period2>>.
11 Returns: CD(lhs).count() / CD(rhs).count().

template<class Rep1, class Period, class Rep2>
constexpr duration<common_type_t<Rep1, Rep2>, Period>

operator%(const duration<Rep1, Period>& d, const Rep2& s);

12 Constraints: is_convertible_v<const Rep2&, common_type_t<Rep1, Rep2>> is true and Rep2 is
not a specialization of duration.

13 Returns: CD(CD(d).count() % s).

template<class Rep1, class Period1, class Rep2, class Period2>
constexpr common_type_t<duration<Rep1, Period1>, duration<Rep2, Period2>>

operator%(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);

14 Returns: CD(CD(lhs).count() % CD(rhs).count()).
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29.5.7 Comparisons [time.duration.comparisons]
1 In the function descriptions that follow, CT represents common_type_t<A, B>, where A and B are the types

of the two arguments to the function.

template<class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator==(const duration<Rep1, Period1>& lhs,

const duration<Rep2, Period2>& rhs);

2 Returns: CT(lhs).count() == CT(rhs).count().

template<class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator<(const duration<Rep1, Period1>& lhs,

const duration<Rep2, Period2>& rhs);

3 Returns: CT(lhs).count() < CT(rhs).count().

template<class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator>(const duration<Rep1, Period1>& lhs,

const duration<Rep2, Period2>& rhs);

4 Returns: rhs < lhs.

template<class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator<=(const duration<Rep1, Period1>& lhs,

const duration<Rep2, Period2>& rhs);

5 Returns: !(rhs < lhs).

template<class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator>=(const duration<Rep1, Period1>& lhs,

const duration<Rep2, Period2>& rhs);

6 Returns: !(lhs < rhs).

template<class Rep1, class Period1, class Rep2, class Period2>
requires three_way_comparable<typename CT::rep>
constexpr auto operator<=>(const duration<Rep1, Period1>& lhs,

const duration<Rep2, Period2>& rhs);

7 Returns: CT(lhs).count() <=> CT(rhs).count().

29.5.8 Conversions [time.duration.cast]
template<class ToDuration, class Rep, class Period>

constexpr ToDuration duration_cast(const duration<Rep, Period>& d);

1 Constraints: ToDuration is a specialization of duration.
2 Returns: Let CF be ratio_divide<Period, typename ToDuration::period>, and CR be common_-

type<typename ToDuration::rep, Rep, intmax_t>::type.
—(2.1) If CF::num == 1 and CF::den == 1, returns

ToDuration(static_cast<typename ToDuration::rep>(d.count()))

—(2.2) otherwise, if CF::num != 1 and CF::den == 1, returns
ToDuration(static_cast<typename ToDuration::rep>(

static_cast<CR>(d.count()) * static_cast<CR>(CF::num)))

—(2.3) otherwise, if CF::num == 1 and CF::den != 1, returns
ToDuration(static_cast<typename ToDuration::rep>(

static_cast<CR>(d.count()) / static_cast<CR>(CF::den)))

—(2.4) otherwise, returns
ToDuration(static_cast<typename ToDuration::rep>(

static_cast<CR>(d.count()) * static_cast<CR>(CF::num) / static_cast<CR>(CF::den)))
3 [Note 1 : This function does not use any implicit conversions; all conversions are done with static_cast.

It avoids multiplications and divisions when it is known at compile time that one or more arguments is 1.
Intermediate computations are carried out in the widest representation and only converted to the destination
representation at the final step. — end note ]
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template<class ToDuration, class Rep, class Period>
constexpr ToDuration floor(const duration<Rep, Period>& d);

4 Constraints: ToDuration is a specialization of duration.
5 Returns: The greatest result t representable in ToDuration for which t <= d.

template<class ToDuration, class Rep, class Period>
constexpr ToDuration ceil(const duration<Rep, Period>& d);

6 Constraints: ToDuration is a specialization of duration.
7 Returns: The least result t representable in ToDuration for which t >= d.

template<class ToDuration, class Rep, class Period>
constexpr ToDuration round(const duration<Rep, Period>& d);

8 Constraints: ToDuration is a specialization of duration and treat_as_floating_point_v<typename
ToDuration::rep> is false.

9 Returns: The value of ToDuration that is closest to d. If there are two closest values, then return the
value t for which t % 2 == 0.

29.5.9 Suffixes for duration literals [time.duration.literals]
1 This subclause describes literal suffixes for constructing duration literals. The suffixes h, min, s, ms, us, ns

denote duration values of the corresponding types hours, minutes, seconds, milliseconds, microseconds,
and nanoseconds respectively if they are applied to integer-literals.

2 If any of these suffixes are applied to a floating-point-literal the result is a chrono::duration literal with an
unspecified floating-point representation.

3 If any of these suffixes are applied to an integer-literal and the resulting chrono::duration value cannot be
represented in the result type because of overflow, the program is ill-formed.

4 [Example 1 : The following code shows some duration literals.
using namespace std::chrono_literals;
auto constexpr aday=24h;
auto constexpr lesson=45min;
auto constexpr halfanhour=0.5h;

— end example ]

constexpr chrono::hours operator""h(unsigned long long hours);
constexpr chrono::duration<unspecified, ratio<3600, 1>> operator""h(long double hours);

5 Returns: A duration literal representing hours hours.

constexpr chrono::minutes operator""min(unsigned long long minutes);
constexpr chrono::duration<unspecified, ratio<60, 1>> operator""min(long double minutes);

6 Returns: A duration literal representing minutes minutes.

constexpr chrono::seconds operator""s(unsigned long long sec);
constexpr chrono::duration<unspecified > operator""s(long double sec);

7 Returns: A duration literal representing sec seconds.
8 [Note 1 : The same suffix s is used for basic_string but there is no conflict, since duration suffixes apply to

numbers and string literal suffixes apply to character array literals. — end note ]

constexpr chrono::milliseconds operator""ms(unsigned long long msec);
constexpr chrono::duration<unspecified, milli> operator""ms(long double msec);

9 Returns: A duration literal representing msec milliseconds.

constexpr chrono::microseconds operator""us(unsigned long long usec);
constexpr chrono::duration<unspecified, micro> operator""us(long double usec);

10 Returns: A duration literal representing usec microseconds.

constexpr chrono::nanoseconds operator""ns(unsigned long long nsec);
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constexpr chrono::duration<unspecified, nano> operator""ns(long double nsec);

11 Returns: A duration literal representing nsec nanoseconds.

29.5.10 Algorithms [time.duration.alg]
template<class Rep, class Period>

constexpr duration<Rep, Period> abs(duration<Rep, Period> d);

1 Constraints: numeric_limits<Rep>::is_signed is true.
2 Returns: If d >= d.zero(), return d, otherwise return -d.

29.5.11 I/O [time.duration.io]
template<class charT, class traits, class Rep, class Period>

basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const duration<Rep, Period>& d);

1 Effects: Inserts the duration d onto the stream os as if it were implemented as follows:
basic_ostringstream<charT, traits> s;
s.flags(os.flags());
s.imbue(os.getloc());
s.precision(os.precision());
s << d.count() << units-suffix ;
return os << s.str();

where units-suffix depends on the type Period::type as follows:
—(1.1) If Period::type is atto, units-suffix is "as".
—(1.2) Otherwise, if Period::type is femto, units-suffix is "fs".
—(1.3) Otherwise, if Period::type is pico, units-suffix is "ps".
—(1.4) Otherwise, if Period::type is nano, units-suffix is "ns".
—(1.5) Otherwise, if Period::type is micro, it is implementation-defined whether units-suffix is "µs"

("\u00b5\u0073") or "us".
—(1.6) Otherwise, if Period::type is milli, units-suffix is "ms".
—(1.7) Otherwise, if Period::type is centi, units-suffix is "cs".
—(1.8) Otherwise, if Period::type is deci, units-suffix is "ds".
—(1.9) Otherwise, if Period::type is ratio<1>, units-suffix is "s".
—(1.10) Otherwise, if Period::type is deca, units-suffix is "das".
—(1.11) Otherwise, if Period::type is hecto, units-suffix is "hs".
—(1.12) Otherwise, if Period::type is kilo, units-suffix is "ks".
—(1.13) Otherwise, if Period::type is mega, units-suffix is "Ms".
—(1.14) Otherwise, if Period::type is giga, units-suffix is "Gs".
—(1.15) Otherwise, if Period::type is tera, units-suffix is "Ts".
—(1.16) Otherwise, if Period::type is peta, units-suffix is "Ps".
—(1.17) Otherwise, if Period::type is exa, units-suffix is "Es".
—(1.18) Otherwise, if Period::type is ratio<60>, units-suffix is "min".
—(1.19) Otherwise, if Period::type is ratio<3600>, units-suffix is "h".
—(1.20) Otherwise, if Period::type is ratio<86400>, units-suffix is "d".
—(1.21) Otherwise, if Period::type::den == 1, units-suffix is "[num ]s".
—(1.22) Otherwise, units-suffix is "[num /den ]s".

In the list above, the use of num and den refers to the static data members of Period::type, which
are converted to arrays of charT using a decimal conversion with no leading zeroes.

2 Returns: os.
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template<class charT, class traits, class Rep, class Period, class Alloc = allocator<charT>>
basic_istream<charT, traits>&

from_stream(basic_istream<charT, traits>& is, const charT* fmt,
duration<Rep, Period>& d,
basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

3 Effects: Attempts to parse the input stream is into the duration d using the format flags given in the
NTCTS fmt as specified in 29.13. If the parse fails to decode a valid duration, is.setstate(ios_-
base::failbit) is called and d is not modified. If %Z is used and successfully parsed, that value will
be assigned to *abbrev if abbrev is non-null. If %z (or a modified variant) is used and successfully
parsed, that value will be assigned to *offset if offset is non-null.

4 Returns: is.

29.6 Class template time_point [time.point]
29.6.1 General [time.point.general]

namespace std::chrono {
template<class Clock, class Duration = typename Clock::duration>
class time_point {
public:

using clock = Clock;
using duration = Duration;
using rep = typename duration::rep;
using period = typename duration::period;

private:
duration d_; // exposition only

public:
// 29.6.2, construct
constexpr time_point(); // has value epoch
constexpr explicit time_point(const duration& d); // same as time_point() + d
template<class Duration2>

constexpr time_point(const time_point<clock, Duration2>& t);

// 29.6.3, observer
constexpr duration time_since_epoch() const;

// 29.6.4, arithmetic
constexpr time_point& operator++();
constexpr time_point operator++(int);
constexpr time_point& operator--();
constexpr time_point operator--(int);
constexpr time_point& operator+=(const duration& d);
constexpr time_point& operator-=(const duration& d);

// 29.6.5, special values
static constexpr time_point min() noexcept;
static constexpr time_point max() noexcept;

};
}

1 If Duration is not a specialization of duration, the program is ill-formed.

29.6.2 Constructors [time.point.cons]
constexpr time_point();

1 Effects: Initializes d_ with duration::zero(). Such a time_point object represents the epoch.

constexpr explicit time_point(const duration& d);

2 Effects: Initializes d_ with d. Such a time_point object represents the epoch + d.
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template<class Duration2>
constexpr time_point(const time_point<clock, Duration2>& t);

3 Constraints: is_convertible_v<Duration2, duration> is true.
4 Effects: Initializes d_ with t.time_since_epoch().

29.6.3 Observer [time.point.observer]
constexpr duration time_since_epoch() const;

1 Returns: d_.

29.6.4 Arithmetic [time.point.arithmetic]
constexpr time_point& operator++();

1 Effects: Equivalent to: ++d_.
2 Returns: *this.

constexpr time_point operator++(int);

3 Effects: Equivalent to: return time_point{d_++};

constexpr time_point& operator--();

4 Effects: Equivalent to: --d_.
5 Returns: *this.

constexpr time_point operator--(int);

6 Effects: Equivalent to: return time_point{d_--};

constexpr time_point& operator+=(const duration& d);

7 Effects: Equivalent to: d_ += d.
8 Returns: *this.

constexpr time_point& operator-=(const duration& d);

9 Effects: Equivalent to: d_ -= d.
10 Returns: *this.

29.6.5 Special values [time.point.special]
static constexpr time_point min() noexcept;

1 Returns: time_point(duration::min()).

static constexpr time_point max() noexcept;

2 Returns: time_point(duration::max()).

29.6.6 Non-member arithmetic [time.point.nonmember]
template<class Clock, class Duration1, class Rep2, class Period2>

constexpr time_point<Clock, common_type_t<Duration1, duration<Rep2, Period2>>>
operator+(const time_point<Clock, Duration1>& lhs, const duration<Rep2, Period2>& rhs);

1 Returns: CT(lhs.time_since_epoch() + rhs), where CT is the type of the return value.

template<class Rep1, class Period1, class Clock, class Duration2>
constexpr time_point<Clock, common_type_t<duration<Rep1, Period1>, Duration2>>

operator+(const duration<Rep1, Period1>& lhs, const time_point<Clock, Duration2>& rhs);

2 Returns: rhs + lhs.

template<class Clock, class Duration1, class Rep2, class Period2>
constexpr time_point<Clock, common_type_t<Duration1, duration<Rep2, Period2>>>

operator-(const time_point<Clock, Duration1>& lhs, const duration<Rep2, Period2>& rhs);

3 Returns: CT(lhs.time_since_epoch() - rhs), where CT is the type of the return value.
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template<class Clock, class Duration1, class Duration2>
constexpr common_type_t<Duration1, Duration2>

operator-(const time_point<Clock, Duration1>& lhs, const time_point<Clock, Duration2>& rhs);

4 Returns: lhs.time_since_epoch() - rhs.time_since_epoch().

29.6.7 Comparisons [time.point.comparisons]
template<class Clock, class Duration1, class Duration2>

constexpr bool operator==(const time_point<Clock, Duration1>& lhs,
const time_point<Clock, Duration2>& rhs);

1 Returns: lhs.time_since_epoch() == rhs.time_since_epoch().

template<class Clock, class Duration1, class Duration2>
constexpr bool operator<(const time_point<Clock, Duration1>& lhs,

const time_point<Clock, Duration2>& rhs);

2 Returns: lhs.time_since_epoch() < rhs.time_since_epoch().

template<class Clock, class Duration1, class Duration2>
constexpr bool operator>(const time_point<Clock, Duration1>& lhs,

const time_point<Clock, Duration2>& rhs);

3 Returns: rhs < lhs.

template<class Clock, class Duration1, class Duration2>
constexpr bool operator<=(const time_point<Clock, Duration1>& lhs,

const time_point<Clock, Duration2>& rhs);

4 Returns: !(rhs < lhs).

template<class Clock, class Duration1, class Duration2>
constexpr bool operator>=(const time_point<Clock, Duration1>& lhs,

const time_point<Clock, Duration2>& rhs);

5 Returns: !(lhs < rhs).

template<class Clock, class Duration1,
three_way_comparable_with<Duration1> Duration2>

constexpr auto operator<=>(const time_point<Clock, Duration1>& lhs,
const time_point<Clock, Duration2>& rhs);

6 Returns: lhs.time_since_epoch() <=> rhs.time_since_epoch().

29.6.8 Conversions [time.point.cast]
template<class ToDuration, class Clock, class Duration>

constexpr time_point<Clock, ToDuration> time_point_cast(const time_point<Clock, Duration>& t);

1 Constraints: ToDuration is a specialization of duration.
2 Returns:

time_point<Clock, ToDuration>(duration_cast<ToDuration>(t.time_since_epoch()))

template<class ToDuration, class Clock, class Duration>
constexpr time_point<Clock, ToDuration> floor(const time_point<Clock, Duration>& tp);

3 Constraints: ToDuration is a specialization of duration.
4 Returns: time_point<Clock, ToDuration>(floor<ToDuration>(tp.time_since_epoch())).

template<class ToDuration, class Clock, class Duration>
constexpr time_point<Clock, ToDuration> ceil(const time_point<Clock, Duration>& tp);

5 Constraints: ToDuration is a specialization of duration.
6 Returns: time_point<Clock, ToDuration>(ceil<ToDuration>(tp.time_since_epoch())).
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template<class ToDuration, class Clock, class Duration>
constexpr time_point<Clock, ToDuration> round(const time_point<Clock, Duration>& tp);

7 Constraints: ToDuration is a specialization of duration, and treat_as_floating_point_v<typename
ToDuration::rep> is false.

8 Returns: time_point<Clock, ToDuration>(round<ToDuration>(tp.time_since_epoch())).

29.7 Clocks [time.clock]
29.7.1 General [time.clock.general]

1 The types defined in 29.7 meet the Cpp17TrivialClock requirements (29.3) unless otherwise specified.

29.7.2 Class system_clock [time.clock.system]
29.7.2.1 Overview [time.clock.system.overview]

namespace std::chrono {
class system_clock {
public:

using rep = see below ;
using period = ratio<unspecified, unspecified >;
using duration = chrono::duration<rep, period>;
using time_point = chrono::time_point<system_clock>;
static constexpr bool is_steady = unspecified ;

static time_point now() noexcept;

// mapping to/from C type time_t
static time_t to_time_t (const time_point& t) noexcept;
static time_point from_time_t(time_t t) noexcept;

};
}

1 Objects of type system_clock represent wall clock time from the system-wide realtime clock. Objects of type
sys_time<Duration> measure time since 1970-01-01 00:00:00 UTC excluding leap seconds. This measure is
commonly referred to as Unix time. This measure facilitates an efficient mapping between sys_time and
calendar types (29.8).
[Example 1 :
sys_seconds{sys_days{1970y/January/1}}.time_since_epoch() is 0s.
sys_seconds{sys_days{2000y/January/1}}.time_since_epoch() is 946’684’800s, which is 10’957 * 86’400s.

— end example ]

29.7.2.2 Members [time.clock.system.members]

using system_clock::rep = unspecified ;

1 Constraints: system_clock::duration::min() < system_clock::duration::zero() is true.
[Note 1 : This implies that rep is a signed type. — end note ]

static time_t to_time_t(const time_point& t) noexcept;

2 Returns: A time_t object that represents the same point in time as t when both values are restricted
to the coarser of the precisions of time_t and time_point. It is implementation-defined whether values
are rounded or truncated to the required precision.

static time_point from_time_t(time_t t) noexcept;

3 Returns: A time_point object that represents the same point in time as t when both values are
restricted to the coarser of the precisions of time_t and time_point. It is implementation-defined
whether values are rounded or truncated to the required precision.

29.7.2.3 Non-member functions [time.clock.system.nonmembers]

template<class charT, class traits, class Duration>
basic_ostream<charT, traits>&
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operator<<(basic_ostream<charT, traits>& os, const sys_time<Duration>& tp);

1 Constraints: treat_as_floating_point_v<typename Duration::rep> is false, and Duration{1} <
days{1} is true.

2 Effects: Equivalent to:
return os << format(os.getloc(), STATICALLY-WIDEN <charT>("{:L%F %T}"), tp);

3 [Example 1 :
cout << sys_seconds{0s} << '\n'; // 1970-01-01 00:00:00
cout << sys_seconds{946'684'800s} << '\n'; // 2000-01-01 00:00:00
cout << sys_seconds{946'688'523s} << '\n'; // 2000-01-01 01:02:03

— end example ]

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const sys_days& dp);

4 Effects: os << year_month_day{dp}.
5 Returns: os.

template<class charT, class traits, class Duration, class Alloc = allocator<charT>>
basic_istream<charT, traits>&

from_stream(basic_istream<charT, traits>& is, const charT* fmt,
sys_time<Duration>& tp, basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

6 Effects: Attempts to parse the input stream is into the sys_time tp using the format flags given in
the NTCTS fmt as specified in 29.13. If the parse fails to decode a valid date, is.setstate(ios_-
base::failbit) is called and tp is not modified. If %Z is used and successfully parsed, that value will
be assigned to *abbrev if abbrev is non-null. If %z (or a modified variant) is used and successfully
parsed, that value will be assigned to *offset if offset is non-null. Additionally, the parsed offset
will be subtracted from the successfully parsed timestamp prior to assigning that difference to tp.

7 Returns: is.

29.7.3 Class utc_clock [time.clock.utc]
29.7.3.1 Overview [time.clock.utc.overview]

namespace std::chrono {
class utc_clock {
public:

using rep = a signed arithmetic type ;
using period = ratio<unspecified, unspecified >;
using duration = chrono::duration<rep, period>;
using time_point = chrono::time_point<utc_clock>;
static constexpr bool is_steady = unspecified ;

static time_point now();

template<class Duration>
static sys_time<common_type_t<Duration, seconds>>

to_sys(const utc_time<Duration>& t);
template<class Duration>

static utc_time<common_type_t<Duration, seconds>>
from_sys(const sys_time<Duration>& t);

};
}

1 In contrast to sys_time, which does not take leap seconds into account, utc_clock and its associated
time_point, utc_time, count time, including leap seconds, since 1970-01-01 00:00:00 UTC.
[Note 1 : The UTC time standard began on 1972-01-01 00:00:10 TAI. To measure time since this epoch instead, one
can add/subtract the constant sys_days{1972y/1/1} - sys_days{1970y/1/1} (63’072’000s) from the utc_time.

— end note ]
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[Example 1 :
clock_cast<utc_clock>(sys_seconds{sys_days{1970y/January/1}}).time_since_epoch() is 0s.
clock_cast<utc_clock>(sys_seconds{sys_days{2000y/January/1}}).time_since_epoch() is 946’684’822s,
which is 10’957 * 86’400s + 22s.

— end example ]
2 utc_clock is not a Cpp17TrivialClock unless the implementation can guarantee that utc_clock::now()

does not propagate an exception.
[Note 2 : noexcept(from_sys(system_clock::now())) is false. — end note ]

29.7.3.2 Member functions [time.clock.utc.members]

static time_point now();

1 Returns: from_sys(system_clock::now()), or a more accurate value of utc_time.

template<class Duration>
static sys_time<common_type_t<Duration, seconds>>

to_sys(const utc_time<Duration>& u);

2 Returns: A sys_time t, such that from_sys(t) == u if such a mapping exists. Otherwise u represents
a time_point during a positive leap second insertion, the conversion counts that leap second as not
inserted, and the last representable value of sys_time prior to the insertion of the leap second is
returned.

template<class Duration>
static utc_time<common_type_t<Duration, seconds>>

from_sys(const sys_time<Duration>& t);

3 Returns: A utc_time u, such that u.time_since_epoch() - t.time_since_epoch() is equal to the
sum of leap seconds that were inserted between t and 1970-01-01. If t is exactly the date of leap second
insertion, then the conversion counts that leap second as inserted.
[Example 1 :

auto t = sys_days{July/1/2015} - 2ns;
auto u = utc_clock::from_sys(t);
assert(u.time_since_epoch() - t.time_since_epoch() == 25s);
t += 1ns;
u = utc_clock::from_sys(t);
assert(u.time_since_epoch() - t.time_since_epoch() == 25s);
t += 1ns;
u = utc_clock::from_sys(t);
assert(u.time_since_epoch() - t.time_since_epoch() == 26s);
t += 1ns;
u = utc_clock::from_sys(t);
assert(u.time_since_epoch() - t.time_since_epoch() == 26s);

— end example ]

29.7.3.3 Non-member functions [time.clock.utc.nonmembers]

template<class charT, class traits, class Duration>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const utc_time<Duration>& t);

1 Effects: Equivalent to:
return os << format(os.getloc(), STATICALLY-WIDEN <charT>("{:L%F %T}"), t);

2 [Example 1 :
auto t = sys_days{July/1/2015} - 500ms;
auto u = clock_cast<utc_clock>(t);
for (auto i = 0; i < 8; ++i, u += 250ms)

cout << u << " UTC\n";

Produces this output:

2015-06-30 23:59:59.500 UTC
2015-06-30 23:59:59.750 UTC
2015-06-30 23:59:60.000 UTC
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2015-06-30 23:59:60.250 UTC
2015-06-30 23:59:60.500 UTC
2015-06-30 23:59:60.750 UTC
2015-07-01 00:00:00.000 UTC
2015-07-01 00:00:00.250 UTC

— end example ]

template<class charT, class traits, class Duration, class Alloc = allocator<charT>>
basic_istream<charT, traits>&

from_stream(basic_istream<charT, traits>& is, const charT* fmt,
utc_time<Duration>& tp, basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

3 Effects: Attempts to parse the input stream is into the utc_time tp using the format flags given in
the NTCTS fmt as specified in 29.13. If the parse fails to decode a valid date, is.setstate(ios_-
base::failbit) is called and tp is not modified. If %Z is used and successfully parsed, that value will
be assigned to *abbrev if abbrev is non-null. If %z (or a modified variant) is used and successfully
parsed, that value will be assigned to *offset if offset is non-null. Additionally, the parsed offset
will be subtracted from the successfully parsed timestamp prior to assigning that difference to tp.

4 Returns: is.

struct leap_second_info {
bool is_leap_second;
seconds elapsed;

};

5 The type leap_second_info has data members and special members specified above. It has no base
classes or members other than those specified.

template<class Duration>
leap_second_info get_leap_second_info(const utc_time<Duration>& ut);

6 Returns: A leap_second_info lsi, where lsi.is_leap_second is true if ut is during a positive leap
second insertion, and otherwise false. lsi.elapsed is the sum of leap seconds between 1970-01-01
and ut. If lsi.is_leap_second is true, the leap second referred to by ut is included in the sum.

29.7.4 Class tai_clock [time.clock.tai]
29.7.4.1 Overview [time.clock.tai.overview]

namespace std::chrono {
class tai_clock {
public:

using rep = a signed arithmetic type ;
using period = ratio<unspecified, unspecified >;
using duration = chrono::duration<rep, period>;
using time_point = chrono::time_point<tai_clock>;
static constexpr bool is_steady = unspecified ;

static time_point now();

template<class Duration>
static utc_time<common_type_t<Duration, seconds>>

to_utc(const tai_time<Duration>&) noexcept;
template<class Duration>

static tai_time<common_type_t<Duration, seconds>>
from_utc(const utc_time<Duration>&) noexcept;

};
}

1 The clock tai_clock measures seconds since 1958-01-01 00:00:00 and is offset 10s ahead of UTC at this
date. That is, 1958-01-01 00:00:00 TAI is equivalent to 1957-12-31 23:59:50 UTC. Leap seconds are not
inserted into TAI. Therefore every time a leap second is inserted into UTC, UTC shifts another second with
respect to TAI. For example by 2000-01-01 there had been 22 positive and 0 negative leap seconds inserted
so 2000-01-01 00:00:00 UTC is equivalent to 2000-01-01 00:00:32 TAI (22s plus the initial 10s offset).
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2 tai_clock is not a Cpp17TrivialClock unless the implementation can guarantee that tai_clock::now()
does not propagate an exception.
[Note 1 : noexcept(from_utc(utc_clock::now())) is false. — end note ]

29.7.4.2 Member functions [time.clock.tai.members]

static time_point now();

1 Returns: from_utc(utc_clock::now()), or a more accurate value of tai_time.

template<class Duration>
static utc_time<common_type_t<Duration, seconds>>

to_utc(const tai_time<Duration>& t) noexcept;

2 Returns:
utc_time<common_type_t<Duration, seconds>>{t.time_since_epoch()} - 378691210s

[Note 1 :
378691210s == sys_days{1970y/January/1} - sys_days{1958y/January/1} + 10s

— end note ]

template<class Duration>
static tai_time<common_type_t<Duration, seconds>>

from_utc(const utc_time<Duration>& t) noexcept;

3 Returns:
tai_time<common_type_t<Duration, seconds>>{t.time_since_epoch()} + 378691210s

[Note 2 :
378691210s == sys_days{1970y/January/1} - sys_days{1958y/January/1} + 10s

— end note ]

29.7.4.3 Non-member functions [time.clock.tai.nonmembers]

template<class charT, class traits, class Duration>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const tai_time<Duration>& t);

1 Effects: Equivalent to:
return os << format(os.getloc(), STATICALLY-WIDEN <charT>("{:L%F %T}"), t);

2 [Example 1 :
auto st = sys_days{2000y/January/1};
auto tt = clock_cast<tai_clock>(st);
cout << format("{0:%F %T %Z} == {1:%F %T %Z}\n", st, tt);

Produces this output:

2000-01-01 00:00:00 UTC == 2000-01-01 00:00:32 TAI

— end example ]

template<class charT, class traits, class Duration, class Alloc = allocator<charT>>
basic_istream<charT, traits>&

from_stream(basic_istream<charT, traits>& is, const charT* fmt,
tai_time<Duration>& tp, basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

3 Effects: Attempts to parse the input stream is into the tai_time tp using the format flags given in
the NTCTS fmt as specified in 29.13. If the parse fails to decode a valid date, is.setstate(ios_-
base::failbit) is called and tp is not modified. If %Z is used and successfully parsed, that value will
be assigned to *abbrev if abbrev is non-null. If %z (or a modified variant) is used and successfully
parsed, that value will be assigned to *offset if offset is non-null. Additionally, the parsed offset
will be subtracted from the successfully parsed timestamp prior to assigning that difference to tp.

4 Returns: is.

§ 29.7.4.3 1510



© ISO/IEC N4950

29.7.5 Class gps_clock [time.clock.gps]
29.7.5.1 Overview [time.clock.gps.overview]

namespace std::chrono {
class gps_clock {
public:

using rep = a signed arithmetic type ;
using period = ratio<unspecified, unspecified >;
using duration = chrono::duration<rep, period>;
using time_point = chrono::time_point<gps_clock>;
static constexpr bool is_steady = unspecified ;

static time_point now();

template<class Duration>
static utc_time<common_type_t<Duration, seconds>>

to_utc(const gps_time<Duration>&) noexcept;
template<class Duration>

static gps_time<common_type_t<Duration, seconds>>
from_utc(const utc_time<Duration>&) noexcept;

};
}

1 The clock gps_clock measures seconds since the first Sunday of January, 1980 00:00:00 UTC. Leap seconds
are not inserted into GPS. Therefore every time a leap second is inserted into UTC, UTC shifts another
second with respect to GPS. Aside from the offset from 1958y/January/1 to 1980y/January/Sunday[1],
GPS is behind TAI by 19s due to the 10s offset between 1958 and 1970 and the additional 9 leap seconds
inserted between 1970 and 1980.

2 gps_clock is not a Cpp17TrivialClock unless the implementation can guarantee that gps_clock::now()
does not propagate an exception.
[Note 1 : noexcept(from_utc(utc_clock::now())) is false. — end note ]

29.7.5.2 Member functions [time.clock.gps.members]

static time_point now();

1 Returns: from_utc(utc_clock::now()), or a more accurate value of gps_time.

template<class Duration>
static utc_time<common_type_t<Duration, seconds>>

to_utc(const gps_time<Duration>& t) noexcept;

2 Returns:
utc_time<common_type_t<Duration, seconds>>{t.time_since_epoch()} + 315964809s

[Note 1 :
315964809s == sys_days{1980y/January/Sunday[1]} - sys_days{1970y/January/1} + 9s

— end note ]

template<class Duration>
static gps_time<common_type_t<Duration, seconds>>

from_utc(const utc_time<Duration>& t) noexcept;

3 Returns:
gps_time<common_type_t<Duration, seconds>>{t.time_since_epoch()} - 315964809s

[Note 2 :
315964809s == sys_days{1980y/January/Sunday[1]} - sys_days{1970y/January/1} + 9s

— end note ]

29.7.5.3 Non-member functions [time.clock.gps.nonmembers]

template<class charT, class traits, class Duration>
basic_ostream<charT, traits>&
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operator<<(basic_ostream<charT, traits>& os, const gps_time<Duration>& t);

1 Effects: Equivalent to:
return os << format(os.getloc(), STATICALLY-WIDEN <charT>("{:L%F %T}"), t);

2 [Example 1 :
auto st = sys_days{2000y/January/1};
auto gt = clock_cast<gps_clock>(st);
cout << format("{0:%F %T %Z} == {1:%F %T %Z}\n", st, gt);

Produces this output:

2000-01-01 00:00:00 UTC == 2000-01-01 00:00:13 GPS

— end example ]

template<class charT, class traits, class Duration, class Alloc = allocator<charT>>
basic_istream<charT, traits>&

from_stream(basic_istream<charT, traits>& is, const charT* fmt,
gps_time<Duration>& tp, basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

3 Effects: Attempts to parse the input stream is into the gps_time tp using the format flags given in
the NTCTS fmt as specified in 29.13. If the parse fails to decode a valid date, is.setstate(ios_-
base::failbit) is called and tp is not modified. If %Z is used and successfully parsed, that value will
be assigned to *abbrev if abbrev is non-null. If %z (or a modified variant) is used and successfully
parsed, that value will be assigned to *offset if offset is non-null. Additionally, the parsed offset
will be subtracted from the successfully parsed timestamp prior to assigning that difference to tp.

4 Returns: is.

29.7.6 Type file_clock [time.clock.file]
29.7.6.1 Overview [time.clock.file.overview]

namespace std::chrono {
using file_clock = see below ;

}

1 file_clock is an alias for a type meeting the Cpp17TrivialClock requirements (29.3), and using a signed
arithmetic type for file_clock::rep. file_clock is used to create the time_point system used for
file_time_type (31.12). Its epoch is unspecified, and noexcept(file_clock::now()) is true.
[Note 1 : The type that file_clock denotes can be in a different namespace than std::chrono, such as std::file-
system. — end note ]

29.7.6.2 Member functions [time.clock.file.members]
1 The type denoted by file_clock provides precisely one of the following two sets of static member functions:

template<class Duration>
static sys_time<see below >

to_sys(const file_time<Duration>&);
template<class Duration>

static file_time<see below >
from_sys(const sys_time<Duration>&);

or:
template<class Duration>

static utc_time<see below >
to_utc(const file_time<Duration>&);

template<class Duration>
static file_time<see below >

from_utc(const utc_time<Duration>&);

These member functions shall provide time_point conversions consistent with those specified by utc_clock,
tai_clock, and gps_clock. The Duration of the resultant time_point is computed from the Duration of
the input time_point.
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29.7.6.3 Non-member functions [time.clock.file.nonmembers]

template<class charT, class traits, class Duration>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const file_time<Duration>& t);

1 Effects: Equivalent to:
return os << format(os.getloc(), STATICALLY-WIDEN <charT>("{:L%F %T}"), t);

template<class charT, class traits, class Duration, class Alloc = allocator<charT>>
basic_istream<charT, traits>&

from_stream(basic_istream<charT, traits>& is, const charT* fmt,
file_time<Duration>& tp, basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

2 Effects: Attempts to parse the input stream is into the file_time tp using the format flags given
in the NTCTS fmt as specified in 29.13. If the parse fails to decode a valid date, is.setstate(ios_-
base::failbit) is called and tp is not modified. If %Z is used and successfully parsed, that value will
be assigned to *abbrev if abbrev is non-null. If %z (or a modified variant) is used and successfully
parsed, that value will be assigned to *offset if offset is non-null. Additionally, the parsed offset
will be subtracted from the successfully parsed timestamp prior to assigning that difference to tp.

3 Returns: is.

29.7.7 Class steady_clock [time.clock.steady]
namespace std::chrono {

class steady_clock {
public:

using rep = unspecified ;
using period = ratio<unspecified, unspecified >;
using duration = chrono::duration<rep, period>;
using time_point = chrono::time_point<unspecified, duration>;
static constexpr bool is_steady = true;

static time_point now() noexcept;
};

}

1 Objects of class steady_clock represent clocks for which values of time_point never decrease as physical
time advances and for which values of time_point advance at a steady rate relative to real time. That is,
the clock may not be adjusted.

29.7.8 Class high_resolution_clock [time.clock.hires]
namespace std::chrono {

class high_resolution_clock {
public:

using rep = unspecified ;
using period = ratio<unspecified, unspecified >;
using duration = chrono::duration<rep, period>;
using time_point = chrono::time_point<unspecified, duration>;
static constexpr bool is_steady = unspecified ;

static time_point now() noexcept;
};

}

1 Objects of class high_resolution_clock represent clocks with the shortest tick period. high_resolution_-
clock may be a synonym for system_clock or steady_clock.

29.7.9 Local time [time.clock.local]
1 The family of time points denoted by local_time<Duration> are based on the pseudo clock local_t.

local_t has no member now() and thus does not meet the clock requirements. Nevertheless local_-
time<Duration> serves the vital role of representing local time with respect to a not-yet-specified time
zone. Aside from being able to get the current time, the complete time_point algebra is available for
local_time<Duration> (just as for sys_time<Duration>).
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template<class charT, class traits, class Duration>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const local_time<Duration>& lt);

2 Effects:
os << sys_time<Duration>{lt.time_since_epoch()};

3 Returns: os.

template<class charT, class traits, class Duration, class Alloc = allocator<charT>>
basic_istream<charT, traits>&

from_stream(basic_istream<charT, traits>& is, const charT* fmt,
local_time<Duration>& tp, basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

4 Effects: Attempts to parse the input stream is into the local_time tp using the format flags given
in the NTCTS fmt as specified in 29.13. If the parse fails to decode a valid date, is.setstate(ios_-
base::failbit) is called and tp is not modified. If %Z is used and successfully parsed, that value will
be assigned to *abbrev if abbrev is non-null. If %z (or a modified variant) is used and successfully
parsed, that value will be assigned to *offset if offset is non-null.

5 Returns: is.

29.7.10 time_point conversions [time.clock.cast]
29.7.10.1 Class template clock_time_conversion [time.clock.conv]

namespace std::chrono {
template<class DestClock, class SourceClock>
struct clock_time_conversion {};

}

1 clock_time_conversion serves as a trait which can be used to specify how to convert a source time_point of
type time_point<SourceClock, Duration> to a destination time_point of type time_point<DestClock,
Duration> via a specialization: clock_time_conversion<DestClock, SourceClock>. A specialization
of clock_time_conversion<DestClock, SourceClock> shall provide a const-qualified operator() that
takes a parameter of type time_point<SourceClock, Duration> and returns a time_point<DestClock,
OtherDuration> representing an equivalent point in time. OtherDuration is a chrono::duration whose
specialization is computed from the input Duration in a manner which can vary for each clock_time_-
conversion specialization. A program may specialize clock_time_conversion if at least one of the template
parameters is a user-defined clock type.

2 Several specializations are provided by the implementation, as described in 29.7.10.2, 29.7.10.3, 29.7.10.4,
and 29.7.10.5.

29.7.10.2 Identity conversions [time.clock.cast.id]
template<class Clock>
struct clock_time_conversion<Clock, Clock> {

template<class Duration>
time_point<Clock, Duration>

operator()(const time_point<Clock, Duration>& t) const;
};

template<class Duration>
time_point<Clock, Duration>

operator()(const time_point<Clock, Duration>& t) const;

1 Returns: t.
template<>
struct clock_time_conversion<system_clock, system_clock> {

template<class Duration>
sys_time<Duration>

operator()(const sys_time<Duration>& t) const;
};
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template<class Duration>
sys_time<Duration>

operator()(const sys_time<Duration>& t) const;

2 Returns: t.
template<>
struct clock_time_conversion<utc_clock, utc_clock> {

template<class Duration>
utc_time<Duration>

operator()(const utc_time<Duration>& t) const;
};

template<class Duration>
utc_time<Duration>

operator()(const utc_time<Duration>& t) const;

3 Returns: t.

29.7.10.3 Conversions between system_clock and utc_clock [time.clock.cast.sys.utc]
template<>
struct clock_time_conversion<utc_clock, system_clock> {

template<class Duration>
utc_time<common_type_t<Duration, seconds>>

operator()(const sys_time<Duration>& t) const;
};

template<class Duration>
utc_time<common_type_t<Duration, seconds>>

operator()(const sys_time<Duration>& t) const;

1 Returns: utc_clock::from_sys(t).
template<>
struct clock_time_conversion<system_clock, utc_clock> {

template<class Duration>
sys_time<common_type_t<Duration, seconds>>

operator()(const utc_time<Duration>& t) const;
};

template<class Duration>
sys_time<common_type_t<Duration, seconds>>

operator()(const utc_time<Duration>& t) const;

2 Returns: utc_clock::to_sys(t).

29.7.10.4 Conversions between system_clock and other clocks [time.clock.cast.sys]
template<class SourceClock>
struct clock_time_conversion<system_clock, SourceClock> {

template<class Duration>
auto operator()(const time_point<SourceClock, Duration>& t) const

-> decltype(SourceClock::to_sys(t));
};

template<class Duration>
auto operator()(const time_point<SourceClock, Duration>& t) const

-> decltype(SourceClock::to_sys(t));

1 Constraints: SourceClock::to_sys(t) is well-formed.
2 Mandates: SourceClock::to_sys(t) returns a sys_time<Duration2> for some type Duration2

(29.6.1).
3 Returns: SourceClock::to_sys(t).

template<class DestClock>
struct clock_time_conversion<DestClock, system_clock> {

template<class Duration>
auto operator()(const sys_time<Duration>& t) const

-> decltype(DestClock::from_sys(t));
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};

template<class Duration>
auto operator()(const sys_time<Duration>& t) const

-> decltype(DestClock::from_sys(t));

4 Constraints: DestClock::from_sys(t) is well-formed.
5 Mandates: DestClock::from_sys(t) returns a time_point<DestClock, Duration2> for some type

Duration2 (29.6.1).
6 Returns: DestClock::from_sys(t).

29.7.10.5 Conversions between utc_clock and other clocks [time.clock.cast.utc]
template<class SourceClock>
struct clock_time_conversion<utc_clock, SourceClock> {

template<class Duration>
auto operator()(const time_point<SourceClock, Duration>& t) const

-> decltype(SourceClock::to_utc(t));
};

template<class Duration>
auto operator()(const time_point<SourceClock, Duration>& t) const

-> decltype(SourceClock::to_utc(t));

1 Constraints: SourceClock::to_utc(t) is well-formed.
2 Mandates: SourceClock::to_utc(t) returns a utc_time<Duration2> for some type Duration2

(29.6.1).
3 Returns: SourceClock::to_utc(t).

template<class DestClock>
struct clock_time_conversion<DestClock, utc_clock> {

template<class Duration>
auto operator()(const utc_time<Duration>& t) const

-> decltype(DestClock::from_utc(t));
};

template<class Duration>
auto operator()(const utc_time<Duration>& t) const

-> decltype(DestClock::from_utc(t));

4 Constraints: DestClock::from_utc(t) is well-formed.
5 Mandates: DestClock::from_utc(t) returns a time_point<DestClock, Duration2> for some type

Duration2 (29.6.1).
6 Returns: DestClock::from_utc(t).

29.7.10.6 Function template clock_cast [time.clock.cast.fn]

template<class DestClock, class SourceClock, class Duration>
auto clock_cast(const time_point<SourceClock, Duration>& t);

1 Constraints: At least one of the following clock time conversion expressions is well-formed:
—(1.1) clock_time_conversion<DestClock, SourceClock>{}(t)

—(1.2) clock_time_conversion<DestClock, system_clock>{}(
clock_time_conversion<system_clock, SourceClock>{}(t))

—(1.3) clock_time_conversion<DestClock, utc_clock>{}(
clock_time_conversion<utc_clock, SourceClock>{}(t))

—(1.4) clock_time_conversion<DestClock, utc_clock>{}(
clock_time_conversion<utc_clock, system_clock>{}(

clock_time_conversion<system_clock, SourceClock>{}(t)))

—(1.5) clock_time_conversion<DestClock, system_clock>{}(
clock_time_conversion<system_clock, utc_clock>{}(

clock_time_conversion<utc_clock, SourceClock>{}(t)))
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A clock time conversion expression is considered better than another clock time conversion expression
if it involves fewer operator() calls on clock_time_conversion specializations.

2 Mandates: Among the well-formed clock time conversion expressions from the above list, there is a
unique best expression.

3 Returns: The best well-formed clock time conversion expression in the above list.

29.8 The civil calendar [time.cal]
29.8.1 In general [time.cal.general]

1 The types in 29.8 describe the civil (Gregorian) calendar and its relationship to sys_days and local_days.

29.8.2 Class last_spec [time.cal.last]
namespace std::chrono {

struct last_spec {
explicit last_spec() = default;

};
}

1 The type last_spec is used in conjunction with other calendar types to specify the last in a sequence. For
example, depending on context, it can represent the last day of a month, or the last day of the week of a
month.

29.8.3 Class day [time.cal.day]
29.8.3.1 Overview [time.cal.day.overview]

namespace std::chrono {
class day {

unsigned char d_; // exposition only
public:

day() = default;
constexpr explicit day(unsigned d) noexcept;

constexpr day& operator++() noexcept;
constexpr day operator++(int) noexcept;
constexpr day& operator--() noexcept;
constexpr day operator--(int) noexcept;

constexpr day& operator+=(const days& d) noexcept;
constexpr day& operator-=(const days& d) noexcept;

constexpr explicit operator unsigned() const noexcept;
constexpr bool ok() const noexcept;

};
}

1 day represents a day of a month. It normally holds values in the range 1 to 31, but may hold non-negative
values outside this range. It can be constructed with any unsigned value, which will be subsequently
truncated to fit into day’s unspecified internal storage. day meets the Cpp17EqualityComparable (Table 28)
and Cpp17LessThanComparable (Table 29) requirements, and participates in basic arithmetic with days
objects, which represent a difference between two day objects.

2 day is a trivially copyable and standard-layout class type.

29.8.3.2 Member functions [time.cal.day.members]

constexpr explicit day(unsigned d) noexcept;

1 Effects: Initializes d_ with d. The value held is unspecified if d is not in the range [0, 255].

constexpr day& operator++() noexcept;

2 Effects: ++d_.
3 Returns: *this.
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constexpr day operator++(int) noexcept;

4 Effects: ++(*this).
5 Returns: A copy of *this as it existed on entry to this member function.

constexpr day& operator--() noexcept;

6 Effects: Equivalent to: --d_.
7 Returns: *this.

constexpr day operator--(int) noexcept;

8 Effects: --(*this).
9 Returns: A copy of *this as it existed on entry to this member function.

constexpr day& operator+=(const days& d) noexcept;

10 Effects: *this = *this + d.
11 Returns: *this.

constexpr day& operator-=(const days& d) noexcept;

12 Effects: *this = *this - d.
13 Returns: *this.

constexpr explicit operator unsigned() const noexcept;

14 Returns: d_.

constexpr bool ok() const noexcept;

15 Returns: 1 <= d_ && d_ <= 31.

29.8.3.3 Non-member functions [time.cal.day.nonmembers]

constexpr bool operator==(const day& x, const day& y) noexcept;

1 Returns: unsigned{x} == unsigned{y}.

constexpr strong_ordering operator<=>(const day& x, const day& y) noexcept;

2 Returns: unsigned{x} <=> unsigned{y}.

constexpr day operator+(const day& x, const days& y) noexcept;

3 Returns: day(unsigned{x} + y.count()).

constexpr day operator+(const days& x, const day& y) noexcept;

4 Returns: y + x.

constexpr day operator-(const day& x, const days& y) noexcept;

5 Returns: x + -y.

constexpr days operator-(const day& x, const day& y) noexcept;

6 Returns: days{int(unsigned{x}) - int(unsigned{y})}.

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const day& d);

7 Effects: Equivalent to:
return os << (d.ok() ?

format(STATICALLY-WIDEN <charT>("{:%d}"), d) :
format(STATICALLY-WIDEN <charT>("{:%d} is not a valid day"), d));

template<class charT, class traits, class Alloc = allocator<charT>>
basic_istream<charT, traits>&

from_stream(basic_istream<charT, traits>& is, const charT* fmt,
day& d, basic_string<charT, traits, Alloc>* abbrev = nullptr,
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minutes* offset = nullptr);

8 Effects: Attempts to parse the input stream is into the day d using the format flags given in the NTCTS
fmt as specified in 29.13. If the parse fails to decode a valid day, is.setstate(ios_base::failbit)
is called and d is not modified. If %Z is used and successfully parsed, that value will be assigned to
*abbrev if abbrev is non-null. If %z (or a modified variant) is used and successfully parsed, that value
will be assigned to *offset if offset is non-null.

9 Returns: is.

constexpr chrono::day operator""d(unsigned long long d) noexcept;

10 Returns: day{static_cast<unsigned>(d)}.

29.8.4 Class month [time.cal.month]
29.8.4.1 Overview [time.cal.month.overview]

namespace std::chrono {
class month {

unsigned char m_; // exposition only
public:

month() = default;
constexpr explicit month(unsigned m) noexcept;

constexpr month& operator++() noexcept;
constexpr month operator++(int) noexcept;
constexpr month& operator--() noexcept;
constexpr month operator--(int) noexcept;

constexpr month& operator+=(const months& m) noexcept;
constexpr month& operator-=(const months& m) noexcept;

constexpr explicit operator unsigned() const noexcept;
constexpr bool ok() const noexcept;

};
}

1 month represents a month of a year. It normally holds values in the range 1 to 12, but may hold non-negative
values outside this range. It can be constructed with any unsigned value, which will be subsequently truncated
to fit into month’s unspecified internal storage. month meets the Cpp17EqualityComparable (Table 28) and
Cpp17LessThanComparable (Table 29) requirements, and participates in basic arithmetic with months objects,
which represent a difference between two month objects.

2 month is a trivially copyable and standard-layout class type.

29.8.4.2 Member functions [time.cal.month.members]

constexpr explicit month(unsigned m) noexcept;

1 Effects: Initializes m_ with m. The value held is unspecified if m is not in the range [0, 255].

constexpr month& operator++() noexcept;

2 Effects: *this += months{1}.
3 Returns: *this.

constexpr month operator++(int) noexcept;

4 Effects: ++(*this).
5 Returns: A copy of *this as it existed on entry to this member function.

constexpr month& operator--() noexcept;

6 Effects: *this -= months{1}.
7 Returns: *this.
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constexpr month operator--(int) noexcept;

8 Effects: --(*this).
9 Returns: A copy of *this as it existed on entry to this member function.

constexpr month& operator+=(const months& m) noexcept;

10 Effects: *this = *this + m.
11 Returns: *this.

constexpr month& operator-=(const months& m) noexcept;

12 Effects: *this = *this - m.
13 Returns: *this.

constexpr explicit operator unsigned() const noexcept;

14 Returns: m_.

constexpr bool ok() const noexcept;

15 Returns: 1 <= m_ && m_ <= 12.

29.8.4.3 Non-member functions [time.cal.month.nonmembers]

constexpr bool operator==(const month& x, const month& y) noexcept;

1 Returns: unsigned{x} == unsigned{y}.

constexpr strong_ordering operator<=>(const month& x, const month& y) noexcept;

2 Returns: unsigned{x} <=> unsigned{y}.

constexpr month operator+(const month& x, const months& y) noexcept;

3 Returns:
month{modulo(static_cast<long long>(unsigned{x}) + (y.count() - 1), 12) + 1}

where modulo(n, 12) computes the remainder of n divided by 12 using Euclidean division.
[Note 1 : Given a divisor of 12, Euclidean division truncates towards negative infinity and always produces a
remainder in the range of [0, 11]. Assuming no overflow in the signed summation, this operation results in a
month holding a value in the range [1, 12] even if !x.ok(). — end note ]
[Example 1 : February + months{11} == January. — end example ]

constexpr month operator+(const months& x, const month& y) noexcept;

4 Returns: y + x.

constexpr month operator-(const month& x, const months& y) noexcept;

5 Returns: x + -y.

constexpr months operator-(const month& x, const month& y) noexcept;

6 Returns: If x.ok() == true and y.ok() == true, returns a value m in the range [months{0},
months{11}] satisfying y + m == x. Otherwise the value returned is unspecified.
[Example 2 : January - February == months{11}. — end example ]

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const month& m);

7 Effects: Equivalent to:
return os << (m.ok() ?

format(os.getloc(), STATICALLY-WIDEN <charT>("{:L%b}"), m) :
format(os.getloc(), STATICALLY-WIDEN <charT>("{} is not a valid month"),

static_cast<unsigned>(m)));
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template<class charT, class traits, class Alloc = allocator<charT>>
basic_istream<charT, traits>&

from_stream(basic_istream<charT, traits>& is, const charT* fmt,
month& m, basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

8 Effects: Attempts to parse the input stream is into the month m using the format flags given in the
NTCTS fmt as specified in 29.13. If the parse fails to decode a valid month, is.setstate(ios_-
base::failbit) is called and m is not modified. If %Z is used and successfully parsed, that value will
be assigned to *abbrev if abbrev is non-null. If %z (or a modified variant) is used and successfully
parsed, that value will be assigned to *offset if offset is non-null.

9 Returns: is.

29.8.5 Class year [time.cal.year]
29.8.5.1 Overview [time.cal.year.overview]

namespace std::chrono {
class year {

short y_; // exposition only
public:

year() = default;
constexpr explicit year(int y) noexcept;

constexpr year& operator++() noexcept;
constexpr year operator++(int) noexcept;
constexpr year& operator--() noexcept;
constexpr year operator--(int) noexcept;

constexpr year& operator+=(const years& y) noexcept;
constexpr year& operator-=(const years& y) noexcept;

constexpr year operator+() const noexcept;
constexpr year operator-() const noexcept;

constexpr bool is_leap() const noexcept;

constexpr explicit operator int() const noexcept;
constexpr bool ok() const noexcept;

static constexpr year min() noexcept;
static constexpr year max() noexcept;

};
}

1 year represents a year in the civil calendar. It can represent values in the range [min(), max()]. It can be
constructed with any int value, which will be subsequently truncated to fit into year’s unspecified internal
storage. year meets the Cpp17EqualityComparable (Table 28) and Cpp17LessThanComparable (Table 29)
requirements, and participates in basic arithmetic with years objects, which represent a difference between
two year objects.

2 year is a trivially copyable and standard-layout class type.

29.8.5.2 Member functions [time.cal.year.members]

constexpr explicit year(int y) noexcept;

1 Effects: Initializes y_ with y. The value held is unspecified if y is not in the range [-32767, 32767].

constexpr year& operator++() noexcept;

2 Effects: ++y_.
3 Returns: *this.

constexpr year operator++(int) noexcept;

4 Effects: ++(*this).
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5 Returns: A copy of *this as it existed on entry to this member function.

constexpr year& operator--() noexcept;

6 Effects: --y_.
7 Returns: *this.

constexpr year operator--(int) noexcept;

8 Effects: --(*this).
9 Returns: A copy of *this as it existed on entry to this member function.

constexpr year& operator+=(const years& y) noexcept;

10 Effects: *this = *this + y.
11 Returns: *this.

constexpr year& operator-=(const years& y) noexcept;

12 Effects: *this = *this - y.
13 Returns: *this.

constexpr year operator+() const noexcept;

14 Returns: *this.

constexpr year operator-() const noexcept;

15 Returns: year{-y_}.

constexpr bool is_leap() const noexcept;

16 Returns: y_ % 4 == 0 && (y_ % 100 != 0 || y_ % 400 == 0).

constexpr explicit operator int() const noexcept;

17 Returns: y_.

constexpr bool ok() const noexcept;

18 Returns: min().y_ <= y_ && y_ <= max().y_.

static constexpr year min() noexcept;

19 Returns: year{-32767}.

static constexpr year max() noexcept;

20 Returns: year{32767}.

29.8.5.3 Non-member functions [time.cal.year.nonmembers]

constexpr bool operator==(const year& x, const year& y) noexcept;

1 Returns: int{x} == int{y}.

constexpr strong_ordering operator<=>(const year& x, const year& y) noexcept;

2 Returns: int{x} <=> int{y}.

constexpr year operator+(const year& x, const years& y) noexcept;

3 Returns: year{int{x} + static_cast<int>(y.count())}.

constexpr year operator+(const years& x, const year& y) noexcept;

4 Returns: y + x.

constexpr year operator-(const year& x, const years& y) noexcept;

5 Returns: x + -y.

constexpr years operator-(const year& x, const year& y) noexcept;

6 Returns: years{int{x} - int{y}}.
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template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const year& y);

7 Effects: Equivalent to:
return os << (y.ok() ?

format(STATICALLY-WIDEN <charT>("{:%Y}"), y) :
format(STATICALLY-WIDEN <charT>("{:%Y} is not a valid year"), y));

template<class charT, class traits, class Alloc = allocator<charT>>
basic_istream<charT, traits>&

from_stream(basic_istream<charT, traits>& is, const charT* fmt,
year& y, basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

8 Effects: Attempts to parse the input stream is into the year y using the format flags given in the NTCTS
fmt as specified in 29.13. If the parse fails to decode a valid year, is.setstate(ios_base::failbit)
is called and y is not modified. If %Z is used and successfully parsed, that value will be assigned to
*abbrev if abbrev is non-null. If %z (or a modified variant) is used and successfully parsed, that value
will be assigned to *offset if offset is non-null.

9 Returns: is.

constexpr chrono::year operator""y(unsigned long long y) noexcept;

10 Returns: year{static_cast<int>(y)}.

29.8.6 Class weekday [time.cal.wd]
29.8.6.1 Overview [time.cal.wd.overview]

namespace std::chrono {
class weekday {

unsigned char wd_; // exposition only
public:

weekday() = default;
constexpr explicit weekday(unsigned wd) noexcept;
constexpr weekday(const sys_days& dp) noexcept;
constexpr explicit weekday(const local_days& dp) noexcept;

constexpr weekday& operator++() noexcept;
constexpr weekday operator++(int) noexcept;
constexpr weekday& operator--() noexcept;
constexpr weekday operator--(int) noexcept;

constexpr weekday& operator+=(const days& d) noexcept;
constexpr weekday& operator-=(const days& d) noexcept;

constexpr unsigned c_encoding() const noexcept;
constexpr unsigned iso_encoding() const noexcept;
constexpr bool ok() const noexcept;

constexpr weekday_indexed operator[](unsigned index) const noexcept;
constexpr weekday_last operator[](last_spec) const noexcept;

};
}

1 weekday represents a day of the week in the civil calendar. It normally holds values in the range 0 to 6,
corresponding to Sunday through Saturday, but it may hold non-negative values outside this range. It can be
constructed with any unsigned value, which will be subsequently truncated to fit into weekday’s unspecified
internal storage. weekday meets the Cpp17EqualityComparable (Table 28) requirements.
[Note 1 : weekday is not Cpp17LessThanComparable because there is no universal consensus on which day is the first
day of the week. weekday’s arithmetic operations treat the days of the week as a circular range, with no beginning
and no end. — end note ]

2 weekday is a trivially copyable and standard-layout class type.
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29.8.6.2 Member functions [time.cal.wd.members]

constexpr explicit weekday(unsigned wd) noexcept;

1 Effects: Initializes wd_ with wd == 7 ? 0 : wd. The value held is unspecified if wd is not in the range
[0, 255].

constexpr weekday(const sys_days& dp) noexcept;

2 Effects: Computes what day of the week corresponds to the sys_days dp, and initializes that day of
the week in wd_.

3 [Example 1 : If dp represents 1970-01-01, the constructed weekday represents Thursday by storing 4 in wd_.
— end example ]

constexpr explicit weekday(const local_days& dp) noexcept;

4 Effects: Computes what day of the week corresponds to the local_days dp, and initializes that day of
the week in wd_.

5 Postconditions: The value is identical to that constructed from sys_days{dp.time_since_epoch()}.

constexpr weekday& operator++() noexcept;

6 Effects: *this += days{1}.
7 Returns: *this.

constexpr weekday operator++(int) noexcept;

8 Effects: ++(*this).
9 Returns: A copy of *this as it existed on entry to this member function.

constexpr weekday& operator--() noexcept;

10 Effects: *this -= days{1}.
11 Returns: *this.

constexpr weekday operator--(int) noexcept;

12 Effects: --(*this).
13 Returns: A copy of *this as it existed on entry to this member function.

constexpr weekday& operator+=(const days& d) noexcept;

14 Effects: *this = *this + d.
15 Returns: *this.

constexpr weekday& operator-=(const days& d) noexcept;

16 Effects: *this = *this - d.
17 Returns: *this.

constexpr unsigned c_encoding() const noexcept;

18 Returns: wd_.

constexpr unsigned iso_encoding() const noexcept;

19 Returns: wd_ == 0u ? 7u : wd_.

constexpr bool ok() const noexcept;

20 Returns: wd_ <= 6.

constexpr weekday_indexed operator[](unsigned index) const noexcept;

21 Returns: {*this, index}.

constexpr weekday_last operator[](last_spec) const noexcept;

22 Returns: weekday_last{*this}.
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29.8.6.3 Non-member functions [time.cal.wd.nonmembers]

constexpr bool operator==(const weekday& x, const weekday& y) noexcept;

1 Returns: x.wd_ == y.wd_.

constexpr weekday operator+(const weekday& x, const days& y) noexcept;

2 Returns:
weekday{modulo(static_cast<long long>(x.wd_) + y.count(), 7)}

where modulo(n, 7) computes the remainder of n divided by 7 using Euclidean division.
[Note 1 : Given a divisor of 7, Euclidean division truncates towards negative infinity and always produces a
remainder in the range of [0, 6]. Assuming no overflow in the signed summation, this operation results in a
weekday holding a value in the range [0, 6] even if !x.ok(). — end note ]
[Example 1 : Monday + days{6} == Sunday. — end example ]

constexpr weekday operator+(const days& x, const weekday& y) noexcept;

3 Returns: y + x.

constexpr weekday operator-(const weekday& x, const days& y) noexcept;

4 Returns: x + -y.

constexpr days operator-(const weekday& x, const weekday& y) noexcept;

5 Returns: If x.ok() == true and y.ok() == true, returns a value d in the range [days{0}, days{6}]
satisfying y + d == x. Otherwise the value returned is unspecified.
[Example 2 : Sunday - Monday == days{6}. — end example ]

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const weekday& wd);

6 Effects: Equivalent to:
return os << (wd.ok() ?

format(os.getloc(), STATICALLY-WIDEN <charT>("{:L%a}"), wd) :
format(os.getloc(), STATICALLY-WIDEN <charT>("{} is not a valid weekday"),

static_cast<unsigned>(wd.wd_)));

template<class charT, class traits, class Alloc = allocator<charT>>
basic_istream<charT, traits>&

from_stream(basic_istream<charT, traits>& is, const charT* fmt,
weekday& wd, basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

7 Effects: Attempts to parse the input stream is into the weekday wd using the format flags given in
the NTCTS fmt as specified in 29.13. If the parse fails to decode a valid weekday, is.setstate(ios_-
base::failbit) is called and wd is not modified. If %Z is used and successfully parsed, that value will
be assigned to *abbrev if abbrev is non-null. If %z (or a modified variant) is used and successfully
parsed, that value will be assigned to *offset if offset is non-null.

8 Returns: is.

29.8.7 Class weekday_indexed [time.cal.wdidx]
29.8.7.1 Overview [time.cal.wdidx.overview]

namespace std::chrono {
class weekday_indexed {

chrono::weekday wd_; // exposition only
unsigned char index_; // exposition only

public:
weekday_indexed() = default;
constexpr weekday_indexed(const chrono::weekday& wd, unsigned index) noexcept;
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constexpr chrono::weekday weekday() const noexcept;
constexpr unsigned index() const noexcept;
constexpr bool ok() const noexcept;

};
}

1 weekday_indexed represents a weekday and a small index in the range 1 to 5. This class is used to represent
the first, second, third, fourth, or fifth weekday of a month.

2 [Note 1 : A weekday_indexed object can be constructed by indexing a weekday with an unsigned. — end note ]
[Example 1 :

constexpr auto wdi = Sunday[2]; // wdi is the second Sunday of an as yet unspecified month
static_assert(wdi.weekday() == Sunday);
static_assert(wdi.index() == 2);

— end example ]
3 weekday_indexed is a trivially copyable and standard-layout class type.

29.8.7.2 Member functions [time.cal.wdidx.members]

constexpr weekday_indexed(const chrono::weekday& wd, unsigned index) noexcept;

1 Effects: Initializes wd_ with wd and index_ with index. The values held are unspecified if !wd.ok()
or index is not in the range [0, 7].

constexpr chrono::weekday weekday() const noexcept;

2 Returns: wd_.

constexpr unsigned index() const noexcept;

3 Returns: index_.

constexpr bool ok() const noexcept;

4 Returns: wd_.ok() && 1 <= index_ && index_ <= 5.

29.8.7.3 Non-member functions [time.cal.wdidx.nonmembers]

constexpr bool operator==(const weekday_indexed& x, const weekday_indexed& y) noexcept;

1 Returns: x.weekday() == y.weekday() && x.index() == y.index().

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const weekday_indexed& wdi);

2 Effects: Equivalent to:
auto i = wdi.index();
return os << (i >= 1 && i <= 5 ?

format(os.getloc(), STATICALLY-WIDEN <charT>("{:L}[{}]"), wdi.weekday(), i) :
format(os.getloc(), STATICALLY-WIDEN <charT>("{:L}[{} is not a valid index]"),

wdi.weekday(), i));

29.8.8 Class weekday_last [time.cal.wdlast]
29.8.8.1 Overview [time.cal.wdlast.overview]

namespace std::chrono {
class weekday_last {

chrono::weekday wd_; // exposition only

public:
constexpr explicit weekday_last(const chrono::weekday& wd) noexcept;

constexpr chrono::weekday weekday() const noexcept;
constexpr bool ok() const noexcept;

};
}
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1 weekday_last represents the last weekday of a month.
2 [Note 1 : A weekday_last object can be constructed by indexing a weekday with last. — end note ]

[Example 1 :
constexpr auto wdl = Sunday[last]; // wdl is the last Sunday of an as yet unspecified month
static_assert(wdl.weekday() == Sunday);

— end example ]
3 weekday_last is a trivially copyable and standard-layout class type.

29.8.8.2 Member functions [time.cal.wdlast.members]

constexpr explicit weekday_last(const chrono::weekday& wd) noexcept;

1 Effects: Initializes wd_ with wd.

constexpr chrono::weekday weekday() const noexcept;

2 Returns: wd_.

constexpr bool ok() const noexcept;

3 Returns: wd_.ok().

29.8.8.3 Non-member functions [time.cal.wdlast.nonmembers]

constexpr bool operator==(const weekday_last& x, const weekday_last& y) noexcept;

1 Returns: x.weekday() == y.weekday().

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const weekday_last& wdl);

2 Effects: Equivalent to:
return os << format(os.getloc(), STATICALLY-WIDEN <charT>("{:L}[last]"), wdl.weekday());

29.8.9 Class month_day [time.cal.md]
29.8.9.1 Overview [time.cal.md.overview]

namespace std::chrono {
class month_day {

chrono::month m_; // exposition only
chrono::day d_; // exposition only

public:
month_day() = default;
constexpr month_day(const chrono::month& m, const chrono::day& d) noexcept;

constexpr chrono::month month() const noexcept;
constexpr chrono::day day() const noexcept;
constexpr bool ok() const noexcept;

};
}

1 month_day represents a specific day of a specific month, but with an unspecified year. month_day meets the
Cpp17EqualityComparable (Table 28) and Cpp17LessThanComparable (Table 29) requirements.

2 month_day is a trivially copyable and standard-layout class type.

29.8.9.2 Member functions [time.cal.md.members]

constexpr month_day(const chrono::month& m, const chrono::day& d) noexcept;

1 Effects: Initializes m_ with m, and d_ with d.

constexpr chrono::month month() const noexcept;

2 Returns: m_.
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constexpr chrono::day day() const noexcept;

3 Returns: d_.

constexpr bool ok() const noexcept;

4 Returns: true if m_.ok() is true, 1d <= d_, and d_ is less than or equal to the number of days in
month m_; otherwise returns false. When m_ == February, the number of days is considered to be 29.

29.8.9.3 Non-member functions [time.cal.md.nonmembers]

constexpr bool operator==(const month_day& x, const month_day& y) noexcept;

1 Returns: x.month() == y.month() && x.day() == y.day().

constexpr strong_ordering operator<=>(const month_day& x, const month_day& y) noexcept;

2 Effects: Equivalent to:
if (auto c = x.month() <=> y.month(); c != 0) return c;
return x.day() <=> y.day();

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const month_day& md);

3 Effects: Equivalent to:
return os << format(os.getloc(), STATICALLY-WIDEN <charT>("{:L}/{}"),

md.month(), md.day());

template<class charT, class traits, class Alloc = allocator<charT>>
basic_istream<charT, traits>&

from_stream(basic_istream<charT, traits>& is, const charT* fmt,
month_day& md, basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

4 Effects: Attempts to parse the input stream is into the month_day md using the format flags given in the
NTCTS fmt as specified in 29.13. If the parse fails to decode a valid month_day, is.setstate(ios_-
base::failbit) is called and md is not modified. If %Z is used and successfully parsed, that value will
be assigned to *abbrev if abbrev is non-null. If %z (or a modified variant) is used and successfully
parsed, that value will be assigned to *offset if offset is non-null.

5 Returns: is.

29.8.10 Class month_day_last [time.cal.mdlast]
namespace std::chrono {

class month_day_last {
chrono::month m_; // exposition only

public:
constexpr explicit month_day_last(const chrono::month& m) noexcept;

constexpr chrono::month month() const noexcept;
constexpr bool ok() const noexcept;

};
}

1 month_day_last represents the last day of a month.
2 [Note 1 : A month_day_last object can be constructed using the expression m/last or last/m, where m is an expression

of type month. — end note ]
[Example 1 :

constexpr auto mdl = February/last; // mdl is the last day of February of an as yet unspecified year
static_assert(mdl.month() == February);

— end example ]
3 month_day_last is a trivially copyable and standard-layout class type.
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constexpr explicit month_day_last(const chrono::month& m) noexcept;

4 Effects: Initializes m_ with m.

constexpr month month() const noexcept;

5 Returns: m_.

constexpr bool ok() const noexcept;

6 Returns: m_.ok().

constexpr bool operator==(const month_day_last& x, const month_day_last& y) noexcept;

7 Returns: x.month() == y.month().

constexpr strong_ordering operator<=>(const month_day_last& x, const month_day_last& y) noexcept;

8 Returns: x.month() <=> y.month().

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const month_day_last& mdl);

9 Effects: Equivalent to:
return os << format(os.getloc(), STATICALLY-WIDEN <charT>("{:L}/last"), mdl.month());

29.8.11 Class month_weekday [time.cal.mwd]
29.8.11.1 Overview [time.cal.mwd.overview]

namespace std::chrono {
class month_weekday {

chrono::month m_; // exposition only
chrono::weekday_indexed wdi_; // exposition only

public:
constexpr month_weekday(const chrono::month& m, const chrono::weekday_indexed& wdi) noexcept;

constexpr chrono::month month() const noexcept;
constexpr chrono::weekday_indexed weekday_indexed() const noexcept;
constexpr bool ok() const noexcept;

};
}

1 month_weekday represents the nth weekday of a month, of an as yet unspecified year. To do this the
month_weekday stores a month and a weekday_indexed.

2 [Example 1 :
constexpr auto mwd

= February/Tuesday[3]; // mwd is the third Tuesday of February of an as yet unspecified year
static_assert(mwd.month() == February);
static_assert(mwd.weekday_indexed() == Tuesday[3]);

— end example ]
3 month_weekday is a trivially copyable and standard-layout class type.

29.8.11.2 Member functions [time.cal.mwd.members]

constexpr month_weekday(const chrono::month& m, const chrono::weekday_indexed& wdi) noexcept;

1 Effects: Initializes m_ with m, and wdi_ with wdi.

constexpr chrono::month month() const noexcept;

2 Returns: m_.

constexpr chrono::weekday_indexed weekday_indexed() const noexcept;

3 Returns: wdi_.

constexpr bool ok() const noexcept;

4 Returns: m_.ok() && wdi_.ok().
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29.8.11.3 Non-member functions [time.cal.mwd.nonmembers]

constexpr bool operator==(const month_weekday& x, const month_weekday& y) noexcept;

1 Returns: x.month() == y.month() && x.weekday_indexed() == y.weekday_indexed().

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const month_weekday& mwd);

2 Effects: Equivalent to:
return os << format(os.getloc(), STATICALLY-WIDEN <charT>("{:L}/{:L}"),

mwd.month(), mwd.weekday_indexed());

29.8.12 Class month_weekday_last [time.cal.mwdlast]
29.8.12.1 Overview [time.cal.mwdlast.overview]

namespace std::chrono {
class month_weekday_last {

chrono::month m_; // exposition only
chrono::weekday_last wdl_; // exposition only

public:
constexpr month_weekday_last(const chrono::month& m,

const chrono::weekday_last& wdl) noexcept;

constexpr chrono::month month() const noexcept;
constexpr chrono::weekday_last weekday_last() const noexcept;
constexpr bool ok() const noexcept;

};
}

1 month_weekday_last represents the last weekday of a month, of an as yet unspecified year. To do this the
month_weekday_last stores a month and a weekday_last.

2 [Example 1 :
constexpr auto mwd

= February/Tuesday[last]; // mwd is the last Tuesday of February of an as yet unspecified year
static_assert(mwd.month() == February);
static_assert(mwd.weekday_last() == Tuesday[last]);

— end example ]
3 month_weekday_last is a trivially copyable and standard-layout class type.

29.8.12.2 Member functions [time.cal.mwdlast.members]

constexpr month_weekday_last(const chrono::month& m,
const chrono::weekday_last& wdl) noexcept;

1 Effects: Initializes m_ with m, and wdl_ with wdl.

constexpr chrono::month month() const noexcept;

2 Returns: m_.

constexpr chrono::weekday_last weekday_last() const noexcept;

3 Returns: wdl_.

constexpr bool ok() const noexcept;

4 Returns: m_.ok() && wdl_.ok().

29.8.12.3 Non-member functions [time.cal.mwdlast.nonmembers]

constexpr bool operator==(const month_weekday_last& x, const month_weekday_last& y) noexcept;

1 Returns: x.month() == y.month() && x.weekday_last() == y.weekday_last().
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template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const month_weekday_last& mwdl);

2 Effects: Equivalent to:
return os << format(os.getloc(), STATICALLY-WIDEN <charT>("{:L}/{:L}"),

mwdl.month(), mwdl.weekday_last());

29.8.13 Class year_month [time.cal.ym]
29.8.13.1 Overview [time.cal.ym.overview]

namespace std::chrono {
class year_month {

chrono::year y_; // exposition only
chrono::month m_; // exposition only

public:
year_month() = default;
constexpr year_month(const chrono::year& y, const chrono::month& m) noexcept;

constexpr chrono::year year() const noexcept;
constexpr chrono::month month() const noexcept;

constexpr year_month& operator+=(const months& dm) noexcept;
constexpr year_month& operator-=(const months& dm) noexcept;
constexpr year_month& operator+=(const years& dy) noexcept;
constexpr year_month& operator-=(const years& dy) noexcept;

constexpr bool ok() const noexcept;
};

}

1 year_month represents a specific month of a specific year, but with an unspecified day. year_month is
a field-based time point with a resolution of months. year_month meets the Cpp17EqualityComparable
(Table 28) and Cpp17LessThanComparable (Table 29) requirements.

2 year_month is a trivially copyable and standard-layout class type.

29.8.13.2 Member functions [time.cal.ym.members]

constexpr year_month(const chrono::year& y, const chrono::month& m) noexcept;

1 Effects: Initializes y_ with y, and m_ with m.

constexpr chrono::year year() const noexcept;

2 Returns: y_.

constexpr chrono::month month() const noexcept;

3 Returns: m_.

constexpr year_month& operator+=(const months& dm) noexcept;

4 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its
implicit conversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).

5 Effects: *this = *this + dm.
6 Returns: *this.

constexpr year_month& operator-=(const months& dm) noexcept;

7 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its
implicit conversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).

8 Effects: *this = *this - dm.
9 Returns: *this.
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constexpr year_month& operator+=(const years& dy) noexcept;

10 Effects: *this = *this + dy.
11 Returns: *this.

constexpr year_month& operator-=(const years& dy) noexcept;

12 Effects: *this = *this - dy.
13 Returns: *this.

constexpr bool ok() const noexcept;

14 Returns: y_.ok() && m_.ok().

29.8.13.3 Non-member functions [time.cal.ym.nonmembers]

constexpr bool operator==(const year_month& x, const year_month& y) noexcept;

1 Returns: x.year() == y.year() && x.month() == y.month().

constexpr strong_ordering operator<=>(const year_month& x, const year_month& y) noexcept;

2 Effects: Equivalent to:
if (auto c = x.year() <=> y.year(); c != 0) return c;
return x.month() <=> y.month();

constexpr year_month operator+(const year_month& ym, const months& dm) noexcept;

3 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its
implicit conversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).

4 Returns: A year_month value z such that z.ok() && z - ym == dm is true.
5 Complexity: O(1) with respect to the value of dm.

constexpr year_month operator+(const months& dm, const year_month& ym) noexcept;

6 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its
implicit conversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).

7 Returns: ym + dm.

constexpr year_month operator-(const year_month& ym, const months& dm) noexcept;

8 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its
implicit conversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).

9 Returns: ym + -dm.

constexpr months operator-(const year_month& x, const year_month& y) noexcept;

10 Returns:
x.year() - y.year() + months{static_cast<int>(unsigned{x.month()}) -

static_cast<int>(unsigned{y.month()})}

constexpr year_month operator+(const year_month& ym, const years& dy) noexcept;

11 Returns: (ym.year() + dy) / ym.month().

constexpr year_month operator+(const years& dy, const year_month& ym) noexcept;

12 Returns: ym + dy.

constexpr year_month operator-(const year_month& ym, const years& dy) noexcept;

13 Returns: ym + -dy.

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const year_month& ym);

14 Effects: Equivalent to:
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return os << format(os.getloc(), STATICALLY-WIDEN <charT>("{}/{:L}"),
ym.year(), ym.month());

template<class charT, class traits, class Alloc = allocator<charT>>
basic_istream<charT, traits>&

from_stream(basic_istream<charT, traits>& is, const charT* fmt,
year_month& ym, basic_string<charT, traits, Alloc>* abbrev = nullptr,
minutes* offset = nullptr);

15 Effects: Attempts to parse the input stream is into the year_month ym using the format flags given in the
NTCTS fmt as specified in 29.13. If the parse fails to decode a valid year_month, is.setstate(ios_-
base::failbit) is called and ym is not modified. If %Z is used and successfully parsed, that value will
be assigned to *abbrev if abbrev is non-null. If %z (or a modified variant) is used and successfully
parsed, that value will be assigned to *offset if offset is non-null.

16 Returns: is.

29.8.14 Class year_month_day [time.cal.ymd]
29.8.14.1 Overview [time.cal.ymd.overview]

namespace std::chrono {
class year_month_day {

chrono::year y_; // exposition only
chrono::month m_; // exposition only
chrono::day d_; // exposition only

public:
year_month_day() = default;
constexpr year_month_day(const chrono::year& y, const chrono::month& m,

const chrono::day& d) noexcept;
constexpr year_month_day(const year_month_day_last& ymdl) noexcept;
constexpr year_month_day(const sys_days& dp) noexcept;
constexpr explicit year_month_day(const local_days& dp) noexcept;

constexpr year_month_day& operator+=(const months& m) noexcept;
constexpr year_month_day& operator-=(const months& m) noexcept;
constexpr year_month_day& operator+=(const years& y) noexcept;
constexpr year_month_day& operator-=(const years& y) noexcept;

constexpr chrono::year year() const noexcept;
constexpr chrono::month month() const noexcept;
constexpr chrono::day day() const noexcept;

constexpr operator sys_days() const noexcept;
constexpr explicit operator local_days() const noexcept;
constexpr bool ok() const noexcept;

};
}

1 year_month_day represents a specific year, month, and day. year_month_day is a field-based time point
with a resolution of days.
[Note 1 : year_month_day supports years- and months-oriented arithmetic, but not days-oriented arithmetic. For the
latter, there is a conversion to sys_days, which efficiently supports days-oriented arithmetic. — end note ]

year_month_day meets the Cpp17EqualityComparable (Table 28) and Cpp17LessThanComparable (Table 29)
requirements.

2 year_month_day is a trivially copyable and standard-layout class type.

29.8.14.2 Member functions [time.cal.ymd.members]

constexpr year_month_day(const chrono::year& y, const chrono::month& m,
const chrono::day& d) noexcept;

1 Effects: Initializes y_ with y, m_ with m, and d_ with d.

§ 29.8.14.2 1533



© ISO/IEC N4950

constexpr year_month_day(const year_month_day_last& ymdl) noexcept;

2 Effects: Initializes y_ with ymdl.year(), m_ with ymdl.month(), and d_ with ymdl.day().
[Note 1 : This conversion from year_month_day_last to year_month_day can be more efficient than converting
a year_month_day_last to a sys_days, and then converting that sys_days to a year_month_day. — end note ]

constexpr year_month_day(const sys_days& dp) noexcept;

3 Effects: Constructs an object of type year_month_day that corresponds to the date represented by dp.
4 Remarks: For any value ymd of type year_month_day for which ymd.ok() is true, ymd == year_-

month_day{sys_days{ymd}} is true.

constexpr explicit year_month_day(const local_days& dp) noexcept;

5 Effects: Equivalent to constructing with sys_days{dp.time_since_epoch()}.

constexpr year_month_day& operator+=(const months& m) noexcept;

6 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its
implicit conversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).

7 Effects: *this = *this + m.
8 Returns: *this.

constexpr year_month_day& operator-=(const months& m) noexcept;

9 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its
implicit conversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).

10 Effects: *this = *this - m.
11 Returns: *this.

constexpr year_month_day& year_month_day::operator+=(const years& y) noexcept;

12 Effects: *this = *this + y.
13 Returns: *this.

constexpr year_month_day& year_month_day::operator-=(const years& y) noexcept;

14 Effects: *this = *this - y.
15 Returns: *this.

constexpr chrono::year year() const noexcept;

16 Returns: y_.

constexpr chrono::month month() const noexcept;

17 Returns: m_.

constexpr chrono::day day() const noexcept;

18 Returns: d_.

constexpr operator sys_days() const noexcept;

19 Returns: If ok(), returns a sys_days holding a count of days from the sys_days epoch to *this
(a negative value if *this represents a date prior to the sys_days epoch). Otherwise, if y_.ok()
&& m_.ok() is true, returns sys_days{y_/m_/1d} + (d_ - 1d). Otherwise the value returned is
unspecified.

20 Remarks: A sys_days in the range [days{-12687428}, days{11248737}] which is converted to a
year_month_day has the same value when converted back to a sys_days.

21 [Example 1 :
static_assert(year_month_day{sys_days{2017y/January/0}} == 2016y/December/31);
static_assert(year_month_day{sys_days{2017y/January/31}} == 2017y/January/31);
static_assert(year_month_day{sys_days{2017y/January/32}} == 2017y/February/1);

— end example ]
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constexpr explicit operator local_days() const noexcept;

22 Returns: local_days{sys_days{*this}.time_since_epoch()}.

constexpr bool ok() const noexcept;

23 Returns: If y_.ok() is true, and m_.ok() is true, and d_ is in the range [1d, (y_/m_/last).day()],
then returns true; otherwise returns false.

29.8.14.3 Non-member functions [time.cal.ymd.nonmembers]

constexpr bool operator==(const year_month_day& x, const year_month_day& y) noexcept;

1 Returns: x.year() == y.year() && x.month() == y.month() && x.day() == y.day().

constexpr strong_ordering operator<=>(const year_month_day& x, const year_month_day& y) noexcept;

2 Effects: Equivalent to:
if (auto c = x.year() <=> y.year(); c != 0) return c;
if (auto c = x.month() <=> y.month(); c != 0) return c;
return x.day() <=> y.day();

constexpr year_month_day operator+(const year_month_day& ymd, const months& dm) noexcept;

3 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its
implicit conversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).

4 Returns: (ymd.year() / ymd.month() + dm) / ymd.day().
5 [Note 1 : If ymd.day() is in the range [1d, 28d], ok() will return true for the resultant year_month_day. — end

note ]

constexpr year_month_day operator+(const months& dm, const year_month_day& ymd) noexcept;

6 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its
implicit conversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).

7 Returns: ymd + dm.

constexpr year_month_day operator-(const year_month_day& ymd, const months& dm) noexcept;

8 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its
implicit conversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).

9 Returns: ymd + (-dm).

constexpr year_month_day operator+(const year_month_day& ymd, const years& dy) noexcept;

10 Returns: (ymd.year() + dy) / ymd.month() / ymd.day().
11 [Note 2 : If ymd.month() is February and ymd.day() is not in the range [1d, 28d], ok() can return false for

the resultant year_month_day. — end note ]

constexpr year_month_day operator+(const years& dy, const year_month_day& ymd) noexcept;

12 Returns: ymd + dy.

constexpr year_month_day operator-(const year_month_day& ymd, const years& dy) noexcept;

13 Returns: ymd + (-dy).

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const year_month_day& ymd);

14 Effects: Equivalent to:
return os << (ymd.ok() ?

format(STATICALLY-WIDEN <charT>("{:%F}"), ymd) :
format(STATICALLY-WIDEN <charT>("{:%F} is not a valid date"), ymd));

template<class charT, class traits, class Alloc = allocator<charT>>
basic_istream<charT, traits>&

from_stream(basic_istream<charT, traits>& is, const charT* fmt,
year_month_day& ymd, basic_string<charT, traits, Alloc>* abbrev = nullptr,
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minutes* offset = nullptr);

15 Effects: Attempts to parse the input stream is into the year_month_day ymd using the format flags
given in the NTCTS fmt as specified in 29.13. If the parse fails to decode a valid year_month_day,
is.setstate(ios_base::failbit) is called and ymd is not modified. If %Z is used and successfully
parsed, that value will be assigned to *abbrev if abbrev is non-null. If %z (or a modified variant) is
used and successfully parsed, that value will be assigned to *offset if offset is non-null.

16 Returns: is.

29.8.15 Class year_month_day_last [time.cal.ymdlast]
29.8.15.1 Overview [time.cal.ymdlast.overview]

namespace std::chrono {
class year_month_day_last {

chrono::year y_; // exposition only
chrono::month_day_last mdl_; // exposition only

public:
constexpr year_month_day_last(const chrono::year& y,

const chrono::month_day_last& mdl) noexcept;

constexpr year_month_day_last& operator+=(const months& m) noexcept;
constexpr year_month_day_last& operator-=(const months& m) noexcept;
constexpr year_month_day_last& operator+=(const years& y) noexcept;
constexpr year_month_day_last& operator-=(const years& y) noexcept;

constexpr chrono::year year() const noexcept;
constexpr chrono::month month() const noexcept;
constexpr chrono::month_day_last month_day_last() const noexcept;
constexpr chrono::day day() const noexcept;

constexpr operator sys_days() const noexcept;
constexpr explicit operator local_days() const noexcept;
constexpr bool ok() const noexcept;

};
}

1 year_month_day_last represents the last day of a specific year and month. year_month_day_last is a
field-based time point with a resolution of days, except that it is restricted to pointing to the last day of a
year and month.
[Note 1 : year_month_day_last supports years- and months-oriented arithmetic, but not days-oriented arithmetic.
For the latter, there is a conversion to sys_days, which efficiently supports days-oriented arithmetic. — end note ]

year_month_day_last meets the Cpp17EqualityComparable (Table 28) and Cpp17LessThanComparable
(Table 29) requirements.

2 year_month_day_last is a trivially copyable and standard-layout class type.

29.8.15.2 Member functions [time.cal.ymdlast.members]

constexpr year_month_day_last(const chrono::year& y,
const chrono::month_day_last& mdl) noexcept;

1 Effects: Initializes y_ with y and mdl_ with mdl.

constexpr year_month_day_last& operator+=(const months& m) noexcept;

2 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its
implicit conversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).

3 Effects: *this = *this + m.
4 Returns: *this.

constexpr year_month_day_last& operator-=(const months& m) noexcept;

5 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its
implicit conversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).
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6 Effects: *this = *this - m.
7 Returns: *this.

constexpr year_month_day_last& operator+=(const years& y) noexcept;

8 Effects: *this = *this + y.
9 Returns: *this.

constexpr year_month_day_last& operator-=(const years& y) noexcept;

10 Effects: *this = *this - y.
11 Returns: *this.

constexpr chrono::year year() const noexcept;

12 Returns: y_.

constexpr chrono::month month() const noexcept;

13 Returns: mdl_.month().

constexpr chrono::month_day_last month_day_last() const noexcept;

14 Returns: mdl_.

constexpr chrono::day day() const noexcept;

15 Returns: If ok() is true, returns a day representing the last day of the (year, month) pair represented
by *this. Otherwise, the returned value is unspecified.

16 [Note 1 : This value might be computed on demand. — end note ]

constexpr operator sys_days() const noexcept;

17 Returns: sys_days{year()/month()/day()}.

constexpr explicit operator local_days() const noexcept;

18 Returns: local_days{sys_days{*this}.time_since_epoch()}.

constexpr bool ok() const noexcept;

19 Returns: y_.ok() && mdl_.ok().

29.8.15.3 Non-member functions [time.cal.ymdlast.nonmembers]

constexpr bool operator==(const year_month_day_last& x, const year_month_day_last& y) noexcept;

1 Returns: x.year() == y.year() && x.month_day_last() == y.month_day_last().

constexpr strong_ordering operator<=>(const year_month_day_last& x,
const year_month_day_last& y) noexcept;

2 Effects: Equivalent to:
if (auto c = x.year() <=> y.year(); c != 0) return c;
return x.month_day_last() <=> y.month_day_last();

constexpr year_month_day_last
operator+(const year_month_day_last& ymdl, const months& dm) noexcept;

3 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its
implicit conversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).

4 Returns: (ymdl.year() / ymdl.month() + dm) / last.

constexpr year_month_day_last
operator+(const months& dm, const year_month_day_last& ymdl) noexcept;

5 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its
implicit conversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).

6 Returns: ymdl + dm.
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constexpr year_month_day_last
operator-(const year_month_day_last& ymdl, const months& dm) noexcept;

7 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its
implicit conversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).

8 Returns: ymdl + (-dm).

constexpr year_month_day_last
operator+(const year_month_day_last& ymdl, const years& dy) noexcept;

9 Returns: {ymdl.year()+dy, ymdl.month_day_last()}.

constexpr year_month_day_last
operator+(const years& dy, const year_month_day_last& ymdl) noexcept;

10 Returns: ymdl + dy.

constexpr year_month_day_last
operator-(const year_month_day_last& ymdl, const years& dy) noexcept;

11 Returns: ymdl + (-dy).

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const year_month_day_last& ymdl);

12 Effects: Equivalent to:
return os << format(os.getloc(), STATICALLY-WIDEN <charT>("{}/{:L}"),

ymdl.year(), ymdl.month_day_last());

29.8.16 Class year_month_weekday [time.cal.ymwd]
29.8.16.1 Overview [time.cal.ymwd.overview]

namespace std::chrono {
class year_month_weekday {

chrono::year y_; // exposition only
chrono::month m_; // exposition only
chrono::weekday_indexed wdi_; // exposition only

public:
year_month_weekday() = default;
constexpr year_month_weekday(const chrono::year& y, const chrono::month& m,

const chrono::weekday_indexed& wdi) noexcept;
constexpr year_month_weekday(const sys_days& dp) noexcept;
constexpr explicit year_month_weekday(const local_days& dp) noexcept;

constexpr year_month_weekday& operator+=(const months& m) noexcept;
constexpr year_month_weekday& operator-=(const months& m) noexcept;
constexpr year_month_weekday& operator+=(const years& y) noexcept;
constexpr year_month_weekday& operator-=(const years& y) noexcept;

constexpr chrono::year year() const noexcept;
constexpr chrono::month month() const noexcept;
constexpr chrono::weekday weekday() const noexcept;
constexpr unsigned index() const noexcept;
constexpr chrono::weekday_indexed weekday_indexed() const noexcept;

constexpr operator sys_days() const noexcept;
constexpr explicit operator local_days() const noexcept;
constexpr bool ok() const noexcept;

};
}

1 year_month_weekday represents a specific year, month, and nth weekday of the month. year_month_weekday
is a field-based time point with a resolution of days.
[Note 1 : year_month_weekday supports years- and months-oriented arithmetic, but not days-oriented arithmetic.
For the latter, there is a conversion to sys_days, which efficiently supports days-oriented arithmetic. — end note ]
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year_month_weekday meets the Cpp17EqualityComparable (Table 28) requirements.
2 year_month_weekday is a trivially copyable and standard-layout class type.

29.8.16.2 Member functions [time.cal.ymwd.members]

constexpr year_month_weekday(const chrono::year& y, const chrono::month& m,
const chrono::weekday_indexed& wdi) noexcept;

1 Effects: Initializes y_ with y, m_ with m, and wdi_ with wdi.

constexpr year_month_weekday(const sys_days& dp) noexcept;

2 Effects: Constructs an object of type year_month_weekday which corresponds to the date represented
by dp.

3 Remarks: For any value ymwd of type year_month_weekday for which ymwd.ok() is true, ymwd ==
year_month_weekday{sys_days{ymwd}} is true.

constexpr explicit year_month_weekday(const local_days& dp) noexcept;

4 Effects: Equivalent to constructing with sys_days{dp.time_since_epoch()}.

constexpr year_month_weekday& operator+=(const months& m) noexcept;

5 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its
implicit conversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).

6 Effects: *this = *this + m.
7 Returns: *this.

constexpr year_month_weekday& operator-=(const months& m) noexcept;

8 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its
implicit conversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).

9 Effects: *this = *this - m.
10 Returns: *this.

constexpr year_month_weekday& operator+=(const years& y) noexcept;

11 Effects: *this = *this + y.
12 Returns: *this.

constexpr year_month_weekday& operator-=(const years& y) noexcept;

13 Effects: *this = *this - y.
14 Returns: *this.

constexpr chrono::year year() const noexcept;

15 Returns: y_.

constexpr chrono::month month() const noexcept;

16 Returns: m_.

constexpr chrono::weekday weekday() const noexcept;

17 Returns: wdi_.weekday().

constexpr unsigned index() const noexcept;

18 Returns: wdi_.index().

constexpr chrono::weekday_indexed weekday_indexed() const noexcept;

19 Returns: wdi_.

constexpr operator sys_days() const noexcept;

20 Returns: If y_.ok() && m_.ok() && wdi_.weekday().ok(), returns a sys_days that represents
the date (index() - 1) * 7 days after the first weekday() of year()/month(). If index() is 0
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the returned sys_days represents the date 7 days prior to the first weekday() of year()/month().
Otherwise the returned value is unspecified.

constexpr explicit operator local_days() const noexcept;

21 Returns: local_days{sys_days{*this}.time_since_epoch()}.

constexpr bool ok() const noexcept;

22 Returns: If any of y_.ok(), m_.ok(), or wdi_.ok() is false, returns false. Otherwise, if *this
represents a valid date, returns true. Otherwise, returns false.

29.8.16.3 Non-member functions [time.cal.ymwd.nonmembers]

constexpr bool operator==(const year_month_weekday& x, const year_month_weekday& y) noexcept;

1 Returns:
x.year() == y.year() && x.month() == y.month() && x.weekday_indexed() == y.weekday_indexed()

constexpr year_month_weekday operator+(const year_month_weekday& ymwd, const months& dm) noexcept;

2 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its
implicit conversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).

3 Returns: (ymwd.year() / ymwd.month() + dm) / ymwd.weekday_indexed().

constexpr year_month_weekday operator+(const months& dm, const year_month_weekday& ymwd) noexcept;

4 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its
implicit conversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).

5 Returns: ymwd + dm.

constexpr year_month_weekday operator-(const year_month_weekday& ymwd, const months& dm) noexcept;

6 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its
implicit conversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).

7 Returns: ymwd + (-dm).

constexpr year_month_weekday operator+(const year_month_weekday& ymwd, const years& dy) noexcept;

8 Returns: {ymwd.year()+dy, ymwd.month(), ymwd.weekday_indexed()}.

constexpr year_month_weekday operator+(const years& dy, const year_month_weekday& ymwd) noexcept;

9 Returns: ymwd + dy.

constexpr year_month_weekday operator-(const year_month_weekday& ymwd, const years& dy) noexcept;

10 Returns: ymwd + (-dy).

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const year_month_weekday& ymwd);

11 Effects: Equivalent to:
return os << format(os.getloc(), STATICALLY-WIDEN <charT>("{}/{:L}/{:L}"),

ymwd.year(), ymwd.month(), ymwd.weekday_indexed());

29.8.17 Class year_month_weekday_last [time.cal.ymwdlast]
29.8.17.1 Overview [time.cal.ymwdlast.overview]

namespace std::chrono {
class year_month_weekday_last {

chrono::year y_; // exposition only
chrono::month m_; // exposition only
chrono::weekday_last wdl_; // exposition only

public:
constexpr year_month_weekday_last(const chrono::year& y, const chrono::month& m,

const chrono::weekday_last& wdl) noexcept;

§ 29.8.17.1 1540



© ISO/IEC N4950

constexpr year_month_weekday_last& operator+=(const months& m) noexcept;
constexpr year_month_weekday_last& operator-=(const months& m) noexcept;
constexpr year_month_weekday_last& operator+=(const years& y) noexcept;
constexpr year_month_weekday_last& operator-=(const years& y) noexcept;

constexpr chrono::year year() const noexcept;
constexpr chrono::month month() const noexcept;
constexpr chrono::weekday weekday() const noexcept;
constexpr chrono::weekday_last weekday_last() const noexcept;

constexpr operator sys_days() const noexcept;
constexpr explicit operator local_days() const noexcept;
constexpr bool ok() const noexcept;

};
}

1 year_month_weekday_last represents a specific year, month, and last weekday of the month. year_month_-
weekday_last is a field-based time point with a resolution of days, except that it is restricted to pointing to
the last weekday of a year and month.
[Note 1 : year_month_weekday_last supports years- and months-oriented arithmetic, but not days-oriented arithmetic.
For the latter, there is a conversion to sys_days, which efficiently supports days-oriented arithmetic. — end note ]

year_month_weekday_last meets the Cpp17EqualityComparable (Table 28) requirements.
2 year_month_weekday_last is a trivially copyable and standard-layout class type.

29.8.17.2 Member functions [time.cal.ymwdlast.members]

constexpr year_month_weekday_last(const chrono::year& y, const chrono::month& m,
const chrono::weekday_last& wdl) noexcept;

1 Effects: Initializes y_ with y, m_ with m, and wdl_ with wdl.

constexpr year_month_weekday_last& operator+=(const months& m) noexcept;

2 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its
implicit conversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).

3 Effects: *this = *this + m.
4 Returns: *this.

constexpr year_month_weekday_last& operator-=(const months& m) noexcept;

5 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its
implicit conversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).

6 Effects: *this = *this - m.
7 Returns: *this.

constexpr year_month_weekday_last& operator+=(const years& y) noexcept;

8 Effects: *this = *this + y.
9 Returns: *this.

constexpr year_month_weekday_last& operator-=(const years& y) noexcept;

10 Effects: *this = *this - y.
11 Returns: *this.

constexpr chrono::year year() const noexcept;

12 Returns: y_.

constexpr chrono::month month() const noexcept;

13 Returns: m_.

constexpr chrono::weekday weekday() const noexcept;

14 Returns: wdl_.weekday().
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constexpr chrono::weekday_last weekday_last() const noexcept;

15 Returns: wdl_.

constexpr operator sys_days() const noexcept;

16 Returns: If ok() == true, returns a sys_days that represents the last weekday() of year()/month().
Otherwise the returned value is unspecified.

constexpr explicit operator local_days() const noexcept;

17 Returns: local_days{sys_days{*this}.time_since_epoch()}.

constexpr bool ok() const noexcept;

18 Returns: y_.ok() && m_.ok() && wdl_.ok().

29.8.17.3 Non-member functions [time.cal.ymwdlast.nonmembers]

constexpr bool operator==(const year_month_weekday_last& x,
const year_month_weekday_last& y) noexcept;

1 Returns:
x.year() == y.year() && x.month() == y.month() && x.weekday_last() == y.weekday_last()

constexpr year_month_weekday_last
operator+(const year_month_weekday_last& ymwdl, const months& dm) noexcept;

2 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its
implicit conversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).

3 Returns: (ymwdl.year() / ymwdl.month() + dm) / ymwdl.weekday_last().

constexpr year_month_weekday_last
operator+(const months& dm, const year_month_weekday_last& ymwdl) noexcept;

4 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its
implicit conversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).

5 Returns: ymwdl + dm.

constexpr year_month_weekday_last
operator-(const year_month_weekday_last& ymwdl, const months& dm) noexcept;

6 Constraints: If the argument supplied by the caller for the months parameter is convertible to years, its
implicit conversion sequence to years is worse than its implicit conversion sequence to months (12.2.4.3).

7 Returns: ymwdl + (-dm).

constexpr year_month_weekday_last
operator+(const year_month_weekday_last& ymwdl, const years& dy) noexcept;

8 Returns: {ymwdl.year()+dy, ymwdl.month(), ymwdl.weekday_last()}.

constexpr year_month_weekday_last
operator+(const years& dy, const year_month_weekday_last& ymwdl) noexcept;

9 Returns: ymwdl + dy.

constexpr year_month_weekday_last
operator-(const year_month_weekday_last& ymwdl, const years& dy) noexcept;

10 Returns: ymwdl + (-dy).

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const year_month_weekday_last& ymwdl);

11 Effects: Equivalent to:
return os << format(os.getloc(), STATICALLY-WIDEN <charT>("{}/{:L}/{:L}"),

ymwdl.year(), ymwdl.month(), ymwdl.weekday_last());
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29.8.18 Conventional syntax operators [time.cal.operators]
1 A set of overloaded operator/ functions provides a conventional syntax for the creation of civil calendar

dates.
2 [Note 1 : The year, month, and day are accepted in any of the following 3 orders:

year /month /day
month /day /year
day /month /year

Anywhere a day is required, any of the following can also be specified:
last
weekday [i ]
weekday [last]

— end note ]
3 [Note 2 : Partial-date types such as year_month and month_day can be created by not applying the second division

operator for any of the three orders. For example:
year_month ym = 2015y/April;
month_day md1 = April/4;
month_day md2 = 4d/April;

— end note ]
4 [Example 1 :

auto a = 2015/4/4; // a == int(125)
auto b = 2015y/4/4; // b == year_month_day{year(2015), month(4), day(4)}
auto c = 2015y/4d/April; // error: no viable operator/ for first /
auto d = 2015/April/4; // error: no viable operator/ for first /

— end example ]

constexpr year_month
operator/(const year& y, const month& m) noexcept;

5 Returns: {y, m}.

constexpr year_month
operator/(const year& y, int m) noexcept;

6 Returns: y / month(m).

constexpr month_day
operator/(const month& m, const day& d) noexcept;

7 Returns: {m, d}.

constexpr month_day
operator/(const month& m, int d) noexcept;

8 Returns: m / day(d).

constexpr month_day
operator/(int m, const day& d) noexcept;

9 Returns: month(m) / d.

constexpr month_day
operator/(const day& d, const month& m) noexcept;

10 Returns: m / d.

constexpr month_day
operator/(const day& d, int m) noexcept;

11 Returns: month(m) / d.

constexpr month_day_last
operator/(const month& m, last_spec) noexcept;

12 Returns: month_day_last{m}.
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constexpr month_day_last
operator/(int m, last_spec) noexcept;

13 Returns: month(m) / last.

constexpr month_day_last
operator/(last_spec, const month& m) noexcept;

14 Returns: m / last.

constexpr month_day_last
operator/(last_spec, int m) noexcept;

15 Returns: month(m) / last.

constexpr month_weekday
operator/(const month& m, const weekday_indexed& wdi) noexcept;

16 Returns: {m, wdi}.

constexpr month_weekday
operator/(int m, const weekday_indexed& wdi) noexcept;

17 Returns: month(m) / wdi.

constexpr month_weekday
operator/(const weekday_indexed& wdi, const month& m) noexcept;

18 Returns: m / wdi.

constexpr month_weekday
operator/(const weekday_indexed& wdi, int m) noexcept;

19 Returns: month(m) / wdi.

constexpr month_weekday_last
operator/(const month& m, const weekday_last& wdl) noexcept;

20 Returns: {m, wdl}.

constexpr month_weekday_last
operator/(int m, const weekday_last& wdl) noexcept;

21 Returns: month(m) / wdl.

constexpr month_weekday_last
operator/(const weekday_last& wdl, const month& m) noexcept;

22 Returns: m / wdl.

constexpr month_weekday_last
operator/(const weekday_last& wdl, int m) noexcept;

23 Returns: month(m) / wdl.

constexpr year_month_day
operator/(const year_month& ym, const day& d) noexcept;

24 Returns: {ym.year(), ym.month(), d}.

constexpr year_month_day
operator/(const year_month& ym, int d) noexcept;

25 Returns: ym / day(d).

constexpr year_month_day
operator/(const year& y, const month_day& md) noexcept;

26 Returns: y / md.month() / md.day().

constexpr year_month_day
operator/(int y, const month_day& md) noexcept;

27 Returns: year(y) / md.
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constexpr year_month_day
operator/(const month_day& md, const year& y) noexcept;

28 Returns: y / md.

constexpr year_month_day
operator/(const month_day& md, int y) noexcept;

29 Returns: year(y) / md.

constexpr year_month_day_last
operator/(const year_month& ym, last_spec) noexcept;

30 Returns: {ym.year(), month_day_last{ym.month()}}.

constexpr year_month_day_last
operator/(const year& y, const month_day_last& mdl) noexcept;

31 Returns: {y, mdl}.

constexpr year_month_day_last
operator/(int y, const month_day_last& mdl) noexcept;

32 Returns: year(y) / mdl.

constexpr year_month_day_last
operator/(const month_day_last& mdl, const year& y) noexcept;

33 Returns: y / mdl.

constexpr year_month_day_last
operator/(const month_day_last& mdl, int y) noexcept;

34 Returns: year(y) / mdl.

constexpr year_month_weekday
operator/(const year_month& ym, const weekday_indexed& wdi) noexcept;

35 Returns: {ym.year(), ym.month(), wdi}.

constexpr year_month_weekday
operator/(const year& y, const month_weekday& mwd) noexcept;

36 Returns: {y, mwd.month(), mwd.weekday_indexed()}.

constexpr year_month_weekday
operator/(int y, const month_weekday& mwd) noexcept;

37 Returns: year(y) / mwd.

constexpr year_month_weekday
operator/(const month_weekday& mwd, const year& y) noexcept;

38 Returns: y / mwd.

constexpr year_month_weekday
operator/(const month_weekday& mwd, int y) noexcept;

39 Returns: year(y) / mwd.

constexpr year_month_weekday_last
operator/(const year_month& ym, const weekday_last& wdl) noexcept;

40 Returns: {ym.year(), ym.month(), wdl}.

constexpr year_month_weekday_last
operator/(const year& y, const month_weekday_last& mwdl) noexcept;

41 Returns: {y, mwdl.month(), mwdl.weekday_last()}.

constexpr year_month_weekday_last
operator/(int y, const month_weekday_last& mwdl) noexcept;

42 Returns: year(y) / mwdl.
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constexpr year_month_weekday_last
operator/(const month_weekday_last& mwdl, const year& y) noexcept;

43 Returns: y / mwdl.

constexpr year_month_weekday_last
operator/(const month_weekday_last& mwdl, int y) noexcept;

44 Returns: year(y) / mwdl.

29.9 Class template hh_mm_ss [time.hms]
29.9.1 Overview [time.hms.overview]

namespace std::chrono {
template<class Duration> class hh_mm_ss {
public:

static constexpr unsigned fractional_width = see below ;
using precision = see below ;

constexpr hh_mm_ss() noexcept : hh_mm_ss{Duration::zero()} {}
constexpr explicit hh_mm_ss(Duration d);

constexpr bool is_negative() const noexcept;
constexpr chrono::hours hours() const noexcept;
constexpr chrono::minutes minutes() const noexcept;
constexpr chrono::seconds seconds() const noexcept;
constexpr precision subseconds() const noexcept;

constexpr explicit operator precision() const noexcept;
constexpr precision to_duration() const noexcept;

private:
bool is_neg; // exposition only
chrono::hours h; // exposition only
chrono::minutes m; // exposition only
chrono::seconds s; // exposition only
precision ss; // exposition only

};
}

1 The hh_mm_ss class template splits a duration into a multi-field time structure hours:minutes:seconds and
possibly subseconds, where subseconds will be a duration unit based on a non-positive power of 10. The
Duration template parameter dictates the precision to which the time is split. A hh_mm_ss models negative
durations with a distinct is_negative getter that returns true when the input duration is negative. The
individual duration fields always return non-negative durations even when is_negative() indicates the
structure is representing a negative duration.

2 If Duration is not a specialization of duration, the program is ill-formed.

29.9.2 Members [time.hms.members]
static constexpr unsigned fractional_width = see below ;

1 fractional_width is the number of fractional decimal digits represented by precision. fractional_-
width has the value of the smallest possible integer in the range [0, 18] such that precision will exactly
represent all values of Duration. If no such value of fractional_width exists, then fractional_width
is 6.
[Example 1 : See Table 100 for some durations, the resulting fractional_width, and the formatted fractional
second output of Duration{1}.

Table 100: Examples for fractional_width [tab:time.hms.width]

Duration fractional_width Formatted fractional second output
hours, minutes, and seconds 0
milliseconds 3 0.001
microseconds 6 0.000001
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Table 100: Examples for fractional_width (continued)

Duration fractional_width Formatted fractional second output
nanoseconds 9 0.000000001
duration<int, ratio<1, 2>> 1 0.5
duration<int, ratio<1, 3>> 6 0.333333
duration<int, ratio<1, 4>> 2 0.25
duration<int, ratio<1, 5>> 1 0.2
duration<int, ratio<1, 6>> 6 0.166666
duration<int, ratio<1, 7>> 6 0.142857
duration<int, ratio<1, 8>> 3 0.125
duration<int, ratio<1, 9>> 6 0.111111
duration<int, ratio<1, 10>> 1 0.1
duration<int, ratio<756, 625>> 4 0.2096

— end example ]

using precision = see below ;

2 precision is
duration<common_type_t<Duration::rep, seconds::rep>, ratio<1, 10fractional_width>>

constexpr explicit hh_mm_ss(Duration d);

3 Effects: Constructs an object of type hh_mm_ss which represents the Duration d with precision
precision.

—(3.1) Initializes is_neg with d < Duration::zero().
—(3.2) Initializes h with duration_cast<chrono::hours>(abs(d)).
—(3.3) Initializes m with duration_cast<chrono::minutes>(abs(d) - hours()).
—(3.4) Initializes s with duration_cast<chrono::seconds>(abs(d) - hours() - minutes()).
—(3.5) If treat_as_floating_point_v<precision::rep> is true, initializes ss with abs(d) - hours()

- minutes() - seconds(). Otherwise, initializes ss with duration_cast<precision>(abs(d)
- hours() - minutes() - seconds()).

[Note 1 : When precision::rep is integral and precision::period is ratio<1>, subseconds() always returns
a value equal to 0s. — end note ]

4 Postconditions: If treat_as_floating_point_v<precision::rep> is true, to_duration() returns
d, otherwise to_duration() returns duration_cast<precision>(d).

constexpr bool is_negative() const noexcept;

5 Returns: is_neg.

constexpr chrono::hours hours() const noexcept;

6 Returns: h.

constexpr chrono::minutes minutes() const noexcept;

7 Returns: m.

constexpr chrono::seconds seconds() const noexcept;

8 Returns: s.

constexpr precision subseconds() const noexcept;

9 Returns: ss.

constexpr precision to_duration() const noexcept;

10 Returns: If is_neg, returns -(h + m + s + ss), otherwise returns h + m + s + ss.

constexpr explicit operator precision() const noexcept;

11 Returns: to_duration().
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29.9.3 Non-members [time.hms.nonmembers]
template<class charT, class traits, class Duration>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const hh_mm_ss<Duration>& hms);

1 Effects: Equivalent to:
return os << format(os.getloc(), STATICALLY-WIDEN <charT>("{:L%T}"), hms);

2 [Example 1 :
for (auto ms : {-4083007ms, 4083007ms, 65745123ms}) {

hh_mm_ss hms{ms};
cout << hms << '\n';

}
cout << hh_mm_ss{65745s} << '\n';

Produces the output (assuming the "C" locale):
-01:08:03.007
01:08:03.007
18:15:45.123
18:15:45

— end example ]

29.10 12/24 hours functions [time.12]
1 These functions aid in translating between a 12h format time of day and a 24h format time of day.

constexpr bool is_am(const hours& h) noexcept;

2 Returns: 0h <= h && h <= 11h.

constexpr bool is_pm(const hours& h) noexcept;

3 Returns: 12h <= h && h <= 23h.

constexpr hours make12(const hours& h) noexcept;

4 Returns: The 12-hour equivalent of h in the range [1h, 12h]. If h is not in the range [0h, 23h], the value
returned is unspecified.

constexpr hours make24(const hours& h, bool is_pm) noexcept;

5 Returns: If is_pm is false, returns the 24-hour equivalent of h in the range [0h, 11h], assuming h
represents an ante meridiem hour. Otherwise, returns the 24-hour equivalent of h in the range [12h, 23h],
assuming h represents a post meridiem hour. If h is not in the range [1h, 12h], the value returned is
unspecified.

29.11 Time zones [time.zone]
29.11.1 In general [time.zone.general]

1 29.11 describes an interface for accessing the IANA Time Zone Database that interoperates with sys_time
and local_time. This interface provides time zone support to both the civil calendar types (29.8) and to
user-defined calendars.

29.11.2 Time zone database [time.zone.db]
29.11.2.1 Class tzdb [time.zone.db.tzdb]

namespace std::chrono {
struct tzdb {

string version;
vector<time_zone> zones;
vector<time_zone_link> links;
vector<leap_second> leap_seconds;

const time_zone* locate_zone(string_view tz_name) const;
const time_zone* current_zone() const;

};
}
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1 Each vector in a tzdb object is sorted to enable fast lookup.

const time_zone* locate_zone(string_view tz_name) const;

2 Returns:
—(2.1) If zones contains an element tz for which tz.name() == tz_name, a pointer to tz;
—(2.2) otherwise, if links contains an element tz_l for which tz_l.name() == tz_name, then a pointer

to the element tz of zones for which tz.name() == tz_l.target().
[Note 1 : A time_zone_link specifies an alternative name for a time_zone. — end note ]

3 Throws: If a const time_zone* cannot be found as described in the Returns: element, throws a
runtime_error.
[Note 2 : On non-exceptional return, the return value is always a pointer to a valid time_zone. — end note ]

const time_zone* current_zone() const;

4 Returns: A pointer to the time zone which the computer has set as its local time zone.

29.11.2.2 Class tzdb_list [time.zone.db.list]
namespace std::chrono {

class tzdb_list {
public:

tzdb_list(const tzdb_list&) = delete;
tzdb_list& operator=(const tzdb_list&) = delete;

// unspecified additional constructors

class const_iterator;

const tzdb& front() const noexcept;

const_iterator erase_after(const_iterator p);

const_iterator begin() const noexcept;
const_iterator end() const noexcept;

const_iterator cbegin() const noexcept;
const_iterator cend() const noexcept;

};
}

1 The tzdb_list database is a singleton; the unique object of type tzdb_list can be accessed via the
get_tzdb_list() function.
[Note 1 : This access is only needed for those applications that need to have long uptimes and have a need to update
the time zone database while running. Other applications can implicitly access the front() of this list via the
read-only namespace scope functions get_tzdb(), locate_zone(), and current_zone(). — end note ]

The tzdb_list object contains a list of tzdb objects.
2 tzdb_list::const_iterator is a constant iterator which meets the Cpp17ForwardIterator requirements

and has a value type of tzdb.

const tzdb& front() const noexcept;

3 Synchronization: This operation is thread-safe with respect to reload_tzdb().
[Note 2 : reload_tzdb() pushes a new tzdb onto the front of this container. — end note ]

4 Returns: A reference to the first tzdb in the container.

const_iterator erase_after(const_iterator p);

5 Preconditions: The iterator following p is dereferenceable.
6 Effects: Erases the tzdb referred to by the iterator following p.
7 Postconditions: No pointers, references, or iterators are invalidated except those referring to the erased

tzdb.

§ 29.11.2.2 1549



© ISO/IEC N4950

[Note 3 : It is not possible to erase the tzdb referred to by begin(). — end note ]
8 Returns: An iterator pointing to the element following the one that was erased, or end() if no such

element exists.
9 Throws: Nothing.

const_iterator begin() const noexcept;

10 Returns: An iterator referring to the first tzdb in the container.

const_iterator end() const noexcept;

11 Returns: An iterator referring to the position one past the last tzdb in the container.

const_iterator cbegin() const noexcept;

12 Returns: begin().

const_iterator cend() const noexcept;

13 Returns: end().

29.11.2.3 Time zone database access [time.zone.db.access]

tzdb_list& get_tzdb_list();

1 Effects: If this is the first access to the time zone database, initializes the database. If this call initializes
the database, the resulting database will be a tzdb_list holding a single initialized tzdb.

2 Synchronization: It is safe to call this function from multiple threads at one time.
3 Returns: A reference to the database.
4 Throws: runtime_error if for any reason a reference cannot be returned to a valid tzdb_list containing

one or more valid tzdbs.

const tzdb& get_tzdb();

5 Returns: get_tzdb_list().front().

const time_zone* locate_zone(string_view tz_name);

6 Returns: get_tzdb().locate_zone(tz_name).
7 [Note 1 : The time zone database will be initialized if this is the first reference to the database. — end note ]

const time_zone* current_zone();

8 Returns: get_tzdb().current_zone().

29.11.2.4 Remote time zone database support [time.zone.db.remote]
1 The local time zone database is that supplied by the implementation when the program first accesses the

database, for example via current_zone(). While the program is running, the implementation may choose
to update the time zone database. This update shall not impact the program in any way unless the program
calls the functions in this subclause. This potentially updated time zone database is referred to as the remote
time zone database.

const tzdb& reload_tzdb();

2 Effects: This function first checks the version of the remote time zone database. If the versions of the
local and remote databases are the same, there are no effects. Otherwise the remote database is pushed
to the front of the tzdb_list accessed by get_tzdb_list().

3 Synchronization: This function is thread-safe with respect to get_tzdb_list().front() and get_-
tzdb_list().erase_after().

4 Postconditions: No pointers, references, or iterators are invalidated.
5 Returns: get_tzdb_list().front().
6 Throws: runtime_error if for any reason a reference cannot be returned to a valid tzdb.
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string remote_version();

7 Returns: The latest remote database version.
[Note 1 : This can be compared with get_tzdb().version to discover if the local and remote databases are
equivalent. — end note ]

29.11.3 Exception classes [time.zone.exception]
29.11.3.1 Class nonexistent_local_time [time.zone.exception.nonexist]

namespace std::chrono {
class nonexistent_local_time : public runtime_error {
public:

template<class Duration>
nonexistent_local_time(const local_time<Duration>& tp, const local_info& i);

};
}

1 nonexistent_local_time is thrown when an attempt is made to convert a non-existent local_time to a
sys_time without specifying choose::earliest or choose::latest.

template<class Duration>
nonexistent_local_time(const local_time<Duration>& tp, const local_info& i);

2 Preconditions: i.result == local_info::nonexistent is true.
3 Effects: Initializes the base class with a sequence of char equivalent to that produced by os.str()

initialized as shown below:
ostringstream os;
os << tp << " is in a gap between\n"

<< local_seconds{i.first.end.time_since_epoch()} + i.first.offset << ' '
<< i.first.abbrev << " and\n"
<< local_seconds{i.second.begin.time_since_epoch()} + i.second.offset << ' '
<< i.second.abbrev
<< " which are both equivalent to\n"
<< i.first.end << " UTC";

4 [Example 1 :
#include <chrono>
#include <iostream>

int main() {
using namespace std::chrono;
try {

auto zt = zoned_time{"America/New_York",
local_days{Sunday[2]/March/2016} + 2h + 30min};

} catch (const nonexistent_local_time& e) {
std::cout << e.what() << '\n';

}
}

Produces the output:

2016-03-13 02:30:00 is in a gap between
2016-03-13 02:00:00 EST and
2016-03-13 03:00:00 EDT which are both equivalent to
2016-03-13 07:00:00 UTC

— end example ]

29.11.3.2 Class ambiguous_local_time [time.zone.exception.ambig]
namespace std::chrono {

class ambiguous_local_time : public runtime_error {
public:

template<class Duration>
ambiguous_local_time(const local_time<Duration>& tp, const local_info& i);

};
}
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1 ambiguous_local_time is thrown when an attempt is made to convert an ambiguous local_time to a
sys_time without specifying choose::earliest or choose::latest.

template<class Duration>
ambiguous_local_time(const local_time<Duration>& tp, const local_info& i);

2 Preconditions: i.result == local_info::ambiguous is true.
3 Effects: Initializes the base class with a sequence of char equivalent to that produced by os.str()

initialized as shown below:
ostringstream os;
os << tp << " is ambiguous. It could be\n"

<< tp << ' ' << i.first.abbrev << " == "
<< tp - i.first.offset << " UTC or\n"
<< tp << ' ' << i.second.abbrev << " == "
<< tp - i.second.offset << " UTC";

4 [Example 1 :
#include <chrono>
#include <iostream>

int main() {
using namespace std::chrono;
try {

auto zt = zoned_time{"America/New_York",
local_days{Sunday[1]/November/2016} + 1h + 30min};

} catch (const ambiguous_local_time& e) {
std::cout << e.what() << '\n';

}
}

Produces the output:

2016-11-06 01:30:00 is ambiguous. It could be
2016-11-06 01:30:00 EDT == 2016-11-06 05:30:00 UTC or
2016-11-06 01:30:00 EST == 2016-11-06 06:30:00 UTC

— end example ]

29.11.4 Information classes [time.zone.info]
29.11.4.1 Class sys_info [time.zone.info.sys]

namespace std::chrono {
struct sys_info {

sys_seconds begin;
sys_seconds end;
seconds offset;
minutes save;
string abbrev;

};
}

1 A sys_info object can be obtained from the combination of a time_zone and either a sys_time or local_-
time. It can also be obtained from a zoned_time, which is effectively a pair of a time_zone and sys_time.

2 [Note 1 : This type provides a low-level interface to time zone information. Typical conversions from sys_time to
local_time will use this class implicitly, not explicitly. — end note ]

3 The begin and end data members indicate that, for the associated time_zone and time_point, the offset
and abbrev are in effect in the range [begin, end). This information can be used to efficiently iterate the
transitions of a time_zone.

4 The offset data member indicates the UTC offset in effect for the associated time_zone and time_point.
The relationship between local_time and sys_time is:

offset = local_time - sys_time

5 The save data member is extra information not normally needed for conversion between local_time and
sys_time. If save != 0min, this sys_info is said to be on “daylight saving” time, and offset - save
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suggests what offset this time_zone might use if it were off daylight saving time. However, this information
should not be taken as authoritative. The only sure way to get such information is to query the time_zone
with a time_point that returns a sys_info where save == 0min. There is no guarantee what time_point
might return such a sys_info except that it is guaranteed not to be in the range [begin, end) (if save !=
0min for this sys_info).

6 The abbrev data member indicates the current abbreviation used for the associated time_zone and time_-
point. Abbreviations are not unique among the time_zones, and so one cannot reliably map abbreviations
back to a time_zone and UTC offset.

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const sys_info& r);

7 Effects: Streams out the sys_info object r in an unspecified format.
8 Returns: os.

29.11.4.2 Class local_info [time.zone.info.local]
namespace std::chrono {

struct local_info {
static constexpr int unique = 0;
static constexpr int nonexistent = 1;
static constexpr int ambiguous = 2;

int result;
sys_info first;
sys_info second;

};
}

1 [Note 1 : This type provides a low-level interface to time zone information. Typical conversions from local_time to
sys_time will use this class implicitly, not explicitly. — end note ]

2 Describes the result of converting a local_time to a sys_time as follows:
—(2.1) When a local_time to sys_time conversion is unique, result == unique, first will be filled out

with the correct sys_info, and second will be zero-initialized.
—(2.2) If the conversion stems from a nonexistent local_time then result == nonexistent, first will be

filled out with the sys_info that ends just prior to the local_time, and second will be filled out with
the sys_info that begins just after the local_time.

—(2.3) If the conversion stems from an ambiguous local_time, then result == ambiguous, first will be
filled out with the sys_info that ends just after the local_time, and second will be filled out with
the sys_info that starts just before the local_time.

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const local_info& r);

3 Effects: Streams out the local_info object r in an unspecified format.
4 Returns: os.

29.11.5 Class time_zone [time.zone.timezone]
29.11.5.1 Overview [time.zone.overview]

namespace std::chrono {
class time_zone {
public:

time_zone(time_zone&&) = default;
time_zone& operator=(time_zone&&) = default;

// unspecified additional constructors

string_view name() const noexcept;
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template<class Duration> sys_info get_info(const sys_time<Duration>& st) const;
template<class Duration> local_info get_info(const local_time<Duration>& tp) const;

template<class Duration>
sys_time<common_type_t<Duration, seconds>>

to_sys(const local_time<Duration>& tp) const;

template<class Duration>
sys_time<common_type_t<Duration, seconds>>

to_sys(const local_time<Duration>& tp, choose z) const;

template<class Duration>
local_time<common_type_t<Duration, seconds>>

to_local(const sys_time<Duration>& tp) const;
};

}

1 A time_zone represents all time zone transitions for a specific geographic area. time_zone construction is
unspecified, and performed as part of database initialization.
[Note 1 : const time_zone objects can be accessed via functions such as locate_zone. — end note ]

29.11.5.2 Member functions [time.zone.members]

string_view name() const noexcept;

1 Returns: The name of the time_zone.
2 [Example 1 : "America/New_York". — end example ]

template<class Duration>
sys_info get_info(const sys_time<Duration>& st) const;

3 Returns: A sys_info i for which st is in the range [i.begin, i.end).

template<class Duration>
local_info get_info(const local_time<Duration>& tp) const;

4 Returns: A local_info for tp.

template<class Duration>
sys_time<common_type_t<Duration, seconds>>

to_sys(const local_time<Duration>& tp) const;

5 Returns: A sys_time that is at least as fine as seconds, and will be finer if the argument tp has finer
precision. This sys_time is the UTC equivalent of tp according to the rules of this time_zone.

6 Throws: If the conversion from tp to a sys_time is ambiguous, throws ambiguous_local_time. If the
tp represents a non-existent time between two UTC time_points, throws nonexistent_local_time.

template<class Duration>
sys_time<common_type_t<Duration, seconds>>

to_sys(const local_time<Duration>& tp, choose z) const;

7 Returns: A sys_time that is at least as fine as seconds, and will be finer if the argument tp has
finer precision. This sys_time is the UTC equivalent of tp according to the rules of this time_-
zone. If the conversion from tp to a sys_time is ambiguous, returns the earlier sys_time if z ==
choose::earliest, and returns the later sys_time if z == choose::latest. If the tp represents a
non-existent time between two UTC time_points, then the two UTC time_points will be the same,
and that UTC time_point will be returned.

template<class Duration>
local_time<common_type_t<Duration, seconds>>

to_local(const sys_time<Duration>& tp) const;

8 Returns: The local_time associated with tp and this time_zone.
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29.11.5.3 Non-member functions [time.zone.nonmembers]

bool operator==(const time_zone& x, const time_zone& y) noexcept;

1 Returns: x.name() == y.name().

strong_ordering operator<=>(const time_zone& x, const time_zone& y) noexcept;

2 Returns: x.name() <=> y.name().

29.11.6 Class template zoned_traits [time.zone.zonedtraits]
namespace std::chrono {

template<class T> struct zoned_traits {};
}

1 zoned_traits provides a means for customizing the behavior of zoned_time<Duration, TimeZonePtr>
for the zoned_time default constructor, and constructors taking string_view. A specialization for const
time_zone* is provided by the implementation:

namespace std::chrono {
template<> struct zoned_traits<const time_zone*> {

static const time_zone* default_zone();
static const time_zone* locate_zone(string_view name);

};
}

static const time_zone* default_zone();

2 Returns: std::chrono::locate_zone("UTC").

static const time_zone* locate_zone(string_view name);

3 Returns: std::chrono::locate_zone(name).

29.11.7 Class template zoned_time [time.zone.zonedtime]
29.11.7.1 Overview [time.zone.zonedtime.overview]

namespace std::chrono {
template<class Duration, class TimeZonePtr = const time_zone*>
class zoned_time {
public:

using duration = common_type_t<Duration, seconds>;

private:
TimeZonePtr zone_; // exposition only
sys_time<duration> tp_; // exposition only

using traits = zoned_traits<TimeZonePtr>; // exposition only

public:
zoned_time();
zoned_time(const zoned_time&) = default;
zoned_time& operator=(const zoned_time&) = default;

zoned_time(const sys_time<Duration>& st);
explicit zoned_time(TimeZonePtr z);
explicit zoned_time(string_view name);

template<class Duration2>
zoned_time(const zoned_time<Duration2, TimeZonePtr>& y);

zoned_time(TimeZonePtr z, const sys_time<Duration>& st);
zoned_time(string_view name, const sys_time<Duration>& st);

zoned_time(TimeZonePtr z, const local_time<Duration>& tp);
zoned_time(string_view name, const local_time<Duration>& tp);
zoned_time(TimeZonePtr z, const local_time<Duration>& tp, choose c);
zoned_time(string_view name, const local_time<Duration>& tp, choose c);
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template<class Duration2, class TimeZonePtr2>
zoned_time(TimeZonePtr z, const zoned_time<Duration2, TimeZonePtr2>& y);

template<class Duration2, class TimeZonePtr2>
zoned_time(TimeZonePtr z, const zoned_time<Duration2, TimeZonePtr2>& y, choose);

template<class Duration2, class TimeZonePtr2>
zoned_time(string_view name, const zoned_time<Duration2, TimeZonePtr2>& y);

template<class Duration2, class TimeZonePtr2>
zoned_time(string_view name, const zoned_time<Duration2, TimeZonePtr2>& y, choose c);

zoned_time& operator=(const sys_time<Duration>& st);
zoned_time& operator=(const local_time<Duration>& lt);

operator sys_time<duration>() const;
explicit operator local_time<duration>() const;

TimeZonePtr get_time_zone() const;
local_time<duration> get_local_time() const;
sys_time<duration> get_sys_time() const;
sys_info get_info() const;

};

zoned_time() -> zoned_time<seconds>;

template<class Duration>
zoned_time(sys_time<Duration>)

-> zoned_time<common_type_t<Duration, seconds>>;

template<class TimeZonePtrOrName>
using time-zone-representation = // exposition only

conditional_t<is_convertible_v<TimeZonePtrOrName, string_view>,
const time_zone*,
remove_cvref_t<TimeZonePtrOrName>>;

template<class TimeZonePtrOrName>
zoned_time(TimeZonePtrOrName&&)

-> zoned_time<seconds, time-zone-representation <TimeZonePtrOrName>>;

template<class TimeZonePtrOrName, class Duration>
zoned_time(TimeZonePtrOrName&&, sys_time<Duration>)

-> zoned_time<common_type_t<Duration, seconds>,
time-zone-representation <TimeZonePtrOrName>>;

template<class TimeZonePtrOrName, class Duration>
zoned_time(TimeZonePtrOrName&&, local_time<Duration>,

choose = choose::earliest)
-> zoned_time<common_type_t<Duration, seconds>,

time-zone-representation <TimeZonePtrOrName>>;

template<class Duration, class TimeZonePtrOrName, class TimeZonePtr2>
zoned_time(TimeZonePtrOrName&&, zoned_time<Duration, TimeZonePtr2>,

choose = choose::earliest)
-> zoned_time<common_type_t<Duration, seconds>,

time-zone-representation <TimeZonePtrOrName>>;
}

1 zoned_time represents a logical pairing of a time_zone and a time_point with precision Duration. zoned_-
time<Duration> maintains the invariant that it always refers to a valid time zone and represents a point in
time that exists and is not ambiguous in that time zone.

2 If Duration is not a specialization of chrono::duration, the program is ill-formed.
3 Every constructor of zoned_time that accepts a string_view as its first parameter does not participate in

class template argument deduction (12.2.2.9).
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29.11.7.2 Constructors [time.zone.zonedtime.ctor]

zoned_time();

1 Constraints: traits::default_zone() is a well-formed expression.
2 Effects: Initializes zone_ with traits::default_zone() and default constructs tp_.

zoned_time(const sys_time<Duration>& st);

3 Constraints: traits::default_zone() is a well-formed expression.
4 Effects: Initializes zone_ with traits::default_zone() and tp_ with st.

explicit zoned_time(TimeZonePtr z);

5 Preconditions: z refers to a time zone.
6 Effects: Initializes zone_ with std::move(z) and default constructs tp_.

explicit zoned_time(string_view name);

7 Constraints: traits::locate_zone(string_view{}) is a well-formed expression and zoned_time is
constructible from the return type of traits::locate_zone(string_view{}).

8 Effects: Initializes zone_ with traits::locate_zone(name) and default constructs tp_.

template<class Duration2>
zoned_time(const zoned_time<Duration2, TimeZonePtr>& y);

9 Constraints: is_convertible_v<sys_time<Duration2>, sys_time<Duration>> is true.
10 Effects: Initializes zone_ with y.zone_ and tp_ with y.tp_.

zoned_time(TimeZonePtr z, const sys_time<Duration>& st);

11 Preconditions: z refers to a time zone.
12 Effects: Initializes zone_ with std::move(z) and tp_ with st.

zoned_time(string_view name, const sys_time<Duration>& st);

13 Constraints: zoned_time is constructible from the return type of traits::locate_zone(name) and
st.

14 Effects: Equivalent to construction with {traits::locate_zone(name), st}.

zoned_time(TimeZonePtr z, const local_time<Duration>& tp);

15 Constraints:
is_convertible_v<

decltype(declval<TimeZonePtr&>()->to_sys(local_time<Duration>{})),
sys_time<duration>>

is true.
16 Preconditions: z refers to a time zone.
17 Effects: Initializes zone_ with std::move(z) and tp_ with zone_->to_sys(tp).

zoned_time(string_view name, const local_time<Duration>& tp);

18 Constraints: zoned_time is constructible from the return type of traits::locate_zone(name) and
tp.

19 Effects: Equivalent to construction with {traits::locate_zone(name), tp}.

zoned_time(TimeZonePtr z, const local_time<Duration>& tp, choose c);

20 Constraints:
is_convertible_v<

decltype(declval<TimeZonePtr&>()->to_sys(local_time<Duration>{}, choose::earliest)),
sys_time<duration>>

is true.
21 Preconditions: z refers to a time zone.
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22 Effects: Initializes zone_ with std::move(z) and tp_ with zone_->to_sys(tp, c).

zoned_time(string_view name, const local_time<Duration>& tp, choose c);

23 Constraints: zoned_time is constructible from the return type of traits::locate_zone(name),
local_time<Duration>, and choose.

24 Effects: Equivalent to construction with {traits::locate_zone(name), tp, c}.

template<class Duration2, class TimeZonePtr2>
zoned_time(TimeZonePtr z, const zoned_time<Duration2, TimeZonePtr2>& y);

25 Constraints: is_convertible_v<sys_time<Duration2>, sys_time<Duration>> is true.
26 Preconditions: z refers to a valid time zone.
27 Effects: Initializes zone_ with std::move(z) and tp_ with y.tp_.

template<class Duration2, class TimeZonePtr2>
zoned_time(TimeZonePtr z, const zoned_time<Duration2, TimeZonePtr2>& y, choose);

28 Constraints: is_convertible_v<sys_time<Duration2>, sys_time<Duration>> is true.
29 Preconditions: z refers to a valid time zone.
30 Effects: Equivalent to construction with {z, y}.
31 [Note 1 : The choose parameter has no effect. — end note ]

template<class Duration2, class TimeZonePtr2>
zoned_time(string_view name, const zoned_time<Duration2, TimeZonePtr2>& y);

32 Constraints: zoned_time is constructible from the return type of traits::locate_zone(name) and
the type zoned_time<Duration2, TimeZonePtr2>.

33 Effects: Equivalent to construction with {traits::locate_zone(name), y}.

template<class Duration2, class TimeZonePtr2>
zoned_time(string_view name, const zoned_time<Duration2, TimeZonePtr2>& y, choose c);

34 Constraints: zoned_time is constructible from the return type of traits::locate_zone(name), the
type zoned_time<Duration2, TimeZonePtr2>, and the type choose.

35 Effects: Equivalent to construction with {traits::locate_zone(name), y, c}.
36 [Note 2 : The choose parameter has no effect. — end note ]

29.11.7.3 Member functions [time.zone.zonedtime.members]

zoned_time& operator=(const sys_time<Duration>& st);

1 Effects: After assignment, get_sys_time() == st. This assignment has no effect on the return value
of get_time_zone().

2 Returns: *this.

zoned_time& operator=(const local_time<Duration>& lt);

3 Effects: After assignment, get_local_time() == lt. This assignment has no effect on the return
value of get_time_zone().

4 Returns: *this.

operator sys_time<duration>() const;

5 Returns: get_sys_time().

explicit operator local_time<duration>() const;

6 Returns: get_local_time().

TimeZonePtr get_time_zone() const;

7 Returns: zone_.

local_time<duration> get_local_time() const;

8 Returns: zone_->to_local(tp_).
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sys_time<duration> get_sys_time() const;

9 Returns: tp_.

sys_info get_info() const;

10 Returns: zone_->get_info(tp_).

29.11.7.4 Non-member functions [time.zone.zonedtime.nonmembers]

template<class Duration1, class Duration2, class TimeZonePtr>
bool operator==(const zoned_time<Duration1, TimeZonePtr>& x,

const zoned_time<Duration2, TimeZonePtr>& y);

1 Returns: x.zone_ == y.zone_ && x.tp_ == y.tp_.

template<class charT, class traits, class Duration, class TimeZonePtr>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os,
const zoned_time<Duration, TimeZonePtr>& t);

2 Effects: Equivalent to:
return os << format(os.getloc(), STATICALLY-WIDEN <charT>("{:L%F %T %Z}"), t);

29.11.8 Class leap_second [time.zone.leap]
29.11.8.1 Overview [time.zone.leap.overview]

namespace std::chrono {
class leap_second {
public:

leap_second(const leap_second&) = default;
leap_second& operator=(const leap_second&) = default;

// unspecified additional constructors

constexpr sys_seconds date() const noexcept;
constexpr seconds value() const noexcept;

};
}

1 Objects of type leap_second representing the date and value of the leap second insertions are constructed
and stored in the time zone database when initialized.

2 [Example 1 :
for (auto& l : get_tzdb().leap_seconds)

if (l <= 2018y/March/17d)
cout << l.date() << ": " << l.value() << '\n';

Produces the output:

1972-07-01 00:00:00: 1s
1973-01-01 00:00:00: 1s
1974-01-01 00:00:00: 1s
1975-01-01 00:00:00: 1s
1976-01-01 00:00:00: 1s
1977-01-01 00:00:00: 1s
1978-01-01 00:00:00: 1s
1979-01-01 00:00:00: 1s
1980-01-01 00:00:00: 1s
1981-07-01 00:00:00: 1s
1982-07-01 00:00:00: 1s
1983-07-01 00:00:00: 1s
1985-07-01 00:00:00: 1s
1988-01-01 00:00:00: 1s
1990-01-01 00:00:00: 1s
1991-01-01 00:00:00: 1s
1992-07-01 00:00:00: 1s
1993-07-01 00:00:00: 1s
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1994-07-01 00:00:00: 1s
1996-01-01 00:00:00: 1s
1997-07-01 00:00:00: 1s
1999-01-01 00:00:00: 1s
2006-01-01 00:00:00: 1s
2009-01-01 00:00:00: 1s
2012-07-01 00:00:00: 1s
2015-07-01 00:00:00: 1s
2017-01-01 00:00:00: 1s

— end example ]

29.11.8.2 Member functions [time.zone.leap.members]

constexpr sys_seconds date() const noexcept;

1 Returns: The date and time at which the leap second was inserted.

constexpr seconds value() const noexcept;

2 Returns: +1s to indicate a positive leap second or -1s to indicate a negative leap second.
[Note 1 : All leap seconds inserted up through 2022 were positive leap seconds. — end note ]

29.11.8.3 Non-member functions [time.zone.leap.nonmembers]

constexpr bool operator==(const leap_second& x, const leap_second& y) noexcept;

1 Returns: x.date() == y.date().

constexpr strong_ordering operator<=>(const leap_second& x, const leap_second& y) noexcept;

2 Returns: x.date() <=> y.date().

template<class Duration>
constexpr bool operator==(const leap_second& x, const sys_time<Duration>& y) noexcept;

3 Returns: x.date() == y.

template<class Duration>
constexpr bool operator<(const leap_second& x, const sys_time<Duration>& y) noexcept;

4 Returns: x.date() < y.

template<class Duration>
constexpr bool operator<(const sys_time<Duration>& x, const leap_second& y) noexcept;

5 Returns: x < y.date().

template<class Duration>
constexpr bool operator>(const leap_second& x, const sys_time<Duration>& y) noexcept;

6 Returns: y < x.

template<class Duration>
constexpr bool operator>(const sys_time<Duration>& x, const leap_second& y) noexcept;

7 Returns: y < x.

template<class Duration>
constexpr bool operator<=(const leap_second& x, const sys_time<Duration>& y) noexcept;

8 Returns: !(y < x).

template<class Duration>
constexpr bool operator<=(const sys_time<Duration>& x, const leap_second& y) noexcept;

9 Returns: !(y < x).

template<class Duration>
constexpr bool operator>=(const leap_second& x, const sys_time<Duration>& y) noexcept;

10 Returns: !(x < y).
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template<class Duration>
constexpr bool operator>=(const sys_time<Duration>& x, const leap_second& y) noexcept;

11 Returns: !(x < y).

template<class Duration>
requires three_way_comparable_with<sys_seconds, sys_time<Duration>>
constexpr auto operator<=>(const leap_second& x, const sys_time<Duration>& y) noexcept;

12 Returns: x.date() <=> y.

29.11.9 Class time_zone_link [time.zone.link]
29.11.9.1 Overview [time.zone.link.overview]

namespace std::chrono {
class time_zone_link {
public:

time_zone_link(time_zone_link&&) = default;
time_zone_link& operator=(time_zone_link&&) = default;

// unspecified additional constructors

string_view name() const noexcept;
string_view target() const noexcept;

};
}

1 A time_zone_link specifies an alternative name for a time_zone. time_zone_links are constructed when
the time zone database is initialized.

29.11.9.2 Member functions [time.zone.link.members]

string_view name() const noexcept;

1 Returns: The alternative name for the time zone.

string_view target() const noexcept;

2 Returns: The name of the time_zone for which this time_zone_link provides an alternative name.

29.11.9.3 Non-member functions [time.zone.link.nonmembers]

bool operator==(const time_zone_link& x, const time_zone_link& y) noexcept;

1 Returns: x.name() == y.name().

strong_ordering operator<=>(const time_zone_link& x, const time_zone_link& y) noexcept;

2 Returns: x.name() <=> y.name().

29.12 Formatting [time.format]
1 Each formatter (22.14.6) specialization in the chrono library (29.2) meets the Formatter requirements

(22.14.6.1). The parse member functions of these formatters interpret the format specification as a chrono-
format-spec according to the following syntax:

chrono-format-spec :
fill-and-alignopt widthopt precisionopt Lopt chrono-specsopt

chrono-specs :
conversion-spec
chrono-specs conversion-spec
chrono-specs literal-char

literal-char :
any character other than {, }, or %

conversion-spec :
% modifieropt type

modifier : one of
E O
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type : one of
a A b B c C d D e F g G h H I j m M n
p q Q r R S t T u U V w W x X y Y z Z %

The productions fill-and-align, width, and precision are described in 22.14.2. Giving a precision specification
in the chrono-format-spec is valid only for types that are specializations of std::chrono::duration for
which the nested typedef-name rep denotes a floating-point type. For all other types, an exception of type
format_error is thrown if the chrono-format-spec contains a precision specification. All ordinary multibyte
characters represented by literal-char are copied unchanged to the output.

2 A formatting locale is an instance of locale used by a formatting function, defined as
—(2.1) the "C" locale if the L option is not present in chrono-format-spec, otherwise
—(2.2) the locale passed to the formatting function if any, otherwise
—(2.3) the global locale.

3 Each conversion specifier conversion-spec is replaced by appropriate characters as described in Table 101;
the formats specified in ISO 8601:2004 shall be used where so described. Some of the conversion specifiers
depend on the formatting locale. If the string literal encoding is a Unicode encoding form and the locale is
among an implementation-defined set of locales, each replacement that depends on the locale is performed as
if the replacement character sequence is converted to the string literal encoding. If the formatted object does
not contain the information the conversion specifier refers to, an exception of type format_error is thrown.

4 The result of formatting a std::chrono::duration instance holding a negative value, or an hh_mm_ss object
h for which h.is_negative() is true, is equivalent to the output of the corresponding positive value, with a
STATICALLY-WIDEN <charT>("-") character sequence placed before the replacement of the initial conversion
specifier.
[Example 1 :

cout << format("{:%T}", -10'000s); // prints: -02:46:40
cout << format("{:%H:%M:%S}", -10'000s); // prints: -02:46:40
cout << format("minutes {:%M, hours %H, seconds %S}", -10'000s);

// prints: minutes -46, hours 02, seconds 40

— end example ]
5 Unless explicitly requested, the result of formatting a chrono type does not contain time zone abbreviation

and time zone offset information. If the information is available, the conversion specifiers %Z and %z will
format this information (respectively).
[Note 1 : If the information is not available and a %Z or %z conversion specifier appears in the chrono-format-spec, an
exception of type format_error is thrown, as described above. — end note ]

6 If the type being formatted does not contain the information that the format flag needs, an exception of type
format_error is thrown.
[Example 2 : A duration does not contain enough information to format as a weekday. — end example ]

However, if a flag refers to a “time of day” (e.g., %H, %I, %p, etc.), then a specialization of duration is
interpreted as the time of day elapsed since midnight.

Table 101: Meaning of conversion specifiers [tab:time.format.spec]

Specifier Replacement
%a The locale’s abbreviated weekday name. If the value does not contain a valid weekday,

an exception of type format_error is thrown.
%A The locale’s full weekday name. If the value does not contain a valid weekday, an

exception of type format_error is thrown.
%b The locale’s abbreviated month name. If the value does not contain a valid month, an

exception of type format_error is thrown.
%B The locale’s full month name. If the value does not contain a valid month, an

exception of type format_error is thrown.
%c The locale’s date and time representation. The modified command %Ec produces the

locale’s alternate date and time representation.
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Table 101: Meaning of conversion specifiers (continued)

Specifier Replacement
%C The year divided by 100 using floored division. If the result is a single decimal digit, it

is prefixed with 0. The modified command %EC produces the locale’s alternative
representation of the century.

%d The day of month as a decimal number. If the result is a single decimal digit, it is
prefixed with 0. The modified command %Od produces the locale’s alternative
representation.

%D Equivalent to %m/%d/%y.
%e The day of month as a decimal number. If the result is a single decimal digit, it is

prefixed with a space. The modified command %Oe produces the locale’s alternative
representation.

%F Equivalent to %Y-%m-%d.
%g The last two decimal digits of the ISO week-based year. If the result is a single digit it

is prefixed by 0.
%G The ISO week-based year as a decimal number. If the result is less than four digits it is

left-padded with 0 to four digits.
%h Equivalent to %b.
%H The hour (24-hour clock) as a decimal number. If the result is a single digit, it is

prefixed with 0. The modified command %OH produces the locale’s alternative
representation.

%I The hour (12-hour clock) as a decimal number. If the result is a single digit, it is
prefixed with 0. The modified command %OI produces the locale’s alternative
representation.

%j If the type being formatted is a specialization of duration, the decimal number of
days without padding. Otherwise, the day of the year as a decimal number. Jan 1 is
001. If the result is less than three digits, it is left-padded with 0 to three digits.

%m The month as a decimal number. Jan is 01. If the result is a single digit, it is prefixed
with 0. The modified command %Om produces the locale’s alternative representation.

%M The minute as a decimal number. If the result is a single digit, it is prefixed with 0.
The modified command %OM produces the locale’s alternative representation.

%n A new-line character.
%p The locale’s equivalent of the AM/PM designations associated with a 12-hour clock.
%q The duration’s unit suffix as specified in 29.5.11.
%Q The duration’s numeric value (as if extracted via .count()).
%r The locale’s 12-hour clock time.
%R Equivalent to %H:%M.
%S Seconds as a decimal number. If the number of seconds is less than 10, the result is

prefixed with 0. If the precision of the input cannot be exactly represented with
seconds, then the format is a decimal floating-point number with a fixed format and a
precision matching that of the precision of the input (or to a microseconds precision if
the conversion to floating-point decimal seconds cannot be made within 18 fractional
digits). The character for the decimal point is localized according to the locale. The
modified command %OS produces the locale’s alternative representation.

%t A horizontal-tab character.
%T Equivalent to %H:%M:%S.
%u The ISO weekday as a decimal number (1-7), where Monday is 1. The modified

command %Ou produces the locale’s alternative representation.
%U The week number of the year as a decimal number. The first Sunday of the year is the

first day of week 01. Days of the same year prior to that are in week 00. If the result is
a single digit, it is prefixed with 0. The modified command %OU produces the locale’s
alternative representation.

%V The ISO week-based week number as a decimal number. If the result is a single digit,
it is prefixed with 0. The modified command %OV produces the locale’s alternative
representation.

%w The weekday as a decimal number (0-6), where Sunday is 0. The modified command
%Ow produces the locale’s alternative representation.
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Table 101: Meaning of conversion specifiers (continued)

Specifier Replacement
%W The week number of the year as a decimal number. The first Monday of the year is the

first day of week 01. Days of the same year prior to that are in week 00. If the result is
a single digit, it is prefixed with 0. The modified command %OW produces the locale’s
alternative representation.

%x The locale’s date representation. The modified command %Ex produces the locale’s
alternate date representation.

%X The locale’s time representation. The modified command %EX produces the locale’s
alternate time representation.

%y The last two decimal digits of the year. If the result is a single digit it is prefixed by 0.
The modified command %Oy produces the locale’s alternative representation. The
modified command %Ey produces the locale’s alternative representation of offset from
%EC (year only).

%Y The year as a decimal number. If the result is less than four digits it is left-padded
with 0 to four digits. The modified command %EY produces the locale’s alternative full
year representation.

%z The offset from UTC as specified in ISO 8601:2004, subclause 4.2.5.2. For example
-0430 refers to 4 hours 30 minutes behind UTC. If the offset is zero, +0000 is used. The
modified commands %Ez and %Oz insert a : between the hours and minutes: -04:30. If
the offset information is not available, an exception of type format_error is thrown.

%Z The time zone abbreviation. If the time zone abbreviation is not available, an
exception of type format_error is thrown.

%% A % character.

7 If the chrono-specs is omitted, the chrono object is formatted as if by streaming it to basic_ostring-
stream<charT> os with the formatting locale imbued and copying os.str() through the output iterator of
the context with additional padding and adjustments as specified by the format specifiers.
[Example 3 :

string s = format("{:=>8}", 42ms); // value of s is "====42ms"

— end example ]

template<class Duration, class charT>
struct formatter<chrono::sys_time<Duration>, charT>;

8 Remarks: If %Z is used, it is replaced with STATICALLY-WIDEN <charT>("UTC"). If %z (or a modified
variant of %z) is used, an offset of 0min is formatted.

template<class Duration, class charT>
struct formatter<chrono::utc_time<Duration>, charT>;

9 Remarks: If %Z is used, it is replaced with STATICALLY-WIDEN <charT>("UTC"). If %z (or a modified
variant of %z) is used, an offset of 0min is formatted. If the argument represents a time during a
positive leap second insertion, and if a seconds field is formatted, the integral portion of that format is
STATICALLY-WIDEN <charT>("60").

template<class Duration, class charT>
struct formatter<chrono::tai_time<Duration>, charT>;

10 Remarks: If %Z is used, it is replaced with STATICALLY-WIDEN <charT>("TAI"). If %z (or a modified
variant of %z) is used, an offset of 0min is formatted. The date and time formatted are equivalent to
those formatted by a sys_time initialized with

sys_time<Duration>{tp.time_since_epoch()} -
(sys_days{1970y/January/1} - sys_days{1958y/January/1})

template<class Duration, class charT>
struct formatter<chrono::gps_time<Duration>, charT>;

11 Remarks: If %Z is used, it is replaced with STATICALLY-WIDEN <charT>("GPS"). If %z (or a modified
variant of %z) is used, an offset of 0min is formatted. The date and time formatted are equivalent to
those formatted by a sys_time initialized with
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sys_time<Duration>{tp.time_since_epoch()} +
(sys_days{1980y/January/Sunday[1]} - sys_days{1970y/January/1})

template<class Duration, class charT>
struct formatter<chrono::file_time<Duration>, charT>;

12 Remarks: If %Z is used, it is replaced with STATICALLY-WIDEN <charT>("UTC"). If %z (or a modified
variant of %z) is used, an offset of 0min is formatted. The date and time formatted are equivalent
to those formatted by a sys_time initialized with clock_cast<system_clock>(t), or by a utc_time
initialized with clock_cast<utc_clock>(t), where t is the first argument to format.

template<class Duration, class charT>
struct formatter<chrono::local_time<Duration>, charT>;

13 Remarks: If %Z, %z, or a modified version of %z is used, an exception of type format_error is thrown.
template<class Duration> struct local-time-format-t { // exposition only

local_time<Duration> time; // exposition only
const string* abbrev; // exposition only
const seconds* offset_sec; // exposition only

};

template<class Duration>
local-time-format-t <Duration>

local_time_format(local_time<Duration> time, const string* abbrev = nullptr,
const seconds* offset_sec = nullptr);

14 Returns: {time, abbrev, offset_sec}.

template<class Duration, class charT>
struct formatter<chrono::local-time-format-t <Duration>, charT>;

15 Let f be a local-time-format-t <Duration> object passed to formatter::format.
16 Remarks: If %Z is used, it is replaced with *f.abbrev if f.abbrev is not a null pointer value. If %Z is

used and f.abbrev is a null pointer value, an exception of type format_error is thrown. If %z (or a
modified variant of %z) is used, it is formatted with the value of *f.offset_sec if f.offset_sec is
not a null pointer value. If %z (or a modified variant of %z) is used and f.offset_sec is a null pointer
value, then an exception of type format_error is thrown.

template<class Duration, class TimeZonePtr, class charT>
struct formatter<chrono::zoned_time<Duration, TimeZonePtr>, charT>

: formatter<chrono::local-time-format-t <Duration>, charT> {
template<class FormatContext>

typename FormatContext::iterator
format(const chrono::zoned_time<Duration, TimeZonePtr>& tp, FormatContext& ctx) const;

};

template<class FormatContext>
typename FormatContext::iterator

format(const chrono::zoned_time<Duration, TimeZonePtr>& tp, FormatContext& ctx) const;

17 Effects: Equivalent to:
sys_info info = tp.get_info();
return formatter<chrono::local-time-format-t <Duration>, charT>::

format({tp.get_local_time(), &info.abbrev, &info.offset}, ctx);

29.13 Parsing [time.parse]
1 Each parse overload specified in this subclause calls from_stream unqualified, so as to enable argument

dependent lookup (6.5.4). In the following paragraphs, let is denote an object of type basic_istream<charT,
traits> and let I be basic_istream<charT, traits>&, where charT and traits are template parameters
in that context.

2 Recommended practice: Implementations should make it difficult to accidentally store or use a manipulator
that may contain a dangling reference to a format string, for example by making the manipulators produced
by parse immovable and preventing stream extraction into an lvalue of such a manipulator type.
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template<class charT, class Parsable>
unspecified

parse(const charT* fmt, Parsable& tp);
template<class charT, class traits, class Alloc, class Parsable>

unspecified
parse(const basic_string<charT, traits, Alloc>& fmt, Parsable& tp);

3 Let F be fmt for the first overload and fmt.c_str() for the second overload. Let traits be char_-
traits<charT> for the first overload.

4 Constraints: The expression
from_stream(declval<basic_istream<charT, traits>&>(), F , tp)

is well-formed when treated as an unevaluated operand (7.2.3).
5 Returns: A manipulator such that the expression is >> parse(fmt, tp) has type I, has value is,

and calls from_stream(is, F, tp).

template<class charT, class traits, class Alloc, class Parsable>
unspecified

parse(const charT* fmt, Parsable& tp,
basic_string<charT, traits, Alloc>& abbrev);

template<class charT, class traits, class Alloc, class Parsable>
unspecified

parse(const basic_string<charT, traits, Alloc>& fmt, Parsable& tp,
basic_string<charT, traits, Alloc>& abbrev);

6 Let F be fmt for the first overload and fmt.c_str() for the second overload.
7 Constraints: The expression

from_stream(declval<basic_istream<charT, traits>&>(), F , tp, addressof(abbrev))

is well-formed when treated as an unevaluated operand (7.2.3).
8 Returns: A manipulator such that the expression is >> parse(fmt, tp, abbrev) has type I, has

value is, and calls from_stream(is, F, tp, addressof(abbrev)).

template<class charT, class Parsable>
unspecified

parse(const charT* fmt, Parsable& tp, minutes& offset);
template<class charT, class traits, class Alloc, class Parsable>

unspecified
parse(const basic_string<charT, traits, Alloc>& fmt, Parsable& tp,

minutes& offset);

9 Let F be fmt for the first overload and fmt.c_str() for the second overload. Let traits be char_-
traits<charT> and Alloc be allocator<charT> for the first overload.

10 Constraints: The expression
from_stream(declval<basic_istream<charT, traits>&>(),

F , tp,
declval<basic_string<charT, traits, Alloc>*>(),
&offset)

is well-formed when treated as an unevaluated operand (7.2.3).
11 Returns: A manipulator such that the expression is >> parse(fmt, tp, offset) has type I, has

value is, and calls:
from_stream(is,

F , tp,
static_cast<basic_string<charT, traits, Alloc>*>(nullptr),
&offset)

template<class charT, class traits, class Alloc, class Parsable>
unspecified

parse(const charT* fmt, Parsable& tp,
basic_string<charT, traits, Alloc>& abbrev, minutes& offset);
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template<class charT, class traits, class Alloc, class Parsable>
unspecified

parse(const basic_string<charT, traits, Alloc>& fmt, Parsable& tp,
basic_string<charT, traits, Alloc>& abbrev, minutes& offset);

12 Let F be fmt for the first overload and fmt.c_str() for the second overload.
13 Constraints: The expression

from_stream(declval<basic_istream<charT, traits>&>(),
F , tp, addressof(abbrev), &offset)

is well-formed when treated as an unevaluated operand (7.2.3).
14 Returns: A manipulator such that the expression is >> parse(fmt, tp, abbrev, offset) has type

I, has value is, and calls from_stream(is, F, tp, addressof(abbrev), &offset).
15 All from_stream overloads behave as unformatted input functions, except that they have an unspecified

effect on the value returned by subsequent calls to basic_istream<>::gcount(). Each overload takes a
format string containing ordinary characters and flags which have special meaning. Each flag begins with a %.
Some flags can be modified by E or O. During parsing each flag interprets characters as parts of date and
time types according to Table 102. Some flags can be modified by a width parameter given as a positive
decimal integer called out as N below which governs how many characters are parsed from the stream in
interpreting the flag. All characters in the format string that are not represented in Table 102, except for
whitespace, are parsed unchanged from the stream. A whitespace character matches zero or more whitespace
characters in the input stream.

16 If the type being parsed cannot represent the information that the format flag refers to, is.setstate(ios_-
base::failbit) is called.
[Example 1 : A duration cannot represent a weekday. — end example ]

However, if a flag refers to a “time of day” (e.g., %H, %I, %p, etc.), then a specialization of duration is parsed
as the time of day elapsed since midnight.

17 If the from_stream overload fails to parse everything specified by the format string, or if insufficient
information is parsed to specify a complete duration, time point, or calendrical data structure, setstate(ios_-
base::failbit) is called on the basic_istream.

Table 102: Meaning of parse flags [tab:time.parse.spec]

Flag Parsed value
%a The locale’s full or abbreviated case-insensitive weekday name.
%A Equivalent to %a.
%b The locale’s full or abbreviated case-insensitive month name.
%B Equivalent to %b.
%c The locale’s date and time representation. The modified command %Ec interprets the

locale’s alternate date and time representation.
%C The century as a decimal number. The modified command %N C specifies the maximum

number of characters to read. If N is not specified, the default is 2. Leading zeroes are
permitted but not required. The modified command %EC interprets the locale’s
alternative representation of the century.

%d The day of the month as a decimal number. The modified command %N d specifies the
maximum number of characters to read. If N is not specified, the default is 2. Leading
zeroes are permitted but not required. The modified command %Od interprets the
locale’s alternative representation of the day of the month.

%D Equivalent to %m/%d/%y.
%e Equivalent to %d and can be modified like %d.
%F Equivalent to %Y-%m-%d. If modified with a width N , the width is applied to only %Y.
%g The last two decimal digits of the ISO week-based year. The modified command %N g

specifies the maximum number of characters to read. If N is not specified, the default
is 2. Leading zeroes are permitted but not required.

%G The ISO week-based year as a decimal number. The modified command %N G specifies
the maximum number of characters to read. If N is not specified, the default is 4.
Leading zeroes are permitted but not required.
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Table 102: Meaning of parse flags (continued)

Flag Parsed value
%h Equivalent to %b.
%H The hour (24-hour clock) as a decimal number. The modified command %N H specifies

the maximum number of characters to read. If N is not specified, the default is 2.
Leading zeroes are permitted but not required. The modified command %OH interprets
the locale’s alternative representation.

%I The hour (12-hour clock) as a decimal number. The modified command %N I specifies
the maximum number of characters to read. If N is not specified, the default is 2.
Leading zeroes are permitted but not required. The modified command %OI interprets
the locale’s alternative representation.

%j If the type being parsed is a specialization of duration, a decimal number of days.
Otherwise, the day of the year as a decimal number. Jan 1 is 1. In either case, the
modified command %N j specifies the maximum number of characters to read. If N is
not specified, the default is 3. Leading zeroes are permitted but not required.

%m The month as a decimal number. Jan is 1. The modified command %N m specifies the
maximum number of characters to read. If N is not specified, the default is 2. Leading
zeroes are permitted but not required. The modified command %Om interprets the
locale’s alternative representation.

%M The minutes as a decimal number. The modified command %N M specifies the maximum
number of characters to read. If N is not specified, the default is 2. Leading zeroes are
permitted but not required. The modified command %OM interprets the locale’s
alternative representation.

%n Matches one whitespace character.
[Note 1 : %n, %t, and a space can be combined to match a wide range of whitespace patterns.
For example, "%n " matches one or more whitespace characters, and "%n%t%t" matches one to
three whitespace characters. — end note ]

%p The locale’s equivalent of the AM/PM designations associated with a 12-hour clock.
%r The locale’s 12-hour clock time.
%R Equivalent to %H:%M.
%S The seconds as a decimal number. The modified command %N S specifies the maximum

number of characters to read. If N is not specified, the default is 2 if the input time
has a precision convertible to seconds. Otherwise the default width is determined by
the decimal precision of the input and the field is interpreted as a long double in a
fixed format. If encountered, the locale determines the decimal point character.
Leading zeroes are permitted but not required. The modified command %OS interprets
the locale’s alternative representation.

%t Matches zero or one whitespace characters.
%T Equivalent to %H:%M:%S.
%u The ISO weekday as a decimal number (1-7), where Monday is 1. The modified

command %N u specifies the maximum number of characters to read. If N is not
specified, the default is 1. Leading zeroes are permitted but not required.

%U The week number of the year as a decimal number. The first Sunday of the year is the
first day of week 01. Days of the same year prior to that are in week 00. The modified
command %N U specifies the maximum number of characters to read. If N is not
specified, the default is 2. Leading zeroes are permitted but not required. The
modified command %OU interprets the locale’s alternative representation.

%V The ISO week-based week number as a decimal number. The modified command %N V
specifies the maximum number of characters to read. If N is not specified, the default
is 2. Leading zeroes are permitted but not required.

%w The weekday as a decimal number (0-6), where Sunday is 0. The modified command
%N w specifies the maximum number of characters to read. If N is not specified, the
default is 1. Leading zeroes are permitted but not required. The modified command
%Ow interprets the locale’s alternative representation.
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Table 102: Meaning of parse flags (continued)

Flag Parsed value
%W The week number of the year as a decimal number. The first Monday of the year is the

first day of week 01. Days of the same year prior to that are in week 00. The modified
command %N W specifies the maximum number of characters to read. If N is not
specified, the default is 2. Leading zeroes are permitted but not required. The
modified command %OW interprets the locale’s alternative representation.

%x The locale’s date representation. The modified command %Ex interprets the locale’s
alternate date representation.

%X The locale’s time representation. The modified command %EX interprets the locale’s
alternate time representation.

%y The last two decimal digits of the year. If the century is not otherwise specified (e.g.,
with %C), values in the range [69, 99] are presumed to refer to the years 1969 to 1999,
and values in the range [00, 68] are presumed to refer to the years 2000 to 2068. The
modified command %N y specifies the maximum number of characters to read. If N is
not specified, the default is 2. Leading zeroes are permitted but not required. The
modified commands %Ey and %Oy interpret the locale’s alternative representation.

%Y The year as a decimal number. The modified command %N Y specifies the maximum
number of characters to read. If N is not specified, the default is 4. Leading zeroes are
permitted but not required. The modified command %EY interprets the locale’s
alternative representation.

%z The offset from UTC in the format [+|-]hh[mm]. For example -0430 refers to 4 hours
30 minutes behind UTC, and 04 refers to 4 hours ahead of UTC. The modified
commands %Ez and %Oz parse a : between the hours and minutes and render leading
zeroes on the hour field optional: [+|-]h[h][:mm]. For example -04:30 refers to 4
hours 30 minutes behind UTC, and 4 refers to 4 hours ahead of UTC.

%Z The time zone abbreviation or name. A single word is parsed. This word can only
contain characters from the basic character set (5.3) that are alphanumeric, or one of
’_’, ’/’, ’-’, or ’+’.

%% A % character is extracted.

29.14 Header <ctime> synopsis [ctime.syn]
#define NULL see 17.2.3
#define CLOCKS_PER_SEC see below
#define TIME_UTC see below

namespace std {
using size_t = see 17.2.4;
using clock_t = see below ;
using time_t = see below ;

struct timespec;
struct tm;

clock_t clock();
double difftime(time_t time1, time_t time0);
time_t mktime(tm* timeptr);
time_t time(time_t* timer);
int timespec_get(timespec* ts, int base);
char* asctime(const tm* timeptr);
char* ctime(const time_t* timer);
tm* gmtime(const time_t* timer);
tm* localtime(const time_t* timer);
size_t strftime(char* s, size_t maxsize, const char* format, const tm* timeptr);

}

1 The contents of the header <ctime> are the same as the C standard library header <time.h>.239

239) strftime supports the C conversion specifiers C, D, e, F, g, G, h, r, R, t, T, u, V, and z, and the modifiers E and O.
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2 The functions asctime, ctime, gmtime, and localtime are not required to avoid data races (16.4.6.10).
See also: ISO/IEC 9899:2018, 7.27
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30 Localization library [localization]
30.1 General [localization.general]

1 This Clause describes components that C++ programs may use to encapsulate (and therefore be more portable
when confronting) cultural differences. The locale facility includes internationalization support for character
classification and string collation, numeric, monetary, and date/time formatting and parsing, and message
retrieval.

2 The following subclauses describe components for locales themselves, the standard facets, and facilities from
the ISO C library, as summarized in Table 103.

Table 103: Localization library summary [tab:localization.summary]

Subclause Header
30.3 Locales <locale>
30.4 Standard locale categories
30.5 C library locales <clocale>

30.2 Header <locale> synopsis [locale.syn]
namespace std {

// 30.3.1, locale
class locale;
template<class Facet> const Facet& use_facet(const locale&);
template<class Facet> bool has_facet(const locale&) noexcept;

// 30.3.3, convenience interfaces
template<class charT> bool isspace (charT c, const locale& loc);
template<class charT> bool isprint (charT c, const locale& loc);
template<class charT> bool iscntrl (charT c, const locale& loc);
template<class charT> bool isupper (charT c, const locale& loc);
template<class charT> bool islower (charT c, const locale& loc);
template<class charT> bool isalpha (charT c, const locale& loc);
template<class charT> bool isdigit (charT c, const locale& loc);
template<class charT> bool ispunct (charT c, const locale& loc);
template<class charT> bool isxdigit(charT c, const locale& loc);
template<class charT> bool isalnum (charT c, const locale& loc);
template<class charT> bool isgraph (charT c, const locale& loc);
template<class charT> bool isblank (charT c, const locale& loc);
template<class charT> charT toupper(charT c, const locale& loc);
template<class charT> charT tolower(charT c, const locale& loc);

// 30.4.2, ctype
class ctype_base;
template<class charT> class ctype;
template<> class ctype<char>; // specialization
template<class charT> class ctype_byname;
class codecvt_base;
template<class internT, class externT, class stateT> class codecvt;
template<class internT, class externT, class stateT> class codecvt_byname;

// 30.4.3, numeric
template<class charT, class InputIterator = istreambuf_iterator<charT>>

class num_get;
template<class charT, class OutputIterator = ostreambuf_iterator<charT>>

class num_put;
template<class charT>

class numpunct;
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template<class charT>
class numpunct_byname;

// 30.4.5, collation
template<class charT> class collate;
template<class charT> class collate_byname;

// 30.4.6, date and time
class time_base;
template<class charT, class InputIterator = istreambuf_iterator<charT>>

class time_get;
template<class charT, class InputIterator = istreambuf_iterator<charT>>

class time_get_byname;
template<class charT, class OutputIterator = ostreambuf_iterator<charT>>

class time_put;
template<class charT, class OutputIterator = ostreambuf_iterator<charT>>

class time_put_byname;

// 30.4.7, money
class money_base;
template<class charT, class InputIterator = istreambuf_iterator<charT>>

class money_get;
template<class charT, class OutputIterator = ostreambuf_iterator<charT>>

class money_put;
template<class charT, bool Intl = false>

class moneypunct;
template<class charT, bool Intl = false>

class moneypunct_byname;

// 30.4.8, message retrieval
class messages_base;
template<class charT> class messages;
template<class charT> class messages_byname;

}

1 The header <locale> defines classes and declares functions that encapsulate and manipulate the information
peculiar to a locale.240

30.3 Locales [locales]
30.3.1 Class locale [locale]
30.3.1.1 General [locale.general]

namespace std {
class locale {
public:

// types
class facet;
class id;
using category = int;
static const category // values assigned here are for exposition only

none = 0,
collate = 0x010, ctype = 0x020,
monetary = 0x040, numeric = 0x080,
time = 0x100, messages = 0x200,
all = collate | ctype | monetary | numeric | time | messages;

// construct/copy/destroy
locale() noexcept;
locale(const locale& other) noexcept;
explicit locale(const char* std_name);
explicit locale(const string& std_name);
locale(const locale& other, const char* std_name, category);

240) In this subclause, the type name tm is an incomplete type that is defined in <ctime> (29.14).
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locale(const locale& other, const string& std_name, category);
template<class Facet> locale(const locale& other, Facet* f);
locale(const locale& other, const locale& one, category);
~locale(); // not virtual
const locale& operator=(const locale& other) noexcept;
template<class Facet> locale combine(const locale& other) const;

// locale operations
string name() const;

bool operator==(const locale& other) const;

template<class charT, class traits, class Allocator>
bool operator()(const basic_string<charT, traits, Allocator>& s1,

const basic_string<charT, traits, Allocator>& s2) const;

// global locale objects
static locale global(const locale&);
static const locale& classic();

};
}

1 Class locale implements a type-safe polymorphic set of facets, indexed by facet type. In other words, a facet
has a dual role: in one sense, it’s just a class interface; at the same time, it’s an index into a locale’s set of
facets.

2 Access to the facets of a locale is via two function templates, use_facet<> and has_facet<>.
3 [Example 1 : An iostream operator<< can be implemented as:241

template<class charT, class traits>
basic_ostream<charT, traits>&
operator<< (basic_ostream<charT, traits>& s, Date d) {

typename basic_ostream<charT, traits>::sentry cerberos(s);
if (cerberos) {

tm tmbuf; d.extract(tmbuf);
bool failed =

use_facet<time_put<charT, ostreambuf_iterator<charT, traits>>>(
s.getloc()).put(s, s, s.fill(), &tmbuf, 'x').failed();

if (failed)
s.setstate(s.badbit); // can throw

}
return s;

}

— end example ]
4 In the call to use_facet<Facet>(loc), the type argument chooses a facet, making available all members

of the named type. If Facet is not present in a locale, it throws the standard exception bad_cast. A C++

program can check if a locale implements a particular facet with the function template has_facet<Facet>().
User-defined facets may be installed in a locale, and used identically as may standard facets.

5 [Note 1 : All locale semantics are accessed via use_facet<> and has_facet<>, except that:
—(5.1) A member operator template

operator()(const basic_string<C, T, A>&, const basic_string<C, T, A>&)

is provided so that a locale can be used as a predicate argument to the standard collections, to collate strings.
—(5.2) Convenient global interfaces are provided for traditional ctype functions such as isdigit() and isspace(),

so that given a locale object loc a C++ program can call isspace(c, loc). (This eases upgrading existing
extractors (31.7.5.3).)

— end note ]
6 Once a facet reference is obtained from a locale object by calling use_facet<>, that reference remains usable,

and the results from member functions of it may be cached and re-used, as long as some locale object refers
to that facet.

241) Note that in the call to put, the stream is implicitly converted to an ostreambuf_iterator<charT, traits>.
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7 In successive calls to a locale facet member function on a facet object installed in the same locale, the returned
result shall be identical.

8 A locale constructed from a name string (such as "POSIX"), or from parts of two named locales, has a name;
all others do not. Named locales may be compared for equality; an unnamed locale is equal only to (copies
of) itself. For an unnamed locale, locale::name() returns the string "*".

9 Whether there is one global locale object for the entire program or one global locale object per thread is
implementation-defined. Implementations should provide one global locale object per thread. If there is a
single global locale object for the entire program, implementations are not required to avoid data races on
it (16.4.6.10).

30.3.1.2 Types [locale.types]
30.3.1.2.1 Type locale::category [locale.category]

using category = int;

1 Valid category values include the locale member bitmask elements collate, ctype, monetary, numeric,
time, and messages, each of which represents a single locale category. In addition, locale member bitmask
constant none is defined as zero and represents no category. And locale member bitmask constant all is
defined such that the expression

(collate | ctype | monetary | numeric | time | messages | all) == all

is true, and represents the union of all categories. Further, the expression (X | Y), where X and Y each
represent a single category, represents the union of the two categories.

2 locale member functions expecting a category argument require one of the category values defined above,
or the union of two or more such values. Such a category value identifies a set of locale categories. Each
locale category, in turn, identifies a set of locale facets, including at least those shown in Table 104.

Table 104: Locale category facets [tab:locale.category.facets]

Category Includes facets
collate collate<char>, collate<wchar_t>
ctype ctype<char>, ctype<wchar_t>

codecvt<char, char, mbstate_t>
codecvt<char16_t, char8_t, mbstate_t>
codecvt<char32_t, char8_t, mbstate_t>
codecvt<wchar_t, char, mbstate_t>

monetary moneypunct<char>, moneypunct<wchar_t>
moneypunct<char, true>, moneypunct<wchar_t, true>
money_get<char>, money_get<wchar_t>
money_put<char>, money_put<wchar_t>

numeric numpunct<char>, numpunct<wchar_t>
num_get<char>, num_get<wchar_t>
num_put<char>, num_put<wchar_t>

time time_get<char>, time_get<wchar_t>
time_put<char>, time_put<wchar_t>

messages messages<char>, messages<wchar_t>

3 For any locale loc either constructed, or returned by locale::classic(), and any facet Facet shown in
Table 104, has_facet<Facet>(loc) is true. Each locale member function which takes a locale::category
argument operates on the corresponding set of facets.

4 An implementation is required to provide those specializations for facet templates identified as members of a
category, and for those shown in Table 105.

5 The provided implementation of members of facets num_get<charT> and num_put<charT> calls use_fac-
et<F>(l) only for facet F of types numpunct<charT> and ctype<charT>, and for locale l the value obtained
by calling member getloc() on the ios_base& argument to these functions.

6 In declarations of facets, a template parameter with name InputIterator or OutputIterator indicates
the set of all possible specializations on parameters that meet the Cpp17InputIterator requirements or
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Table 105: Required specializations [tab:locale.spec]

Category Includes facets
collate collate_byname<char>, collate_byname<wchar_t>
ctype ctype_byname<char>, ctype_byname<wchar_t>

codecvt_byname<char, char, mbstate_t>
codecvt_byname<char16_t, char8_t, mbstate_t>
codecvt_byname<char32_t, char8_t, mbstate_t>
codecvt_byname<wchar_t, char, mbstate_t>

monetary moneypunct_byname<char, International>
moneypunct_byname<wchar_t, International>
money_get<C, InputIterator>
money_put<C, OutputIterator>

numeric numpunct_byname<char>, numpunct_byname<wchar_t>
num_get<C, InputIterator>, num_put<C, OutputIterator>

time time_get<char, InputIterator>
time_get_byname<char, InputIterator>
time_get<wchar_t, InputIterator>
time_get_byname<wchar_t, InputIterator>
time_put<char, OutputIterator>
time_put_byname<char, OutputIterator>
time_put<wchar_t, OutputIterator>
time_put_byname<wchar_t, OutputIterator>

messages messages_byname<char>, messages_byname<wchar_t>

Cpp17OutputIterator requirements, respectively (25.3). A template parameter with name C represents the
set of types containing char, wchar_t, and any other implementation-defined character types that meet the
requirements for a character on which any of the iostream components can be instantiated. A template
parameter with name International represents the set of all possible specializations on a bool parameter.

30.3.1.2.2 Class locale::facet [locale.facet]
namespace std {

class locale::facet {
protected:

explicit facet(size_t refs = 0);
virtual ~facet();
facet(const facet&) = delete;
void operator=(const facet&) = delete;

};
}

1 Class facet is the base class for locale feature sets. A class is a facet if it is publicly derived from another facet,
or if it is a class derived from locale::facet and contains a publicly accessible declaration as follows:242

static ::std::locale::id id;

2 Template parameters in this Clause which are required to be facets are those named Facet in declarations. A
program that passes a type that is not a facet, or a type that refers to a volatile-qualified facet, as an (explicit
or deduced) template parameter to a locale function expecting a facet, is ill-formed. A const-qualified facet is
a valid template argument to any locale function that expects a Facet template parameter.

3 The refs argument to the constructor is used for lifetime management. For refs == 0, the implementation
performs delete static_cast<locale::facet*>(f) (where f is a pointer to the facet) when the last
locale object containing the facet is destroyed; for refs == 1, the implementation never destroys the facet.

4 Constructors of all facets defined in this Clause take such an argument and pass it along to their facet
base class constructor. All one-argument constructors defined in this Clause are explicit, preventing their
participation in implicit conversions.

242) This is a complete list of requirements; there are no other requirements. Thus, a facet class need not have a public copy
constructor, assignment, default constructor, destructor, etc.
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5 For some standard facets a standard “. . ._byname” class, derived from it, implements the virtual function
semantics equivalent to that facet of the locale constructed by locale(const char*) with the same name.
Each such facet provides a constructor that takes a const char* argument, which names the locale, and a
refs argument, which is passed to the base class constructor. Each such facet also provides a constructor that
takes a string argument str and a refs argument, which has the same effect as calling the first constructor
with the two arguments str.c_str() and refs. If there is no “. . ._byname” version of a facet, the base class
implements named locale semantics itself by reference to other facets.

30.3.1.2.3 Class locale::id [locale.id]
namespace std {

class locale::id {
public:

id();
void operator=(const id&) = delete;
id(const id&) = delete;

};
}

1 The class locale::id provides identification of a locale facet interface, used as an index for lookup and to
encapsulate initialization.

2 [Note 1 : Because facets are used by iostreams, potentially while static constructors are running, their initialization
cannot depend on programmed static initialization. One initialization strategy is for locale to initialize each facet’s
id member the first time an instance of the facet is installed into a locale. This depends only on static storage being
zero before constructors run (6.9.3.2). — end note ]

30.3.1.3 Constructors and destructor [locale.cons]

locale() noexcept;

1 Effects: Constructs a copy of the argument last passed to locale::global(locale&), if it has been
called; else, the resulting facets have virtual function semantics identical to those of locale::classic().
[Note 1 : This constructor yields a copy of the current global locale. It is commonly used as a default argument
for function parameters of type const locale&. — end note ]

explicit locale(const char* std_name);

2 Effects: Constructs a locale using standard C locale names, e.g., "POSIX". The resulting locale
implements semantics defined to be associated with that name.

3 Throws: runtime_error if the argument is not valid, or is null.
4 Remarks: The set of valid string argument values is "C", "", and any implementation-defined values.

explicit locale(const string& std_name);

5 Effects: Equivalent to locale(std_name.c_str()).

locale(const locale& other, const char* std_name, category cats);

6 Preconditions: cats is a valid category value (30.3.1.2.1).
7 Effects: Constructs a locale as a copy of other except for the facets identified by the category

argument, which instead implement the same semantics as locale(std_name).
8 Throws: runtime_error if the second argument is not valid, or is null.
9 Remarks: The locale has a name if and only if other has a name.

locale(const locale& other, const string& std_name, category cats);

10 Effects: Equivalent to locale(other, std_name.c_str(), cats).

template<class Facet> locale(const locale& other, Facet* f);

11 Effects: Constructs a locale incorporating all facets from the first argument except that of type Facet,
and installs the second argument as the remaining facet. If f is null, the resulting object is a copy of
other.

12 Remarks: If f is null, the resulting locale has the same name as other. Otherwise, the resulting locale
has no name.
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locale(const locale& other, const locale& one, category cats);

13 Preconditions: cats is a valid category value.
14 Effects: Constructs a locale incorporating all facets from the first argument except those that implement

cats, which are instead incorporated from the second argument.
15 Remarks: If cats is equal to locale::none, the resulting locale has a name if and only if the first

argument has a name. Otherwise, the resulting locale has a name if and only if the first two arguments
both have names.

const locale& operator=(const locale& other) noexcept;

16 Effects: Creates a copy of other, replacing the current value.
17 Returns: *this.

30.3.1.4 Members [locale.members]

template<class Facet> locale combine(const locale& other) const;

1 Effects: Constructs a locale incorporating all facets from *this except for that one facet of other that
is identified by Facet.

2 Returns: The newly created locale.
3 Throws: runtime_error if has_facet<Facet>(other) is false.
4 Remarks: The resulting locale has no name.

string name() const;

5 Returns: The name of *this, if it has one; otherwise, the string "*".

30.3.1.5 Operators [locale.operators]

bool operator==(const locale& other) const;

1 Returns: true if both arguments are the same locale, or one is a copy of the other, or each has a name
and the names are identical; false otherwise.

template<class charT, class traits, class Allocator>
bool operator()(const basic_string<charT, traits, Allocator>& s1,

const basic_string<charT, traits, Allocator>& s2) const;

2 Effects: Compares two strings according to the collate<charT> facet.
3 Returns:

use_facet<collate<charT>>(*this).compare(s1.data(), s1.data() + s1.size(),
s2.data(), s2.data() + s2.size()) < 0

4 Remarks: This member operator template (and therefore locale itself) meets the requirements for a
comparator predicate template argument (Clause 27) applied to strings.

5 [Example 1 : A vector of strings v can be collated according to collation rules in locale loc simply by (27.8.2,
24.3.11):

std::sort(v.begin(), v.end(), loc);

— end example ]

30.3.1.6 Static members [locale.statics]

static locale global(const locale& loc);

1 Effects: Sets the global locale to its argument. Causes future calls to the constructor locale() to
return a copy of the argument. If the argument has a name, does

setlocale(LC_ALL, loc.name().c_str());

otherwise, the effect on the C locale, if any, is implementation-defined.
2 Returns: The previous value of locale().
3 Remarks: No library function other than locale::global() affects the value returned by locale().

[Note 1 : See 30.5 for data race considerations when setlocale is invoked. — end note ]
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static const locale& classic();

4 The "C" locale.
5 Returns: A locale that implements the classic "C" locale semantics, equivalent to the value locale("C").
6 Remarks: This locale, its facets, and their member functions, do not change with time.

30.3.2 locale globals [locale.global.templates]
template<class Facet> const Facet& use_facet(const locale& loc);

1 Mandates: Facet is a facet class whose definition contains the public static member id as defined
in 30.3.1.2.2.

2 Returns: A reference to the corresponding facet of loc, if present.
3 Throws: bad_cast if has_facet<Facet>(loc) is false.
4 Remarks: The reference returned remains valid at least as long as any copy of loc exists.

template<class Facet> bool has_facet(const locale& loc) noexcept;

5 Returns: true if the facet requested is present in loc; otherwise false.

30.3.3 Convenience interfaces [locale.convenience]
30.3.3.1 Character classification [classification]

template<class charT> bool isspace (charT c, const locale& loc);
template<class charT> bool isprint (charT c, const locale& loc);
template<class charT> bool iscntrl (charT c, const locale& loc);
template<class charT> bool isupper (charT c, const locale& loc);
template<class charT> bool islower (charT c, const locale& loc);
template<class charT> bool isalpha (charT c, const locale& loc);
template<class charT> bool isdigit (charT c, const locale& loc);
template<class charT> bool ispunct (charT c, const locale& loc);
template<class charT> bool isxdigit(charT c, const locale& loc);
template<class charT> bool isalnum (charT c, const locale& loc);
template<class charT> bool isgraph (charT c, const locale& loc);
template<class charT> bool isblank (charT c, const locale& loc);

1 Each of these functions isF returns the result of the expression:
use_facet<ctype<charT>>(loc).is(ctype_base::F , c)

where F is the ctype_base::mask value corresponding to that function (30.4.2).243

30.3.3.2 Character conversions [conversions.character]

template<class charT> charT toupper(charT c, const locale& loc);

1 Returns: use_facet<ctype<charT>>(loc).toupper(c).

template<class charT> charT tolower(charT c, const locale& loc);

2 Returns: use_facet<ctype<charT>>(loc).tolower(c).

30.4 Standard locale categories [locale.categories]
30.4.1 General [locale.categories.general]

1 Each of the standard categories includes a family of facets. Some of these implement formatting or parsing of a
datum, for use by standard or users’ iostream operators << and >>, as members put() and get(), respectively.
Each such member function takes an ios_base& argument whose members flags(), precision(), and
width(), specify the format of the corresponding datum (31.5.2). Those functions which need to use other
facets call its member getloc() to retrieve the locale imbued there. Formatting facets use the character
argument fill to fill out the specified width where necessary.

2 The put() members make no provision for error reporting. (Any failures of the OutputIterator argument
can be extracted from the returned iterator.) The get() members take an ios_base::iostate& argument
whose value they ignore, but set to ios_base::failbit in case of a parse error.

243) When used in a loop, it is faster to cache the ctype<> facet and use it directly, or use the vector form of ctype<>::is.
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3 Within subclause 30.4 it is unspecified whether one virtual function calls another virtual function.

30.4.2 The ctype category [category.ctype]
30.4.2.1 General [category.ctype.general]

namespace std {
class ctype_base {
public:

using mask = see below ;

// numeric values are for exposition only.
static const mask space = 1 << 0;
static const mask print = 1 << 1;
static const mask cntrl = 1 << 2;
static const mask upper = 1 << 3;
static const mask lower = 1 << 4;
static const mask alpha = 1 << 5;
static const mask digit = 1 << 6;
static const mask punct = 1 << 7;
static const mask xdigit = 1 << 8;
static const mask blank = 1 << 9;
static const mask alnum = alpha | digit;
static const mask graph = alnum | punct;

};
}

1 The type mask is a bitmask type (16.3.3.3.3).

30.4.2.2 Class template ctype [locale.ctype]
30.4.2.2.1 General [locale.ctype.general]

namespace std {
template<class charT>

class ctype : public locale::facet, public ctype_base {
public:

using char_type = charT;

explicit ctype(size_t refs = 0);

bool is(mask m, charT c) const;
const charT* is(const charT* low, const charT* high, mask* vec) const;
const charT* scan_is(mask m, const charT* low, const charT* high) const;
const charT* scan_not(mask m, const charT* low, const charT* high) const;
charT toupper(charT c) const;
const charT* toupper(charT* low, const charT* high) const;
charT tolower(charT c) const;
const charT* tolower(charT* low, const charT* high) const;

charT widen(char c) const;
const char* widen(const char* low, const char* high, charT* to) const;
char narrow(charT c, char dfault) const;
const charT* narrow(const charT* low, const charT* high, char dfault, char* to) const;

static locale::id id;

protected:
~ctype();
virtual bool do_is(mask m, charT c) const;
virtual const charT* do_is(const charT* low, const charT* high, mask* vec) const;
virtual const charT* do_scan_is(mask m, const charT* low, const charT* high) const;
virtual const charT* do_scan_not(mask m, const charT* low, const charT* high) const;
virtual charT do_toupper(charT) const;
virtual const charT* do_toupper(charT* low, const charT* high) const;
virtual charT do_tolower(charT) const;
virtual const charT* do_tolower(charT* low, const charT* high) const;
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virtual charT do_widen(char) const;
virtual const char* do_widen(const char* low, const char* high, charT* dest) const;
virtual char do_narrow(charT, char dfault) const;
virtual const charT* do_narrow(const charT* low, const charT* high,

char dfault, char* dest) const;
};

}

1 Class ctype encapsulates the C library <cctype> features. istream members are required to use ctype<>
for character classing during input parsing.

2 The specializations required in Table 104 (30.3.1.2.1), namely ctype<char> and ctype<wchar_t>, implement
character classing appropriate to the implementation’s native character set.

30.4.2.2.2 ctype members [locale.ctype.members]

bool is(mask m, charT c) const;
const charT* is(const charT* low, const charT* high, mask* vec) const;

1 Returns: do_is(m, c) or do_is(low, high, vec).

const charT* scan_is(mask m, const charT* low, const charT* high) const;

2 Returns: do_scan_is(m, low, high).

const charT* scan_not(mask m, const charT* low, const charT* high) const;

3 Returns: do_scan_not(m, low, high).

charT toupper(charT) const;
const charT* toupper(charT* low, const charT* high) const;

4 Returns: do_toupper(c) or do_toupper(low, high).

charT tolower(charT c) const;
const charT* tolower(charT* low, const charT* high) const;

5 Returns: do_tolower(c) or do_tolower(low, high).

charT widen(char c) const;
const char* widen(const char* low, const char* high, charT* to) const;

6 Returns: do_widen(c) or do_widen(low, high, to).

char narrow(charT c, char dfault) const;
const charT* narrow(const charT* low, const charT* high, char dfault, char* to) const;

7 Returns: do_narrow(c, dfault) or do_narrow(low, high, dfault, to).

30.4.2.2.3 ctype virtual functions [locale.ctype.virtuals]

bool do_is(mask m, charT c) const;
const charT* do_is(const charT* low, const charT* high, mask* vec) const;

1 Effects: Classifies a character or sequence of characters. For each argument character, identifies a value
M of type ctype_base::mask. The second form identifies a value M of type ctype_base::mask for each
*p where (low <= p && p < high), and places it into vec[p - low].

2 Returns: The first form returns the result of the expression (M & m) != 0; i.e., true if the character
has the characteristics specified. The second form returns high.

const charT* do_scan_is(mask m, const charT* low, const charT* high) const;

3 Effects: Locates a character in a buffer that conforms to a classification m.
4 Returns: The smallest pointer p in the range [low, high) such that is(m, *p) would return true;

otherwise, returns high.

const charT* do_scan_not(mask m, const charT* low, const charT* high) const;

5 Effects: Locates a character in a buffer that fails to conform to a classification m.
6 Returns: The smallest pointer p, if any, in the range [low, high) such that is(m, *p) would return

false; otherwise, returns high.
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charT do_toupper(charT c) const;
const charT* do_toupper(charT* low, const charT* high) const;

7 Effects: Converts a character or characters to upper case. The second form replaces each character *p
in the range [low, high) for which a corresponding upper-case character exists, with that character.

8 Returns: The first form returns the corresponding upper-case character if it is known to exist, or its
argument if not. The second form returns high.

charT do_tolower(charT c) const;
const charT* do_tolower(charT* low, const charT* high) const;

9 Effects: Converts a character or characters to lower case. The second form replaces each character *p
in the range [low, high) and for which a corresponding lower-case character exists, with that character.

10 Returns: The first form returns the corresponding lower-case character if it is known to exist, or its
argument if not. The second form returns high.

charT do_widen(char c) const;
const char* do_widen(const char* low, const char* high, charT* dest) const;

11 Effects: Applies the simplest reasonable transformation from a char value or sequence of char values
to the corresponding charT value or values.244 The only characters for which unique transformations
are required are those in the basic character set (5.3).
For any named ctype category with a ctype<charT> facet ctc and valid ctype_base::mask value M,
(ctc.is(M, c) || !is(M, do_widen(c)) ) is true.245

The second form transforms each character *p in the range [low, high), placing the result in dest[p -
low].

12 Returns: The first form returns the transformed value. The second form returns high.

char do_narrow(charT c, char dfault) const;
const charT* do_narrow(const charT* low, const charT* high, char dfault, char* dest) const;

13 Effects: Applies the simplest reasonable transformation from a charT value or sequence of charT values
to the corresponding char value or values.
For any character c in the basic character set (5.3) the transformation is such that

do_widen(do_narrow(c, 0)) == c

For any named ctype category with a ctype<char> facet ctc however, and ctype_base::mask value
M,

(is(M, c) || !ctc.is(M, do_narrow(c, dfault)) )

is true (unless do_narrow returns dfault). In addition, for any digit character c, the expression (do_-
narrow(c, dfault) - ’0’) evaluates to the digit value of the character. The second form transforms
each character *p in the range [low, high), placing the result (or dfault if no simple transformation is
readily available) in dest[p - low].

14 Returns: The first form returns the transformed value; or dfault if no mapping is readily available.
The second form returns high.

30.4.2.3 Class template ctype_byname [locale.ctype.byname]
namespace std {

template<class charT>
class ctype_byname : public ctype<charT> {
public:

using mask = typename ctype<charT>::mask;
explicit ctype_byname(const char*, size_t refs = 0);
explicit ctype_byname(const string&, size_t refs = 0);

protected:
~ctype_byname();

244) The parameter c of do_widen is intended to accept values derived from character-literals for conversion to the locale’s
encoding.
245) In other words, the transformed character is not a member of any character classification that c is not also a member of.
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};
}

30.4.2.4 ctype<char> specialization [facet.ctype.special]
30.4.2.4.1 General [facet.ctype.special.general]

namespace std {
template<>

class ctype<char> : public locale::facet, public ctype_base {
public:

using char_type = char;

explicit ctype(const mask* tab = nullptr, bool del = false, size_t refs = 0);

bool is(mask m, char c) const;
const char* is(const char* low, const char* high, mask* vec) const;
const char* scan_is (mask m, const char* low, const char* high) const;
const char* scan_not(mask m, const char* low, const char* high) const;

char toupper(char c) const;
const char* toupper(char* low, const char* high) const;
char tolower(char c) const;
const char* tolower(char* low, const char* high) const;

char widen(char c) const;
const char* widen(const char* low, const char* high, char* to) const;
char narrow(char c, char dfault) const;
const char* narrow(const char* low, const char* high, char dfault, char* to) const;

static locale::id id;
static const size_t table_size = implementation-defined ;

const mask* table() const noexcept;
static const mask* classic_table() noexcept;

protected:
~ctype();
virtual char do_toupper(char c) const;
virtual const char* do_toupper(char* low, const char* high) const;
virtual char do_tolower(char c) const;
virtual const char* do_tolower(char* low, const char* high) const;

virtual char do_widen(char c) const;
virtual const char* do_widen(const char* low, const char* high, char* to) const;
virtual char do_narrow(char c, char dfault) const;
virtual const char* do_narrow(const char* low, const char* high,

char dfault, char* to) const;
};

}

1 A specialization ctype<char> is provided so that the member functions on type char can be implemented
inline.246 The implementation-defined value of member table_size is at least 256.

30.4.2.4.2 Destructor [facet.ctype.char.dtor]

~ctype();

1 Effects: If the constructor’s first argument was nonzero, and its second argument was true, does delete
[] table().

246) Only the char (not unsigned char and signed char) form is provided. The specialization is specified in the standard, and
not left as an implementation detail, because it affects the derivation interface for ctype<char>.
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30.4.2.4.3 Members [facet.ctype.char.members]
1 In the following member descriptions, for unsigned char values v where v >= table_size, table()[v] is

assumed to have an implementation-specific value (possibly different for each such value v) without performing
the array lookup.

explicit ctype(const mask* tbl = nullptr, bool del = false, size_t refs = 0);

2 Preconditions: Either tbl == nullptr is true or [tbl, tbl+table_size) is a valid range.
3 Effects: Passes its refs argument to its base class constructor.

bool is(mask m, char c) const;
const char* is(const char* low, const char* high, mask* vec) const;

4 Effects: The second form, for all *p in the range [low, high), assigns into vec[p - low] the value
table()[(unsigned char)*p].

5 Returns: The first form returns table()[(unsigned char)c] & m; the second form returns high.

const char* scan_is(mask m, const char* low, const char* high) const;

6 Returns: The smallest p in the range [low, high) such that
table()[(unsigned char) *p] & m

is true.

const char* scan_not(mask m, const char* low, const char* high) const;

7 Returns: The smallest p in the range [low, high) such that
table()[(unsigned char) *p] & m

is false.

char toupper(char c) const;
const char* toupper(char* low, const char* high) const;

8 Returns: do_toupper(c) or do_toupper(low, high), respectively.

char tolower(char c) const;
const char* tolower(char* low, const char* high) const;

9 Returns: do_tolower(c) or do_tolower(low, high), respectively.

char widen(char c) const;
const char* widen(const char* low, const char* high, char* to) const;

10 Returns: do_widen(c) or do_widen(low, high, to), respectively.

char narrow(char c, char dfault) const;
const char* narrow(const char* low, const char* high, char dfault, char* to) const;

11 Returns: do_narrow(c, dfault) or do_narrow(low, high, dfault, to), respectively.

const mask* table() const noexcept;

12 Returns: The first constructor argument, if it was nonzero, otherwise classic_table().

30.4.2.4.4 Static members [facet.ctype.char.statics]

static const mask* classic_table() noexcept;

1 Returns: A pointer to the initial element of an array of size table_size which represents the classifica-
tions of characters in the "C" locale.

30.4.2.4.5 Virtual functions [facet.ctype.char.virtuals]
char do_toupper(char) const;
const char* do_toupper(char* low, const char* high) const;
char do_tolower(char) const;
const char* do_tolower(char* low, const char* high) const;
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virtual char do_widen(char c) const;
virtual const char* do_widen(const char* low, const char* high, char* to) const;
virtual char do_narrow(char c, char dfault) const;
virtual const char* do_narrow(const char* low, const char* high,

char dfault, char* to) const;

1 These functions are described identically as those members of the same name in the ctype class template
(30.4.2.2.2).

30.4.2.5 Class template codecvt [locale.codecvt]
30.4.2.5.1 General [locale.codecvt.general]

namespace std {
class codecvt_base {
public:

enum result { ok, partial, error, noconv };
};

template<class internT, class externT, class stateT>
class codecvt : public locale::facet, public codecvt_base {
public:

using intern_type = internT;
using extern_type = externT;
using state_type = stateT;

explicit codecvt(size_t refs = 0);

result out(
stateT& state,
const internT* from, const internT* from_end, const internT*& from_next,

externT* to, externT* to_end, externT*& to_next) const;

result unshift(
stateT& state,

externT* to, externT* to_end, externT*& to_next) const;

result in(
stateT& state,
const externT* from, const externT* from_end, const externT*& from_next,

internT* to, internT* to_end, internT*& to_next) const;

int encoding() const noexcept;
bool always_noconv() const noexcept;
int length(stateT&, const externT* from, const externT* end, size_t max) const;
int max_length() const noexcept;

static locale::id id;

protected:
~codecvt();
virtual result do_out(

stateT& state,
const internT* from, const internT* from_end, const internT*& from_next,

externT* to, externT* to_end, externT*& to_next) const;
virtual result do_in(

stateT& state,
const externT* from, const externT* from_end, const externT*& from_next,

internT* to, internT* to_end, internT*& to_next) const;
virtual result do_unshift(

stateT& state,
externT* to, externT* to_end, externT*& to_next) const;

virtual int do_encoding() const noexcept;
virtual bool do_always_noconv() const noexcept;
virtual int do_length(stateT&, const externT* from, const externT* end, size_t max) const;
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virtual int do_max_length() const noexcept;
};

}

1 The class codecvt<internT, externT, stateT> is for use when converting from one character encoding to
another, such as from wide characters to multibyte characters or between wide character encodings such as
UTF-32 and EUC.

2 The stateT argument selects the pair of character encodings being mapped between.
3 The specializations required in Table 104 (30.3.1.2.1) convert the implementation-defined native character

set. codecvt<char, char, mbstate_t> implements a degenerate conversion; it does not convert at all.
The specialization codecvt<char16_t, char8_t, mbstate_t> converts between the UTF-16 and UTF-8
encoding forms, and the specialization codecvt<char32_t, char8_t, mbstate_t> converts between the
UTF-32 and UTF-8 encoding forms. codecvt<wchar_t, char, mbstate_t> converts between the native
character sets for ordinary and wide characters. Specializations on mbstate_t perform conversion between
encodings known to the library implementer. Other encodings can be converted by specializing on a program-
defined stateT type. Objects of type stateT can contain any state that is useful to communicate to or from
the specialized do_in or do_out members.

30.4.2.5.2 Members [locale.codecvt.members]

result out(
stateT& state,
const internT* from, const internT* from_end, const internT*& from_next,
externT* to, externT* to_end, externT*& to_next) const;

1 Returns: do_out(state, from, from_end, from_next, to, to_end, to_next).

result unshift(stateT& state, externT* to, externT* to_end, externT*& to_next) const;

2 Returns: do_unshift(state, to, to_end, to_next).

result in(
stateT& state,
const externT* from, const externT* from_end, const externT*& from_next,
internT* to, internT* to_end, internT*& to_next) const;

3 Returns: do_in(state, from, from_end, from_next, to, to_end, to_next).

int encoding() const noexcept;

4 Returns: do_encoding().

bool always_noconv() const noexcept;

5 Returns: do_always_noconv().

int length(stateT& state, const externT* from, const externT* from_end, size_t max) const;

6 Returns: do_length(state, from, from_end, max).

int max_length() const noexcept;

7 Returns: do_max_length().

30.4.2.5.3 Virtual functions [locale.codecvt.virtuals]

result do_out(
stateT& state,
const internT* from, const internT* from_end, const internT*& from_next,
externT* to, externT* to_end, externT*& to_next) const;

result do_in(
stateT& state,
const externT* from, const externT* from_end, const externT*& from_next,
internT* to, internT* to_end, internT*& to_next) const;

1 Preconditions: (from <= from_end && to <= to_end) is well-defined and true; state is initialized,
if at the beginning of a sequence, or else is equal to the result of converting the preceding characters in
the sequence.
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2 Effects: Translates characters in the source range [from, from_end), placing the results in sequential
positions starting at destination to. Converts no more than (from_end - from) source elements, and
stores no more than (to_end - to) destination elements.

3 Stops if it encounters a character it cannot convert. It always leaves the from_next and to_next pointers
pointing one beyond the last element successfully converted. If returns noconv, internT and externT
are the same type and the converted sequence is identical to the input sequence [from, from_next).
to_next is set equal to to, the value of state is unchanged, and there are no changes to the values in
[to, to_end).

4 A codecvt facet that is used by basic_filebuf (31.10) shall have the property that if
do_out(state, from, from_end, from_next, to, to_end, to_next)

would return ok, where from != from_end, then
do_out(state, from, from + 1, from_next, to, to_end, to_next)

shall also return ok, and that if
do_in(state, from, from_end, from_next, to, to_end, to_next)

would return ok, where to != to_end, then
do_in(state, from, from_end, from_next, to, to + 1, to_next)

shall also return ok.247

[Note 1 : As a result of operations on state, it can return ok or partial and set from_next == from and
to_next != to. — end note ]

5 Returns: An enumeration value, as summarized in Table 106.

Table 106: do_in/do_out result values [tab:locale.codecvt.inout]

Value Meaning
ok completed the conversion
partial not all source characters converted
error encountered a character in [from, from_end) that

cannot be converted
noconv internT and externT are the same type, and input

sequence is identical to converted sequence

A return value of partial, if (from_next == from_end), indicates that either the destination sequence
has not absorbed all the available destination elements, or that additional source elements are needed
before another destination element can be produced.

6 Remarks: Its operations on state are unspecified.
[Note 2 : This argument can be used, for example, to maintain shift state, to specify conversion options (such as
count only), or to identify a cache of seek offsets. — end note ]

result do_unshift(stateT& state, externT* to, externT* to_end, externT*& to_next) const;

7 Preconditions: (to <= to_end) is well-defined and true; state is initialized, if at the beginning of a
sequence, or else is equal to the result of converting the preceding characters in the sequence.

8 Effects: Places characters starting at to that should be appended to terminate a sequence when the
current stateT is given by state.248 Stores no more than (to_end - to) destination elements, and
leaves the to_next pointer pointing one beyond the last element successfully stored.

9 Returns: An enumeration value, as summarized in Table 107.

247) Informally, this means that basic_filebuf assumes that the mappings from internal to external characters is 1 to N: that
a codecvt facet that is used by basic_filebuf can translate characters one internal character at a time.
248) Typically these will be characters to return the state to stateT().
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Table 107: do_unshift result values [tab:locale.codecvt.unshift]

Value Meaning
ok completed the sequence
partial space for more than to_end - to destination elements

was needed to terminate a sequence given the value of
state

error an unspecified error has occurred
noconv no termination is needed for this state_type

int do_encoding() const noexcept;

10 Returns: -1 if the encoding of the externT sequence is state-dependent; else the constant number of
externT characters needed to produce an internal character; or 0 if this number is not a constant.249

bool do_always_noconv() const noexcept;

11 Returns: true if do_in() and do_out() return noconv for all valid argument values. codecvt<char,
char, mbstate_t> returns true.

int do_length(stateT& state, const externT* from, const externT* from_end, size_t max) const;

12 Preconditions: (from <= from_end) is well-defined and true; state is initialized, if at the beginning
of a sequence, or else is equal to the result of converting the preceding characters in the sequence.

13 Effects: The effect on the state argument is as if it called do_in(state, from, from_end, from,
to, to+max, to) for to pointing to a buffer of at least max elements.

14 Returns: (from_next-from) where from_next is the largest value in the range [from, from_end] such
that the sequence of values in the range [from, from_next) represents max or fewer valid complete
characters of type internT. The specialization codecvt<char, char, mbstate_t>, returns the lesser
of max and (from_end-from).

int do_max_length() const noexcept;

15 Returns: The maximum value that do_length(state, from, from_end, 1) can return for any valid
range [from, from_end) and stateT value state. The specialization codecvt<char, char, mbstate_-
t>::do_max_length() returns 1.

30.4.2.6 Class template codecvt_byname [locale.codecvt.byname]
namespace std {

template<class internT, class externT, class stateT>
class codecvt_byname : public codecvt<internT, externT, stateT> {
public:

explicit codecvt_byname(const char*, size_t refs = 0);
explicit codecvt_byname(const string&, size_t refs = 0);

protected:
~codecvt_byname();

};
}

30.4.3 The numeric category [category.numeric]
30.4.3.1 General [category.numeric.general]

1 The classes num_get<> and num_put<> handle numeric formatting and parsing. Virtual functions are provided
for several numeric types. Implementations may (but are not required to) delegate extraction of smaller
types to extractors for larger types.250

249) If encoding() yields -1, then more than max_length() externT elements can be consumed when producing a single internT
character, and additional externT elements can appear at the end of a sequence after those that yield the final internT character.
250) Parsing "-1" correctly into, e.g., an unsigned short requires that the corresponding member get() at least extract the
sign before delegating.
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2 All specifications of member functions for num_put and num_get in the subclauses of 30.4.3 only apply to the
specializations required in Tables 104 and 105 (30.3.1.2.1), namely num_get<char>, num_get<wchar_t>, num_-
get<C, InputIterator>, num_put<char>, num_put<wchar_t>, and num_put<C, OutputIterator>. These
specializations refer to the ios_base& argument for formatting specifications (30.4), and to its imbued locale
for the numpunct<> facet to identify all numeric punctuation preferences, and also for the ctype<> facet to
perform character classification.

3 Extractor and inserter members of the standard iostreams use num_get<> and num_put<> member functions
for formatting and parsing numeric values (31.7.5.3.1, 31.7.6.3.1).

30.4.3.2 Class template num_get [locale.num.get]
30.4.3.2.1 General [locale.num.get.general]

namespace std {
template<class charT, class InputIterator = istreambuf_iterator<charT>>

class num_get : public locale::facet {
public:

using char_type = charT;
using iter_type = InputIterator;

explicit num_get(size_t refs = 0);

iter_type get(iter_type in, iter_type end, ios_base&,
ios_base::iostate& err, bool& v) const;

iter_type get(iter_type in, iter_type end, ios_base&,
ios_base::iostate& err, long& v) const;

iter_type get(iter_type in, iter_type end, ios_base&,
ios_base::iostate& err, long long& v) const;

iter_type get(iter_type in, iter_type end, ios_base&,
ios_base::iostate& err, unsigned short& v) const;

iter_type get(iter_type in, iter_type end, ios_base&,
ios_base::iostate& err, unsigned int& v) const;

iter_type get(iter_type in, iter_type end, ios_base&,
ios_base::iostate& err, unsigned long& v) const;

iter_type get(iter_type in, iter_type end, ios_base&,
ios_base::iostate& err, unsigned long long& v) const;

iter_type get(iter_type in, iter_type end, ios_base&,
ios_base::iostate& err, float& v) const;

iter_type get(iter_type in, iter_type end, ios_base&,
ios_base::iostate& err, double& v) const;

iter_type get(iter_type in, iter_type end, ios_base&,
ios_base::iostate& err, long double& v) const;

iter_type get(iter_type in, iter_type end, ios_base&,
ios_base::iostate& err, void*& v) const;

static locale::id id;

protected:
~num_get();
virtual iter_type do_get(iter_type, iter_type, ios_base&,

ios_base::iostate& err, bool& v) const;
virtual iter_type do_get(iter_type, iter_type, ios_base&,

ios_base::iostate& err, long& v) const;
virtual iter_type do_get(iter_type, iter_type, ios_base&,

ios_base::iostate& err, long long& v) const;
virtual iter_type do_get(iter_type, iter_type, ios_base&,

ios_base::iostate& err, unsigned short& v) const;
virtual iter_type do_get(iter_type, iter_type, ios_base&,

ios_base::iostate& err, unsigned int& v) const;
virtual iter_type do_get(iter_type, iter_type, ios_base&,

ios_base::iostate& err, unsigned long& v) const;
virtual iter_type do_get(iter_type, iter_type, ios_base&,

ios_base::iostate& err, unsigned long long& v) const;
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virtual iter_type do_get(iter_type, iter_type, ios_base&,
ios_base::iostate& err, float& v) const;

virtual iter_type do_get(iter_type, iter_type, ios_base&,
ios_base::iostate& err, double& v) const;

virtual iter_type do_get(iter_type, iter_type, ios_base&,
ios_base::iostate& err, long double& v) const;

virtual iter_type do_get(iter_type, iter_type, ios_base&,
ios_base::iostate& err, void*& v) const;

};
}

1 The facet num_get is used to parse numeric values from an input sequence such as an istream.

30.4.3.2.2 Members [facet.num.get.members]

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, bool& val) const;

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, long& val) const;

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, long long& val) const;

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, unsigned short& val) const;

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, unsigned int& val) const;

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, unsigned long& val) const;

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, unsigned long long& val) const;

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, float& val) const;

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, double& val) const;

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, long double& val) const;

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, void*& val) const;

1 Returns: do_get(in, end, str, err, val).

30.4.3.2.3 Virtual functions [facet.num.get.virtuals]

iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, long& val) const;

iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, long long& val) const;

iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, unsigned short& val) const;

iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, unsigned int& val) const;

iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, unsigned long& val) const;

iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, unsigned long long& val) const;

iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, float& val) const;

iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, double& val) const;

iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, long double& val) const;

iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, void*& val) const;

1 Effects: Reads characters from in, interpreting them according to str.flags(), use_facet<ctype<
charT>>(loc), and use_facet<numpunct<charT>>(loc), where loc is str.getloc().

2 The details of this operation occur in three stages
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—(2.1) Stage 1: Determine a conversion specifier
—(2.2) Stage 2: Extract characters from in and determine a corresponding char value for the format

expected by the conversion specification determined in stage 1.
—(2.3) Stage 3: Store results

3 The details of the stages are presented below.

Stage 1: The function initializes local variables via
fmtflags flags = str.flags();
fmtflags basefield = (flags & ios_base::basefield);
fmtflags uppercase = (flags & ios_base::uppercase);
fmtflags boolalpha = (flags & ios_base::boolalpha);

For conversion to an integral type, the function determines the integral conversion specifier as
indicated in Table 108. The table is ordered. That is, the first line whose condition is true applies.

Table 108: Integer conversions [tab:facet.num.get.int]

State stdio equivalent
basefield == oct %o
basefield == hex %X
basefield == 0 %i
signed integral type %d
unsigned integral type %u

For conversions to a floating-point type the specifier is %g.
For conversions to void* the specifier is %p.
A length modifier is added to the conversion specification, if needed, as indicated in Table 109.

Table 109: Length modifier [tab:facet.num.get.length]

Type Length modifier
short h
unsigned short h
long l
unsigned long l
long long ll
unsigned long long ll
double l
long double L

Stage 2: If in == end then stage 2 terminates. Otherwise a charT is taken from in and local variables
are initialized as if by

char_type ct = *in;
char c = src[find(atoms, atoms + sizeof(src) - 1, ct) - atoms];
if (ct == use_facet<numpunct<charT>>(loc).decimal_point())

c = '.';
bool discard =

ct == use_facet<numpunct<charT>>(loc).thousands_sep()
&& use_facet<numpunct<charT>>(loc).grouping().length() != 0;

where the values src and atoms are defined as if by:
static const char src[] = "0123456789abcdefpxABCDEFPX+-";
char_type atoms[sizeof(src)];
use_facet<ctype<charT>>(loc).widen(src, src + sizeof(src), atoms);

for this value of loc.
If discard is true, then if ’.’ has not yet been accumulated, then the position of the character
is remembered, but the character is otherwise ignored. Otherwise, if ’.’ has already been
accumulated, the character is discarded and Stage 2 terminates. If it is not discarded, then a

§ 30.4.3.2.3 1590



© ISO/IEC N4950

check is made to determine if c is allowed as the next character of an input field of the conversion
specifier returned by Stage 1. If so, it is accumulated.
If the character is either discarded or accumulated then in is advanced by ++in and processing
returns to the beginning of stage 2.
[Example 1 : Given an input sequence of "0x1a.bp+07p",
—(3.1) if the conversion specifier returned by Stage 1 is %d, "0" is accumulated;
—(3.2) if the conversion specifier returned by Stage 1 is %i, "0x1a" are accumulated;
—(3.3) if the conversion specifier returned by Stage 1 is %g, "0x1a.bp+07" are accumulated.

In all cases, the remainder is left in the input. — end example ]

Stage 3: The sequence of chars accumulated in stage 2 (the field) is converted to a numeric value by
the rules of one of the functions declared in the header <cstdlib>:
—(3.4) For a signed integer value, the function strtoll.
—(3.5) For an unsigned integer value, the function strtoull.
—(3.6) For a float value, the function strtof.
—(3.7) For a double value, the function strtod.
—(3.8) For a long double value, the function strtold.

The numeric value to be stored can be one of:
—(3.9) zero, if the conversion function does not convert the entire field.
—(3.10) the most positive (or negative) representable value, if the field to be converted to a signed

integer type represents a value too large positive (or negative) to be represented in val.
—(3.11) the most positive representable value, if the field to be converted to an unsigned integer type

represents a value that cannot be represented in val.
—(3.12) the converted value, otherwise.

The resultant numeric value is stored in val. If the conversion function does not convert the entire
field, or if the field represents a value outside the range of representable values, ios_base::failbit
is assigned to err.

4 Digit grouping is checked. That is, the positions of discarded separators are examined for consistency with
use_facet<numpunct<charT>>(loc).grouping(). If they are not consistent then ios_base::failbit
is assigned to err.

5 In any case, if stage 2 processing was terminated by the test for in == end then err |= ios_-
base::eofbit is performed.

iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, bool& val) const;

6 Effects: If (str.flags()&ios_base::boolalpha) == 0 then input proceeds as it would for a long
except that if a value is being stored into val, the value is determined according to the following: If
the value to be stored is 0 then false is stored. If the value is 1 then true is stored. Otherwise true
is stored and ios_base::failbit is assigned to err.

7 Otherwise target sequences are determined “as if” by calling the members falsename() and truename()
of the facet obtained by use_facet<numpunct<charT>>(str.getloc()). Successive characters in the
range [in, end) (see 24.2.4) are obtained and matched against corresponding positions in the target
sequences only as necessary to identify a unique match. The input iterator in is compared to end
only when necessary to obtain a character. If a target sequence is uniquely matched, val is set to the
corresponding value. Otherwise false is stored and ios_base::failbit is assigned to err.

8 The in iterator is always left pointing one position beyond the last character successfully matched.
If val is set, then err is set to str.goodbit; or to str.eofbit if, when seeking another character
to match, it is found that (in == end). If val is not set, then err is set to str.failbit; or to
(str.failbit|str.eofbit) if the reason for the failure was that (in == end).
[Example 2 : For targets true: "a" and false: "abb", the input sequence "a" yields val == true and err
== str.eofbit; the input sequence "abc" yields err = str.failbit, with in ending at the ’c’ element. For
targets true: "1" and false: "0", the input sequence "1" yields val == true and err == str.goodbit. For
empty targets (""), any input sequence yields err == str.failbit. — end example ]

9 Returns: in.
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30.4.3.3 Class template num_put [locale.nm.put]
30.4.3.3.1 General [locale.nm.put.general]

namespace std {
template<class charT, class OutputIterator = ostreambuf_iterator<charT>>

class num_put : public locale::facet {
public:

using char_type = charT;
using iter_type = OutputIterator;

explicit num_put(size_t refs = 0);

iter_type put(iter_type s, ios_base& f, char_type fill, bool v) const;
iter_type put(iter_type s, ios_base& f, char_type fill, long v) const;
iter_type put(iter_type s, ios_base& f, char_type fill, long long v) const;
iter_type put(iter_type s, ios_base& f, char_type fill, unsigned long v) const;
iter_type put(iter_type s, ios_base& f, char_type fill, unsigned long long v) const;
iter_type put(iter_type s, ios_base& f, char_type fill, double v) const;
iter_type put(iter_type s, ios_base& f, char_type fill, long double v) const;
iter_type put(iter_type s, ios_base& f, char_type fill, const void* v) const;

static locale::id id;

protected:
~num_put();
virtual iter_type do_put(iter_type, ios_base&, char_type fill, bool v) const;
virtual iter_type do_put(iter_type, ios_base&, char_type fill, long v) const;
virtual iter_type do_put(iter_type, ios_base&, char_type fill, long long v) const;
virtual iter_type do_put(iter_type, ios_base&, char_type fill, unsigned long) const;
virtual iter_type do_put(iter_type, ios_base&, char_type fill, unsigned long long) const;
virtual iter_type do_put(iter_type, ios_base&, char_type fill, double v) const;
virtual iter_type do_put(iter_type, ios_base&, char_type fill, long double v) const;
virtual iter_type do_put(iter_type, ios_base&, char_type fill, const void* v) const;

};
}

1 The facet num_put is used to format numeric values to a character sequence such as an ostream.

30.4.3.3.2 Members [facet.num.put.members]

iter_type put(iter_type out, ios_base& str, char_type fill, bool val) const;
iter_type put(iter_type out, ios_base& str, char_type fill, long val) const;
iter_type put(iter_type out, ios_base& str, char_type fill, long long val) const;
iter_type put(iter_type out, ios_base& str, char_type fill, unsigned long val) const;
iter_type put(iter_type out, ios_base& str, char_type fill, unsigned long long val) const;
iter_type put(iter_type out, ios_base& str, char_type fill, double val) const;
iter_type put(iter_type out, ios_base& str, char_type fill, long double val) const;
iter_type put(iter_type out, ios_base& str, char_type fill, const void* val) const;

1 Returns: do_put(out, str, fill, val).

30.4.3.3.3 Virtual functions [facet.num.put.virtuals]

iter_type do_put(iter_type out, ios_base& str, char_type fill, long val) const;
iter_type do_put(iter_type out, ios_base& str, char_type fill, long long val) const;
iter_type do_put(iter_type out, ios_base& str, char_type fill, unsigned long val) const;
iter_type do_put(iter_type out, ios_base& str, char_type fill, unsigned long long val) const;
iter_type do_put(iter_type out, ios_base& str, char_type fill, double val) const;
iter_type do_put(iter_type out, ios_base& str, char_type fill, long double val) const;
iter_type do_put(iter_type out, ios_base& str, char_type fill, const void* val) const;

1 Effects: Writes characters to the sequence out, formatting val as desired. In the following description,
loc names a local variable initialized as

locale loc = str.getloc();

2 The details of this operation occur in several stages:
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—(2.1) Stage 1: Determine a printf conversion specifier spec and determine the characters that would be
printed by printf (31.13) given this conversion specifier for

printf(spec, val)

assuming that the current locale is the "C" locale.
—(2.2) Stage 2: Adjust the representation by converting each char determined by stage 1 to a charT

using a conversion and values returned by members of use_facet<numpunct<charT>>(loc).
—(2.3) Stage 3: Determine where padding is required.
—(2.4) Stage 4: Insert the sequence into the out.

3 Detailed descriptions of each stage follow.
4 Returns: out.

Stage 1: The first action of stage 1 is to determine a conversion specifier. The tables that describe
this determination use the following local variables

fmtflags flags = str.flags();
fmtflags basefield = (flags & (ios_base::basefield));
fmtflags uppercase = (flags & (ios_base::uppercase));
fmtflags floatfield = (flags & (ios_base::floatfield));
fmtflags showpos = (flags & (ios_base::showpos));
fmtflags showbase = (flags & (ios_base::showbase));
fmtflags showpoint = (flags & (ios_base::showpoint));

All tables used in describing stage 1 are ordered. That is, the first line whose condition is true
applies. A line without a condition is the default behavior when none of the earlier lines apply.
For conversion from an integral type other than a character type, the function determines the
integral conversion specifier as indicated in Table 110.

Table 110: Integer conversions [tab:facet.num.put.int]

State stdio equivalent
basefield == ios_base::oct %o
(basefield == ios_base::hex) && !uppercase %x
(basefield == ios_base::hex) %X
for a signed integral type %d
for an unsigned integral type %u

For conversion from a floating-point type, the function determines the floating-point conversion
specifier as indicated in Table 111.

Table 111: Floating-point conversions [tab:facet.num.put.fp]

State stdio equivalent
floatfield == ios_base::fixed %f
floatfield == ios_base::scientific && !uppercase %e
floatfield == ios_base::scientific %E
floatfield == (ios_base::fixed | ios_base::scientific) && !uppercase %a
floatfield == (ios_base::fixed | ios_base::scientific) %A
!uppercase %g
otherwise %G

For conversions from an integral or floating-point type a length modifier is added to the conversion
specifier as indicated in Table 112.
The conversion specifier has the following optional additional qualifiers prepended as indicated in
Table 113.
For conversion from a floating-point type, if floatfield != (ios_base::fixed | ios_base::
scientific), str.precision() is specified as precision in the conversion specification. Otherwise,
no precision is specified.
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Table 112: Length modifier [tab:facet.num.put.length]

Type Length modifier
long l
long long ll
unsigned long l
unsigned long long ll
long double L
otherwise none

Table 113: Numeric conversions [tab:facet.num.put.conv]

Type(s) State stdio equivalent
an integral type showpos +

showbase #
a floating-point type showpos +

showpoint #

For conversion from void* the specifier is %p.
The representations at the end of stage 1 consists of the char’s that would be printed by a call of
printf(s, val) where s is the conversion specifier determined above.

Stage 2: Any character c other than a decimal point(.) is converted to a charT via
use_facet<ctype<charT>>(loc).widen(c)

A local variable punct is initialized via
const numpunct<charT>& punct = use_facet<numpunct<charT>>(loc);

For arithmetic types, punct.thousands_sep() characters are inserted into the sequence as deter-
mined by the value returned by punct.do_grouping() using the method described in 30.4.4.1.3.
Decimal point characters(.) are replaced by punct.decimal_point().

Stage 3: A local variable is initialized as
fmtflags adjustfield = (flags & (ios_base::adjustfield));

The location of any padding251 is determined according to Table 114.

Table 114: Fill padding [tab:facet.num.put.fill]

State Location
adjustfield == ios_base::left pad after
adjustfield == ios_base::right pad before
adjustfield == internal and a sign occurs in
the representation

pad after the sign

adjustfield == internal and representation af-
ter stage 1 began with 0x or 0X

pad after x or X

otherwise pad before

If str.width() is nonzero and the number of charT’s in the sequence after stage 2 is less than
str.width(), then enough fill characters are added to the sequence at the position indicated
for padding to bring the length of the sequence to str.width().
str.width(0) is called.

Stage 4: The sequence of charT’s at the end of stage 3 are output via
*out++ = c

251) The conversion specification #o generates a leading 0 which is not a padding character.
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iter_type do_put(iter_type out, ios_base& str, char_type fill, bool val) const;

5 Returns: If (str.flags() & ios_base::boolalpha) == 0 returns do_put(out, str, fill,
(int)val), otherwise obtains a string s as if by

string_type s =
val ? use_facet<numpunct<charT>>(loc).truename()

: use_facet<numpunct<charT>>(loc).falsename();

and then inserts each character c of s into out via *out++ = c and returns out.

30.4.4 The numeric punctuation facet [facet.numpunct]
30.4.4.1 Class template numpunct [locale.numpunct]
30.4.4.1.1 General [locale.numpunct.general]

namespace std {
template<class charT>

class numpunct : public locale::facet {
public:

using char_type = charT;
using string_type = basic_string<charT>;

explicit numpunct(size_t refs = 0);

char_type decimal_point() const;
char_type thousands_sep() const;
string grouping() const;
string_type truename() const;
string_type falsename() const;

static locale::id id;

protected:
~numpunct(); // virtual
virtual char_type do_decimal_point() const;
virtual char_type do_thousands_sep() const;
virtual string do_grouping() const;
virtual string_type do_truename() const; // for bool
virtual string_type do_falsename() const; // for bool

};
}

1 numpunct<> specifies numeric punctuation. The specializations required in Table 104 (30.3.1.2.1), namely
numpunct<wchar_t> and numpunct<char>, provide classic "C" numeric formats, i.e., they contain information
equivalent to that contained in the "C" locale or their wide character counterparts as if obtained by a call to
widen.

2 The syntax for number formats is as follows, where digit represents the radix set specified by the fmtflags
argument value, and thousands-sep and decimal-point are the results of corresponding numpunct<charT>
members. Integer values have the format:

intval :
signopt units

sign :
+
-

units :
digits
digits thousands-sep units

digits :
digit digitsopt

and floating-point values have:
floatval :

signopt units fractionalopt exponentopt
signopt decimal-point digits exponentopt

§ 30.4.4.1.1 1595



© ISO/IEC N4950

fractional :
decimal-point digitsopt

exponent :
e signopt digits

e :
e
E

where the number of digits between thousands-seps is as specified by do_grouping(). For parsing, if the
digits portion contains no thousands-separators, no grouping constraint is applied.

30.4.4.1.2 Members [facet.numpunct.members]

char_type decimal_point() const;

1 Returns: do_decimal_point().

char_type thousands_sep() const;

2 Returns: do_thousands_sep().

string grouping() const;

3 Returns: do_grouping().

string_type truename() const;
string_type falsename() const;

4 Returns: do_truename() or do_falsename(), respectively.

30.4.4.1.3 Virtual functions [facet.numpunct.virtuals]

char_type do_decimal_point() const;

1 Returns: A character for use as the decimal radix separator. The required specializations return ’.’ or
L’.’.

char_type do_thousands_sep() const;

2 Returns: A character for use as the digit group separator. The required specializations return ’,’ or
L’,’.

string do_grouping() const;

3 Returns: A string vec used as a vector of integer values, in which each element vec[i] represents
the number of digits252 in the group at position i, starting with position 0 as the rightmost group. If
vec.size() <= i, the number is the same as group (i - 1); if (i < 0 || vec[i] <= 0 || vec[i]
== CHAR_MAX), the size of the digit group is unlimited.

4 The required specializations return the empty string, indicating no grouping.

string_type do_truename() const;
string_type do_falsename() const;

5 Returns: A string representing the name of the boolean value true or false, respectively.
6 In the base class implementation these names are "true" and "false", or L"true" and L"false".

30.4.4.2 Class template numpunct_byname [locale.numpunct.byname]
namespace std {

template<class charT>
class numpunct_byname : public numpunct<charT> {
// this class is specialized for char and wchar_t.
public:

using char_type = charT;
using string_type = basic_string<charT>;

252) Thus, the string "\003" specifies groups of 3 digits each, and "3" probably indicates groups of 51 (!) digits each, because 51
is the ASCII value of "3".
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explicit numpunct_byname(const char*, size_t refs = 0);
explicit numpunct_byname(const string&, size_t refs = 0);

protected:
~numpunct_byname();

};
}

30.4.5 The collate category [category.collate]
30.4.5.1 Class template collate [locale.collate]
30.4.5.1.1 General [locale.collate.general]

namespace std {
template<class charT>

class collate : public locale::facet {
public:

using char_type = charT;
using string_type = basic_string<charT>;

explicit collate(size_t refs = 0);

int compare(const charT* low1, const charT* high1,
const charT* low2, const charT* high2) const;

string_type transform(const charT* low, const charT* high) const;
long hash(const charT* low, const charT* high) const;

static locale::id id;

protected:
~collate();
virtual int do_compare(const charT* low1, const charT* high1,

const charT* low2, const charT* high2) const;
virtual string_type do_transform(const charT* low, const charT* high) const;
virtual long do_hash (const charT* low, const charT* high) const;

};
}

1 The class collate<charT> provides features for use in the collation (comparison) and hashing of strings.
A locale member function template, operator(), uses the collate facet to allow a locale to act directly
as the predicate argument for standard algorithms (Clause 27) and containers operating on strings. The
specializations required in Table 104 (30.3.1.2.1), namely collate<char> and collate<wchar_t>, apply
lexicographical ordering (27.8.11).

2 Each function compares a string of characters *p in the range [low, high).

30.4.5.1.2 Members [locale.collate.members]

int compare(const charT* low1, const charT* high1,
const charT* low2, const charT* high2) const;

1 Returns: do_compare(low1, high1, low2, high2).

string_type transform(const charT* low, const charT* high) const;

2 Returns: do_transform(low, high).

long hash(const charT* low, const charT* high) const;

3 Returns: do_hash(low, high).

30.4.5.1.3 Virtual functions [locale.collate.virtuals]

int do_compare(const charT* low1, const charT* high1,
const charT* low2, const charT* high2) const;

1 Returns: 1 if the first string is greater than the second, -1 if less, zero otherwise. The specializations
required in Table 104 (30.3.1.2.1), namely collate<char> and collate<wchar_t>, implement a
lexicographical comparison (27.8.11).
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string_type do_transform(const charT* low, const charT* high) const;

2 Returns: A basic_string<charT> value that, compared lexicographically with the result of calling
transform() on another string, yields the same result as calling do_compare() on the same two
strings.253

long do_hash(const charT* low, const charT* high) const;

3 Returns: An integer value equal to the result of calling hash() on any other string for which do_-
compare() returns 0 (equal) when passed the two strings.

4 Recommended practice: The probability that the result equals that for another string which does not
compare equal should be very small, approaching (1.0/numeric_limits<unsigned long>::max()).

30.4.5.2 Class template collate_byname [locale.collate.byname]
namespace std {

template<class charT>
class collate_byname : public collate<charT> {
public:

using string_type = basic_string<charT>;

explicit collate_byname(const char*, size_t refs = 0);
explicit collate_byname(const string&, size_t refs = 0);

protected:
~collate_byname();

};
}

30.4.6 The time category [category.time]
30.4.6.1 General [category.time.general]

1 Templates time_get<charT, InputIterator> and time_put<charT, OutputIterator> provide date and
time formatting and parsing. All specifications of member functions for time_put and time_get in the
subclauses of 30.4.6 only apply to the specializations required in Tables 104 and 105 (30.3.1.2.1). Their
members use their ios_base&, ios_base::iostate&, and fill arguments as described in 30.4, and the
ctype<> facet, to determine formatting details.

30.4.6.2 Class template time_get [locale.time.get]
30.4.6.2.1 General [locale.time.get.general]

namespace std {
class time_base {
public:

enum dateorder { no_order, dmy, mdy, ymd, ydm };
};

template<class charT, class InputIterator = istreambuf_iterator<charT>>
class time_get : public locale::facet, public time_base {
public:

using char_type = charT;
using iter_type = InputIterator;

explicit time_get(size_t refs = 0);

dateorder date_order() const { return do_date_order(); }
iter_type get_time(iter_type s, iter_type end, ios_base& f,

ios_base::iostate& err, tm* t) const;
iter_type get_date(iter_type s, iter_type end, ios_base& f,

ios_base::iostate& err, tm* t) const;
iter_type get_weekday(iter_type s, iter_type end, ios_base& f,

ios_base::iostate& err, tm* t) const;
iter_type get_monthname(iter_type s, iter_type end, ios_base& f,

ios_base::iostate& err, tm* t) const;

253) This function is useful when one string is being compared to many other strings.

§ 30.4.6.2.1 1598



© ISO/IEC N4950

iter_type get_year(iter_type s, iter_type end, ios_base& f,
ios_base::iostate& err, tm* t) const;

iter_type get(iter_type s, iter_type end, ios_base& f,
ios_base::iostate& err, tm* t, char format, char modifier = 0) const;

iter_type get(iter_type s, iter_type end, ios_base& f,
ios_base::iostate& err, tm* t, const char_type* fmt,
const char_type* fmtend) const;

static locale::id id;

protected:
~time_get();
virtual dateorder do_date_order() const;
virtual iter_type do_get_time(iter_type s, iter_type end, ios_base&,

ios_base::iostate& err, tm* t) const;
virtual iter_type do_get_date(iter_type s, iter_type end, ios_base&,

ios_base::iostate& err, tm* t) const;
virtual iter_type do_get_weekday(iter_type s, iter_type end, ios_base&,

ios_base::iostate& err, tm* t) const;
virtual iter_type do_get_monthname(iter_type s, iter_type end, ios_base&,

ios_base::iostate& err, tm* t) const;
virtual iter_type do_get_year(iter_type s, iter_type end, ios_base&,

ios_base::iostate& err, tm* t) const;
virtual iter_type do_get(iter_type s, iter_type end, ios_base& f,

ios_base::iostate& err, tm* t, char format, char modifier) const;
};

}

1 time_get is used to parse a character sequence, extracting components of a time or date into a tm object.
Each get member parses a format as produced by a corresponding format specifier to time_put<>::put. If
the sequence being parsed matches the correct format, the corresponding members of the tm argument are
set to the values used to produce the sequence; otherwise either an error is reported or unspecified values are
assigned.254

2 If the end iterator is reached during parsing by any of the get() member functions, the member sets
ios_base::eofbit in err.

30.4.6.2.2 Members [locale.time.get.members]

dateorder date_order() const;

1 Returns: do_date_order().

iter_type get_time(iter_type s, iter_type end, ios_base& str,
ios_base::iostate& err, tm* t) const;

2 Returns: do_get_time(s, end, str, err, t).

iter_type get_date(iter_type s, iter_type end, ios_base& str,
ios_base::iostate& err, tm* t) const;

3 Returns: do_get_date(s, end, str, err, t).

iter_type get_weekday(iter_type s, iter_type end, ios_base& str,
ios_base::iostate& err, tm* t) const;

iter_type get_monthname(iter_type s, iter_type end, ios_base& str,
ios_base::iostate& err, tm* t) const;

4 Returns: do_get_weekday(s, end, str, err, t) or do_get_monthname(s, end, str, err, t).

iter_type get_year(iter_type s, iter_type end, ios_base& str,
ios_base::iostate& err, tm* t) const;

5 Returns: do_get_year(s, end, str, err, t).

254) In other words, user confirmation is required for reliable parsing of user-entered dates and times, but machine-generated
formats can be parsed reliably. This allows parsers to be aggressive about interpreting user variations on standard formats.
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iter_type get(iter_type s, iter_type end, ios_base& f, ios_base::iostate& err,
tm* t, char format, char modifier = 0) const;

6 Returns: do_get(s, end, f, err, t, format, modifier).

iter_type get(iter_type s, iter_type end, ios_base& f, ios_base::iostate& err,
tm* t, const char_type* fmt, const char_type* fmtend) const;

7 Preconditions: [fmt, fmtend) is a valid range.
8 Effects: The function starts by evaluating err = ios_base::goodbit. It then enters a loop, reading

zero or more characters from s at each iteration. Unless otherwise specified below, the loop terminates
when the first of the following conditions holds:

—(8.1) The expression fmt == fmtend evaluates to true.
—(8.2) The expression err == ios_base::goodbit evaluates to false.
—(8.3) The expression s == end evaluates to true, in which case the function evaluates err = ios_-

base::eofbit | ios_base::failbit.
—(8.4) The next element of fmt is equal to ’%’, optionally followed by a modifier character, followed by

a conversion specifier character, format, together forming a conversion specification valid for the
POSIX function strptime. If the number of elements in the range [fmt, fmtend) is not sufficient
to unambiguously determine whether the conversion specification is complete and valid, the
function evaluates err = ios_base::failbit. Otherwise, the function evaluates s = do_get(s,
end, f, err, t, format, modifier), where the value of modifier is ’\0’ when the optional
modifier is absent from the conversion specification. If err == ios_base::goodbit holds after
the evaluation of the expression, the function increments fmt to point just past the end of the
conversion specification and continues looping.

—(8.5) The expression isspace(*fmt, f.getloc()) evaluates to true, in which case the function first
increments fmt until fmt == fmtend || !isspace(*fmt, f.getloc()) evaluates to true, then
advances s until s == end || !isspace(*s, f.getloc()) is true, and finally resumes looping.

—(8.6) The next character read from s matches the element pointed to by fmt in a case-insensitive
comparison, in which case the function evaluates ++fmt, ++s and continues looping. Otherwise,
the function evaluates err = ios_base::failbit.

9 [Note 1 : The function uses the ctype<charT> facet installed in f’s locale to determine valid whitespace
characters. It is unspecified by what means the function performs case-insensitive comparison or whether
multi-character sequences are considered while doing so. — end note ]

10 Returns: s.

30.4.6.2.3 Virtual functions [locale.time.get.virtuals]

dateorder do_date_order() const;

1 Returns: An enumeration value indicating the preferred order of components for those date formats
that are composed of day, month, and year.255 Returns no_order if the date format specified by ’x’
contains other variable components (e.g., Julian day, week number, week day).

iter_type do_get_time(iter_type s, iter_type end, ios_base& str,
ios_base::iostate& err, tm* t) const;

2 Effects: Reads characters starting at s until it has extracted those tm members, and remaining format
characters, used by time_put<>::put to produce the format specified by "%H:%M:%S", or until it
encounters an error or end of sequence.

3 Returns: An iterator pointing immediately beyond the last character recognized as possibly part of a
valid time.

iter_type do_get_date(iter_type s, iter_type end, ios_base& str,
ios_base::iostate& err, tm* t) const;

4 Effects: Reads characters starting at s until it has extracted those tm members and remaining format
characters used by time_put<>::put to produce one of the following formats, or until it encounters an
error. The format depends on the value returned by date_order() as shown in Table 115.

255) This function is intended as a convenience only, for common formats, and can return no_order in valid locales.
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Table 115: do_get_date effects [tab:locale.time.get.dogetdate]

date_order() Format
no_order "%m%d%y"
dmy "%d%m%y"
mdy "%m%d%y"
ymd "%y%m%d"
ydm "%y%d%m"

5 An implementation may also accept additional implementation-defined formats.
6 Returns: An iterator pointing immediately beyond the last character recognized as possibly part of a

valid date.

iter_type do_get_weekday(iter_type s, iter_type end, ios_base& str,
ios_base::iostate& err, tm* t) const;

iter_type do_get_monthname(iter_type s, iter_type end, ios_base& str,
ios_base::iostate& err, tm* t) const;

7 Effects: Reads characters starting at s until it has extracted the (perhaps abbreviated) name of a
weekday or month. If it finds an abbreviation that is followed by characters that can match a full
name, it continues reading until it matches the full name or fails. It sets the appropriate tm member
accordingly.

8 Returns: An iterator pointing immediately beyond the last character recognized as part of a valid name.

iter_type do_get_year(iter_type s, iter_type end, ios_base& str,
ios_base::iostate& err, tm* t) const;

9 Effects: Reads characters starting at s until it has extracted an unambiguous year identifier. It is
implementation-defined whether two-digit year numbers are accepted, and (if so) what century they
are assumed to lie in. Sets the t->tm_year member accordingly.

10 Returns: An iterator pointing immediately beyond the last character recognized as part of a valid year
identifier.

iter_type do_get(iter_type s, iter_type end, ios_base& f,
ios_base::iostate& err, tm* t, char format, char modifier) const;

11 Preconditions: t points to an object.
12 Effects: The function starts by evaluating err = ios_base::goodbit. It then reads characters starting

at s until it encounters an error, or until it has extracted and assigned those tm members, and any
remaining format characters, corresponding to a conversion specification appropriate for the POSIX
function strptime, formed by concatenating ’%’, the modifier character, when non-NUL, and the
format character. When the concatenation fails to yield a complete valid directive the function leaves
the object pointed to by t unchanged and evaluates err |= ios_base::failbit. When s == end
evaluates to true after reading a character the function evaluates err |= ios_base::eofbit.

13 For complex conversion specifications such as %c, %x, or %X, or conversion specifications that involve
the optional modifiers E or O, when the function is unable to unambiguously determine some or all tm
members from the input sequence [s, end), it evaluates err |= ios_base::eofbit. In such cases the
values of those tm members are unspecified and may be outside their valid range.

14 Returns: An iterator pointing immediately beyond the last character recognized as possibly part of a
valid input sequence for the given format and modifier.

15 Remarks: It is unspecified whether multiple calls to do_get() with the address of the same tm object
will update the current contents of the object or simply overwrite its members. Portable programs
should zero out the object before invoking the function.

30.4.6.3 Class template time_get_byname [locale.time.get.byname]
namespace std {

template<class charT, class InputIterator = istreambuf_iterator<charT>>
class time_get_byname : public time_get<charT, InputIterator> {
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public:
using dateorder = time_base::dateorder;
using iter_type = InputIterator;

explicit time_get_byname(const char*, size_t refs = 0);
explicit time_get_byname(const string&, size_t refs = 0);

protected:
~time_get_byname();

};
}

30.4.6.4 Class template time_put [locale.time.put]
namespace std {

template<class charT, class OutputIterator = ostreambuf_iterator<charT>>
class time_put : public locale::facet {
public:

using char_type = charT;
using iter_type = OutputIterator;

explicit time_put(size_t refs = 0);

// the following is implemented in terms of other member functions.
iter_type put(iter_type s, ios_base& f, char_type fill, const tm* tmb,

const charT* pattern, const charT* pat_end) const;
iter_type put(iter_type s, ios_base& f, char_type fill,

const tm* tmb, char format, char modifier = 0) const;

static locale::id id;

protected:
~time_put();
virtual iter_type do_put(iter_type s, ios_base&, char_type, const tm* t,

char format, char modifier) const;
};

}

30.4.6.4.1 Members [locale.time.put.members]

iter_type put(iter_type s, ios_base& str, char_type fill, const tm* t,
const charT* pattern, const charT* pat_end) const;

iter_type put(iter_type s, ios_base& str, char_type fill, const tm* t,
char format, char modifier = 0) const;

1 Effects: The first form steps through the sequence from pattern to pat_end, identifying characters
that are part of a format sequence. Each character that is not part of a format sequence is written to
s immediately, and each format sequence, as it is identified, results in a call to do_put; thus, format
elements and other characters are interleaved in the output in the order in which they appear in
the pattern. Format sequences are identified by converting each character c to a char value as if by
ct.narrow(c, 0), where ct is a reference to ctype<charT> obtained from str.getloc(). The first
character of each sequence is equal to ’%’, followed by an optional modifier character mod256 and a
format specifier character spec as defined for the function strftime. If no modifier character is present,
mod is zero. For each valid format sequence identified, calls do_put(s, str, fill, t, spec, mod).

2 The second form calls do_put(s, str, fill, t, format, modifier).
3 [Note 1 : The fill argument can be used in the implementation-defined formats or by derivations. A space

character is a reasonable default for this argument. — end note ]
4 Returns: An iterator pointing immediately after the last character produced.

256) Although the C programming language defines no modifiers, most vendors do.
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30.4.6.4.2 Virtual functions [locale.time.put.virtuals]

iter_type do_put(iter_type s, ios_base&, char_type fill, const tm* t,
char format, char modifier) const;

1 Effects: Formats the contents of the parameter t into characters placed on the output sequence s.
Formatting is controlled by the parameters format and modifier, interpreted identically as the format
specifiers in the string argument to the standard library function strftime(), except that the sequence
of characters produced for those specifiers that are described as depending on the C locale are instead
implementation-defined.
[Note 1 : Interpretation of the modifier argument is implementation-defined. — end note ]

2 Returns: An iterator pointing immediately after the last character produced.
[Note 2 : The fill argument can be used in the implementation-defined formats or by derivations. A space
character is a reasonable default for this argument. — end note ]

3 Recommended practice: Interpretation of the modifier should follow POSIX conventions. Implemen-
tations should refer to other standards such as POSIX for a specification of the character sequences
produced for those specifiers described as depending on the C locale.

30.4.6.5 Class template time_put_byname [locale.time.put.byname]
namespace std {

template<class charT, class OutputIterator = ostreambuf_iterator<charT>>
class time_put_byname : public time_put<charT, OutputIterator> {
public:

using char_type = charT;
using iter_type = OutputIterator;

explicit time_put_byname(const char*, size_t refs = 0);
explicit time_put_byname(const string&, size_t refs = 0);

protected:
~time_put_byname();

};
}

30.4.7 The monetary category [category.monetary]
30.4.7.1 General [category.monetary.general]

1 These templates handle monetary formats. A template parameter indicates whether local or international
monetary formats are to be used.

2 All specifications of member functions for money_put and money_get in the subclauses of 30.4.7 only apply
to the specializations required in Tables 104 and 105 (30.3.1.2.1). Their members use their ios_base&,
ios_base::iostate&, and fill arguments as described in 30.4, and the moneypunct<> and ctype<> facets,
to determine formatting details.

30.4.7.2 Class template money_get [locale.money.get]
namespace std {

template<class charT, class InputIterator = istreambuf_iterator<charT>>
class money_get : public locale::facet {
public:

using char_type = charT;
using iter_type = InputIterator;
using string_type = basic_string<charT>;

explicit money_get(size_t refs = 0);

iter_type get(iter_type s, iter_type end, bool intl,
ios_base& f, ios_base::iostate& err,
long double& units) const;

iter_type get(iter_type s, iter_type end, bool intl,
ios_base& f, ios_base::iostate& err,
string_type& digits) const;
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static locale::id id;

protected:
~money_get();
virtual iter_type do_get(iter_type, iter_type, bool, ios_base&,

ios_base::iostate& err, long double& units) const;
virtual iter_type do_get(iter_type, iter_type, bool, ios_base&,

ios_base::iostate& err, string_type& digits) const;
};

}

30.4.7.2.1 Members [locale.money.get.members]

iter_type get(iter_type s, iter_type end, bool intl, ios_base& f,
ios_base::iostate& err, long double& quant) const;

iter_type get(iter_type s, iter_type end, bool intl, ios_base& f,
ios_base::iostate& err, string_type& quant) const;

1 Returns: do_get(s, end, intl, f, err, quant).

30.4.7.2.2 Virtual functions [locale.money.get.virtuals]

iter_type do_get(iter_type s, iter_type end, bool intl, ios_base& str,
ios_base::iostate& err, long double& units) const;

iter_type do_get(iter_type s, iter_type end, bool intl, ios_base& str,
ios_base::iostate& err, string_type& digits) const;

1 Effects: Reads characters from s to parse and construct a monetary value according to the format
specified by a moneypunct<charT, Intl> facet reference mp and the character mapping specified by a
ctype<charT> facet reference ct obtained from the locale returned by str.getloc(), and str.flags().
If a valid sequence is recognized, does not change err; otherwise, sets err to (err|str.failbit), or
(err|str.failbit|str.eofbit) if no more characters are available, and does not change units or
digits. Uses the pattern returned by mp.neg_format() to parse all values. The result is returned
as an integral value stored in units or as a sequence of digits possibly preceded by a minus sign (as
produced by ct.widen(c) where c is ’-’ or in the range from ’0’ through ’9’ (inclusive)) stored in
digits.
[Example 1 : The sequence $1,056.23 in a common United States locale would yield, for units, 105623, or, for
digits, "105623". — end example ]

If mp.grouping() indicates that no thousands separators are permitted, any such characters are not
read, and parsing is terminated at the point where they first appear. Otherwise, thousands separators
are optional; if present, they are checked for correct placement only after all format components have
been read.

2 Where money_base::space or money_base::none appears as the last element in the format pattern, no
whitespace is consumed. Otherwise, where money_base::space appears in any of the initial elements of
the format pattern, at least one whitespace character is required. Where money_base::none appears in
any of the initial elements of the format pattern, whitespace is allowed but not required. If (str.flags()
& str.showbase) is false, the currency symbol is optional and is consumed only if other characters
are needed to complete the format; otherwise, the currency symbol is required.

3 If the first character (if any) in the string pos returned by mp.positive_sign() or the string neg
returned by mp.negative_sign() is recognized in the position indicated by sign in the format pattern,
it is consumed and any remaining characters in the string are required after all the other format
components.
[Example 2 : If showbase is off, then for a neg value of "()" and a currency symbol of "L", in "(100 L)" the
"L" is consumed; but if neg is "-", the "L" in "-100 L" is not consumed. — end example ]

If pos or neg is empty, the sign component is optional, and if no sign is detected, the result is given
the sign that corresponds to the source of the empty string. Otherwise, the character in the indicated
position must match the first character of pos or neg, and the result is given the corresponding sign. If
the first character of pos is equal to the first character of neg, or if both strings are empty, the result
is given a positive sign.
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4 Digits in the numeric monetary component are extracted and placed in digits, or into a character
buffer buf1 for conversion to produce a value for units, in the order in which they appear, preceded
by a minus sign if and only if the result is negative. The value units is produced as if by257

for (int i = 0; i < n; ++i)
buf2[i] = src[find(atoms, atoms+sizeof(src), buf1[i]) - atoms];

buf2[n] = 0;
sscanf(buf2, "%Lf", &units);

where n is the number of characters placed in buf1, buf2 is a character buffer, and the values src and
atoms are defined as if by

static const char src[] = "0123456789-";
charT atoms[sizeof(src)];
ct.widen(src, src + sizeof(src) - 1, atoms);

5 Returns: An iterator pointing immediately beyond the last character recognized as part of a valid
monetary quantity.

30.4.7.3 Class template money_put [locale.money.put]
namespace std {

template<class charT, class OutputIterator = ostreambuf_iterator<charT>>
class money_put : public locale::facet {
public:

using char_type = charT;
using iter_type = OutputIterator;
using string_type = basic_string<charT>;

explicit money_put(size_t refs = 0);

iter_type put(iter_type s, bool intl, ios_base& f,
char_type fill, long double units) const;

iter_type put(iter_type s, bool intl, ios_base& f,
char_type fill, const string_type& digits) const;

static locale::id id;

protected:
~money_put();
virtual iter_type do_put(iter_type, bool, ios_base&, char_type fill,

long double units) const;
virtual iter_type do_put(iter_type, bool, ios_base&, char_type fill,

const string_type& digits) const;
};

}

30.4.7.3.1 Members [locale.money.put.members]

iter_type put(iter_type s, bool intl, ios_base& f, char_type fill, long double quant) const;
iter_type put(iter_type s, bool intl, ios_base& f, char_type fill, const string_type& quant) const;

1 Returns: do_put(s, intl, f, loc, quant).

30.4.7.3.2 Virtual functions [locale.money.put.virtuals]

iter_type do_put(iter_type s, bool intl, ios_base& str,
char_type fill, long double units) const;

iter_type do_put(iter_type s, bool intl, ios_base& str,
char_type fill, const string_type& digits) const;

1 Effects: Writes characters to s according to the format specified by a moneypunct<charT, Intl> facet
reference mp and the character mapping specified by a ctype<charT> facet reference ct obtained from
the locale returned by str.getloc(), and str.flags(). The argument units is transformed into a
sequence of wide characters as if by

ct.widen(buf1, buf1 + sprintf(buf1, "%.0Lf", units), buf2)

257) The semantics here are different from ct.narrow.
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for character buffers buf1 and buf2. If the first character in digits or buf2 is equal to ct.widen(’-’),
then the pattern used for formatting is the result of mp.neg_format(); otherwise the pattern is the result
of mp.pos_format(). Digit characters are written, interspersed with any thousands separators and
decimal point specified by the format, in the order they appear (after the optional leading minus sign) in
digits or buf2. In digits, only the optional leading minus sign and the immediately subsequent digit
characters (as classified according to ct) are used; any trailing characters (including digits appearing
after a non-digit character) are ignored. Calls str.width(0).

2 Returns: An iterator pointing immediately after the last character produced.
3 Remarks: The currency symbol is generated if and only if (str.flags() & str.showbase) is nonzero.

If the number of characters generated for the specified format is less than the value returned by
str.width() on entry to the function, then copies of fill are inserted as necessary to pad to the speci-
fied width. For the value af equal to (str.flags() & str.adjustfield), if (af == str.internal)
is true, the fill characters are placed where none or space appears in the formatting pattern; otherwise
if (af == str.left) is true, they are placed after the other characters; otherwise, they are placed
before the other characters.
[Note 1 : It is possible, with some combinations of format patterns and flag values, to produce output that
cannot be parsed using num_get<>::get. — end note ]

30.4.7.4 Class template moneypunct [locale.moneypunct]
30.4.7.4.1 General [locale.moneypunct.general]

namespace std {
class money_base {
public:

enum part { none, space, symbol, sign, value };
struct pattern { char field[4]; };

};

template<class charT, bool International = false>
class moneypunct : public locale::facet, public money_base {
public:

using char_type = charT;
using string_type = basic_string<charT>;

explicit moneypunct(size_t refs = 0);

charT decimal_point() const;
charT thousands_sep() const;
string grouping() const;
string_type curr_symbol() const;
string_type positive_sign() const;
string_type negative_sign() const;
int frac_digits() const;
pattern pos_format() const;
pattern neg_format() const;

static locale::id id;
static const bool intl = International;

protected:
~moneypunct();
virtual charT do_decimal_point() const;
virtual charT do_thousands_sep() const;
virtual string do_grouping() const;
virtual string_type do_curr_symbol() const;
virtual string_type do_positive_sign() const;
virtual string_type do_negative_sign() const;
virtual int do_frac_digits() const;
virtual pattern do_pos_format() const;
virtual pattern do_neg_format() const;

};
}
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1 The moneypunct<> facet defines monetary formatting parameters used by money_get<> and money_put<>. A
monetary format is a sequence of four components, specified by a pattern value p, such that the part value
static_cast<part>(p.field[i]) determines the ith component of the format258 In the field member of
a pattern object, each value symbol, sign, value, and either space or none appears exactly once. The
value none, if present, is not first; the value space, if present, is neither first nor last.

2 Where none or space appears, whitespace is permitted in the format, except where none appears at the end,
in which case no whitespace is permitted. The value space indicates that at least one space is required at
that position. Where symbol appears, the sequence of characters returned by curr_symbol() is permitted,
and can be required. Where sign appears, the first (if any) of the sequence of characters returned by
positive_sign() or negative_sign() (respectively as the monetary value is non-negative or negative) is
required. Any remaining characters of the sign sequence are required after all other format components.
Where value appears, the absolute numeric monetary value is required.

3 The format of the numeric monetary value is a decimal number:
value :

units fractionalopt
decimal-point digits

fractional :
decimal-point digitsopt

if frac_digits() returns a positive value, or
value :

units

otherwise. The symbol decimal-point indicates the character returned by decimal_point(). The other
symbols are defined as follows:

units :
digits
digits thousands-sep units

digits :
adigit digitsopt

In the syntax specification, the symbol adigit is any of the values ct.widen(c) for c in the range ’0’ through
’9’ (inclusive) and ct is a reference of type const ctype<charT>& obtained as described in the definitions of
money_get<> and money_put<>. The symbol thousands-sep is the character returned by thousands_sep().
The space character used is the value ct.widen(’ ’). Whitespace characters are those characters c for
which ci.is(space, c) returns true. The number of digits required after the decimal point (if any) is
exactly the value returned by frac_digits().

4 The placement of thousands-separator characters (if any) is determined by the value returned by grouping(),
defined identically as the member numpunct<>::do_grouping().

30.4.7.4.2 Members [locale.moneypunct.members]
charT decimal_point() const;
charT thousands_sep() const;
string grouping() const;
string_type curr_symbol() const;
string_type positive_sign() const;
string_type negative_sign() const;
int frac_digits() const;
pattern pos_format() const;
pattern neg_format() const;

1 Each of these functions F returns the result of calling the corresponding virtual member function do_F ().

30.4.7.4.3 Virtual functions [locale.moneypunct.virtuals]

charT do_decimal_point() const;

1 Returns: The radix separator to use in case do_frac_digits() is greater than zero.259

258) An array of char, rather than an array of part, is specified for pattern::field purely for efficiency.
259) In common U.S. locales this is ’.’.
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charT do_thousands_sep() const;

2 Returns: The digit group separator to use in case do_grouping() specifies a digit grouping pattern.260

string do_grouping() const;

3 Returns: A pattern defined identically as, but not necessarily equal to, the result of numpunct<charT>::
do_grouping().261

string_type do_curr_symbol() const;

4 Returns: A string to use as the currency identifier symbol.
[Note 1 : For specializations where the second template parameter is true, this is typically four characters long:
a three-letter code as specified by ISO 4217 followed by a space. — end note ]

string_type do_positive_sign() const;
string_type do_negative_sign() const;

5 Returns: do_positive_sign() returns the string to use to indicate a positive monetary value;262

do_negative_sign() returns the string to use to indicate a negative value.

int do_frac_digits() const;

6 Returns: The number of digits after the decimal radix separator, if any.263

pattern do_pos_format() const;
pattern do_neg_format() const;

7 Returns: The specializations required in Table 105 (30.3.1.2.1), namely
—(7.1) moneypunct<char>,
—(7.2) moneypunct<wchar_t>,
—(7.3) moneypunct<char, true>, and
—(7.4) moneypunct<wchar_t, true>,

return an object of type pattern initialized to { symbol, sign, none, value }.264

30.4.7.5 Class template moneypunct_byname [locale.moneypunct.byname]
namespace std {

template<class charT, bool Intl = false>
class moneypunct_byname : public moneypunct<charT, Intl> {

public:
using pattern = money_base::pattern;
using string_type = basic_string<charT>;

explicit moneypunct_byname(const char*, size_t refs = 0);
explicit moneypunct_byname(const string&, size_t refs = 0);

protected:
~moneypunct_byname();

};
}

30.4.8 The message retrieval category [category.messages]
30.4.8.1 General [category.messages.general]

1 Class messages<charT> implements retrieval of strings from message catalogs.

260) In common U.S. locales this is ’,’.
261) To specify grouping by 3s, the value is "\003" not "3".
262) This is usually the empty string.
263) In common U.S. locales, this is 2.
264) Note that the international symbol returned by do_curr_symbol() usually contains a space, itself; for example, "USD ".
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30.4.8.2 Class template messages [locale.messages]
30.4.8.2.1 General [locale.messages.general]

namespace std {
class messages_base {
public:

using catalog = unspecified signed integer type ;
};

template<class charT>
class messages : public locale::facet, public messages_base {
public:

using char_type = charT;
using string_type = basic_string<charT>;

explicit messages(size_t refs = 0);

catalog open(const string& fn, const locale&) const;
string_type get(catalog c, int set, int msgid,

const string_type& dfault) const;
void close(catalog c) const;

static locale::id id;

protected:
~messages();
virtual catalog do_open(const string&, const locale&) const;
virtual string_type do_get(catalog, int set, int msgid,

const string_type& dfault) const;
virtual void do_close(catalog) const;

};
}

1 Values of type messages_base::catalog usable as arguments to members get and close can be obtained
only by calling member open.

30.4.8.2.2 Members [locale.messages.members]

catalog open(const string& name, const locale& loc) const;

1 Returns: do_open(name, loc).

string_type get(catalog cat, int set, int msgid, const string_type& dfault) const;

2 Returns: do_get(cat, set, msgid, dfault).

void close(catalog cat) const;

3 Effects: Calls do_close(cat).

30.4.8.2.3 Virtual functions [locale.messages.virtuals]

catalog do_open(const string& name, const locale& loc) const;

1 Returns: A value that may be passed to get() to retrieve a message from the message catalog identified
by the string name according to an implementation-defined mapping. The result can be used until it is
passed to close().

2 Returns a value less than 0 if no such catalog can be opened.
3 Remarks: The locale argument loc is used for character set code conversion when retrieving messages,

if needed.

string_type do_get(catalog cat, int set, int msgid, const string_type& dfault) const;

4 Preconditions: cat is a catalog obtained from open() and not yet closed.
5 Returns: A message identified by arguments set, msgid, and dfault, according to an implementation-

defined mapping. If no such message can be found, returns dfault.
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void do_close(catalog cat) const;

6 Preconditions: cat is a catalog obtained from open() and not yet closed.
7 Effects: Releases unspecified resources associated with cat.
8 Remarks: The limit on such resources, if any, is implementation-defined.

30.4.8.3 Class template messages_byname [locale.messages.byname]
namespace std {

template<class charT>
class messages_byname : public messages<charT> {
public:

using catalog = messages_base::catalog;
using string_type = basic_string<charT>;

explicit messages_byname(const char*, size_t refs = 0);
explicit messages_byname(const string&, size_t refs = 0);

protected:
~messages_byname();

};
}

30.5 C library locales [c.locales]
30.5.1 Header <clocale> synopsis [clocale.syn]

namespace std {
struct lconv;

char* setlocale(int category, const char* locale);
lconv* localeconv();

}

#define NULL see 17.2.3
#define LC_ALL see below
#define LC_COLLATE see below
#define LC_CTYPE see below
#define LC_MONETARY see below
#define LC_NUMERIC see below
#define LC_TIME see below

1 The contents and meaning of the header <clocale> are the same as the C standard library header <locale.h>.

30.5.2 Data races [clocale.data.races]
1 Calls to the function setlocale may introduce a data race (16.4.6.10) with other calls to setlocale or with

calls to the functions listed in Table 116.
See also: ISO/IEC 9899:2018, 7.11

Table 116: Potential setlocale data races [tab:setlocale.data.races]

fprintf isprint iswdigit localeconv tolower
fscanf ispunct iswgraph mblen toupper
isalnum isspace iswlower mbstowcs towlower
isalpha isupper iswprint mbtowc towupper
isblank iswalnum iswpunct setlocale wcscoll
iscntrl iswalpha iswspace strcoll wcstod
isdigit iswblank iswupper strerror wcstombs
isgraph iswcntrl iswxdigit strtod wcsxfrm
islower iswctype isxdigit strxfrm wctomb
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31 Input/output library [input.output]
31.1 General [input.output.general]

1 This Clause describes components that C++ programs may use to perform input/output operations.
2 The following subclauses describe requirements for stream parameters, and components for forward declara-

tions of iostreams, predefined iostreams objects, base iostreams classes, stream buffering, stream formatting
and manipulators, string streams, and file streams, as summarized in Table 117.

Table 117: Input/output library summary [tab:iostreams.summary]

Subclause Header
31.2 Requirements
31.3 Forward declarations <iosfwd>
31.4 Standard iostream objects <iostream>
31.5 Iostreams base classes <ios>
31.6 Stream buffers <streambuf>
31.7 Formatting and manipulators <istream>, <ostream>, <iomanip>, <print>
31.8 String streams <sstream>
31.9 Span-based streams <spanstream>
31.10 File streams <fstream>
31.11 Synchronized output streams <syncstream>
31.12 File systems <filesystem>
31.13 C library files <cstdio>, <cinttypes>

31.2 Iostreams requirements [iostreams.requirements]
31.2.1 Imbue limitations [iostream.limits.imbue]

1 No function described in Clause 31 except for ios_base::imbue and basic_filebuf::pubimbue causes any
instance of basic_ios::imbue or basic_streambuf::imbue to be called. If any user function called from a
function declared in Clause 31 or as an overriding virtual function of any class declared in Clause 31 calls
imbue, the behavior is undefined.

31.2.2 Types [stream.types]
using streamoff = implementation-defined ;

1 The type streamoff is a synonym for one of the signed basic integral types of sufficient size to represent
the maximum possible file size for the operating system.265

using streamsize = implementation-defined ;

2 The type streamsize is a synonym for one of the signed basic integral types. It is used to represent
the number of characters transferred in an I/O operation, or the size of I/O buffers.266

31.2.3 Positioning type limitations [iostreams.limits.pos]
1 The classes of Clause 31 with template arguments charT and traits behave as described if traits::pos_-

type and traits::off_type are streampos and streamoff respectively. Except as noted explicitly below,
their behavior when traits::pos_type and traits::off_type are other types is implementation-defined.

2 [Note 1 : For each of the specializations of char_traits defined in 23.2.4, state_type denotes mbstate_t, pos_type
denotes fpos<mbstate_t>, and off_type denotes streamoff. — end note ]

3 In the classes of Clause 31, a template parameter with name charT represents a member of the set of types
containing char, wchar_t, and any other implementation-defined character types that meet the requirements
for a character on which any of the iostream components can be instantiated.

265) Typically long long.
266) Most places where streamsize is used would use size_t in ISO C, or ssize_t in POSIX.
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31.2.4 Thread safety [iostreams.threadsafety]
1 Concurrent access to a stream object (31.8, 31.10), stream buffer object (31.6), or C Library stream (31.13)

by multiple threads may result in a data race (6.9.2) unless otherwise specified (31.4).
[Note 1 : Data races result in undefined behavior (6.9.2). — end note ]

2 If one thread makes a library call a that writes a value to a stream and, as a result, another thread reads this
value from the stream through a library call b such that this does not result in a data race, then a’s write
synchronizes with b’s read.

31.3 Forward declarations [iostream.forward]
31.3.1 Header <iosfwd> synopsis [iosfwd.syn]

namespace std {
template<class charT> struct char_traits;
template<> struct char_traits<char>;
template<> struct char_traits<char8_t>;
template<> struct char_traits<char16_t>;
template<> struct char_traits<char32_t>;
template<> struct char_traits<wchar_t>;

template<class T> class allocator;

template<class charT, class traits = char_traits<charT>>
class basic_ios;

template<class charT, class traits = char_traits<charT>>
class basic_streambuf;

template<class charT, class traits = char_traits<charT>>
class basic_istream;

template<class charT, class traits = char_traits<charT>>
class basic_ostream;

template<class charT, class traits = char_traits<charT>>
class basic_iostream;

template<class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT>>

class basic_stringbuf;
template<class charT, class traits = char_traits<charT>,

class Allocator = allocator<charT>>
class basic_istringstream;

template<class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT>>

class basic_ostringstream;
template<class charT, class traits = char_traits<charT>,

class Allocator = allocator<charT>>
class basic_stringstream;

template<class charT, class traits = char_traits<charT>>
class basic_spanbuf;

template<class charT, class traits = char_traits<charT>>
class basic_ispanstream;

template<class charT, class traits = char_traits<charT>>
class basic_ospanstream;

template<class charT, class traits = char_traits<charT>>
class basic_spanstream;

template<class charT, class traits = char_traits<charT>>
class basic_filebuf;

template<class charT, class traits = char_traits<charT>>
class basic_ifstream;

template<class charT, class traits = char_traits<charT>>
class basic_ofstream;

template<class charT, class traits = char_traits<charT>>
class basic_fstream;
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template<class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT>>

class basic_syncbuf;
template<class charT, class traits = char_traits<charT>,

class Allocator = allocator<charT>>
class basic_osyncstream;

template<class charT, class traits = char_traits<charT>>
class istreambuf_iterator;

template<class charT, class traits = char_traits<charT>>
class ostreambuf_iterator;

using ios = basic_ios<char>;
using wios = basic_ios<wchar_t>;

using streambuf = basic_streambuf<char>;
using istream = basic_istream<char>;
using ostream = basic_ostream<char>;
using iostream = basic_iostream<char>;

using stringbuf = basic_stringbuf<char>;
using istringstream = basic_istringstream<char>;
using ostringstream = basic_ostringstream<char>;
using stringstream = basic_stringstream<char>;

using spanbuf = basic_spanbuf<char>;
using ispanstream = basic_ispanstream<char>;
using ospanstream = basic_ospanstream<char>;
using spanstream = basic_spanstream<char>;

using filebuf = basic_filebuf<char>;
using ifstream = basic_ifstream<char>;
using ofstream = basic_ofstream<char>;
using fstream = basic_fstream<char>;

using syncbuf = basic_syncbuf<char>;
using osyncstream = basic_osyncstream<char>;

using wstreambuf = basic_streambuf<wchar_t>;
using wistream = basic_istream<wchar_t>;
using wostream = basic_ostream<wchar_t>;
using wiostream = basic_iostream<wchar_t>;

using wstringbuf = basic_stringbuf<wchar_t>;
using wistringstream = basic_istringstream<wchar_t>;
using wostringstream = basic_ostringstream<wchar_t>;
using wstringstream = basic_stringstream<wchar_t>;

using wspanbuf = basic_spanbuf<wchar_t>;
using wispanstream = basic_ispanstream<wchar_t>;
using wospanstream = basic_ospanstream<wchar_t>;
using wspanstream = basic_spanstream<wchar_t>;

using wfilebuf = basic_filebuf<wchar_t>;
using wifstream = basic_ifstream<wchar_t>;
using wofstream = basic_ofstream<wchar_t>;
using wfstream = basic_fstream<wchar_t>;

using wsyncbuf = basic_syncbuf<wchar_t>;
using wosyncstream = basic_osyncstream<wchar_t>;

template<class state> class fpos;
using streampos = fpos<char_traits<char>::state_type>;
using wstreampos = fpos<char_traits<wchar_t>::state_type>;
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using u8streampos = fpos<char_traits<char8_t>::state_type>;
using u16streampos = fpos<char_traits<char16_t>::state_type>;
using u32streampos = fpos<char_traits<char32_t>::state_type>;

}

1 Default template arguments are described as appearing both in <iosfwd> and in the synopsis of other headers
but it is well-formed to include both <iosfwd> and one or more of the other headers.267

31.3.2 Overview [iostream.forward.overview]
1 The class template specialization basic_ios<charT, traits> serves as a virtual base class for the class

templates basic_istream, basic_ostream, and class templates derived from them. basic_iostream is a
class template derived from both basic_istream<charT, traits> and basic_ostream<charT, traits>.

2 The class template specialization basic_streambuf<charT, traits> serves as a base class for class templates
basic_stringbuf, basic_filebuf, and basic_syncbuf.

3 The class template specialization basic_istream<charT, traits> serves as a base class for class templates
basic_istringstream and basic_ifstream.

4 The class template specialization basic_ostream<charT, traits> serves as a base class for class templates
basic_ostringstream, basic_ofstream, and basic_osyncstream.

5 The class template specialization basic_iostream<charT, traits> serves as a base class for class templates
basic_stringstream and basic_fstream.

6 [Note 1 : For each of the class templates above, the program is ill-formed if traits::char_type is not the same type
as charT (23.2). — end note ]

7 Other typedef-names define instances of class templates specialized for char or wchar_t types.
8 Specializations of the class template fpos are used for specifying file position information.

[Example 1 : The types streampos and wstreampos are used for positioning streams specialized on char and wchar_t
respectively. — end example ]

9 [Note 2 : This synopsis suggests a circularity between streampos and char_traits<char>. An implementation can
avoid this circularity by substituting equivalent types. — end note ]

31.4 Standard iostream objects [iostream.objects]
31.4.1 Header <iostream> synopsis [iostream.syn]

#include <ios> // see 31.5.1
#include <streambuf> // see 31.6.1
#include <istream> // see 31.7.1
#include <ostream> // see 31.7.2

namespace std {
extern istream cin;
extern ostream cout;
extern ostream cerr;
extern ostream clog;

extern wistream wcin;
extern wostream wcout;
extern wostream wcerr;
extern wostream wclog;

}

31.4.2 Overview [iostream.objects.overview]
1 In this Clause, the type name FILE refers to the type FILE declared in <cstdio> (31.13.1).
2 The header <iostream> declares objects that associate objects with the standard C streams provided for by

the functions declared in <cstdio>, and includes all the headers necessary to use these objects.

267) It is the implementation’s responsibility to implement headers so that including <iosfwd> and other headers does not
violate the rules about multiple occurrences of default arguments.
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3 The objects are constructed and the associations are established at some time prior to or during the first
time an object of class ios_base::Init is constructed, and in any case before the body of main (6.9.3.1)
begins execution. The objects are not destroyed during program execution.268

4 Recommended practice: If it is possible for them to do so, implementations should initialize the objects earlier
than required.

5 The results of including <iostream> in a translation unit shall be as if <iostream> defined an instance of
ios_base::Init with static storage duration. Each C++ library module (16.4.2.4) in a hosted implementation
shall behave as if it contains an interface unit that defines an unexported ios_base::Init variable with
ordered initialization (6.9.3.3).
[Note 1 : As a result, the definition of that variable is appearance-ordered before any declaration following the point of
importation of a C++ library module. Whether such a definition exists is unobservable by a program that does not
reference any of the standard iostream objects. — end note ]

6 Mixing operations on corresponding wide- and narrow-character streams follows the same semantics as mixing
such operations on FILEs, as specified in the C standard library.

7 Concurrent access to a synchronized (31.5.2.5) standard iostream object’s formatted and unformatted
input (31.7.5.2) and output (31.7.6.2) functions or a standard C stream by multiple threads does not result
in a data race (6.9.2).
[Note 2 : Unsynchronized concurrent use of these objects and streams by multiple threads can result in interleaved
characters. — end note ]

See also: ISO/IEC 9899:2018, 7.21.2

31.4.3 Narrow stream objects [narrow.stream.objects]
istream cin;

1 The object cin controls input from a stream buffer associated with the object stdin, declared in
<cstdio> (31.13.1).

2 After the object cin is initialized, cin.tie() returns &cout. Its state is otherwise the same as required
for basic_ios<char>::init (31.5.4.2).

ostream cout;

3 The object cout controls output to a stream buffer associated with the object stdout, declared in
<cstdio> (31.13.1).

ostream cerr;

4 The object cerr controls output to a stream buffer associated with the object stderr, declared in
<cstdio> (31.13.1).

5 After the object cerr is initialized, cerr.flags() & unitbuf is nonzero and cerr.tie() returns
&cout. Its state is otherwise the same as required for basic_ios<char>::init (31.5.4.2).

ostream clog;

6 The object clog controls output to a stream buffer associated with the object stderr, declared in
<cstdio> (31.13.1).

31.4.4 Wide stream objects [wide.stream.objects]
wistream wcin;

1 The object wcin controls input from a stream buffer associated with the object stdin, declared in
<cstdio> (31.13.1).

2 After the object wcin is initialized, wcin.tie() returns &wcout. Its state is otherwise the same as
required for basic_ios<wchar_t>::init (31.5.4.2).

wostream wcout;

3 The object wcout controls output to a stream buffer associated with the object stdout, declared in
<cstdio> (31.13.1).

268) Constructors and destructors for objects with static storage duration can access these objects to read input from stdin or
write output to stdout or stderr.

§ 31.4.4 1615



© ISO/IEC N4950

wostream wcerr;

4 The object wcerr controls output to a stream buffer associated with the object stderr, declared in
<cstdio> (31.13.1).

5 After the object wcerr is initialized, wcerr.flags() & unitbuf is nonzero and wcerr.tie() returns
&wcout. Its state is otherwise the same as required for basic_ios<wchar_t>::init (31.5.4.2).

wostream wclog;

6 The object wclog controls output to a stream buffer associated with the object stderr, declared in
<cstdio> (31.13.1).

31.5 Iostreams base classes [iostreams.base]
31.5.1 Header <ios> synopsis [ios.syn]

#include <iosfwd> // see 31.3.1

namespace std {
using streamoff = implementation-defined ;
using streamsize = implementation-defined ;
template<class stateT> class fpos;

class ios_base;
template<class charT, class traits = char_traits<charT>>

class basic_ios;

// 31.5.5, manipulators
ios_base& boolalpha (ios_base& str);
ios_base& noboolalpha(ios_base& str);

ios_base& showbase (ios_base& str);
ios_base& noshowbase (ios_base& str);

ios_base& showpoint (ios_base& str);
ios_base& noshowpoint(ios_base& str);

ios_base& showpos (ios_base& str);
ios_base& noshowpos (ios_base& str);

ios_base& skipws (ios_base& str);
ios_base& noskipws (ios_base& str);

ios_base& uppercase (ios_base& str);
ios_base& nouppercase(ios_base& str);

ios_base& unitbuf (ios_base& str);
ios_base& nounitbuf (ios_base& str);

// 31.5.5.2, adjustfield
ios_base& internal (ios_base& str);
ios_base& left (ios_base& str);
ios_base& right (ios_base& str);

// 31.5.5.3, basefield
ios_base& dec (ios_base& str);
ios_base& hex (ios_base& str);
ios_base& oct (ios_base& str);

// 31.5.5.4, floatfield
ios_base& fixed (ios_base& str);
ios_base& scientific (ios_base& str);
ios_base& hexfloat (ios_base& str);
ios_base& defaultfloat(ios_base& str);
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// 31.5.6, error reporting
enum class io_errc {

stream = 1
};

template<> struct is_error_code_enum<io_errc> : public true_type { };
error_code make_error_code(io_errc e) noexcept;
error_condition make_error_condition(io_errc e) noexcept;
const error_category& iostream_category() noexcept;

}

31.5.2 Class ios_base [ios.base]
31.5.2.1 General [ios.base.general]

namespace std {
class ios_base {
public:

class failure; // see below

// 31.5.2.2.2, fmtflags
using fmtflags = T1;
static constexpr fmtflags boolalpha = unspecified ;
static constexpr fmtflags dec = unspecified ;
static constexpr fmtflags fixed = unspecified ;
static constexpr fmtflags hex = unspecified ;
static constexpr fmtflags internal = unspecified ;
static constexpr fmtflags left = unspecified ;
static constexpr fmtflags oct = unspecified ;
static constexpr fmtflags right = unspecified ;
static constexpr fmtflags scientific = unspecified ;
static constexpr fmtflags showbase = unspecified ;
static constexpr fmtflags showpoint = unspecified ;
static constexpr fmtflags showpos = unspecified ;
static constexpr fmtflags skipws = unspecified ;
static constexpr fmtflags unitbuf = unspecified ;
static constexpr fmtflags uppercase = unspecified ;
static constexpr fmtflags adjustfield = see below ;
static constexpr fmtflags basefield = see below ;
static constexpr fmtflags floatfield = see below ;

// 31.5.2.2.3, iostate
using iostate = T2;
static constexpr iostate badbit = unspecified ;
static constexpr iostate eofbit = unspecified ;
static constexpr iostate failbit = unspecified ;
static constexpr iostate goodbit = see below ;

// 31.5.2.2.4, openmode
using openmode = T3;
static constexpr openmode app = unspecified ;
static constexpr openmode ate = unspecified ;
static constexpr openmode binary = unspecified ;
static constexpr openmode in = unspecified ;
static constexpr openmode noreplace = unspecified ;
static constexpr openmode out = unspecified ;
static constexpr openmode trunc = unspecified ;

// 31.5.2.2.5, seekdir
using seekdir = T4;
static constexpr seekdir beg = unspecified ;
static constexpr seekdir cur = unspecified ;
static constexpr seekdir end = unspecified ;

class Init;
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// 31.5.2.3, fmtflags state
fmtflags flags() const;
fmtflags flags(fmtflags fmtfl);
fmtflags setf(fmtflags fmtfl);
fmtflags setf(fmtflags fmtfl, fmtflags mask);
void unsetf(fmtflags mask);

streamsize precision() const;
streamsize precision(streamsize prec);
streamsize width() const;
streamsize width(streamsize wide);

// 31.5.2.4, locales
locale imbue(const locale& loc);
locale getloc() const;

// 31.5.2.6, storage
static int xalloc();
long& iword(int idx);
void*& pword(int idx);

// destructor
virtual ~ios_base();

// 31.5.2.7, callbacks
enum event { erase_event, imbue_event, copyfmt_event };
using event_callback = void (*)(event, ios_base&, int idx);
void register_callback(event_callback fn, int idx);

ios_base(const ios_base&) = delete;
ios_base& operator=(const ios_base&) = delete;

static bool sync_with_stdio(bool sync = true);

protected:
ios_base();

private:
static int index; // exposition only
long* iarray; // exposition only
void** parray; // exposition only

};
}

1 ios_base defines several member types:
—(1.1) a type failure, defined as either a class derived from system_error or a synonym for a class derived

from system_error;
—(1.2) a class Init;
—(1.3) three bitmask types, fmtflags, iostate, and openmode;
—(1.4) an enumerated type, seekdir.

2 It maintains several kinds of data:
—(2.1) state information that reflects the integrity of the stream buffer;
—(2.2) control information that influences how to interpret (format) input sequences and how to generate

(format) output sequences;
—(2.3) additional information that is stored by the program for its private use.

3 [Note 1 : For the sake of exposition, the maintained data is presented here as:
—(3.1) static int index, specifies the next available unique index for the integer or pointer arrays maintained for

the private use of the program, initialized to an unspecified value;
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—(3.2) long* iarray, points to the first element of an arbitrary-length long array maintained for the private use of
the program;

—(3.3) void** parray, points to the first element of an arbitrary-length pointer array maintained for the private use
of the program.

— end note ]

31.5.2.2 Types [ios.types]
31.5.2.2.1 Class ios_base::failure [ios.failure]

namespace std {
class ios_base::failure : public system_error {
public:

explicit failure(const string& msg, const error_code& ec = io_errc::stream);
explicit failure(const char* msg, const error_code& ec = io_errc::stream);

};
}

1 An implementation is permitted to define ios_base::failure as a synonym for a class with equivalent
functionality to class ios_base::failure shown in this subclause.
[Note 1 : When ios_base::failure is a synonym for another type, that type is required to provide a nested type
failure to emulate the injected-class-name. — end note ]

The class failure defines the base class for the types of all objects thrown as exceptions, by functions in the
iostreams library, to report errors detected during stream buffer operations.

2 When throwing ios_base::failure exceptions, implementations should provide values of ec that identify
the specific reason for the failure.
[Note 2 : Errors arising from the operating system would typically be reported as system_category() errors with an
error value of the error number reported by the operating system. Errors arising from within the stream library would
typically be reported as error_code(io_errc::stream, iostream_category()). — end note ]

explicit failure(const string& msg, const error_code& ec = io_errc::stream);

3 Effects: Constructs the base class with msg and ec.

explicit failure(const char* msg, const error_code& ec = io_errc::stream);

4 Effects: Constructs the base class with msg and ec.

31.5.2.2.2 Type ios_base::fmtflags [ios.fmtflags]

using fmtflags = T1;

1 The type fmtflags is a bitmask type (16.3.3.3.3). Setting its elements has the effects indicated in
Table 118.

2 Type fmtflags also defines the constants indicated in Table 119.

31.5.2.2.3 Type ios_base::iostate [ios.iostate]

using iostate = T2;

1 The type iostate is a bitmask type (16.3.3.3.3) that contains the elements indicated in Table 120.
2 Type iostate also defines the constant:

—(2.1) goodbit, the value zero.

31.5.2.2.4 Type ios_base::openmode [ios.openmode]

using openmode = T3;

1 The type openmode is a bitmask type (16.3.3.3.3). It contains the elements indicated in Table 121.

31.5.2.2.5 Type ios_base::seekdir [ios.seekdir]

using seekdir = T4;

1 The type seekdir is an enumerated type (16.3.3.3.2) that contains the elements indicated in Table 122.
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Table 118: fmtflags effects [tab:ios.fmtflags]

Element Effect(s) if set
boolalpha insert and extract bool type in alphabetic format
dec converts integer input or generates integer output in decimal base
fixed generate floating-point output in fixed-point notation
hex converts integer input or generates integer output in hexadecimal base
internal adds fill characters at a designated internal point in certain generated output,

or identical to right if no such point is designated
left adds fill characters on the right (final positions) of certain generated output
oct converts integer input or generates integer output in octal base
right adds fill characters on the left (initial positions) of certain generated output
scientific generates floating-point output in scientific notation
showbase generates a prefix indicating the numeric base of generated integer output
showpoint generates a decimal-point character unconditionally in generated floating-

point output
showpos generates a + sign in non-negative generated numeric output
skipws skips leading whitespace before certain input operations
unitbuf flushes output after each output operation
uppercase replaces certain lowercase letters with their uppercase equivalents in gener-

ated output

Table 119: fmtflags constants [tab:ios.fmtflags.const]

Constant Allowable values
adjustfield left | right | internal
basefield dec | oct | hex
floatfield scientific | fixed

Table 120: iostate effects [tab:ios.iostate]

Element Effect(s) if set
badbit indicates a loss of integrity in an input or output sequence (such as an

irrecoverable read error from a file);
eofbit indicates that an input operation reached the end of an input sequence;
failbit indicates that an input operation failed to read the expected characters, or

that an output operation failed to generate the desired characters.

Table 121: openmode effects [tab:ios.openmode]

Element Effect(s) if set
app seek to end before each write
ate open and seek to end immediately after opening
binary perform input and output in binary mode (as opposed to text mode)
in open for input
noreplace open in exclusive mode
out open for output
trunc truncate an existing stream when opening

Table 122: seekdir effects [tab:ios.seekdir]

Element Meaning
beg request a seek (for subsequent input or output) relative to the beginning of

the stream
cur request a seek relative to the current position within the sequence
end request a seek relative to the current end of the sequence
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31.5.2.2.6 Class ios_base::Init [ios.init]
namespace std {

class ios_base::Init {
public:

Init();
Init(const Init&) = default;
~Init();
Init& operator=(const Init&) = default;

private:
static int init_cnt; // exposition only

};
}

1 The class Init describes an object whose construction ensures the construction of the eight objects declared
in <iostream> (31.4) that associate file stream buffers with the standard C streams provided for by the
functions declared in <cstdio> (31.13.1).

2 For the sake of exposition, the maintained data is presented here as:
—(2.1) static int init_cnt, counts the number of constructor and destructor calls for class Init, initialized

to zero.

Init();

3 Effects: Constructs and initializes the objects cin, cout, cerr, clog, wcin, wcout, wcerr, and wclog
if they have not already been constructed and initialized.

~Init();

4 Effects: If there are no other instances of the class still in existence, calls cout.flush(), cerr.flush(),
clog.flush(), wcout.flush(), wcerr.flush(), wclog.flush().

31.5.2.3 State functions [fmtflags.state]

fmtflags flags() const;

1 Returns: The format control information for both input and output.

fmtflags flags(fmtflags fmtfl);

2 Postconditions: fmtfl == flags().
3 Returns: The previous value of flags().

fmtflags setf(fmtflags fmtfl);

4 Effects: Sets fmtfl in flags().
5 Returns: The previous value of flags().

fmtflags setf(fmtflags fmtfl, fmtflags mask);

6 Effects: Clears mask in flags(), sets fmtfl & mask in flags().
7 Returns: The previous value of flags().

void unsetf(fmtflags mask);

8 Effects: Clears mask in flags().

streamsize precision() const;

9 Returns: The precision to generate on certain output conversions.

streamsize precision(streamsize prec);

10 Postconditions: prec == precision().
11 Returns: The previous value of precision().

streamsize width() const;

12 Returns: The minimum field width (number of characters) to generate on certain output conversions.

§ 31.5.2.3 1621



© ISO/IEC N4950

streamsize width(streamsize wide);

13 Postconditions: wide == width().
14 Returns: The previous value of width().

31.5.2.4 Functions [ios.base.locales]

locale imbue(const locale& loc);

1 Effects: Calls each registered callback pair (fn, idx) (31.5.2.7) as (*fn)(imbue_event, *this, idx)
at such a time that a call to ios_base::getloc() from within fn returns the new locale value loc.

2 Postconditions: loc == getloc().
3 Returns: The previous value of getloc().

locale getloc() const;

4 Returns: If no locale has been imbued, a copy of the global C++ locale, locale(), in effect at the time
of construction. Otherwise, returns the imbued locale, to be used to perform locale-dependent input
and output operations.

31.5.2.5 Static members [ios.members.static]

static bool sync_with_stdio(bool sync = true);

1 Effects: If any input or output operation has occurred using the standard streams prior to the call,
the effect is implementation-defined. Otherwise, called with a false argument, it allows the standard
streams to operate independently of the standard C streams.

2 Returns: true if the previous state of the standard iostream objects (31.4) was synchronized and
otherwise returns false. The first time it is called, the function returns true.

3 Remarks: When a standard iostream object str is synchronized with a standard stdio stream f, the
effect of inserting a character c by

fputc(f, c);

is the same as the effect of
str.rdbuf()->sputc(c);

for any sequences of characters; the effect of extracting a character c by
c = fgetc(f);

is the same as the effect of
c = str.rdbuf()->sbumpc();

for any sequences of characters; and the effect of pushing back a character c by
ungetc(c, f);

is the same as the effect of
str.rdbuf()->sputbackc(c);

for any sequence of characters.269

31.5.2.6 Storage functions [ios.base.storage]

static int xalloc();

1 Returns: index ++.
2 Remarks: Concurrent access to this function by multiple threads does not result in a data race (6.9.2).

long& iword(int idx);

3 Preconditions: idx is a value obtained by a call to xalloc.
4 Effects: If iarray is a null pointer, allocates an array of long of unspecified size and stores a pointer to

its first element in iarray. The function then extends the array pointed at by iarray as necessary to

269) This implies that operations on a standard iostream object can be mixed arbitrarily with operations on the corresponding
stdio stream. In practical terms, synchronization usually means that a standard iostream object and a standard stdio object
share a buffer.
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include the element iarray[idx]. Each newly allocated element of the array is initialized to zero. The
reference returned is invalid after any other operation on the object.270 However, the value of the storage
referred to is retained, so that until the next call to copyfmt, calling iword with the same index yields
another reference to the same value. If the function fails271 and *this is a base class subobject of a
basic_ios<> object or subobject, the effect is equivalent to calling basic_ios<>::setstate(badbit)
on the derived object (which may throw failure).

5 Returns: On success iarray[idx]. On failure, a valid long& initialized to 0.

void*& pword(int idx);

6 Preconditions: idx is a value obtained by a call to xalloc.
7 Effects: If parray is a null pointer, allocates an array of pointers to void of unspecified size and

stores a pointer to its first element in parray. The function then extends the array pointed at by
parray as necessary to include the element parray[idx]. Each newly allocated element of the array is
initialized to a null pointer. The reference returned is invalid after any other operation on the object.
However, the value of the storage referred to is retained, so that until the next call to copyfmt, calling
pword with the same index yields another reference to the same value. If the function fails272 and
*this is a base class subobject of a basic_ios<> object or subobject, the effect is equivalent to calling
basic_ios<>::setstate(badbit) on the derived object (which may throw failure).

8 Returns: On success parray[idx]. On failure a valid void*& initialized to 0.
9 Remarks: After a subsequent call to pword(int) for the same object, the earlier return value may no

longer be valid.

31.5.2.7 Callbacks [ios.base.callback]

void register_callback(event_callback fn, int idx);

1 Preconditions: The function fn does not throw exceptions.
2 Effects: Registers the pair (fn, idx) such that during calls to imbue() (31.5.2.4), copyfmt(), or

~ios_base() (31.5.2.8), the function fn is called with argument idx. Functions registered are called
when an event occurs, in opposite order of registration. Functions registered while a callback function
is active are not called until the next event.

3 Remarks: Identical pairs are not merged. A function registered twice will be called twice.

31.5.2.8 Constructors and destructor [ios.base.cons]

ios_base();

1 Effects: Each ios_base member has an indeterminate value after construction. The object’s members
shall be initialized by calling basic_ios::init before the object’s first use or before it is destroyed,
whichever comes first; otherwise the behavior is undefined.

~ios_base();

2 Effects: Calls each registered callback pair (fn, idx) (31.5.2.7) as (*fn)(erase_event, *this, idx)
at such time that any ios_base member function called from within fn has well-defined results. Then,
any memory obtained is deallocated.

31.5.3 Class template fpos [fpos]
namespace std {

template<class stateT> class fpos {
public:

// 31.5.3.1, members
stateT state() const;
void state(stateT);

270) An implementation is free to implement both the integer array pointed at by iarray and the pointer array pointed at by
parray as sparse data structures, possibly with a one-element cache for each.
271) For example, because it cannot allocate space.
272) For example, because it cannot allocate space.
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private:
stateT st; // exposition only

};
}

31.5.3.1 Members [fpos.members]

void state(stateT s);

1 Effects: Assigns s to st.

stateT state() const;

2 Returns: Current value of st.

31.5.3.2 Requirements [fpos.operations]
1 An fpos type specifies file position information. It holds a state object whose type is equal to the template pa-

rameter stateT. Type stateT shall meet the Cpp17DefaultConstructible (Table 30), Cpp17CopyConstructible
(Table 32), Cpp17CopyAssignable (Table 34), and Cpp17Destructible (Table 35) requirements. If is_-
trivially_copy_constructible_v<stateT> is true, then fpos<stateT> has a trivial copy constructor. If
is_trivially_copy_assignable_v<stateT> is true, then fpos<stateT> has a trivial copy assignment op-
erator. If is_trivially_destructible_v<stateT> is true, then fpos<stateT> has a trivial destructor. All
specializations of fpos meet the Cpp17DefaultConstructible, Cpp17CopyConstructible, Cpp17CopyAssignable,
Cpp17Destructible, and Cpp17EqualityComparable (Table 28) requirements. In addition, the expressions
shown in Table 123 are valid and have the indicated semantics. In that table,

—(1.1) P refers to a specialization of fpos,
—(1.2) p and q refer to values of type P or const P,
—(1.3) pl and ql refer to modifiable lvalues of type P,
—(1.4) O refers to type streamoff, and
—(1.5) o and o2 refer to values of type streamoff or const streamoff.

Table 123: Position type requirements [tab:fpos.operations]

Expression Return type Operational Assertion/note
semantics pre-/post-condition

P(o) P converts from offset Effects: Value-initializes the
state object.

P p(o);
P p = o;

Effects: Value-initializes the
state object.
Postconditions: p == P(o) is
true.

P() P P(0)
P p; P p(0);
O(p) streamoff converts to offset P(O(p)) == p
p == q bool Remarks: For any two values o

and o2, if p is obtained from o
converted to P or from a copy of
such P value and if q is obtained
from o2 converted to P or from
a copy of such P value, then p
== q is true only if o == o2 is
true.

p != q bool !(p == q)
p + o P + offset Remarks: With ql = p + o;,

then: ql - o == p
pl += o P& += offset Remarks: With ql = pl; before

the +=, then: pl - o == ql
p - o P - offset Remarks: With ql = p - o;,

then: ql + o == p
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Table 123: Position type requirements (continued)

Expression Return type Operational Assertion/note
semantics pre-/post-condition

pl -= o P& -= offset Remarks: With ql = pl; before
the -=, then: pl + o == ql

o + p convertible to P p + o P(o + p) == p + o
p - q streamoff distance p == q + (p - q)

2 Stream operations that return a value of type traits::pos_type return P(O(-1)) as an invalid value to
signal an error. If this value is used as an argument to any istream, ostream, or streambuf member that
accepts a value of type traits::pos_type then the behavior of that function is undefined.

31.5.4 Class template basic_ios [ios]
31.5.4.1 Overview [ios.overview]

namespace std {
template<class charT, class traits = char_traits<charT>>
class basic_ios : public ios_base {
public:

using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

// 31.5.4.4, flags functions
explicit operator bool() const;
bool operator!() const;
iostate rdstate() const;
void clear(iostate state = goodbit);
void setstate(iostate state);
bool good() const;
bool eof() const;
bool fail() const;
bool bad() const;

iostate exceptions() const;
void exceptions(iostate except);

// 31.5.4.2, constructor/destructor
explicit basic_ios(basic_streambuf<charT, traits>* sb);
virtual ~basic_ios();

// 31.5.4.3, members
basic_ostream<charT, traits>* tie() const;
basic_ostream<charT, traits>* tie(basic_ostream<charT, traits>* tiestr);

basic_streambuf<charT, traits>* rdbuf() const;
basic_streambuf<charT, traits>* rdbuf(basic_streambuf<charT, traits>* sb);

basic_ios& copyfmt(const basic_ios& rhs);

char_type fill() const;
char_type fill(char_type ch);

locale imbue(const locale& loc);

char narrow(char_type c, char dfault) const;
char_type widen(char c) const;

basic_ios(const basic_ios&) = delete;
basic_ios& operator=(const basic_ios&) = delete;
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protected:
basic_ios();
void init(basic_streambuf<charT, traits>* sb);
void move(basic_ios& rhs);
void move(basic_ios&& rhs);
void swap(basic_ios& rhs) noexcept;
void set_rdbuf(basic_streambuf<charT, traits>* sb);

};
}

31.5.4.2 Constructors [basic.ios.cons]

explicit basic_ios(basic_streambuf<charT, traits>* sb);

1 Effects: Assigns initial values to its member objects by calling init(sb).

basic_ios();

2 Effects: Leaves its member objects uninitialized. The object shall be initialized by calling basic_-
ios::init before its first use or before it is destroyed, whichever comes first; otherwise the behavior is
undefined.

~basic_ios();

3 Remarks: The destructor does not destroy rdbuf().

void init(basic_streambuf<charT, traits>* sb);

4 Postconditions: The postconditions of this function are indicated in Table 124.

Table 124: basic_ios::init() effects [tab:basic.ios.cons]

Element Value
rdbuf() sb
tie() 0
rdstate() goodbit if sb is not a null pointer, otherwise

badbit.
exceptions() goodbit
flags() skipws | dec
width() 0
precision() 6
fill() widen(’ ’)
getloc() a copy of the value returned by locale()
iarray a null pointer
parray a null pointer

31.5.4.3 Member functions [basic.ios.members]

basic_ostream<charT, traits>* tie() const;

1 Returns: An output sequence that is tied to (synchronized with) the sequence controlled by the stream
buffer.

basic_ostream<charT, traits>* tie(basic_ostream<charT, traits>* tiestr);

2 Preconditions: If tiestr is not null, tiestr is not reachable by traversing the linked list of tied stream
objects starting from tiestr->tie().

3 Postconditions: tiestr == tie().
4 Returns: The previous value of tie().

basic_streambuf<charT, traits>* rdbuf() const;

5 Returns: A pointer to the streambuf associated with the stream.
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basic_streambuf<charT, traits>* rdbuf(basic_streambuf<charT, traits>* sb);

6 Effects: Calls clear().
7 Postconditions: sb == rdbuf().
8 Returns: The previous value of rdbuf().

locale imbue(const locale& loc);

9 Effects: Calls ios_base::imbue(loc) (31.5.2.4) and if rdbuf() != 0 then rdbuf()->pubimbue(loc)
(31.6.3.3.1).

10 Returns: The prior value of ios_base::imbue().

char narrow(char_type c, char dfault) const;

11 Returns: use_facet<ctype<char_type>>(getloc()).narrow(c, dfault)

char_type widen(char c) const;

12 Returns: use_facet<ctype<char_type>>(getloc()).widen(c)

char_type fill() const;

13 Returns: The character used to pad (fill) an output conversion to the specified field width.

char_type fill(char_type fillch);

14 Postconditions: traits::eq(fillch, fill()).
15 Returns: The previous value of fill().

basic_ios& copyfmt(const basic_ios& rhs);

16 Effects: If (this == addressof(rhs)) is true does nothing. Otherwise assigns to the member objects
of *this the corresponding member objects of rhs as follows:

—(16.1) calls each registered callback pair (fn, idx) as (*fn)(erase_event, *this, idx);
—(16.2) then, assigns to the member objects of *this the corresponding member objects of rhs, except

that
—(16.2.1) rdstate(), rdbuf(), and exceptions() are left unchanged;
—(16.2.2) the contents of arrays pointed at by pword and iword are copied, not the pointers themselves;273

and
—(16.2.3) if any newly stored pointer values in *this point at objects stored outside the object rhs and

those objects are destroyed when rhs is destroyed, the newly stored pointer values are altered
to point at newly constructed copies of the objects;

—(16.3) then, calls each callback pair that was copied from rhs as (*fn)(copyfmt_event, *this, idx);
—(16.4) then, calls exceptions(rhs.exceptions()).

17 [Note 1 : The second pass through the callback pairs permits a copied pword value to be zeroed, or to have its
referent deep copied or reference counted, or to have other special action taken. — end note ]

18 Postconditions: The postconditions of this function are indicated in Table 125.
19 Returns: *this.

void move(basic_ios& rhs);
void move(basic_ios&& rhs);

20 Postconditions: *this has the state that rhs had before the function call, except that rdbuf() returns
nullptr. rhs is in a valid but unspecified state, except that rhs.rdbuf() returns the same value as it
returned before the function call, and rhs.tie() returns nullptr.

273) This suggests an infinite amount of copying, but the implementation can keep track of the maximum element of the arrays
that is nonzero.
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Table 125: basic_ios::copyfmt() effects [tab:basic.ios.copyfmt]

Element Value
rdbuf() unchanged
tie() rhs.tie()
rdstate() unchanged
exceptions() rhs.exceptions()
flags() rhs.flags()
width() rhs.width()
precision() rhs.precision()
fill() rhs.fill()
getloc() rhs.getloc()

void swap(basic_ios& rhs) noexcept;

21 Effects: The states of *this and rhs are exchanged, except that rdbuf() returns the same value as it
returned before the function call, and rhs.rdbuf() returns the same value as it returned before the
function call.

void set_rdbuf(basic_streambuf<charT, traits>* sb);

22 Preconditions: sb != nullptr is true.
23 Effects: Associates the basic_streambuf object pointed to by sb with this stream without calling

clear().
24 Postconditions: rdbuf() == sb is true.
25 Throws: Nothing.

31.5.4.4 Flags functions [iostate.flags]

explicit operator bool() const;

1 Returns: !fail().

bool operator!() const;

2 Returns: fail().

iostate rdstate() const;

3 Returns: The error state of the stream buffer.

void clear(iostate state = goodbit);

4 Effects: If ((state | (rdbuf() ? goodbit : badbit)) & exceptions()) == 0, returns. Other-
wise, the function throws an object of class ios_base::failure (31.5.2.2.1), constructed with imple-
mentation-defined argument values.

5 Postconditions: If rdbuf() != 0 then state == rdstate(); otherwise rdstate() == (state |
ios_base::badbit).

void setstate(iostate state);

6 Effects: Calls clear(rdstate() | state) (which may throw ios_base::failure (31.5.2.2.1)).

bool good() const;

7 Returns: rdstate() == 0

bool eof() const;

8 Returns: true if eofbit is set in rdstate().

bool fail() const;

9 Returns: true if failbit or badbit is set in rdstate().274

274) Checking badbit also for fail() is historical practice.
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bool bad() const;

10 Returns: true if badbit is set in rdstate().

iostate exceptions() const;

11 Returns: A mask that determines what elements set in rdstate() cause exceptions to be thrown.

void exceptions(iostate except);

12 Effects: Calls clear(rdstate()).
13 Postconditions: except == exceptions().

31.5.5 ios_base manipulators [std.ios.manip]
31.5.5.1 fmtflags manipulators [fmtflags.manip]

1 Each function specified in this subclause is a designated addressable function (16.4.5.2.1).

ios_base& boolalpha(ios_base& str);

2 Effects: Calls str.setf(ios_base::boolalpha).
3 Returns: str.

ios_base& noboolalpha(ios_base& str);

4 Effects: Calls str.unsetf(ios_base::boolalpha).
5 Returns: str.

ios_base& showbase(ios_base& str);

6 Effects: Calls str.setf(ios_base::showbase).
7 Returns: str.

ios_base& noshowbase(ios_base& str);

8 Effects: Calls str.unsetf(ios_base::showbase).
9 Returns: str.

ios_base& showpoint(ios_base& str);

10 Effects: Calls str.setf(ios_base::showpoint).
11 Returns: str.

ios_base& noshowpoint(ios_base& str);

12 Effects: Calls str.unsetf(ios_base::showpoint).
13 Returns: str.

ios_base& showpos(ios_base& str);

14 Effects: Calls str.setf(ios_base::showpos).
15 Returns: str.

ios_base& noshowpos(ios_base& str);

16 Effects: Calls str.unsetf(ios_base::showpos).
17 Returns: str.

ios_base& skipws(ios_base& str);

18 Effects: Calls str.setf(ios_base::skipws).
19 Returns: str.

ios_base& noskipws(ios_base& str);

20 Effects: Calls str.unsetf(ios_base::skipws).
21 Returns: str.
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ios_base& uppercase(ios_base& str);

22 Effects: Calls str.setf(ios_base::uppercase).
23 Returns: str.

ios_base& nouppercase(ios_base& str);

24 Effects: Calls str.unsetf(ios_base::uppercase).
25 Returns: str.

ios_base& unitbuf(ios_base& str);

26 Effects: Calls str.setf(ios_base::unitbuf).
27 Returns: str.

ios_base& nounitbuf(ios_base& str);

28 Effects: Calls str.unsetf(ios_base::unitbuf).
29 Returns: str.

31.5.5.2 adjustfield manipulators [adjustfield.manip]
1 Each function specified in this subclause is a designated addressable function (16.4.5.2.1).

ios_base& internal(ios_base& str);

2 Effects: Calls str.setf(ios_base::internal, ios_base::adjustfield).
3 Returns: str.

ios_base& left(ios_base& str);

4 Effects: Calls str.setf(ios_base::left, ios_base::adjustfield).
5 Returns: str.

ios_base& right(ios_base& str);

6 Effects: Calls str.setf(ios_base::right, ios_base::adjustfield).
7 Returns: str.

31.5.5.3 basefield manipulators [basefield.manip]
1 Each function specified in this subclause is a designated addressable function (16.4.5.2.1).

ios_base& dec(ios_base& str);

2 Effects: Calls str.setf(ios_base::dec, ios_base::basefield).
3 Returns: str.275

ios_base& hex(ios_base& str);

4 Effects: Calls str.setf(ios_base::hex, ios_base::basefield).
5 Returns: str.

ios_base& oct(ios_base& str);

6 Effects: Calls str.setf(ios_base::oct, ios_base::basefield).
7 Returns: str.

31.5.5.4 floatfield manipulators [floatfield.manip]
1 Each function specified in this subclause is a designated addressable function (16.4.5.2.1).

ios_base& fixed(ios_base& str);

2 Effects: Calls str.setf(ios_base::fixed, ios_base::floatfield).
3 Returns: str.

275) The function signature dec(ios_base&) can be called by the function signature basic_ostream& stream::operator<<(ios_-
base& (*)(ios_base&)) to permit expressions of the form cout << dec to change the format flags stored in cout.
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ios_base& scientific(ios_base& str);

4 Effects: Calls str.setf(ios_base::scientific, ios_base::floatfield).
5 Returns: str.

ios_base& hexfloat(ios_base& str);

6 Effects: Calls str.setf(ios_base::fixed | ios_base::scientific, ios_base::floatfield).
7 Returns: str.
8 [Note 1 : ios_base::hex cannot be used to specify a hexadecimal floating-point format, because it is not part of

ios_base::floatfield (Table 119). — end note ]

ios_base& defaultfloat(ios_base& str);

9 Effects: Calls str.unsetf(ios_base::floatfield).
10 Returns: str.

31.5.6 Error reporting [error.reporting]
error_code make_error_code(io_errc e) noexcept;

1 Returns: error_code(static_cast<int>(e), iostream_category()).

error_condition make_error_condition(io_errc e) noexcept;

2 Returns: error_condition(static_cast<int>(e), iostream_category()).

const error_category& iostream_category() noexcept;

3 Returns: A reference to an object of a type derived from class error_category.
4 The object’s default_error_condition and equivalent virtual functions shall behave as specified

for the class error_category. The object’s name virtual function shall return a pointer to the string
"iostream".

31.6 Stream buffers [stream.buffers]
31.6.1 Header <streambuf> synopsis [streambuf.syn]

namespace std {
template<class charT, class traits = char_traits<charT>>

class basic_streambuf;
using streambuf = basic_streambuf<char>;
using wstreambuf = basic_streambuf<wchar_t>;

}

1 The header <streambuf> defines types that control input from and output to character sequences.

31.6.2 Stream buffer requirements [streambuf.reqts]
1 Stream buffers can impose various constraints on the sequences they control. Some constraints are:

—(1.1) The controlled input sequence can be not readable.
—(1.2) The controlled output sequence can be not writable.
—(1.3) The controlled sequences can be associated with the contents of other representations for character

sequences, such as external files.
—(1.4) The controlled sequences can support operations directly to or from associated sequences.
—(1.5) The controlled sequences can impose limitations on how the program can read characters from a

sequence, write characters to a sequence, put characters back into an input sequence, or alter the stream
position.

2 Each sequence is characterized by three pointers which, if non-null, all point into the same charT array object.
The array object represents, at any moment, a (sub)sequence of characters from the sequence. Operations
performed on a sequence alter the values stored in these pointers, perform reads and writes directly to or
from associated sequences, and alter “the stream position” and conversion state as needed to maintain this
subsequence relationship. The three pointers are:

—(2.1) the beginning pointer, or lowest element address in the array (called xbeg here);
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—(2.2) the next pointer, or next element address that is a current candidate for reading or writing (called
xnext here);

—(2.3) the end pointer, or first element address beyond the end of the array (called xend here).
3 The following semantic constraints shall always apply for any set of three pointers for a sequence, using the

pointer names given immediately above:
—(3.1) If xnext is not a null pointer, then xbeg and xend shall also be non-null pointers into the same charT

array, as described above; otherwise, xbeg and xend shall also be null.
—(3.2) If xnext is not a null pointer and xnext < xend for an output sequence, then a write position is

available. In this case, *xnext shall be assignable as the next element to write (to put, or to store a
character value, into the sequence).

—(3.3) If xnext is not a null pointer and xbeg < xnext for an input sequence, then a putback position is
available. In this case, xnext[-1] shall have a defined value and is the next (preceding) element to
store a character that is put back into the input sequence.

—(3.4) If xnext is not a null pointer and xnext < xend for an input sequence, then a read position is available.
In this case, *xnext shall have a defined value and is the next element to read (to get, or to obtain a
character value, from the sequence).

31.6.3 Class template basic_streambuf [streambuf]
31.6.3.1 General [streambuf.general]

namespace std {
template<class charT, class traits = char_traits<charT>>
class basic_streambuf {
public:

using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

virtual ~basic_streambuf();

// 31.6.3.3.1, locales
locale pubimbue(const locale& loc);
locale getloc() const;

// 31.6.3.3.2, buffer and positioning
basic_streambuf* pubsetbuf(char_type* s, streamsize n);
pos_type pubseekoff(off_type off, ios_base::seekdir way,

ios_base::openmode which
= ios_base::in | ios_base::out);

pos_type pubseekpos(pos_type sp,
ios_base::openmode which

= ios_base::in | ios_base::out);
int pubsync();

// get and put areas
// 31.6.3.3.3, get area
streamsize in_avail();
int_type snextc();
int_type sbumpc();
int_type sgetc();
streamsize sgetn(char_type* s, streamsize n);

// 31.6.3.3.4, putback
int_type sputbackc(char_type c);
int_type sungetc();

// 31.6.3.3.5, put area
int_type sputc(char_type c);
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streamsize sputn(const char_type* s, streamsize n);

protected:
basic_streambuf();
basic_streambuf(const basic_streambuf& rhs);
basic_streambuf& operator=(const basic_streambuf& rhs);

void swap(basic_streambuf& rhs);

// 31.6.3.4.2, get area access
char_type* eback() const;
char_type* gptr() const;
char_type* egptr() const;
void gbump(int n);
void setg(char_type* gbeg, char_type* gnext, char_type* gend);

// 31.6.3.4.3, put area access
char_type* pbase() const;
char_type* pptr() const;
char_type* epptr() const;
void pbump(int n);
void setp(char_type* pbeg, char_type* pend);

// 31.6.3.5, virtual functions
// 31.6.3.5.1, locales
virtual void imbue(const locale& loc);

// 31.6.3.5.2, buffer management and positioning
virtual basic_streambuf* setbuf(char_type* s, streamsize n);
virtual pos_type seekoff(off_type off, ios_base::seekdir way,

ios_base::openmode which
= ios_base::in | ios_base::out);

virtual pos_type seekpos(pos_type sp,
ios_base::openmode which

= ios_base::in | ios_base::out);
virtual int sync();

// 31.6.3.5.3, get area
virtual streamsize showmanyc();
virtual streamsize xsgetn(char_type* s, streamsize n);
virtual int_type underflow();
virtual int_type uflow();

// 31.6.3.5.4, putback
virtual int_type pbackfail(int_type c = traits::eof());

// 31.6.3.5.5, put area
virtual streamsize xsputn(const char_type* s, streamsize n);
virtual int_type overflow(int_type c = traits::eof());

};
}

1 The class template basic_streambuf serves as an abstract base class for deriving various stream buffers
whose objects each control two character sequences:

—(1.1) a character input sequence;
—(1.2) a character output sequence.

31.6.3.2 Constructors [streambuf.cons]

basic_streambuf();

1 Effects: Initializes:276

276) The default constructor is protected for class basic_streambuf to assure that only objects for classes derived from this
class can be constructed.
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—(1.1) all pointer member objects to null pointers,
—(1.2) the getloc() member to a copy of the global locale, locale(), at the time of construction.

2 Remarks: Once the getloc() member is initialized, results of calling locale member functions, and of
members of facets so obtained, can safely be cached until the next time the member imbue is called.

basic_streambuf(const basic_streambuf& rhs);

3 Postconditions:
—(3.1) eback() == rhs.eback()
—(3.2) gptr() == rhs.gptr()
—(3.3) egptr() == rhs.egptr()
—(3.4) pbase() == rhs.pbase()
—(3.5) pptr() == rhs.pptr()
—(3.6) epptr() == rhs.epptr()
—(3.7) getloc() == rhs.getloc()

~basic_streambuf();

4 Effects: None.

31.6.3.3 Public member functions [streambuf.members]
31.6.3.3.1 Locales [streambuf.locales]

locale pubimbue(const locale& loc);

1 Effects: Calls imbue(loc).
2 Postconditions: loc == getloc().
3 Returns: Previous value of getloc().

locale getloc() const;

4 Returns: If pubimbue() has ever been called, then the last value of loc supplied, otherwise the current
global locale, locale(), in effect at the time of construction. If called after pubimbue() has been called
but before pubimbue has returned (i.e., from within the call of imbue()) then it returns the previous
value.

31.6.3.3.2 Buffer management and positioning [streambuf.buffer]

basic_streambuf* pubsetbuf(char_type* s, streamsize n);

1 Returns: setbuf(s, n).

pos_type pubseekoff(off_type off, ios_base::seekdir way,
ios_base::openmode which

= ios_base::in | ios_base::out);

2 Returns: seekoff(off, way, which).

pos_type pubseekpos(pos_type sp,
ios_base::openmode which

= ios_base::in | ios_base::out);

3 Returns: seekpos(sp, which).

int pubsync();

4 Returns: sync().

31.6.3.3.3 Get area [streambuf.pub.get]

streamsize in_avail();

1 Returns: If a read position is available, returns egptr() - gptr(). Otherwise returns showmanyc()
(31.6.3.5.3).
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int_type snextc();

2 Effects: Calls sbumpc().
3 Returns: If that function returns traits::eof(), returns traits::eof(). Otherwise, returns sgetc().

int_type sbumpc();

4 Effects: If the input sequence read position is not available, returns uflow(). Otherwise, returns
traits::to_int_type(*gptr()) and increments the next pointer for the input sequence.

int_type sgetc();

5 Returns: If the input sequence read position is not available, returns underflow(). Otherwise, returns
traits::to_int_type(*gptr()).

streamsize sgetn(char_type* s, streamsize n);

6 Returns: xsgetn(s, n).

31.6.3.3.4 Putback [streambuf.pub.pback]

int_type sputbackc(char_type c);

1 Effects: If the input sequence putback position is not available, or if traits::eq(c, gptr()[-1]) is
false, returns pbackfail(traits::to_int_type(c)). Otherwise, decrements the next pointer for
the input sequence and returns traits::to_int_type(*gptr()).

int_type sungetc();

2 Effects: If the input sequence putback position is not available, returns pbackfail(). Otherwise,
decrements the next pointer for the input sequence and returns traits::to_int_type(*gptr()).

31.6.3.3.5 Put area [streambuf.pub.put]

int_type sputc(char_type c);

1 Effects: If the output sequence write position is not available, returns overflow(traits::to_int_-
type(c)). Otherwise, stores c at the next pointer for the output sequence, increments the pointer, and
returns traits::to_int_type(c).

streamsize sputn(const char_type* s, streamsize n);

2 Returns: xsputn(s, n).

31.6.3.4 Protected member functions [streambuf.protected]
31.6.3.4.1 Assignment [streambuf.assign]

basic_streambuf& operator=(const basic_streambuf& rhs);

1 Postconditions:
—(1.1) eback() == rhs.eback()
—(1.2) gptr() == rhs.gptr()
—(1.3) egptr() == rhs.egptr()
—(1.4) pbase() == rhs.pbase()
—(1.5) pptr() == rhs.pptr()
—(1.6) epptr() == rhs.epptr()
—(1.7) getloc() == rhs.getloc()

2 Returns: *this.

void swap(basic_streambuf& rhs);

3 Effects: Swaps the data members of rhs and *this.
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31.6.3.4.2 Get area access [streambuf.get.area]

char_type* eback() const;

1 Returns: The beginning pointer for the input sequence.

char_type* gptr() const;

2 Returns: The next pointer for the input sequence.

char_type* egptr() const;

3 Returns: The end pointer for the input sequence.

void gbump(int n);

4 Effects: Adds n to the next pointer for the input sequence.

void setg(char_type* gbeg, char_type* gnext, char_type* gend);

5 Postconditions: gbeg == eback(), gnext == gptr(), and gend == egptr() are all true.

31.6.3.4.3 Put area access [streambuf.put.area]

char_type* pbase() const;

1 Returns: The beginning pointer for the output sequence.

char_type* pptr() const;

2 Returns: The next pointer for the output sequence.

char_type* epptr() const;

3 Returns: The end pointer for the output sequence.

void pbump(int n);

4 Effects: Adds n to the next pointer for the output sequence.

void setp(char_type* pbeg, char_type* pend);

5 Postconditions: pbeg == pbase(), pbeg == pptr(), and pend == epptr() are all true.

31.6.3.5 Virtual functions [streambuf.virtuals]
31.6.3.5.1 Locales [streambuf.virt.locales]

void imbue(const locale&);

1 Effects: Change any translations based on locale.
2 Remarks: Allows the derived class to be informed of changes in locale at the time they occur. Between

invocations of this function a class derived from streambuf can safely cache results of calls to locale
functions and to members of facets so obtained.

3 Default behavior : Does nothing.

31.6.3.5.2 Buffer management and positioning [streambuf.virt.buffer]

basic_streambuf* setbuf(char_type* s, streamsize n);

1 Effects: Influences stream buffering in a way that is defined separately for each class derived from
basic_streambuf in this Clause (31.8.2.5, 31.10.2.5).

2 Default behavior : Does nothing. Returns this.

pos_type seekoff(off_type off, ios_base::seekdir way,
ios_base::openmode which
= ios_base::in | ios_base::out);

3 Effects: Alters the stream positions within one or more of the controlled sequences in a way that is
defined separately for each class derived from basic_streambuf in this Clause (31.8.2.5, 31.10.2.5).

4 Default behavior : Returns pos_type(off_type(-1)).
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pos_type seekpos(pos_type sp,
ios_base::openmode which
= ios_base::in | ios_base::out);

5 Effects: Alters the stream positions within one or more of the controlled sequences in a way that is
defined separately for each class derived from basic_streambuf in this Clause (31.8.2, 31.10.2).

6 Default behavior : Returns pos_type(off_type(-1)).

int sync();

7 Effects: Synchronizes the controlled sequences with the arrays. That is, if pbase() is non-null the
characters between pbase() and pptr() are written to the controlled sequence. The pointers may then
be reset as appropriate.

8 Returns: -1 on failure. What constitutes failure is determined by each derived class (31.10.2.5).
9 Default behavior : Returns zero.

31.6.3.5.3 Get area [streambuf.virt.get]

streamsize showmanyc();277

1 Returns: An estimate of the number of characters available in the sequence, or −1. If it returns a
positive value, then successive calls to underflow() will not return traits::eof() until at least that
number of characters have been extracted from the stream. If showmanyc() returns −1, then calls to
underflow() or uflow() will fail.278

2 Default behavior : Returns zero.
3 Remarks: Uses traits::eof().

streamsize xsgetn(char_type* s, streamsize n);

4 Effects: Assigns up to n characters to successive elements of the array whose first element is designated
by s. The characters assigned are read from the input sequence as if by repeated calls to sbumpc().
Assigning stops when either n characters have been assigned or a call to sbumpc() would return
traits::eof().

5 Returns: The number of characters assigned.279

6 Remarks: Uses traits::eof().

int_type underflow();

7 The pending sequence of characters is defined as the concatenation of
—(7.1) the empty sequence if gptr() is null, otherwise the characters in [gptr(), egptr()), followed by
—(7.2) some (possibly empty) sequence of characters read from the input sequence.

8 The result character is the first character of the pending sequence if it is non-empty, otherwise the next
character that would be read from the input sequence.

9 The backup sequence is the empty sequence if eback() is null, otherwise the characters in [eback(),
gptr()).

10 Effects: The function sets up the gptr() and egptr() such that if the pending sequence is non-empty,
then egptr() is non-null and the characters in [gptr(), egptr()) are the characters in the pending
sequence, otherwise either gptr() is null or gptr() == egptr().

11 If eback() and gptr() are non-null then the function is not constrained as to their contents, but the
“usual backup condition” is that either

—(11.1) the backup sequence contains at least gptr() - eback() characters, in which case the characters
in [eback(), gptr()) agree with the last gptr() - eback() characters of the backup sequence, or

—(11.2) the characters in [gptr() - n, gptr()) agree with the backup sequence (where n is the length of
the backup sequence).

277) The morphemes of showmanyc are “es-how-many-see”, not “show-manic”.
278) underflow or uflow can fail by throwing an exception prematurely. The intention is not only that the calls will not return
eof() but that they will return “immediately”.
279) Classes derived from basic_streambuf can provide more efficient ways to implement xsgetn() and xsputn() by overriding
these definitions from the base class.
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12 Returns: traits::to_int_type(c), where c is the first character of the pending sequence, without
moving the input sequence position past it. If the pending sequence is null then the function returns
traits::eof() to indicate failure.

13 Default behavior : Returns traits::eof().
14 Remarks: The public members of basic_streambuf call this virtual function only if gptr() is null or

gptr() >= egptr().

int_type uflow();

15 Preconditions: The constraints are the same as for underflow(), except that the result character is
transferred from the pending sequence to the backup sequence, and the pending sequence is not empty
before the transfer.

16 Default behavior : Calls underflow(). If underflow() returns traits::eof(), returns traits::eof().
Otherwise, returns the value of traits::to_int_type(*gptr()) and increments the value of the next
pointer for the input sequence.

17 Returns: traits::eof() to indicate failure.

31.6.3.5.4 Putback [streambuf.virt.pback]

int_type pbackfail(int_type c = traits::eof());

1 The pending sequence is defined as for underflow(), with the modifications that
—(1.1) If traits::eq_int_type(c, traits::eof()) returns true, then the input sequence is backed

up one character before the pending sequence is determined.
—(1.2) If traits::eq_int_type(c, traits::eof()) returns false, then c is prepended. Whether the

input sequence is backed up or modified in any other way is unspecified.
2 Postconditions: On return, the constraints of gptr(), eback(), and pptr() are the same as for

underflow().
3 Returns: traits::eof() to indicate failure. Failure may occur because the input sequence could not

be backed up, or if for some other reason the pointers cannot be set consistent with the constraints.
pbackfail() is called only when put back has really failed.

4 Returns some value other than traits::eof() to indicate success.
5 Default behavior : Returns traits::eof().
6 Remarks: The public functions of basic_streambuf call this virtual function only when gptr() is

null, gptr() == eback(), or traits::eq(traits::to_char_type(c), gptr()[-1]) returns false.
Other calls shall also satisfy that constraint.

31.6.3.5.5 Put area [streambuf.virt.put]

streamsize xsputn(const char_type* s, streamsize n);

1 Effects: Writes up to n characters to the output sequence as if by repeated calls to sputc(c). The
characters written are obtained from successive elements of the array whose first element is designated
by s. Writing stops when either n characters have been written or a call to sputc(c) would return
traits::eof(). It is unspecified whether the function calls overflow() when pptr() == epptr()
becomes true or whether it achieves the same effects by other means.

2 Returns: The number of characters written.

int_type overflow(int_type c = traits::eof());

3 Effects: Consumes some initial subsequence of the characters of the pending sequence. The pending
sequence is defined as the concatenation of

—(3.1) the empty sequence if pbase() is null, otherwise the pptr() - pbase() characters beginning at
pbase(), followed by

—(3.2) the empty sequence if traits::eq_int_type(c, traits::eof()) returns true, otherwise the
sequence consisting of c.
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4 Preconditions: Every overriding definition of this virtual function obeys the following constraints:
—(4.1) The effect of consuming a character on the associated output sequence is specified.280

—(4.2) Let r be the number of characters in the pending sequence not consumed. If r is nonzero then
pbase() and pptr() are set so that: pptr() - pbase() == r and the r characters starting at
pbase() are the associated output stream. In case r is zero (all characters of the pending sequence
have been consumed) then either pbase() is set to nullptr, or pbase() and pptr() are both set
to the same non-null value.

—(4.3) The function may fail if either appending some character to the associated output stream fails or
if it is unable to establish pbase() and pptr() according to the above rules.

5 Returns: traits::eof() or throws an exception if the function fails.
Otherwise, returns some value other than traits::eof() to indicate success.281

6 Default behavior : Returns traits::eof().
7 Remarks: The member functions sputc() and sputn() call this function in case that no room can be

found in the put buffer enough to accommodate the argument character sequence.

31.7 Formatting and manipulators [iostream.format]
31.7.1 Header <istream> synopsis [istream.syn]

namespace std {
template<class charT, class traits = char_traits<charT>>

class basic_istream;

using istream = basic_istream<char>;
using wistream = basic_istream<wchar_t>;

template<class charT, class traits = char_traits<charT>>
class basic_iostream;

using iostream = basic_iostream<char>;
using wiostream = basic_iostream<wchar_t>;

template<class charT, class traits>
basic_istream<charT, traits>& ws(basic_istream<charT, traits>& is);

template<class Istream, class T>
Istream&& operator>>(Istream&& is, T&& x);

}

31.7.2 Header <ostream> synopsis [ostream.syn]
namespace std {

template<class charT, class traits = char_traits<charT>>
class basic_ostream;

using ostream = basic_ostream<char>;
using wostream = basic_ostream<wchar_t>;

template<class charT, class traits>
basic_ostream<charT, traits>& endl(basic_ostream<charT, traits>& os);

template<class charT, class traits>
basic_ostream<charT, traits>& ends(basic_ostream<charT, traits>& os);

template<class charT, class traits>
basic_ostream<charT, traits>& flush(basic_ostream<charT, traits>& os);

280) That is, for each class derived from a specialization of basic_streambuf in this Clause (31.8.2, 31.10.2), a specification of
how consuming a character effects the associated output sequence is given. There is no requirement on a program-defined class.
281) Typically, overflow returns c to indicate success, except when traits::eq_int_type(c, traits::eof()) returns true, in
which case it returns traits::not_eof(c).
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template<class charT, class traits>
basic_ostream<charT, traits>& emit_on_flush(basic_ostream<charT, traits>& os);

template<class charT, class traits>
basic_ostream<charT, traits>& noemit_on_flush(basic_ostream<charT, traits>& os);

template<class charT, class traits>
basic_ostream<charT, traits>& flush_emit(basic_ostream<charT, traits>& os);

template<class Ostream, class T>
Ostream&& operator<<(Ostream&& os, const T& x);

// 31.7.6.3.5, print functions
template<class... Args>

void print(ostream& os, format_string<Args...> fmt, Args&&... args);
template<class... Args>

void println(ostream& os, format_string<Args...> fmt, Args&&... args);

void vprint_unicode(ostream& os, string_view fmt, format_args args);
void vprint_nonunicode(ostream& os, string_view fmt, format_args args);

}

31.7.3 Header <iomanip> synopsis [iomanip.syn]
namespace std {

unspecified resetiosflags(ios_base::fmtflags mask);
unspecified setiosflags (ios_base::fmtflags mask);
unspecified setbase(int base);
template<class charT> unspecified setfill(charT c);
unspecified setprecision(int n);
unspecified setw(int n);
template<class moneyT> unspecified get_money(moneyT& mon, bool intl = false);
template<class moneyT> unspecified put_money(const moneyT& mon, bool intl = false);
template<class charT> unspecified get_time(tm* tmb, const charT* fmt);
template<class charT> unspecified put_time(const tm* tmb, const charT* fmt);

template<class charT>
unspecified quoted(const charT* s, charT delim = charT('"'), charT escape = charT('\\'));

template<class charT, class traits, class Allocator>
unspecified quoted(const basic_string<charT, traits, Allocator>& s,

charT delim = charT('"'), charT escape = charT('\\'));

template<class charT, class traits, class Allocator>
unspecified quoted(basic_string<charT, traits, Allocator>& s,

charT delim = charT('"'), charT escape = charT('\\'));

template<class charT, class traits>
unspecified quoted(basic_string_view<charT, traits> s,

charT delim = charT('"'), charT escape = charT('\\'));
}

31.7.4 Header <print> synopsis [print.syn]
namespace std {

// 31.7.10, print functions
template<class... Args>

void print(format_string<Args...> fmt, Args&&... args);
template<class... Args>

void print(FILE* stream, format_string<Args...> fmt, Args&&... args);

template<class... Args>
void println(format_string<Args...> fmt, Args&&... args);

template<class... Args>
void println(FILE* stream, format_string<Args...> fmt, Args&&... args);
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void vprint_unicode(string_view fmt, format_args args);
void vprint_unicode(FILE* stream, string_view fmt, format_args args);

void vprint_nonunicode(string_view fmt, format_args args);
void vprint_nonunicode(FILE* stream, string_view fmt, format_args args);

}

31.7.5 Input streams [input.streams]
31.7.5.1 General [input.streams.general]

1 The header <istream> defines two class templates and a function template that control input from a stream
buffer, along with a function template that extracts from stream rvalues.

31.7.5.2 Class template basic_istream [istream]
31.7.5.2.1 General [istream.general]

1 When a function is specified with a type placeholder of extended-floating-point-type , the implementation
provides overloads for all cv-unqualified extended floating-point types (6.8.2) in lieu of extended-floating-
point-type .

namespace std {
template<class charT, class traits = char_traits<charT>>
class basic_istream : virtual public basic_ios<charT, traits> {
public:

// types (inherited from basic_ios (31.5.4))
using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

// 31.7.5.2.2, constructor/destructor
explicit basic_istream(basic_streambuf<charT, traits>* sb);
virtual ~basic_istream();

// 31.7.5.2.4, prefix/suffix
class sentry;

// 31.7.5.3, formatted input
basic_istream& operator>>(basic_istream& (*pf)(basic_istream&));
basic_istream& operator>>(basic_ios<charT, traits>& (*pf)(basic_ios<charT, traits>&));
basic_istream& operator>>(ios_base& (*pf)(ios_base&));

basic_istream& operator>>(bool& n);
basic_istream& operator>>(short& n);
basic_istream& operator>>(unsigned short& n);
basic_istream& operator>>(int& n);
basic_istream& operator>>(unsigned int& n);
basic_istream& operator>>(long& n);
basic_istream& operator>>(unsigned long& n);
basic_istream& operator>>(long long& n);
basic_istream& operator>>(unsigned long long& n);
basic_istream& operator>>(float& f);
basic_istream& operator>>(double& f);
basic_istream& operator>>(long double& f);
basic_istream& operator>>(extended-floating-point-type & f);

basic_istream& operator>>(void*& p);
basic_istream& operator>>(basic_streambuf<char_type, traits>* sb);

// 31.7.5.4, unformatted input
streamsize gcount() const;
int_type get();
basic_istream& get(char_type& c);
basic_istream& get(char_type* s, streamsize n);
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basic_istream& get(char_type* s, streamsize n, char_type delim);
basic_istream& get(basic_streambuf<char_type, traits>& sb);
basic_istream& get(basic_streambuf<char_type, traits>& sb, char_type delim);

basic_istream& getline(char_type* s, streamsize n);
basic_istream& getline(char_type* s, streamsize n, char_type delim);

basic_istream& ignore(streamsize n = 1, int_type delim = traits::eof());
int_type peek();
basic_istream& read (char_type* s, streamsize n);
streamsize readsome(char_type* s, streamsize n);

basic_istream& putback(char_type c);
basic_istream& unget();
int sync();

pos_type tellg();
basic_istream& seekg(pos_type);
basic_istream& seekg(off_type, ios_base::seekdir);

protected:
// 31.7.5.2.2, copy/move constructor
basic_istream(const basic_istream&) = delete;
basic_istream(basic_istream&& rhs);

// 31.7.5.2.3, assignment and swap
basic_istream& operator=(const basic_istream&) = delete;
basic_istream& operator=(basic_istream&& rhs);
void swap(basic_istream& rhs);

};

// 31.7.5.3.3, character extraction templates
template<class charT, class traits>

basic_istream<charT, traits>& operator>>(basic_istream<charT, traits>&, charT&);
template<class traits>

basic_istream<char, traits>& operator>>(basic_istream<char, traits>&, unsigned char&);
template<class traits>

basic_istream<char, traits>& operator>>(basic_istream<char, traits>&, signed char&);

template<class charT, class traits, size_t N>
basic_istream<charT, traits>& operator>>(basic_istream<charT, traits>&, charT(&)[N]);

template<class traits, size_t N>
basic_istream<char, traits>& operator>>(basic_istream<char, traits>&, unsigned char(&)[N]);

template<class traits, size_t N>
basic_istream<char, traits>& operator>>(basic_istream<char, traits>&, signed char(&)[N]);

}

2 The class template basic_istream defines a number of member function signatures that assist in reading
and interpreting input from sequences controlled by a stream buffer.

3 Two groups of member function signatures share common properties: the formatted input functions (or
extractors) and the unformatted input functions. Both groups of input functions are described as if they
obtain (or extract) input characters by calling rdbuf()->sbumpc() or rdbuf()->sgetc(). They may use
other public members of istream.

31.7.5.2.2 Constructors [istream.cons]

explicit basic_istream(basic_streambuf<charT, traits>* sb);

1 Effects: Initializes the base class subobject with basic_ios::init(sb) (31.5.4.2).
2 Postconditions: gcount() == 0.

basic_istream(basic_istream&& rhs);

3 Effects: Default constructs the base class, copies the gcount() from rhs, calls basic_ios<charT,
traits>::move(rhs) to initialize the base class, and sets the gcount() for rhs to 0.
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virtual ~basic_istream();

4 Remarks: Does not perform any operations of rdbuf().

31.7.5.2.3 Assignment and swap [istream.assign]

basic_istream& operator=(basic_istream&& rhs);

1 Effects: Equivalent to: swap(rhs).
2 Returns: *this.

void swap(basic_istream& rhs);

3 Effects: Calls basic_ios<charT, traits>::swap(rhs). Exchanges the values returned by gcount()
and rhs.gcount().

31.7.5.2.4 Class basic_istream::sentry [istream.sentry]
namespace std {

template<class charT, class traits>
class basic_istream<charT, traits>::sentry {

bool ok_; // exposition only

public:
explicit sentry(basic_istream& is, bool noskipws = false);
~sentry();
explicit operator bool() const { return ok_; }
sentry(const sentry&) = delete;
sentry& operator=(const sentry&) = delete;

};
}

1 The class sentry defines a class that is responsible for doing exception safe prefix and suffix operations.

explicit sentry(basic_istream& is, bool noskipws = false);

2 Effects: If is.good() is false, calls is.setstate(failbit). Otherwise, prepares for formatted or
unformatted input. First, if is.tie() is not a null pointer, the function calls is.tie()->flush()
to synchronize the output sequence with any associated external C stream. Except that this call
can be suppressed if the put area of is.tie() is empty. Further an implementation is allowed to
defer the call to flush until a call of is.rdbuf()->underflow() occurs. If no such call occurs before
the sentry object is destroyed, the call to flush may be eliminated entirely.282 If noskipws is zero
and is.flags() & ios_base::skipws is nonzero, the function extracts and discards each character
as long as the next available input character c is a whitespace character. If is.rdbuf()->sbumpc()
or is.rdbuf()->sgetc() returns traits::eof(), the function calls setstate(failbit | eofbit)
(which may throw ios_base::failure).

3 Remarks: The constructor
explicit sentry(basic_istream& is, bool noskipws = false)

uses the currently imbued locale in is, to determine whether the next input character is whitespace or
not.

4 To decide if the character c is a whitespace character, the constructor performs as if it executes the
following code fragment:

const ctype<charT>& ctype = use_facet<ctype<charT>>(is.getloc());
if (ctype.is(ctype.space, c) != 0)

// c is a whitespace character.
5 If, after any preparation is completed, is.good() is true, ok_ != false otherwise, ok_ == false.

During preparation, the constructor may call setstate(failbit) (which may throw ios_base::
failure (31.5.4.4)).283

282) This will be possible only in functions that are part of the library. The semantics of the constructor used in user code is as
specified.
283) The sentry constructor and destructor can also perform additional implementation-dependent operations.
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~sentry();

6 Effects: None.

explicit operator bool() const;

7 Returns: ok_.

31.7.5.3 Formatted input functions [istream.formatted]
31.7.5.3.1 Common requirements [istream.formatted.reqmts]

1 Each formatted input function begins execution by constructing an object of type ios_base::iostate,
termed the local error state, and initializing it to ios_base::goodbit. It then creates an object of class
sentry with the noskipws (second) argument false. If the sentry object returns true, when converted
to a value of type bool, the function endeavors to obtain the requested input. Otherwise, if the sentry
constructor exits by throwing an exception or if the sentry object produces false when converted to a
value of type bool, the function returns without attempting to obtain any input. If rdbuf()->sbumpc()
or rdbuf()->sgetc() returns traits::eof(), then ios_base::eofbit is set in the local error state and
the input function stops trying to obtain the requested input. If an exception is thrown during input then
ios_base::badbit is set in the local error state, *this’s error state is set to the local error state, and the
exception is rethrown if (exceptions() & badbit) != 0. After extraction is done, the input function calls
setstate, which sets *this’s error state to the local error state, and may throw an exception. In any case,
the formatted input function destroys the sentry object. If no exception has been thrown, it returns *this.

31.7.5.3.2 Arithmetic extractors [istream.formatted.arithmetic]

basic_istream& operator>>(unsigned short& val);
basic_istream& operator>>(unsigned int& val);
basic_istream& operator>>(long& val);
basic_istream& operator>>(unsigned long& val);
basic_istream& operator>>(long long& val);
basic_istream& operator>>(unsigned long long& val);
basic_istream& operator>>(float& val);
basic_istream& operator>>(double& val);
basic_istream& operator>>(long double& val);
basic_istream& operator>>(bool& val);
basic_istream& operator>>(void*& val);

1 As in the case of the inserters, these extractors depend on the locale’s num_get<> (30.4.3.2) object
to perform parsing the input stream data. These extractors behave as formatted input functions (as
described in 31.7.5.3.1). After a sentry object is constructed, the conversion occurs as if performed by
the following code fragment, where state represents the input function’s local error state:

using numget = num_get<charT, istreambuf_iterator<charT, traits>>;
use_facet<numget>(loc).get(*this, 0, *this, state, val);

In the above fragment, loc stands for the private member of the basic_ios class.
[Note 1 : The first argument provides an object of the istreambuf_iterator class which is an iterator pointed
to an input stream. It bypasses istreams and uses streambufs directly. — end note ]

Class locale relies on this type as its interface to istream, so that it does not need to depend directly
on istream.

basic_istream& operator>>(short& val);

2 The conversion occurs as if performed by the following code fragment (using the same notation as for
the preceding code fragment):

using numget = num_get<charT, istreambuf_iterator<charT, traits>>;
long lval;
use_facet<numget>(loc).get(*this, 0, *this, state, lval);
if (lval < numeric_limits<short>::min()) {

state |= ios_base::failbit;
val = numeric_limits<short>::min();

} else if (numeric_limits<short>::max() < lval) {
state |= ios_base::failbit;
val = numeric_limits<short>::max();

} else
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val = static_cast<short>(lval);

basic_istream& operator>>(int& val);

3 The conversion occurs as if performed by the following code fragment (using the same notation as for
the preceding code fragment):

using numget = num_get<charT, istreambuf_iterator<charT, traits>>;
long lval;
use_facet<numget>(loc).get(*this, 0, *this, state, lval);
if (lval < numeric_limits<int>::min()) {

state |= ios_base::failbit;
val = numeric_limits<int>::min();

} else if (numeric_limits<int>::max() < lval) {
state |= ios_base::failbit;
val = numeric_limits<int>::max();

} else
val = static_cast<int>(lval);

basic_istream& operator>>(extended-floating-point-type & val);

4 If the floating-point conversion rank of extended-floating-point-type is not less than or equal
to that of long double, then an invocation of the operator function is conditionally supported with
implementation-defined semantics.

5 Otherwise, let FP be a standard floating-point type:
—(5.1) if the floating-point conversion rank of extended-floating-point-type is less than or equal to

that of float, then FP is float,
—(5.2) otherwise, if the floating-point conversion rank of extended-floating-point-type is less than

or equal to that of double, then FP is double,
—(5.3) otherwise, FP is long double.

6 The conversion occurs as if performed by the following code fragment (using the same notation as for
the preceding code fragment):

using numget = num_get<charT, istreambuf_iterator<charT, traits>>;
FP fval;
use_facet<numget>(loc).get(*this, 0, *this, state, fval);
if (fval < -numeric_limits<extended-floating-point-type >::max()) {

state |= ios_base::failbit;
val = -numeric_limits<extended-floating-point-type >::max();

} else if (numeric_limits<extended-floating-point-type >::max() < fval) {
state |= ios_base::failbit;
val = numeric_limits<extended-floating-point-type >::max();

} else {
val = static_cast<extended-floating-point-type >(fval);

}

[Note 2 : When the extended floating-point type has a floating-point conversion rank that is not equal to the
rank of any standard floating-point type, then double rounding during the conversion can result in inaccurate
results. from_chars can be used in situations where maximum accuracy is important. — end note ]

31.7.5.3.3 basic_istream::operator>> [istream.extractors]

basic_istream& operator>>(basic_istream& (*pf)(basic_istream&));

1 Effects: None. This extractor does not behave as a formatted input function (as described in 31.7.5.3.1).
2 Returns: pf(*this).284

basic_istream& operator>>(basic_ios<charT, traits>& (*pf)(basic_ios<charT, traits>&));

3 Effects: Calls pf(*this). This extractor does not behave as a formatted input function (as described
in 31.7.5.3.1).

4 Returns: *this.

284) See, for example, the function signature ws(basic_istream&) (31.7.5.5).
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basic_istream& operator>>(ios_base& (*pf)(ios_base&));

5 Effects: Calls pf(*this).285 This extractor does not behave as a formatted input function (as described
in 31.7.5.3.1).

6 Returns: *this.

template<class charT, class traits, size_t N>
basic_istream<charT, traits>& operator>>(basic_istream<charT, traits>& in, charT (&s)[N]);

template<class traits, size_t N>
basic_istream<char, traits>& operator>>(basic_istream<char, traits>& in, unsigned char (&s)[N]);

template<class traits, size_t N>
basic_istream<char, traits>& operator>>(basic_istream<char, traits>& in, signed char (&s)[N]);

7 Effects: Behaves like a formatted input member (as described in 31.7.5.3.1) of in. After a sentry
object is constructed, operator>> extracts characters and stores them into s. If width() is greater
than zero, n is min(size_t(width()), N). Otherwise n is N. n is the maximum number of characters
stored.

8 Characters are extracted and stored until any of the following occurs:
—(8.1) n-1 characters are stored;
—(8.2) end of file occurs on the input sequence;
—(8.3) letting ct be use_facet<ctype<charT>>(in.getloc()), ct.is(ct.space, c) is true.

9 operator>> then stores a null byte (charT()) in the next position, which may be the first position if
no characters were extracted. operator>> then calls width(0).

10 If the function extracted no characters, ios_base::failbit is set in the input function’s local error
state before setstate is called.

11 Returns: in.

template<class charT, class traits>
basic_istream<charT, traits>& operator>>(basic_istream<charT, traits>& in, charT& c);

template<class traits>
basic_istream<char, traits>& operator>>(basic_istream<char, traits>& in, unsigned char& c);

template<class traits>
basic_istream<char, traits>& operator>>(basic_istream<char, traits>& in, signed char& c);

12 Effects: Behaves like a formatted input member (as described in 31.7.5.3.1) of in. A character is
extracted from in, if one is available, and stored in c. Otherwise, ios_base::failbit is set in the
input function’s local error state before setstate is called.

13 Returns: in.

basic_istream& operator>>(basic_streambuf<charT, traits>* sb);

14 Effects: Behaves as an unformatted input function (31.7.5.4). If sb is null, calls setstate(fail-
bit), which may throw ios_base::failure (31.5.4.4). After a sentry object is constructed, extracts
characters from *this and inserts them in the output sequence controlled by sb. Characters are
extracted and inserted until any of the following occurs:

—(14.1) end-of-file occurs on the input sequence;
—(14.2) inserting in the output sequence fails (in which case the character to be inserted is not extracted);
—(14.3) an exception occurs (in which case the exception is caught).

15 If the function inserts no characters, ios_base::failbit is set in the input function’s local error state
before setstate is called.

16 Returns: *this.

31.7.5.4 Unformatted input functions [istream.unformatted]
1 Each unformatted input function begins execution by constructing an object of type ios_base::iostate,

termed the local error state, and initializing it to ios_base::goodbit. It then creates an object of class
sentry with the default argument noskipws (second) argument true. If the sentry object returns true,

285) See, for example, the function signature dec(ios_base&) (31.5.5.3).
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when converted to a value of type bool, the function endeavors to obtain the requested input. Otherwise,
if the sentry constructor exits by throwing an exception or if the sentry object produces false, when
converted to a value of type bool, the function returns without attempting to obtain any input. In either
case the number of extracted characters is set to 0; unformatted input functions taking a character array of
nonzero size as an argument shall also store a null character (using charT()) in the first location of the array.
If rdbuf()->sbumpc() or rdbuf()->sgetc() returns traits::eof(), then ios_base::eofbit is set in the
local error state and the input function stops trying to obtain the requested input. If an exception is thrown
during input then ios_base::badbit is set in the local error state, *this’s error state is set to the local
error state, and the exception is rethrown if (exceptions() & badbit) != 0. If no exception has been
thrown it stores the number of characters extracted in a member object. After extraction is done, the input
function calls setstate, which sets *this’s error state to the local error state, and may throw an exception.
In any event the sentry object is destroyed before leaving the unformatted input function.

streamsize gcount() const;

2 Effects: None. This member function does not behave as an unformatted input function (as described
above).

3 Returns: The number of characters extracted by the last unformatted input member function called for
the object. If the number cannot be represented, returns numeric_limits<streamsize>::max().

int_type get();

4 Effects: Behaves as an unformatted input function (as described above). After constructing a sentry
object, extracts a character c, if one is available. Otherwise, ios_base::failbit is set in the input
function’s local error state before setstate is called.

5 Returns: c if available, otherwise traits::eof().

basic_istream& get(char_type& c);

6 Effects: Behaves as an unformatted input function (as described above). After constructing a sentry
object, extracts a character, if one is available, and assigns it to c.286 Otherwise, ios_base::failbit
is set in the input function’s local error state before setstate is called.

7 Returns: *this.

basic_istream& get(char_type* s, streamsize n, char_type delim);

8 Effects: Behaves as an unformatted input function (as described above). After constructing a sentry
object, extracts characters and stores them into successive locations of an array whose first element is
designated by s.287 Characters are extracted and stored until any of the following occurs:

—(8.1) n is less than one or n - 1 characters are stored;
—(8.2) end-of-file occurs on the input sequence;
—(8.3) traits::eq(c, delim) for the next available input character c (in which case c is not extracted).

9 If the function stores no characters, ios_base::failbit is set in the input function’s local error state
before setstate is called. In any case, if n is greater than zero it then stores a null character into the
next successive location of the array.

10 Returns: *this.

basic_istream& get(char_type* s, streamsize n);

11 Effects: Calls get(s, n, widen(’\n’)).
12 Returns: Value returned by the call.

basic_istream& get(basic_streambuf<char_type, traits>& sb, char_type delim);

13 Effects: Behaves as an unformatted input function (as described above). After constructing a sentry
object, extracts characters and inserts them in the output sequence controlled by sb. Characters are
extracted and inserted until any of the following occurs:

—(13.1) end-of-file occurs on the input sequence;

286) Note that this function is not overloaded on types signed char and unsigned char.
287) Note that this function is not overloaded on types signed char and unsigned char.
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—(13.2) inserting in the output sequence fails (in which case the character to be inserted is not extracted);
—(13.3) traits::eq(c, delim) for the next available input character c (in which case c is not extracted);
—(13.4) an exception occurs (in which case, the exception is caught but not rethrown).

14 If the function inserts no characters, ios_base::failbit is set in the input function’s local error state
before setstate is called.

15 Returns: *this.

basic_istream& get(basic_streambuf<char_type, traits>& sb);

16 Effects: Calls get(sb, widen(’\n’)).
17 Returns: Value returned by the call.

basic_istream& getline(char_type* s, streamsize n, char_type delim);

18 Effects: Behaves as an unformatted input function (as described above). After constructing a sentry
object, extracts characters and stores them into successive locations of an array whose first element is
designated by s.288 Characters are extracted and stored until one of the following occurs:

1. end-of-file occurs on the input sequence;
2. traits::eq(c, delim) for the next available input character c (in which case the input character

is extracted but not stored);289

3. n is less than one or n - 1 characters are stored (in which case the function calls setstate(
failbit)).

19 These conditions are tested in the order shown.290

20 If the function extracts no characters, ios_base::failbit is set in the input function’s local error
state before setstate is called.291

21 In any case, if n is greater than zero, it then stores a null character (using charT()) into the next
successive location of the array.

22 Returns: *this.
23 [Example 1 :

#include <iostream>

int main() {
using namespace std;
const int line_buffer_size = 100;

char buffer[line_buffer_size];
int line_number = 0;
while (cin.getline(buffer, line_buffer_size, '\n') || cin.gcount()) {

int count = cin.gcount();
if (cin.eof())

cout << "Partial final line"; // cin.fail() is false
else if (cin.fail()) {

cout << "Partial long line";
cin.clear(cin.rdstate() & ~ios_base::failbit);

} else {
count--; // Don’t include newline in count
cout << "Line " << ++line_number;

}
cout << " (" << count << " chars): " << buffer << endl;

}
}

— end example ]

288) Note that this function is not overloaded on types signed char and unsigned char.
289) Since the final input character is “extracted”, it is counted in the gcount(), even though it is not stored.
290) This allows an input line which exactly fills the buffer, without setting failbit. This is different behavior than the historical
AT&T implementation.
291) This implies an empty input line will not cause failbit to be set.
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basic_istream& getline(char_type* s, streamsize n);

24 Returns: getline(s, n, widen(’\n’))

basic_istream& ignore(streamsize n = 1, int_type delim = traits::eof());

25 Effects: Behaves as an unformatted input function (as described above). After constructing a sentry
object, extracts characters and discards them. Characters are extracted until any of the following
occurs:

—(25.1) n != numeric_limits<streamsize>::max() (17.3.5) and n characters have been extracted so
far

—(25.2) end-of-file occurs on the input sequence (in which case the function calls setstate(eofbit),
which may throw ios_base::failure (31.5.4.4));

—(25.3) traits::eq_int_type(traits::to_int_type(c), delim) for the next available input character
c (in which case c is extracted).

[Note 1 : The last condition will never occur if traits::eq_int_type(delim, traits::eof()). — end note ]
26 Returns: *this.

int_type peek();

27 Effects: Behaves as an unformatted input function (as described above). After constructing a sentry
object, reads but does not extract the current input character.

28 Returns: traits::eof() if good() is false. Otherwise, returns rdbuf()->sgetc().

basic_istream& read(char_type* s, streamsize n);

29 Effects: Behaves as an unformatted input function (as described above). After constructing a sentry
object, if !good() calls setstate(failbit) which may throw an exception, and return. Otherwise
extracts characters and stores them into successive locations of an array whose first element is designated
by s.292 Characters are extracted and stored until either of the following occurs:

—(29.1) n characters are stored;
—(29.2) end-of-file occurs on the input sequence (in which case the function calls setstate(failbit |

eofbit), which may throw ios_base::failure (31.5.4.4)).
30 Returns: *this.

streamsize readsome(char_type* s, streamsize n);

31 Effects: Behaves as an unformatted input function (as described above). After constructing a sentry
object, if !good() calls setstate(failbit) which may throw an exception, and return. Other-
wise extracts characters and stores them into successive locations of an array whose first element
is designated by s. If rdbuf()->in_avail() == -1, calls setstate(eofbit) (which may throw
ios_base::failure (31.5.4.4)), and extracts no characters;

—(31.1) If rdbuf()->in_avail() == 0, extracts no characters
—(31.2) If rdbuf()->in_avail() > 0, extracts min(rdbuf()->in_avail(), n)).

32 Returns: The number of characters extracted.

basic_istream& putback(char_type c);

33 Effects: Behaves as an unformatted input function (as described above), except that the function
first clears eofbit. After constructing a sentry object, if !good() calls setstate(failbit) which
may throw an exception, and return. If rdbuf() is not null, calls rdbuf()->sputbackc(c). If
rdbuf() is null, or if sputbackc returns traits::eof(), calls setstate(badbit) (which may throw
ios_base::failure (31.5.4.4)).
[Note 2 : This function extracts no characters, so the value returned by the next call to gcount() is 0. — end
note ]

34 Returns: *this.

292) Note that this function is not overloaded on types signed char and unsigned char.
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basic_istream& unget();

35 Effects: Behaves as an unformatted input function (as described above), except that the function
first clears eofbit. After constructing a sentry object, if !good() calls setstate(failbit) which
may throw an exception, and return. If rdbuf() is not null, calls rdbuf()->sungetc(). If rdbuf()
is null, or if sungetc returns traits::eof(), calls setstate(badbit) (which may throw ios_-
base::failure (31.5.4.4)).
[Note 3 : This function extracts no characters, so the value returned by the next call to gcount() is 0. — end
note ]

36 Returns: *this.

int sync();

37 Effects: Behaves as an unformatted input function (as described above), except that it does not count
the number of characters extracted and does not affect the value returned by subsequent calls to
gcount(). After constructing a sentry object, if rdbuf() is a null pointer, returns -1. Otherwise,
calls rdbuf()->pubsync() and, if that function returns -1 calls setstate(badbit) (which may throw
ios_base::failure (31.5.4.4), and returns -1. Otherwise, returns zero.

pos_type tellg();

38 Effects: Behaves as an unformatted input function (as described above), except that it does not count
the number of characters extracted and does not affect the value returned by subsequent calls to
gcount().

39 Returns: After constructing a sentry object, if fail() != false, returns pos_type(-1) to indicate
failure. Otherwise, returns rdbuf()->pubseekoff(0, cur, in).

basic_istream& seekg(pos_type pos);

40 Effects: Behaves as an unformatted input function (as described above), except that the function
first clears eofbit, it does not count the number of characters extracted, and it does not affect the
value returned by subsequent calls to gcount(). After constructing a sentry object, if fail() !=
true, executes rdbuf()->pubseekpos(pos, ios_base::in). In case of failure, the function calls
setstate(failbit) (which may throw ios_base::failure).

41 Returns: *this.

basic_istream& seekg(off_type off, ios_base::seekdir dir);

42 Effects: Behaves as an unformatted input function (as described above), except that the function
first clears eofbit, does not count the number of characters extracted, and does not affect the value
returned by subsequent calls to gcount(). After constructing a sentry object, if fail() != true,
executes rdbuf()->pubseekoff(off, dir, ios_base::in). In case of failure, the function calls
setstate(failbit) (which may throw ios_base::failure).

43 Returns: *this.

31.7.5.5 Standard basic_istream manipulators [istream.manip]
1 Each instantiation of the function template specified in this subclause is a designated addressable function

(16.4.5.2.1).

template<class charT, class traits>
basic_istream<charT, traits>& ws(basic_istream<charT, traits>& is);

2 Effects: Behaves as an unformatted input function (31.7.5.4), except that it does not count the number
of characters extracted and does not affect the value returned by subsequent calls to is.gcount(). After
constructing a sentry object extracts characters as long as the next available character c is whitespace
or until there are no more characters in the sequence. Whitespace characters are distinguished with the
same criterion as used by sentry::sentry (31.7.5.2.4). If ws stops extracting characters because there
are no more available it sets eofbit, but not failbit.

3 Returns: is.
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31.7.5.6 Rvalue stream extraction [istream.rvalue]

template<class Istream, class T>
Istream&& operator>>(Istream&& is, T&& x);

1 Constraints: The expression is >> std::forward<T>(x) is well-formed when treated as an unevaluated
operand (7.2.3) and Istream is publicly and unambiguously derived from ios_base.

2 Effects: Equivalent to:
is >> std::forward<T>(x);
return std::move(is);

31.7.5.7 Class template basic_iostream [iostreamclass]
31.7.5.7.1 General [iostreamclass.general]

namespace std {
template<class charT, class traits = char_traits<charT>>
class basic_iostream

: public basic_istream<charT, traits>,
public basic_ostream<charT, traits> {

public:
using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

// 31.7.5.7.2, constructor
explicit basic_iostream(basic_streambuf<charT, traits>* sb);

// 31.7.5.7.3, destructor
virtual ~basic_iostream();

protected:
// 31.7.5.7.2, constructor
basic_iostream(const basic_iostream&) = delete;
basic_iostream(basic_iostream&& rhs);

// 31.7.5.7.4, assignment and swap
basic_iostream& operator=(const basic_iostream&) = delete;
basic_iostream& operator=(basic_iostream&& rhs);
void swap(basic_iostream& rhs);

};
}

1 The class template basic_iostream inherits a number of functions that allow reading input and writing
output to sequences controlled by a stream buffer.

31.7.5.7.2 Constructors [iostream.cons]

explicit basic_iostream(basic_streambuf<charT, traits>* sb);

1 Effects: Initializes the base class subobjects with basic_istream<charT, traits>(sb) (31.7.5.2) and
basic_ostream<charT, traits>(sb) (31.7.6.2).

2 Postconditions: rdbuf() == sb and gcount() == 0.

basic_iostream(basic_iostream&& rhs);

3 Effects: Move constructs from the rvalue rhs by constructing the basic_istream base class with
std::move(rhs).

31.7.5.7.3 Destructor [iostream.dest]

virtual ~basic_iostream();

1 Remarks: Does not perform any operations on rdbuf().
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31.7.5.7.4 Assignment and swap [iostream.assign]

basic_iostream& operator=(basic_iostream&& rhs);

1 Effects: Equivalent to: swap(rhs).

void swap(basic_iostream& rhs);

2 Effects: Calls basic_istream<charT, traits>::swap(rhs).

31.7.6 Output streams [output.streams]
31.7.6.1 General [output.streams.general]

1 The header <ostream> defines a class template and several function templates that control output to a
stream buffer, along with a function template that inserts into stream rvalues.

31.7.6.2 Class template basic_ostream [ostream]
31.7.6.2.1 General [ostream.general]

1 When a function has a parameter type extended-floating-point-type , the implementation provides
overloads for all cv-unqualified extended floating-point types (6.8.2).

namespace std {
template<class charT, class traits = char_traits<charT>>
class basic_ostream : virtual public basic_ios<charT, traits> {
public:

// types (inherited from basic_ios (31.5.4))
using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

// 31.7.6.2.2, constructor/destructor
explicit basic_ostream(basic_streambuf<char_type, traits>* sb);
virtual ~basic_ostream();

// 31.7.6.2.4, prefix/suffix
class sentry;

// 31.7.6.3, formatted output
basic_ostream& operator<<(basic_ostream& (*pf)(basic_ostream&));
basic_ostream& operator<<(basic_ios<charT, traits>& (*pf)(basic_ios<charT, traits>&));
basic_ostream& operator<<(ios_base& (*pf)(ios_base&));

basic_ostream& operator<<(bool n);
basic_ostream& operator<<(short n);
basic_ostream& operator<<(unsigned short n);
basic_ostream& operator<<(int n);
basic_ostream& operator<<(unsigned int n);
basic_ostream& operator<<(long n);
basic_ostream& operator<<(unsigned long n);
basic_ostream& operator<<(long long n);
basic_ostream& operator<<(unsigned long long n);
basic_ostream& operator<<(float f);
basic_ostream& operator<<(double f);
basic_ostream& operator<<(long double f);
basic_ostream& operator<<(extended-floating-point-type f);

basic_ostream& operator<<(const void* p);
basic_ostream& operator<<(const volatile void* p);
basic_ostream& operator<<(nullptr_t);
basic_ostream& operator<<(basic_streambuf<char_type, traits>* sb);

// 31.7.6.4, unformatted output
basic_ostream& put(char_type c);
basic_ostream& write(const char_type* s, streamsize n);
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basic_ostream& flush();

// 31.7.6.2.5, seeks
pos_type tellp();
basic_ostream& seekp(pos_type);
basic_ostream& seekp(off_type, ios_base::seekdir);

protected:
// 31.7.6.2.2, copy/move constructor
basic_ostream(const basic_ostream&) = delete;
basic_ostream(basic_ostream&& rhs);

// 31.7.6.2.3, assignment and swap
basic_ostream& operator=(const basic_ostream&) = delete;
basic_ostream& operator=(basic_ostream&& rhs);
void swap(basic_ostream& rhs);

};

// 31.7.6.3.4, character inserters
template<class charT, class traits>

basic_ostream<charT, traits>& operator<<(basic_ostream<charT, traits>&, charT);
template<class charT, class traits>

basic_ostream<charT, traits>& operator<<(basic_ostream<charT, traits>&, char);
template<class traits>

basic_ostream<char, traits>& operator<<(basic_ostream<char, traits>&, char);

template<class traits>
basic_ostream<char, traits>& operator<<(basic_ostream<char, traits>&, signed char);

template<class traits>
basic_ostream<char, traits>& operator<<(basic_ostream<char, traits>&, unsigned char);

template<class traits>
basic_ostream<char, traits>& operator<<(basic_ostream<char, traits>&, wchar_t) = delete;

template<class traits>
basic_ostream<char, traits>& operator<<(basic_ostream<char, traits>&, char8_t) = delete;

template<class traits>
basic_ostream<char, traits>& operator<<(basic_ostream<char, traits>&, char16_t) = delete;

template<class traits>
basic_ostream<char, traits>& operator<<(basic_ostream<char, traits>&, char32_t) = delete;

template<class traits>
basic_ostream<wchar_t, traits>&

operator<<(basic_ostream<wchar_t, traits>&, char8_t) = delete;
template<class traits>

basic_ostream<wchar_t, traits>&
operator<<(basic_ostream<wchar_t, traits>&, char16_t) = delete;

template<class traits>
basic_ostream<wchar_t, traits>&

operator<<(basic_ostream<wchar_t, traits>&, char32_t) = delete;

template<class charT, class traits>
basic_ostream<charT, traits>& operator<<(basic_ostream<charT, traits>&, const charT*);

template<class charT, class traits>
basic_ostream<charT, traits>& operator<<(basic_ostream<charT, traits>&, const char*);

template<class traits>
basic_ostream<char, traits>& operator<<(basic_ostream<char, traits>&, const char*);

template<class traits>
basic_ostream<char, traits>& operator<<(basic_ostream<char, traits>&, const signed char*);

template<class traits>
basic_ostream<char, traits>& operator<<(basic_ostream<char, traits>&, const unsigned char*);

template<class traits>
basic_ostream<char, traits>&

operator<<(basic_ostream<char, traits>&, const wchar_t*) = delete;
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template<class traits>
basic_ostream<char, traits>&

operator<<(basic_ostream<char, traits>&, const char8_t*) = delete;
template<class traits>

basic_ostream<char, traits>&
operator<<(basic_ostream<char, traits>&, const char16_t*) = delete;

template<class traits>
basic_ostream<char, traits>&

operator<<(basic_ostream<char, traits>&, const char32_t*) = delete;
template<class traits>

basic_ostream<wchar_t, traits>&
operator<<(basic_ostream<wchar_t, traits>&, const char8_t*) = delete;

template<class traits>
basic_ostream<wchar_t, traits>&

operator<<(basic_ostream<wchar_t, traits>&, const char16_t*) = delete;
template<class traits>

basic_ostream<wchar_t, traits>&
operator<<(basic_ostream<wchar_t, traits>&, const char32_t*) = delete;

}

2 The class template basic_ostream defines a number of member function signatures that assist in formatting
and writing output to output sequences controlled by a stream buffer.

3 Two groups of member function signatures share common properties: the formatted output functions (or
inserters) and the unformatted output functions. Both groups of output functions generate (or insert) output
characters by actions equivalent to calling rdbuf()->sputc(int_type). They may use other public members
of basic_ostream except that they shall not invoke any virtual members of rdbuf() except overflow(),
xsputn(), and sync().

4 If one of these called functions throws an exception, then unless explicitly noted otherwise the output function
sets badbit in the error state. If badbit is set in exceptions(), the output function rethrows the exception
without completing its actions, otherwise it does not throw anything and proceeds as if the called function
had returned a failure indication.

5 [Note 1 : The deleted overloads of operator<< prevent formatting characters as integers and strings as pointers.
— end note ]

31.7.6.2.2 Constructors [ostream.cons]

explicit basic_ostream(basic_streambuf<charT, traits>* sb);

1 Effects: Initializes the base class subobject with basic_ios<charT, traits>::init(sb) (31.5.4.2).
2 Postconditions: rdbuf() == sb.

basic_ostream(basic_ostream&& rhs);

3 Effects: Move constructs from the rvalue rhs. This is accomplished by default constructing the base
class and calling basic_ios<charT, traits>::move(rhs) to initialize the base class.

virtual ~basic_ostream();

4 Remarks: Does not perform any operations on rdbuf().

31.7.6.2.3 Assignment and swap [ostream.assign]

basic_ostream& operator=(basic_ostream&& rhs);

1 Effects: Equivalent to: swap(rhs).
2 Returns: *this.

void swap(basic_ostream& rhs);

3 Effects: Calls basic_ios<charT, traits>::swap(rhs).

31.7.6.2.4 Class basic_ostream::sentry [ostream.sentry]
namespace std {

template<class charT, class traits>
class basic_ostream<charT, traits>::sentry {
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bool ok_; // exposition only

public:
explicit sentry(basic_ostream& os);
~sentry();
explicit operator bool() const { return ok_; }

sentry(const sentry&) = delete;
sentry& operator=(const sentry&) = delete;

};
}

1 The class sentry defines a class that is responsible for doing exception safe prefix and suffix operations.

explicit sentry(basic_ostream& os);

2 If os.good() is nonzero, prepares for formatted or unformatted output. If os.tie() is not a null
pointer, calls os.tie()->flush().293

3 If, after any preparation is completed, os.good() is true, ok_ == true otherwise, ok_ == false.
During preparation, the constructor may call setstate(failbit) (which may throw ios_base::
failure (31.5.4.4)).294

~sentry();

4 If (os.flags() & ios_base::unitbuf) && !uncaught_exceptions() && os.good() is true, calls
os.rdbuf()->pubsync(). If that function returns −1, sets badbit in os.rdstate() without propa-
gating an exception.

explicit operator bool() const;

5 Effects: Returns ok_.

31.7.6.2.5 Seek members [ostream.seeks]
1 Each seek member function begins execution by constructing an object of class sentry. It returns by

destroying the sentry object.

pos_type tellp();

2 Returns: If fail() != false, returns pos_type(-1) to indicate failure. Otherwise, returns rdbuf()->
pubseekoff(0, cur, out).

basic_ostream& seekp(pos_type pos);

3 Effects: If fail() != true, executes rdbuf()->pubseekpos(pos, ios_base::out). In case of failure,
the function calls setstate(failbit) (which may throw ios_base::failure).

4 Returns: *this.

basic_ostream& seekp(off_type off, ios_base::seekdir dir);

5 Effects: If fail() != true, executes rdbuf()->pubseekoff(off, dir, ios_base::out). In case of
failure, the function calls setstate(failbit) (which may throw ios_base::failure).

6 Returns: *this.

31.7.6.3 Formatted output functions [ostream.formatted]
31.7.6.3.1 Common requirements [ostream.formatted.reqmts]

1 Each formatted output function begins execution by constructing an object of class sentry. If that object
returns true when converted to a value of type bool, the function endeavors to generate the requested
output. If the generation fails, then the formatted output function does setstate(ios_base::failbit),
which can throw an exception. If an exception is thrown during output, then ios_base::badbit is set295

in *this’s error state. If (exceptions()&badbit) != 0 then the exception is rethrown. Whether or not
an exception is thrown, the sentry object is destroyed before leaving the formatted output function. If no
exception is thrown, the result of the formatted output function is *this.

293) The call os.tie()->flush() does not necessarily occur if the function can determine that no synchronization is necessary.
294) The sentry constructor and destructor can also perform additional implementation-dependent operations.
295) This is done without causing an ios_base::failure to be thrown.
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2 The descriptions of the individual formatted output functions describe how they perform output and do not
mention the sentry object.

3 If a formatted output function of a stream os determines padding, it does so as follows. Given a charT
character sequence seq where charT is the character type of the stream, if the length of seq is less than
os.width(), then enough copies of os.fill() are added to this sequence as necessary to pad to a width of
os.width() characters. If (os.flags() & ios_base::adjustfield) == ios_base::left is true, the fill
characters are placed after the character sequence; otherwise, they are placed before the character sequence.

31.7.6.3.2 Arithmetic inserters [ostream.inserters.arithmetic]

basic_ostream& operator<<(bool val);
basic_ostream& operator<<(short val);
basic_ostream& operator<<(unsigned short val);
basic_ostream& operator<<(int val);
basic_ostream& operator<<(unsigned int val);
basic_ostream& operator<<(long val);
basic_ostream& operator<<(unsigned long val);
basic_ostream& operator<<(long long val);
basic_ostream& operator<<(unsigned long long val);
basic_ostream& operator<<(float val);
basic_ostream& operator<<(double val);
basic_ostream& operator<<(long double val);
basic_ostream& operator<<(const void* val);

1 Effects: The classes num_get<> and num_put<> handle locale-dependent numeric formatting and parsing.
These inserter functions use the imbued locale value to perform numeric formatting. When val is of
type bool, long, unsigned long, long long, unsigned long long, double, long double, or const
void*, the formatting conversion occurs as if it performed the following code fragment:

bool failed = use_facet<
num_put<charT, ostreambuf_iterator<charT, traits>>

>(getloc()).put(*this, *this, fill(), val).failed();

When val is of type short the formatting conversion occurs as if it performed the following code
fragment:

ios_base::fmtflags baseflags = ios_base::flags() & ios_base::basefield;
bool failed = use_facet<

num_put<charT, ostreambuf_iterator<charT, traits>>
>(getloc()).put(*this, *this, fill(),
baseflags == ios_base::oct || baseflags == ios_base::hex

? static_cast<long>(static_cast<unsigned short>(val))
: static_cast<long>(val)).failed();

When val is of type int the formatting conversion occurs as if it performed the following code fragment:
ios_base::fmtflags baseflags = ios_base::flags() & ios_base::basefield;
bool failed = use_facet<

num_put<charT, ostreambuf_iterator<charT, traits>>
>(getloc()).put(*this, *this, fill(),
baseflags == ios_base::oct || baseflags == ios_base::hex

? static_cast<long>(static_cast<unsigned int>(val))
: static_cast<long>(val)).failed();

When val is of type unsigned short or unsigned int the formatting conversion occurs as if it
performed the following code fragment:

bool failed = use_facet<
num_put<charT, ostreambuf_iterator<charT, traits>>

>(getloc()).put(*this, *this, fill(),
static_cast<unsigned long>(val)).failed();

When val is of type float the formatting conversion occurs as if it performed the following code
fragment:

bool failed = use_facet<
num_put<charT, ostreambuf_iterator<charT, traits>>

>(getloc()).put(*this, *this, fill(),
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static_cast<double>(val)).failed();

2 The first argument provides an object of the ostreambuf_iterator<> class which is an iterator for
class basic_ostream<>. It bypasses ostreams and uses streambufs directly. Class locale relies on
these types as its interface to iostreams, since for flexibility it has been abstracted away from direct
dependence on ostream. The second parameter is a reference to the base class subobject of type
ios_base. It provides formatting specifications such as field width, and a locale from which to obtain
other facets. If failed is true then does setstate(badbit), which may throw an exception, and
returns.

3 Returns: *this.

basic_ostream& operator<<(const volatile void* p);

4 Effects: Equivalent to: return operator<<(const_cast<const void*>(p));

basic_ostream& operator<<(extended-floating-point-type val);

5 Effects: If the floating-point conversion rank of extended-floating-point-type is less than or equal
to that of double, the formatting conversion occurs as if it performed the following code fragment:

bool failed = use_facet<
num_put<charT, ostreambuf_iterator<charT, traits>>

>(getloc()).put(*this, *this, fill(),
static_cast<double>(val)).failed();

Otherwise, if the floating-point conversion rank of extended-floating-point-type is less than or
equal to that of long double, the formatting conversion occurs as if it performed the following code
fragment:

bool failed = use_facet<
num_put<charT, ostreambuf_iterator<charT, traits>>

>(getloc()).put(*this, *this, fill(),
static_cast<long double>(val)).failed();

Otherwise, an invocation of the operator function is conditionally supported with implementation-defined
semantics.
If failed is true then does setstate(badbit), which may throw an exception, and returns.

6 Returns: *this.

31.7.6.3.3 basic_ostream::operator<< [ostream.inserters]

basic_ostream& operator<<(basic_ostream& (*pf)(basic_ostream&));

1 Effects: None. Does not behave as a formatted output function (as described in 31.7.6.3.1).
2 Returns: pf(*this).296

basic_ostream& operator<<(basic_ios<charT, traits>& (*pf)(basic_ios<charT, traits>&));

3 Effects: Calls pf(*this). This inserter does not behave as a formatted output function (as described
in 31.7.6.3.1).

4 Returns: *this.297

basic_ostream& operator<<(ios_base& (*pf)(ios_base&));

5 Effects: Calls pf(*this). This inserter does not behave as a formatted output function (as described
in 31.7.6.3.1).

6 Returns: *this.

basic_ostream& operator<<(basic_streambuf<charT, traits>* sb);

7 Effects: Behaves as an unformatted output function (31.7.6.4). After the sentry object is constructed,
if sb is null calls setstate(badbit) (which may throw ios_base::failure).

8 Gets characters from sb and inserts them in *this. Characters are read from sb and inserted until any
of the following occurs:

296) See, for example, the function signature endl(basic_ostream&) (31.7.6.5).
297) See, for example, the function signature dec(ios_base&) (31.5.5.3).
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—(8.1) end-of-file occurs on the input sequence;
—(8.2) inserting in the output sequence fails (in which case the character to be inserted is not extracted);
—(8.3) an exception occurs while getting a character from sb.

9 If the function inserts no characters, it calls setstate(failbit) (which may throw ios_base::
failure (31.5.4.4)). If an exception was thrown while extracting a character, the function sets failbit
in the error state, and if failbit is set in exceptions() the caught exception is rethrown.

10 Returns: *this.

basic_ostream& operator<<(nullptr_t);

11 Effects: Equivalent to:
return *this << s;

where s is an implementation-defined NTCTS (3.34).

31.7.6.3.4 Character inserter function templates [ostream.inserters.character]

template<class charT, class traits>
basic_ostream<charT, traits>& operator<<(basic_ostream<charT, traits>& out, charT c);

template<class charT, class traits>
basic_ostream<charT, traits>& operator<<(basic_ostream<charT, traits>& out, char c);

// specialization
template<class traits>

basic_ostream<char, traits>& operator<<(basic_ostream<char, traits>& out, char c);
// signed and unsigned
template<class traits>

basic_ostream<char, traits>& operator<<(basic_ostream<char, traits>& out, signed char c);
template<class traits>

basic_ostream<char, traits>& operator<<(basic_ostream<char, traits>& out, unsigned char c);

1 Effects: Behaves as a formatted output function (31.7.6.3.1) of out. Constructs a character sequence
seq. If c has type char and the character type of the stream is not char, then seq consists of
out.widen(c); otherwise seq consists of c. Determines padding for seq as described in 31.7.6.3.1.
Inserts seq into out. Calls os.width(0).

2 Returns: out.

template<class charT, class traits>
basic_ostream<charT, traits>& operator<<(basic_ostream<charT, traits>& out, const charT* s);

template<class charT, class traits>
basic_ostream<charT, traits>& operator<<(basic_ostream<charT, traits>& out, const char* s);

template<class traits>
basic_ostream<char, traits>& operator<<(basic_ostream<char, traits>& out, const char* s);

template<class traits>
basic_ostream<char, traits>& operator<<(basic_ostream<char, traits>& out, const signed char* s);

template<class traits>
basic_ostream<char, traits>& operator<<(basic_ostream<char, traits>& out,

const unsigned char* s);

3 Preconditions: s is not a null pointer.
4 Effects: Behaves like a formatted inserter (as described in 31.7.6.3.1) of out. Creates a character

sequence seq of n characters starting at s, each widened using out.widen() (31.5.4.3), where n is the
number that would be computed as if by:

—(4.1) traits::length(s) for the overload where the first argument is of type basic_ostream<charT,
traits>& and the second is of type const charT*, and also for the overload where the first
argument is of type basic_ostream<char, traits>& and the second is of type const char*,

—(4.2) char_traits<char>::length(s) for the overload where the first argument is of type basic_-
ostream<charT, traits>& and the second is of type const char*,

—(4.3) traits::length(reinterpret_cast<const char*>(s)) for the other two overloads.
Determines padding for seq as described in 31.7.6.3.1. Inserts seq into out. Calls width(0).

5 Returns: out.
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31.7.6.3.5 Print [ostream.formatted.print]

template<class... Args>
void print(ostream& os, format_string<Args...> fmt, Args&&... args);

1 Effects: If the ordinary literal encoding (5.3) is UTF-8, equivalent to:
vprint_unicode(os, fmt.str , make_format_args(std::forward<Args>(args)...));

Otherwise, equivalent to:
vprint_nonunicode(os, fmt.str , make_format_args(std::forward<Args>(args)...));

template<class... Args>
void println(ostream& os, format_string<Args...> fmt, Args&&... args);

2 Effects: Equivalent to:
print(os, "{}\n", format(fmt, std::forward<Args>(args)...));

void vprint_unicode(ostream& os, string_view fmt, format_args args);
void vprint_nonunicode(ostream& os, string_view fmt, format_args args);

3 Effects: Behaves as a formatted output function (31.7.6.3.1) of os, except that:
—(3.1) failure to generate output is reported as specified below, and
—(3.2) any exception thrown by the call to vformat is propagated without regard to the value of

os.exceptions() and without turning on ios_base::badbit in the error state of os.
After constructing a sentry object, the function initializes an automatic variable via

string out = vformat(os.getloc(), fmt, args);

If the function is vprint_unicode and os is a stream that refers to a terminal capable of displaying
Unicode which is determined in an implementation-defined manner, writes out to the terminal using the
native Unicode API; if out contains invalid code units, the behavior is undefined and implementations
are encouraged to diagnose it. If the native Unicode API is used, the function flushes os before writing
out. Otherwise (if os is not such a stream or the function is vprint_nonunicode), inserts the character
sequence [out.begin(), out.end()) into os. If writing to the terminal or inserting into os fails, calls
os.setstate(ios_base::badbit) (which may throw ios_base::failure).

4 Recommended practice: For vprint_unicode, if invoking the native Unicode API requires transcoding,
implementations should substitute invalid code units with u+fffd replacement character per the
Unicode Standard, Chapter 3.9 u+fffd Substitution in Conversion.

31.7.6.4 Unformatted output functions [ostream.unformatted]
1 Each unformatted output function begins execution by constructing an object of class sentry. If that object

returns true, while converting to a value of type bool, the function endeavors to generate the requested
output. If an exception is thrown during output, then ios_base::badbit is set298 in *this’s error state.
If (exceptions() & badbit) != 0 then the exception is rethrown. In any case, the unformatted output
function ends by destroying the sentry object, then, if no exception was thrown, returning the value specified
for the unformatted output function.

basic_ostream& put(char_type c);

2 Effects: Behaves as an unformatted output function (as described above). After constructing a sentry
object, inserts the character c, if possible.299

3 Otherwise, calls setstate(badbit) (which may throw ios_base::failure (31.5.4.4)).
4 Returns: *this.

basic_ostream& write(const char_type* s, streamsize n);

5 Effects: Behaves as an unformatted output function (as described above). After constructing a sentry
object, obtains characters to insert from successive locations of an array whose first element is designated
by s.300 Characters are inserted until either of the following occurs:

—(5.1) n characters are inserted;

298) This is done without causing an ios_base::failure to be thrown.
299) Note that this function is not overloaded on types signed char and unsigned char.
300) Note that this function is not overloaded on types signed char and unsigned char.
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—(5.2) inserting in the output sequence fails (in which case the function calls setstate(badbit), which
may throw ios_base::failure (31.5.4.4)).

6 Returns: *this.

basic_ostream& flush();

7 Effects: Behaves as an unformatted output function (as described above). If rdbuf() is not a null
pointer, constructs a sentry object. If that object returns true when converted to a value of type
bool the function calls rdbuf()->pubsync(). If that function returns −1 calls setstate(badbit)
(which may throw ios_base::failure (31.5.4.4)). Otherwise, if the sentry object returns false, does
nothing.

8 Returns: *this.

31.7.6.5 Standard manipulators [ostream.manip]
1 Each instantiation of any of the function templates specified in this subclause is a designated addressable

function (16.4.5.2.1).

template<class charT, class traits>
basic_ostream<charT, traits>& endl(basic_ostream<charT, traits>& os);

2 Effects: Calls os.put(os.widen(’\n’)), then os.flush().
3 Returns: os.

template<class charT, class traits>
basic_ostream<charT, traits>& ends(basic_ostream<charT, traits>& os);

4 Effects: Inserts a null character into the output sequence: calls os.put(charT()).
5 Returns: os.

template<class charT, class traits>
basic_ostream<charT, traits>& flush(basic_ostream<charT, traits>& os);

6 Effects: Calls os.flush().
7 Returns: os.

template<class charT, class traits>
basic_ostream<charT, traits>& emit_on_flush(basic_ostream<charT, traits>& os);

8 Effects: If os.rdbuf() is a basic_syncbuf<charT, traits, Allocator>*, called buf for the purpose
of exposition, calls buf->set_emit_on_sync(true). Otherwise this manipulator has no effect.
[Note 1 : To work around the issue that the Allocator template argument cannot be deduced, implementations
can introduce an intermediate base class to basic_syncbuf that manages its emit_on_sync flag. — end note ]

9 Returns: os.

template<class charT, class traits>
basic_ostream<charT, traits>& noemit_on_flush(basic_ostream<charT, traits>& os);

10 Effects: If os.rdbuf() is a basic_syncbuf<charT, traits, Allocator>*, called buf for the purpose
of exposition, calls buf->set_emit_on_sync(false). Otherwise this manipulator has no effect.

11 Returns: os.

template<class charT, class traits>
basic_ostream<charT, traits>& flush_emit(basic_ostream<charT, traits>& os);

12 Effects: Calls os.flush(). Then, if os.rdbuf() is a basic_syncbuf<charT, traits, Allocator>*,
called buf for the purpose of exposition, behaves as an unformatted output function (31.7.6.4)
of os. After constructing a sentry object, calls buf->emit(). If that call returns false, calls
os.setstate(ios_base::badbit).

13 Returns: os.

31.7.6.6 Rvalue stream insertion [ostream.rvalue]

template<class Ostream, class T>
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Ostream&& operator<<(Ostream&& os, const T& x);

1 Constraints: The expression os << x is well-formed when treated as an unevaluated operand and
Ostream is publicly and unambiguously derived from ios_base.

2 Effects: As if by: os << x;
3 Returns: std::move(os).

31.7.7 Standard manipulators [std.manip]
1 The header <iomanip> defines several functions that support extractors and inserters that alter information

maintained by class ios_base and its derived classes.

unspecified resetiosflags(ios_base::fmtflags mask);

2 Returns: An object of unspecified type such that if out is an object of type basic_ostream<charT,
traits> then the expression out << resetiosflags(mask) behaves as if it called f(out, mask), or if
in is an object of type basic_istream<charT, traits> then the expression in >> resetiosflags(
mask) behaves as if it called f(in, mask), where the function f is defined as:301

void f(ios_base& str, ios_base::fmtflags mask) {
// reset specified flags
str.setf(ios_base::fmtflags(0), mask);

}

The expression out << resetiosflags(mask) has type basic_ostream<charT, traits>& and value
out. The expression in >> resetiosflags(mask) has type basic_istream<charT, traits>& and
value in.

unspecified setiosflags(ios_base::fmtflags mask);

3 Returns: An object of unspecified type such that if out is an object of type basic_ostream<charT,
traits> then the expression out << setiosflags(mask) behaves as if it called f(out, mask), or if in
is an object of type basic_istream<charT, traits> then the expression in >> setiosflags(mask)
behaves as if it called f(in, mask), where the function f is defined as:

void f(ios_base& str, ios_base::fmtflags mask) {
// set specified flags
str.setf(mask);

}

The expression out << setiosflags(mask) has type basic_ostream<charT, traits>& and value
out. The expression in >> setiosflags(mask) has type basic_istream<charT, traits>& and value
in.

unspecified setbase(int base);

4 Returns: An object of unspecified type such that if out is an object of type basic_ostream<charT,
traits> then the expression out << setbase(base) behaves as if it called f(out, base), or if in is
an object of type basic_istream<charT, traits> then the expression in >> setbase(base) behaves
as if it called f(in, base), where the function f is defined as:

void f(ios_base& str, int base) {
// set basefield
str.setf(base == 8 ? ios_base::oct :

base == 10 ? ios_base::dec :
base == 16 ? ios_base::hex :
ios_base::fmtflags(0), ios_base::basefield);

}

The expression out << setbase(base) has type basic_ostream<charT, traits>& and value out.
The expression in >> setbase(base) has type basic_istream<charT, traits>& and value in.

301) The expression cin >> resetiosflags(ios_base::skipws) clears ios_base::skipws in the format flags stored in the
basic_istream<charT, traits> object cin (the same as cin >> noskipws), and the expression cout << resetiosflags(ios_-
base::showbase) clears ios_base::showbase in the format flags stored in the basic_ostream<charT, traits> object cout (the
same as cout << noshowbase).
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unspecified setfill(char_type c);

5 Returns: An object of unspecified type such that if out is an object of type basic_ostream<charT,
traits> and c has type charT then the expression out << setfill(c) behaves as if it called f(out,
c), where the function f is defined as:

template<class charT, class traits>
void f(basic_ios<charT, traits>& str, charT c) {

// set fill character
str.fill(c);

}

The expression out << setfill(c) has type basic_ostream<charT, traits>& and value out.

unspecified setprecision(int n);

6 Returns: An object of unspecified type such that if out is an object of type basic_ostream<charT,
traits> then the expression out << setprecision(n) behaves as if it called f(out, n), or if in is an
object of type basic_istream<charT, traits> then the expression in >> setprecision(n) behaves
as if it called f(in, n), where the function f is defined as:

void f(ios_base& str, int n) {
// set precision
str.precision(n);

}

The expression out << setprecision(n) has type basic_ostream<charT, traits>& and value out.
The expression in >> setprecision(n) has type basic_istream<charT, traits>& and value in.

unspecified setw(int n);

7 Returns: An object of unspecified type such that if out is an instance of basic_ostream<charT,
traits> then the expression out << setw(n) behaves as if it called f(out, n), or if in is an object
of type basic_istream<charT, traits> then the expression in >> setw(n) behaves as if it called
f(in, n), where the function f is defined as:

void f(ios_base& str, int n) {
// set width
str.width(n);

}

The expression out << setw(n) has type basic_ostream<charT, traits>& and value out. The
expression in >> setw(n) has type basic_istream<charT, traits>& and value in.

31.7.8 Extended manipulators [ext.manip]
1 The header <iomanip> defines several functions that support extractors and inserters that allow for the

parsing and formatting of sequences and values for money and time.

template<class moneyT> unspecified get_money(moneyT& mon, bool intl = false);

2 Mandates: The type moneyT is either long double or a specialization of the basic_string template
(Clause 23).

3 Effects: The expression in >> get_money(mon, intl) described below behaves as a formatted input
function (31.7.5.3.1).

4 Returns: An object of unspecified type such that if in is an object of type basic_istream<charT,
traits> then the expression in >> get_money(mon, intl) behaves as if it called f(in, mon, intl),
where the function f is defined as:

template<class charT, class traits, class moneyT>
void f(basic_ios<charT, traits>& str, moneyT& mon, bool intl) {

using Iter = istreambuf_iterator<charT, traits>;
using MoneyGet = money_get<charT, Iter>;

ios_base::iostate err = ios_base::goodbit;
const MoneyGet& mg = use_facet<MoneyGet>(str.getloc());

mg.get(Iter(str.rdbuf()), Iter(), intl, str, err, mon);
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if (ios_base::goodbit != err)
str.setstate(err);

}

The expression in >> get_money(mon, intl) has type basic_istream<charT, traits>& and value
in.

template<class moneyT> unspecified put_money(const moneyT& mon, bool intl = false);

5 Mandates: The type moneyT is either long double or a specialization of the basic_string template
(Clause 23).

6 Returns: An object of unspecified type such that if out is an object of type basic_ostream<charT,
traits> then the expression out << put_money(mon, intl) behaves as a formatted output function
(31.7.6.3.1) that calls f(out, mon, intl), where the function f is defined as:

template<class charT, class traits, class moneyT>
void f(basic_ios<charT, traits>& str, const moneyT& mon, bool intl) {

using Iter = ostreambuf_iterator<charT, traits>;
using MoneyPut = money_put<charT, Iter>;

const MoneyPut& mp = use_facet<MoneyPut>(str.getloc());
const Iter end = mp.put(Iter(str.rdbuf()), intl, str, str.fill(), mon);

if (end.failed())
str.setstate(ios_base::badbit);

}

The expression out << put_money(mon, intl) has type basic_ostream<charT, traits>& and value
out.

template<class charT> unspecified get_time(tm* tmb, const charT* fmt);

7 Preconditions: The argument tmb is a valid pointer to an object of type tm, and [fmt, fmt + char_-
traits<charT>::length(fmt)) is a valid range.

8 Returns: An object of unspecified type such that if in is an object of type basic_istream<charT,
traits> then the expression in >> get_time(tmb, fmt) behaves as if it called f(in, tmb, fmt),
where the function f is defined as:

template<class charT, class traits>
void f(basic_ios<charT, traits>& str, tm* tmb, const charT* fmt) {

using Iter = istreambuf_iterator<charT, traits>;
using TimeGet = time_get<charT, Iter>;

ios_base::iostate err = ios_base::goodbit;
const TimeGet& tg = use_facet<TimeGet>(str.getloc());

tg.get(Iter(str.rdbuf()), Iter(), str, err, tmb,
fmt, fmt + traits::length(fmt));

if (err != ios_base::goodbit)
str.setstate(err);

}

The expression in >> get_time(tmb, fmt) has type basic_istream<charT, traits>& and value
in.

template<class charT> unspecified put_time(const tm* tmb, const charT* fmt);

9 Preconditions: The argument tmb is a valid pointer to an object of type tm, and [fmt, fmt + char_-
traits<charT>::length(fmt)) is a valid range.

10 Returns: An object of unspecified type such that if out is an object of type basic_ostream<charT,
traits> then the expression out << put_time(tmb, fmt) behaves as if it called f(out, tmb, fmt),
where the function f is defined as:

template<class charT, class traits>
void f(basic_ios<charT, traits>& str, const tm* tmb, const charT* fmt) {

using Iter = ostreambuf_iterator<charT, traits>;
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using TimePut = time_put<charT, Iter>;

const TimePut& tp = use_facet<TimePut>(str.getloc());
const Iter end = tp.put(Iter(str.rdbuf()), str, str.fill(), tmb,

fmt, fmt + traits::length(fmt));

if (end.failed())
str.setstate(ios_base::badbit);

}

The expression out << put_time(tmb, fmt) has type basic_ostream<charT, traits>& and value
out.

31.7.9 Quoted manipulators [quoted.manip]
1 [Note 1 : Quoted manipulators provide string insertion and extraction of quoted strings (for example, XML and CSV

formats). Quoted manipulators are useful in ensuring that the content of a string with embedded spaces remains
unchanged if inserted and then extracted via stream I/O. — end note ]

template<class charT>
unspecified quoted(const charT* s, charT delim = charT(’"’), charT escape = charT(’\\’));

template<class charT, class traits, class Allocator>
unspecified quoted(const basic_string<charT, traits, Allocator>& s,

charT delim = charT(’"’), charT escape = charT(’\\’));
template<class charT, class traits>

unspecified quoted(basic_string_view<charT, traits> s,
charT delim = charT(’"’), charT escape = charT(’\\’));

2 Returns: An object of unspecified type such that if out is an instance of basic_ostream with member
type char_type the same as charT and with member type traits_type, which in the second and third
forms is the same as traits, then the expression out << quoted(s, delim, escape) behaves as a
formatted output function (31.7.6.3.1) of out. This forms a character sequence seq, initially consisting
of the following elements:

—(2.1) delim.
—(2.2) Each character in s. If the character to be output is equal to escape or delim, as determined by

traits_type::eq, first output escape.
—(2.3) delim.

Let x be the number of elements initially in seq. Then padding is determined for seq as described
in 31.7.6.3.1, seq is inserted as if by calling out.rdbuf()->sputn(seq, n), where n is the larger of
out.width() and x, and out.width(0) is called. The expression out << quoted(s, delim, escape)
has type basic_ostream<charT, traits>& and value out.

template<class charT, class traits, class Allocator>
unspecified quoted(basic_string<charT, traits, Allocator>& s,

charT delim = charT(’"’), charT escape = charT(’\\’));

3 Returns: An object of unspecified type such that:
—(3.1) If in is an instance of basic_istream with member types char_type and traits_type the

same as charT and traits, respectively, then the expression in >> quoted(s, delim, escape)
behaves as if it extracts the following characters from in using operator>>(basic_istream<charT,
traits>&, charT&) (31.7.5.3.3) which may throw ios_base::failure (31.5.2.2.1):
—(3.1.1) If the first character extracted is equal to delim, as determined by traits_type::eq, then:

—(3.1.1.1) Turn off the skipws flag.
—(3.1.1.2) s.clear()
—(3.1.1.3) Until an unescaped delim character is reached or !in, extract characters from in and

append them to s, except that if an escape is reached, ignore it and append the next
character to s.

—(3.1.1.4) Discard the final delim character.
—(3.1.1.5) Restore the skipws flag to its original value.
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—(3.1.2) Otherwise, in >> s.
—(3.2) If out is an instance of basic_ostream with member types char_type and traits_type the

same as charT and traits, respectively, then the expression out << quoted(s, delim, escape)
behaves as specified for the const basic_string<charT, traits, Allocator>& overload of the
quoted function.

—(3.3) The expression in >> quoted(s, delim, escape) has type basic_istream<charT, traits>&
and value in.

—(3.4) The expression out << quoted(s, delim, escape) has type basic_ostream<charT, traits>&
and value out.

31.7.10 Print functions [print.fun]
template<class... Args>

void print(format_string<Args...> fmt, Args&&... args);

1 Effects: Equivalent to:
print(stdout, fmt, std::forward<Args>(args)...);

template<class... Args>
void print(FILE* stream, format_string<Args...> fmt, Args&&... args);

2 Effects: If the ordinary literal encoding (5.3) is UTF-8, equivalent to:
vprint_unicode(stream, fmt.str , make_format_args(std::forward<Args>(args)...));

Otherwise, equivalent to:
vprint_nonunicode(stream, fmt.str , make_format_args(std::forward<Args>(args)...));

template<class... Args>
void println(format_string<Args...> fmt, Args&&... args);

3 Effects: Equivalent to:
println(stdout, fmt, std::forward<Args>(args)...);

template<class... Args>
void println(FILE* stream, format_string<Args...> fmt, Args&&... args);

4 Effects: Equivalent to:
print(stream, "{}\n", format(fmt, std::forward<Args>(args)...));

void vprint_unicode(string_view fmt, format_args args);

5 Effects: Equivalent to:
vprint_unicode(stdout, fmt, args);

void vprint_unicode(FILE* stream, string_view fmt, format_args args);

6 Preconditions: stream is a valid pointer to an output C stream.
7 Effects: The function initializes an automatic variable via

string out = vformat(fmt, args);

If stream refers to a terminal capable of displaying Unicode, writes out to the terminal using the
native Unicode API; if out contains invalid code units, the behavior is undefined and implementations
are encouraged to diagnose it. Otherwise writes out to stream unchanged. If the native Unicode API
is used, the function flushes stream before writing out.
[Note 1 : On POSIX and Windows, stream referring to a terminal means that, respectively, isatty(fileno(
stream)) and GetConsoleMode(_get_osfhandle(_fileno(stream)), ...) return nonzero. — end note ]
[Note 2 : On Windows, the native Unicode API is WriteConsoleW. — end note ]

8 Throws: Any exception thrown by the call to vformat (22.14.3). system_error if writing to the
terminal or stream fails. May throw bad_alloc.

9 Recommended practice: If invoking the native Unicode API requires transcoding, implementations
should substitute invalid code units with u+fffd replacement character per the Unicode Standard,
Chapter 3.9 u+fffd Substitution in Conversion.
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void vprint_nonunicode(string_view fmt, format_args args);

10 Effects: Equivalent to:
vprint_nonunicode(stdout, fmt, args);

void vprint_nonunicode(FILE* stream, string_view fmt, format_args args);

11 Preconditions: stream is a valid pointer to an output C stream.
12 Effects: Writes the result of vformat(fmt, args) to stream.
13 Throws: Any exception thrown by the call to vformat (22.14.3). system_error if writing to stream

fails. May throw bad_alloc.

31.8 String-based streams [string.streams]
31.8.1 Header <sstream> synopsis [sstream.syn]

namespace std {
template<class charT, class traits = char_traits<charT>,

class Allocator = allocator<charT>>
class basic_stringbuf;

template<class charT, class traits, class Allocator>
void swap(basic_stringbuf<charT, traits, Allocator>& x,

basic_stringbuf<charT, traits, Allocator>& y) noexcept(noexcept(x.swap(y)));

using stringbuf = basic_stringbuf<char>;
using wstringbuf = basic_stringbuf<wchar_t>;

template<class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT>>

class basic_istringstream;

template<class charT, class traits, class Allocator>
void swap(basic_istringstream<charT, traits, Allocator>& x,

basic_istringstream<charT, traits, Allocator>& y);

using istringstream = basic_istringstream<char>;
using wistringstream = basic_istringstream<wchar_t>;

template<class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT>>

class basic_ostringstream;

template<class charT, class traits, class Allocator>
void swap(basic_ostringstream<charT, traits, Allocator>& x,

basic_ostringstream<charT, traits, Allocator>& y);

using ostringstream = basic_ostringstream<char>;
using wostringstream = basic_ostringstream<wchar_t>;

template<class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT>>

class basic_stringstream;

template<class charT, class traits, class Allocator>
void swap(basic_stringstream<charT, traits, Allocator>& x,

basic_stringstream<charT, traits, Allocator>& y);

using stringstream = basic_stringstream<char>;
using wstringstream = basic_stringstream<wchar_t>;

}

1 The header <sstream> defines four class templates and eight types that associate stream buffers with objects
of class basic_string, as described in 23.4.
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31.8.2 Class template basic_stringbuf [stringbuf]
31.8.2.1 General [stringbuf.general]

namespace std {
template<class charT, class traits = char_traits<charT>,

class Allocator = allocator<charT>>
class basic_stringbuf : public basic_streambuf<charT, traits> {
public:

using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;
using allocator_type = Allocator;

// 31.8.2.2, constructors
basic_stringbuf() : basic_stringbuf(ios_base::in | ios_base::out) {}
explicit basic_stringbuf(ios_base::openmode which);
explicit basic_stringbuf(

const basic_string<charT, traits, Allocator>& s,
ios_base::openmode which = ios_base::in | ios_base::out);

explicit basic_stringbuf(const Allocator& a)
: basic_stringbuf(ios_base::in | ios_base::out, a) {}

basic_stringbuf(ios_base::openmode which, const Allocator& a);
explicit basic_stringbuf(

basic_string<charT, traits, Allocator>&& s,
ios_base::openmode which = ios_base::in | ios_base::out);

template<class SAlloc>
basic_stringbuf(

const basic_string<charT, traits, SAlloc>& s, const Allocator& a)
: basic_stringbuf(s, ios_base::in | ios_base::out, a) {}

template<class SAlloc>
basic_stringbuf(

const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which, const Allocator& a);

template<class SAlloc>
explicit basic_stringbuf(

const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which = ios_base::in | ios_base::out);

basic_stringbuf(const basic_stringbuf&) = delete;
basic_stringbuf(basic_stringbuf&& rhs);
basic_stringbuf(basic_stringbuf&& rhs, const Allocator& a);

// 31.8.2.3, assignment and swap
basic_stringbuf& operator=(const basic_stringbuf&) = delete;
basic_stringbuf& operator=(basic_stringbuf&& rhs);
void swap(basic_stringbuf& rhs) noexcept(see below );

// 31.8.2.4, getters and setters
allocator_type get_allocator() const noexcept;

basic_string<charT, traits, Allocator> str() const &;
template<class SAlloc>

basic_string<charT,traits,SAlloc> str(const SAlloc& sa) const;
basic_string<charT, traits, Allocator> str() &&;
basic_string_view<charT, traits> view() const noexcept;

void str(const basic_string<charT, traits, Allocator>& s);
template<class SAlloc>

void str(const basic_string<charT, traits, SAlloc>& s);
void str(basic_string<charT, traits, Allocator>&& s);
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protected:
// 31.8.2.5, overridden virtual functions
int_type underflow() override;
int_type pbackfail(int_type c = traits::eof()) override;
int_type overflow (int_type c = traits::eof()) override;
basic_streambuf<charT, traits>* setbuf(charT*, streamsize) override;

pos_type seekoff(off_type off, ios_base::seekdir way,
ios_base::openmode which
= ios_base::in | ios_base::out) override;

pos_type seekpos(pos_type sp,
ios_base::openmode which
= ios_base::in | ios_base::out) override;

private:
ios_base::openmode mode; // exposition only
basic_string<charT, traits, Allocator> buf; // exposition only
void init_buf_ptrs(); // exposition only

};
}

1 The class basic_stringbuf is derived from basic_streambuf to associate possibly the input sequence and
possibly the output sequence with a sequence of arbitrary characters. The sequence can be initialized from,
or made available as, an object of class basic_string.

2 For the sake of exposition, the maintained data and internal pointer initialization is presented here as:
—(2.1) ios_base::openmode mode, has in set if the input sequence can be read, and out set if the output

sequence can be written.
—(2.2) basic_string<charT, traits, Allocator> buf contains the underlying character sequence.
—(2.3) init_buf_ptrs() sets the base class’ get area (31.6.3.4.2) and put area (31.6.3.4.3) pointers after

initializing, moving from, or assigning to buf accordingly.

31.8.2.2 Constructors [stringbuf.cons]

explicit basic_stringbuf(ios_base::openmode which);

1 Effects: Initializes the base class with basic_streambuf() (31.6.3.2), and mode with which. It is
implementation-defined whether the sequence pointers (eback(), gptr(), egptr(), pbase(), pptr(),
epptr()) are initialized to null pointers.

2 Postconditions: str().empty() is true.

explicit basic_stringbuf(
const basic_string<charT, traits, Allocator>& s,
ios_base::openmode which = ios_base::in | ios_base::out);

3 Effects: Initializes the base class with basic_streambuf() (31.6.3.2), mode with which, and buf with
s, then calls init_buf_ptrs().

basic_stringbuf(ios_base::openmode which, const Allocator &a);

4 Effects: Initializes the base class with basic_streambuf() (31.6.3.2), mode with which, and buf with
a, then calls init_buf_ptrs().

5 Postconditions: str().empty() is true.

explicit basic_stringbuf(
basic_string<charT, traits, Allocator>&& s,
ios_base::openmode which = ios_base::in | ios_base::out);

6 Effects: Initializes the base class with basic_streambuf() (31.6.3.2), mode with which, and buf with
std::move(s), then calls init_buf_ptrs().

template<class SAlloc>
basic_stringbuf(

const basic_string<charT, traits, SAlloc>& s,
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ios_base::openmode which, const Allocator &a);

7 Effects: Initializes the base class with basic_streambuf() (31.6.3.2), mode with which, and buf with
{s,a}, then calls init_buf_ptrs().

template<class SAlloc>
explicit basic_stringbuf(

const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which = ios_base::in | ios_base::out);

8 Constraints: is_same_v<SAlloc, Allocator> is false.
9 Effects: Initializes the base class with basic_streambuf() (31.6.3.2), mode with which, and buf with

s, then calls init_buf_ptrs().

basic_stringbuf(basic_stringbuf&& rhs);
basic_stringbuf(basic_stringbuf&& rhs, const Allocator& a);

10 Effects: Copy constructs the base class from rhs and initializes mode with rhs.mode. In the first
form buf is initialized from std::move(rhs).str(). In the second form buf is initialized from
{std::move(rhs).str(), a}. It is implementation-defined whether the sequence pointers in *this
(eback(), gptr(), egptr(), pbase(), pptr(), epptr()) obtain the values which rhs had.

11 Postconditions: Let rhs_p refer to the state of rhs just prior to this construction and let rhs_a refer
to the state of rhs just after this construction.

—(11.1) str() == rhs_p.str()
—(11.2) gptr() - eback() == rhs_p.gptr() - rhs_p.eback()
—(11.3) egptr() - eback() == rhs_p.egptr() - rhs_p.eback()
—(11.4) pptr() - pbase() == rhs_p.pptr() - rhs_p.pbase()
—(11.5) epptr() - pbase() == rhs_p.epptr() - rhs_p.pbase()
—(11.6) if (eback()) eback() != rhs_a.eback()
—(11.7) if (gptr()) gptr() != rhs_a.gptr()
—(11.8) if (egptr()) egptr() != rhs_a.egptr()
—(11.9) if (pbase()) pbase() != rhs_a.pbase()
—(11.10) if (pptr()) pptr() != rhs_a.pptr()
—(11.11) if (epptr()) epptr() != rhs_a.epptr()
—(11.12) getloc() == rhs_p.getloc()
—(11.13) rhs is empty but usable, as if std::move(rhs).str() was called.

31.8.2.3 Assignment and swap [stringbuf.assign]

basic_stringbuf& operator=(basic_stringbuf&& rhs);

1 Effects: After the move assignment *this has the observable state it would have had if it had been
move constructed from rhs (see 31.8.2.2).

2 Returns: *this.

void swap(basic_stringbuf& rhs) noexcept(see below );

3 Preconditions: allocator_traits<Allocator>::propagate_on_container_swap::value is true or
get_allocator() == rhs.get_allocator() is true.

4 Effects: Exchanges the state of *this and rhs.
5 Remarks: The exception specification is equivalent to:

allocator_traits<Allocator>::propagate_on_container_swap::value ||
allocator_traits<Allocator>::is_always_equal::value.

template<class charT, class traits, class Allocator>
void swap(basic_stringbuf<charT, traits, Allocator>& x,

basic_stringbuf<charT, traits, Allocator>& y) noexcept(noexcept(x.swap(y)));

6 Effects: Equivalent to: x.swap(y).
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31.8.2.4 Member functions [stringbuf.members]
1 The member functions getting the underlying character sequence all refer to a high_mark value, where

high_mark represents the position one past the highest initialized character in the buffer. Characters can
be initialized by writing to the stream, by constructing the basic_stringbuf passing a basic_string
argument, or by calling one of the str member functions passing a basic_string as an argument. In the
latter case, all characters initialized prior to the call are now considered uninitialized (except for those
characters re-initialized by the new basic_string).

void init_buf_ptrs(); // exposition only
2 Effects: Initializes the input and output sequences from buf according to mode.
3 Postconditions:

—(3.1) If ios_base::out is set in mode, pbase() points to buf.front() and epptr() >= pbase() +
buf.size() is true;
—(3.1.1) in addition, if ios_base::ate is set in mode, pptr() == pbase() + buf.size() is true,
—(3.1.2) otherwise pptr() == pbase() is true.

—(3.2) If ios_base::in is set in mode, eback() points to buf.front(), and (gptr() == eback() &&
egptr() == eback() + buf.size()) is true.

4 [Note 1 : For efficiency reasons, stream buffer operations can violate invariants of buf while it is held encapsulated
in the basic_stringbuf, e.g., by writing to characters in the range [buf.data() + buf.size(), buf.data() +
buf.capacity()). All operations retrieving a basic_string from buf ensure that the basic_string invariants
hold on the returned value. — end note ]

allocator_type get_allocator() const noexcept;

5 Returns: buf.get_allocator().

basic_string<charT, traits, Allocator> str() const &;

6 Effects: Equivalent to:
return basic_string<charT, traits, Allocator>(view(), get_allocator());

template<class SAlloc>
basic_string<charT, traits, SAlloc> str(const SAlloc& sa) const;

7 Constraints: SAlloc is a type that qualifies as an allocator (24.2.2.2).
8 Effects: Equivalent to:

return basic_string<charT, traits, SAlloc>(view(), sa);

basic_string<charT, traits, Allocator> str() &&;

9 Postconditions: The underlying character sequence buf is empty and pbase(), pptr(), epptr(),
eback(), gptr(), and egptr() are initialized as if by calling init_buf_ptrs() with an empty buf.

10 Returns: A basic_string<charT, traits, Allocator> object move constructed from the basic_-
stringbuf’s underlying character sequence in buf. This can be achieved by first adjusting buf to have
the same content as view().

basic_string_view<charT, traits> view() const noexcept;

11 Let sv be basic_string_view<charT, traits>.
12 Returns: A sv object referring to the basic_stringbuf’s underlying character sequence in buf:

—(12.1) If ios_base::out is set in mode, then sv(pbase(), high_mark-pbase()) is returned.
—(12.2) Otherwise, if ios_base::in is set in mode, then sv(eback(), egptr()-eback()) is returned.
—(12.3) Otherwise, sv() is returned.

13 [Note 2 : Using the returned sv object after destruction or invalidation of the character sequence underlying
*this is undefined behavior, unless sv.empty() is true. — end note ]

void str(const basic_string<charT, traits, Allocator>& s);

14 Effects: Equivalent to:
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buf = s;
init_buf_ptrs();

template<class SAlloc>
void str(const basic_string<charT, traits, SAlloc>& s);

15 Constraints: is_same_v<SAlloc,Allocator> is false.
16 Effects: Equivalent to:

buf = s;
init_buf_ptrs();

void str(basic_string<charT, traits, Allocator>&& s);

17 Effects: Equivalent to:
buf = std::move(s);
init_buf_ptrs();

31.8.2.5 Overridden virtual functions [stringbuf.virtuals]

int_type underflow() override;

1 Returns: If the input sequence has a read position available, returns traits::to_int_type(*gptr()).
Otherwise, returns traits::eof(). Any character in the underlying buffer which has been initialized
is considered to be part of the input sequence.

int_type pbackfail(int_type c = traits::eof()) override;

2 Effects: Puts back the character designated by c to the input sequence, if possible, in one of three ways:
—(2.1) If traits::eq_int_type(c, traits::eof()) returns false and if the input sequence has a

putback position available, and if traits::eq(to_char_type(c), gptr()[-1]) returns true,
assigns gptr() - 1 to gptr().
Returns: c.

—(2.2) If traits::eq_int_type(c, traits::eof()) returns false and if the input sequence has a
putback position available, and if mode & ios_base::out is nonzero, assigns c to *--gptr().
Returns: c.

—(2.3) If traits::eq_int_type(c, traits::eof()) returns true and if the input sequence has a
putback position available, assigns gptr() - 1 to gptr().
Returns: traits::not_eof(c).

3 Returns: As specified above, or traits::eof() to indicate failure.
4 Remarks: If the function can succeed in more than one of these ways, it is unspecified which way is

chosen.

int_type overflow(int_type c = traits::eof()) override;

5 Effects: Appends the character designated by c to the output sequence, if possible, in one of two ways:
—(5.1) If traits::eq_int_type(c, traits::eof()) returns false and if either the output sequence

has a write position available or the function makes a write position available (as described below),
the function calls sputc(c).
Signals success by returning c.

—(5.2) If traits::eq_int_type(c, traits::eof()) returns true, there is no character to append.
Signals success by returning a value other than traits::eof().

6 Returns: As specified above, or traits::eof() to indicate failure.
7 Remarks: The function can alter the number of write positions available as a result of any call.
8 The function can make a write position available only if ios_base::out is set in mode. To make a

write position available, the function reallocates (or initially allocates) an array object with a sufficient
number of elements to hold the current array object (if any), plus at least one additional write position.
If ios_base::in is set in mode, the function alters the read end pointer egptr() to point just past the
new write position.
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pos_type seekoff(off_type off, ios_base::seekdir way,
ios_base::openmode which

= ios_base::in | ios_base::out) override;

9 Effects: Alters the stream position within one of the controlled sequences, if possible, as indicated in
Table 126.

Table 126: seekoff positioning [tab:stringbuf.seekoff.pos]

Conditions Result
ios_base::in is set in which positions the input sequence
ios_base::out is set in which positions the output sequence
both ios_base::in and ios_base::out
are set in which and either
way == ios_base::beg or
way == ios_base::end

positions both the input and the output sequences

Otherwise the positioning operation fails.

10 For a sequence to be positioned, the function determines newoff as indicated in Table 127. If the
sequence’s next pointer (either gptr() or pptr()) is a null pointer and newoff is nonzero, the positioning
operation fails.

Table 127: newoff values [tab:stringbuf.seekoff.newoff]

Condition newoff Value
way == ios_base::beg 0
way == ios_base::cur the next pointer minus the begin-

ning pointer (xnext - xbeg).
way == ios_base::end the high mark pointer minus the

beginning pointer (high_mark -
xbeg).

11 If (newoff + off) < 0, or if newoff + off refers to an uninitialized character (31.8.2.4), the posi-
tioning operation fails. Otherwise, the function assigns xbeg + newoff + off to the next pointer
xnext.

12 Returns: pos_type(newoff), constructed from the resultant offset newoff (of type off_type), that
stores the resultant stream position, if possible. If the positioning operation fails, or if the constructed
object cannot represent the resultant stream position, the return value is pos_type(off_type(-1)).

pos_type seekpos(pos_type sp,
ios_base::openmode which

= ios_base::in | ios_base::out) override;

13 Effects: Equivalent to seekoff(off_type(sp), ios_base::beg, which).
14 Returns: sp to indicate success, or pos_type(off_type(-1)) to indicate failure.

basic_streambuf<charT, traits>* setbuf(charT* s, streamsize n) override;

15 Effects: implementation-defined, except that setbuf(0, 0) has no effect.
16 Returns: this.

31.8.3 Class template basic_istringstream [istringstream]
31.8.3.1 General [istringstream.general]

namespace std {
template<class charT, class traits = char_traits<charT>,

class Allocator = allocator<charT>>
class basic_istringstream : public basic_istream<charT, traits> {
public:

using char_type = charT;

§ 31.8.3.1 1672



© ISO/IEC N4950

using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;
using allocator_type = Allocator;

// 31.8.3.2, constructors
basic_istringstream() : basic_istringstream(ios_base::in) {}
explicit basic_istringstream(ios_base::openmode which);
explicit basic_istringstream(

const basic_string<charT, traits, Allocator>& s,
ios_base::openmode which = ios_base::in);

basic_istringstream(ios_base::openmode which, const Allocator& a);
explicit basic_istringstream(

basic_string<charT, traits, Allocator>&& s,
ios_base::openmode which = ios_base::in);

template<class SAlloc>
basic_istringstream(

const basic_string<charT, traits, SAlloc>& s, const Allocator& a)
: basic_istringstream(s, ios_base::in, a) {}

template<class SAlloc>
basic_istringstream(

const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which, const Allocator& a);

template<class SAlloc>
explicit basic_istringstream(

const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which = ios_base::in);

basic_istringstream(const basic_istringstream&) = delete;
basic_istringstream(basic_istringstream&& rhs);

basic_istringstream& operator=(const basic_istringstream&) = delete;
basic_istringstream& operator=(basic_istringstream&& rhs);

// 31.8.3.3, swap
void swap(basic_istringstream& rhs);

// 31.8.3.4, members
basic_stringbuf<charT, traits, Allocator>* rdbuf() const;
basic_string<charT, traits, Allocator> str() const &;
template<class SAlloc>

basic_string<charT,traits,SAlloc> str(const SAlloc& sa) const;
basic_string<charT, traits, Allocator> str() &&;
basic_string_view<charT, traits> view() const noexcept;

void str(const basic_string<charT, traits, Allocator>& s);
template<class SAlloc>

void str(const basic_string<charT, traits, SAlloc>& s);
void str(basic_string<charT, traits, Allocator>&& s);

private:
basic_stringbuf<charT, traits, Allocator> sb; // exposition only

};
}

1 The class basic_istringstream<charT, traits, Allocator> supports reading objects of class basic_-
string<charT, traits, Allocator>. It uses a basic_stringbuf<charT, traits, Allocator> object to
control the associated storage. For the sake of exposition, the maintained data is presented here as:

—(1.1) sb, the stringbuf object.
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31.8.3.2 Constructors [istringstream.cons]

explicit basic_istringstream(ios_base::openmode which);

1 Effects: Initializes the base class with basic_istream<charT, traits>(addressof(sb)) (31.7.5.2)
and sb with basic_stringbuf<charT, traits, Allocator>(which | ios_base::in) (31.8.2.2).

explicit basic_istringstream(
const basic_string<charT, traits, Allocator>& s,
ios_base::openmode which = ios_base::in);

2 Effects: Initializes the base class with basic_istream<charT, traits>(addressof(sb)) (31.7.5.2)
and sb with basic_stringbuf<charT, traits, Allocator>(s, which | ios_base::in)
(31.8.2.2).

basic_istringstream(ios_base::openmode which, const Allocator& a);

3 Effects: Initializes the base class with basic_istream<charT, traits>(addressof(sb)) (31.7.5.2)
and sb with basic_stringbuf<charT, traits, Allocator>(which | ios_base::in, a) (31.8.2.2).

explicit basic_istringstream(
basic_string<charT, traits, Allocator>&& s,
ios_base::openmode which = ios_base::in);

4 Effects: Initializes the base class with basic_istream<charT, traits>(addressof(sb)) (31.7.5.2)
and sb with basic_stringbuf<charT, traits, Allocator>(std::move(s), which | ios_base::
in) (31.8.2.2).

template<class SAlloc>
basic_istringstream(

const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which, const Allocator& a);

5 Effects: Initializes the base class with basic_istream<charT, traits>(addressof(sb)) (31.7.5.2)
and sb with basic_stringbuf<charT, traits, Allocator>(s, which | ios_base::in, a)
(31.8.2.2).

template<class SAlloc>
explicit basic_istringstream(

const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which = ios_base::in);

6 Effects: Initializes the base class with basic_istream<charT, traits>(addressof(sb)) (31.7.5.2)
and sb with basic_stringbuf<charT, traits, Allocator>(s, which | ios_base::in) (31.8.2.2).

basic_istringstream(basic_istringstream&& rhs);

7 Effects: Move constructs from the rvalue rhs. This is accomplished by move constructing the
base class, and the contained basic_stringbuf. Then calls basic_istream<charT, traits>::set_-
rdbuf(addressof(sb)) to install the contained basic_stringbuf.

31.8.3.3 Swap [istringstream.swap]

void swap(basic_istringstream& rhs);

1 Effects: Equivalent to:
basic_istream<charT, traits>::swap(rhs);
sb.swap(rhs.sb);

template<class charT, class traits, class Allocator>
void swap(basic_istringstream<charT, traits, Allocator>& x,

basic_istringstream<charT, traits, Allocator>& y);

2 Effects: Equivalent to: x.swap(y).

31.8.3.4 Member functions [istringstream.members]

basic_stringbuf<charT, traits, Allocator>* rdbuf() const;

1 Returns: const_cast<basic_stringbuf<charT, traits, Allocator>*>(addressof(sb)).
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basic_string<charT, traits, Allocator> str() const &;

2 Effects: Equivalent to: return rdbuf()->str();

template<class SAlloc>
basic_string<charT,traits,SAlloc> str(const SAlloc& sa) const;

3 Effects: Equivalent to: return rdbuf()->str(sa);

basic_string<charT,traits,Allocator> str() &&;

4 Effects: Equivalent to: return std::move(*rdbuf()).str();

basic_string_view<charT, traits> view() const noexcept;

5 Effects: Equivalent to: return rdbuf()->view();

void str(const basic_string<charT, traits, Allocator>& s);

6 Effects: Equivalent to: rdbuf()->str(s);

template<class SAlloc>
void str(const basic_string<charT, traits, SAlloc>& s);

7 Effects: Equivalent to: rdbuf()->str(s);

void str(basic_string<charT, traits, Allocator>&& s);

8 Effects: Equivalent to: rdbuf()->str(std::move(s));

31.8.4 Class template basic_ostringstream [ostringstream]
31.8.4.1 General [ostringstream.general]

namespace std {
template<class charT, class traits = char_traits<charT>,

class Allocator = allocator<charT>>
class basic_ostringstream : public basic_ostream<charT, traits> {
public:

using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;
using allocator_type = Allocator;

// 31.8.4.2, constructors
basic_ostringstream() : basic_ostringstream(ios_base::out) {}
explicit basic_ostringstream(ios_base::openmode which);
explicit basic_ostringstream(

const basic_string<charT, traits, Allocator>& s,
ios_base::openmode which = ios_base::out);

basic_ostringstream(ios_base::openmode which, const Allocator& a);
explicit basic_ostringstream(

basic_string<charT, traits, Allocator>&& s,
ios_base::openmode which = ios_base::out);

template<class SAlloc>
basic_ostringstream(

const basic_string<charT, traits, SAlloc>& s, const Allocator& a)
: basic_ostringstream(s, ios_base::out, a) {}

template<class SAlloc>
basic_ostringstream(

const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which, const Allocator& a);

template<class SAlloc>
explicit basic_ostringstream(

const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which = ios_base::out);

basic_ostringstream(const basic_ostringstream&) = delete;
basic_ostringstream(basic_ostringstream&& rhs);
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basic_ostringstream& operator=(const basic_ostringstream&) = delete;
basic_ostringstream& operator=(basic_ostringstream&& rhs);

// 31.8.4.3, swap
void swap(basic_ostringstream& rhs);

// 31.8.4.4, members
basic_stringbuf<charT, traits, Allocator>* rdbuf() const;

basic_string<charT, traits, Allocator> str() const &;
template<class SAlloc>

basic_string<charT,traits,SAlloc> str(const SAlloc& sa) const;
basic_string<charT, traits, Allocator> str() &&;
basic_string_view<charT, traits> view() const noexcept;

void str(const basic_string<charT, traits, Allocator>& s);
template<class SAlloc>

void str(const basic_string<charT, traits, SAlloc>& s);
void str(basic_string<charT, traits, Allocator>&& s);

private:
basic_stringbuf<charT, traits, Allocator> sb; // exposition only

};
}

1 The class basic_ostringstream<charT, traits, Allocator> supports writing objects of class basic_-
string<charT, traits, Allocator>. It uses a basic_stringbuf object to control the associated storage.
For the sake of exposition, the maintained data is presented here as:

—(1.1) sb, the stringbuf object.

31.8.4.2 Constructors [ostringstream.cons]

explicit basic_ostringstream(ios_base::openmode which);

1 Effects: Initializes the base class with basic_ostream<charT, traits>(addressof(sb)) (31.7.6.2)
and sb with basic_stringbuf<charT, traits, Allocator>(which | ios_base::out) (31.8.2.2).

explicit basic_ostringstream(
const basic_string<charT, traits, Allocator>& s,
ios_base::openmode which = ios_base::out);

2 Effects: Initializes the base class with basic_ostream<charT, traits>(addressof(sb)) (31.7.6.2)
and sb with basic_stringbuf<charT, traits, Allocator>(s, which | ios_base::out)
(31.8.2.2).

basic_ostringstream(ios_base::openmode which, const Allocator& a);

3 Effects: Initializes the base class with basic_ostream<charT, traits>(addressof(sb)) (31.7.6.2)
and sb with basic_stringbuf<charT, traits, Allocator>(which | ios_base::out, a)
(31.8.2.2).

explicit basic_ostringstream(
basic_string<charT, traits, Allocator>&& s,
ios_base::openmode which = ios_base::out);

4 Effects: Initializes the base class with basic_ostream<charT, traits>(addressof(sb)) (31.7.6.2)
and sb with basic_stringbuf<charT, traits, Allocator>(std::move(s), which | ios_base::
out) (31.8.2.2).

template<class SAlloc>
basic_ostringstream(

const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which, const Allocator& a);

5 Effects: Initializes the base class with basic_ostream<charT, traits>(addressof(sb)) (31.7.6.2)
and sb with basic_stringbuf<charT, traits, Allocator>(s, which | ios_base::out, a)
(31.8.2.2).
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template<class SAlloc>
explicit basic_ostringstream(

const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which = ios_base::out);

6 Constraints: is_same_v<SAlloc,Allocator> is false.
7 Effects: Initializes the base class with basic_ostream<charT, traits>(addressof(sb)) (31.7.6.2)

and sb with basic_stringbuf<charT, traits, Allocator>(s, which | ios_base::out)
(31.8.2.2).

basic_ostringstream(basic_ostringstream&& rhs);

8 Effects: Move constructs from the rvalue rhs. This is accomplished by move constructing the
base class, and the contained basic_stringbuf. Then calls basic_ostream<charT, traits>::set_-
rdbuf(addressof(sb)) to install the contained basic_stringbuf.

31.8.4.3 Swap [ostringstream.swap]

void swap(basic_ostringstream& rhs);

1 Effects: Equivalent to:
basic_ostream<charT, traits>::swap(rhs);
sb.swap(rhs.sb);

template<class charT, class traits, class Allocator>
void swap(basic_ostringstream<charT, traits, Allocator>& x,

basic_ostringstream<charT, traits, Allocator>& y);

2 Effects: Equivalent to: x.swap(y).

31.8.4.4 Member functions [ostringstream.members]

basic_stringbuf<charT, traits, Allocator>* rdbuf() const;

1 Returns: const_cast<basic_stringbuf<charT, traits, Allocator>*>(addressof(sb)).

basic_string<charT, traits, Allocator> str() const &;

2 Effects: Equivalent to: return rdbuf()->str();

template<class SAlloc>
basic_string<charT,traits,SAlloc> str(const SAlloc& sa) const;

3 Effects: Equivalent to: return rdbuf()->str(sa);

basic_string<charT,traits,Allocator> str() &&;

4 Effects: Equivalent to: return std::move(*rdbuf()).str();

basic_string_view<charT, traits> view() const noexcept;

5 Effects: Equivalent to: return rdbuf()->view();

void str(const basic_string<charT, traits, Allocator>& s);

6 Effects: Equivalent to: rdbuf()->str(s);

template<class SAlloc>
void str(const basic_string<charT, traits, SAlloc>& s);

7 Effects: Equivalent to: rdbuf()->str(s);

void str(basic_string<charT, traits, Allocator>&& s);

8 Effects: Equivalent to: rdbuf()->str(std::move(s));

31.8.5 Class template basic_stringstream [stringstream]
31.8.5.1 General [stringstream.general]

namespace std {
template<class charT, class traits = char_traits<charT>,

class Allocator = allocator<charT>>
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class basic_stringstream : public basic_iostream<charT, traits> {
public:

using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;
using allocator_type = Allocator;

// 31.8.5.2, constructors
basic_stringstream() : basic_stringstream(ios_base::out | ios_base::in) {}
explicit basic_stringstream(ios_base::openmode which);
explicit basic_stringstream(

const basic_string<charT, traits, Allocator>& s,
ios_base::openmode which = ios_base::out | ios_base::in);

basic_stringstream(ios_base::openmode which, const Allocator& a);
explicit basic_stringstream(

basic_string<charT, traits, Allocator>&& s,
ios_base::openmode which = ios_base::out | ios_base::in);

template<class SAlloc>
basic_stringstream(

const basic_string<charT, traits, SAlloc>& s, const Allocator& a)
: basic_stringstream(s, ios_base::out | ios_base::in, a) {}

template<class SAlloc>
basic_stringstream(

const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which, const Allocator& a);

template<class SAlloc>
explicit basic_stringstream(

const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which = ios_base::out | ios_base::in);

basic_stringstream(const basic_stringstream&) = delete;
basic_stringstream(basic_stringstream&& rhs);

basic_stringstream& operator=(const basic_stringstream&) = delete;
basic_stringstream& operator=(basic_stringstream&& rhs);

// 31.8.5.3, swap
void swap(basic_stringstream& rhs);

// 31.8.5.4, members
basic_stringbuf<charT, traits, Allocator>* rdbuf() const;

basic_string<charT, traits, Allocator> str() const &;
template<class SAlloc>

basic_string<charT,traits,SAlloc> str(const SAlloc& sa) const;
basic_string<charT, traits, Allocator> str() &&;
basic_string_view<charT, traits> view() const noexcept;

void str(const basic_string<charT, traits, Allocator>& s);
template<class SAlloc>

void str(const basic_string<charT, traits, SAlloc>& s);
void str(basic_string<charT, traits, Allocator>&& s);

private:
basic_stringbuf<charT, traits> sb; // exposition only

};
}

1 The class template basic_stringstream<charT, traits> supports reading and writing from objects of
class basic_string<charT, traits, Allocator>. It uses a basic_stringbuf<charT, traits, Alloca-
tor> object to control the associated sequence. For the sake of exposition, the maintained data is presented
here as

—(1.1) sb, the stringbuf object.
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31.8.5.2 Constructors [stringstream.cons]

explicit basic_stringstream(ios_base::openmode which);

1 Effects: Initializes the base class with basic_iostream<charT, traits>(addressof(sb)) (31.7.5.7.2)
and sb with basic_stringbuf<charT, traits, Allocator>(which).

explicit basic_stringstream(
const basic_string<charT, traits, Allocator>& s,
ios_base::openmode which = ios_base::out | ios_base::in);

2 Effects: Initializes the base class with basic_iostream<charT, traits>(addressof(sb)) (31.7.5.7.2)
and sb with basic_stringbuf<charT, traits, Allocator>(s, which).

basic_stringstream(ios_base::openmode which, const Allocator& a);

3 Effects: Initializes the base class with basic_iostream<charT, traits>(addressof(sb)) (31.7.5.7.2)
and sb with basic_stringbuf<charT, traits, Allocator>(which, a) (31.8.2.2).

explicit basic_stringstream(
basic_string<charT, traits, Allocator>&& s,
ios_base::openmode which = ios_base::out | ios_base::in);

4 Effects: Initializes the base class with basic_iostream<charT, traits>(addressof(sb)) (31.7.5.7.2)
and sb with basic_stringbuf<charT, traits, Allocator>(std::move(s), which) (31.8.2.2).

template<class SAlloc>
basic_stringstream(

const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which, const Allocator& a);

5 Effects: Initializes the base class with basic_iostream<charT, traits>(addressof(sb)) (31.7.5.7.2)
and sb with basic_stringbuf<charT, traits, Allocator>(s, which, a) (31.8.2.2).

template<class SAlloc>
explicit basic_stringstream(

const basic_string<charT, traits, SAlloc>& s,
ios_base::openmode which = ios_base::out | ios_base::in);

6 Constraints: is_same_v<SAlloc,Allocator> is false.
7 Effects: Initializes the base class with basic_iostream<charT, traits>(addressof(sb)) (31.7.5.7.2)

and sb with basic_stringbuf<charT, traits, Allocator>(s, which) (31.8.2.2).

basic_stringstream(basic_stringstream&& rhs);

8 Effects: Move constructs from the rvalue rhs. This is accomplished by move constructing the
base class, and the contained basic_stringbuf. Then calls basic_istream<charT, traits>::set_-
rdbuf(addressof(sb)) to install the contained basic_stringbuf.

31.8.5.3 Swap [stringstream.swap]

void swap(basic_stringstream& rhs);

1 Effects: Equivalent to:
basic_iostream<charT,traits>::swap(rhs);
sb.swap(rhs.sb);

template<class charT, class traits, class Allocator>
void swap(basic_stringstream<charT, traits, Allocator>& x,

basic_stringstream<charT, traits, Allocator>& y);

2 Effects: Equivalent to: x.swap(y).

31.8.5.4 Member functions [stringstream.members]

basic_stringbuf<charT, traits, Allocator>* rdbuf() const;

1 Returns: const_cast<basic_stringbuf<charT, traits, Allocator>*>(addressof(sb)).
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basic_string<charT, traits, Allocator> str() const &;

2 Effects: Equivalent to: return rdbuf()->str();

template<class SAlloc>
basic_string<charT,traits,SAlloc> str(const SAlloc& sa) const;

3 Effects: Equivalent to: return rdbuf()->str(sa);

basic_string<charT,traits,Allocator> str() &&;

4 Effects: Equivalent to: return std::move(*rdbuf()).str();

basic_string_view<charT, traits> view() const noexcept;

5 Effects: Equivalent to: return rdbuf()->view();

void str(const basic_string<charT, traits, Allocator>& s);

6 Effects: Equivalent to: rdbuf()->str(s);

template<class SAlloc>
void str(const basic_string<charT, traits, SAlloc>& s);

7 Effects: Equivalent to: rdbuf()->str(s);

void str(basic_string<charT, traits, Allocator>&& s);

8 Effects: Equivalent to: rdbuf()->str(std::move(s));

31.9 Span-based streams [span.streams]
31.9.1 Overview [span.streams.overview]

1 The header <spanstream> defines class templates and types that associate stream buffers with objects whose
types are specializations of span as described in 24.7.2.2.
[Note 1 : A user of these classes is responsible for ensuring that the character sequence represented by the given span
outlives the use of the sequence by objects of the classes in subclause 31.9. Using multiple basic_spanbuf objects
referring to overlapping underlying sequences from different threads, where at least one basic_spanbuf object is used
for writing to the sequence, results in a data race. — end note ]

31.9.2 Header <spanstream> synopsis [spanstream.syn]
namespace std {

template<class charT, class traits = char_traits<charT>>
class basic_spanbuf;

template<class charT, class traits>
void swap(basic_spanbuf<charT, traits>& x, basic_spanbuf<charT, traits>& y);

using spanbuf = basic_spanbuf<char>;
using wspanbuf = basic_spanbuf<wchar_t>;

template<class charT, class traits = char_traits<charT>>
class basic_ispanstream;

template<class charT, class traits>
void swap(basic_ispanstream<charT, traits>& x, basic_ispanstream<charT, traits>& y);

using ispanstream = basic_ispanstream<char>;
using wispanstream = basic_ispanstream<wchar_t>;

template<class charT, class traits = char_traits<charT>>
class basic_ospanstream;

template<class charT, class traits>
void swap(basic_ospanstream<charT, traits>& x, basic_ospanstream<charT, traits>& y);

using ospanstream = basic_ospanstream<char>;
using wospanstream = basic_ospanstream<wchar_t>;
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template<class charT, class traits = char_traits<charT>>
class basic_spanstream;

template<class charT, class traits>
void swap(basic_spanstream<charT, traits>& x, basic_spanstream<charT, traits>& y);

using spanstream = basic_spanstream<char>;
using wspanstream = basic_spanstream<wchar_t>;

}

31.9.3 Class template basic_spanbuf [spanbuf]
31.9.3.1 General [spanbuf.general]

namespace std {
template<class charT, class traits = char_traits<charT>>
class basic_spanbuf

: public basic_streambuf<charT, traits> {
public:

using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

// 31.9.3.2, constructors
basic_spanbuf() : basic_spanbuf(ios_base::in | ios_base::out) {}
explicit basic_spanbuf(ios_base::openmode which)

: basic_spanbuf(std::span<charT>(), which) {}
explicit basic_spanbuf(std::span<charT> s,

ios_base::openmode which = ios_base::in | ios_base::out);
basic_spanbuf(const basic_spanbuf&) = delete;
basic_spanbuf(basic_spanbuf&& rhs);

// 31.9.3.3, assignment and swap
basic_spanbuf& operator=(const basic_spanbuf&) = delete;
basic_spanbuf& operator=(basic_spanbuf&& rhs);
void swap(basic_spanbuf& rhs);

// 31.9.3.4, member functions
std::span<charT> span() const noexcept;
void span(std::span<charT> s) noexcept;

protected:
// 31.9.3.5, overridden virtual functions
basic_streambuf<charT, traits>* setbuf(charT*, streamsize) override;
pos_type seekoff(off_type off, ios_base::seekdir way,

ios_base::openmode which = ios_base::in | ios_base::out) override;
pos_type seekpos(pos_type sp,

ios_base::openmode which = ios_base::in | ios_base::out) override;

private:
ios_base::openmode mode ; // exposition only
std::span<charT> buf ; // exposition only

};
}

1 The class template basic_spanbuf is derived from basic_streambuf to associate possibly the input sequence
and possibly the output sequence with a sequence of arbitrary characters. The sequence is provided by an
object of class span<charT>.

2 For the sake of exposition, the maintained data is presented here as:
—(2.1) ios_base::openmode mode , has in set if the input sequence can be read, and out set if the output

sequence can be written.
—(2.2) std::span<charT> buf is the view to the underlying character sequence.
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31.9.3.2 Constructors [spanbuf.cons]

explicit basic_spanbuf(std::span<charT> s,
ios_base::openmode which = ios_base::in | ios_base::out);

1 Effects: Initializes the base class with basic_streambuf() (31.6.3.2), and mode with which. Initializes
the internal pointers as if calling span(s).

basic_spanbuf(basic_spanbuf&& rhs);

2 Effects: Initializes the base class with std::move(rhs) and mode with std::move(rhs.mode ) and buf
with std::move(rhs.buf ). The sequence pointers in *this (eback(), gptr(), egptr(), pbase(),
pptr(), epptr()) obtain the values which rhs had. It is implementation-defined whether rhs.buf .
empty() returns true after the move.

3 Postconditions: Let rhs_p refer to the state of rhs just prior to this construction.
—(3.1) span().data() == rhs_p.span().data()
—(3.2) span().size() == rhs_p.span().size()
—(3.3) eback() == rhs_p.eback()
—(3.4) gptr() == rhs_p.gptr()
—(3.5) egptr() == rhs_p.egptr()
—(3.6) pbase() == rhs_p.pbase()
—(3.7) pptr() == rhs_p.pptr()
—(3.8) epptr() == rhs_p.epptr()
—(3.9) getloc() == rhs_p.getloc()

31.9.3.3 Assignment and swap [spanbuf.assign]

basic_spanbuf& operator=(basic_spanbuf&& rhs);

1 Effects: Equivalent to:
basic_spanbuf tmp{std::move(rhs)};
this->swap(tmp);
return *this;

void swap(basic_spanbuf& rhs);

2 Effects: Equivalent to:
basic_streambuf<charT, traits>::swap(rhs);
std::swap(mode , rhs.mode );
std::swap(buf , rhs.buf );

template<class charT, class traits>
void swap(basic_spanbuf<charT, traits>& x, basic_spanbuf<charT, traits>& y);

3 Effects: Equivalent to x.swap(y).

31.9.3.4 Member functions [spanbuf.members]

std::span<charT> span() const noexcept;

1 Returns: If ios_base::out is set in mode , returns std::span<charT>(pbase(), pptr()), otherwise
returns buf .
[Note 1 : In contrast to basic_stringbuf, the underlying sequence never grows and is not owned. An owning
copy can be obtained by converting the result to basic_string<charT>. — end note ]

void span(std::span<charT> s) noexcept;

2 Effects: buf = s. Initializes the input and output sequences according to mode .
3 Postconditions:

—(3.1) If ios_base::out is set in mode , pbase() == s.data() && epptr() == pbase() + s.size()
is true;
—(3.1.1) in addition, if ios_base::ate is set in mode , pptr() == pbase() + s.size() is true,
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—(3.1.2) otherwise pptr() == pbase() is true.
—(3.2) If ios_base::in is set in mode , eback() == s.data() && gptr() == eback() && egptr() ==

eback() + s.size() is true.

31.9.3.5 Overridden virtual functions [spanbuf.virtuals]
1 [Note 1 : Because the underlying buffer is of fixed size, neither overflow, underflow, nor pbackfail can provide

useful behavior. — end note ]

pos_type seekoff(off_type off, ios_base::seekdir way,
ios_base::openmode which = ios_base::in | ios_base::out) override;

2 Effects: Alters the stream position within one or both of the controlled sequences, if possible, as follows:
—(2.1) If ios_base::in is set in which, positions the input sequence; xnext is gptr(), xbeg is eback().
—(2.2) If ios_base::out is set in which, positions the output sequence; xnext is pptr(), xbeg is

pbase().
3 If both ios_base::in and ios_base::out are set in which and way is ios_base::cur, the positioning

operation fails.
4 For a sequence to be positioned, if its next pointer xnext (either gptr() or pptr()) is a null pointer

and the new offset newoff as computed below is nonzero, the positioning operation fails. Otherwise,
the function determines baseoff as a value of type off_type as follows:

—(4.1) 0 when way is ios_base::beg;
—(4.2) (pptr() - pbase()) for the output sequence, or (gptr() - eback()) for the input sequence

when way is ios_base::cur;
—(4.3) when way is ios_base::end :

—(4.3.1) (pptr() - pbase()) if ios_base::out is set in mode and ios_base::in is not set in mode ,
—(4.3.2) buf.size() otherwise.

5 If baseoff + off would overflow, or if baseoff + off is less than zero, or if baseoff + off is greater
than buf .size(), the positioning operation fails. Otherwise, the function computes

off_type newoff = baseoff + off;

and assigns xbeg + newoff to the next pointer xnext.
6 Returns: pos_type(off_type(-1)) if the positioning operation fails; pos_type(newoff) otherwise.

pos_type seekpos(pos_type sp, ios_base::openmode which = ios_base::in | ios_base::out) override;

7 Effects: Equivalent to:
return seekoff(off_type(sp), ios_base::beg, which);

basic_streambuf<charT, traits>* setbuf(charT* s, streamsize n) override;

8 Effects: Equivalent to:
this->span(std::span<charT>(s, n));
return this;

31.9.4 Class template basic_ispanstream [ispanstream]
31.9.4.1 General [ispanstream.general]

namespace std {
template<class charT, class traits = char_traits<charT>>
class basic_ispanstream

: public basic_istream<charT, traits> {
public:

using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;
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// 31.9.4.2, constructors
explicit basic_ispanstream(std::span<charT> s,

ios_base::openmode which = ios_base::in);
basic_ispanstream(const basic_ispanstream&) = delete;
basic_ispanstream(basic_ispanstream&& rhs);
template<class ROS> explicit basic_ispanstream(ROS&& s);

basic_ispanstream& operator=(const basic_ispanstream&) = delete;
basic_ispanstream& operator=(basic_ispanstream&& rhs);

// 31.9.4.3, swap
void swap(basic_ispanstream& rhs);

// 31.9.4.4, member functions
basic_spanbuf<charT, traits>* rdbuf() const noexcept;

std::span<const charT> span() const noexcept;
void span(std::span<charT> s) noexcept;
template<class ROS> void span(ROS&& s) noexcept;

private:
basic_spanbuf<charT, traits> sb; // exposition only

};
}

1 [Note 1 : Constructing an ispanstream from a string-literal includes the termination character ’\0’ in the underlying
spanbuf. — end note ]

31.9.4.2 Constructors [ispanstream.cons]

explicit basic_ispanstream(std::span<charT> s, ios_base::openmode which = ios_base::in);

1 Effects: Initializes the base class with basic_istream<charT, traits>(addressof(sb)) and sb with
basic_spanbuf<charT, traits>(s, which | ios_base::in) (31.9.3.2).

basic_ispanstream(basic_ispanstream&& rhs);

2 Effects: Initializes the base class with std::move(rhs) and sb with std::move(rhs.sb). Next, basic_-
istream<charT, traits>::set_rdbuf(addressof(sb)) is called to install the contained basic_-
spanbuf.

template<class ROS> explicit basic_ispanstream(ROS&& s)

3 Constraints: ROS models ranges::borrowed_range. !convertible_to<ROS, std::span<charT>> &&
convertible_to<ROS, std::span<charT const>> is true.

4 Effects: Let sp be std::span<const charT>(std::forward<ROS>(s)). Equivalent to
basic_ispanstream(std::span<charT>(const_cast<charT*>(sp.data()), sp.size()))

31.9.4.3 Swap [ispanstream.swap]

void swap(basic_ispanstream& rhs);

1 Effects: Equivalent to:
basic_istream<charT, traits>::swap(rhs);
sb.swap(rhs.sb);

template<class charT, class traits>
void swap(basic_ispanstream<charT, traits>& x, basic_ispanstream<charT, traits>& y);

2 Effects: Equivalent to x.swap(y).

31.9.4.4 Member functions [ispanstream.members]

basic_spanbuf<charT, traits>* rdbuf() const noexcept;

1 Effects: Equivalent to:
return const_cast<basic_spanbuf<charT, traits>*>(addressof(sb));
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std::span<const charT> span() const noexcept;

2 Effects: Equivalent to: return rdbuf()->span();

void span(std::span<charT> s) noexcept;

3 Effects: Equivalent to rdbuf()->span(s).

template<class ROS> void span(ROS&& s) noexcept;

4 Constraints: ROS models ranges::borrowed_range. (!convertible_to<ROS, std::span<charT>>)
&& convertible_to<ROS, std::span<const charT>> is true.

5 Effects: Let sp be std::span<const charT>(std::forward<ROS>(s)). Equivalent to:
this->span(std::span<charT>(const_cast<charT*>(sp.data()), sp.size()))

31.9.5 Class template basic_ospanstream [ospanstream]
31.9.5.1 General [ospanstream.general]

namespace std {
template<class charT, class traits = char_traits<charT>>
class basic_ospanstream

: public basic_ostream<charT, traits> {
public:

using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

// 31.9.5.2, constructors
explicit basic_ospanstream(std::span<charT> s,

ios_base::openmode which = ios_base::out);
basic_ospanstream(const basic_ospanstream&) = delete;
basic_ospanstream(basic_ospanstream&& rhs);

basic_ospanstream& operator=(const basic_ospanstream&) = delete;
basic_ospanstream& operator=(basic_ospanstream&& rhs);

// 31.9.5.3, swap
void swap(basic_ospanstream& rhs);

// 31.9.5.4, member functions
basic_spanbuf<charT, traits>* rdbuf() const noexcept;

std::span<charT> span() const noexcept;
void span(std::span<charT> s) noexcept;

private:
basic_spanbuf<charT, traits> sb; // exposition only

};
}

31.9.5.2 Constructors [ospanstream.cons]

explicit basic_ospanstream(std::span<charT> s,
ios_base::openmode which = ios_base::out);

1 Effects: Initializes the base class with basic_ostream<charT, traits>(addressof(sb)) and sb with
basic_spanbuf<charT, traits>(s, which | ios_base::out) (31.9.3.2).

basic_ospanstream(basic_ospanstream&& rhs) noexcept;

2 Effects: Initializes the base class with std::move(rhs) and sb with std::move(rhs.sb). Next, basic_-
ostream<charT, traits>::set_rdbuf(addressof(sb)) is called to install the contained basic_-
spanbuf.
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31.9.5.3 Swap [ospanstream.swap]

void swap(basic_ospanstream& rhs);

1 Effects: Equivalent to:
basic_ostream<charT, traits>::swap(rhs);
sb.swap(rhs.sb);

template<class charT, class traits>
void swap(basic_ospanstream<charT, traits>& x, basic_ospanstream<charT, traits>& y);

2 Effects: Equivalent to x.swap(y).

31.9.5.4 Member functions [ospanstream.members]

basic_spanbuf<charT, traits>* rdbuf() const noexcept;

1 Effects: Equivalent to:
return const_cast<basic_spanbuf<charT, traits>*>(addressof(sb));

std::span<charT> span() const noexcept;

2 Effects: Equivalent to: return rdbuf()->span();

void span(std::span<charT> s) noexcept;

3 Effects: Equivalent to rdbuf()->span(s).

31.9.6 Class template basic_spanstream [spanstream]
31.9.6.1 General [spanstream.general]

namespace std {
template<class charT, class traits = char_traits<charT>>
class basic_spanstream

: public basic_iostream<charT, traits> {
public:

using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

// 31.9.6.2, constructors
explicit basic_spanstream(std::span<charT> s,

ios_base::openmode which = ios_base::out | ios_base::in);
basic_spanstream(const basic_spanstream&) = delete;
basic_spanstream(basic_spanstream&& rhs);

basic_spanstream& operator=(const basic_spanstream&) = delete;
basic_spanstream& operator=(basic_spanstream&& rhs);

// 31.9.6.3, swap
void swap(basic_spanstream& rhs);

// 31.9.6.4, members
basic_spanbuf<charT, traits>* rdbuf() const noexcept;

std::span<charT> span() const noexcept;
void span(std::span<charT> s) noexcept;

private:
basic_spanbuf<charT, traits> sb; // exposition only

};
}
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31.9.6.2 Constructors [spanstream.cons]

explicit basic_spanstream(std::span<charT> s,
ios_base::openmode which = ios_base::out | ios_bas::in);

1 Effects: Initializes the base class with basic_iostream<charT, traits>(addressof(sb)) and sb
with basic_spanbuf<charT, traits>(s, which) (31.9.3.2).

basic_spanstream(basic_spanstream&& rhs);

2 Effects: Initializes the base class with std::move(rhs) and sb with std::move(rhs.sb). Next,
basic_iostream<charT, traits>::set_rdbuf(addressof(sb)) is called to install the contained
basic_spanbuf.

31.9.6.3 Swap [spanstream.swap]

void swap(basic_spanstream& rhs);

1 Effects: Equivalent to:
basic_iostream<charT, traits>::swap(rhs);
sb.swap(rhs.sb);

template<class charT, class traits>
void swap(basic_spanstream<charT, traits>& x, basic_spanstream<charT, traits>& y);

2 Effects: Equivalent to x.swap(y).

31.9.6.4 Member functions [spanstream.members]

basic_spanbuf<charT, traits>* rdbuf() const noexcept;

1 Effects: Equivalent to:
return const_cast<basic_spanbuf<charT, traits>*>(addressof(sb));

std::span<charT> span() const noexcept;

2 Effects: Equivalent to: return rdbuf()->span();

void span(std::span<charT> s) noexcept;

3 Effects: Equivalent to rdbuf()->span(s).

31.10 File-based streams [file.streams]
31.10.1 Header <fstream> synopsis [fstream.syn]

namespace std {
template<class charT, class traits = char_traits<charT>>

class basic_filebuf;

template<class charT, class traits>
void swap(basic_filebuf<charT, traits>& x, basic_filebuf<charT, traits>& y);

using filebuf = basic_filebuf<char>;
using wfilebuf = basic_filebuf<wchar_t>;

template<class charT, class traits = char_traits<charT>>
class basic_ifstream;

template<class charT, class traits>
void swap(basic_ifstream<charT, traits>& x, basic_ifstream<charT, traits>& y);

using ifstream = basic_ifstream<char>;
using wifstream = basic_ifstream<wchar_t>;

template<class charT, class traits = char_traits<charT>>
class basic_ofstream;

template<class charT, class traits>
void swap(basic_ofstream<charT, traits>& x, basic_ofstream<charT, traits>& y);
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using ofstream = basic_ofstream<char>;
using wofstream = basic_ofstream<wchar_t>;

template<class charT, class traits = char_traits<charT>>
class basic_fstream;

template<class charT, class traits>
void swap(basic_fstream<charT, traits>& x, basic_fstream<charT, traits>& y);

using fstream = basic_fstream<char>;
using wfstream = basic_fstream<wchar_t>;

}

1 The header <fstream> defines four class templates and eight types that associate stream buffers with files
and assist reading and writing files.

2 [Note 1 : The class template basic_filebuf treats a file as a source or sink of bytes. In an environment that uses
a large character set, the file typically holds multibyte character sequences and the basic_filebuf object converts
those multibyte sequences into wide character sequences. — end note ]

3 In subclause 31.10, member functions taking arguments of const filesystem::path::value_type* are
only provided on systems where filesystem::path::value_type (31.12.6) is not char.
[Note 2 : These functions enable class path support for systems with a wide native path character type, such as
wchar_t. — end note ]

31.10.2 Class template basic_filebuf [filebuf]
31.10.2.1 General [filebuf.general]

namespace std {
template<class charT, class traits = char_traits<charT>>
class basic_filebuf : public basic_streambuf<charT, traits> {
public:

using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

// 31.10.2.2, constructors/destructor
basic_filebuf();
basic_filebuf(const basic_filebuf&) = delete;
basic_filebuf(basic_filebuf&& rhs);
virtual ~basic_filebuf();

// 31.10.2.3, assignment and swap
basic_filebuf& operator=(const basic_filebuf&) = delete;
basic_filebuf& operator=(basic_filebuf&& rhs);
void swap(basic_filebuf& rhs);

// 31.10.2.4, members
bool is_open() const;
basic_filebuf* open(const char* s, ios_base::openmode mode);
basic_filebuf* open(const filesystem::path::value_type* s,

ios_base::openmode mode); // wide systems only; see 31.10.1
basic_filebuf* open(const string& s,

ios_base::openmode mode);
basic_filebuf* open(const filesystem::path& s,

ios_base::openmode mode);
basic_filebuf* close();

protected:
// 31.10.2.5, overridden virtual functions
streamsize showmanyc() override;
int_type underflow() override;
int_type uflow() override;
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int_type pbackfail(int_type c = traits::eof()) override;
int_type overflow (int_type c = traits::eof()) override;

basic_streambuf<charT, traits>* setbuf(char_type* s,
streamsize n) override;

pos_type seekoff(off_type off, ios_base::seekdir way,
ios_base::openmode which
= ios_base::in | ios_base::out) override;

pos_type seekpos(pos_type sp,
ios_base::openmode which
= ios_base::in | ios_base::out) override;

int sync() override;
void imbue(const locale& loc) override;

};
}

1 The class basic_filebuf<charT, traits> associates both the input sequence and the output sequence with
a file.

2 The restrictions on reading and writing a sequence controlled by an object of class basic_filebuf<charT,
traits> are the same as for reading and writing with the C standard library FILEs.

3 In particular:
—(3.1) If the file is not open for reading the input sequence cannot be read.
—(3.2) If the file is not open for writing the output sequence cannot be written.
—(3.3) A joint file position is maintained for both the input sequence and the output sequence.

4 An instance of basic_filebuf behaves as described in 31.10.2 provided traits::pos_type is fpos<traits::
state_type>. Otherwise the behavior is undefined.

5 In order to support file I/O and multibyte/wide character conversion, conversions are performed using
members of a facet, referred to as a_codecvt in following subclauses, obtained as if by

const codecvt<charT, char, typename traits::state_type>& a_codecvt =
use_facet<codecvt<charT, char, typename traits::state_type>>(getloc());

31.10.2.2 Constructors [filebuf.cons]

basic_filebuf();

1 Effects: Initializes the base class with basic_streambuf<charT, traits>() (31.6.3.2).
2 Postconditions: is_open() == false.

basic_filebuf(basic_filebuf&& rhs);

3 Effects: It is implementation-defined whether the sequence pointers in *this (eback(), gptr(),
egptr(), pbase(), pptr(), epptr()) obtain the values which rhs had. Whether they do or not, *this
and rhs reference separate buffers (if any at all) after the construction. Additionally *this references
the file which rhs did before the construction, and rhs references no file after the construction. The
openmode, locale and any other state of rhs is also copied.

4 Postconditions: Let rhs_p refer to the state of rhs just prior to this construction and let rhs_a refer
to the state of rhs just after this construction.

—(4.1) is_open() == rhs_p.is_open()
—(4.2) rhs_a.is_open() == false
—(4.3) gptr() - eback() == rhs_p.gptr() - rhs_p.eback()
—(4.4) egptr() - eback() == rhs_p.egptr() - rhs_p.eback()
—(4.5) pptr() - pbase() == rhs_p.pptr() - rhs_p.pbase()
—(4.6) epptr() - pbase() == rhs_p.epptr() - rhs_p.pbase()
—(4.7) if (eback()) eback() != rhs_a.eback()
—(4.8) if (gptr()) gptr() != rhs_a.gptr()
—(4.9) if (egptr()) egptr() != rhs_a.egptr()
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—(4.10) if (pbase()) pbase() != rhs_a.pbase()
—(4.11) if (pptr()) pptr() != rhs_a.pptr()
—(4.12) if (epptr()) epptr() != rhs_a.epptr()

virtual ~basic_filebuf();

5 Effects: Calls close(). If an exception occurs during the destruction of the object, including the call
to close(), the exception is caught but not rethrown (see 16.4.6.13).

31.10.2.3 Assignment and swap [filebuf.assign]

basic_filebuf& operator=(basic_filebuf&& rhs);

1 Effects: Calls close() then move assigns from rhs. After the move assignment *this has the observable
state it would have had if it had been move constructed from rhs (see 31.10.2.2).

2 Returns: *this.

void swap(basic_filebuf& rhs);

3 Effects: Exchanges the state of *this and rhs.

template<class charT, class traits>
void swap(basic_filebuf<charT, traits>& x, basic_filebuf<charT, traits>& y);

4 Effects: Equivalent to: x.swap(y).

31.10.2.4 Member functions [filebuf.members]

bool is_open() const;

1 Returns: true if a previous call to open succeeded (returned a non-null value) and there has been no
intervening call to close.

basic_filebuf* open(const char* s, ios_base::openmode mode);
basic_filebuf* open(const filesystem::path::value_type* s,

ios_base::openmode mode); // wide systems only; see 31.10.1
2 Preconditions: s points to a NTCTS (3.34).
3 Effects: If is_open() != false, returns a null pointer. Otherwise, initializes the filebuf as required.

It then opens the file to which s resolves, if possible, as if by a call to fopen with the second argument
determined from mode & ~ios_base::ate as indicated in Table 128. If mode is not some combination
of flags shown in the table then the open fails.

4 If the open operation succeeds and ios_base::ate is set in mode, positions the file to the end (as if by
calling fseek(file, 0, SEEK_END), where file is the pointer returned by calling fopen).302

5 If the repositioning operation fails, calls close() and returns a null pointer to indicate failure.
6 Returns: this if successful, a null pointer otherwise.

basic_filebuf* open(const string& s, ios_base::openmode mode);
basic_filebuf* open(const filesystem::path& s, ios_base::openmode mode);

7 Returns: open(s.c_str(), mode);

basic_filebuf* close();

8 Effects: If is_open() == false, returns a null pointer. If a put area exists, calls overflow(traits::
eof()) to flush characters. If the last virtual member function called on *this (between underflow,
overflow, seekoff, and seekpos) was overflow then calls a_codecvt.unshift (possibly several
times) to determine a termination sequence, inserts those characters and calls overflow(traits::
eof()) again. Finally, regardless of whether any of the preceding calls fails or throws an exception,
the function closes the file (as if by calling fclose(file)). If any of the calls made by the function,
including fclose, fails, close fails by returning a null pointer. If one of these calls throws an exception,
the exception is caught and rethrown after closing the file.

302) The macro SEEK_END is defined, and the function signatures fopen(const char*, const char*) and fseek(FILE*, long,
int) are declared, in <cstdio> (31.13.1).
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Table 128: File open modes [tab:filebuf.open.modes]

ios_base flag combination stdio equivalent
binary in out trunc app noreplace

+ "w"
+ + "wx"
+ + "w"
+ + + "wx"
+ + "a"

+ "a"
+ "r"
+ + "r+"
+ + + "w+"
+ + + + "w+x"
+ + + "a+"
+ + "a+"

+ + "wb"
+ + + "wbx"
+ + + "wb"
+ + + + "wbx"
+ + + "ab"
+ + "ab"
+ + "rb"
+ + + "r+b"
+ + + + "w+b"
+ + + + + "w+bx"
+ + + + "a+b"
+ + + "a+b"

9 Postconditions: is_open() == false.
10 Returns: this on success, a null pointer otherwise.

31.10.2.5 Overridden virtual functions [filebuf.virtuals]

streamsize showmanyc() override;

1 Effects: Behaves the same as basic_streambuf::showmanyc() (31.6.3.5).
2 Remarks: An implementation may provide an overriding definition for this function signature if it can

determine whether more characters can be read from the input sequence.

int_type underflow() override;

3 Effects: Behaves according to the description of basic_streambuf<charT, traits>::underflow(),
with the specialization that a sequence of characters is read from the input sequence as if by reading
from the associated file into an internal buffer (extern_buf) and then as if by doing:

char extern_buf[XSIZE];
char* extern_end;
charT intern_buf[ISIZE];
charT* intern_end;
codecvt_base::result r =

a_codecvt.in(state, extern_buf, extern_buf+XSIZE, extern_end,
intern_buf, intern_buf+ISIZE, intern_end);

This shall be done in such a way that the class can recover the position (fpos_t) corresponding to each
character between intern_buf and intern_end. If the value of r indicates that a_codecvt.in() ran
out of space in intern_buf, retry with a larger intern_buf.
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int_type uflow() override;

4 Effects: Behaves according to the description of basic_streambuf<charT, traits>::uflow(), with
the specialization that a sequence of characters is read from the input with the same method as used
by underflow.

int_type pbackfail(int_type c = traits::eof()) override;

5 Effects: Puts back the character designated by c to the input sequence, if possible, in one of three ways:
—(5.1) If traits::eq_int_type(c, traits::eof()) returns false and if the function makes a putback

position available and if traits::eq(to_char_type(c), gptr()[-1]) returns true, decrements
the next pointer for the input sequence, gptr().
Returns: c.

—(5.2) If traits::eq_int_type(c, traits::eof()) returns false and if the function makes a putback
position available and if the function is permitted to assign to the putback position, decrements
the next pointer for the input sequence, and stores c there.
Returns: c.

—(5.3) If traits::eq_int_type(c, traits::eof()) returns true, and if either the input sequence has
a putback position available or the function makes a putback position available, decrements the
next pointer for the input sequence, gptr().
Returns: traits::not_eof(c).

6 Returns: As specified above, or traits::eof() to indicate failure.
7 Remarks: If is_open() == false, the function always fails.
8 The function does not put back a character directly to the input sequence.
9 If the function can succeed in more than one of these ways, it is unspecified which way is chosen. The

function can alter the number of putback positions available as a result of any call.

int_type overflow(int_type c = traits::eof()) override;

10 Effects: Behaves according to the description of basic_streambuf<charT, traits>::overflow(c),
except that the behavior of “consuming characters” is performed by first converting as if by:

charT* b = pbase();
charT* p = pptr();
charT* end;
char xbuf[XSIZE];
char* xbuf_end;
codecvt_base::result r =

a_codecvt.out(state, b, p, end, xbuf, xbuf+XSIZE, xbuf_end);

and then
—(10.1) If r == codecvt_base::error then fail.
—(10.2) If r == codecvt_base::noconv then output characters from b up to (and not including) p.
—(10.3) If r == codecvt_base::partial then output to the file characters from xbuf up to xbuf_end,

and repeat using characters from end to p. If output fails, fail (without repeating).
—(10.4) Otherwise output from xbuf to xbuf_end, and fail if output fails. At this point if b != p and b

== end (xbuf isn’t large enough) then increase XSIZE and repeat from the beginning.
11 Returns: traits::not_eof(c) to indicate success, and traits::eof() to indicate failure. If is_-

open() == false, the function always fails.

basic_streambuf* setbuf(char_type* s, streamsize n) override;

12 Effects: If setbuf(0, 0) is called on a stream before any I/O has occurred on that stream, the stream
becomes unbuffered. Otherwise the results are implementation-defined. “Unbuffered” means that
pbase() and pptr() always return null and output to the file should appear as soon as possible.

pos_type seekoff(off_type off, ios_base::seekdir way,
ios_base::openmode which
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= ios_base::in | ios_base::out) override;

13 Effects: Let width denote a_codecvt.encoding(). If is_open() == false, or off != 0 && width
<= 0, then the positioning operation fails. Otherwise, if way != basic_ios::cur or off != 0, and
if the last operation was output, then update the output sequence and write any unshift sequence.
Next, seek to the new position: if width > 0, call fseek(file, width * off, whence), otherwise
call fseek(file, 0, whence).

14 Returns: A newly constructed pos_type object that stores the resultant stream position, if possible. If
the positioning operation fails, or if the object cannot represent the resultant stream position, returns
pos_type(off_type(-1)).

15 Remarks: “The last operation was output” means either the last virtual operation was overflow or
the put buffer is non-empty. “Write any unshift sequence” means, if width if less than zero then
call a_codecvt.unshift(state, xbuf, xbuf+XSIZE, xbuf_end) and output the resulting unshift
sequence. The function determines one of three values for the argument whence, of type int, as
indicated in Table 129.

Table 129: seekoff effects [tab:filebuf.seekoff]

way Value stdio Equivalent
basic_ios::beg SEEK_SET
basic_ios::cur SEEK_CUR
basic_ios::end SEEK_END

pos_type seekpos(pos_type sp,
ios_base::openmode which

= ios_base::in | ios_base::out) override;

16 Alters the file position, if possible, to correspond to the position stored in sp (as described below).
Altering the file position performs as follows:

1. if (om & ios_base::out) != 0, then update the output sequence and write any unshift sequence;
2. set the file position to sp as if by a call to fsetpos;
3. if (om & ios_base::in) != 0, then update the input sequence;

where om is the open mode passed to the last call to open(). The operation fails if is_open() returns
false.

17 If sp is an invalid stream position, or if the function positions neither sequence, the positioning operation
fails. If sp has not been obtained by a previous successful call to one of the positioning functions
(seekoff or seekpos) on the same file the effects are undefined.

18 Returns: sp on success. Otherwise returns pos_type(off_type(-1)).

int sync() override;

19 Effects: If a put area exists, calls filebuf::overflow to write the characters to the file, then flushes
the file as if by calling fflush(file). If a get area exists, the effect is implementation-defined.

void imbue(const locale& loc) override;

20 Preconditions: If the file is not positioned at its beginning and the encoding of the current locale as
determined by a_codecvt.encoding() is state-dependent (30.4.2.5.3) then that facet is the same as
the corresponding facet of loc.

21 Effects: Causes characters inserted or extracted after this call to be converted according to loc until
another call of imbue.

22 Remarks: This may require reconversion of previously converted characters. This in turn may require
the implementation to be able to reconstruct the original contents of the file.

31.10.3 Class template basic_ifstream [ifstream]
31.10.3.1 General [ifstream.general]

namespace std {
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template<class charT, class traits = char_traits<charT>>
class basic_ifstream : public basic_istream<charT, traits> {
public:

using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

// 31.10.3.2, constructors
basic_ifstream();
explicit basic_ifstream(const char* s,

ios_base::openmode mode = ios_base::in);
explicit basic_ifstream(const filesystem::path::value_type* s,

ios_base::openmode mode = ios_base::in);// wide systems only; see 31.10.1
explicit basic_ifstream(const string& s,

ios_base::openmode mode = ios_base::in);
template<class T>

explicit basic_ifstream(const T& s, ios_base::openmode mode = ios_base::in);
basic_ifstream(const basic_ifstream&) = delete;
basic_ifstream(basic_ifstream&& rhs);

basic_ifstream& operator=(const basic_ifstream&) = delete;
basic_ifstream& operator=(basic_ifstream&& rhs);

// 31.10.3.3, swap
void swap(basic_ifstream& rhs);

// 31.10.3.4, members
basic_filebuf<charT, traits>* rdbuf() const;

bool is_open() const;
void open(const char* s, ios_base::openmode mode = ios_base::in);
void open(const filesystem::path::value_type* s,

ios_base::openmode mode = ios_base::in); // wide systems only; see 31.10.1
void open(const string& s, ios_base::openmode mode = ios_base::in);
void open(const filesystem::path& s, ios_base::openmode mode = ios_base::in);
void close();

private:
basic_filebuf<charT, traits> sb; // exposition only

};
}

1 The class basic_ifstream<charT, traits> supports reading from named files. It uses a basic_filebuf<
charT, traits> object to control the associated sequence. For the sake of exposition, the maintained data
is presented here as:

—(1.1) sb, the filebuf object.

31.10.3.2 Constructors [ifstream.cons]

basic_ifstream();

1 Effects: Initializes the base class with basic_istream<charT, traits>(addressof(sb)) (31.7.5.2.2)
and sb with basic_filebuf<charT, traits>() (31.10.2.2).

explicit basic_ifstream(const char* s,
ios_base::openmode mode = ios_base::in);

explicit basic_ifstream(const filesystem::path::value_type* s,
ios_base::openmode mode = ios_base::in); // wide systems only; see 31.10.1

2 Effects: Initializes the base class with basic_istream<charT, traits>(addressof(sb)) (31.7.5.2.2)
and sb with basic_filebuf<charT, traits>() (31.10.2.2), then calls rdbuf()->open(s, mode |
ios_base::in). If that function returns a null pointer, calls setstate(failbit).
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explicit basic_ifstream(const string& s,
ios_base::openmode mode = ios_base::in);

3 Effects: Equivalent to: basic_ifstream(s.c_str(), mode).

template<class T>
explicit basic_ifstream(const T& s, ios_base::openmode mode = ios_base::in);

4 Constraints: is_same_v<T, filesystem::path> is true.
5 Effects: Equivalent to: basic_ifstream(s.c_str(), mode).

basic_ifstream(basic_ifstream&& rhs);

6 Effects: Move constructs the base class, and the contained basic_filebuf. Then calls basic_-
istream<charT, traits>::set_rdbuf(addressof(sb)) to install the contained basic_filebuf.

31.10.3.3 Swap [ifstream.swap]

void swap(basic_ifstream& rhs);

1 Effects: Exchanges the state of *this and rhs by calling basic_istream<charT, traits>::swap(rhs)
and sb.swap(rhs.sb).

template<class charT, class traits>
void swap(basic_ifstream<charT, traits>& x, basic_ifstream<charT, traits>& y);

2 Effects: Equivalent to: x.swap(y).

31.10.3.4 Member functions [ifstream.members]

basic_filebuf<charT, traits>* rdbuf() const;

1 Returns: const_cast<basic_filebuf<charT, traits>*>(addressof(sb)).

bool is_open() const;

2 Returns: rdbuf()->is_open().

void open(const char* s, ios_base::openmode mode = ios_base::in);
void open(const filesystem::path::value_type* s,

ios_base::openmode mode = ios_base::in); // wide systems only; see 31.10.1
3 Effects: Calls rdbuf()->open(s, mode | ios_base::in). If that function does not return a null

pointer calls clear(), otherwise calls setstate(failbit) (which may throw ios_base::failure)
(31.5.4.4).

void open(const string& s, ios_base::openmode mode = ios_base::in);
void open(const filesystem::path& s, ios_base::openmode mode = ios_base::in);

4 Effects: Calls open(s.c_str(), mode).

void close();

5 Effects: Calls rdbuf()->close() and, if that function returns a null pointer, calls setstate(failbit)
(which may throw ios_base::failure) (31.5.4.4).

31.10.4 Class template basic_ofstream [ofstream]
31.10.4.1 General [ofstream.general]

namespace std {
template<class charT, class traits = char_traits<charT>>
class basic_ofstream : public basic_ostream<charT, traits> {
public:

using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;
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// 31.10.4.2, constructors
basic_ofstream();
explicit basic_ofstream(const char* s,

ios_base::openmode mode = ios_base::out);
explicit basic_ofstream(const filesystem::path::value_type* s, // wide systems only; see 31.10.1

ios_base::openmode mode = ios_base::out);
explicit basic_ofstream(const string& s,

ios_base::openmode mode = ios_base::out);
template<class T>

explicit basic_ofstream(const T& s, ios_base::openmode mode = ios_base::out);
basic_ofstream(const basic_ofstream&) = delete;
basic_ofstream(basic_ofstream&& rhs);

basic_ofstream& operator=(const basic_ofstream&) = delete;
basic_ofstream& operator=(basic_ofstream&& rhs);

// 31.10.4.3, swap
void swap(basic_ofstream& rhs);

// 31.10.4.4, members
basic_filebuf<charT, traits>* rdbuf() const;

bool is_open() const;
void open(const char* s, ios_base::openmode mode = ios_base::out);
void open(const filesystem::path::value_type* s,

ios_base::openmode mode = ios_base::out); // wide systems only; see 31.10.1
void open(const string& s, ios_base::openmode mode = ios_base::out);
void open(const filesystem::path& s, ios_base::openmode mode = ios_base::out);
void close();

private:
basic_filebuf<charT, traits> sb; // exposition only

};
}

1 The class basic_ofstream<charT, traits> supports writing to named files. It uses a basic_filebuf<
charT, traits> object to control the associated sequence. For the sake of exposition, the maintained data
is presented here as:

—(1.1) sb, the filebuf object.

31.10.4.2 Constructors [ofstream.cons]

basic_ofstream();

1 Effects: Initializes the base class with basic_ostream<charT, traits>(addressof(sb)) (31.7.6.2.2)
and sb with basic_filebuf<charT, traits>() (31.10.2.2).

explicit basic_ofstream(const char* s,
ios_base::openmode mode = ios_base::out);

explicit basic_ofstream(const filesystem::path::value_type* s,
ios_base::openmode mode = ios_base::out); // wide systems only; see 31.10.1

2 Effects: Initializes the base class with basic_ostream<charT, traits>(addressof(sb)) (31.7.6.2.2)
and sb with basic_filebuf<charT, traits>() (31.10.2.2), then calls rdbuf()->open(s, mode |
ios_base::out). If that function returns a null pointer, calls setstate(failbit).

explicit basic_ofstream(const string& s,
ios_base::openmode mode = ios_base::out);

3 Effects: Equivalent to: basic_ofstream(s.c_str(), mode).

template<class T>
explicit basic_ofstream(const T& s, ios_base::openmode mode = ios_base::out);

4 Constraints: is_same_v<T, filesystem::path> is true.
5 Effects: Equivalent to: basic_ofstream(s.c_str(), mode).
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basic_ofstream(basic_ofstream&& rhs);

6 Effects: Move constructs the base class, and the contained basic_filebuf. Then calls basic_-
ostream<charT, traits>::set_rdbuf(addressof(sb)) to install the contained basic_filebuf.

31.10.4.3 Swap [ofstream.swap]

void swap(basic_ofstream& rhs);

1 Effects: Exchanges the state of *this and rhs by calling basic_ostream<charT, traits>::swap(rhs)
and sb.swap(rhs.sb).

template<class charT, class traits>
void swap(basic_ofstream<charT, traits>& x, basic_ofstream<charT, traits>& y);

2 Effects: Equivalent to: x.swap(y).

31.10.4.4 Member functions [ofstream.members]

basic_filebuf<charT, traits>* rdbuf() const;

1 Returns: const_cast<basic_filebuf<charT, traits>*>(addressof(sb)).

bool is_open() const;

2 Returns: rdbuf()->is_open().

void open(const char* s, ios_base::openmode mode = ios_base::out);
void open(const filesystem::path::value_type* s,

ios_base::openmode mode = ios_base::out); // wide systems only; see 31.10.1
3 Effects: Calls rdbuf()->open(s, mode | ios_base::out). If that function does not return a null

pointer calls clear(), otherwise calls setstate(failbit) (which may throw ios_base::failure)
(31.5.4.4).

void close();

4 Effects: Calls rdbuf()->close() and, if that function fails (returns a null pointer), calls setstate(
failbit) (which may throw ios_base::failure) (31.5.4.4).

void open(const string& s, ios_base::openmode mode = ios_base::out);
void open(const filesystem::path& s, ios_base::openmode mode = ios_base::out);

5 Effects: Calls open(s.c_str(), mode).

31.10.5 Class template basic_fstream [fstream]
31.10.5.1 General [fstream.general]

namespace std {
template<class charT, class traits = char_traits<charT>>
class basic_fstream : public basic_iostream<charT, traits> {
public:

using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

// 31.10.5.2, constructors
basic_fstream();
explicit basic_fstream(

const char* s,
ios_base::openmode mode = ios_base::in | ios_base::out);

explicit basic_fstream(
const filesystem::path::value_type* s,
ios_base::openmode mode = ios_base::in|ios_base::out); // wide systems only; see 31.10.1

explicit basic_fstream(
const string& s,
ios_base::openmode mode = ios_base::in | ios_base::out);
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template<class T>
explicit basic_fstream(const T& s, ios_base::openmode mode = ios_base::in | ios_base::out);

basic_fstream(const basic_fstream&) = delete;
basic_fstream(basic_fstream&& rhs);

basic_fstream& operator=(const basic_fstream&) = delete;
basic_fstream& operator=(basic_fstream&& rhs);

// 31.10.5.3, swap
void swap(basic_fstream& rhs);

// 31.10.5.4, members
basic_filebuf<charT, traits>* rdbuf() const;
bool is_open() const;
void open(

const char* s,
ios_base::openmode mode = ios_base::in | ios_base::out);

void open(
const filesystem::path::value_type* s,
ios_base::openmode mode = ios_base::in|ios_base::out); // wide systems only; see 31.10.1

void open(
const string& s,
ios_base::openmode mode = ios_base::in | ios_base::out);

void open(
const filesystem::path& s,
ios_base::openmode mode = ios_base::in | ios_base::out);

void close();

private:
basic_filebuf<charT, traits> sb; // exposition only

};
}

1 The class template basic_fstream<charT, traits> supports reading and writing from named files. It uses
a basic_filebuf<charT, traits> object to control the associated sequences. For the sake of exposition,
the maintained data is presented here as:

—(1.1) sb, the basic_filebuf object.

31.10.5.2 Constructors [fstream.cons]

basic_fstream();

1 Effects: Initializes the base class with basic_iostream<charT, traits>(addressof(sb)) (31.7.5.7.2)
and sb with basic_filebuf<charT, traits>().

explicit basic_fstream(
const char* s,
ios_base::openmode mode = ios_base::in | ios_base::out);

explicit basic_fstream(
const filesystem::path::value_type* s,
ios_base::openmode mode = ios_base::in | ios_base::out); // wide systems only; see 31.10.1

2 Effects: Initializes the base class with basic_iostream<charT, traits>(addressof(sb)) (31.7.5.7.2)
and sb with basic_filebuf<charT, traits>(). Then calls rdbuf()->open(s, mode). If that func-
tion returns a null pointer, calls setstate(failbit).

explicit basic_fstream(
const string& s,
ios_base::openmode mode = ios_base::in | ios_base::out);

3 Effects: Equivalent to: basic_fstream(s.c_str(), mode).

template<class T>
explicit basic_fstream(const T& s, ios_base::openmode mode = ios_base::in | ios_base::out);

4 Constraints: is_same_v<T, filesystem::path> is true.
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5 Effects: Equivalent to: basic_fstream(s.c_str(), mode).

basic_fstream(basic_fstream&& rhs);

6 Effects: Move constructs the base class, and the contained basic_filebuf. Then calls basic_-
istream<charT, traits>::set_rdbuf(addressof(sb)) to install the contained basic_filebuf.

31.10.5.3 Swap [fstream.swap]

void swap(basic_fstream& rhs);

1 Effects: Exchanges the state of *this and rhs by calling basic_iostream<charT,traits>::swap(rhs)
and sb.swap(rhs.sb).

template<class charT, class traits>
void swap(basic_fstream<charT, traits>& x,

basic_fstream<charT, traits>& y);

2 Effects: Equivalent to: x.swap(y).

31.10.5.4 Member functions [fstream.members]

basic_filebuf<charT, traits>* rdbuf() const;

1 Returns: const_cast<basic_filebuf<charT, traits>*>(addressof(sb)).

bool is_open() const;

2 Returns: rdbuf()->is_open().

void open(
const char* s,
ios_base::openmode mode = ios_base::in | ios_base::out);

void open(
const filesystem::path::value_type* s,
ios_base::openmode mode = ios_base::in | ios_base::out); // wide systems only; see 31.10.1

3 Effects: Calls rdbuf()->open(s, mode). If that function does not return a null pointer calls clear(),
otherwise calls setstate(failbit) (which may throw ios_base::failure) (31.5.4.4).

void open(
const string& s,
ios_base::openmode mode = ios_base::in | ios_base::out);

void open(
const filesystem::path& s,
ios_base::openmode mode = ios_base::in | ios_base::out);

4 Effects: Calls open(s.c_str(), mode).

void close();

5 Effects: Calls rdbuf()->close() and, if that function returns a null pointer, calls setstate(failbit)
(which may throw ios_base::failure) (31.5.4.4).

31.11 Synchronized output streams [syncstream]
31.11.1 Header <syncstream> synopsis [syncstream.syn]

#include <ostream> // see 31.7.2

namespace std {
template<class charT, class traits = char_traits<charT>, class Allocator = allocator<charT>>

class basic_syncbuf;

// 31.11.2.6, specialized algorithms
template<class charT, class traits, class Allocator>

void swap(basic_syncbuf<charT, traits, Allocator>&,
basic_syncbuf<charT, traits, Allocator>&);

using syncbuf = basic_syncbuf<char>;
using wsyncbuf = basic_syncbuf<wchar_t>;

§ 31.11.1 1699



© ISO/IEC N4950

template<class charT, class traits = char_traits<charT>, class Allocator = allocator<charT>>
class basic_osyncstream;

using osyncstream = basic_osyncstream<char>;
using wosyncstream = basic_osyncstream<wchar_t>;

}

1 The header <syncstream> provides a mechanism to synchronize execution agents writing to the same stream.

31.11.2 Class template basic_syncbuf [syncstream.syncbuf]
31.11.2.1 Overview [syncstream.syncbuf.overview]

namespace std {
template<class charT, class traits = char_traits<charT>, class Allocator = allocator<charT>>
class basic_syncbuf : public basic_streambuf<charT, traits> {
public:

using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;
using allocator_type = Allocator;

using streambuf_type = basic_streambuf<charT, traits>;

// 31.11.2.2, construction and destruction
basic_syncbuf()

: basic_syncbuf(nullptr) {}
explicit basic_syncbuf(streambuf_type* obuf)

: basic_syncbuf(obuf, Allocator()) {}
basic_syncbuf(streambuf_type*, const Allocator&);
basic_syncbuf(basic_syncbuf&&);
~basic_syncbuf();

// 31.11.2.3, assignment and swap
basic_syncbuf& operator=(basic_syncbuf&&);
void swap(basic_syncbuf&);

// 31.11.2.4, member functions
bool emit();
streambuf_type* get_wrapped() const noexcept;
allocator_type get_allocator() const noexcept;
void set_emit_on_sync(bool) noexcept;

protected:
// 31.11.2.5, overridden virtual functions
int sync() override;

private:
streambuf_type* wrapped; // exposition only
bool emit_on_sync{}; // exposition only

};
}

1 Class template basic_syncbuf stores character data written to it, known as the associated output, into
internal buffers allocated using the object’s allocator. The associated output is transferred to the wrapped
stream buffer object *wrapped when emit() is called or when the basic_syncbuf object is destroyed. Such
transfers are atomic with respect to transfers by other basic_syncbuf objects with the same wrapped stream
buffer object.

31.11.2.2 Construction and destruction [syncstream.syncbuf.cons]

basic_syncbuf(streambuf_type* obuf, const Allocator& allocator);

1 Effects: Sets wrapped to obuf.
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2 Postconditions: get_wrapped() == obuf and get_allocator() == allocator are true.
3 Throws: Nothing unless an exception is thrown by the construction of a mutex or by memory allocation.
4 Remarks: A copy of allocator is used to allocate memory for internal buffers holding the associated

output.

basic_syncbuf(basic_syncbuf&& other);

5 Postconditions: The value returned by this->get_wrapped() is the value returned by other.get_-
wrapped() prior to calling this constructor. Output stored in other prior to calling this constructor
will be stored in *this afterwards. other.pbase() == other.pptr() and other.get_wrapped() ==
nullptr are true.

6 Remarks: This constructor disassociates other from its wrapped stream buffer, ensuring destruction of
other produces no output.

~basic_syncbuf();

7 Effects: Calls emit().
8 Throws: Nothing. If an exception is thrown from emit(), the destructor catches and ignores that

exception.

31.11.2.3 Assignment and swap [syncstream.syncbuf.assign]

basic_syncbuf& operator=(basic_syncbuf&& rhs);

1 Effects: Calls emit() then move assigns from rhs. After the move assignment *this has the observable
state it would have had if it had been move constructed from rhs (31.11.2.2).

2 Postconditions:
—(2.1) rhs.get_wrapped() == nullptr is true.
—(2.2) this->get_allocator() == rhs.get_allocator() is true when

allocator_traits<Allocator>::propagate_on_container_move_assignment::value

is true; otherwise, the allocator is unchanged.
3 Returns: *this.
4 Remarks: This assignment operator disassociates rhs from its wrapped stream buffer, ensuring

destruction of rhs produces no output.

void swap(basic_syncbuf& other);

5 Preconditions: Either allocator_traits<Allocator>::propagate_on_container_swap::value is
true or this->get_allocator() == other.get_allocator() is true.

6 Effects: Exchanges the state of *this and other.

31.11.2.4 Member functions [syncstream.syncbuf.members]

bool emit();

1 Effects: Atomically transfers the associated output of *this to the stream buffer *wrapped, so that it
appears in the output stream as a contiguous sequence of characters. wrapped->pubsync() is called if
and only if a call was made to sync() since the most recent call to emit(), if any.

2 Synchronization: All emit() calls transferring characters to the same stream buffer object appear to
execute in a total order consistent with the “happens before” relation (6.9.2.2), where each emit() call
synchronizes with subsequent emit() calls in that total order.

3 Postconditions: On success, the associated output is empty.
4 Returns: true if all of the following conditions hold; otherwise false:

—(4.1) wrapped == nullptr is false.
—(4.2) All of the characters in the associated output were successfully transferred.
—(4.3) The call to wrapped->pubsync() (if any) succeeded.

5 Remarks: May call member functions of wrapped while holding a lock uniquely associated with wrapped.

§ 31.11.2.4 1701



© ISO/IEC N4950

streambuf_type* get_wrapped() const noexcept;

6 Returns: wrapped.

allocator_type get_allocator() const noexcept;

7 Returns: A copy of the allocator that was set in the constructor or assignment operator.

void set_emit_on_sync(bool b) noexcept;

8 Effects: emit_on_sync = b.

31.11.2.5 Overridden virtual functions [syncstream.syncbuf.virtuals]

int sync() override;

1 Effects: Records that the wrapped stream buffer is to be flushed. Then, if emit_on_sync is true, calls
emit().
[Note 1 : If emit_on_sync is false, the actual flush is delayed until a call to emit(). — end note ]

2 Returns: If emit() was called and returned false, returns -1; otherwise 0.

31.11.2.6 Specialized algorithms [syncstream.syncbuf.special]

template<class charT, class traits, class Allocator>
void swap(basic_syncbuf<charT, traits, Allocator>& a,

basic_syncbuf<charT, traits, Allocator>& b);

1 Effects: Equivalent to a.swap(b).

31.11.3 Class template basic_osyncstream [syncstream.osyncstream]
31.11.3.1 Overview [syncstream.osyncstream.overview]

namespace std {
template<class charT, class traits = char_traits<charT>, class Allocator = allocator<charT>>
class basic_osyncstream : public basic_ostream<charT, traits> {
public:

using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

using allocator_type = Allocator;
using streambuf_type = basic_streambuf<charT, traits>;
using syncbuf_type = basic_syncbuf<charT, traits, Allocator>;

// 31.11.3.2, construction and destruction
basic_osyncstream(streambuf_type*, const Allocator&);
explicit basic_osyncstream(streambuf_type* obuf)

: basic_osyncstream(obuf, Allocator()) {}
basic_osyncstream(basic_ostream<charT, traits>& os, const Allocator& allocator)

: basic_osyncstream(os.rdbuf(), allocator) {}
explicit basic_osyncstream(basic_ostream<charT, traits>& os)

: basic_osyncstream(os, Allocator()) {}
basic_osyncstream(basic_osyncstream&&) noexcept;
~basic_osyncstream();

// assignment
basic_osyncstream& operator=(basic_osyncstream&&);

// 31.11.3.3, member functions
void emit();
streambuf_type* get_wrapped() const noexcept;
syncbuf_type* rdbuf() const noexcept { return const_cast<syncbuf_type*>(addressof(sb)); }
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private:
syncbuf_type sb; // exposition only

};
}

1 Allocator shall meet the Cpp17Allocator requirements (16.4.4.6.1).
2 [Example 1 : A named variable can be used within a block statement for streaming.

{
osyncstream bout(cout);
bout << "Hello, ";
bout << "World!";
bout << endl; // flush is noted
bout << "and more!\n";

} // characters are transferred and cout is flushed
— end example ]

3 [Example 2 : A temporary object can be used for streaming within a single statement.
osyncstream(cout) << "Hello, " << "World!" << '\n';

In this example, cout is not flushed. — end example ]

31.11.3.2 Construction and destruction [syncstream.osyncstream.cons]

basic_osyncstream(streambuf_type* buf, const Allocator& allocator);

1 Effects: Initializes sb from buf and allocator. Initializes the base class with basic_ostream<charT,
traits>(addressof(sb)).

2 [Note 1 : The member functions of the provided stream buffer can be called from emit() while a lock is held,
which might result in a deadlock if used incautiously. — end note ]

3 Postconditions: get_wrapped() == buf is true.

basic_osyncstream(basic_osyncstream&& other) noexcept;

4 Effects: Move constructs the base class and sb from the corresponding subobjects of other, and calls
basic_ostream<charT, traits>::set_rdbuf(addressof(sb)).

5 Postconditions: The value returned by get_wrapped() is the value returned by other.get_wrapped()
prior to calling this constructor. nullptr == other.get_wrapped() is true.

31.11.3.3 Member functions [syncstream.osyncstream.members]

void emit();

1 Effects: Behaves as an unformatted output function (31.7.6.4). After constructing a sentry object,
calls sb.emit(). If that call returns false, calls setstate(ios_base::badbit).

2 [Example 1 : A flush on a basic_osyncstream does not flush immediately:
{

osyncstream bout(cout);
bout << "Hello," << '\n'; // no flush
bout.emit(); // characters transferred; cout not flushed
bout << "World!" << endl; // flush noted; cout not flushed
bout.emit(); // characters transferred; cout flushed
bout << "Greetings." << '\n'; // no flush

} // characters transferred; cout not flushed
— end example ]

3 [Example 2 : The function emit() can be used to handle exceptions from operations on the underlying stream.
{

osyncstream bout(cout);
bout << "Hello, " << "World!" << '\n';
try {

bout.emit();
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} catch (...) {
// handle exception

}
}

— end example ]

streambuf_type* get_wrapped() const noexcept;

4 Returns: sb.get_wrapped().
5 [Example 3 : Obtaining the wrapped stream buffer with get_wrapped() allows wrapping it again with an

osyncstream. For example,
{

osyncstream bout1(cout);
bout1 << "Hello, ";
{

osyncstream(bout1.get_wrapped()) << "Goodbye, " << "Planet!" << '\n';
}
bout1 << "World!" << '\n';

}

produces the uninterleaved output

Goodbye, Planet!
Hello, World!

— end example ]

31.12 File systems [filesystems]
31.12.1 General [fs.general]

1 Subclause 31.12 describes operations on file systems and their components, such as paths, regular files, and
directories.

2 A file system is a collection of files and their attributes.
3 A file is an object within a file system that holds user or system data. Files can be written to, or read from,

or both. A file has certain attributes, including type. File types include regular files and directories. Other
types of files, such as symbolic links, may be supported by the implementation.

4 A directory is a file within a file system that acts as a container of directory entries that contain information
about other files, possibly including other directory files. The parent directory of a directory is the directory that
both contains a directory entry for the given directory and is represented by the dot-dot filename (31.12.6.2)
in the given directory. The parent directory of other types of files is a directory containing a directory entry
for the file under discussion.

5 A link is an object that associates a filename with a file. Several links can associate names with the same file.
A hard link is a link to an existing file. Some file systems support multiple hard links to a file. If the last
hard link to a file is removed, the file itself is removed.
[Note 1 : A hard link can be thought of as a shared-ownership smart pointer to a file. — end note ]

A symbolic link is a type of file with the property that when the file is encountered during pathname
resolution (31.12.6), a string stored by the file is used to modify the pathname resolution.
[Note 2 : Symbolic links are often called symlinks. A symbolic link can be thought of as a raw pointer to a file. If the
file pointed to does not exist, the symbolic link is said to be a “dangling” symbolic link. — end note ]

31.12.2 Conformance [fs.conformance]
31.12.2.1 General [fs.conformance.general]

1 Conformance is specified in terms of behavior. Ideal behavior is not always implementable, so the conformance
subclauses take that into account.

31.12.2.2 POSIX conformance [fs.conform.9945]
1 Some behavior is specified by reference to POSIX. How such behavior is actually implemented is unspecified.

[Note 1 : This constitutes an “as if” rule allowing implementations to call native operating system or other APIs.
— end note ]
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2 Implementations should provide such behavior as it is defined by POSIX. Implementations shall document
any behavior that differs from the behavior defined by POSIX. Implementations that do not support exact
POSIX behavior should provide behavior as close to POSIX behavior as is reasonable given the limitations of
actual operating systems and file systems. If an implementation cannot provide any reasonable behavior, the
implementation shall report an error as specified in 31.12.5.
[Note 2 : This allows users to rely on an exception being thrown or an error code being set when an implementation
cannot provide any reasonable behavior. — end note ]

3 Implementations are not required to provide behavior that is not supported by a particular file system.
[Example 1 : The FAT file system used by some memory cards, camera memory, and floppy disks does not support
hard links, symlinks, and many other features of more capable file systems, so implementations are not required to
support those features on the FAT file system but instead are required to report an error as described above. — end
example ]

31.12.2.3 Operating system dependent behavior conformance [fs.conform.os]
1 Behavior that is specified as being operating system dependent is dependent upon the behavior and character-

istics of an operating system. The operating system an implementation is dependent upon is implementation-
defined.

2 It is permissible for an implementation to be dependent upon an operating system emulator rather than the
actual underlying operating system.

31.12.2.4 File system race behavior [fs.race.behavior]
1 A file system race is the condition that occurs when multiple threads, processes, or computers interleave

access and modification of the same object within a file system. Behavior is undefined if calls to functions
provided by subclause 31.12 introduce a file system race.

2 If the possibility of a file system race would make it unreliable for a program to test for a precondition before
calling a function described herein, Preconditions: is not specified for the function.
[Note 1 : As a design practice, preconditions are not specified when it is unreasonable for a program to detect them
prior to calling the function. — end note ]

31.12.3 Requirements [fs.req]
1 Throughout subclause 31.12, char, wchar_t, char8_t, char16_t, and char32_t are collectively called

encoded character types.
2 Functions with template parameters named EcharT shall not participate in overload resolution unless EcharT

is one of the encoded character types.
3 Template parameters named InputIterator shall meet the Cpp17InputIterator requirements (25.3.5.3) and

shall have a value type that is one of the encoded character types.
4 [Note 1 : Use of an encoded character type implies an associated character set and encoding. Since signed char and

unsigned char have no implied character set and encoding, they are not included as permitted types. — end note ]
5 Template parameters named Allocator shall meet the Cpp17Allocator requirements (16.4.4.6.1).

31.12.4 Header <filesystem> synopsis [fs.filesystem.syn]
#include <compare> // see 17.11.1

namespace std::filesystem {
// 31.12.6, paths
class path;

// 31.12.6.8, path non-member functions
void swap(path& lhs, path& rhs) noexcept;
size_t hash_value(const path& p) noexcept;

// 31.12.7, filesystem errors
class filesystem_error;

// 31.12.10, directory entries
class directory_entry;
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// 31.12.11, directory iterators
class directory_iterator;

// 31.12.11.3, range access for directory iterators
directory_iterator begin(directory_iterator iter) noexcept;
directory_iterator end(directory_iterator) noexcept;

// 31.12.12, recursive directory iterators
class recursive_directory_iterator;

// 31.12.12.3, range access for recursive directory iterators
recursive_directory_iterator begin(recursive_directory_iterator iter) noexcept;
recursive_directory_iterator end(recursive_directory_iterator) noexcept;

// 31.12.9, file status
class file_status;

struct space_info {
uintmax_t capacity;
uintmax_t free;
uintmax_t available;

friend bool operator==(const space_info&, const space_info&) = default;
};

// 31.12.8, enumerations
enum class file_type;
enum class perms;
enum class perm_options;
enum class copy_options;
enum class directory_options;

using file_time_type = chrono::time_point<chrono::file_clock>;

// 31.12.13, filesystem operations
path absolute(const path& p);
path absolute(const path& p, error_code& ec);

path canonical(const path& p);
path canonical(const path& p, error_code& ec);

void copy(const path& from, const path& to);
void copy(const path& from, const path& to, error_code& ec);
void copy(const path& from, const path& to, copy_options options);
void copy(const path& from, const path& to, copy_options options,

error_code& ec);

bool copy_file(const path& from, const path& to);
bool copy_file(const path& from, const path& to, error_code& ec);
bool copy_file(const path& from, const path& to, copy_options option);
bool copy_file(const path& from, const path& to, copy_options option,

error_code& ec);

void copy_symlink(const path& existing_symlink, const path& new_symlink);
void copy_symlink(const path& existing_symlink, const path& new_symlink,

error_code& ec) noexcept;

bool create_directories(const path& p);
bool create_directories(const path& p, error_code& ec);

bool create_directory(const path& p);
bool create_directory(const path& p, error_code& ec) noexcept;
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bool create_directory(const path& p, const path& attributes);
bool create_directory(const path& p, const path& attributes,

error_code& ec) noexcept;

void create_directory_symlink(const path& to, const path& new_symlink);
void create_directory_symlink(const path& to, const path& new_symlink,

error_code& ec) noexcept;

void create_hard_link(const path& to, const path& new_hard_link);
void create_hard_link(const path& to, const path& new_hard_link,

error_code& ec) noexcept;

void create_symlink(const path& to, const path& new_symlink);
void create_symlink(const path& to, const path& new_symlink,

error_code& ec) noexcept;

path current_path();
path current_path(error_code& ec);
void current_path(const path& p);
void current_path(const path& p, error_code& ec) noexcept;

bool equivalent(const path& p1, const path& p2);
bool equivalent(const path& p1, const path& p2, error_code& ec) noexcept;

bool exists(file_status s) noexcept;
bool exists(const path& p);
bool exists(const path& p, error_code& ec) noexcept;

uintmax_t file_size(const path& p);
uintmax_t file_size(const path& p, error_code& ec) noexcept;

uintmax_t hard_link_count(const path& p);
uintmax_t hard_link_count(const path& p, error_code& ec) noexcept;

bool is_block_file(file_status s) noexcept;
bool is_block_file(const path& p);
bool is_block_file(const path& p, error_code& ec) noexcept;

bool is_character_file(file_status s) noexcept;
bool is_character_file(const path& p);
bool is_character_file(const path& p, error_code& ec) noexcept;

bool is_directory(file_status s) noexcept;
bool is_directory(const path& p);
bool is_directory(const path& p, error_code& ec) noexcept;

bool is_empty(const path& p);
bool is_empty(const path& p, error_code& ec);

bool is_fifo(file_status s) noexcept;
bool is_fifo(const path& p);
bool is_fifo(const path& p, error_code& ec) noexcept;

bool is_other(file_status s) noexcept;
bool is_other(const path& p);
bool is_other(const path& p, error_code& ec) noexcept;

bool is_regular_file(file_status s) noexcept;
bool is_regular_file(const path& p);
bool is_regular_file(const path& p, error_code& ec) noexcept;

bool is_socket(file_status s) noexcept;
bool is_socket(const path& p);
bool is_socket(const path& p, error_code& ec) noexcept;
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bool is_symlink(file_status s) noexcept;
bool is_symlink(const path& p);
bool is_symlink(const path& p, error_code& ec) noexcept;

file_time_type last_write_time(const path& p);
file_time_type last_write_time(const path& p, error_code& ec) noexcept;
void last_write_time(const path& p, file_time_type new_time);
void last_write_time(const path& p, file_time_type new_time,

error_code& ec) noexcept;

void permissions(const path& p, perms prms, perm_options opts=perm_options::replace);
void permissions(const path& p, perms prms, error_code& ec) noexcept;
void permissions(const path& p, perms prms, perm_options opts, error_code& ec);

path proximate(const path& p, error_code& ec);
path proximate(const path& p, const path& base = current_path());
path proximate(const path& p, const path& base, error_code& ec);

path read_symlink(const path& p);
path read_symlink(const path& p, error_code& ec);

path relative(const path& p, error_code& ec);
path relative(const path& p, const path& base = current_path());
path relative(const path& p, const path& base, error_code& ec);

bool remove(const path& p);
bool remove(const path& p, error_code& ec) noexcept;

uintmax_t remove_all(const path& p);
uintmax_t remove_all(const path& p, error_code& ec);

void rename(const path& from, const path& to);
void rename(const path& from, const path& to, error_code& ec) noexcept;

void resize_file(const path& p, uintmax_t size);
void resize_file(const path& p, uintmax_t size, error_code& ec) noexcept;

space_info space(const path& p);
space_info space(const path& p, error_code& ec) noexcept;

file_status status(const path& p);
file_status status(const path& p, error_code& ec) noexcept;

bool status_known(file_status s) noexcept;

file_status symlink_status(const path& p);
file_status symlink_status(const path& p, error_code& ec) noexcept;

path temp_directory_path();
path temp_directory_path(error_code& ec);

path weakly_canonical(const path& p);
path weakly_canonical(const path& p, error_code& ec);

}

// 31.12.6.9, hash support
namespace std {

template<class T> struct hash;
template<> struct hash<filesystem::path>;

}

namespace std::ranges {
template<>

inline constexpr bool enable_borrowed_range<filesystem::directory_iterator> = true;
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template<>
inline constexpr bool enable_borrowed_range<filesystem::recursive_directory_iterator> = true;

template<>
inline constexpr bool enable_view<filesystem::directory_iterator> = true;

template<>
inline constexpr bool enable_view<filesystem::recursive_directory_iterator> = true;

}

1 Implementations should ensure that the resolution and range of file_time_type reflect the operating system
dependent resolution and range of file time values.

31.12.5 Error reporting [fs.err.report]
1 Filesystem library functions often provide two overloads, one that throws an exception to report file system

errors, and another that sets an error_code.
[Note 1 : This supports two common use cases:

—(1.1) Uses where file system errors are truly exceptional and indicate a serious failure. Throwing an exception is an
appropriate response.

—(1.2) Uses where file system errors are routine and do not necessarily represent failure. Returning an error code is the
most appropriate response. This allows application specific error handling, including simply ignoring the error.

— end note ]
2 Functions not having an argument of type error_code& handle errors as follows, unless otherwise specified:

—(2.1) When a call by the implementation to an operating system or other underlying API results in an
error that prevents the function from meeting its specifications, an exception of type filesystem_-
error shall be thrown. For functions with a single path argument, that argument shall be passed
to the filesystem_error constructor with a single path argument. For functions with two path
arguments, the first of these arguments shall be passed to the filesystem_error constructor as the
path1 argument, and the second shall be passed as the path2 argument. The filesystem_error
constructor’s error_code argument is set as appropriate for the specific operating system dependent
error.

—(2.2) Failure to allocate storage is reported by throwing an exception as described in 16.4.6.13.
—(2.3) Destructors throw nothing.

3 Functions having an argument of type error_code& handle errors as follows, unless otherwise specified:
—(3.1) If a call by the implementation to an operating system or other underlying API results in an error that

prevents the function from meeting its specifications, the error_code& argument is set as appropriate
for the specific operating system dependent error. Otherwise, clear() is called on the error_code&
argument.

31.12.6 Class path [fs.class.path]
31.12.6.1 General [fs.class.path.general]

1 An object of class path represents a path and contains a pathname. Such an object is concerned only with
the lexical and syntactic aspects of a path. The path does not necessarily exist in external storage, and the
pathname is not necessarily valid for the current operating system or for a particular file system.

2 [Note 1 : Class path is used to support the differences between the string types used by different operating systems to
represent pathnames, and to perform conversions between encodings when necessary. — end note ]

3 A path is a sequence of elements that identify the location of a file within a filesystem. The elements are the
root-nameopt , root-directoryopt , and an optional sequence of filenames (31.12.6.2). The maximum number of
elements in the sequence is operating system dependent (31.12.2.3).

4 An absolute path is a path that unambiguously identifies the location of a file without reference to an
additional starting location. The elements of a path that determine if it is absolute are operating system
dependent. A relative path is a path that is not absolute, and as such, only unambiguously identifies the
location of a file when resolved relative to an implied starting location. The elements of a path that determine
if it is relative are operating system dependent.
[Note 2 : Pathnames “.” and “..” are relative paths. — end note ]
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5 A pathname is a character string that represents the name of a path. Pathnames are formatted according to
the generic pathname format grammar (31.12.6.2) or according to an operating system dependent native
pathname format accepted by the host operating system.

6 Pathname resolution is the operating system dependent mechanism for resolving a pathname to a particular
file in a file hierarchy. There may be multiple pathnames that resolve to the same file.
[Example 1 : POSIX specifies the mechanism in section 4.12, Pathname resolution. — end example ]

namespace std::filesystem {
class path {
public:

using value_type = see below ;
using string_type = basic_string<value_type>;
static constexpr value_type preferred_separator = see below ;

// 31.12.8.1, enumeration format
enum format;

// 31.12.6.5.1, constructors and destructor
path() noexcept;
path(const path& p);
path(path&& p) noexcept;
path(string_type&& source, format fmt = auto_format);
template<class Source>

path(const Source& source, format fmt = auto_format);
template<class InputIterator>

path(InputIterator first, InputIterator last, format fmt = auto_format);
template<class Source>

path(const Source& source, const locale& loc, format fmt = auto_format);
template<class InputIterator>

path(InputIterator first, InputIterator last, const locale& loc, format fmt = auto_format);
~path();

// 31.12.6.5.2, assignments
path& operator=(const path& p);
path& operator=(path&& p) noexcept;
path& operator=(string_type&& source);
path& assign(string_type&& source);
template<class Source>

path& operator=(const Source& source);
template<class Source>

path& assign(const Source& source);
template<class InputIterator>

path& assign(InputIterator first, InputIterator last);

// 31.12.6.5.3, appends
path& operator/=(const path& p);
template<class Source>

path& operator/=(const Source& source);
template<class Source>

path& append(const Source& source);
template<class InputIterator>

path& append(InputIterator first, InputIterator last);

// 31.12.6.5.4, concatenation
path& operator+=(const path& x);
path& operator+=(const string_type& x);
path& operator+=(basic_string_view<value_type> x);
path& operator+=(const value_type* x);
path& operator+=(value_type x);
template<class Source>

path& operator+=(const Source& x);
template<class EcharT>

path& operator+=(EcharT x);
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template<class Source>
path& concat(const Source& x);

template<class InputIterator>
path& concat(InputIterator first, InputIterator last);

// 31.12.6.5.5, modifiers
void clear() noexcept;
path& make_preferred();
path& remove_filename();
path& replace_filename(const path& replacement);
path& replace_extension(const path& replacement = path());
void swap(path& rhs) noexcept;

// 31.12.6.8, non-member operators
friend bool operator==(const path& lhs, const path& rhs) noexcept;
friend strong_ordering operator<=>(const path& lhs, const path& rhs) noexcept;

friend path operator/(const path& lhs, const path& rhs);

// 31.12.6.5.6, native format observers
const string_type& native() const noexcept;
const value_type* c_str() const noexcept;
operator string_type() const;

template<class EcharT, class traits = char_traits<EcharT>,
class Allocator = allocator<EcharT>>

basic_string<EcharT, traits, Allocator>
string(const Allocator& a = Allocator()) const;

std::string string() const;
std::wstring wstring() const;
std::u8string u8string() const;
std::u16string u16string() const;
std::u32string u32string() const;

// 31.12.6.5.7, generic format observers
template<class EcharT, class traits = char_traits<EcharT>,

class Allocator = allocator<EcharT>>
basic_string<EcharT, traits, Allocator>

generic_string(const Allocator& a = Allocator()) const;
std::string generic_string() const;
std::wstring generic_wstring() const;
std::u8string generic_u8string() const;
std::u16string generic_u16string() const;
std::u32string generic_u32string() const;

// 31.12.6.5.8, compare
int compare(const path& p) const noexcept;
int compare(const string_type& s) const;
int compare(basic_string_view<value_type> s) const;
int compare(const value_type* s) const;

// 31.12.6.5.9, decomposition
path root_name() const;
path root_directory() const;
path root_path() const;
path relative_path() const;
path parent_path() const;
path filename() const;
path stem() const;
path extension() const;

// 31.12.6.5.10, query
[[nodiscard]] bool empty() const noexcept;
bool has_root_name() const;
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bool has_root_directory() const;
bool has_root_path() const;
bool has_relative_path() const;
bool has_parent_path() const;
bool has_filename() const;
bool has_stem() const;
bool has_extension() const;
bool is_absolute() const;
bool is_relative() const;

// 31.12.6.5.11, generation
path lexically_normal() const;
path lexically_relative(const path& base) const;
path lexically_proximate(const path& base) const;

// 31.12.6.6, iterators
class iterator;
using const_iterator = iterator;

iterator begin() const;
iterator end() const;

// 31.12.6.7, path inserter and extractor
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const path& p);

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, path& p);
};

}

7 value_type is a typedef for the operating system dependent encoded character type used to represent
pathnames.

8 The value of the preferred_separator member is the operating system dependent preferred-separator
character (31.12.6.2).

9 [Example 2 : For POSIX-based operating systems, value_type is char and preferred_separator is the slash character
(’/’). For Windows-based operating systems, value_type is wchar_t and preferred_separator is the backslash
character (L’\\’). — end example ]

31.12.6.2 Generic pathname format [fs.path.generic]
pathname :

root-nameopt root-directoryopt relative-path
root-name :

operating system dependent sequences of characters
implementation-defined sequences of characters

root-directory :
directory-separator

relative-path :
filename
filename directory-separator relative-path
an empty path

filename :
non-empty sequence of characters other than directory-separator characters

directory-separator :
preferred-separator directory-separatoropt
fallback-separator directory-separatoropt

preferred-separator :
operating system dependent directory separator character
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fallback-separator :
/, if preferred-separator is not /

1 A filename is the name of a file. The dot and dot-dot filenames, consisting solely of one and two period
characters respectively, have special meaning. The following characteristics of filenames are operating system
dependent:

—(1.1) The permitted characters.
[Example 1 : Some operating systems prohibit the ASCII control characters (0x00 – 0x1F) in filenames. — end
example ]
[Note 1 : Wider portability can be achieved by limiting filename characters to the POSIX Portable Filename
Character Set:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 . _ - — end note ]

—(1.2) The maximum permitted length.
—(1.3) Filenames that are not permitted.
—(1.4) Filenames that have special meaning.
—(1.5) Case awareness and sensitivity during path resolution.
—(1.6) Special rules that may apply to file types other than regular files, such as directories.

2 Except in a root-name, multiple successive directory-separator characters are considered to be the same as one
directory-separator character.

3 The dot filename is treated as a reference to the current directory. The dot-dot filename is treated as a reference
to the parent directory. What the dot-dot filename refers to relative to root-directory is implementation-defined.
Specific filenames may have special meanings for a particular operating system.

4 A root-name identifies the starting location for pathname resolution (31.12.6). If there are no operating
system dependent root-names, at least one implementation-defined root-name is required.
[Note 2 : Many operating systems define a name beginning with two directory-separator characters as a root-name that
identifies network or other resource locations. Some operating systems define a single letter followed by a colon as a
drive specifier — a root-name identifying a specific device such as a disk drive. — end note ]

5 If a root-name is otherwise ambiguous, the possibility with the longest sequence of characters is chosen.
[Note 3 : On a POSIX-like operating system, it is impossible to have a root-name and a relative-path without an
intervening root-directory element. — end note ]

6 Normalization of a generic format pathname means:
1. If the path is empty, stop.
2. Replace each slash character in the root-name with a preferred-separator .
3. Replace each directory-separator with a preferred-separator .

[Note 4 : The generic pathname grammar defines directory-separator as one or more slashes and preferred-
separators. — end note ]

4. Remove each dot filename and any immediately following directory-separator .
5. As long as any appear, remove a non-dot-dot filename immediately followed by a directory-separator

and a dot-dot filename, along with any immediately following directory-separator .
6. If there is a root-directory , remove all dot-dot filenames and any directory-separators immediately

following them.
[Note 5 : These dot-dot filenames attempt to refer to nonexistent parent directories. — end note ]

7. If the last filename is dot-dot, remove any trailing directory-separator .
8. If the path is empty, add a dot.

The result of normalization is a path in normal form, which is said to be normalized.
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31.12.6.3 Conversions [fs.path.cvt]
31.12.6.3.1 Argument format conversions [fs.path.fmt.cvt]

1 [Note 1 : The format conversions described in this subclause are not applied on POSIX-based operating systems
because on these systems:

—(1.1) The generic format is acceptable as a native path.
—(1.2) There is no need to distinguish between native format and generic format in function arguments.
—(1.3) Paths for regular files and paths for directories share the same syntax.

— end note ]
2 Several functions are defined to accept detected-format arguments, which are character sequences. A detected-

format argument represents a path using either a pathname in the generic format (31.12.6.2) or a pathname
in the native format (31.12.6). Such an argument is taken to be in the generic format if and only if it matches
the generic format and is not acceptable to the operating system as a native path.

3 [Note 2 : Some operating systems have no unambiguous way to distinguish between native format and generic format
arguments. This is by design as it simplifies use for operating systems that do not require disambiguation. An
implementation for an operating system where disambiguation is required is permitted to distinguish between the
formats. — end note ]

4 Pathnames are converted as needed between the generic and native formats in an operating-system-dependent
manner. Let G(n) and N(g) in a mathematical sense be the implementation’s functions that convert native-
to-generic and generic-to-native formats respectively. If g=G(n) for some n, then G(N(g))=g; if n=N(g) for
some g, then N(G(n))=n.
[Note 3 : Neither G nor N need be invertible. — end note ]

5 If the native format requires paths for regular files to be formatted differently from paths for directories,
the path shall be treated as a directory path if its last element is a directory-separator , otherwise it shall be
treated as a path to a regular file.

6 [Note 4 : A path stores a native format pathname (31.12.6.5.6) and acts as if it also stores a generic format pathname,
related as given below. The implementation can generate the generic format pathname based on the native format
pathname (and possibly other information) when requested. — end note ]

7 When a path is constructed from or is assigned a single representation separate from any path, the other
representation is selected by the appropriate conversion function (G or N ).

8 When the (new) value p of one representation of a path is derived from the representation of that or another
path, a value q is chosen for the other representation. The value q converts to p (by G or N as appropriate)
if any such value does so; q is otherwise unspecified.
[Note 5 : If q is the result of converting any path at all, it is the result of converting p. — end note ]

31.12.6.3.2 Type and encoding conversions [fs.path.type.cvt]
1 The native encoding of an ordinary character string is the operating system dependent current encoding for

pathnames (31.12.6). The native encoding for wide character strings is the implementation-defined execution
wide-character set encoding (16.3.3.3.4).

2 For member function arguments that take character sequences representing paths and for member functions
returning strings, value type and encoding conversion is performed if the value type of the argument or return
value differs from path::value_type. For the argument or return value, the method of conversion and the
encoding to be converted to is determined by its value type:

—(2.1) char: The encoding is the native ordinary encoding. The method of conversion, if any, is operating
system dependent.
[Note 1 : For POSIX-based operating systems path::value_type is char so no conversion from char value type
arguments or to char value type return values is performed. For Windows-based operating systems, the native
ordinary encoding is determined by calling a Windows API function. — end note ]
[Note 2 : This results in behavior identical to other C and C++ standard library functions that perform file
operations using ordinary character strings to identify paths. Changing this behavior would be surprising and
error-prone. — end note ]

—(2.2) wchar_t: The encoding is the native wide encoding. The method of conversion is unspecified.
[Note 3 : For Windows-based operating systems path::value_type is wchar_t so no conversion from wchar_t
value type arguments or to wchar_t value type return values is performed. — end note ]
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—(2.3) char8_t: The encoding is UTF-8. The method of conversion is unspecified.
—(2.4) char16_t: The encoding is UTF-16. The method of conversion is unspecified.
—(2.5) char32_t: The encoding is UTF-32. The method of conversion is unspecified.

3 If the encoding being converted to has no representation for source characters, the resulting converted
characters, if any, are unspecified. Implementations should not modify member function arguments if already
of type path::value_type.

31.12.6.4 Requirements [fs.path.req]
1 In addition to the requirements (31.12.3), function template parameters named Source shall be one of:

—(1.1) basic_string<EcharT, traits, Allocator>. A function argument const Source& source shall
have an effective range [source.begin(), source.end()).

—(1.2) basic_string_view<EcharT, traits>. A function argument const Source& source shall have an
effective range [source.begin(), source.end()).

—(1.3) A type meeting the Cpp17InputIterator requirements that iterates over a NTCTS. The value type
shall be an encoded character type. A function argument const Source& source shall have an
effective range [source, end) where end is the first iterator value with an element value equal to
iterator_traits<Source>::value_type().

—(1.4) A character array that after array-to-pointer decay results in a pointer to the start of a NTCTS. The
value type shall be an encoded character type. A function argument const Source& source shall have
an effective range [source, end) where end is the first iterator value with an element value equal to
iterator_traits<decay_t<Source>>::value_type().

2 Functions taking template parameters named Source shall not participate in overload resolution unless
Source denotes a type other than path, and either

—(2.1) Source is a specialization of basic_string or basic_string_view, or
—(2.2) the qualified-id iterator_traits<decay_t<Source>>::value_type is valid and denotes a possibly

const encoded character type (13.10.3).
3 [Note 1 : See path conversions (31.12.6.3) for how the value types above and their encodings convert to path::value_-

type and its encoding. — end note ]
4 Arguments of type Source shall not be null pointers.

31.12.6.5 Members [fs.path.member]
31.12.6.5.1 Constructors [fs.path.construct]

path() noexcept;

1 Postconditions: empty() == true.

path(const path& p);
path(path&& p) noexcept;

2 Effects: Constructs an object of class path having the same pathname in the native and generic formats,
respectively, as the original value of p. In the second form, p is left in a valid but unspecified state.

path(string_type&& source, format fmt = auto_format);

3 Effects: Constructs an object of class path for which the pathname in the detected-format of source
has the original value of source (31.12.6.3.1), converting format if required (31.12.6.3.1). source is
left in a valid but unspecified state.

template<class Source>
path(const Source& source, format fmt = auto_format);

template<class InputIterator>
path(InputIterator first, InputIterator last, format fmt = auto_format);

4 Effects: Let s be the effective range of source (31.12.6.4) or the range [first, last), with the encoding
converted if required (31.12.6.3). Finds the detected-format of s (31.12.6.3.1) and constructs an object
of class path for which the pathname in that format is s.
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template<class Source>
path(const Source& source, const locale& loc, format fmt = auto_format);

template<class InputIterator>
path(InputIterator first, InputIterator last, const locale& loc, format fmt = auto_format);

5 Mandates: The value type of Source and InputIterator is char.
6 Effects: Let s be the effective range of source or the range [first, last), after converting the encoding

as follows:
—(6.1) If value_type is wchar_t, converts to the native wide encoding (31.12.6.3.2) using the codecvt<

wchar_t, char, mbstate_t> facet of loc.
—(6.2) Otherwise a conversion is performed using the codecvt<wchar_t, char, mbstate_t> facet of

loc, and then a second conversion to the current ordinary encoding.
7 Finds the detected-format of s (31.12.6.3.1) and constructs an object of class path for which the

pathname in that format is s.
[Example 1 : A string is to be read from a database that is encoded in ISO/IEC 8859-1, and used to create a
directory:

namespace fs = std::filesystem;
std::string latin1_string = read_latin1_data();
codecvt_8859_1<wchar_t> latin1_facet;
std::locale latin1_locale(std::locale(), latin1_facet);
fs::create_directory(fs::path(latin1_string, latin1_locale));

For POSIX-based operating systems, the path is constructed by first using latin1_facet to convert ISO/IEC
8859-1 encoded latin1_string to a wide character string in the native wide encoding (31.12.6.3.2). The
resulting wide string is then converted to an ordinary character pathname string in the current native ordinary
encoding. If the native wide encoding is UTF-16 or UTF-32, and the current native ordinary encoding is UTF-8,
all of the characters in the ISO/IEC 8859-1 character set will be converted to their Unicode representation, but
for other native ordinary encodings some characters may have no representation.
For Windows-based operating systems, the path is constructed by using latin1_facet to convert ISO/IEC
8859-1 encoded latin1_string to a UTF-16 encoded wide character pathname string. All of the characters in
the ISO/IEC 8859-1 character set will be converted to their Unicode representation. — end example ]

31.12.6.5.2 Assignments [fs.path.assign]

path& operator=(const path& p);

1 Effects: If *this and p are the same object, has no effect. Otherwise, sets both respective pathnames
of *this to the respective pathnames of p.

2 Returns: *this.

path& operator=(path&& p) noexcept;

3 Effects: If *this and p are the same object, has no effect. Otherwise, sets both respective pathnames
of *this to the respective pathnames of p. p is left in a valid but unspecified state.
[Note 1 : A valid implementation is swap(p). — end note ]

4 Returns: *this.

path& operator=(string_type&& source);
path& assign(string_type&& source);

5 Effects: Sets the pathname in the detected-format of source to the original value of source. source
is left in a valid but unspecified state.

6 Returns: *this.

template<class Source>
path& operator=(const Source& source);

template<class Source>
path& assign(const Source& source);
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template<class InputIterator>
path& assign(InputIterator first, InputIterator last);

7 Effects: Let s be the effective range of source (31.12.6.4) or the range [first, last), with the encoding
converted if required (31.12.6.3). Finds the detected-format of s (31.12.6.3.1) and sets the pathname in
that format to s.

8 Returns: *this.

31.12.6.5.3 Appends [fs.path.append]
1 The append operations use operator/= to denote their semantic effect of appending preferred-separator when

needed.

path& operator/=(const path& p);

2 Effects: If p.is_absolute() || (p.has_root_name() && p.root_name() != root_name()), then
operator=(p).

3 Otherwise, modifies *this as if by these steps:
—(3.1) If p.has_root_directory(), then removes any root directory and relative path from the generic

format pathname. Otherwise, if !has_root_directory() && is_absolute() is true or if has_-
filename() is true, then appends path::preferred_separator to the generic format pathname.

—(3.2) Then appends the native format pathname of p, omitting any root-name from its generic format
pathname, to the native format pathname.

4 [Example 1 : Even if //host is interpreted as a root-name, both of the paths path("//host")/"foo" and
path("//host/")/"foo" equal "//host/foo" (although the former might use backslash as the preferred sepa-
rator).
Expression examples:

// On POSIX,
path("foo") /= path(""); // yields path("foo/")
path("foo") /= path("/bar"); // yields path("/bar")

// On Windows,
path("foo") /= path(""); // yields path("foo\\")
path("foo") /= path("/bar"); // yields path("/bar")
path("foo") /= path("c:/bar"); // yields path("c:/bar")
path("foo") /= path("c:"); // yields path("c:")
path("c:") /= path(""); // yields path("c:")
path("c:foo") /= path("/bar"); // yields path("c:/bar")
path("c:foo") /= path("c:bar"); // yields path("c:foo\\bar")

— end example ]
5 Returns: *this.

template<class Source>
path& operator/=(const Source& source);

template<class Source>
path& append(const Source& source);

6 Effects: Equivalent to: return operator/=(path(source));

template<class InputIterator>
path& append(InputIterator first, InputIterator last);

7 Effects: Equivalent to: return operator/=(path(first, last));

31.12.6.5.4 Concatenation [fs.path.concat]

path& operator+=(const path& x);
path& operator+=(const string_type& x);
path& operator+=(basic_string_view<value_type> x);
path& operator+=(const value_type* x);
template<class Source>

path& operator+=(const Source& x);
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template<class Source>
path& concat(const Source& x);

1 Effects: Appends path(x).native() to the pathname in the native format.
[Note 1 : This directly manipulates the value of native(), which is not necessarily portable between operating
systems. — end note ]

2 Returns: *this.

path& operator+=(value_type x);
template<class EcharT>

path& operator+=(EcharT x);

3 Effects: Equivalent to: return *this += basic_string_view(&x, 1);

template<class InputIterator>
path& concat(InputIterator first, InputIterator last);

4 Effects: Equivalent to: return *this += path(first, last);

31.12.6.5.5 Modifiers [fs.path.modifiers]

void clear() noexcept;

1 Postconditions: empty() == true.

path& make_preferred();

2 Effects: Each directory-separator of the pathname in the generic format is converted to preferred-separator .
3 Returns: *this.
4 [Example 1 :

path p("foo/bar");
std::cout << p << '\n';
p.make_preferred();
std::cout << p << '\n';

On an operating system where preferred-separator is a slash, the output is:
"foo/bar"
"foo/bar"

On an operating system where preferred-separator is a backslash, the output is:
"foo/bar"
"foo\bar"

— end example ]

path& remove_filename();

5 Effects: Remove the generic format pathname of filename() from the generic format pathname.
6 Postconditions: !has_filename().
7 Returns: *this.
8 [Example 2 :

path("foo/bar").remove_filename(); // yields "foo/"
path("foo/").remove_filename(); // yields "foo/"
path("/foo").remove_filename(); // yields "/"
path("/").remove_filename(); // yields "/"

— end example ]

path& replace_filename(const path& replacement);

9 Effects: Equivalent to:
remove_filename();
operator/=(replacement);

10 Returns: *this.
11 [Example 3 :
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path("/foo").replace_filename("bar"); // yields "/bar" on POSIX
path("/").replace_filename("bar"); // yields "/bar" on POSIX

— end example ]

path& replace_extension(const path& replacement = path());

12 Effects:
—(12.1) Any existing extension() (31.12.6.5.9) is removed from the pathname in the generic format, then
—(12.2) If replacement is not empty and does not begin with a dot character, a dot character is appended

to the pathname in the generic format, then
—(12.3) operator+=(replacement);.

13 Returns: *this.

void swap(path& rhs) noexcept;

14 Effects: Swaps the contents (in all formats) of the two paths.
15 Complexity: Constant time.

31.12.6.5.6 Native format observers [fs.path.native.obs]
1 The string returned by all native format observers is in the native pathname format (31.12.6).

const string_type& native() const noexcept;

2 Returns: The pathname in the native format.

const value_type* c_str() const noexcept;

3 Effects: Equivalent to: return native().c_str();

operator string_type() const;

4 Returns: native().

template<class EcharT, class traits = char_traits<EcharT>,
class Allocator = allocator<EcharT>>

basic_string<EcharT, traits, Allocator>
string(const Allocator& a = Allocator()) const;

5 Returns: native().
6 Remarks: All memory allocation, including for the return value, shall be performed by a. Conversion,

if any, is specified by 31.12.6.3.

std::string string() const;
std::wstring wstring() const;
std::u8string u8string() const;
std::u16string u16string() const;
std::u32string u32string() const;

7 Returns: native().
8 Remarks: Conversion, if any, is performed as specified by 31.12.6.3.

31.12.6.5.7 Generic format observers [fs.path.generic.obs]
1 Generic format observer functions return strings formatted according to the generic pathname format

(31.12.6.2). A single slash (’/’) character is used as the directory-separator .
2 [Example 1 : On an operating system that uses backslash as its preferred-separator ,

path("foo\\bar").generic_string()

returns "foo/bar". — end example ]

template<class EcharT, class traits = char_traits<EcharT>,
class Allocator = allocator<EcharT>>

basic_string<EcharT, traits, Allocator>
generic_string(const Allocator& a = Allocator()) const;

3 Returns: The pathname in the generic format.
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4 Remarks: All memory allocation, including for the return value, shall be performed by a. Conversion,
if any, is specified by 31.12.6.3.

std::string generic_string() const;
std::wstring generic_wstring() const;
std::u8string generic_u8string() const;
std::u16string generic_u16string() const;
std::u32string generic_u32string() const;

5 Returns: The pathname in the generic format.
6 Remarks: Conversion, if any, is specified by 31.12.6.3.

31.12.6.5.8 Compare [fs.path.compare]

int compare(const path& p) const noexcept;

1 Returns:
—(1.1) Let rootNameComparison be the result of this->root_name().native().compare(p.root_-

name().native()). If rootNameComparison is not 0, rootNameComparison.
—(1.2) Otherwise, if !this->has_root_directory() and p.has_root_directory(), a value less than

0.
—(1.3) Otherwise, if this->has_root_directory() and !p.has_root_directory(), a value greater

than 0.
—(1.4) Otherwise, if native() for the elements of this->relative_path() are lexicographically less

than native() for the elements of p.relative_path(), a value less than 0.
—(1.5) Otherwise, if native() for the elements of this->relative_path() are lexicographically greater

than native() for the elements of p.relative_path(), a value greater than 0.
—(1.6) Otherwise, 0.

int compare(const string_type& s) const;
int compare(basic_string_view<value_type> s) const;
int compare(const value_type* s) const;

2 Effects: Equivalent to: return compare(path(s));

31.12.6.5.9 Decomposition [fs.path.decompose]

path root_name() const;

1 Returns: root-name, if the pathname in the generic format includes root-name, otherwise path().

path root_directory() const;

2 Returns: root-directory , if the pathname in the generic format includes root-directory , otherwise path().

path root_path() const;

3 Returns: root_name() / root_directory().

path relative_path() const;

4 Returns: A path composed from the pathname in the generic format, if empty() is false, beginning
with the first filename after root_path(). Otherwise, path().

path parent_path() const;

5 Returns: *this if has_relative_path() is false, otherwise a path whose generic format pathname
is the longest prefix of the generic format pathname of *this that produces one fewer element in its
iteration.

path filename() const;

6 Returns: relative_path().empty() ? path() : *--end().
7 [Example 1 :

path("/foo/bar.txt").filename(); // yields "bar.txt"
path("/foo/bar").filename(); // yields "bar"
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path("/foo/bar/").filename(); // yields ""
path("/").filename(); // yields ""
path("//host").filename(); // yields ""
path(".").filename(); // yields "."
path("..").filename(); // yields ".."

— end example ]

path stem() const;

8 Returns: Let f be the generic format pathname of filename(). Returns a path whose pathname in
the generic format is

—(8.1) f, if it contains no periods other than a leading period or consists solely of one or two periods;
—(8.2) otherwise, the prefix of f ending before its last period.

9 [Example 2 :
std::cout << path("/foo/bar.txt").stem(); // outputs "bar"
path p = "foo.bar.baz.tar";
for (; !p.extension().empty(); p = p.stem())

std::cout << p.extension() << '\n';
// outputs: .tar
// .baz
// .bar

— end example ]

path extension() const;

10 Returns: A path whose pathname in the generic format is the suffix of filename() not included in
stem().

11 [Example 3 :
path("/foo/bar.txt").extension(); // yields ".txt" and stem() is "bar"
path("/foo/bar").extension(); // yields "" and stem() is "bar"
path("/foo/.profile").extension(); // yields "" and stem() is ".profile"
path(".bar").extension(); // yields "" and stem() is ".bar"
path("..bar").extension(); // yields ".bar" and stem() is "."

— end example ]
12 [Note 1 : The period is included in the return value so that it is possible to distinguish between no extension

and an empty extension. — end note ]
13 [Note 2 : On non-POSIX operating systems, for a path p, it is possible that p.stem() + p.extension() ==

p.filename() is false, even though the generic format pathnames are the same. — end note ]

31.12.6.5.10 Query [fs.path.query]

[[nodiscard]] bool empty() const noexcept;

1 Returns: true if the pathname in the generic format is empty, otherwise false.

bool has_root_path() const;

2 Returns: !root_path().empty().

bool has_root_name() const;

3 Returns: !root_name().empty().

bool has_root_directory() const;

4 Returns: !root_directory().empty().

bool has_relative_path() const;

5 Returns: !relative_path().empty().

bool has_parent_path() const;

6 Returns: !parent_path().empty().
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bool has_filename() const;

7 Returns: !filename().empty().

bool has_stem() const;

8 Returns: !stem().empty().

bool has_extension() const;

9 Returns: !extension().empty().

bool is_absolute() const;

10 Returns: true if the pathname in the native format contains an absolute path (31.12.6), otherwise
false.

11 [Example 1 : path("/").is_absolute() is true for POSIX-based operating systems, and false for Windows-
based operating systems. — end example ]

bool is_relative() const;

12 Returns: !is_absolute().

31.12.6.5.11 Generation [fs.path.gen]

path lexically_normal() const;

1 Returns: A path whose pathname in the generic format is the normal form (31.12.6.2) of the pathname
in the generic format of *this.

2 [Example 1 :
assert(path("foo/./bar/..").lexically_normal() == "foo/");
assert(path("foo/.///bar/../").lexically_normal() == "foo/");

The above assertions will succeed. On Windows, the returned path’s directory-separator characters will be
backslashes rather than slashes, but that does not affect path equality. — end example ]

path lexically_relative(const path& base) const;

3 Effects: If:
—(3.1) root_name() != base.root_name() is true, or
—(3.2) is_absolute() != base.is_absolute() is true, or
—(3.3) !has_root_directory() && base.has_root_directory() is true, or
—(3.4) any filename in relative_path() or base.relative_path() can be interpreted as a root-name,

returns path().
[Note 1 : On a POSIX implementation, no filename in a relative-path is acceptable as a root-name. — end note ]

Determines the first mismatched element of *this and base as if by:
auto [a, b] = mismatch(begin(), end(), base.begin(), base.end());

Then,
—(3.5) if a == end() and b == base.end(), returns path("."); otherwise
—(3.6) let n be the number of filename elements in [b, base.end()) that are not dot or dot-dot or empty,

minus the number that are dot-dot. If n<0, returns path(); otherwise
—(3.7) if n == 0 and (a == end() || a->empty()), returns path("."); otherwise
—(3.8) returns an object of class path that is default-constructed, followed by

—(3.8.1) application of operator/=(path("..")) n times, and then
—(3.8.2) application of operator/= for each element in [a, end()).

4 Returns: *this made relative to base. Does not resolve (31.12.6) symlinks. Does not first normalize
(31.12.6.2) *this or base.

5 [Example 2 :
assert(path("/a/d").lexically_relative("/a/b/c") == "../../d");
assert(path("/a/b/c").lexically_relative("/a/d") == "../b/c");
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assert(path("a/b/c").lexically_relative("a") == "b/c");
assert(path("a/b/c").lexically_relative("a/b/c/x/y") == "../..");
assert(path("a/b/c").lexically_relative("a/b/c") == ".");
assert(path("a/b").lexically_relative("c/d") == "../../a/b");

The above assertions will succeed. On Windows, the returned path’s directory-separator characters will be
backslashes rather than slashes, but that does not affect path equality. — end example ]

6 [Note 2 : If symlink following semantics are desired, use the operational function relative(). — end note ]
7 [Note 3 : If normalization (31.12.6.2) is needed to ensure consistent matching of elements, apply lexically_-

normal() to *this, base, or both. — end note ]

path lexically_proximate(const path& base) const;

8 Returns: If the value of lexically_relative(base) is not an empty path, return it. Otherwise return
*this.

9 [Note 4 : If symlink following semantics are desired, use the operational function proximate(). — end note ]
10 [Note 5 : If normalization (31.12.6.2) is needed to ensure consistent matching of elements, apply lexically_-

normal() to *this, base, or both. — end note ]

31.12.6.6 Iterators [fs.path.itr]
1 Path iterators iterate over the elements of the pathname in the generic format (31.12.6.2).
2 A path::iterator is a constant iterator meeting all the requirements of a bidirectional iterator (25.3.5.6)

except that, for dereferenceable iterators a and b of type path::iterator with a == b, there is no requirement
that *a and *b are bound to the same object. Its value_type is path.

3 Calling any non-const member function of a path object invalidates all iterators referring to elements of that
object.

4 For the elements of the pathname in the generic format, the forward traversal order is as follows:
—(4.1) The root-name element, if present.
—(4.2) The root-directory element, if present.

[Note 1 : The generic format is required to ensure lexicographical comparison works correctly. — end note ]

—(4.3) Each successive filename element, if present.
—(4.4) An empty element, if a trailing non-root directory-separator is present.

5 The backward traversal order is the reverse of forward traversal.

iterator begin() const;

6 Returns: An iterator for the first present element in the traversal list above. If no elements are present,
the end iterator.

iterator end() const;

7 Returns: The end iterator.

31.12.6.7 Inserter and extractor [fs.path.io]

template<class charT, class traits>
friend basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const path& p);

1 Effects: Equivalent to os << quoted(p.string<charT, traits>()).
[Note 1 : The quoted function is described in 31.7.9. — end note ]

2 Returns: os.

template<class charT, class traits>
friend basic_istream<charT, traits>&

operator>>(basic_istream<charT, traits>& is, path& p);

3 Effects: Equivalent to:
basic_string<charT, traits> tmp;
is >> quoted(tmp);
p = tmp;
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4 Returns: is.

31.12.6.8 Non-member functions [fs.path.nonmember]

void swap(path& lhs, path& rhs) noexcept;

1 Effects: Equivalent to lhs.swap(rhs).

size_t hash_value(const path& p) noexcept;

2 Returns: A hash value for the path p. If for two paths, p1 == p2 then hash_value(p1) == hash_-
value(p2).

friend bool operator==(const path& lhs, const path& rhs) noexcept;

3 Returns: lhs.compare(rhs) == 0.
4 [Note 1 : Path equality and path equivalence have different semantics.

—(4.1) Equality is determined by the path non-member operator==, which considers the two paths’ lexical
representations only.
[Example 1 : path("foo") == "bar" is never true. — end example ]

—(4.2) Equivalence is determined by the equivalent() non-member function, which determines if two paths
resolve (31.12.6) to the same file system entity.
[Example 2 : equivalent("foo", "bar") will be true when both paths resolve to the same file. — end
example ]

— end note ]

friend strong_ordering operator<=>(const path& lhs, const path& rhs) noexcept;

5 Returns: lhs.compare(rhs) <=> 0.

friend path operator/(const path& lhs, const path& rhs);

6 Effects: Equivalent to: return path(lhs) /= rhs;

31.12.6.9 Hash support [fs.path.hash]

template<> struct hash<filesystem::path>;

1 For an object p of type filesystem::path, hash<filesystem::path>()(p) evaluates to the same
result as filesystem::hash_value(p).

31.12.7 Class filesystem_error [fs.class.filesystem.error]
31.12.7.1 General [fs.class.filesystem.error.general]

namespace std::filesystem {
class filesystem_error : public system_error {
public:

filesystem_error(const string& what_arg, error_code ec);
filesystem_error(const string& what_arg,

const path& p1, error_code ec);
filesystem_error(const string& what_arg,

const path& p1, const path& p2, error_code ec);

const path& path1() const noexcept;
const path& path2() const noexcept;
const char* what() const noexcept override;

};
}

1 The class filesystem_error defines the type of objects thrown as exceptions to report file system errors
from functions described in subclause 31.12.

31.12.7.2 Members [fs.filesystem.error.members]
1 Constructors are provided that store zero, one, or two paths associated with an error.

filesystem_error(const string& what_arg, error_code ec);

2 Postconditions:
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—(2.1) code() == ec,
—(2.2) path1().empty() == true,
—(2.3) path2().empty() == true, and
—(2.4) string_view(what()).find(what_arg.c_str()) != string_view::npos.

filesystem_error(const string& what_arg, const path& p1, error_code ec);

3 Postconditions:
—(3.1) code() == ec,
—(3.2) path1() returns a reference to the stored copy of p1,
—(3.3) path2().empty() == true, and
—(3.4) string_view(what()).find(what_arg.c_str()) != string_view::npos.

filesystem_error(const string& what_arg, const path& p1, const path& p2, error_code ec);

4 Postconditions:
—(4.1) code() == ec,
—(4.2) path1() returns a reference to the stored copy of p1,
—(4.3) path2() returns a reference to the stored copy of p2, and
—(4.4) string_view(what()).find(what_arg.c_str()) != string_view::npos.

const path& path1() const noexcept;

5 Returns: A reference to the copy of p1 stored by the constructor, or, if none, an empty path.

const path& path2() const noexcept;

6 Returns: A reference to the copy of p2 stored by the constructor, or, if none, an empty path.

const char* what() const noexcept override;

7 Returns: An ntbs that incorporates the what_arg argument supplied to the constructor. The exact
format is unspecified. Implementations should include the system_error::what() string and the
pathnames of path1 and path2 in the native format in the returned string.

31.12.8 Enumerations [fs.enum]
31.12.8.1 Enum path::format [fs.enum.path.format]

1 This enum specifies constants used to identify the format of the character sequence, with the meanings listed
in Table 130.

Table 130: Enum path::format [tab:fs.enum.path.format]

Name Meaning
native_format The native pathname format.
generic_format The generic pathname format.
auto_format The interpretation of the format of the character sequence is imple-

mentation-defined. The implementation may inspect the content of
the character sequence to determine the format.
Recommended practice: For POSIX-based systems, native and
generic formats are equivalent and the character sequence should
always be interpreted in the same way.

31.12.8.2 Enum class file_type [fs.enum.file.type]
1 This enum class specifies constants used to identify file types, with the meanings listed in Table 131. The

values of the constants are distinct.

§ 31.12.8.2 1725



© ISO/IEC N4950

Table 131: Enum class file_type [tab:fs.enum.file.type]

Constant Meaning
none The type of the file has not been determined or an error occurred while

trying to determine the type.
not_found Pseudo-type indicating the file was not found.

[Note 1 : The file not being found is not considered an error while determining
the type of a file. — end note ]

regular Regular file
directory Directory file
symlink Symbolic link file
block Block special file
character Character special file
fifo FIFO or pipe file
socket Socket file
implementation-defined Implementations that support file systems having file types in addition to

the above file_type types shall supply implementation-defined file_type
constants to separately identify each of those additional file types

unknown The file exists but the type cannot be determined

31.12.8.3 Enum class copy_options [fs.enum.copy.opts]
1 The enum class type copy_options is a bitmask type (16.3.3.3.3) that specifies bitmask constants used to

control the semantics of copy operations. The constants are specified in option groups with the meanings
listed in Table 132. The constant none represents the empty bitmask, and is shown in each option group for
purposes of exposition; implementations shall provide only a single definition. Every other constant in the
table represents a distinct bitmask element.

Table 132: Enum class copy_options [tab:fs.enum.copy.opts]

Option group controlling copy_file function effects for existing target files
Constant Meaning

none (Default) Error; file already exists.
skip_existing Do not overwrite existing file, do not report an error.
overwrite_existing Overwrite the existing file.
update_existing Overwrite the existing file if it is older than the replacement file.

Option group controlling copy function effects for subdirectories
Constant Meaning

none (Default) Do not copy subdirectories.
recursive Recursively copy subdirectories and their contents.

Option group controlling copy function effects for symbolic links
Constant Meaning

none (Default) Follow symbolic links.
copy_symlinks Copy symbolic links as symbolic links rather than copying the files

that they point to.
skip_symlinks Ignore symbolic links.
Option group controlling copy function effects for choosing the form of copying

Constant Meaning
none (Default) Copy content.
directories_only Copy directory structure only, do not copy non-directory files.
create_symlinks Make symbolic links instead of copies of files. The source path shall

be an absolute path unless the destination path is in the current
directory.

create_hard_links Make hard links instead of copies of files.
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31.12.8.4 Enum class perms [fs.enum.perms]
1 The enum class type perms is a bitmask type (16.3.3.3.3) that specifies bitmask constants used to identify

file permissions, with the meanings listed in Table 133.

Table 133: Enum class perms [tab:fs.enum.perms]

Name Value POSIX Definition or notes
(octal) macro

none 0 There are no permissions set for the file.
owner_read 0400 S_IRUSR Read permission, owner
owner_write 0200 S_IWUSR Write permission, owner
owner_exec 0100 S_IXUSR Execute/search permission, owner
owner_all 0700 S_IRWXU Read, write, execute/search by owner;

owner_read | owner_write | owner_exec
group_read 040 S_IRGRP Read permission, group
group_write 020 S_IWGRP Write permission, group
group_exec 010 S_IXGRP Execute/search permission, group
group_all 070 S_IRWXG Read, write, execute/search by group;

group_read | group_write | group_exec
others_read 04 S_IROTH Read permission, others
others_write 02 S_IWOTH Write permission, others
others_exec 01 S_IXOTH Execute/search permission, others
others_all 07 S_IRWXO Read, write, execute/search by others;

others_read | others_write | others_exec
all 0777 owner_all | group_all | others_all
set_uid 04000 S_ISUID Set-user-ID on execution
set_gid 02000 S_ISGID Set-group-ID on execution
sticky_bit 01000 S_ISVTX Operating system dependent.
mask 07777 all | set_uid | set_gid | sticky_bit
unknown 0xFFFF The permissions are not known, such as when a file_-

status object is created without specifying the per-
missions

31.12.8.5 Enum class perm_options [fs.enum.perm.opts]
1 The enum class type perm_options is a bitmask type (16.3.3.3.3) that specifies bitmask constants used

to control the semantics of permissions operations, with the meanings listed in Table 134. The bitmask
constants are bitmask elements. In Table 134 perm denotes a value of type perms passed to permissions.

Table 134: Enum class perm_options [tab:fs.enum.perm.opts]

Name Meaning
replace permissions shall replace the file’s permission bits with perm
add permissions shall replace the file’s permission bits with the bitwise or of

perm and the file’s current permission bits.
remove permissions shall replace the file’s permission bits with the bitwise and of

the complement of perm and the file’s current permission bits.
nofollow permissions shall change the permissions of a symbolic link itself rather

than the permissions of the file the link resolves to.

31.12.8.6 Enum class directory_options [fs.enum.dir.opts]
1 The enum class type directory_options is a bitmask type (16.3.3.3.3) that specifies bitmask constants

used to identify directory traversal options, with the meanings listed in Table 135. The constant none
represents the empty bitmask; every other constant in the table represents a distinct bitmask element.
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Table 135: Enum class directory_options [tab:fs.enum.dir.opts]

Name Meaning
none (Default) Skip directory symlinks, permission de-

nied is an error.
follow_directory_symlink Follow rather than skip directory symlinks.
skip_permission_denied Skip directories that would otherwise result in per-

mission denied.

31.12.9 Class file_status [fs.class.file.status]
31.12.9.1 General [fs.class.file.status.general]

namespace std::filesystem {
class file_status {
public:

// 31.12.9.2, constructors and destructor
file_status() noexcept : file_status(file_type::none) {}
explicit file_status(file_type ft,

perms prms = perms::unknown) noexcept;
file_status(const file_status&) noexcept = default;
file_status(file_status&&) noexcept = default;
~file_status();

// assignments
file_status& operator=(const file_status&) noexcept = default;
file_status& operator=(file_status&&) noexcept = default;

// 31.12.9.4, modifiers
void type(file_type ft) noexcept;
void permissions(perms prms) noexcept;

// 31.12.9.3, observers
file_type type() const noexcept;
perms permissions() const noexcept;

friend bool operator==(const file_status& lhs, const file_status& rhs) noexcept
{ return lhs.type() == rhs.type() && lhs.permissions() == rhs.permissions(); }

};
}

1 An object of type file_status stores information about the type and permissions of a file.

31.12.9.2 Constructors [fs.file.status.cons]

explicit file_status(file_type ft, perms prms = perms::unknown) noexcept;

1 Postconditions: type() == ft and permissions() == prms.

31.12.9.3 Observers [fs.file.status.obs]

file_type type() const noexcept;

1 Returns: The value of type() specified by the postconditions of the most recent call to a constructor,
operator=, or type(file_type) function.

perms permissions() const noexcept;

2 Returns: The value of permissions() specified by the postconditions of the most recent call to a
constructor, operator=, or permissions(perms) function.

31.12.9.4 Modifiers [fs.file.status.mods]

void type(file_type ft) noexcept;

1 Postconditions: type() == ft.
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void permissions(perms prms) noexcept;

2 Postconditions: permissions() == prms.

31.12.10 Class directory_entry [fs.class.directory.entry]
31.12.10.1 General [fs.class.directory.entry.general]

namespace std::filesystem {
class directory_entry {
public:

// 31.12.10.2, constructors and destructor
directory_entry() noexcept = default;
directory_entry(const directory_entry&) = default;
directory_entry(directory_entry&&) noexcept = default;
explicit directory_entry(const filesystem::path& p);
directory_entry(const filesystem::path& p, error_code& ec);
~directory_entry();

// assignments
directory_entry& operator=(const directory_entry&) = default;
directory_entry& operator=(directory_entry&&) noexcept = default;

// 31.12.10.3, modifiers
void assign(const filesystem::path& p);
void assign(const filesystem::path& p, error_code& ec);
void replace_filename(const filesystem::path& p);
void replace_filename(const filesystem::path& p, error_code& ec);
void refresh();
void refresh(error_code& ec) noexcept;

// 31.12.10.4, observers
const filesystem::path& path() const noexcept;
operator const filesystem::path&() const noexcept;
bool exists() const;
bool exists(error_code& ec) const noexcept;
bool is_block_file() const;
bool is_block_file(error_code& ec) const noexcept;
bool is_character_file() const;
bool is_character_file(error_code& ec) const noexcept;
bool is_directory() const;
bool is_directory(error_code& ec) const noexcept;
bool is_fifo() const;
bool is_fifo(error_code& ec) const noexcept;
bool is_other() const;
bool is_other(error_code& ec) const noexcept;
bool is_regular_file() const;
bool is_regular_file(error_code& ec) const noexcept;
bool is_socket() const;
bool is_socket(error_code& ec) const noexcept;
bool is_symlink() const;
bool is_symlink(error_code& ec) const noexcept;
uintmax_t file_size() const;
uintmax_t file_size(error_code& ec) const noexcept;
uintmax_t hard_link_count() const;
uintmax_t hard_link_count(error_code& ec) const noexcept;
file_time_type last_write_time() const;
file_time_type last_write_time(error_code& ec) const noexcept;
file_status status() const;
file_status status(error_code& ec) const noexcept;
file_status symlink_status() const;
file_status symlink_status(error_code& ec) const noexcept;

bool operator==(const directory_entry& rhs) const noexcept;
strong_ordering operator<=>(const directory_entry& rhs) const noexcept;
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// 31.12.10.5, inserter
template<class charT, class traits>

friend basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const directory_entry& d);

private:
filesystem::path pathobject; // exposition only
friend class directory_iterator; // exposition only

};
}

1 A directory_entry object stores a path object and may store additional objects for file attributes such as
hard link count, status, symlink status, file size, and last write time.

2 Implementations should store such additional file attributes during directory iteration if their values are avail-
able and storing the values would allow the implementation to eliminate file system accesses by directory_-
entry observer functions (31.12.13). Such stored file attribute values are said to be cached.

3 [Note 1 : For purposes of exposition, class directory_iterator (31.12.11) is shown above as a friend of class
directory_entry. Friendship allows the directory_iterator implementation to cache already available attribute
values directly into a directory_entry object without the cost of an unneeded call to refresh(). — end note ]

4 [Example 1 :
using namespace std::filesystem;

// use possibly cached last write time to minimize disk accesses
for (auto&& x : directory_iterator("."))
{

std::cout << x.path() << " " << x.last_write_time() << std::endl;
}

// call refresh() to refresh a stale cache
for (auto&& x : directory_iterator("."))
{

lengthy_function(x.path()); // cache becomes stale
x.refresh();
std::cout << x.path() << " " << x.last_write_time() << std::endl;

}

On implementations that do not cache the last write time, both loops will result in a potentially expensive call to the
std::filesystem::last_write_time function. On implementations that do cache the last write time, the first loop
will use the cached value and so will not result in a potentially expensive call to the std::filesystem::last_write_-
time function. The code is portable to any implementation, regardless of whether or not it employs caching. — end
example ]

31.12.10.2 Constructors [fs.dir.entry.cons]

explicit directory_entry(const filesystem::path& p);
directory_entry(const filesystem::path& p, error_code& ec);

1 Effects: Calls refresh() or refresh(ec), respectively.
2 Postconditions: path() == p if no error occurs, otherwise path() == filesystem::path().
3 Throws: As specified in 31.12.5.

31.12.10.3 Modifiers [fs.dir.entry.mods]

void assign(const filesystem::path& p);
void assign(const filesystem::path& p, error_code& ec);

1 Effects: Equivalent to pathobject = p, then refresh() or refresh(ec), respectively. If an error
occurs, the values of any cached attributes are unspecified.

2 Throws: As specified in 31.12.5.

void replace_filename(const filesystem::path& p);
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void replace_filename(const filesystem::path& p, error_code& ec);

3 Effects: Equivalent to pathobject.replace_filename(p), then refresh() or refresh(ec), respec-
tively. If an error occurs, the values of any cached attributes are unspecified.

4 Throws: As specified in 31.12.5.

void refresh();
void refresh(error_code& ec) noexcept;

5 Effects: Stores the current values of any cached attributes of the file p resolves to. If an error occurs,
an error is reported (31.12.5) and the values of any cached attributes are unspecified.

6 Throws: As specified in 31.12.5.
7 [Note 1 : Implementations of directory_iterator (31.12.11) are prohibited from directly or indirectly calling

the refresh function as described in 31.12.11.1. — end note ]

31.12.10.4 Observers [fs.dir.entry.obs]
1 Unqualified function names in the Returns: elements of the directory_entry observers described below

refer to members of the std::filesystem namespace.

const filesystem::path& path() const noexcept;
operator const filesystem::path&() const noexcept;

2 Returns: pathobject.

bool exists() const;
bool exists(error_code& ec) const noexcept;

3 Returns: exists(this->status()) or exists(this->status(ec)), respectively.
4 Throws: As specified in 31.12.5.

bool is_block_file() const;
bool is_block_file(error_code& ec) const noexcept;

5 Returns: is_block_file(this->status()) or is_block_file(this->status(ec)), respectively.
6 Throws: As specified in 31.12.5.

bool is_character_file() const;
bool is_character_file(error_code& ec) const noexcept;

7 Returns: is_character_file(this->status()) or is_character_file(this->status(ec)), respec-
tively.

8 Throws: As specified in 31.12.5.

bool is_directory() const;
bool is_directory(error_code& ec) const noexcept;

9 Returns: is_directory(this->status()) or is_directory(this->status(ec)), respectively.
10 Throws: As specified in 31.12.5.

bool is_fifo() const;
bool is_fifo(error_code& ec) const noexcept;

11 Returns: is_fifo(this->status()) or is_fifo(this->status(ec)), respectively.
12 Throws: As specified in 31.12.5.

bool is_other() const;
bool is_other(error_code& ec) const noexcept;

13 Returns: is_other(this->status()) or is_other(this->status(ec)), respectively.
14 Throws: As specified in 31.12.5.

bool is_regular_file() const;
bool is_regular_file(error_code& ec) const noexcept;

15 Returns: is_regular_file(this->status()) or is_regular_file(this->status(ec)), respective-
ly.
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16 Throws: As specified in 31.12.5.

bool is_socket() const;
bool is_socket(error_code& ec) const noexcept;

17 Returns: is_socket(this->status()) or is_socket(this->status(ec)), respectively.
18 Throws: As specified in 31.12.5.

bool is_symlink() const;
bool is_symlink(error_code& ec) const noexcept;

19 Returns: is_symlink(this->symlink_status()) or is_symlink(this->symlink_status(ec)), re-
spectively.

20 Throws: As specified in 31.12.5.

uintmax_t file_size() const;
uintmax_t file_size(error_code& ec) const noexcept;

21 Returns: If cached, the file size attribute value. Otherwise, file_size(path()) or file_size(path(),
ec), respectively.

22 Throws: As specified in 31.12.5.

uintmax_t hard_link_count() const;
uintmax_t hard_link_count(error_code& ec) const noexcept;

23 Returns: If cached, the hard link count attribute value. Otherwise, hard_link_count(path()) or
hard_link_count(path(), ec), respectively.

24 Throws: As specified in 31.12.5.

file_time_type last_write_time() const;
file_time_type last_write_time(error_code& ec) const noexcept;

25 Returns: If cached, the last write time attribute value. Otherwise, last_write_time(path()) or
last_write_time(path(), ec), respectively.

26 Throws: As specified in 31.12.5.

file_status status() const;
file_status status(error_code& ec) const noexcept;

27 Returns: If cached, the status attribute value. Otherwise, status(path()) or status(path(), ec),
respectively.

28 Throws: As specified in 31.12.5.

file_status symlink_status() const;
file_status symlink_status(error_code& ec) const noexcept;

29 Returns: If cached, the symlink status attribute value. Otherwise, symlink_status(path()) or
symlink_status(path(), ec), respectively.

30 Throws: As specified in 31.12.5.

bool operator==(const directory_entry& rhs) const noexcept;

31 Returns: pathobject == rhs.pathobject.

strong_ordering operator<=>(const directory_entry& rhs) const noexcept;

32 Returns: pathobject <=> rhs.pathobject.

31.12.10.5 Inserter [fs.dir.entry.io]

template<class charT, class traits>
friend basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& os, const directory_entry& d);

1 Effects: Equivalent to: return os << d.path();
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31.12.11 Class directory_iterator [fs.class.directory.iterator]
31.12.11.1 General [fs.class.directory.iterator.general]

1 An object of type directory_iterator provides an iterator for a sequence of directory_entry elements
representing the path and any cached attribute values (31.12.10) for each file in a directory or in an
implementation-defined directory-like file type.
[Note 1 : For iteration into subdirectories, see class recursive_directory_iterator (31.12.12). — end note ]

namespace std::filesystem {
class directory_iterator {
public:

using iterator_category = input_iterator_tag;
using value_type = directory_entry;
using difference_type = ptrdiff_t;
using pointer = const directory_entry*;
using reference = const directory_entry&;

// 31.12.11.2, member functions
directory_iterator() noexcept;
explicit directory_iterator(const path& p);
directory_iterator(const path& p, directory_options options);
directory_iterator(const path& p, error_code& ec);
directory_iterator(const path& p, directory_options options,

error_code& ec);
directory_iterator(const directory_iterator& rhs);
directory_iterator(directory_iterator&& rhs) noexcept;
~directory_iterator();

directory_iterator& operator=(const directory_iterator& rhs);
directory_iterator& operator=(directory_iterator&& rhs) noexcept;

const directory_entry& operator*() const;
const directory_entry* operator->() const;
directory_iterator& operator++();
directory_iterator& increment(error_code& ec);

bool operator==(default_sentinel_t) const noexcept {
return *this == directory_iterator();

}

// other members as required by 25.3.5.3, input iterators
};

}

2 directory_iterator meets the Cpp17InputIterator requirements (25.3.5.3).
3 If an iterator of type directory_iterator reports an error or is advanced past the last directory element,

that iterator shall become equal to the end iterator value. The directory_iterator default constructor
shall create an iterator equal to the end iterator value, and this shall be the only valid iterator for the end
condition.

4 The end iterator is not dereferenceable.
5 Two end iterators are always equal. An end iterator shall not be equal to a non-end iterator.
6 The result of calling the path() member of the directory_entry object obtained by dereferencing a

directory_iterator is a reference to a path object composed of the directory argument from which the
iterator was constructed with the filename of the directory entry appended as if by operator/=.

7 Directory iteration shall not yield directory entries for the current (dot) and parent (dot-dot) directories.
8 The order of directory entries obtained by dereferencing successive increments of a directory_iterator is

unspecified.
9 Constructors and non-const directory_iterator member functions store the values of any cached at-

tributes (31.12.10) in the directory_entry element returned by operator*(). directory_iterator mem-
ber functions shall not directly or indirectly call any directory_entry refresh function.
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[Note 2 : The exact mechanism for storing cached attribute values is not exposed to users. For exposition, class
directory_iterator is shown in 31.12.10 as a friend of class directory_entry. — end note ]

10 [Note 3 : A path obtained by dereferencing a directory iterator might not actually exist; it could be a symbolic link to
a non-existent file. Recursively walking directory trees for purposes of removing and renaming entries might invalidate
symbolic links that are being followed. — end note ]

11 [Note 4 : If a file is removed from or added to a directory after the construction of a directory_iterator for the
directory, it is unspecified whether or not subsequently incrementing the iterator will ever result in an iterator
referencing the removed or added directory entry. See POSIX readdir. — end note ]

31.12.11.2 Members [fs.dir.itr.members]

directory_iterator() noexcept;

1 Effects: Constructs the end iterator.

explicit directory_iterator(const path& p);
directory_iterator(const path& p, directory_options options);
directory_iterator(const path& p, error_code& ec);
directory_iterator(const path& p, directory_options options, error_code& ec);

2 Effects: For the directory that p resolves to, constructs an iterator for the first element in a sequence of
directory_entry elements representing the files in the directory, if any; otherwise the end iterator.
However, if

(options & directory_options::skip_permission_denied) != directory_options::none

and construction encounters an error indicating that permission to access p is denied, constructs the
end iterator and does not report an error.

3 Throws: As specified in 31.12.5.
4 [Note 1 : To iterate over the current directory, use directory_iterator(".") rather than directory_-

iterator(""). — end note ]

directory_iterator(const directory_iterator& rhs);
directory_iterator(directory_iterator&& rhs) noexcept;

5 Postconditions: *this has the original value of rhs.

directory_iterator& operator=(const directory_iterator& rhs);
directory_iterator& operator=(directory_iterator&& rhs) noexcept;

6 Effects: If *this and rhs are the same object, the member has no effect.
7 Postconditions: *this has the original value of rhs.
8 Returns: *this.

directory_iterator& operator++();
directory_iterator& increment(error_code& ec);

9 Effects: As specified for the prefix increment operation of Input iterators (25.3.5.3).
10 Returns: *this.
11 Throws: As specified in 31.12.5.

31.12.11.3 Non-member functions [fs.dir.itr.nonmembers]
1 These functions enable range access for directory_iterator.

directory_iterator begin(directory_iterator iter) noexcept;

2 Returns: iter.

directory_iterator end(directory_iterator) noexcept;

3 Returns: directory_iterator().
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31.12.12 Class recursive_directory_iterator [fs.class.rec.dir.itr]
31.12.12.1 General [fs.class.rec.dir.itr.general]

1 An object of type recursive_directory_iterator provides an iterator for a sequence of directory_entry
elements representing the files in a directory or in an implementation-defined directory-like file type, and its
subdirectories.

namespace std::filesystem {
class recursive_directory_iterator {
public:

using iterator_category = input_iterator_tag;
using value_type = directory_entry;
using difference_type = ptrdiff_t;
using pointer = const directory_entry*;
using reference = const directory_entry&;

// 31.12.12.2, constructors and destructor
recursive_directory_iterator() noexcept;
explicit recursive_directory_iterator(const path& p);
recursive_directory_iterator(const path& p, directory_options options);
recursive_directory_iterator(const path& p, directory_options options,

error_code& ec);
recursive_directory_iterator(const path& p, error_code& ec);
recursive_directory_iterator(const recursive_directory_iterator& rhs);
recursive_directory_iterator(recursive_directory_iterator&& rhs) noexcept;
~recursive_directory_iterator();

// 31.12.12.2, observers
directory_options options() const;
int depth() const;
bool recursion_pending() const;

const directory_entry& operator*() const;
const directory_entry* operator->() const;

// 31.12.12.2, modifiers
recursive_directory_iterator&

operator=(const recursive_directory_iterator& rhs);
recursive_directory_iterator&

operator=(recursive_directory_iterator&& rhs) noexcept;

recursive_directory_iterator& operator++();
recursive_directory_iterator& increment(error_code& ec);

void pop();
void pop(error_code& ec);
void disable_recursion_pending();

bool operator==(default_sentinel_t) const noexcept {
return *this == recursive_directory_iterator();

}

// other members as required by 25.3.5.3, input iterators
};

}

2 Calling options, depth, recursion_pending, pop or disable_recursion_pending on an iterator that is
not dereferenceable results in undefined behavior.

3 The behavior of a recursive_directory_iterator is the same as a directory_iterator unless otherwise
specified.

4 [Note 1 : If the directory structure being iterated over contains cycles then it is possible that the end iterator is
unreachable. — end note ]
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31.12.12.2 Members [fs.rec.dir.itr.members]

recursive_directory_iterator() noexcept;

1 Effects: Constructs the end iterator.

explicit recursive_directory_iterator(const path& p);
recursive_directory_iterator(const path& p, directory_options options);
recursive_directory_iterator(const path& p, directory_options options, error_code& ec);
recursive_directory_iterator(const path& p, error_code& ec);

2 Effects: Constructs an iterator representing the first entry in the directory to which p resolves, if any;
otherwise, the end iterator. However, if

(options & directory_options::skip_permission_denied) != directory_options::none

and construction encounters an error indicating that permission to access p is denied, constructs the
end iterator and does not report an error.

3 Postconditions: options() == options for the signatures with a directory_options argument,
otherwise options() == directory_options::none.

4 Throws: As specified in 31.12.5.
5 [Note 1 : Use recursive_directory_iterator(".") rather than recursive_directory_iterator("") to iter-

ate over the current directory. — end note ]
6 [Note 2 : By default, recursive_directory_iterator does not follow directory symlinks. To follow directory

symlinks, specify options as directory_options::follow_directory_symlink. — end note ]

recursive_directory_iterator(const recursive_directory_iterator& rhs);

7 Postconditions:
—(7.1) options() == rhs.options()
—(7.2) depth() == rhs.depth()
—(7.3) recursion_pending() == rhs.recursion_pending()

recursive_directory_iterator(recursive_directory_iterator&& rhs) noexcept;

8 Postconditions: options(), depth(), and recursion_pending() have the values that rhs.options(),
rhs.depth(), and rhs.recursion_pending(), respectively, had before the function call.

recursive_directory_iterator& operator=(const recursive_directory_iterator& rhs);

9 Effects: If *this and rhs are the same object, the member has no effect.
10 Postconditions:

—(10.1) options() == rhs.options()
—(10.2) depth() == rhs.depth()
—(10.3) recursion_pending() == rhs.recursion_pending()

11 Returns: *this.

recursive_directory_iterator& operator=(recursive_directory_iterator&& rhs) noexcept;

12 Effects: If *this and rhs are the same object, the member has no effect.
13 Postconditions: options(), depth(), and recursion_pending() have the values that rhs.options(),

rhs.depth(), and rhs.recursion_pending(), respectively, had before the function call.
14 Returns: *this.

directory_options options() const;

15 Returns: The value of the argument passed to the constructor for the options parameter, if present,
otherwise directory_options::none.

16 Throws: Nothing.

int depth() const;

17 Returns: The current depth of the directory tree being traversed.
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[Note 3 : The initial directory is depth 0, its immediate subdirectories are depth 1, and so forth. — end note ]
18 Throws: Nothing.

bool recursion_pending() const;

19 Returns: true if disable_recursion_pending() has not been called subsequent to the prior construc-
tion or increment operation, otherwise false.

20 Throws: Nothing.

recursive_directory_iterator& operator++();
recursive_directory_iterator& increment(error_code& ec);

21 Effects: As specified for the prefix increment operation of Input iterators (25.3.5.3), except that:
—(21.1) If there are no more entries at the current depth, then if depth() != 0 iteration over the parent

directory resumes; otherwise *this = recursive_directory_iterator().
—(21.2) Otherwise if

recursion_pending() && is_directory((*this)->status()) &&
(!is_symlink((*this)->symlink_status()) ||
(options() & directory_options::follow_directory_symlink) != directory_options::none)

then either directory (*this)->path() is recursively iterated into or, if
(options() & directory_options::skip_permission_denied) != directory_options::none

and an error occurs indicating that permission to access directory (*this)->path() is denied,
then directory (*this)->path() is treated as an empty directory and no error is reported.

22 Returns: *this.
23 Throws: As specified in 31.12.5.

void pop();
void pop(error_code& ec);

24 Effects: If depth() == 0, set *this to recursive_directory_iterator(). Otherwise, cease iteration
of the directory currently being iterated over, and continue iteration over the parent directory.

25 Throws: As specified in 31.12.5.
26 Remarks: Any copies of the previous value of *this are no longer required to be dereferenceable nor to be in

the domain of ==.

void disable_recursion_pending();

27 Postconditions: recursion_pending() == false.
28 [Note 4 : disable_recursion_pending() is used to prevent unwanted recursion into a directory. — end note ]

31.12.12.3 Non-member functions [fs.rec.dir.itr.nonmembers]
1 These functions enable use of recursive_directory_iterator with range-based for statements.

recursive_directory_iterator begin(recursive_directory_iterator iter) noexcept;

2 Returns: iter.

recursive_directory_iterator end(recursive_directory_iterator) noexcept;

3 Returns: recursive_directory_iterator().

31.12.13 Filesystem operation functions [fs.op.funcs]
31.12.13.1 General [fs.op.funcs.general]

1 Filesystem operation functions query or modify files, including directories, in external storage.
2 [Note 1 : Because hardware failures, network failures, file system races (31.12.2.4), and many other kinds of errors

occur frequently in file system operations, any filesystem operation function, no matter how apparently innocuous,
can encounter an error; see 31.12.5. — end note ]

31.12.13.2 Absolute [fs.op.absolute]

path filesystem::absolute(const path& p);
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path filesystem::absolute(const path& p, error_code& ec);

1 Effects: Composes an absolute path referencing the same file system location as p according to the
operating system (31.12.2.3).

2 Returns: The composed path. The signature with argument ec returns path() if an error occurs.
3 [Note 1 : For the returned path, rp, rp.is_absolute() is true unless an error occurs. — end note ]
4 Throws: As specified in 31.12.5.
5 [Note 2 : To resolve symlinks or perform other sanitization that can involve queries to secondary storage, such

as hard disks, consider canonical (31.12.13.3). — end note ]
6 [Note 3 : Implementations are strongly encouraged to not query secondary storage, and not consider !exists(p)

an error. — end note ]
7 [Example 1 : For POSIX-based operating systems, absolute(p) is simply current_path()/p. For Windows-

based operating systems, absolute might have the same semantics as GetFullPathNameW. — end example ]

31.12.13.3 Canonical [fs.op.canonical]

path filesystem::canonical(const path& p);
path filesystem::canonical(const path& p, error_code& ec);

1 Effects: Converts p to an absolute path that has no symbolic link, dot, or dot-dot elements in its
pathname in the generic format.

2 Returns: A path that refers to the same file system object as absolute(p). The signature with
argument ec returns path() if an error occurs.

3 Throws: As specified in 31.12.5.
4 Remarks: !exists(p) is an error.

31.12.13.4 Copy [fs.op.copy]

void filesystem::copy(const path& from, const path& to);

1 Effects: Equivalent to copy(from, to, copy_options::none).

void filesystem::copy(const path& from, const path& to, error_code& ec);

2 Effects: Equivalent to copy(from, to, copy_options::none, ec).

void filesystem::copy(const path& from, const path& to, copy_options options);
void filesystem::copy(const path& from, const path& to, copy_options options,

error_code& ec);

3 Preconditions: At most one element from each option group (31.12.8.3) is set in options.
4 Effects: Before the first use of f and t:

—(4.1) If
(options & copy_options::create_symlinks) != copy_options::none ||
(options & copy_options::skip_symlinks) != copy_options::none

then auto f = symlink_status(from) and if needed auto t = symlink_status(to).
—(4.2) Otherwise, if

(options & copy_options::copy_symlinks) != copy_options::none

then auto f = symlink_status(from) and if needed auto t = status(to).
—(4.3) Otherwise, auto f = status(from) and if needed auto t = status(to).

Effects are then as follows:
—(4.4) If f.type() or t.type() is an implementation-defined file type (31.12.8.2), then the effects are

implementation-defined.
—(4.5) Otherwise, an error is reported as specified in 31.12.5 if:

—(4.5.1) exists(f) is false, or
—(4.5.2) equivalent(from, to) is true, or
—(4.5.3) is_other(f) || is_other(t) is true, or
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—(4.5.4) is_directory(f) && is_regular_file(t) is true.
—(4.6) Otherwise, if is_symlink(f), then:

—(4.6.1) If (options & copy_options::skip_symlinks) != copy_options::none then return.
—(4.6.2) Otherwise if

!exists(t) && (options & copy_options::copy_symlinks) != copy_options::none

then copy_symlink(from, to).
—(4.6.3) Otherwise report an error as specified in 31.12.5.

—(4.7) Otherwise, if is_regular_file(f), then:
—(4.7.1) If (options & copy_options::directories_only) != copy_options::none, then return.
—(4.7.2) Otherwise, if (options & copy_options::create_symlinks) != copy_options::none,

then create a symbolic link to the source file.
—(4.7.3) Otherwise, if (options & copy_options::create_hard_links) != copy_options::none,

then create a hard link to the source file.
—(4.7.4) Otherwise, if is_directory(t), then copy_file(from, to/from.filename(), options).
—(4.7.5) Otherwise, copy_file(from, to, options).

—(4.8) Otherwise, if
is_directory(f) &&
(options & copy_options::create_symlinks) != copy_options::none

then report an error with an error_code argument equal to make_error_code(errc::is_a_-
directory).

—(4.9) Otherwise, if
is_directory(f) &&
((options & copy_options::recursive) != copy_options::none ||
options == copy_options::none)

then:
—(4.9.1) If exists(t) is false, then create_directory(to, from).
—(4.9.2) Then, iterate over the files in from, as if by

for (const directory_entry& x : directory_iterator(from))
copy(x.path(), to/x.path().filename(),

options | copy_options::in-recursive-copy );

where in-recursive-copy is a bitmask element of copy_options that is not one of the
elements in 31.12.8.3.

—(4.10) Otherwise, for the signature with argument ec, ec.clear().
—(4.11) Otherwise, no effects.

5 Throws: As specified in 31.12.5.
6 Remarks: For the signature with argument ec, any library functions called by the implementation shall

have an error_code argument if applicable.
7 [Example 1 : Given this directory structure:

/dir1
file1
file2
dir2

file3

Calling copy("/dir1", "/dir3") would result in:
/dir1

file1
file2
dir2

file3
/dir3
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file1
file2

Alternatively, calling copy("/dir1", "/dir3", copy_options::recursive) would result in:
/dir1

file1
file2
dir2

file3
/dir3

file1
file2
dir2

file3

— end example ]

31.12.13.5 Copy file [fs.op.copy.file]

bool filesystem::copy_file(const path& from, const path& to);
bool filesystem::copy_file(const path& from, const path& to, error_code& ec);

1 Returns: copy_file(from, to, copy_options::none) or
copy_file(from, to, copy_options::none, ec), respectively.

2 Throws: As specified in 31.12.5.

bool filesystem::copy_file(const path& from, const path& to, copy_options options);
bool filesystem::copy_file(const path& from, const path& to, copy_options options,

error_code& ec);

3 Preconditions: At most one element from each option group (31.12.8.3) is set in options.
4 Effects: As follows:

—(4.1) Report an error as specified in 31.12.5 if:
—(4.1.1) is_regular_file(from) is false, or
—(4.1.2) exists(to) is true and is_regular_file(to) is false, or
—(4.1.3) exists(to) is true and equivalent(from, to) is true, or
—(4.1.4) exists(to) is true and

(options & (copy_options::skip_existing |
copy_options::overwrite_existing |
copy_options::update_existing)) == copy_options::none

—(4.2) Otherwise, copy the contents and attributes of the file from resolves to, to the file to resolves to,
if:
—(4.2.1) exists(to) is false, or
—(4.2.2) (options & copy_options::overwrite_existing) != copy_options::none, or
—(4.2.3) (options & copy_options::update_existing) != copy_options::none and from is

more recent than to, determined as if by use of the last_write_time function (31.12.13.26).
—(4.3) Otherwise, no effects.

5 Returns: true if the from file was copied, otherwise false. The signature with argument ec returns
false if an error occurs.

6 Throws: As specified in 31.12.5.
7 Complexity: At most one direct or indirect invocation of status(to).

31.12.13.6 Copy symlink [fs.op.copy.symlink]

void filesystem::copy_symlink(const path& existing_symlink, const path& new_symlink);
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void filesystem::copy_symlink(const path& existing_symlink, const path& new_symlink,
error_code& ec) noexcept;

1 Effects: Equivalent to function (read_symlink(existing_symlink), new_symlink) or
function (read_symlink(existing_symlink, ec), new_symlink, ec), respectively, where in each
case function is create_symlink or create_directory_symlink as appropriate.

2 Throws: As specified in 31.12.5.

31.12.13.7 Create directories [fs.op.create.directories]

bool filesystem::create_directories(const path& p);
bool filesystem::create_directories(const path& p, error_code& ec);

1 Effects: Calls create_directory() for each element of p that does not exist.
2 Returns: true if a new directory was created for the directory p resolves to, otherwise false.
3 Throws: As specified in 31.12.5.
4 Complexity: O(n) where n is the number of elements of p.

31.12.13.8 Create directory [fs.op.create.directory]

bool filesystem::create_directory(const path& p);
bool filesystem::create_directory(const path& p, error_code& ec) noexcept;

1 Effects: Creates the directory p resolves to, as if by POSIX mkdir with a second argument of static_-
cast<int>(perms::all). If mkdir fails because p resolves to an existing directory, no error is reported.
Otherwise on failure an error is reported.

2 Returns: true if a new directory was created, otherwise false.
3 Throws: As specified in 31.12.5.

bool filesystem::create_directory(const path& p, const path& existing_p);
bool filesystem::create_directory(const path& p, const path& existing_p, error_code& ec) noexcept;

4 Effects: Creates the directory p resolves to, with attributes copied from directory existing_p. The set
of attributes copied is operating system dependent. If mkdir fails because p resolves to an existing
directory, no error is reported. Otherwise on failure an error is reported.
[Note 1 : For POSIX-based operating systems, the attributes are those copied by native API stat(existing_-
p.c_str(), &attributes_stat) followed by mkdir(p.c_str(), attributes_stat.st_mode). For Windows-
based operating systems, the attributes are those copied by native API CreateDirectoryExW(existing_p.c_-
str(), p.c_str(), 0). — end note ]

5 Returns: true if a new directory was created with attributes copied from directory existing_p,
otherwise false.

6 Throws: As specified in 31.12.5.

31.12.13.9 Create directory symlink [fs.op.create.dir.symlk]

void filesystem::create_directory_symlink(const path& to, const path& new_symlink);
void filesystem::create_directory_symlink(const path& to, const path& new_symlink,

error_code& ec) noexcept;

1 Effects: Establishes the postcondition, as if by POSIX symlink().
2 Postconditions: new_symlink resolves to a symbolic link file that contains an unspecified representation

of to.
3 Throws: As specified in 31.12.5.
4 [Note 1 : Some operating systems require symlink creation to identify that the link is to a directory. Thus,

create_symlink() (instead of create_directory_symlink()) cannot be used reliably to create directory
symlinks. — end note ]

5 [Note 2 : Some operating systems do not support symbolic links at all or support them only for regular files.
Some file systems (such as the FAT file system) do not support symbolic links regardless of the operating system.

— end note ]
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31.12.13.10 Create hard link [fs.op.create.hard.lk]

void filesystem::create_hard_link(const path& to, const path& new_hard_link);
void filesystem::create_hard_link(const path& to, const path& new_hard_link,

error_code& ec) noexcept;

1 Effects: Establishes the postcondition, as if by POSIX link().
2 Postconditions:

—(2.1) exists(to) && exists(new_hard_link) && equivalent(to, new_hard_link)
—(2.2) The contents of the file or directory to resolves to are unchanged.

3 Throws: As specified in 31.12.5.
4 [Note 1 : Some operating systems do not support hard links at all or support them only for regular files. Some

file systems (such as the FAT file system) do not support hard links regardless of the operating system. Some
file systems limit the number of links per file. — end note ]

31.12.13.11 Create symlink [fs.op.create.symlink]

void filesystem::create_symlink(const path& to, const path& new_symlink);
void filesystem::create_symlink(const path& to, const path& new_symlink,

error_code& ec) noexcept;

1 Effects: Establishes the postcondition, as if by POSIX symlink().
2 Postconditions: new_symlink resolves to a symbolic link file that contains an unspecified representation

of to.
3 Throws: As specified in 31.12.5.
4 [Note 1 : Some operating systems do not support symbolic links at all or support them only for regular files.

Some file systems (such as the FAT file system) do not support symbolic links regardless of the operating system.
— end note ]

31.12.13.12 Current path [fs.op.current.path]

path filesystem::current_path();
path filesystem::current_path(error_code& ec);

1 Returns: The absolute path of the current working directory, whose pathname in the native format is
obtained as if by POSIX getcwd(). The signature with argument ec returns path() if an error occurs.

2 Throws: As specified in 31.12.5.
3 Remarks: The current working directory is the directory, associated with the process, that is used as

the starting location in pathname resolution for relative paths.
4 [Note 1 : The current_path() name was chosen to emphasize that the returned value is a path, not just a

single directory name. — end note ]
5 [Note 2 : The current path as returned by many operating systems is a dangerous global variable and can be

changed unexpectedly by third-party or system library functions, or by another thread. — end note ]

void filesystem::current_path(const path& p);
void filesystem::current_path(const path& p, error_code& ec) noexcept;

6 Effects: Establishes the postcondition, as if by POSIX chdir().
7 Postconditions: equivalent(p, current_path()).
8 Throws: As specified in 31.12.5.
9 [Note 3 : The current path for many operating systems is a dangerous global state and can be changed

unexpectedly by third-party or system library functions, or by another thread. — end note ]

31.12.13.13 Equivalent [fs.op.equivalent]

bool filesystem::equivalent(const path& p1, const path& p2);
bool filesystem::equivalent(const path& p1, const path& p2, error_code& ec) noexcept;

1 Two paths are considered to resolve to the same file system entity if two candidate entities reside on
the same device at the same location.

§ 31.12.13.13 1742



© ISO/IEC N4950

[Note 1 : On POSIX platforms, this is determined as if by the values of the POSIX stat class, obtained as if by
stat() for the two paths, having equal st_dev values and equal st_ino values. — end note ]

2 Returns: true, if p1 and p2 resolve to the same file system entity, otherwise false. The signature with
argument ec returns false if an error occurs.

3 Throws: As specified in 31.12.5.
4 Remarks: !exists(p1) || !exists(p2) is an error.

31.12.13.14 Exists [fs.op.exists]

bool filesystem::exists(file_status s) noexcept;

1 Returns: status_known(s) && s.type() != file_type::not_found.

bool filesystem::exists(const path& p);
bool filesystem::exists(const path& p, error_code& ec) noexcept;

2 Let s be a file_status, determined as if by status(p) or status(p, ec), respectively.
3 Effects: The signature with argument ec calls ec.clear() if status_known(s).
4 Returns: exists(s).
5 Throws: As specified in 31.12.5.

31.12.13.15 File size [fs.op.file.size]

uintmax_t filesystem::file_size(const path& p);
uintmax_t filesystem::file_size(const path& p, error_code& ec) noexcept;

1 Effects: If exists(p) is false, an error is reported (31.12.5).
2 Returns:

—(2.1) If is_regular_file(p), the size in bytes of the file p resolves to, determined as if by the value of
the POSIX stat class member st_size obtained as if by POSIX stat().

—(2.2) Otherwise, the result is implementation-defined.
The signature with argument ec returns static_cast<uintmax_t>(-1) if an error occurs.

3 Throws: As specified in 31.12.5.

31.12.13.16 Hard link count [fs.op.hard.lk.ct]

uintmax_t filesystem::hard_link_count(const path& p);
uintmax_t filesystem::hard_link_count(const path& p, error_code& ec) noexcept;

1 Returns: The number of hard links for p. The signature with argument ec returns static_-
cast<uintmax_t>(-1) if an error occurs.

2 Throws: As specified in 31.12.5.

31.12.13.17 Is block file [fs.op.is.block.file]

bool filesystem::is_block_file(file_status s) noexcept;

1 Returns: s.type() == file_type::block.

bool filesystem::is_block_file(const path& p);
bool filesystem::is_block_file(const path& p, error_code& ec) noexcept;

2 Returns: is_block_file(status(p)) or is_block_file(status(p, ec)), respectively. The signa-
ture with argument ec returns false if an error occurs.

3 Throws: As specified in 31.12.5.

31.12.13.18 Is character file [fs.op.is.char.file]

bool filesystem::is_character_file(file_status s) noexcept;

1 Returns: s.type() == file_type::character.
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bool filesystem::is_character_file(const path& p);
bool filesystem::is_character_file(const path& p, error_code& ec) noexcept;

2 Returns: is_character_file(status(p)) or is_character_file(status(p, ec)), respectively.
The signature with argument ec returns false if an error occurs.

3 Throws: As specified in 31.12.5.

31.12.13.19 Is directory [fs.op.is.directory]

bool filesystem::is_directory(file_status s) noexcept;

1 Returns: s.type() == file_type::directory.

bool filesystem::is_directory(const path& p);
bool filesystem::is_directory(const path& p, error_code& ec) noexcept;

2 Returns: is_directory(status(p)) or is_directory(status(p, ec)), respectively. The signature
with argument ec returns false if an error occurs.

3 Throws: As specified in 31.12.5.

31.12.13.20 Is empty [fs.op.is.empty]

bool filesystem::is_empty(const path& p);
bool filesystem::is_empty(const path& p, error_code& ec);

1 Effects:
—(1.1) Determine file_status s, as if by status(p) or status(p, ec), respectively.
—(1.2) For the signature with argument ec, return false if an error occurred.
—(1.3) Otherwise, if is_directory(s):

—(1.3.1) Create a variable itr, as if by directory_iterator itr(p) or directory_iterator itr(p,
ec), respectively.

—(1.3.2) For the signature with argument ec, return false if an error occurred.
—(1.3.3) Otherwise, return itr == directory_iterator().

—(1.4) Otherwise:
—(1.4.1) Determine uintmax_t sz, as if by file_size(p) or file_size(p, ec), respectively.
—(1.4.2) For the signature with argument ec, return false if an error occurred.
—(1.4.3) Otherwise, return sz == 0.

2 Throws: As specified in 31.12.5.

31.12.13.21 Is fifo [fs.op.is.fifo]

bool filesystem::is_fifo(file_status s) noexcept;

1 Returns: s.type() == file_type::fifo.

bool filesystem::is_fifo(const path& p);
bool filesystem::is_fifo(const path& p, error_code& ec) noexcept;

2 Returns: is_fifo(status(p)) or is_fifo(status(p, ec)), respectively. The signature with argu-
ment ec returns false if an error occurs.

3 Throws: As specified in 31.12.5.

31.12.13.22 Is other [fs.op.is.other]

bool filesystem::is_other(file_status s) noexcept;

1 Returns: exists(s) && !is_regular_file(s) && !is_directory(s) && !is_symlink(s).

bool filesystem::is_other(const path& p);
bool filesystem::is_other(const path& p, error_code& ec) noexcept;

2 Returns: is_other(status(p)) or is_other(status(p, ec)), respectively. The signature with
argument ec returns false if an error occurs.
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3 Throws: As specified in 31.12.5.

31.12.13.23 Is regular file [fs.op.is.regular.file]

bool filesystem::is_regular_file(file_status s) noexcept;

1 Returns: s.type() == file_type::regular.

bool filesystem::is_regular_file(const path& p);

2 Returns: is_regular_file(status(p)).
3 Throws: filesystem_error if status(p) would throw filesystem_error.

bool filesystem::is_regular_file(const path& p, error_code& ec) noexcept;

4 Effects: Sets ec as if by status(p, ec).
[Note 1 : file_type::none, file_type::not_found and file_type::unknown cases set ec to error values. To
distinguish between cases, call the status function directly. — end note ]

5 Returns: is_regular_file(status(p, ec)). Returns false if an error occurs.

31.12.13.24 Is socket [fs.op.is.socket]

bool filesystem::is_socket(file_status s) noexcept;

1 Returns: s.type() == file_type::socket.

bool filesystem::is_socket(const path& p);
bool filesystem::is_socket(const path& p, error_code& ec) noexcept;

2 Returns: is_socket(status(p)) or is_socket(status(p, ec)), respectively. The signature with
argument ec returns false if an error occurs.

3 Throws: As specified in 31.12.5.

31.12.13.25 Is symlink [fs.op.is.symlink]

bool filesystem::is_symlink(file_status s) noexcept;

1 Returns: s.type() == file_type::symlink.

bool filesystem::is_symlink(const path& p);
bool filesystem::is_symlink(const path& p, error_code& ec) noexcept;

2 Returns: is_symlink(symlink_status(p)) or is_symlink(symlink_status(p, ec)), respectively.
The signature with argument ec returns false if an error occurs.

3 Throws: As specified in 31.12.5.

31.12.13.26 Last write time [fs.op.last.write.time]

file_time_type filesystem::last_write_time(const path& p);
file_time_type filesystem::last_write_time(const path& p, error_code& ec) noexcept;

1 Returns: The time of last data modification of p, determined as if by the value of the POSIX stat
class member st_mtime obtained as if by POSIX stat(). The signature with argument ec returns
file_time_type::min() if an error occurs.

2 Throws: As specified in 31.12.5.

void filesystem::last_write_time(const path& p, file_time_type new_time);
void filesystem::last_write_time(const path& p, file_time_type new_time,

error_code& ec) noexcept;

3 Effects: Sets the time of last data modification of the file resolved to by p to new_time, as if by POSIX
futimens().

4 Throws: As specified in 31.12.5.
5 [Note 1 : A postcondition of last_write_time(p) == new_time is not specified because it does not necessarily

hold for file systems with coarse time granularity. — end note ]
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31.12.13.27 Permissions [fs.op.permissions]

void filesystem::permissions(const path& p, perms prms, perm_options opts=perm_options::replace);
void filesystem::permissions(const path& p, perms prms, error_code& ec) noexcept;
void filesystem::permissions(const path& p, perms prms, perm_options opts, error_code& ec);

1 Preconditions: Exactly one of the perm_options constants replace, add, or remove is present in opts.
2 Effects: Applies the action specified by opts to the file p resolves to, or to file p itself if p is a symbolic

link and perm_options::nofollow is set in opts. The action is applied as if by POSIX fchmodat().
3 [Note 1 : Conceptually permissions are viewed as bits, but the actual implementation can use some other

mechanism. — end note ]
4 Throws: As specified in 31.12.5.
5 Remarks: The second signature behaves as if it had an additional parameter perm_options opts with

an argument of perm_options::replace.

31.12.13.28 Proximate [fs.op.proximate]

path filesystem::proximate(const path& p, error_code& ec);

1 Returns: proximate(p, current_path(), ec).
2 Throws: As specified in 31.12.5.

path filesystem::proximate(const path& p, const path& base = current_path());
path filesystem::proximate(const path& p, const path& base, error_code& ec);

3 Returns: For the first form:
weakly_canonical(p).lexically_proximate(weakly_canonical(base));

For the second form:
weakly_canonical(p, ec).lexically_proximate(weakly_canonical(base, ec));

or path() at the first error occurrence, if any.
4 Throws: As specified in 31.12.5.

31.12.13.29 Read symlink [fs.op.read.symlink]

path filesystem::read_symlink(const path& p);
path filesystem::read_symlink(const path& p, error_code& ec);

1 Returns: If p resolves to a symbolic link, a path object containing the contents of that symbolic link.
The signature with argument ec returns path() if an error occurs.

2 Throws: As specified in 31.12.5.
[Note 1 : It is an error if p does not resolve to a symbolic link. — end note ]

31.12.13.30 Relative [fs.op.relative]

path filesystem::relative(const path& p, error_code& ec);

1 Returns: relative(p, current_path(), ec).
2 Throws: As specified in 31.12.5.

path filesystem::relative(const path& p, const path& base = current_path());
path filesystem::relative(const path& p, const path& base, error_code& ec);

3 Returns: For the first form:
weakly_canonical(p).lexically_relative(weakly_canonical(base));

For the second form:
weakly_canonical(p, ec).lexically_relative(weakly_canonical(base, ec));

or path() at the first error occurrence, if any.
4 Throws: As specified in 31.12.5.
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31.12.13.31 Remove [fs.op.remove]

bool filesystem::remove(const path& p);
bool filesystem::remove(const path& p, error_code& ec) noexcept;

1 Effects: If exists(symlink_status(p, ec)), the file p is removed as if by POSIX remove().
[Note 1 : A symbolic link is itself removed, rather than the file it resolves to. — end note ]

2 Postconditions: exists(symlink_status(p)) is false.
3 Returns: false if p did not exist, otherwise true. The signature with argument ec returns false if

an error occurs.
4 Throws: As specified in 31.12.5.

31.12.13.32 Remove all [fs.op.remove.all]

uintmax_t filesystem::remove_all(const path& p);
uintmax_t filesystem::remove_all(const path& p, error_code& ec);

1 Effects: Recursively deletes the contents of p if it exists, then deletes file p itself, as if by POSIX
remove().
[Note 1 : A symbolic link is itself removed, rather than the file it resolves to. — end note ]

2 Postconditions: exists(symlink_status(p)) is false.
3 Returns: The number of files removed. The signature with argument ec returns static_cast<

uintmax_t>(-1) if an error occurs.
4 Throws: As specified in 31.12.5.

31.12.13.33 Rename [fs.op.rename]

void filesystem::rename(const path& old_p, const path& new_p);
void filesystem::rename(const path& old_p, const path& new_p, error_code& ec) noexcept;

1 Effects: Renames old_p to new_p, as if by POSIX rename().
[Note 1 :

—(1.1) If old_p and new_p resolve to the same existing file, no action is taken.
—(1.2) Otherwise, the rename can include the following effects:

—(1.2.1) if new_p resolves to an existing non-directory file, new_p is removed; otherwise,
—(1.2.2) if new_p resolves to an existing directory, new_p is removed if empty on POSIX compliant operating

systems but might be an error on other operating systems.
A symbolic link is itself renamed, rather than the file it resolves to. — end note ]

2 Throws: As specified in 31.12.5.

31.12.13.34 Resize file [fs.op.resize.file]

void filesystem::resize_file(const path& p, uintmax_t new_size);
void filesystem::resize_file(const path& p, uintmax_t new_size, error_code& ec) noexcept;

1 Effects: Causes the size that would be returned by file_size(p) to be equal to new_size, as if by
POSIX truncate().

2 Throws: As specified in 31.12.5.

31.12.13.35 Space [fs.op.space]

space_info filesystem::space(const path& p);
space_info filesystem::space(const path& p, error_code& ec) noexcept;

1 Returns: An object of type space_info. The value of the space_info object is determined as if
by using POSIX statvfs to obtain a POSIX struct statvfs, and then multiplying its f_blocks,
f_bfree, and f_bavail members by its f_frsize member, and assigning the results to the capacity,
free, and available members respectively. Any members for which the value cannot be determined
shall be set to static_cast<uintmax_t>(-1). For the signature with argument ec, all members are
set to static_cast<uintmax_t>(-1) if an error occurs.
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2 Throws: As specified in 31.12.5.
3 Remarks: The value of member space_info::available is operating system dependent.

[Note 1 : available might be less than free. — end note ]

31.12.13.36 Status [fs.op.status]

file_status filesystem::status(const path& p);

1 Effects: As if:
error_code ec;
file_status result = status(p, ec);
if (result.type() == file_type::none)

throw filesystem_error(implementation-supplied-message , p, ec);
return result;

2 Returns: See above.
3 Throws: filesystem_error.

[Note 1 : result values of file_status(file_type::not_found) and file_status(file_type::unknown) are
not considered failures and do not cause an exception to be thrown. — end note ]

file_status filesystem::status(const path& p, error_code& ec) noexcept;

4 Effects: If possible, determines the attributes of the file p resolves to, as if by using POSIX stat()
to obtain a POSIX struct stat. If, during attribute determination, the underlying file system API
reports an error, sets ec to indicate the specific error reported. Otherwise, ec.clear().
[Note 2 : This allows users to inspect the specifics of underlying API errors even when the value returned by
status() is not file_status(file_type::none). — end note ]

5 Let prms denote the result of (m & perms::mask), where m is determined as if by converting the
st_mode member of the obtained struct stat to the type perms.

6 Returns:
—(6.1) If ec != error_code():

—(6.1.1) If the specific error indicates that p cannot be resolved because some element of the path does
not exist, returns file_status(file_type::not_found).

—(6.1.2) Otherwise, if the specific error indicates that p can be resolved but the attributes cannot be
determined, returns file_status(file_type::unknown).

—(6.1.3) Otherwise, returns file_status(file_type::none).
[Note 3 : These semantics distinguish between p being known not to exist, p existing but not being able to
determine its attributes, and there being an error that prevents even knowing if p exists. These distinctions
are important to some use cases. — end note ]

—(6.2) Otherwise,
—(6.2.1) If the attributes indicate a regular file, as if by POSIX S_ISREG, returns file_status(file_-

type::regular, prms).
[Note 4 : file_type::regular implies appropriate <fstream> operations would succeed, assuming
no hardware, permission, access, or file system race errors. Lack of file_type::regular does not
necessarily imply <fstream> operations would fail on a directory. — end note ]

—(6.2.2) Otherwise, if the attributes indicate a directory, as if by POSIX S_ISDIR, returns file_-
status(file_type::directory, prms).
[Note 5 : file_type::directory implies that calling directory_iterator(p) would succeed. — end
note ]

—(6.2.3) Otherwise, if the attributes indicate a block special file, as if by POSIX S_ISBLK, returns
file_status(file_type::block, prms).

—(6.2.4) Otherwise, if the attributes indicate a character special file, as if by POSIX S_ISCHR, returns
file_status(file_type::character, prms).

—(6.2.5) Otherwise, if the attributes indicate a fifo or pipe file, as if by POSIX S_ISFIFO, returns
file_status(file_type::fifo, prms).
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—(6.2.6) Otherwise, if the attributes indicate a socket, as if by POSIX S_ISSOCK, returns file_-
status(file_type::socket, prms).

—(6.2.7) Otherwise, if the attributes indicate an implementation-defined file type (31.12.8.2), returns
file_status(file_type::A, prms), where A is the constant for the implementation-defined
file type.

—(6.2.8) Otherwise, returns file_status(file_type::unknown, prms).
7 Remarks: If a symbolic link is encountered during pathname resolution, pathname resolution continues

using the contents of the symbolic link.

31.12.13.37 Status known [fs.op.status.known]

bool filesystem::status_known(file_status s) noexcept;

1 Returns: s.type() != file_type::none.

31.12.13.38 Symlink status [fs.op.symlink.status]

file_status filesystem::symlink_status(const path& p);
file_status filesystem::symlink_status(const path& p, error_code& ec) noexcept;

1 Effects: Same as status(), above, except that the attributes of p are determined as if by using POSIX
lstat() to obtain a POSIX struct stat.

2 Let prms denote the result of (m & perms::mask), where m is determined as if by converting the
st_mode member of the obtained struct stat to the type perms.

3 Returns: Same as status(), above, except that if the attributes indicate a symbolic link, as if by
POSIX S_ISLNK, returns file_status(file_type::symlink, prms). The signature with argument
ec returns file_status(file_type::none) if an error occurs.

4 Throws: As specified in 31.12.5.
5 Remarks: Pathname resolution terminates if p names a symbolic link.

31.12.13.39 Temporary directory path [fs.op.temp.dir.path]

path filesystem::temp_directory_path();
path filesystem::temp_directory_path(error_code& ec);

1 Let p be an unspecified directory path suitable for temporary files.
2 Effects: If exists(p) is false or is_directory(p) is false, an error is reported (31.12.5).
3 Returns: The path p. The signature with argument ec returns path() if an error occurs.
4 Throws: As specified in 31.12.5.
5 [Example 1 : For POSIX-based operating systems, an implementation might return the path supplied by the

first environment variable found in the list TMPDIR, TMP, TEMP, TEMPDIR, or if none of these are found,
"/tmp".
For Windows-based operating systems, an implementation might return the path reported by the Windows
GetTempPath API function. — end example ]

31.12.13.40 Weakly canonical [fs.op.weakly.canonical]

path filesystem::weakly_canonical(const path& p);
path filesystem::weakly_canonical(const path& p, error_code& ec);

1 Effects: Using status(p) or status(p, ec), respectively, to determine existence, return a path
composed by operator/= from the result of calling canonical() with a path argument composed of
the leading elements of p that exist, if any, followed by the elements of p that do not exist, if any.
For the first form, canonical() is called without an error_code argument. For the second form,
canonical() is called with ec as an error_code argument, and path() is returned at the first error
occurrence, if any.

2 Postconditions: The returned path is in normal form (31.12.6.2).
3 Returns: p with symlinks resolved and the result normalized (31.12.6.2).
4 Throws: As specified in 31.12.5.
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31.13 C library files [c.files]
31.13.1 Header <cstdio> synopsis [cstdio.syn]

namespace std {
using size_t = see 17.2.4;
using FILE = see below ;
using fpos_t = see below ;

}

#define NULL see 17.2.3
#define _IOFBF see below
#define _IOLBF see below
#define _IONBF see below
#define BUFSIZ see below
#define EOF see below
#define FOPEN_MAX see below
#define FILENAME_MAX see below
#define L_tmpnam see below
#define SEEK_CUR see below
#define SEEK_END see below
#define SEEK_SET see below
#define TMP_MAX see below
#define stderr see below
#define stdin see below
#define stdout see below

namespace std {
int remove(const char* filename);
int rename(const char* old_p, const char* new_p);
FILE* tmpfile();
char* tmpnam(char* s);
int fclose(FILE* stream);
int fflush(FILE* stream);
FILE* fopen(const char* filename, const char* mode);
FILE* freopen(const char* filename, const char* mode, FILE* stream);
void setbuf(FILE* stream, char* buf);
int setvbuf(FILE* stream, char* buf, int mode, size_t size);
int fprintf(FILE* stream, const char* format, ...);
int fscanf(FILE* stream, const char* format, ...);
int printf(const char* format, ...);
int scanf(const char* format, ...);
int snprintf(char* s, size_t n, const char* format, ...);
int sprintf(char* s, const char* format, ...);
int sscanf(const char* s, const char* format, ...);
int vfprintf(FILE* stream, const char* format, va_list arg);
int vfscanf(FILE* stream, const char* format, va_list arg);
int vprintf(const char* format, va_list arg);
int vscanf(const char* format, va_list arg);
int vsnprintf(char* s, size_t n, const char* format, va_list arg);
int vsprintf(char* s, const char* format, va_list arg);
int vsscanf(const char* s, const char* format, va_list arg);
int fgetc(FILE* stream);
char* fgets(char* s, int n, FILE* stream);
int fputc(int c, FILE* stream);
int fputs(const char* s, FILE* stream);
int getc(FILE* stream);
int getchar();
int putc(int c, FILE* stream);
int putchar(int c);
int puts(const char* s);
int ungetc(int c, FILE* stream);
size_t fread(void* ptr, size_t size, size_t nmemb, FILE* stream);
size_t fwrite(const void* ptr, size_t size, size_t nmemb, FILE* stream);
int fgetpos(FILE* stream, fpos_t* pos);
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int fseek(FILE* stream, long int offset, int whence);
int fsetpos(FILE* stream, const fpos_t* pos);
long int ftell(FILE* stream);
void rewind(FILE* stream);
void clearerr(FILE* stream);
int feof(FILE* stream);
int ferror(FILE* stream);
void perror(const char* s);

}

1 The contents and meaning of the header <cstdio> are the same as the C standard library header <stdio.h>.
2 Calls to the function tmpnam with an argument that is a null pointer value may introduce a data race (16.4.6.10)

with other calls to tmpnam with an argument that is a null pointer value.
See also: ISO/IEC 9899:2018, 7.21

31.13.2 Header <cinttypes> synopsis [cinttypes.syn]
#include <cstdint> // see 17.4.1

namespace std {
using imaxdiv_t = see below ;

constexpr intmax_t imaxabs(intmax_t j);
constexpr imaxdiv_t imaxdiv(intmax_t numer, intmax_t denom);
intmax_t strtoimax(const char* nptr, char** endptr, int base);
uintmax_t strtoumax(const char* nptr, char** endptr, int base);
intmax_t wcstoimax(const wchar_t* nptr, wchar_t** endptr, int base);
uintmax_t wcstoumax(const wchar_t* nptr, wchar_t** endptr, int base);

constexpr intmax_t abs(intmax_t); // optional, see below
constexpr imaxdiv_t div(intmax_t, intmax_t); // optional, see below

}

#define PRIdN see below
#define PRIiN see below
#define PRIoN see below
#define PRIuN see below
#define PRIxN see below
#define PRIXN see below
#define SCNdN see below
#define SCNiN see below
#define SCNoN see below
#define SCNuN see below
#define SCNxN see below
#define PRIdLEASTN see below
#define PRIiLEASTN see below
#define PRIoLEASTN see below
#define PRIuLEASTN see below
#define PRIxLEASTN see below
#define PRIXLEASTN see below
#define SCNdLEASTN see below
#define SCNiLEASTN see below
#define SCNoLEASTN see below
#define SCNuLEASTN see below
#define SCNxLEASTN see below
#define PRIdFASTN see below
#define PRIiFASTN see below
#define PRIoFASTN see below
#define PRIuFASTN see below
#define PRIxFASTN see below
#define PRIXFASTN see below
#define SCNdFASTN see below
#define SCNiFASTN see below
#define SCNoFASTN see below
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#define SCNuFASTN see below
#define SCNxFASTN see below
#define PRIdMAX see below
#define PRIiMAX see below
#define PRIoMAX see below
#define PRIuMAX see below
#define PRIxMAX see below
#define PRIXMAX see below
#define SCNdMAX see below
#define SCNiMAX see below
#define SCNoMAX see below
#define SCNuMAX see below
#define SCNxMAX see below
#define PRIdPTR see below
#define PRIiPTR see below
#define PRIoPTR see below
#define PRIuPTR see below
#define PRIxPTR see below
#define PRIXPTR see below
#define SCNdPTR see below
#define SCNiPTR see below
#define SCNoPTR see below
#define SCNuPTR see below
#define SCNxPTR see below

1 The contents and meaning of the header <cinttypes> are the same as the C standard library header
<inttypes.h>, with the following changes:

—(1.1) The header <cinttypes> includes the header <cstdint> (17.4.1) instead of <stdint.h>, and
—(1.2) intmax_t and uintmax_t are not required to be able to represent all values of extended integer types

wider than long long and unsigned long long, respectively, and
—(1.3) if and only if the type intmax_t designates an extended integer type (6.8.2), the following function

signatures are added:
constexpr intmax_t abs(intmax_t);
constexpr imaxdiv_t div(intmax_t, intmax_t);

which shall have the same semantics as the function signatures constexpr intmax_t imaxabs(intmax_-
t) and constexpr imaxdiv_t imaxdiv(intmax_t, intmax_t), respectively.

See also: ISO/IEC 9899:2018, 7.8
2 Each of the PRI macros listed in this subclause is defined if and only if the implementation defines the

corresponding typedef-name in 17.4.1. Each of the SCN macros listed in this subclause is defined if and only
if the implementation defines the corresponding typedef-name in 17.4.1 and has a suitable fscanf length
modifier for the type.
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32 Regular expressions library [re]
32.1 General [re.general]

1 This Clause describes components that C++ programs may use to perform operations involving regular
expression matching and searching.

2 The following subclauses describe a basic regular expression class template and its traits that can handle
char-like (23.1) template arguments, two specializations of this class template that handle sequences of char
and wchar_t, a class template that holds the result of a regular expression match, a series of algorithms
that allow a character sequence to be operated upon by a regular expression, and two iterator types for
enumerating regular expression matches, as summarized in Table 136.

Table 136: Regular expressions library summary [tab:re.summary]

Subclause Header
32.2 Requirements
32.4 Constants <regex>
32.5 Exception type
32.6 Traits
32.7 Regular expression template
32.8 Submatches
32.9 Match results
32.10 Algorithms
32.11 Iterators
32.12 Grammar

3 The ECMAScript Language Specification described in Standard Ecma-262 is called ECMA-262 in this Clause.

32.2 Requirements [re.req]
1 This subclause defines requirements on classes representing regular expression traits.

[Note 1 : The class template regex_traits, defined in 32.6, meets these requirements. — end note ]
2 The class template basic_regex, defined in 32.7, needs a set of related types and functions to complete the

definition of its semantics. These types and functions are provided as a set of member typedef-names and
functions in the template parameter traits used by the basic_regex class template. This subclause defines
the semantics of these members.

3 To specialize class template basic_regex for a character container CharT and its related regular expression
traits class Traits, use basic_regex<CharT, Traits>.

4 In the following requirements,
—(4.1) X denotes a traits class defining types and functions for the character container type charT;
—(4.2) u is an object of type X;
—(4.3) v is an object of type const X;
—(4.4) p is a value of type const charT*;
—(4.5) I1 and I2 are input iterators (25.3.5.3);
—(4.6) F1 and F2 are forward iterators (25.3.5.5);
—(4.7) c is a value of type const charT;
—(4.8) s is an object of type X::string_type;
—(4.9) cs is an object of type const X::string_type;
—(4.10) b is a value of type bool;
—(4.11) I is a value of type int;
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—(4.12) cl is an object of type X::char_class_type; and
—(4.13) loc is an object of type X::locale_type.

5 A traits class X meets the regular expression traits requirements if the following types and expressions are
well-formed and have the specified semantics.

typename X::char_type

6 Result: charT, the character container type used in the implementation of class template basic_regex.

typename X::string_type

7 Result: basic_string<charT>

typename X::locale_type

8 Result: A copy constructible type that represents the locale used by the traits class.

typename X::char_class_type

9 Result: A bitmask type (16.3.3.3.3) representing a particular character classification.

X::length(p)

10 Result: size_t
11 Returns: The smallest i such that p[i] == 0.
12 Complexity: Linear in i.

v.translate(c)

13 Result: X::char_type
14 Returns: A character such that for any character d that is to be considered equivalent to c then

v.translate(c) == v.translate(d).

v.translate_nocase(c)

15 Result: X::char_type
16 Returns: For all characters C that are to be considered equivalent to c when comparisons are to be

performed without regard to case, then v.translate_nocase(c) == v.translate_nocase(C).

v.transform(F1, F2)

17 Result: X::string_type
18 Returns: A sort key for the character sequence designated by the iterator range [F1, F2) such that if

the character sequence [G1, G2) sorts before the character sequence [H1, H2) then v.transform(G1, G2)
< v.transform(H1, H2).

v.transform_primary(F1, F2)

19 Result: X::string_type
20 Returns: A sort key for the character sequence designated by the iterator range [F1, F2) such that if

the character sequence [G1, G2) sorts before the character sequence [H1, H2) when character case is not
considered then v.transform_primary(G1, G2) < v.transform_primary(H1, H2).

v.lookup_collatename(F1, F2)

21 Result: X::string_type
22 Returns: A sequence of characters that represents the collating element consisting of the character

sequence designated by the iterator range [F1, F2). Returns an empty string if the character sequence is
not a valid collating element.

v.lookup_classname(F1, F2, b)

23 Result: X::char_class_type
24 Returns: Converts the character sequence designated by the iterator range [F1, F2) into a value of a

bitmask type that can subsequently be passed to isctype. Values returned from lookup_classname
can be bitwise or’ed together; the resulting value represents membership in either of the corresponding
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character classes. If b is true, the returned bitmask is suitable for matching characters without regard
to their case. Returns 0 if the character sequence is not the name of a character class recognized by X.
The value returned shall be independent of the case of the characters in the sequence.

v.isctype(c, cl)

25 Result: bool
26 Returns: Returns true if character c is a member of one of the character classes designated by cl,

false otherwise.

v.value(c, I)

27 Result: int
28 Returns: Returns the value represented by the digit c in base I if the character c is a valid digit in

base I ; otherwise returns -1.
[Note 2 : The value of I will only be 8, 10, or 16. — end note ]

u.imbue(loc)

29 Result: X::locale_type
30 Effects: Imbues u with the locale loc and returns the previous locale used by u if any.

v.getloc()

31 Result: X::locale_type
32 Returns: Returns the current locale used by v, if any.
33 [Note 3 : Class template regex_traits meets the requirements for a regular expression traits class when it is specialized

for char or wchar_t. This class template is described in the header <regex>, and is described in 32.6. — end note ]

32.3 Header <regex> synopsis [re.syn]
#include <compare> // see 17.11.1
#include <initializer_list> // see 17.10.2

namespace std {
// 32.4, regex constants
namespace regex_constants {

using syntax_option_type = T1;
using match_flag_type = T2;
using error_type = T3;

}

// 32.5, class regex_error
class regex_error;

// 32.6, class template regex_traits
template<class charT> struct regex_traits;

// 32.7, class template basic_regex
template<class charT, class traits = regex_traits<charT>> class basic_regex;

using regex = basic_regex<char>;
using wregex = basic_regex<wchar_t>;

// 32.7.6, basic_regex swap
template<class charT, class traits>

void swap(basic_regex<charT, traits>& e1, basic_regex<charT, traits>& e2);

// 32.8, class template sub_match
template<class BidirectionalIterator>

class sub_match;

using csub_match = sub_match<const char*>;
using wcsub_match = sub_match<const wchar_t*>;

§ 32.3 1755



© ISO/IEC N4950

using ssub_match = sub_match<string::const_iterator>;
using wssub_match = sub_match<wstring::const_iterator>;

// 32.8.3, sub_match non-member operators
template<class BiIter>

bool operator==(const sub_match<BiIter>& lhs, const sub_match<BiIter>& rhs);
template<class BiIter>

auto operator<=>(const sub_match<BiIter>& lhs, const sub_match<BiIter>& rhs);

template<class BiIter, class ST, class SA>
bool operator==(

const sub_match<BiIter>& lhs,
const basic_string<typename iterator_traits<BiIter>::value_type, ST, SA>& rhs);

template<class BiIter, class ST, class SA>
auto operator<=>(

const sub_match<BiIter>& lhs,
const basic_string<typename iterator_traits<BiIter>::value_type, ST, SA>& rhs);

template<class BiIter>
bool operator==(const sub_match<BiIter>& lhs,

const typename iterator_traits<BiIter>::value_type* rhs);
template<class BiIter>

auto operator<=>(const sub_match<BiIter>& lhs,
const typename iterator_traits<BiIter>::value_type* rhs);

template<class BiIter>
bool operator==(const sub_match<BiIter>& lhs,

const typename iterator_traits<BiIter>::value_type& rhs);
template<class BiIter>

auto operator<=>(const sub_match<BiIter>& lhs,
const typename iterator_traits<BiIter>::value_type& rhs);

template<class charT, class ST, class BiIter>
basic_ostream<charT, ST>&

operator<<(basic_ostream<charT, ST>& os, const sub_match<BiIter>& m);

// 32.9, class template match_results
template<class BidirectionalIterator,

class Allocator = allocator<sub_match<BidirectionalIterator>>>
class match_results;

using cmatch = match_results<const char*>;
using wcmatch = match_results<const wchar_t*>;
using smatch = match_results<string::const_iterator>;
using wsmatch = match_results<wstring::const_iterator>;

// match_results comparisons
template<class BidirectionalIterator, class Allocator>

bool operator==(const match_results<BidirectionalIterator, Allocator>& m1,
const match_results<BidirectionalIterator, Allocator>& m2);

// 32.9.8, match_results swap
template<class BidirectionalIterator, class Allocator>

void swap(match_results<BidirectionalIterator, Allocator>& m1,
match_results<BidirectionalIterator, Allocator>& m2);

// 32.10.2, function template regex_match
template<class BidirectionalIterator, class Allocator, class charT, class traits>

bool regex_match(BidirectionalIterator first, BidirectionalIterator last,
match_results<BidirectionalIterator, Allocator>& m,
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);
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template<class BidirectionalIterator, class charT, class traits>
bool regex_match(BidirectionalIterator first, BidirectionalIterator last,

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

template<class charT, class Allocator, class traits>
bool regex_match(const charT* str, match_results<const charT*, Allocator>& m,

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

template<class ST, class SA, class Allocator, class charT, class traits>
bool regex_match(const basic_string<charT, ST, SA>& s,

match_results<typename basic_string<charT, ST, SA>::const_iterator,
Allocator>& m,

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

template<class ST, class SA, class Allocator, class charT, class traits>
bool regex_match(const basic_string<charT, ST, SA>&&,

match_results<typename basic_string<charT, ST, SA>::const_iterator,
Allocator>&,

const basic_regex<charT, traits>&,
regex_constants::match_flag_type = regex_constants::match_default) = delete;

template<class charT, class traits>
bool regex_match(const charT* str,

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

template<class ST, class SA, class charT, class traits>
bool regex_match(const basic_string<charT, ST, SA>& s,

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

// 32.10.3, function template regex_search
template<class BidirectionalIterator, class Allocator, class charT, class traits>

bool regex_search(BidirectionalIterator first, BidirectionalIterator last,
match_results<BidirectionalIterator, Allocator>& m,
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

template<class BidirectionalIterator, class charT, class traits>
bool regex_search(BidirectionalIterator first, BidirectionalIterator last,

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

template<class charT, class Allocator, class traits>
bool regex_search(const charT* str,

match_results<const charT*, Allocator>& m,
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

template<class charT, class traits>
bool regex_search(const charT* str,

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

template<class ST, class SA, class charT, class traits>
bool regex_search(const basic_string<charT, ST, SA>& s,

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

template<class ST, class SA, class Allocator, class charT, class traits>
bool regex_search(const basic_string<charT, ST, SA>& s,

match_results<typename basic_string<charT, ST, SA>::const_iterator,
Allocator>& m,

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

template<class ST, class SA, class Allocator, class charT, class traits>
bool regex_search(const basic_string<charT, ST, SA>&&,

match_results<typename basic_string<charT, ST, SA>::const_iterator,
Allocator>&,

const basic_regex<charT, traits>&,
regex_constants::match_flag_type
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= regex_constants::match_default) = delete;

// 32.10.4, function template regex_replace
template<class OutputIterator, class BidirectionalIterator,

class traits, class charT, class ST, class SA>
OutputIterator

regex_replace(OutputIterator out,
BidirectionalIterator first, BidirectionalIterator last,
const basic_regex<charT, traits>& e,
const basic_string<charT, ST, SA>& fmt,
regex_constants::match_flag_type flags = regex_constants::match_default);

template<class OutputIterator, class BidirectionalIterator, class traits, class charT>
OutputIterator

regex_replace(OutputIterator out,
BidirectionalIterator first, BidirectionalIterator last,
const basic_regex<charT, traits>& e,
const charT* fmt,
regex_constants::match_flag_type flags = regex_constants::match_default);

template<class traits, class charT, class ST, class SA, class FST, class FSA>
basic_string<charT, ST, SA>

regex_replace(const basic_string<charT, ST, SA>& s,
const basic_regex<charT, traits>& e,
const basic_string<charT, FST, FSA>& fmt,
regex_constants::match_flag_type flags = regex_constants::match_default);

template<class traits, class charT, class ST, class SA>
basic_string<charT, ST, SA>

regex_replace(const basic_string<charT, ST, SA>& s,
const basic_regex<charT, traits>& e,
const charT* fmt,
regex_constants::match_flag_type flags = regex_constants::match_default);

template<class traits, class charT, class ST, class SA>
basic_string<charT>

regex_replace(const charT* s,
const basic_regex<charT, traits>& e,
const basic_string<charT, ST, SA>& fmt,
regex_constants::match_flag_type flags = regex_constants::match_default);

template<class traits, class charT>
basic_string<charT>

regex_replace(const charT* s,
const basic_regex<charT, traits>& e,
const charT* fmt,
regex_constants::match_flag_type flags = regex_constants::match_default);

// 32.11.1, class template regex_iterator
template<class BidirectionalIterator,

class charT = typename iterator_traits<BidirectionalIterator>::value_type,
class traits = regex_traits<charT>>

class regex_iterator;

using cregex_iterator = regex_iterator<const char*>;
using wcregex_iterator = regex_iterator<const wchar_t*>;
using sregex_iterator = regex_iterator<string::const_iterator>;
using wsregex_iterator = regex_iterator<wstring::const_iterator>;

// 32.11.2, class template regex_token_iterator
template<class BidirectionalIterator,

class charT = typename iterator_traits<BidirectionalIterator>::value_type,
class traits = regex_traits<charT>>

class regex_token_iterator;

using cregex_token_iterator = regex_token_iterator<const char*>;
using wcregex_token_iterator = regex_token_iterator<const wchar_t*>;
using sregex_token_iterator = regex_token_iterator<string::const_iterator>;
using wsregex_token_iterator = regex_token_iterator<wstring::const_iterator>;
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namespace pmr {
template<class BidirectionalIterator>

using match_results =
std::match_results<BidirectionalIterator,

polymorphic_allocator<sub_match<BidirectionalIterator>>>;

using cmatch = match_results<const char*>;
using wcmatch = match_results<const wchar_t*>;
using smatch = match_results<string::const_iterator>;
using wsmatch = match_results<wstring::const_iterator>;

}
}

32.4 Namespace std::regex_constants [re.const]
32.4.1 General [re.const.general]

1 The namespace std::regex_constants holds symbolic constants used by the regular expression library.
This namespace provides three types, syntax_option_type, match_flag_type, and error_type, along with
several constants of these types.

32.4.2 Bitmask type syntax_option_type [re.synopt]
namespace std::regex_constants {

using syntax_option_type = T1;
inline constexpr syntax_option_type icase = unspecified ;
inline constexpr syntax_option_type nosubs = unspecified ;
inline constexpr syntax_option_type optimize = unspecified ;
inline constexpr syntax_option_type collate = unspecified ;
inline constexpr syntax_option_type ECMAScript = unspecified ;
inline constexpr syntax_option_type basic = unspecified ;
inline constexpr syntax_option_type extended = unspecified ;
inline constexpr syntax_option_type awk = unspecified ;
inline constexpr syntax_option_type grep = unspecified ;
inline constexpr syntax_option_type egrep = unspecified ;
inline constexpr syntax_option_type multiline = unspecified ;

}

1 The type syntax_option_type is an implementation-defined bitmask type (16.3.3.3.3). Setting its elements
has the effects listed in Table 137. A valid value of type syntax_option_type shall have at most one of the
grammar elements ECMAScript, basic, extended, awk, grep, egrep, set. If no grammar element is set, the
default grammar is ECMAScript.

32.4.3 Bitmask type match_flag_type [re.matchflag]
namespace std::regex_constants {

using match_flag_type = T2;
inline constexpr match_flag_type match_default = {};
inline constexpr match_flag_type match_not_bol = unspecified ;
inline constexpr match_flag_type match_not_eol = unspecified ;
inline constexpr match_flag_type match_not_bow = unspecified ;
inline constexpr match_flag_type match_not_eow = unspecified ;
inline constexpr match_flag_type match_any = unspecified ;
inline constexpr match_flag_type match_not_null = unspecified ;
inline constexpr match_flag_type match_continuous = unspecified ;
inline constexpr match_flag_type match_prev_avail = unspecified ;
inline constexpr match_flag_type format_default = {};
inline constexpr match_flag_type format_sed = unspecified ;
inline constexpr match_flag_type format_no_copy = unspecified ;
inline constexpr match_flag_type format_first_only = unspecified ;

}

1 The type match_flag_type is an implementation-defined bitmask type (16.3.3.3.3). The constants of
that type, except for match_default and format_default, are bitmask elements. The match_default
and format_default constants are empty bitmasks. Matching a regular expression against a sequence of
characters [first, last) proceeds according to the rules of the grammar specified for the regular expression
object, modified according to the effects listed in Table 138 for any bitmask elements set.

§ 32.4.3 1759



© ISO/IEC N4950

Table 137: syntax_option_type effects [tab:re.synopt]

Element Effect(s) if set
icase Specifies that matching of regular expressions against a character container

sequence shall be performed without regard to case.
nosubs Specifies that no sub-expressions shall be considered to be marked, so that

when a regular expression is matched against a character container sequence,
no sub-expression matches shall be stored in the supplied match_results
object.

optimize Specifies that the regular expression engine should pay more attention to
the speed with which regular expressions are matched, and less to the speed
with which regular expression objects are constructed. Otherwise it has no
detectable effect on the program output.

collate Specifies that character ranges of the form "[a-b]" shall be locale sensitive.
ECMAScript Specifies that the grammar recognized by the regular expression engine shall

be that used by ECMAScript in ECMA-262, as modified in 32.12.
See also: ECMA-262 15.10

basic Specifies that the grammar recognized by the regular expression engine shall
be that used by basic regular expressions in POSIX.
See also: POSIX, Base Definitions and Headers, Section 9.3

extended Specifies that the grammar recognized by the regular expression engine shall
be that used by extended regular expressions in POSIX.
See also: POSIX, Base Definitions and Headers, Section 9.4

awk Specifies that the grammar recognized by the regular expression engine shall
be that used by the utility awk in POSIX.

grep Specifies that the grammar recognized by the regular expression engine shall
be that used by the utility grep in POSIX.

egrep Specifies that the grammar recognized by the regular expression engine shall
be that used by the utility grep when given the -E option in POSIX.

multiline Specifies that ^ shall match the beginning of a line and $ shall match the
end of a line, if the ECMAScript engine is selected.

Table 138: regex_constants::match_flag_type effects when obtaining a match against a character
container sequence [first, last). [tab:re.matchflag]

Element Effect(s) if set
match_not_bol The first character in the sequence [first, last) shall be treated as though

it is not at the beginning of a line, so the character ^ in the regular expression
shall not match [first, first).

match_not_eol The last character in the sequence [first, last) shall be treated as though
it is not at the end of a line, so the character "$" in the regular expression
shall not match [last, last).

match_not_bow The expression "\\b" shall not match the sub-sequence [first, first).
match_not_eow The expression "\\b" shall not match the sub-sequence [last, last).
match_any If more than one match is possible then any match is an acceptable result.
match_not_null The expression shall not match an empty sequence.
match_continuous The expression shall only match a sub-sequence that begins at first.
match_prev_avail --first is a valid iterator position. When this flag is set the flags match_-

not_bol and match_not_bow shall be ignored by the regular expression
algorithms (32.10) and iterators (32.11).

format_default When a regular expression match is to be replaced by a new string, the new
string shall be constructed using the rules used by the ECMAScript replace
function in ECMA-262, part 15.5.4.11 String.prototype.replace. In addition,
during search and replace operations all non-overlapping occurrences of the
regular expression shall be located and replaced, and sections of the input
that did not match the expression shall be copied unchanged to the output
string.
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Table 138: regex_constants::match_flag_type effects when obtaining a match against a character
container sequence [first, last). (continued)

Element Effect(s) if set
format_sed When a regular expression match is to be replaced by a new string, the new

string shall be constructed using the rules used by the sed utility in POSIX.
format_no_copy During a search and replace operation, sections of the character container

sequence being searched that do not match the regular expression shall not
be copied to the output string.

format_first_only When specified during a search and replace operation, only the first occur-
rence of the regular expression shall be replaced.

32.4.4 Implementation-defined error_type [re.err]
namespace std::regex_constants {

using error_type = T3;
inline constexpr error_type error_collate = unspecified ;
inline constexpr error_type error_ctype = unspecified ;
inline constexpr error_type error_escape = unspecified ;
inline constexpr error_type error_backref = unspecified ;
inline constexpr error_type error_brack = unspecified ;
inline constexpr error_type error_paren = unspecified ;
inline constexpr error_type error_brace = unspecified ;
inline constexpr error_type error_badbrace = unspecified ;
inline constexpr error_type error_range = unspecified ;
inline constexpr error_type error_space = unspecified ;
inline constexpr error_type error_badrepeat = unspecified ;
inline constexpr error_type error_complexity = unspecified ;
inline constexpr error_type error_stack = unspecified ;

}

1 The type error_type is an implementation-defined enumerated type (16.3.3.3.2). Values of type error_type
represent the error conditions described in Table 139:

Table 139: error_type values in the C locale [tab:re.err]

Value Error condition
error_collate The expression contains an invalid collating element name.
error_ctype The expression contains an invalid character class name.
error_escape The expression contains an invalid escaped character, or a trailing escape.
error_backref The expression contains an invalid back reference.
error_brack The expression contains mismatched [ and ].
error_paren The expression contains mismatched ( and ).
error_brace The expression contains mismatched { and }
error_badbrace The expression contains an invalid range in a {} expression.
error_range The expression contains an invalid character range, such as [b-a] in most

encodings.
error_space There is insufficient memory to convert the expression into a finite state

machine.
error_badrepeat One of *?+{ is not preceded by a valid regular expression.
error_complexity The complexity of an attempted match against a regular expression exceeds

a pre-set level.
error_stack There is insufficient memory to determine whether the regular expression

matches the specified character sequence.

32.5 Class regex_error [re.badexp]
namespace std {

class regex_error : public runtime_error {
public:

explicit regex_error(regex_constants::error_type ecode);
regex_constants::error_type code() const;
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};
}

1 The class regex_error defines the type of objects thrown as exceptions to report errors from the regular
expression library.

regex_error(regex_constants::error_type ecode);

2 Postconditions: ecode == code().

regex_constants::error_type code() const;

3 Returns: The error code that was passed to the constructor.

32.6 Class template regex_traits [re.traits]
namespace std {

template<class charT>
struct regex_traits {

using char_type = charT;
using string_type = basic_string<char_type>;
using locale_type = locale;
using char_class_type = bitmask_type;

regex_traits();
static size_t length(const char_type* p);
charT translate(charT c) const;
charT translate_nocase(charT c) const;
template<class ForwardIterator>

string_type transform(ForwardIterator first, ForwardIterator last) const;
template<class ForwardIterator>

string_type transform_primary(
ForwardIterator first, ForwardIterator last) const;

template<class ForwardIterator>
string_type lookup_collatename(

ForwardIterator first, ForwardIterator last) const;
template<class ForwardIterator>

char_class_type lookup_classname(
ForwardIterator first, ForwardIterator last, bool icase = false) const;

bool isctype(charT c, char_class_type f) const;
int value(charT ch, int radix) const;
locale_type imbue(locale_type l);
locale_type getloc() const;

};
}

1 The specializations regex_traits<char> and regex_traits<wchar_t> meet the requirements for a regular
expression traits class (32.2).

using char_class_type = bitmask_type ;

2 The type char_class_type is used to represent a character classification and is capable of holding an
implementation specific set returned by lookup_classname.

static size_t length(const char_type* p);

3 Returns: char_traits<charT>::length(p).

charT translate(charT c) const;

4 Returns: c.

charT translate_nocase(charT c) const;

5 Returns: use_facet<ctype<charT>>(getloc()).tolower(c).

template<class ForwardIterator>
string_type transform(ForwardIterator first, ForwardIterator last) const;

6 Effects: As if by:
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string_type str(first, last);
return use_facet<collate<charT>>(

getloc()).transform(str.data(), str.data() + str.length());

template<class ForwardIterator>
string_type transform_primary(ForwardIterator first, ForwardIterator last) const;

7 Effects: If
typeid(use_facet<collate<charT>>) == typeid(collate_byname<charT>)

and the form of the sort key returned by collate_byname<charT>::transform(first, last) is
known and can be converted into a primary sort key then returns that key, otherwise returns an empty
string.

template<class ForwardIterator>
string_type lookup_collatename(ForwardIterator first, ForwardIterator last) const;

8 Returns: A sequence of one or more characters that represents the collating element consisting of the
character sequence designated by the iterator range [first, last). Returns an empty string if the
character sequence is not a valid collating element.

template<class ForwardIterator>
char_class_type lookup_classname(

ForwardIterator first, ForwardIterator last, bool icase = false) const;

9 Returns: An unspecified value that represents the character classification named by the character
sequence designated by the iterator range [first, last). If the parameter icase is true then the
returned mask identifies the character classification without regard to the case of the characters being
matched, otherwise it does honor the case of the characters being matched.303 The value returned shall
be independent of the case of the characters in the character sequence. If the name is not recognized
then returns char_class_type().

10 Remarks: For regex_traits<char>, at least the narrow character names in Table 140 shall be
recognized. For regex_traits<wchar_t>, at least the wide character names in Table 140 shall be
recognized.

bool isctype(charT c, char_class_type f) const;

11 Effects: Determines if the character c is a member of the character classification represented by f.
12 Returns: Given the following function declaration:

// for exposition only
template<class C>

ctype_base::mask convert(typename regex_traits<C>::char_class_type f);

that returns a value in which each ctype_base::mask value corresponding to a value in f named in
Table 140 is set, then the result is determined as if by:

ctype_base::mask m = convert<charT>(f);
const ctype<charT>& ct = use_facet<ctype<charT>>(getloc());
if (ct.is(m, c)) {

return true;
} else if (c == ct.widen('_')) {

charT w[1] = { ct.widen('w') };
char_class_type x = lookup_classname(w, w+1);
return (f&x) == x;

} else {
return false;

}

[Example 1 :
regex_traits<char> t;
string d("d");
string u("upper");
regex_traits<char>::char_class_type f;
f = t.lookup_classname(d.begin(), d.end());

303) For example, if the parameter icase is true then [[:lower:]] is the same as [[:alpha:]].
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f |= t.lookup_classname(u.begin(), u.end());
ctype_base::mask m = convert<char>(f); // m == ctype_base::digit|ctype_base::upper

— end example ]
[Example 2 :

regex_traits<char> t;
string w("w");
regex_traits<char>::char_class_type f;
f = t.lookup_classname(w.begin(), w.end());
t.isctype('A', f); // returns true
t.isctype('_', f); // returns true
t.isctype(' ', f); // returns false

— end example ]

int value(charT ch, int radix) const;

13 Preconditions: The value of radix is 8, 10, or 16.
14 Returns: The value represented by the digit ch in base radix if the character ch is a valid digit in base

radix; otherwise returns -1.

locale_type imbue(locale_type loc);

15 Effects: Imbues this with a copy of the locale loc.
[Note 1 : Calling imbue with a different locale than the one currently in use invalidates all cached data held by
*this. — end note ]

16 Postconditions: getloc() == loc.
17 Returns: If no locale has been previously imbued then a copy of the global locale in effect at the time

of construction of *this, otherwise a copy of the last argument passed to imbue.

locale_type getloc() const;

18 Returns: If no locale has been imbued then a copy of the global locale in effect at the time of construction
of *this, otherwise a copy of the last argument passed to imbue.

Table 140: Character class names and corresponding ctype masks [tab:re.traits.classnames]

Narrow character name Wide character name Corresponding ctype_base::mask value
"alnum" L"alnum" ctype_base::alnum
"alpha" L"alpha" ctype_base::alpha
"blank" L"blank" ctype_base::blank
"cntrl" L"cntrl" ctype_base::cntrl
"digit" L"digit" ctype_base::digit
"d" L"d" ctype_base::digit
"graph" L"graph" ctype_base::graph
"lower" L"lower" ctype_base::lower
"print" L"print" ctype_base::print
"punct" L"punct" ctype_base::punct
"space" L"space" ctype_base::space
"s" L"s" ctype_base::space
"upper" L"upper" ctype_base::upper
"w" L"w" ctype_base::alnum
"xdigit" L"xdigit" ctype_base::xdigit

32.7 Class template basic_regex [re.regex]
32.7.1 General [re.regex.general]

1 For a char-like type charT, specializations of class template basic_regex represent regular expressions
constructed from character sequences of charT characters. In the rest of 32.7, charT denotes a given char-like
type. Storage for a regular expression is allocated and freed as necessary by the member functions of class
basic_regex.
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2 Objects of type specialization of basic_regex are responsible for converting the sequence of charT objects
to an internal representation. It is not specified what form this representation takes, nor how it is accessed
by algorithms that operate on regular expressions.
[Note 1 : Implementations will typically declare some function templates as friends of basic_regex to achieve this.

— end note ]
3 The functions described in 32.7 report errors by throwing exceptions of type regex_error.

namespace std {
template<class charT, class traits = regex_traits<charT>>

class basic_regex {
public:

// types
using value_type = charT;
using traits_type = traits;
using string_type = typename traits::string_type;
using flag_type = regex_constants::syntax_option_type;
using locale_type = typename traits::locale_type;

// 32.4.2, constants
static constexpr flag_type icase = regex_constants::icase;
static constexpr flag_type nosubs = regex_constants::nosubs;
static constexpr flag_type optimize = regex_constants::optimize;
static constexpr flag_type collate = regex_constants::collate;
static constexpr flag_type ECMAScript = regex_constants::ECMAScript;
static constexpr flag_type basic = regex_constants::basic;
static constexpr flag_type extended = regex_constants::extended;
static constexpr flag_type awk = regex_constants::awk;
static constexpr flag_type grep = regex_constants::grep;
static constexpr flag_type egrep = regex_constants::egrep;
static constexpr flag_type multiline = regex_constants::multiline;

// 32.7.2, construct/copy/destroy
basic_regex();
explicit basic_regex(const charT* p, flag_type f = regex_constants::ECMAScript);
basic_regex(const charT* p, size_t len, flag_type f = regex_constants::ECMAScript);
basic_regex(const basic_regex&);
basic_regex(basic_regex&&) noexcept;
template<class ST, class SA>

explicit basic_regex(const basic_string<charT, ST, SA>& s,
flag_type f = regex_constants::ECMAScript);

template<class ForwardIterator>
basic_regex(ForwardIterator first, ForwardIterator last,

flag_type f = regex_constants::ECMAScript);
basic_regex(initializer_list<charT> il, flag_type f = regex_constants::ECMAScript);

~basic_regex();

// 32.7.3, assign
basic_regex& operator=(const basic_regex& e);
basic_regex& operator=(basic_regex&& e) noexcept;
basic_regex& operator=(const charT* p);
basic_regex& operator=(initializer_list<charT> il);
template<class ST, class SA>

basic_regex& operator=(const basic_string<charT, ST, SA>& s);

basic_regex& assign(const basic_regex& e);
basic_regex& assign(basic_regex&& e) noexcept;
basic_regex& assign(const charT* p, flag_type f = regex_constants::ECMAScript);
basic_regex& assign(const charT* p, size_t len, flag_type f = regex_constants::ECMAScript);
template<class ST, class SA>

basic_regex& assign(const basic_string<charT, ST, SA>& s,
flag_type f = regex_constants::ECMAScript);
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template<class InputIterator>
basic_regex& assign(InputIterator first, InputIterator last,

flag_type f = regex_constants::ECMAScript);
basic_regex& assign(initializer_list<charT>,

flag_type f = regex_constants::ECMAScript);

// 32.7.4, const operations
unsigned mark_count() const;
flag_type flags() const;

// 32.7.5, locale
locale_type imbue(locale_type loc);
locale_type getloc() const;

// 32.7.6, swap
void swap(basic_regex&);

};

template<class ForwardIterator>
basic_regex(ForwardIterator, ForwardIterator,

regex_constants::syntax_option_type = regex_constants::ECMAScript)
-> basic_regex<typename iterator_traits<ForwardIterator>::value_type>;

}

32.7.2 Constructors [re.regex.construct]
basic_regex();

1 Postconditions: *this does not match any character sequence.

explicit basic_regex(const charT* p, flag_type f = regex_constants::ECMAScript);

2 Preconditions: [p, p + char_traits<charT>::length(p)) is a valid range.
3 Effects: The object’s internal finite state machine is constructed from the regular expression contained

in the sequence of characters [p, p + char_traits<charT>::length(p)), and interpreted according to
the flags f.

4 Postconditions: flags() returns f. mark_count() returns the number of marked sub-expressions
within the expression.

5 Throws: regex_error if [p, p + char_traits<charT>::length(p)) is not a valid regular expression.

basic_regex(const charT* p, size_t len, flag_type f = regex_constants::ECMAScript);

6 Preconditions: [p, p + len) is a valid range.
7 Effects: The object’s internal finite state machine is constructed from the regular expression contained

in the sequence of characters [p, p + len), and interpreted according the flags specified in f.
8 Postconditions: flags() returns f. mark_count() returns the number of marked sub-expressions

within the expression.
9 Throws: regex_error if [p, p + len) is not a valid regular expression.

basic_regex(const basic_regex& e);

10 Postconditions: flags() and mark_count() return e.flags() and e.mark_count(), respectively.

basic_regex(basic_regex&& e) noexcept;

11 Postconditions: flags() and mark_count() return the values that e.flags() and e.mark_count(),
respectively, had before construction.

template<class ST, class SA>
explicit basic_regex(const basic_string<charT, ST, SA>& s,

flag_type f = regex_constants::ECMAScript);

12 Effects: The object’s internal finite state machine is constructed from the regular expression contained
in the string s, and interpreted according to the flags specified in f.
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13 Postconditions: flags() returns f. mark_count() returns the number of marked sub-expressions
within the expression.

14 Throws: regex_error if s is not a valid regular expression.

template<class ForwardIterator>
basic_regex(ForwardIterator first, ForwardIterator last,

flag_type f = regex_constants::ECMAScript);

15 Effects: The object’s internal finite state machine is constructed from the regular expression contained
in the sequence of characters [first, last), and interpreted according to the flags specified in f.

16 Postconditions: flags() returns f. mark_count() returns the number of marked sub-expressions
within the expression.

17 Throws: regex_error if the sequence [first, last) is not a valid regular expression.

basic_regex(initializer_list<charT> il, flag_type f = regex_constants::ECMAScript);

18 Effects: Same as basic_regex(il.begin(), il.end(), f).

32.7.3 Assignment [re.regex.assign]
basic_regex& operator=(const basic_regex& e);

1 Postconditions: flags() and mark_count() return e.flags() and e.mark_count(), respectively.

basic_regex& operator=(basic_regex&& e) noexcept;

2 Postconditions: flags() and mark_count() return the values that e.flags() and e.mark_count(),
respectively, had before assignment. e is in a valid state with unspecified value.

basic_regex& operator=(const charT* p);

3 Effects: Equivalent to: return assign(p);

basic_regex& operator=(initializer_list<charT> il);

4 Effects: Equivalent to: return assign(il.begin(), il.end());

template<class ST, class SA>
basic_regex& operator=(const basic_string<charT, ST, SA>& s);

5 Effects: Equivalent to: return assign(s);

basic_regex& assign(const basic_regex& e);

6 Effects: Equivalent to: return *this = e;

basic_regex& assign(basic_regex&& e) noexcept;

7 Effects: Equivalent to: return *this = std::move(e);

basic_regex& assign(const charT* p, flag_type f = regex_constants::ECMAScript);

8 Effects: Equivalent to: return assign(string_type(p), f);

basic_regex& assign(const charT* p, size_t len, flag_type f = regex_constants::ECMAScript);

9 Effects: Equivalent to: return assign(string_type(p, len), f);

template<class ST, class SA>
basic_regex& assign(const basic_string<charT, ST, SA>& s,

flag_type f = regex_constants::ECMAScript);

10 Effects: Assigns the regular expression contained in the string s, interpreted according the flags specified
in f. If an exception is thrown, *this is unchanged.

11 Postconditions: If no exception is thrown, flags() returns f and mark_count() returns the number of
marked sub-expressions within the expression.

12 Returns: *this.
13 Throws: regex_error if s is not a valid regular expression.
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template<class InputIterator>
basic_regex& assign(InputIterator first, InputIterator last,

flag_type f = regex_constants::ECMAScript);

14 Effects: Equivalent to: return assign(string_type(first, last), f);

basic_regex& assign(initializer_list<charT> il,
flag_type f = regex_constants::ECMAScript);

15 Effects: Equivalent to: return assign(il.begin(), il.end(), f);

32.7.4 Constant operations [re.regex.operations]
unsigned mark_count() const;

1 Effects: Returns the number of marked sub-expressions within the regular expression.

flag_type flags() const;

2 Effects: Returns a copy of the regular expression syntax flags that were passed to the object’s constructor
or to the last call to assign.

32.7.5 Locale [re.regex.locale]
locale_type imbue(locale_type loc);

1 Effects: Returns the result of traits_inst.imbue(loc) where traits_inst is a (default-initialized)
instance of the template type argument traits stored within the object. After a call to imbue the
basic_regex object does not match any character sequence.

locale_type getloc() const;

2 Effects: Returns the result of traits_inst.getloc() where traits_inst is a (default-initialized)
instance of the template parameter traits stored within the object.

32.7.6 Swap [re.regex.swap]
void swap(basic_regex& e);

1 Effects: Swaps the contents of the two regular expressions.
2 Postconditions: *this contains the regular expression that was in e, e contains the regular expression

that was in *this.
3 Complexity: Constant time.

32.7.7 Non-member functions [re.regex.nonmemb]
template<class charT, class traits>

void swap(basic_regex<charT, traits>& lhs, basic_regex<charT, traits>& rhs);

1 Effects: Calls lhs.swap(rhs).

32.8 Class template sub_match [re.submatch]
32.8.1 General [re.submatch.general]

1 Class template sub_match denotes the sequence of characters matched by a particular marked sub-expression.
namespace std {

template<class BidirectionalIterator>
class sub_match : public pair<BidirectionalIterator, BidirectionalIterator> {
public:

using value_type =
typename iterator_traits<BidirectionalIterator>::value_type;

using difference_type =
typename iterator_traits<BidirectionalIterator>::difference_type;

using iterator = BidirectionalIterator;
using string_type = basic_string<value_type>;

bool matched;
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constexpr sub_match();

difference_type length() const;
operator string_type() const;
string_type str() const;

int compare(const sub_match& s) const;
int compare(const string_type& s) const;
int compare(const value_type* s) const;

void swap(sub_match& s) noexcept(see below );
};

}

32.8.2 Members [re.submatch.members]
constexpr sub_match();

1 Effects: Value-initializes the pair base class subobject and the member matched.

difference_type length() const;

2 Returns: matched ? distance(first, second) : 0.

operator string_type() const;

3 Returns: matched ? string_type(first, second) : string_type().

string_type str() const;

4 Returns: matched ? string_type(first, second) : string_type().

int compare(const sub_match& s) const;

5 Returns: str().compare(s.str()).

int compare(const string_type& s) const;

6 Returns: str().compare(s).

int compare(const value_type* s) const;

7 Returns: str().compare(s).

void swap(sub_match& s) noexcept(see below );

8 Preconditions: BidirectionalIterator meets the Cpp17Swappable requirements (16.4.4.3).
9 Effects: Equivalent to:

this->pair<BidirectionalIterator, BidirectionalIterator>::swap(s);
std::swap(matched, s.matched);

10 Remarks: The exception specification is equivalent to is_nothrow_swappable_v<BidirectionalIter-
ator>.

32.8.3 Non-member operators [re.submatch.op]
1 Let SM-CAT(I) be

compare_three_way_result_t<basic_string<typename iterator_traits<I>::value_type>>

template<class BiIter>
bool operator==(const sub_match<BiIter>& lhs, const sub_match<BiIter>& rhs);

2 Returns: lhs.compare(rhs) == 0.

template<class BiIter>
auto operator<=>(const sub_match<BiIter>& lhs, const sub_match<BiIter>& rhs);

3 Returns: static_cast<SM-CAT(BiIter)>(lhs.compare(rhs) <=> 0).
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template<class BiIter, class ST, class SA>
bool operator==(

const sub_match<BiIter>& lhs,
const basic_string<typename iterator_traits<BiIter>::value_type, ST, SA>& rhs);

4 Returns:
lhs.compare(typename sub_match<BiIter>::string_type(rhs.data(), rhs.size())) == 0

template<class BiIter, class ST, class SA>
auto operator<=>(

const sub_match<BiIter>& lhs,
const basic_string<typename iterator_traits<BiIter>::value_type, ST, SA>& rhs);

5 Returns:
static_cast<SM-CAT(BiIter)>(lhs.compare(

typename sub_match<BiIter>::string_type(rhs.data(), rhs.size()))
<=> 0

)

template<class BiIter>
bool operator==(const sub_match<BiIter>& lhs,

const typename iterator_traits<BiIter>::value_type* rhs);

6 Returns: lhs.compare(rhs) == 0.

template<class BiIter>
auto operator<=>(const sub_match<BiIter>& lhs,

const typename iterator_traits<BiIter>::value_type* rhs);

7 Returns: static_cast<SM-CAT(BiIter)>(lhs.compare(rhs) <=> 0).

template<class BiIter>
bool operator==(const sub_match<BiIter>& lhs,

const typename iterator_traits<BiIter>::value_type& rhs);

8 Returns: lhs.compare(typename sub_match<BiIter>::string_type(1, rhs)) == 0.

template<class BiIter>
auto operator<=>(const sub_match<BiIter>& lhs,

const typename iterator_traits<BiIter>::value_type& rhs);

9 Returns:
static_cast<SM-CAT(BiIter)>(lhs.compare(

typename sub_match<BiIter>::string_type(1, rhs))
<=> 0

)

template<class charT, class ST, class BiIter>
basic_ostream<charT, ST>&

operator<<(basic_ostream<charT, ST>& os, const sub_match<BiIter>& m);

10 Returns: os << m.str().

32.9 Class template match_results [re.results]
32.9.1 General [re.results.general]

1 Class template match_results denotes a collection of character sequences representing the result of a regular
expression match. Storage for the collection is allocated and freed as necessary by the member functions of
class template match_results.

2 The class template match_results meets the requirements of an allocator-aware container and of a sequence
container (24.2.2.5, 24.2.4) except that only copy assignment, move assignment, and operations defined
for const-qualified sequence containers are supported and that the semantics of the comparison operator
functions are different from those required for a container.

3 A default-constructed match_results object has no fully established result state. A match result is ready
when, as a consequence of a completed regular expression match modifying such an object, its result state
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becomes fully established. The effects of calling most member functions from a match_results object that
is not ready are undefined.

4 The sub_match object stored at index 0 represents sub-expression 0, i.e., the whole match. In this case the
sub_match member matched is always true. The sub_match object stored at index n denotes what matched
the marked sub-expression n within the matched expression. If the sub-expression n participated in a regular
expression match then the sub_match member matched evaluates to true, and members first and second
denote the range of characters [first, second) which formed that match. Otherwise matched is false, and
members first and second point to the end of the sequence that was searched.
[Note 1 : The sub_match objects representing different sub-expressions that did not participate in a regular expression
match need not be distinct. — end note ]

namespace std {
template<class BidirectionalIterator,

class Allocator = allocator<sub_match<BidirectionalIterator>>>
class match_results {
public:

using value_type = sub_match<BidirectionalIterator>;
using const_reference = const value_type&;
using reference = value_type&;
using const_iterator = implementation-defined ;
using iterator = const_iterator;
using difference_type =

typename iterator_traits<BidirectionalIterator>::difference_type;
using size_type = typename allocator_traits<Allocator>::size_type;
using allocator_type = Allocator;
using char_type =

typename iterator_traits<BidirectionalIterator>::value_type;
using string_type = basic_string<char_type>;

// 32.9.2, construct/copy/destroy
match_results() : match_results(Allocator()) {}
explicit match_results(const Allocator& a);
match_results(const match_results& m);
match_results(const match_results& m, const Allocator& a);
match_results(match_results&& m) noexcept;
match_results(match_results&& m, const Allocator& a);
match_results& operator=(const match_results& m);
match_results& operator=(match_results&& m);
~match_results();

// 32.9.3, state
bool ready() const;

// 32.9.4, size
size_type size() const;
size_type max_size() const;
[[nodiscard]] bool empty() const;

// 32.9.5, element access
difference_type length(size_type sub = 0) const;
difference_type position(size_type sub = 0) const;
string_type str(size_type sub = 0) const;
const_reference operator[](size_type n) const;

const_reference prefix() const;
const_reference suffix() const;
const_iterator begin() const;
const_iterator end() const;
const_iterator cbegin() const;
const_iterator cend() const;
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// 32.9.6, format
template<class OutputIter>

OutputIter
format(OutputIter out,

const char_type* fmt_first, const char_type* fmt_last,
regex_constants::match_flag_type flags = regex_constants::format_default) const;

template<class OutputIter, class ST, class SA>
OutputIter

format(OutputIter out,
const basic_string<char_type, ST, SA>& fmt,
regex_constants::match_flag_type flags = regex_constants::format_default) const;

template<class ST, class SA>
basic_string<char_type, ST, SA>

format(const basic_string<char_type, ST, SA>& fmt,
regex_constants::match_flag_type flags = regex_constants::format_default) const;

string_type
format(const char_type* fmt,

regex_constants::match_flag_type flags = regex_constants::format_default) const;

// 32.9.7, allocator
allocator_type get_allocator() const;

// 32.9.8, swap
void swap(match_results& that);

};
}

32.9.2 Constructors [re.results.const]
1 Table 141 lists the postconditions of match_results copy/move constructors and copy/move assignment

operators. For move operations, the results of the expressions depending on the parameter m denote the
values they had before the respective function calls.

explicit match_results(const Allocator& a);

2 Effects: The stored Allocator value is constructed from a.
3 Postconditions: ready() returns false. size() returns 0.

match_results(const match_results& m);
match_results(const match_results& m, const Allocator& a);

4 Effects: For the first form, the stored Allocator value is obtained as specified in 24.2.2.2. For the
second form, the stored Allocator value is constructed from a.

5 Postconditions: As specified in Table 141.

match_results(match_results&& m) noexcept;
match_results(match_results&& m, const Allocator& a);

6 Effects: For the first form, the stored Allocator value is move constructed from m.get_allocator().
For the second form, the stored Allocator value is constructed from a.

7 Postconditions: As specified in Table 141.
8 Throws: The second form throws nothing if a == m.get_allocator() is true.

match_results& operator=(const match_results& m);

9 Postconditions: As specified in Table 141.

match_results& operator=(match_results&& m);

10 Postconditions: As specified in Table 141.

32.9.3 State [re.results.state]
bool ready() const;

1 Returns: true if *this has a fully established result state, otherwise false.
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Table 141: match_results copy/move operation postconditions [tab:re.results.const]

Element Value
ready() m.ready()
size() m.size()
str(n) m.str(n) for all non-negative integers n <

m.size()
prefix() m.prefix()
suffix() m.suffix()
(*this)[n] m[n] for all non-negative integers n < m.size()
length(n) m.length(n) for all non-negative integers n <

m.size()
position(n) m.position(n) for all non-negative integers n <

m.size()

32.9.4 Size [re.results.size]
size_type size() const;

1 Returns: One plus the number of marked sub-expressions in the regular expression that was matched if
*this represents the result of a successful match. Otherwise returns 0.
[Note 1 : The state of a match_results object can be modified only by passing that object to regex_match or
regex_search. Subclauses 32.10.2 and 32.10.3 specify the effects of those algorithms on their match_results
arguments. — end note ]

size_type max_size() const;

2 Returns: The maximum number of sub_match elements that can be stored in *this.

[[nodiscard]] bool empty() const;

3 Returns: size() == 0.

32.9.5 Element access [re.results.acc]
difference_type length(size_type sub = 0) const;

1 Preconditions: ready() == true.
2 Returns: (*this)[sub].length().

difference_type position(size_type sub = 0) const;

3 Preconditions: ready() == true.
4 Returns: The distance from the start of the target sequence to (*this)[sub].first.

string_type str(size_type sub = 0) const;

5 Preconditions: ready() == true.
6 Returns: string_type((*this)[sub]).

const_reference operator[](size_type n) const;

7 Preconditions: ready() == true.
8 Returns: A reference to the sub_match object representing the character sequence that matched marked

sub-expression n. If n == 0 then returns a reference to a sub_match object representing the character
sequence that matched the whole regular expression. If n >= size() then returns a sub_match object
representing an unmatched sub-expression.

const_reference prefix() const;

9 Preconditions: ready() == true.
10 Returns: A reference to the sub_match object representing the character sequence from the start of the

string being matched/searched to the start of the match found.
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const_reference suffix() const;

11 Preconditions: ready() == true.
12 Returns: A reference to the sub_match object representing the character sequence from the end of the

match found to the end of the string being matched/searched.

const_iterator begin() const;
const_iterator cbegin() const;

13 Returns: A starting iterator that enumerates over all the sub-expressions stored in *this.

const_iterator end() const;
const_iterator cend() const;

14 Returns: A terminating iterator that enumerates over all the sub-expressions stored in *this.

32.9.6 Formatting [re.results.form]
template<class OutputIter>

OutputIter format(
OutputIter out,
const char_type* fmt_first, const char_type* fmt_last,
regex_constants::match_flag_type flags = regex_constants::format_default) const;

1 Preconditions: ready() == true and OutputIter meets the requirements for a Cpp17OutputIterator
(25.3.5.4).

2 Effects: Copies the character sequence [fmt_first, fmt_last) to OutputIter out. Replaces each format
specifier or escape sequence in the copied range with either the character(s) it represents or the sequence
of characters within *this to which it refers. The bitmasks specified in flags determine which format
specifiers and escape sequences are recognized.

3 Returns: out.

template<class OutputIter, class ST, class SA>
OutputIter format(

OutputIter out,
const basic_string<char_type, ST, SA>& fmt,
regex_constants::match_flag_type flags = regex_constants::format_default) const;

4 Effects: Equivalent to:
return format(out, fmt.data(), fmt.data() + fmt.size(), flags);

template<class ST, class SA>
basic_string<char_type, ST, SA> format(

const basic_string<char_type, ST, SA>& fmt,
regex_constants::match_flag_type flags = regex_constants::format_default) const;

5 Preconditions: ready() == true.
6 Effects: Constructs an empty string result of type basic_string<char_type, ST, SA> and calls:

format(back_inserter(result), fmt, flags);

7 Returns: result.

string_type format(
const char_type* fmt,
regex_constants::match_flag_type flags = regex_constants::format_default) const;

8 Preconditions: ready() == true.
9 Effects: Constructs an empty string result of type string_type and calls:

format(back_inserter(result), fmt, fmt + char_traits<char_type>::length(fmt), flags);

10 Returns: result.
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32.9.7 Allocator [re.results.all]
allocator_type get_allocator() const;

1 Returns: A copy of the Allocator that was passed to the object’s constructor or, if that allocator has
been replaced, a copy of the most recent replacement.

32.9.8 Swap [re.results.swap]
void swap(match_results& that);

1 Effects: Swaps the contents of the two sequences.
2 Postconditions: *this contains the sequence of matched sub-expressions that were in that, that

contains the sequence of matched sub-expressions that were in *this.
3 Complexity: Constant time.

template<class BidirectionalIterator, class Allocator>
void swap(match_results<BidirectionalIterator, Allocator>& m1,

match_results<BidirectionalIterator, Allocator>& m2);

4 Effects: As if by m1.swap(m2).

32.9.9 Non-member functions [re.results.nonmember]
template<class BidirectionalIterator, class Allocator>
bool operator==(const match_results<BidirectionalIterator, Allocator>& m1,

const match_results<BidirectionalIterator, Allocator>& m2);

1 Returns: true if neither match result is ready, false if one match result is ready and the other is not.
If both match results are ready, returns true only if:

—(1.1) m1.empty() && m2.empty(), or
—(1.2) !m1.empty() && !m2.empty(), and the following conditions are satisfied:

—(1.2.1) m1.prefix() == m2.prefix(),
—(1.2.2) m1.size() == m2.size() && equal(m1.begin(), m1.end(), m2.begin()), and
—(1.2.3) m1.suffix() == m2.suffix().

[Note 1 : The algorithm equal is defined in Clause 27. — end note ]

32.10 Regular expression algorithms [re.alg]
32.10.1 Exceptions [re.except]

1 The algorithms described in subclause 32.10 may throw an exception of type regex_error. If such an
exception e is thrown, e.code() shall return either regex_constants::error_complexity or regex_-
constants::error_stack.

32.10.2 regex_match [re.alg.match]
template<class BidirectionalIterator, class Allocator, class charT, class traits>

bool regex_match(BidirectionalIterator first, BidirectionalIterator last,
match_results<BidirectionalIterator, Allocator>& m,
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

1 Preconditions: BidirectionalIterator models bidirectional_iterator (25.3.4.12).
2 Effects: Determines whether there is a match between the regular expression e, and all of the character

sequence [first, last). The parameter flags is used to control how the expression is matched against
the character sequence. When determining if there is a match, only potential matches that match the
entire character sequence are considered. Returns true if such a match exists, false otherwise.
[Example 1 :

std::regex re("Get|GetValue");
std::cmatch m;
regex_search("GetValue", m, re); // returns true, and m[0] contains "Get"
regex_match ("GetValue", m, re); // returns true, and m[0] contains "GetValue"
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regex_search("GetValues", m, re); // returns true, and m[0] contains "Get"
regex_match ("GetValues", m, re); // returns false

— end example ]
3 Postconditions: m.ready() == true in all cases. If the function returns false, then the effect on

parameter m is unspecified except that m.size() returns 0 and m.empty() returns true. Otherwise
the effects on parameter m are given in Table 142.

Table 142: Effects of regex_match algorithm [tab:re.alg.match]

Element Value
m.size() 1 + e.mark_count()
m.empty() false
m.prefix().first first
m.prefix().second first
m.prefix().matched false
m.suffix().first last
m.suffix().second last
m.suffix().matched false
m[0].first first
m[0].second last
m[0].matched true
m[n].first For all integers 0 < n < m.size(), the start of the se-

quence that matched sub-expression n. Alternatively, if
sub-expression n did not participate in the match, then
last.

m[n].second For all integers 0 < n < m.size(), the end of the se-
quence that matched sub-expression n. Alternatively, if
sub-expression n did not participate in the match, then
last.

m[n].matched For all integers 0 < n < m.size(), true if sub-expression
n participated in the match, false otherwise.

template<class BidirectionalIterator, class charT, class traits>
bool regex_match(BidirectionalIterator first, BidirectionalIterator last,

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

4 Effects: Behaves “as if” by constructing an instance of match_results<BidirectionalIterator>
what, and then returning the result of regex_match(first, last, what, e, flags).

template<class charT, class Allocator, class traits>
bool regex_match(const charT* str,

match_results<const charT*, Allocator>& m,
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

5 Returns: regex_match(str, str + char_traits<charT>::length(str), m, e, flags).

template<class ST, class SA, class Allocator, class charT, class traits>
bool regex_match(const basic_string<charT, ST, SA>& s,

match_results<typename basic_string<charT, ST, SA>::const_iterator,
Allocator>& m,

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

6 Returns: regex_match(s.begin(), s.end(), m, e, flags).

template<class charT, class traits>
bool regex_match(const charT* str,

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

7 Returns: regex_match(str, str + char_traits<charT>::length(str), e, flags)
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template<class ST, class SA, class charT, class traits>
bool regex_match(const basic_string<charT, ST, SA>& s,

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

8 Returns: regex_match(s.begin(), s.end(), e, flags).

32.10.3 regex_search [re.alg.search]
template<class BidirectionalIterator, class Allocator, class charT, class traits>

bool regex_search(BidirectionalIterator first, BidirectionalIterator last,
match_results<BidirectionalIterator, Allocator>& m,
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

1 Preconditions: BidirectionalIterator models bidirectional_iterator (25.3.4.12).
2 Effects: Determines whether there is some sub-sequence within [first, last) that matches the regular

expression e. The parameter flags is used to control how the expression is matched against the
character sequence. Returns true if such a sequence exists, false otherwise.

3 Postconditions: m.ready() == true in all cases. If the function returns false, then the effect on
parameter m is unspecified except that m.size() returns 0 and m.empty() returns true. Otherwise
the effects on parameter m are given in Table 143.

Table 143: Effects of regex_search algorithm [tab:re.alg.search]

Element Value
m.size() 1 + e.mark_count()
m.empty() false
m.prefix().first first
m.prefix().second m[0].first
m.prefix().matched m.prefix().first != m.prefix().second
m.suffix().first m[0].second
m.suffix().second last
m.suffix().matched m.suffix().first != m.suffix().second
m[0].first The start of the sequence of characters that matched the

regular expression
m[0].second The end of the sequence of characters that matched the

regular expression
m[0].matched true
m[n].first For all integers 0 < n < m.size(), the start of the se-

quence that matched sub-expression n. Alternatively, if
sub-expression n did not participate in the match, then
last.

m[n].second For all integers 0 < n < m.size(), the end of the se-
quence that matched sub-expression n. Alternatively, if
sub-expression n did not participate in the match, then
last.

m[n].matched For all integers 0 < n < m.size(), true if sub-expression
n participated in the match, false otherwise.

template<class charT, class Allocator, class traits>
bool regex_search(const charT* str, match_results<const charT*, Allocator>& m,

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

4 Returns: regex_search(str, str + char_traits<charT>::length(str), m, e, flags).
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template<class ST, class SA, class Allocator, class charT, class traits>
bool regex_search(const basic_string<charT, ST, SA>& s,

match_results<typename basic_string<charT, ST, SA>::const_iterator,
Allocator>& m,

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

5 Returns: regex_search(s.begin(), s.end(), m, e, flags).

template<class BidirectionalIterator, class charT, class traits>
bool regex_search(BidirectionalIterator first, BidirectionalIterator last,

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

6 Effects: Behaves “as if” by constructing an object what of type match_results<Bidirectional-
Iterator> and returning regex_search(first, last, what, e, flags).

template<class charT, class traits>
bool regex_search(const charT* str,

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

7 Returns: regex_search(str, str + char_traits<charT>::length(str), e, flags).

template<class ST, class SA, class charT, class traits>
bool regex_search(const basic_string<charT, ST, SA>& s,

const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);

8 Returns: regex_search(s.begin(), s.end(), e, flags).

32.10.4 regex_replace [re.alg.replace]
template<class OutputIterator, class BidirectionalIterator,

class traits, class charT, class ST, class SA>
OutputIterator

regex_replace(OutputIterator out,
BidirectionalIterator first, BidirectionalIterator last,
const basic_regex<charT, traits>& e,
const basic_string<charT, ST, SA>& fmt,
regex_constants::match_flag_type flags = regex_constants::match_default);

template<class OutputIterator, class BidirectionalIterator, class traits, class charT>
OutputIterator

regex_replace(OutputIterator out,
BidirectionalIterator first, BidirectionalIterator last,
const basic_regex<charT, traits>& e,
const charT* fmt,
regex_constants::match_flag_type flags = regex_constants::match_default);

1 Effects: Constructs a regex_iterator object i as if by
regex_iterator<BidirectionalIterator, charT, traits> i(first, last, e, flags)

and uses i to enumerate through all of the matches m of type match_results<BidirectionalIterator>
that occur within the sequence [first, last). If no such matches are found and !(flags & regex_-
constants::format_no_copy), then calls

out = copy(first, last, out)

If any matches are found then, for each such match:
—(1.1) If !(flags & regex_constants::format_no_copy), calls

out = copy(m.prefix().first, m.prefix().second, out)

—(1.2) Then calls
out = m.format(out, fmt, flags)

for the first form of the function and
out = m.format(out, fmt, fmt + char_traits<charT>::length(fmt), flags)
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for the second.
Finally, if such a match is found and !(flags & regex_constants::format_no_copy), calls

out = copy(last_m.suffix().first, last_m.suffix().second, out)

where last_m is a copy of the last match found. If flags & regex_constants::format_first_only
is nonzero, then only the first match found is replaced.

2 Returns: out.

template<class traits, class charT, class ST, class SA, class FST, class FSA>
basic_string<charT, ST, SA>

regex_replace(const basic_string<charT, ST, SA>& s,
const basic_regex<charT, traits>& e,
const basic_string<charT, FST, FSA>& fmt,
regex_constants::match_flag_type flags = regex_constants::match_default);

template<class traits, class charT, class ST, class SA>
basic_string<charT, ST, SA>

regex_replace(const basic_string<charT, ST, SA>& s,
const basic_regex<charT, traits>& e,
const charT* fmt,
regex_constants::match_flag_type flags = regex_constants::match_default);

3 Effects: Constructs an empty string result of type basic_string<charT, ST, SA> and calls:
regex_replace(back_inserter(result), s.begin(), s.end(), e, fmt, flags);

4 Returns: result.

template<class traits, class charT, class ST, class SA>
basic_string<charT>

regex_replace(const charT* s,
const basic_regex<charT, traits>& e,
const basic_string<charT, ST, SA>& fmt,
regex_constants::match_flag_type flags = regex_constants::match_default);

template<class traits, class charT>
basic_string<charT>

regex_replace(const charT* s,
const basic_regex<charT, traits>& e,
const charT* fmt,
regex_constants::match_flag_type flags = regex_constants::match_default);

5 Effects: Constructs an empty string result of type basic_string<charT> and calls:
regex_replace(back_inserter(result), s, s + char_traits<charT>::length(s), e, fmt, flags);

6 Returns: result.

32.11 Regular expression iterators [re.iter]
32.11.1 Class template regex_iterator [re.regiter]
32.11.1.1 General [re.regiter.general]

1 The class template regex_iterator is an iterator adaptor. It represents a new view of an existing iterator
sequence, by enumerating all the occurrences of a regular expression within that sequence. A regex_-
iterator uses regex_search to find successive regular expression matches within the sequence from which
it was constructed. After the iterator is constructed, and every time operator++ is used, the iterator finds
and stores a value of match_results<BidirectionalIterator>. If the end of the sequence is reached
(regex_search returns false), the iterator becomes equal to the end-of-sequence iterator value. The
default constructor constructs an end-of-sequence iterator object, which is the only legitimate iterator to
be used for the end condition. The result of operator* on an end-of-sequence iterator is not defined.
For any other iterator value a const match_results<BidirectionalIterator>& is returned. The result of
operator-> on an end-of-sequence iterator is not defined. For any other iterator value a const match_-
results<BidirectionalIterator>* is returned. It is impossible to store things into regex_iterators. Two
end-of-sequence iterators are always equal. An end-of-sequence iterator is not equal to a non-end-of-sequence
iterator. Two non-end-of-sequence iterators are equal when they are constructed from the same arguments.
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namespace std {
template<class BidirectionalIterator,

class charT = typename iterator_traits<BidirectionalIterator>::value_type,
class traits = regex_traits<charT>>

class regex_iterator {
public:

using regex_type = basic_regex<charT, traits>;
using iterator_category = forward_iterator_tag;
using iterator_concept = input_iterator_tag;
using value_type = match_results<BidirectionalIterator>;
using difference_type = ptrdiff_t;
using pointer = const value_type*;
using reference = const value_type&;

regex_iterator();
regex_iterator(BidirectionalIterator a, BidirectionalIterator b,

const regex_type& re,
regex_constants::match_flag_type m = regex_constants::match_default);

regex_iterator(BidirectionalIterator, BidirectionalIterator,
const regex_type&&,
regex_constants::match_flag_type = regex_constants::match_default) = delete;

regex_iterator(const regex_iterator&);
regex_iterator& operator=(const regex_iterator&);
bool operator==(const regex_iterator&) const;
bool operator==(default_sentinel_t) const { return *this == regex_iterator(); }
const value_type& operator*() const;
const value_type* operator->() const;
regex_iterator& operator++();
regex_iterator operator++(int);

private:
BidirectionalIterator begin; // exposition only
BidirectionalIterator end; // exposition only
const regex_type* pregex; // exposition only
regex_constants::match_flag_type flags; // exposition only
match_results<BidirectionalIterator> match; // exposition only

};
}

2 An object of type regex_iterator that is not an end-of-sequence iterator holds a zero-length match if
match[0].matched == true and match[0].first == match[0].second.
[Note 1 : For example, this can occur when the part of the regular expression that matched consists only of an assertion
(such as ’^’, ’$’, ’\b’, ’\B’). — end note ]

32.11.1.2 Constructors [re.regiter.cnstr]

regex_iterator();

1 Effects: Constructs an end-of-sequence iterator.

regex_iterator(BidirectionalIterator a, BidirectionalIterator b,
const regex_type& re,
regex_constants::match_flag_type m = regex_constants::match_default);

2 Effects: Initializes begin and end to a and b, respectively, sets pregex to addressof(re), sets flags
to m, then calls regex_search(begin, end, match, *pregex, flags). If this call returns false the
constructor sets *this to the end-of-sequence iterator.

32.11.1.3 Comparisons [re.regiter.comp]

bool operator==(const regex_iterator& right) const;

1 Returns: true if *this and right are both end-of-sequence iterators or if the following conditions all
hold:

—(1.1) begin == right.begin,
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—(1.2) end == right.end,
—(1.3) pregex == right.pregex,
—(1.4) flags == right.flags, and
—(1.5) match[0] == right.match[0];

otherwise false.

32.11.1.4 Indirection [re.regiter.deref]

const value_type& operator*() const;

1 Returns: match.

const value_type* operator->() const;

2 Returns: addressof(match).

32.11.1.5 Increment [re.regiter.incr]

regex_iterator& operator++();

1 Effects: Constructs a local variable start of type BidirectionalIterator and initializes it with the
value of match[0].second.

2 If the iterator holds a zero-length match and start == end the operator sets *this to the end-of-
sequence iterator and returns *this.

3 Otherwise, if the iterator holds a zero-length match, the operator calls:
regex_search(start, end, match, *pregex,

flags | regex_constants::match_not_null | regex_constants::match_continuous)

If the call returns true the operator returns *this. Otherwise the operator increments start and
continues as if the most recent match was not a zero-length match.

4 If the most recent match was not a zero-length match, the operator sets flags to flags | regex_-
constants::match_prev_avail and calls regex_search(start, end, match, *pregex, flags). If
the call returns false the iterator sets *this to the end-of-sequence iterator. The iterator then returns
*this.

5 In all cases in which the call to regex_search returns true, match.prefix().first shall be equal to
the previous value of match[0].second, and for each index i in the half-open range [0, match.size())
for which match[i].matched is true, match.position(i) shall return distance(begin, match[i].
first).

6 [Note 1 : This means that match.position(i) gives the offset from the beginning of the target sequence, which
is often not the same as the offset from the sequence passed in the call to regex_search. — end note ]

7 It is unspecified how the implementation makes these adjustments.
8 [Note 2 : This means that an implementation can call an implementation-specific search function, in which case

a program-defined specialization of regex_search will not be called. — end note ]

regex_iterator operator++(int);

9 Effects: As if by:
regex_iterator tmp = *this;
++(*this);
return tmp;

32.11.2 Class template regex_token_iterator [re.tokiter]
32.11.2.1 General [re.tokiter.general]

1 The class template regex_token_iterator is an iterator adaptor; that is to say it represents a new view of
an existing iterator sequence, by enumerating all the occurrences of a regular expression within that sequence,
and presenting one or more sub-expressions for each match found. Each position enumerated by the iterator
is a sub_match class template instance that represents what matched a particular sub-expression within the
regular expression.
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2 When class regex_token_iterator is used to enumerate a single sub-expression with index −1 the iterator
performs field splitting: that is to say it enumerates one sub-expression for each section of the character
container sequence that does not match the regular expression specified.

3 After it is constructed, the iterator finds and stores a value regex_iterator<BidirectionalIterator>
position and sets the internal count N to zero. It also maintains a sequence subs which contains a list of
the sub-expressions which will be enumerated. Every time operator++ is used the count N is incremented; if
N exceeds or equals subs.size(), then the iterator increments member position and sets count N to zero.

4 If the end of sequence is reached (position is equal to the end of sequence iterator), the iterator becomes
equal to the end-of-sequence iterator value, unless the sub-expression being enumerated has index −1, in
which case the iterator enumerates one last sub-expression that contains all the characters from the end of
the last regular expression match to the end of the input sequence being enumerated, provided that this
would not be an empty sub-expression.

5 The default constructor constructs an end-of-sequence iterator object, which is the only legitimate iterator
to be used for the end condition. The result of operator* on an end-of-sequence iterator is not defined.
For any other iterator value a const sub_match<BidirectionalIterator>& is returned. The result of
operator-> on an end-of-sequence iterator is not defined. For any other iterator value a const sub_-
match<BidirectionalIterator>* is returned.

6 It is impossible to store things into regex_token_iterators. Two end-of-sequence iterators are always equal.
An end-of-sequence iterator is not equal to a non-end-of-sequence iterator. Two non-end-of-sequence iterators
are equal when they are constructed from the same arguments.

namespace std {
template<class BidirectionalIterator,

class charT = typename iterator_traits<BidirectionalIterator>::value_type,
class traits = regex_traits<charT>>

class regex_token_iterator {
public:

using regex_type = basic_regex<charT, traits>;
using iterator_category = forward_iterator_tag;
using iterator_concept = input_iterator_tag;
using value_type = sub_match<BidirectionalIterator>;
using difference_type = ptrdiff_t;
using pointer = const value_type*;
using reference = const value_type&;

regex_token_iterator();
regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,

const regex_type& re,
int submatch = 0,
regex_constants::match_flag_type m =

regex_constants::match_default);
regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,

const regex_type& re,
const vector<int>& submatches,
regex_constants::match_flag_type m =

regex_constants::match_default);
regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,

const regex_type& re,
initializer_list<int> submatches,
regex_constants::match_flag_type m =

regex_constants::match_default);
template<size_t N>

regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,
const regex_type& re,
const int (&submatches)[N],
regex_constants::match_flag_type m =

regex_constants::match_default);
regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,

const regex_type&& re,
int submatch = 0,
regex_constants::match_flag_type m =
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regex_constants::match_default) = delete;
regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,

const regex_type&& re,
const vector<int>& submatches,
regex_constants::match_flag_type m =

regex_constants::match_default) = delete;
regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,

const regex_type&& re,
initializer_list<int> submatches,
regex_constants::match_flag_type m =

regex_constants::match_default) = delete;
template<size_t N>
regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,

const regex_type&& re,
const int (&submatches)[N],
regex_constants::match_flag_type m =

regex_constants::match_default) = delete;
regex_token_iterator(const regex_token_iterator&);
regex_token_iterator& operator=(const regex_token_iterator&);
bool operator==(const regex_token_iterator&) const;
bool operator==(default_sentinel_t) const { return *this == regex_token_iterator(); }
const value_type& operator*() const;
const value_type* operator->() const;
regex_token_iterator& operator++();
regex_token_iterator operator++(int);

private:
using position_iterator =

regex_iterator<BidirectionalIterator, charT, traits>; // exposition only
position_iterator position; // exposition only
const value_type* result; // exposition only
value_type suffix; // exposition only
size_t N; // exposition only
vector<int> subs; // exposition only

};
}

7 A suffix iterator is a regex_token_iterator object that points to a final sequence of characters at the end
of the target sequence. In a suffix iterator the member result holds a pointer to the data member suffix,
the value of the member suffix.match is true, suffix.first points to the beginning of the final sequence,
and suffix.second points to the end of the final sequence.

8 [Note 1 : For a suffix iterator, data member suffix.first is the same as the end of the last match found, and
suffix.second is the same as the end of the target sequence. — end note ]

9 The current match is (*position).prefix() if subs[N] == -1, or (*position)[subs[N]] for any other
value of subs[N].

32.11.2.2 Constructors [re.tokiter.cnstr]

regex_token_iterator();

1 Effects: Constructs the end-of-sequence iterator.

regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,
const regex_type& re,
int submatch = 0,
regex_constants::match_flag_type m = regex_constants::match_default);

regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,
const regex_type& re,
const vector<int>& submatches,
regex_constants::match_flag_type m = regex_constants::match_default);
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regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,
const regex_type& re,
initializer_list<int> submatches,
regex_constants::match_flag_type m = regex_constants::match_default);

template<size_t N>
regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,

const regex_type& re,
const int (&submatches)[N],
regex_constants::match_flag_type m = regex_constants::match_default);

2 Preconditions: Each of the initialization values of submatches is >= -1.
3 Effects: The first constructor initializes the member subs to hold the single value submatch. The

second, third, and fourth constructors initialize the member subs to hold a copy of the sequence of
integer values pointed to by the iterator range [begin(submatches), end(submatches)).

4 Each constructor then sets N to 0, and position to position_iterator(a, b, re, m). If position
is not an end-of-sequence iterator the constructor sets result to the address of the current match.
Otherwise if any of the values stored in subs is equal to −1 the constructor sets *this to a suffix
iterator that points to the range [a, b), otherwise the constructor sets *this to an end-of-sequence
iterator.

32.11.2.3 Comparisons [re.tokiter.comp]

bool operator==(const regex_token_iterator& right) const;

1 Returns: true if *this and right are both end-of-sequence iterators, or if *this and right are
both suffix iterators and suffix == right.suffix; otherwise returns false if *this or right is an
end-of-sequence iterator or a suffix iterator. Otherwise returns true if position == right.position,
N == right.N, and subs == right.subs. Otherwise returns false.

32.11.2.4 Indirection [re.tokiter.deref]

const value_type& operator*() const;

1 Returns: *result.

const value_type* operator->() const;

2 Returns: result.

32.11.2.5 Increment [re.tokiter.incr]

regex_token_iterator& operator++();

1 Effects: Constructs a local variable prev of type position_iterator, initialized with the value of
position.

2 If *this is a suffix iterator, sets *this to an end-of-sequence iterator.
3 Otherwise, if N + 1 < subs.size(), increments N and sets result to the address of the current match.
4 Otherwise, sets N to 0 and increments position. If position is not an end-of-sequence iterator the

operator sets result to the address of the current match.
5 Otherwise, if any of the values stored in subs is equal to −1 and prev->suffix().length() is

not 0 the operator sets *this to a suffix iterator that points to the range [prev->suffix().first,
prev->suffix().second).

6 Otherwise, sets *this to an end-of-sequence iterator.
7 Returns: *this

regex_token_iterator& operator++(int);

8 Effects: Constructs a copy tmp of *this, then calls ++(*this).
9 Returns: tmp.
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32.12 Modified ECMAScript regular expression grammar [re.grammar]
1 The regular expression grammar recognized by basic_regex objects constructed with the ECMAScript flag

is that specified by ECMA-262, except as specified below.
2 Objects of type specialization of basic_regex store within themselves a default-constructed instance of

their traits template parameter, henceforth referred to as traits_inst. This traits_inst object is
used to support localization of the regular expression; basic_regex member functions shall not call any
locale dependent C or C++ API, including the formatted string input functions. Instead they shall call the
appropriate traits member function to achieve the required effect.

3 The following productions within the ECMAScript grammar are modified as follows:
ClassAtom ::

-
ClassAtomNoDash
ClassAtomExClass
ClassAtomCollatingElement
ClassAtomEquivalence

IdentityEscape ::
SourceCharacter but not c

4 The following new productions are then added:
ClassAtomExClass ::

[: ClassName :]

ClassAtomCollatingElement ::
[. ClassName .]

ClassAtomEquivalence ::
[= ClassName =]

ClassName ::
ClassNameCharacter
ClassNameCharacter ClassName

ClassNameCharacter ::
SourceCharacter but not one of . or = or :

5 The productions ClassAtomExClass, ClassAtomCollatingElement and ClassAtomEquivalence provide func-
tionality equivalent to that of the same features in regular expressions in POSIX.

6 The regular expression grammar may be modified by any regex_constants::syntax_option_type flags
specified when constructing an object of type specialization of basic_regex according to the rules in
Table 137.

7 A ClassName production, when used in ClassAtomExClass, is not valid if traits_inst.lookup_classname
returns zero for that name. The names recognized as valid ClassNames are determined by the type of
the traits class, but at least the following names shall be recognized: alnum, alpha, blank, cntrl, digit,
graph, lower, print, punct, space, upper, xdigit, d, s, w. In addition the following expressions shall be
equivalent:

\d and [[:digit:]]

\D and [^[:digit:]]

\s and [[:space:]]

\S and [^[:space:]]

\w and [_[:alnum:]]

\W and [^_[:alnum:]]

8 A ClassName production when used in a ClassAtomCollatingElement production is not valid if the value
returned by traits_inst.lookup_collatename for that name is an empty string.

9 The results from multiple calls to traits_inst.lookup_classname can be bitwise or’ed together and
subsequently passed to traits_inst.isctype.
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10 A ClassName production when used in a ClassAtomEquivalence production is not valid if the value returned
by traits_inst.lookup_collatename for that name is an empty string or if the value returned by traits_-
inst.transform_primary for the result of the call to traits_inst.lookup_collatename is an empty
string.

11 When the sequence of characters being transformed to a finite state machine contains an invalid class name
the translator shall throw an exception object of type regex_error.

12 If the CV of a UnicodeEscapeSequence is greater than the largest value that can be held in an object of type
charT the translator shall throw an exception object of type regex_error.
[Note 1 : This means that values of the form "uxxxx" that do not fit in a character are invalid. — end note ]

13 Where the regular expression grammar requires the conversion of a sequence of characters to an integral
value, this is accomplished by calling traits_inst.value.

14 The behavior of the internal finite state machine representation when used to match a sequence of characters
is as described in ECMA-262. The behavior is modified according to any match_flag_type flags (32.4.3)
specified when using the regular expression object in one of the regular expression algorithms (32.10). The
behavior is also localized by interaction with the traits class template parameter as follows:

—(14.1) During matching of a regular expression finite state machine against a sequence of characters, two
characters c and d are compared using the following rules:

—(14.1.1) if (flags() & regex_constants::icase) the two characters are equal if traits_inst.trans-
late_nocase(c) == traits_inst.translate_nocase(d);

—(14.1.2) otherwise, if flags() & regex_constants::collate the two characters are equal if traits_-
inst.translate(c) == traits_inst.translate(d);

—(14.1.3) otherwise, the two characters are equal if c == d.
—(14.2) During matching of a regular expression finite state machine against a sequence of characters, comparison

of a collating element range c1-c2 against a character c is conducted as follows: if flags() & regex_-
constants::collate is false then the character c is matched if c1 <= c && c <= c2, otherwise c
is matched in accordance with the following algorithm:

string_type str1 = string_type(1,
flags() & icase ?

traits_inst.translate_nocase(c1) : traits_inst.translate(c1));
string_type str2 = string_type(1,

flags() & icase ?
traits_inst.translate_nocase(c2) : traits_inst.translate(c2));

string_type str = string_type(1,
flags() & icase ?

traits_inst.translate_nocase(c) : traits_inst.translate(c));
return traits_inst.transform(str1.begin(), str1.end())

<= traits_inst.transform(str.begin(), str.end())
&& traits_inst.transform(str.begin(), str.end())

<= traits_inst.transform(str2.begin(), str2.end());

—(14.3) During matching of a regular expression finite state machine against a sequence of characters, testing
whether a collating element is a member of a primary equivalence class is conducted by first converting
the collating element and the equivalence class to sort keys using traits::transform_primary, and
then comparing the sort keys for equality.

—(14.4) During matching of a regular expression finite state machine against a sequence of characters, a
character c is a member of a character class designated by an iterator range [first, last) if traits_-
inst.isctype(c, traits_inst.lookup_classname(first, last, flags() & icase)) is true.

See also: ECMA-262 15.10
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33 Concurrency support library [thread]
33.1 General [thread.general]

1 The following subclauses describe components to create and manage threads (6.9.2), perform mutual exclusion,
and communicate conditions and values between threads, as summarized in Table 144.

Table 144: Concurrency support library summary [tab:thread.summary]

Subclause Header
33.2 Requirements
33.3 Stop tokens <stop_token>
33.4 Threads <thread>
33.5 Atomic operations <atomic>, <stdatomic.h>
33.6 Mutual exclusion <mutex>, <shared_mutex>
33.7 Condition variables <condition_variable>
33.8 Semaphores <semaphore>
33.9 Coordination types <latch> <barrier>
33.10 Futures <future>

33.2 Requirements [thread.req]
33.2.1 Template parameter names [thread.req.paramname]

1 Throughout this Clause, the names of template parameters are used to express type requirements. Predicate
is a function object type (22.10). Let pred denote an lvalue of type Predicate. Then the expression pred()
shall be well-formed and the type decltype(pred()) shall model boolean-testable (18.5.2). The return
value of pred(), converted to bool, yields true if the corresponding test condition is satisfied, and false
otherwise. If a template parameter is named Clock, the corresponding template argument shall be a type C
that meets the Cpp17Clock requirements (29.3); the program is ill-formed if is_clock_v<C> is false.

33.2.2 Exceptions [thread.req.exception]
1 Some functions described in this Clause are specified to throw exceptions of type system_error (19.5.8).

Such exceptions are thrown if any of the function’s error conditions is detected or a call to an operating system
or other underlying API results in an error that prevents the library function from meeting its specifications.
Failure to allocate storage is reported as described in 16.4.6.13.
[Example 1 : Consider a function in this Clause that is specified to throw exceptions of type system_error and specifies
error conditions that include operation_not_permitted for a thread that does not have the privilege to perform the
operation. Assume that, during the execution of this function, an errno of EPERM is reported by a POSIX API call
used by the implementation. Since POSIX specifies an errno of EPERM when “the caller does not have the privilege to
perform the operation”, the implementation maps EPERM to an error_condition of operation_not_permitted (19.5)
and an exception of type system_error is thrown. — end example ]

2 The error_code reported by such an exception’s code() member function compares equal to one of the
conditions specified in the function’s error condition element.

33.2.3 Native handles [thread.req.native]
1 Several classes described in this Clause have members native_handle_type and native_handle. The

presence of these members and their semantics is implementation-defined.
[Note 1 : These members allow implementations to provide access to implementation details. Their names are specified
to facilitate portable compile-time detection. Actual use of these members is inherently non-portable. — end note ]

33.2.4 Timing specifications [thread.req.timing]
1 Several functions described in this Clause take an argument to specify a timeout. These timeouts are specified

as either a duration or a time_point type as specified in Clause 29.
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2 Implementations necessarily have some delay in returning from a timeout. Any overhead in interrupt response,
function return, and scheduling induces a “quality of implementation” delay, expressed as duration Di. Ideally,
this delay would be zero. Further, any contention for processor and memory resources induces a “quality of
management” delay, expressed as duration Dm. The delay durations may vary from timeout to timeout, but
in all cases shorter is better.

3 The functions whose names end in _for take an argument that specifies a duration. These functions produce
relative timeouts. Implementations should use a steady clock to measure time for these functions.304 Given a
duration argument Dt, the real-time duration of the timeout is Dt + Di + Dm.

4 The functions whose names end in _until take an argument that specifies a time point. These functions
produce absolute timeouts. Implementations should use the clock specified in the time point to measure time
for these functions. Given a clock time point argument Ct, the clock time point of the return from timeout
should be Ct + Di + Dm when the clock is not adjusted during the timeout. If the clock is adjusted to the
time Ca during the timeout, the behavior should be as follows:

—(4.1) If Ca > Ct, the waiting function should wake as soon as possible, i.e., Ca + Di + Dm, since the timeout
is already satisfied. This specification may result in the total duration of the wait decreasing when
measured against a steady clock.

—(4.2) If Ca ≤ Ct, the waiting function should not time out until Clock::now() returns a time Cn ≥ Ct, i.e.,
waking at Ct + Di + Dm.
[Note 1 : When the clock is adjusted backwards, this specification can result in the total duration of the wait
increasing when measured against a steady clock. When the clock is adjusted forwards, this specification can
result in the total duration of the wait decreasing when measured against a steady clock. — end note ]

An implementation returns from such a timeout at any point from the time specified above to the time it
would return from a steady-clock relative timeout on the difference between Ct and the time point of the call
to the _until function.
Recommended practice: Implementations should decrease the duration of the wait when the clock is adjusted
forwards.

5 [Note 2 : If the clock is not synchronized with a steady clock, e.g., a CPU time clock, these timeouts can fail to provide
useful functionality. — end note ]

6 The resolution of timing provided by an implementation depends on both operating system and hardware.
The finest resolution provided by an implementation is called the native resolution.

7 Implementation-provided clocks that are used for these functions meet the Cpp17TrivialClock requirements
(29.3).

8 A function that takes an argument which specifies a timeout will throw if, during its execution, a clock, time
point, or time duration throws an exception. Such exceptions are referred to as timeout-related exceptions.
[Note 3 : Instantiations of clock, time point and duration types supplied by the implementation as specified in 29.7 do
not throw exceptions. — end note ]

33.2.5 Requirements for Cpp17Lockable types [thread.req.lockable]
33.2.5.1 In general [thread.req.lockable.general]

1 An execution agent is an entity such as a thread that may perform work in parallel with other execution
agents.
[Note 1 : Implementations or users can introduce other kinds of agents such as processes or thread-pool tasks. — end
note ]

The calling agent is determined by context, e.g., the calling thread that contains the call, and so on.
2 [Note 2 : Some lockable objects are “agent oblivious” in that they work for any execution agent model because they

do not determine or store the agent’s ID (e.g., an ordinary spin lock). — end note ]
3 The standard library templates unique_lock (33.6.5.4), shared_lock (33.6.5.5), scoped_lock (33.6.5.3),

lock_guard (33.6.5.2), lock, try_lock (33.6.6), and condition_variable_any (33.7.5) all operate on user-
supplied lockable objects. The Cpp17BasicLockable requirements, the Cpp17Lockable requirements, the

304) Implementations for which standard time units are meaningful will typically have a steady clock within their hardware
implementation.
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Cpp17TimedLockable requirements, the Cpp17SharedLockable requirements, and the Cpp17SharedTimedLock-
able requirements list the requirements imposed by these library types in order to acquire or release ownership
of a lock by a given execution agent.
[Note 3 : The nature of any lock ownership and any synchronization it entails are not part of these requirements.

— end note ]
4 A lock on an object m is said to be

—(4.1) a non-shared lock if it is acquired by a call to lock, try_lock, try_lock_for, or try_lock_until on
m, or

—(4.2) a shared lock if it is acquired by a call to lock_shared, try_lock_shared, try_lock_shared_for, or
try_lock_shared_until on m.

[Note 4 : Only the method of lock acquisition is considered; the nature of any lock ownership is not part of these
definitions. — end note ]

33.2.5.2 Cpp17BasicLockable requirements [thread.req.lockable.basic]
1 A type L meets the Cpp17BasicLockable requirements if the following expressions are well-formed and have

the specified semantics (m denotes a value of type L).

m.lock()

2 Effects: Blocks until a lock can be acquired for the current execution agent. If an exception is thrown
then a lock shall not have been acquired for the current execution agent.

m.unlock()

3 Preconditions: The current execution agent holds a non-shared lock on m.
4 Effects: Releases a non-shared lock on m held by the current execution agent.
5 Throws: Nothing.

33.2.5.3 Cpp17Lockable requirements [thread.req.lockable.req]
1 A type L meets the Cpp17Lockable requirements if it meets the Cpp17BasicLockable requirements and the

following expressions are well-formed and have the specified semantics (m denotes a value of type L).

m.try_lock()

2 Effects: Attempts to acquire a lock for the current execution agent without blocking. If an exception is
thrown then a lock shall not have been acquired for the current execution agent.

3 Return type: bool.
4 Returns: true if the lock was acquired, otherwise false.

33.2.5.4 Cpp17TimedLockable requirements [thread.req.lockable.timed]
1 A type L meets the Cpp17TimedLockable requirements if it meets the Cpp17Lockable requirements and the

following expressions are well-formed and have the specified semantics (m denotes a value of type L, rel_time
denotes a value of an instantiation of duration (29.5), and abs_time denotes a value of an instantiation of
time_point (29.6)).

m.try_lock_for(rel_time)

2 Effects: Attempts to acquire a lock for the current execution agent within the relative timeout (33.2.4)
specified by rel_time. The function will not return within the timeout specified by rel_time unless it
has obtained a lock on m for the current execution agent. If an exception is thrown then a lock has not
been acquired for the current execution agent.

3 Return type: bool.
4 Returns: true if the lock was acquired, otherwise false.

m.try_lock_until(abs_time)

5 Effects: Attempts to acquire a lock for the current execution agent before the absolute timeout (33.2.4)
specified by abs_time. The function will not return before the timeout specified by abs_time unless it
has obtained a lock on m for the current execution agent. If an exception is thrown then a lock has not
been acquired for the current execution agent.
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6 Return type: bool.
7 Returns: true if the lock was acquired, otherwise false.

33.2.5.5 Cpp17SharedLockable requirements [thread.req.lockable.shared]
1 A type L meets the Cpp17SharedLockable requirements if the following expressions are well-formed, have the

specified semantics, and the expression m.try_lock_shared() has type bool (m denotes a value of type L):

m.lock_shared()

2 Effects: Blocks until a lock can be acquired for the current execution agent. If an exception is thrown
then a lock shall not have been acquired for the current execution agent.

m.try_lock_shared()

3 Effects: Attempts to acquire a lock for the current execution agent without blocking. If an exception is
thrown then a lock shall not have been acquired for the current execution agent.

4 Returns: true if the lock was acquired, false otherwise.

m.unlock_shared()

5 Preconditions: The current execution agent holds a shared lock on m.
6 Effects: Releases a shared lock on m held by the current execution agent.
7 Throws: Nothing.

33.2.5.6 Cpp17SharedTimedLockable requirements [thread.req.lockable.shared.timed]
1 A type L meets the Cpp17SharedTimedLockable requirements if it meets the Cpp17SharedLockable requirements,

and the following expressions are well-formed, have type bool, and have the specified semantics (m denotes a
value of type L, rel_time denotes a value of a specialization of chrono::duration, and abs_time denotes a
value of a specialization of chrono::time_point).

m.try_lock_shared_for(rel_time)

2 Effects: Attempts to acquire a lock for the current execution agent within the relative timeout (33.2.4)
specified by rel_time. The function will not return within the timeout specified by rel_time unless it
has obtained a lock on m for the current execution agent. If an exception is thrown then a lock has not
been acquired for the current execution agent.

3 Returns: true if the lock was acquired, false otherwise.

m.try_lock_shared_until(abs_time)

4 Effects: Attempts to acquire a lock for the current execution agent before the absolute timeout (33.2.4)
specified by abs_time. The function will not return before the timeout specified by abs_time unless it
has obtained a lock on m for the current execution agent. If an exception is thrown then a lock has not
been acquired for the current execution agent.

5 Returns: true if the lock was acquired, false otherwise.

33.3 Stop tokens [thread.stoptoken]
33.3.1 Introduction [thread.stoptoken.intro]

1 Subclause 33.3 describes components that can be used to asynchronously request that an operation stops
execution in a timely manner, typically because the result is no longer required. Such a request is called a
stop request.

2 stop_source, stop_token, and stop_callback implement semantics of shared ownership of a stop state.
Any stop_source, stop_token, or stop_callback that shares ownership of the same stop state is an
associated stop_source, stop_token, or stop_callback, respectively. The last remaining owner of the stop
state automatically releases the resources associated with the stop state.

3 A stop_token can be passed to an operation which can either
—(3.1) actively poll the token to check if there has been a stop request, or
—(3.2) register a callback using the stop_callback class template which will be called in the event that a

stop request is made.
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A stop request made via a stop_source will be visible to all associated stop_token and stop_source objects.
Once a stop request has been made it cannot be withdrawn (a subsequent stop request has no effect).

4 Callbacks registered via a stop_callback object are called when a stop request is first made by any associated
stop_source object.

5 Calls to the functions request_stop, stop_requested, and stop_possible do not introduce data races.
A call to request_stop that returns true synchronizes with a call to stop_requested on an associated
stop_token or stop_source object that returns true. Registration of a callback synchronizes with the
invocation of that callback.

33.3.2 Header <stop_token> synopsis [thread.stoptoken.syn]
namespace std {

// 33.3.3, class stop_token
class stop_token;

// 33.3.4, class stop_source
class stop_source;

// no-shared-stop-state indicator
struct nostopstate_t {

explicit nostopstate_t() = default;
};
inline constexpr nostopstate_t nostopstate{};

// 33.3.5, class template stop_callback
template<class Callback>

class stop_callback;
}

33.3.3 Class stop_token [stoptoken]
33.3.3.1 General [stoptoken.general]

1 The class stop_token provides an interface for querying whether a stop request has been made (stop_-
requested) or can ever be made (stop_possible) using an associated stop_source object (33.3.4). A
stop_token can also be passed to a stop_callback (33.3.5) constructor to register a callback to be called
when a stop request has been made from an associated stop_source.

namespace std {
class stop_token {
public:

// 33.3.3.2, constructors, copy, and assignment
stop_token() noexcept;

stop_token(const stop_token&) noexcept;
stop_token(stop_token&&) noexcept;
stop_token& operator=(const stop_token&) noexcept;
stop_token& operator=(stop_token&&) noexcept;
~stop_token();
void swap(stop_token&) noexcept;

// 33.3.3.3, stop handling
[[nodiscard]] bool stop_requested() const noexcept;
[[nodiscard]] bool stop_possible() const noexcept;

[[nodiscard]] friend bool operator==(const stop_token& lhs, const stop_token& rhs) noexcept;
friend void swap(stop_token& lhs, stop_token& rhs) noexcept;

};
}

33.3.3.2 Constructors, copy, and assignment [stoptoken.cons]

stop_token() noexcept;

1 Postconditions: stop_possible() is false and stop_requested() is false.
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[Note 1 : Because the created stop_token object can never receive a stop request, no resources are allocated for
a stop state. — end note ]

stop_token(const stop_token& rhs) noexcept;

2 Postconditions: *this == rhs is true.
[Note 2 : *this and rhs share the ownership of the same stop state, if any. — end note ]

stop_token(stop_token&& rhs) noexcept;

3 Postconditions: *this contains the value of rhs prior to the start of construction and rhs.stop_-
possible() is false.

~stop_token();

4 Effects: Releases ownership of the stop state, if any.

stop_token& operator=(const stop_token& rhs) noexcept;

5 Effects: Equivalent to: stop_token(rhs).swap(*this).
6 Returns: *this.

stop_token& operator=(stop_token&& rhs) noexcept;

7 Effects: Equivalent to: stop_token(std::move(rhs)).swap(*this).
8 Returns: *this.

void swap(stop_token& rhs) noexcept;

9 Effects: Exchanges the values of *this and rhs.

33.3.3.3 Members [stoptoken.mem]

[[nodiscard]] bool stop_requested() const noexcept;

1 Returns: true if *this has ownership of a stop state that has received a stop request; otherwise, false.

[[nodiscard]] bool stop_possible() const noexcept;

2 Returns: false if:
—(2.1) *this does not have ownership of a stop state, or
—(2.2) a stop request was not made and there are no associated stop_source objects;

otherwise, true.

33.3.3.4 Non-member functions [stoptoken.nonmembers]

[[nodiscard]] bool operator==(const stop_token& lhs, const stop_token& rhs) noexcept;

1 Returns: true if lhs and rhs have ownership of the same stop state or if both lhs and rhs do not
have ownership of a stop state; otherwise false.

friend void swap(stop_token& x, stop_token& y) noexcept;

2 Effects: Equivalent to: x.swap(y).

33.3.4 Class stop_source [stopsource]
33.3.4.1 General [stopsource.general]

1 The class stop_source implements the semantics of making a stop request. A stop request made on a
stop_source object is visible to all associated stop_source and stop_token (33.3.3) objects. Once a stop
request has been made it cannot be withdrawn (a subsequent stop request has no effect).

namespace std {
// no-shared-stop-state indicator
struct nostopstate_t {

explicit nostopstate_t() = default;
};
inline constexpr nostopstate_t nostopstate{};
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class stop_source {
public:

// 33.3.4.2, constructors, copy, and assignment
stop_source();
explicit stop_source(nostopstate_t) noexcept;

stop_source(const stop_source&) noexcept;
stop_source(stop_source&&) noexcept;
stop_source& operator=(const stop_source&) noexcept;
stop_source& operator=(stop_source&&) noexcept;
~stop_source();
void swap(stop_source&) noexcept;

// 33.3.4.3, stop handling
[[nodiscard]] stop_token get_token() const noexcept;
[[nodiscard]] bool stop_possible() const noexcept;
[[nodiscard]] bool stop_requested() const noexcept;
bool request_stop() noexcept;

[[nodiscard]] friend bool
operator==(const stop_source& lhs, const stop_source& rhs) noexcept;

friend void swap(stop_source& lhs, stop_source& rhs) noexcept;
};

}

33.3.4.2 Constructors, copy, and assignment [stopsource.cons]

stop_source();

1 Effects: Initialises *this to have ownership of a new stop state.
2 Postconditions: stop_possible() is true and stop_requested() is false.
3 Throws: bad_alloc if memory cannot be allocated for the stop state.

explicit stop_source(nostopstate_t) noexcept;

4 Postconditions: stop_possible() is false and stop_requested() is false.
[Note 1 : No resources are allocated for the state. — end note ]

stop_source(const stop_source& rhs) noexcept;

5 Postconditions: *this == rhs is true.
[Note 2 : *this and rhs share the ownership of the same stop state, if any. — end note ]

stop_source(stop_source&& rhs) noexcept;

6 Postconditions: *this contains the value of rhs prior to the start of construction and rhs.stop_-
possible() is false.

~stop_source();

7 Effects: Releases ownership of the stop state, if any.

stop_source& operator=(const stop_source& rhs) noexcept;

8 Effects: Equivalent to: stop_source(rhs).swap(*this).
9 Returns: *this.

stop_source& operator=(stop_source&& rhs) noexcept;

10 Effects: Equivalent to: stop_source(std::move(rhs)).swap(*this).
11 Returns: *this.

void swap(stop_source& rhs) noexcept;

12 Effects: Exchanges the values of *this and rhs.
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33.3.4.3 Members [stopsource.mem]

[[nodiscard]] stop_token get_token() const noexcept;

1 Returns: stop_token() if stop_possible() is false; otherwise a new associated stop_token object.

[[nodiscard]] bool stop_possible() const noexcept;

2 Returns: true if *this has ownership of a stop state; otherwise, false.

[[nodiscard]] bool stop_requested() const noexcept;

3 Returns: true if *this has ownership of a stop state that has received a stop request; otherwise, false.

bool request_stop() noexcept;

4 Effects: If *this does not have ownership of a stop state, returns false. Otherwise, atomically
determines whether the owned stop state has received a stop request, and if not, makes a stop request.
The determination and making of the stop request are an atomic read-modify-write operation (6.9.2.2).
If the request was made, the callbacks registered by associated stop_callback objects are synchronously
called. If an invocation of a callback exits via an exception then terminate is invoked (14.6.2).
[Note 1 : A stop request includes notifying all condition variables of type condition_variable_any temporarily
registered during an interruptible wait (33.7.5.3). — end note ]

5 Postconditions: stop_possible() is false or stop_requested() is true.
6 Returns: true if this call made a stop request; otherwise false.

33.3.4.4 Non-member functions [stopsource.nonmembers]

[[nodiscard]] friend bool
operator==(const stop_source& lhs, const stop_source& rhs) noexcept;

1 Returns: true if lhs and rhs have ownership of the same stop state or if both lhs and rhs do not
have ownership of a stop state; otherwise false.

friend void swap(stop_source& x, stop_source& y) noexcept;

2 Effects: Equivalent to: x.swap(y).

33.3.5 Class template stop_callback [stopcallback]
33.3.5.1 General [stopcallback.general]

1 namespace std {
template<class Callback>
class stop_callback {
public:

using callback_type = Callback;

// 33.3.5.2, constructors and destructor
template<class C>

explicit stop_callback(const stop_token& st, C&& cb)
noexcept(is_nothrow_constructible_v<Callback, C>);

template<class C>
explicit stop_callback(stop_token&& st, C&& cb)

noexcept(is_nothrow_constructible_v<Callback, C>);
~stop_callback();

stop_callback(const stop_callback&) = delete;
stop_callback(stop_callback&&) = delete;
stop_callback& operator=(const stop_callback&) = delete;
stop_callback& operator=(stop_callback&&) = delete;

private:
Callback callback; // exposition only

};
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template<class Callback>
stop_callback(stop_token, Callback) -> stop_callback<Callback>;

}

2 Mandates: stop_callback is instantiated with an argument for the template parameter Callback that
satisfies both invocable and destructible.

3 Preconditions: stop_callback is instantiated with an argument for the template parameter Callback that
models both invocable and destructible.

33.3.5.2 Constructors and destructor [stopcallback.cons]

template<class C>
explicit stop_callback(const stop_token& st, C&& cb)

noexcept(is_nothrow_constructible_v<Callback, C>);
template<class C>
explicit stop_callback(stop_token&& st, C&& cb)

noexcept(is_nothrow_constructible_v<Callback, C>);

1 Constraints: Callback and C satisfy constructible_from<Callback, C>.
2 Preconditions: Callback and C model constructible_from<Callback, C>.
3 Effects: Initializes callback with std::forward<C>(cb). If st.stop_requested() is true, then

std::forward<Callback>(callback)() is evaluated in the current thread before the constructor
returns. Otherwise, if st has ownership of a stop state, acquires shared ownership of that stop state
and registers the callback with that stop state such that std::forward<Callback>(callback)() is
evaluated by the first call to request_stop() on an associated stop_source.

4 Throws: Any exception thrown by the initialization of callback.
5 Remarks: If evaluating std::forward<Callback>(callback)() exits via an exception, then terminate

is invoked (14.6.2).

~stop_callback();

6 Effects: Unregisters the callback from the owned stop state, if any. The destructor does not block
waiting for the execution of another callback registered by an associated stop_callback. If callback
is concurrently executing on another thread, then the return from the invocation of callback strongly
happens before (6.9.2.2) callback is destroyed. If callback is executing on the current thread, then
the destructor does not block (3.6) waiting for the return from the invocation of callback. Releases
ownership of the stop state, if any.

33.4 Threads [thread.threads]
33.4.1 General [thread.threads.general]

1 33.4 describes components that can be used to create and manage threads.
[Note 1 : These threads are intended to map one-to-one with operating system threads. — end note ]

33.4.2 Header <thread> synopsis [thread.syn]
#include <compare> // see 17.11.1

namespace std {
// 33.4.3, class thread
class thread;

void swap(thread& x, thread& y) noexcept;

// 33.4.4, class jthread
class jthread;

// 33.4.5, namespace this_thread
namespace this_thread {

thread::id get_id() noexcept;

§ 33.4.2 1795



© ISO/IEC N4950

void yield() noexcept;
template<class Clock, class Duration>

void sleep_until(const chrono::time_point<Clock, Duration>& abs_time);
template<class Rep, class Period>

void sleep_for(const chrono::duration<Rep, Period>& rel_time);
}

}

33.4.3 Class thread [thread.thread.class]
33.4.3.1 General [thread.thread.class.general]

1 The class thread provides a mechanism to create a new thread of execution, to join with a thread (i.e., wait
for a thread to complete), and to perform other operations that manage and query the state of a thread. A
thread object uniquely represents a particular thread of execution. That representation may be transferred
to other thread objects in such a way that no two thread objects simultaneously represent the same thread
of execution. A thread of execution is detached when no thread object represents that thread. Objects of
class thread can be in a state that does not represent a thread of execution.
[Note 1 : A thread object does not represent a thread of execution after default construction, after being moved from,
or after a successful call to detach or join. — end note ]

namespace std {
class thread {
public:

// 33.4.3.2, class thread::id
class id;
using native_handle_type = implementation-defined; // see 33.2.3

// construct/copy/destroy
thread() noexcept;
template<class F, class... Args> explicit thread(F&& f, Args&&... args);
~thread();
thread(const thread&) = delete;
thread(thread&&) noexcept;
thread& operator=(const thread&) = delete;
thread& operator=(thread&&) noexcept;

// 33.4.3.6, members
void swap(thread&) noexcept;
bool joinable() const noexcept;
void join();
void detach();
id get_id() const noexcept;
native_handle_type native_handle(); // see 33.2.3

// static members
static unsigned int hardware_concurrency() noexcept;

};
}

33.4.3.2 Class thread::id [thread.thread.id]
namespace std {

class thread::id {
public:

id() noexcept;
};

bool operator==(thread::id x, thread::id y) noexcept;
strong_ordering operator<=>(thread::id x, thread::id y) noexcept;

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<<(basic_ostream<charT, traits>& out, thread::id id);

template<class charT> struct formatter<thread::id, charT>;
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// hash support
template<class T> struct hash;
template<> struct hash<thread::id>;

}

1 An object of type thread::id provides a unique identifier for each thread of execution and a single distinct
value for all thread objects that do not represent a thread of execution (33.4.3). Each thread of execution has
an associated thread::id object that is not equal to the thread::id object of any other thread of execution
and that is not equal to the thread::id object of any thread object that does not represent threads of
execution.

2 The text representation for the character type charT of an object of type thread::id is an unspecified
sequence of charT such that, for two objects of type thread::id x and y, if x == y is true, the thread::id
objects have the same text representation, and if x != y is true, the thread::id objects have distinct text
representations.

3 thread::id is a trivially copyable class (11.2). The library may reuse the value of a thread::id of a
terminated thread that can no longer be joined.

4 [Note 1 : Relational operators allow thread::id objects to be used as keys in associative containers. — end note ]

id() noexcept;

5 Postconditions: The constructed object does not represent a thread of execution.

bool operator==(thread::id x, thread::id y) noexcept;

6 Returns: true only if x and y represent the same thread of execution or neither x nor y represents a
thread of execution.

strong_ordering operator<=>(thread::id x, thread::id y) noexcept;

7 Let P (x, y) be an unspecified total ordering over thread::id as described in 27.8.
8 Returns: strong_ordering::less if P (x, y) is true. Otherwise, strong_ordering::greater if P (y, x)

is true. Otherwise, strong_ordering::equal.

template<class charT, class traits>
basic_ostream<charT, traits>&

operator<< (basic_ostream<charT, traits>& out, thread::id id);

9 Effects: Inserts the text representation for charT of id into out.
10 Returns: out.

template<class charT> struct formatter<thread::id, charT>;

11 formatter<thread::id, charT> interprets format-spec as a thread-id-format-spec. The syntax of
format specifications is as follows:

thread-id-format-spec :
fill-and-alignopt widthopt

[Note 2 : The productions fill-and-align and width are described in 22.14.2.2. — end note ]
12 If the align option is omitted it defaults to >.
13 A thread::id object is formatted by writing its text representation for charT to the output with

additional padding and adjustments as specified by the format specifiers.

template<> struct hash<thread::id>;

14 The specialization is enabled (22.10.19).

33.4.3.3 Constructors [thread.thread.constr]

thread() noexcept;

1 Effects: The object does not represent a thread of execution.
2 Postconditions: get_id() == id().

template<class F, class... Args> explicit thread(F&& f, Args&&... args);

3 Constraints: remove_cvref_t<F> is not the same type as thread.
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4 Mandates: The following are all true:
—(4.1) is_constructible_v<decay_t<F>, F>,
—(4.2) (is_constructible_v<decay_t<Args>, Args> && ...), and
—(4.3) is_invocable_v<decay_t<F>, decay_t<Args>...>.

5 Effects: The new thread of execution executes
invoke(auto(std::forward<F>(f)), // for invoke, see 22.10.5

auto(std::forward<Args>(args))...)

with the values produced by auto being materialized (7.3.5) in the constructing thread. Any return
value from this invocation is ignored.
[Note 1 : This implies that any exceptions not thrown from the invocation of the copy of f will be thrown in
the constructing thread, not the new thread. — end note ]

If the invocation of invoke terminates with an uncaught exception, terminate is invoked (14.6.2).
6 Synchronization: The completion of the invocation of the constructor synchronizes with the beginning

of the invocation of the copy of f.
7 Postconditions: get_id() != id(). *this represents the newly started thread.
8 Throws: system_error if unable to start the new thread.
9 Error conditions:

—(9.1) resource_unavailable_try_again — the system lacked the necessary resources to create another
thread, or the system-imposed limit on the number of threads in a process would be exceeded.

thread(thread&& x) noexcept;

10 Postconditions: x.get_id() == id() and get_id() returns the value of x.get_id() prior to the start
of construction.

33.4.3.4 Destructor [thread.thread.destr]

~thread();

1 Effects: If joinable(), invokes terminate (14.6.2). Otherwise, has no effects.
[Note 1 : Either implicitly detaching or joining a joinable() thread in its destructor can result in difficult to
debug correctness (for detach) or performance (for join) bugs encountered only when an exception is thrown.
These bugs can be avoided by ensuring that the destructor is never executed while the thread is still joinable.

— end note ]

33.4.3.5 Assignment [thread.thread.assign]

thread& operator=(thread&& x) noexcept;

1 Effects: If joinable(), invokes terminate (14.6.2). Otherwise, assigns the state of x to *this and
sets x to a default constructed state.

2 Postconditions: x.get_id() == id() and get_id() returns the value of x.get_id() prior to the
assignment.

3 Returns: *this.

33.4.3.6 Members [thread.thread.member]

void swap(thread& x) noexcept;

1 Effects: Swaps the state of *this and x.

bool joinable() const noexcept;

2 Returns: get_id() != id().

void join();

3 Effects: Blocks until the thread represented by *this has completed.
4 Synchronization: The completion of the thread represented by *this synchronizes with (6.9.2) the

corresponding successful join() return.
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[Note 1 : Operations on *this are not synchronized. — end note ]
5 Postconditions: The thread represented by *this has completed. get_id() == id().
6 Throws: system_error when an exception is required (33.2.2).
7 Error conditions:

—(7.1) resource_deadlock_would_occur — if deadlock is detected or get_id() == this_thread::
get_id().

—(7.2) no_such_process — if the thread is not valid.
—(7.3) invalid_argument — if the thread is not joinable.

void detach();

8 Effects: The thread represented by *this continues execution without the calling thread blocking.
When detach() returns, *this no longer represents the possibly continuing thread of execution. When
the thread previously represented by *this ends execution, the implementation releases any owned
resources.

9 Postconditions: get_id() == id().
10 Throws: system_error when an exception is required (33.2.2).
11 Error conditions:

—(11.1) no_such_process — if the thread is not valid.
—(11.2) invalid_argument — if the thread is not joinable.

id get_id() const noexcept;

12 Returns: A default constructed id object if *this does not represent a thread, otherwise this_-
thread::get_id() for the thread of execution represented by *this.

33.4.3.7 Static members [thread.thread.static]

unsigned hardware_concurrency() noexcept;

1 Returns: The number of hardware thread contexts.
[Note 1 : This value should only be considered to be a hint. — end note ]

If this value is not computable or well-defined, an implementation should return 0.

33.4.3.8 Specialized algorithms [thread.thread.algorithm]

void swap(thread& x, thread& y) noexcept;

1 Effects: As if by x.swap(y).

33.4.4 Class jthread [thread.jthread.class]
33.4.4.1 General [thread.jthread.class.general]

1 The class jthread provides a mechanism to create a new thread of execution. The functionality is the same
as for class thread (33.4.3) with the additional abilities to provide a stop_token (33.3) to the new thread of
execution, make stop requests, and automatically join.

namespace std {
class jthread {
public:

// types
using id = thread::id;
using native_handle_type = thread::native_handle_type;

// 33.4.4.2, constructors, move, and assignment
jthread() noexcept;
template<class F, class... Args> explicit jthread(F&& f, Args&&... args);
~jthread();
jthread(const jthread&) = delete;
jthread(jthread&&) noexcept;
jthread& operator=(const jthread&) = delete;
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jthread& operator=(jthread&&) noexcept;

// 33.4.4.3, members
void swap(jthread&) noexcept;
[[nodiscard]] bool joinable() const noexcept;
void join();
void detach();
[[nodiscard]] id get_id() const noexcept;
[[nodiscard]] native_handle_type native_handle(); // see 33.2.3

// 33.4.4.4, stop token handling
[[nodiscard]] stop_source get_stop_source() noexcept;
[[nodiscard]] stop_token get_stop_token() const noexcept;
bool request_stop() noexcept;

// 33.4.4.5, specialized algorithms
friend void swap(jthread& lhs, jthread& rhs) noexcept;

// 33.4.4.6, static members
[[nodiscard]] static unsigned int hardware_concurrency() noexcept;

private:
stop_source ssource; // exposition only

};
}

33.4.4.2 Constructors, move, and assignment [thread.jthread.cons]

jthread() noexcept;

1 Effects: Constructs a jthread object that does not represent a thread of execution.
2 Postconditions: get_id() == id() is true and ssource.stop_possible() is false.

template<class F, class... Args> explicit jthread(F&& f, Args&&... args);

3 Constraints: remove_cvref_t<F> is not the same type as jthread.
4 Mandates: The following are all true:

—(4.1) is_constructible_v<decay_t<F>, F>,
—(4.2) (is_constructible_v<decay_t<Args>, Args> && ...), and
—(4.3) is_invocable_v<decay_t<F>, decay_t<Args>...> ||

is_invocable_v<decay_t<F>, stop_token, decay_t<Args>...>.
5 Effects: Initializes ssource. The new thread of execution executes

invoke(auto(std::forward<F>(f)), get_stop_token(), // for invoke, see 22.10.5
auto(std::forward<Args>(args))...)

if that expression is well-formed, otherwise
invoke(auto(std::forward<F>(f)), auto(std::forward<Args>(args))...)

with the values produced by auto being materialized (7.3.5) in the constructing thread. Any return
value from this invocation is ignored.
[Note 1 : This implies that any exceptions not thrown from the invocation of the copy of f will be thrown in
the constructing thread, not the new thread. — end note ]

If the invoke expression exits via an exception, terminate is called.
6 Synchronization: The completion of the invocation of the constructor synchronizes with the beginning

of the invocation of the copy of f.
7 Postconditions: get_id() != id() is true and ssource.stop_possible() is true and *this repre-

sents the newly started thread.
[Note 2 : The calling thread can make a stop request only once, because it cannot replace this stop token.

— end note ]
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8 Throws: system_error if unable to start the new thread.
9 Error conditions:

—(9.1) resource_unavailable_try_again — the system lacked the necessary resources to create another
thread, or the system-imposed limit on the number of threads in a process would be exceeded.

jthread(jthread&& x) noexcept;

10 Postconditions: x.get_id() == id() and get_id() returns the value of x.get_id() prior to the
start of construction. ssource has the value of x.ssource prior to the start of construction and
x.ssource.stop_possible() is false.

~jthread();

11 Effects: If joinable() is true, calls request_stop() and then join().
[Note 3 : Operations on *this are not synchronized. — end note ]

jthread& operator=(jthread&& x) noexcept;

12 Effects: If &x == this is true, there are no effects. Otherwise, if joinable() is true, calls request_-
stop() and then join(), then assigns the state of x to *this and sets x to a default constructed
state.

13 Postconditions: get_id() returns the value of x.get_id() prior to the assignment. ssource has the
value of x.ssource prior to the assignment.

14 Returns: *this.

33.4.4.3 Members [thread.jthread.mem]

void swap(jthread& x) noexcept;

1 Effects: Exchanges the values of *this and x.

[[nodiscard]] bool joinable() const noexcept;

2 Returns: get_id() != id().

void join();

3 Effects: Blocks until the thread represented by *this has completed.
4 Synchronization: The completion of the thread represented by *this synchronizes with (6.9.2) the

corresponding successful join() return.
[Note 1 : Operations on *this are not synchronized. — end note ]

5 Postconditions: The thread represented by *this has completed. get_id() == id().
6 Throws: system_error when an exception is required (33.2.2).
7 Error conditions:

—(7.1) resource_deadlock_would_occur — if deadlock is detected or get_id() == this_thread::
get_id().

—(7.2) no_such_process — if the thread is not valid.
—(7.3) invalid_argument — if the thread is not joinable.

void detach();

8 Effects: The thread represented by *this continues execution without the calling thread blocking.
When detach() returns, *this no longer represents the possibly continuing thread of execution. When
the thread previously represented by *this ends execution, the implementation releases any owned
resources.

9 Postconditions: get_id() == id().
10 Throws: system_error when an exception is required (33.2.2).
11 Error conditions:

—(11.1) no_such_process — if the thread is not valid.
—(11.2) invalid_argument — if the thread is not joinable.
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id get_id() const noexcept;

12 Returns: A default constructed id object if *this does not represent a thread, otherwise this_-
thread::get_id() for the thread of execution represented by *this.

33.4.4.4 Stop token handling [thread.jthread.stop]

[[nodiscard]] stop_source get_stop_source() noexcept;

1 Effects: Equivalent to: return ssource;

[[nodiscard]] stop_token get_stop_token() const noexcept;

2 Effects: Equivalent to: return ssource.get_token();

bool request_stop() noexcept;

3 Effects: Equivalent to: return ssource.request_stop();

33.4.4.5 Specialized algorithms [thread.jthread.special]

friend void swap(jthread& x, jthread& y) noexcept;

1 Effects: Equivalent to: x.swap(y).

33.4.4.6 Static members [thread.jthread.static]

[[nodiscard]] static unsigned int hardware_concurrency() noexcept;

1 Returns: thread::hardware_concurrency().

33.4.5 Namespace this_thread [thread.thread.this]
namespace std::this_thread {

thread::id get_id() noexcept;

void yield() noexcept;
template<class Clock, class Duration>

void sleep_until(const chrono::time_point<Clock, Duration>& abs_time);
template<class Rep, class Period>

void sleep_for(const chrono::duration<Rep, Period>& rel_time);
}

thread::id this_thread::get_id() noexcept;

1 Returns: An object of type thread::id that uniquely identifies the current thread of execution. Every
invocation from this thread of execution returns the same value. The object returned does not compare
equal to a default-constructed thread::id.

void this_thread::yield() noexcept;

2 Effects: Offers the implementation the opportunity to reschedule.
3 Synchronization: None.

template<class Clock, class Duration>
void sleep_until(const chrono::time_point<Clock, Duration>& abs_time);

4 Effects: Blocks the calling thread for the absolute timeout (33.2.4) specified by abs_time.
5 Synchronization: None.
6 Throws: Timeout-related exceptions (33.2.4).

template<class Rep, class Period>
void sleep_for(const chrono::duration<Rep, Period>& rel_time);

7 Effects: Blocks the calling thread for the relative timeout (33.2.4) specified by rel_time.
8 Synchronization: None.
9 Throws: Timeout-related exceptions (33.2.4).
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33.5 Atomic operations [atomics]
33.5.1 General [atomics.general]

1 Subclause 33.5 describes components for fine-grained atomic access. This access is provided via operations
on atomic objects.

33.5.2 Header <atomic> synopsis [atomics.syn]
namespace std {

// 33.5.4, order and consistency
enum class memory_order : unspecified; // freestanding
inline constexpr memory_order memory_order_relaxed = memory_order::relaxed; // freestanding
inline constexpr memory_order memory_order_consume = memory_order::consume; // freestanding
inline constexpr memory_order memory_order_acquire = memory_order::acquire; // freestanding
inline constexpr memory_order memory_order_release = memory_order::release; // freestanding
inline constexpr memory_order memory_order_acq_rel = memory_order::acq_rel; // freestanding
inline constexpr memory_order memory_order_seq_cst = memory_order::seq_cst; // freestanding

template<class T>
T kill_dependency(T y) noexcept; // freestanding

}

// 33.5.5, lock-free property
#define ATOMIC_BOOL_LOCK_FREE unspecified // freestanding
#define ATOMIC_CHAR_LOCK_FREE unspecified // freestanding
#define ATOMIC_CHAR8_T_LOCK_FREE unspecified // freestanding
#define ATOMIC_CHAR16_T_LOCK_FREE unspecified // freestanding
#define ATOMIC_CHAR32_T_LOCK_FREE unspecified // freestanding
#define ATOMIC_WCHAR_T_LOCK_FREE unspecified // freestanding
#define ATOMIC_SHORT_LOCK_FREE unspecified // freestanding
#define ATOMIC_INT_LOCK_FREE unspecified // freestanding
#define ATOMIC_LONG_LOCK_FREE unspecified // freestanding
#define ATOMIC_LLONG_LOCK_FREE unspecified // freestanding
#define ATOMIC_POINTER_LOCK_FREE unspecified // freestanding

namespace std {
// 33.5.7, class template atomic_ref
template<class T> struct atomic_ref; // freestanding
// 33.5.7.5, partial specialization for pointers
template<class T> struct atomic_ref<T*>; // freestanding

// 33.5.8, class template atomic
template<class T> struct atomic; // freestanding
// 33.5.8.5, partial specialization for pointers
template<class T> struct atomic<T*>; // freestanding

// 33.5.9, non-member functions
template<class T>

bool atomic_is_lock_free(const volatile atomic<T>*) noexcept; // freestanding
template<class T>

bool atomic_is_lock_free(const atomic<T>*) noexcept; // freestanding
template<class T>

void atomic_store(volatile atomic<T>*, // freestanding
typename atomic<T>::value_type) noexcept;

template<class T>
void atomic_store(atomic<T>*, typename atomic<T>::value_type) noexcept; // freestanding

template<class T>
void atomic_store_explicit(volatile atomic<T>*, // freestanding

typename atomic<T>::value_type,
memory_order) noexcept;

template<class T>
void atomic_store_explicit(atomic<T>*, typename atomic<T>::value_type, // freestanding

memory_order) noexcept;
template<class T>

T atomic_load(const volatile atomic<T>*) noexcept; // freestanding
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template<class T>
T atomic_load(const atomic<T>*) noexcept; // freestanding

template<class T>
T atomic_load_explicit(const volatile atomic<T>*, memory_order) noexcept; // freestanding

template<class T>
T atomic_load_explicit(const atomic<T>*, memory_order) noexcept; // freestanding

template<class T>
T atomic_exchange(volatile atomic<T>*, // freestanding

typename atomic<T>::value_type) noexcept;
template<class T>

T atomic_exchange(atomic<T>*, typename atomic<T>::value_type) noexcept; // freestanding
template<class T>

T atomic_exchange_explicit(volatile atomic<T>*, // freestanding
typename atomic<T>::value_type,
memory_order) noexcept;

template<class T>
T atomic_exchange_explicit(atomic<T>*, typename atomic<T>::value_type, // freestanding

memory_order) noexcept;
template<class T>

bool atomic_compare_exchange_weak(volatile atomic<T>*, // freestanding
typename atomic<T>::value_type*,
typename atomic<T>::value_type) noexcept;

template<class T>
bool atomic_compare_exchange_weak(atomic<T>*, // freestanding

typename atomic<T>::value_type*,
typename atomic<T>::value_type) noexcept;

template<class T>
bool atomic_compare_exchange_strong(volatile atomic<T>*, // freestanding

typename atomic<T>::value_type*,
typename atomic<T>::value_type) noexcept;

template<class T>
bool atomic_compare_exchange_strong(atomic<T>*, // freestanding

typename atomic<T>::value_type*,
typename atomic<T>::value_type) noexcept;

template<class T>
bool atomic_compare_exchange_weak_explicit(volatile atomic<T>*, // freestanding

typename atomic<T>::value_type*,
typename atomic<T>::value_type,
memory_order, memory_order) noexcept;

template<class T>
bool atomic_compare_exchange_weak_explicit(atomic<T>*, // freestanding

typename atomic<T>::value_type*,
typename atomic<T>::value_type,
memory_order, memory_order) noexcept;

template<class T>
bool atomic_compare_exchange_strong_explicit(volatile atomic<T>*, // freestanding

typename atomic<T>::value_type*,
typename atomic<T>::value_type,
memory_order, memory_order) noexcept;

template<class T>
bool atomic_compare_exchange_strong_explicit(atomic<T>*, // freestanding

typename atomic<T>::value_type*,
typename atomic<T>::value_type,
memory_order, memory_order) noexcept;

template<class T>
T atomic_fetch_add(volatile atomic<T>*, // freestanding

typename atomic<T>::difference_type) noexcept;
template<class T>

T atomic_fetch_add(atomic<T>*, typename atomic<T>::difference_type) noexcept; // freestanding
template<class T>

T atomic_fetch_add_explicit(volatile atomic<T>*, // freestanding
typename atomic<T>::difference_type,
memory_order) noexcept;
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template<class T>
T atomic_fetch_add_explicit(atomic<T>*, typename atomic<T>::difference_type, // freestanding

memory_order) noexcept;
template<class T>

T atomic_fetch_sub(volatile atomic<T>*, // freestanding
typename atomic<T>::difference_type) noexcept;

template<class T>
T atomic_fetch_sub(atomic<T>*, typename atomic<T>::difference_type) noexcept; // freestanding

template<class T>
T atomic_fetch_sub_explicit(volatile atomic<T>*, // freestanding

typename atomic<T>::difference_type,
memory_order) noexcept;

template<class T>
T atomic_fetch_sub_explicit(atomic<T>*, typename atomic<T>::difference_type, // freestanding

memory_order) noexcept;
template<class T>

T atomic_fetch_and(volatile atomic<T>*, // freestanding
typename atomic<T>::value_type) noexcept;

template<class T>
T atomic_fetch_and(atomic<T>*, typename atomic<T>::value_type) noexcept; // freestanding

template<class T>
T atomic_fetch_and_explicit(volatile atomic<T>*, // freestanding

typename atomic<T>::value_type,
memory_order) noexcept;

template<class T>
T atomic_fetch_and_explicit(atomic<T>*, typename atomic<T>::value_type, // freestanding

memory_order) noexcept;
template<class T>

T atomic_fetch_or(volatile atomic<T>*, // freestanding
typename atomic<T>::value_type) noexcept;

template<class T>
T atomic_fetch_or(atomic<T>*, typename atomic<T>::value_type) noexcept; // freestanding

template<class T>
T atomic_fetch_or_explicit(volatile atomic<T>*, // freestanding

typename atomic<T>::value_type,
memory_order) noexcept;

template<class T>
T atomic_fetch_or_explicit(atomic<T>*, typename atomic<T>::value_type, // freestanding

memory_order) noexcept;
template<class T>

T atomic_fetch_xor(volatile atomic<T>*, // freestanding
typename atomic<T>::value_type) noexcept;

template<class T>
T atomic_fetch_xor(atomic<T>*, typename atomic<T>::value_type) noexcept; // freestanding

template<class T>
T atomic_fetch_xor_explicit(volatile atomic<T>*, // freestanding

typename atomic<T>::value_type,
memory_order) noexcept;

template<class T>
T atomic_fetch_xor_explicit(atomic<T>*, typename atomic<T>::value_type, // freestanding

memory_order) noexcept;

template<class T>
void atomic_wait(const volatile atomic<T>*, // freestanding

typename atomic<T>::value_type) noexcept;
template<class T>

void atomic_wait(const atomic<T>*, typename atomic<T>::value_type) noexcept; // freestanding
template<class T>

void atomic_wait_explicit(const volatile atomic<T>*, // freestanding
typename atomic<T>::value_type,
memory_order) noexcept;

template<class T>
void atomic_wait_explicit(const atomic<T>*, typename atomic<T>::value_type, // freestanding

memory_order) noexcept;
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template<class T>
void atomic_notify_one(volatile atomic<T>*) noexcept; // freestanding

template<class T>
void atomic_notify_one(atomic<T>*) noexcept; // freestanding

template<class T>
void atomic_notify_all(volatile atomic<T>*) noexcept; // freestanding

template<class T>
void atomic_notify_all(atomic<T>*) noexcept; // freestanding

// 33.5.3, type aliases
using atomic_bool = atomic<bool>; // freestanding
using atomic_char = atomic<char>; // freestanding
using atomic_schar = atomic<signed char>; // freestanding
using atomic_uchar = atomic<unsigned char>; // freestanding
using atomic_short = atomic<short>; // freestanding
using atomic_ushort = atomic<unsigned short>; // freestanding
using atomic_int = atomic<int>; // freestanding
using atomic_uint = atomic<unsigned int>; // freestanding
using atomic_long = atomic<long>; // freestanding
using atomic_ulong = atomic<unsigned long>; // freestanding
using atomic_llong = atomic<long long>; // freestanding
using atomic_ullong = atomic<unsigned long long>; // freestanding
using atomic_char8_t = atomic<char8_t>; // freestanding
using atomic_char16_t = atomic<char16_t>; // freestanding
using atomic_char32_t = atomic<char32_t>; // freestanding
using atomic_wchar_t = atomic<wchar_t>; // freestanding

using atomic_int8_t = atomic<int8_t>; // freestanding
using atomic_uint8_t = atomic<uint8_t>; // freestanding
using atomic_int16_t = atomic<int16_t>; // freestanding
using atomic_uint16_t = atomic<uint16_t>; // freestanding
using atomic_int32_t = atomic<int32_t>; // freestanding
using atomic_uint32_t = atomic<uint32_t>; // freestanding
using atomic_int64_t = atomic<int64_t>; // freestanding
using atomic_uint64_t = atomic<uint64_t>; // freestanding

using atomic_int_least8_t = atomic<int_least8_t>; // freestanding
using atomic_uint_least8_t = atomic<uint_least8_t>; // freestanding
using atomic_int_least16_t = atomic<int_least16_t>; // freestanding
using atomic_uint_least16_t = atomic<uint_least16_t>; // freestanding
using atomic_int_least32_t = atomic<int_least32_t>; // freestanding
using atomic_uint_least32_t = atomic<uint_least32_t>; // freestanding
using atomic_int_least64_t = atomic<int_least64_t>; // freestanding
using atomic_uint_least64_t = atomic<uint_least64_t>; // freestanding

using atomic_int_fast8_t = atomic<int_fast8_t>; // freestanding
using atomic_uint_fast8_t = atomic<uint_fast8_t>; // freestanding
using atomic_int_fast16_t = atomic<int_fast16_t>; // freestanding
using atomic_uint_fast16_t = atomic<uint_fast16_t>; // freestanding
using atomic_int_fast32_t = atomic<int_fast32_t>; // freestanding
using atomic_uint_fast32_t = atomic<uint_fast32_t>; // freestanding
using atomic_int_fast64_t = atomic<int_fast64_t>; // freestanding
using atomic_uint_fast64_t = atomic<uint_fast64_t>; // freestanding

using atomic_intptr_t = atomic<intptr_t>; // freestanding
using atomic_uintptr_t = atomic<uintptr_t>; // freestanding
using atomic_size_t = atomic<size_t>; // freestanding
using atomic_ptrdiff_t = atomic<ptrdiff_t>; // freestanding
using atomic_intmax_t = atomic<intmax_t>; // freestanding
using atomic_uintmax_t = atomic<uintmax_t>; // freestanding

using atomic_signed_lock_free = see below ;
using atomic_unsigned_lock_free = see below ;
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// 33.5.10, flag type and operations
struct atomic_flag; // freestanding

bool atomic_flag_test(const volatile atomic_flag*) noexcept; // freestanding
bool atomic_flag_test(const atomic_flag*) noexcept; // freestanding
bool atomic_flag_test_explicit(const volatile atomic_flag*, // freestanding

memory_order) noexcept;
bool atomic_flag_test_explicit(const atomic_flag*, memory_order) noexcept; // freestanding
bool atomic_flag_test_and_set(volatile atomic_flag*) noexcept; // freestanding
bool atomic_flag_test_and_set(atomic_flag*) noexcept; // freestanding
bool atomic_flag_test_and_set_explicit(volatile atomic_flag*, // freestanding

memory_order) noexcept;
bool atomic_flag_test_and_set_explicit(atomic_flag*, memory_order) noexcept; // freestanding
void atomic_flag_clear(volatile atomic_flag*) noexcept; // freestanding
void atomic_flag_clear(atomic_flag*) noexcept; // freestanding
void atomic_flag_clear_explicit(volatile atomic_flag*, memory_order) noexcept; // freestanding
void atomic_flag_clear_explicit(atomic_flag*, memory_order) noexcept; // freestanding

void atomic_flag_wait(const volatile atomic_flag*, bool) noexcept; // freestanding
void atomic_flag_wait(const atomic_flag*, bool) noexcept; // freestanding
void atomic_flag_wait_explicit(const volatile atomic_flag*, // freestanding

bool, memory_order) noexcept;
void atomic_flag_wait_explicit(const atomic_flag*, // freestanding

bool, memory_order) noexcept;
void atomic_flag_notify_one(volatile atomic_flag*) noexcept; // freestanding
void atomic_flag_notify_one(atomic_flag*) noexcept; // freestanding
void atomic_flag_notify_all(volatile atomic_flag*) noexcept; // freestanding
void atomic_flag_notify_all(atomic_flag*) noexcept; // freestanding
#define ATOMIC_FLAG_INIT see below // freestanding

// 33.5.11, fences
extern "C" void atomic_thread_fence(memory_order) noexcept; // freestanding
extern "C" void atomic_signal_fence(memory_order) noexcept; // freestanding

}

33.5.3 Type aliases [atomics.alias]
1 The type aliases atomic_intN_t, atomic_uintN_t, atomic_intptr_t, and atomic_uintptr_t are defined

if and only if intN_t, uintN_t, intptr_t, and uintptr_t are defined, respectively.
2 The type aliases atomic_signed_lock_free and atomic_unsigned_lock_free name specializations of

atomic whose template arguments are integral types, respectively signed and unsigned, and whose is_-
always_lock_free property is true.
[Note 1 : These aliases are optional in freestanding implementations (16.4.2.5). — end note ]

Implementations should choose for these aliases the integral specializations of atomic for which the atomic
waiting and notifying operations (33.5.6) are most efficient.

33.5.4 Order and consistency [atomics.order]
namespace std {

enum class memory_order : unspecified {
relaxed, consume, acquire, release, acq_rel, seq_cst

};
}

1 The enumeration memory_order specifies the detailed regular (non-atomic) memory synchronization order as
defined in 6.9.2 and may provide for operation ordering. Its enumerated values and their meanings are as
follows:

—(1.1) memory_order::relaxed: no operation orders memory.
—(1.2) memory_order::release, memory_order::acq_rel, and memory_order::seq_cst: a store operation

performs a release operation on the affected memory location.
—(1.3) memory_order::consume: a load operation performs a consume operation on the affected memory

location.
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[Note 1 : Prefer memory_order::acquire, which provides stronger guarantees than memory_order::consume.
Implementations have found it infeasible to provide performance better than that of memory_order::acquire.
Specification revisions are under consideration. — end note ]

—(1.4) memory_order::acquire, memory_order::acq_rel, and memory_order::seq_cst: a load operation
performs an acquire operation on the affected memory location.

[Note 2 : Atomic operations specifying memory_order::relaxed are relaxed with respect to memory ordering. Imple-
mentations must still guarantee that any given atomic access to a particular atomic object be indivisible with respect
to all other atomic accesses to that object. — end note ]

2 An atomic operation A that performs a release operation on an atomic object M synchronizes with an atomic
operation B that performs an acquire operation on M and takes its value from any side effect in the release
sequence headed by A.

3 An atomic operation A on some atomic object M is coherence-ordered before another atomic operation B on
M if

—(3.1) A is a modification, and B reads the value stored by A, or
—(3.2) A precedes B in the modification order of M , or
—(3.3) A and B are not the same atomic read-modify-write operation, and there exists an atomic modification

X of M such that A reads the value stored by X and X precedes B in the modification order of M , or
—(3.4) there exists an atomic modification X of M such that A is coherence-ordered before X and X is

coherence-ordered before B.
4 There is a single total order S on all memory_order::seq_cst operations, including fences, that satisfies the

following constraints. First, if A and B are memory_order::seq_cst operations and A strongly happens
before B, then A precedes B in S. Second, for every pair of atomic operations A and B on an object M ,
where A is coherence-ordered before B, the following four conditions are required to be satisfied by S:

—(4.1) if A and B are both memory_order::seq_cst operations, then A precedes B in S; and
—(4.2) if A is a memory_order::seq_cst operation and B happens before a memory_order::seq_cst fence

Y , then A precedes Y in S; and
—(4.3) if a memory_order::seq_cst fence X happens before A and B is a memory_order::seq_cst operation,

then X precedes B in S; and
—(4.4) if a memory_order::seq_cst fence X happens before A and B happens before a memory_order::seq_-

cst fence Y , then X precedes Y in S.
5 [Note 3 : This definition ensures that S is consistent with the modification order of any atomic object M . It also

ensures that a memory_order::seq_cst load A of M gets its value either from the last modification of M that precedes
A in S or from some non-memory_order::seq_cst modification of M that does not happen before any modification
of M that precedes A in S. — end note ]

6 [Note 4 : We do not require that S be consistent with “happens before” (6.9.2.2). This allows more efficient
implementation of memory_order::acquire and memory_order::release on some machine architectures. It can
produce surprising results when these are mixed with memory_order::seq_cst accesses. — end note ]

7 [Note 5 : memory_order::seq_cst ensures sequential consistency only for a program that is free of data races and
uses exclusively memory_order::seq_cst atomic operations. Any use of weaker ordering will invalidate this guarantee
unless extreme care is used. In many cases, memory_order::seq_cst atomic operations are reorderable with respect
to other atomic operations performed by the same thread. — end note ]

8 Implementations should ensure that no “out-of-thin-air” values are computed that circularly depend on their
own computation.
[Note 6 : For example, with x and y initially zero,

// Thread 1:
r1 = y.load(memory_order::relaxed);
x.store(r1, memory_order::relaxed);

// Thread 2:
r2 = x.load(memory_order::relaxed);
y.store(r2, memory_order::relaxed);

this recommendation discourages producing r1 == r2 == 42, since the store of 42 to y is only possible if the store
to x stores 42, which circularly depends on the store to y storing 42. Note that without this restriction, such an
execution is possible. — end note ]
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9 [Note 7 : The recommendation similarly disallows r1 == r2 == 42 in the following example, with x and y again
initially zero:

// Thread 1:
r1 = x.load(memory_order::relaxed);
if (r1 == 42) y.store(42, memory_order::relaxed);

// Thread 2:
r2 = y.load(memory_order::relaxed);
if (r2 == 42) x.store(42, memory_order::relaxed);

— end note ]
10 Atomic read-modify-write operations shall always read the last value (in the modification order) written

before the write associated with the read-modify-write operation.
11 Implementations should make atomic stores visible to atomic loads within a reasonable amount of time.

template<class T>
T kill_dependency(T y) noexcept;

12 Effects: The argument does not carry a dependency to the return value (6.9.2).
13 Returns: y.

33.5.5 Lock-free property [atomics.lockfree]
#define ATOMIC_BOOL_LOCK_FREE unspecified
#define ATOMIC_CHAR_LOCK_FREE unspecified
#define ATOMIC_CHAR8_T_LOCK_FREE unspecified
#define ATOMIC_CHAR16_T_LOCK_FREE unspecified
#define ATOMIC_CHAR32_T_LOCK_FREE unspecified
#define ATOMIC_WCHAR_T_LOCK_FREE unspecified
#define ATOMIC_SHORT_LOCK_FREE unspecified
#define ATOMIC_INT_LOCK_FREE unspecified
#define ATOMIC_LONG_LOCK_FREE unspecified
#define ATOMIC_LLONG_LOCK_FREE unspecified
#define ATOMIC_POINTER_LOCK_FREE unspecified

1 The ATOMIC_..._LOCK_FREE macros indicate the lock-free property of the corresponding atomic types, with
the signed and unsigned variants grouped together. The properties also apply to the corresponding (partial)
specializations of the atomic template. A value of 0 indicates that the types are never lock-free. A value of 1
indicates that the types are sometimes lock-free. A value of 2 indicates that the types are always lock-free.

2 On a hosted implementation (16.4.2.5), at least one signed integral specialization of the atomic template,
along with the specialization for the corresponding unsigned type (6.8.2), is always lock-free.

3 The functions atomic<T>::is_lock_free and atomic_is_lock_free (33.5.8.2) indicate whether the object
is lock-free. In any given program execution, the result of the lock-free query is the same for all atomic
objects of the same type.

4 Atomic operations that are not lock-free are considered to potentially block (6.9.2.3).
5 Recommended practice: Operations that are lock-free should also be address-free.305 The implementation of

these operations should not depend on any per-process state.
[Note 1 : This restriction enables communication by memory that is mapped into a process more than once and by
memory that is shared between two processes. — end note ]

33.5.6 Waiting and notifying [atomics.wait]
1 Atomic waiting operations and atomic notifying operations provide a mechanism to wait for the value of an

atomic object to change more efficiently than can be achieved with polling. An atomic waiting operation
may block until it is unblocked by an atomic notifying operation, according to each function’s effects.
[Note 1 : Programs are not guaranteed to observe transient atomic values, an issue known as the A-B-A problem,
resulting in continued blocking if a condition is only temporarily met. — end note ]

2 [Note 2 : The following functions are atomic waiting operations:
—(2.1) atomic<T>::wait,

305) That is, atomic operations on the same memory location via two different addresses will communicate atomically.
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—(2.2) atomic_flag::wait,
—(2.3) atomic_wait and atomic_wait_explicit,
—(2.4) atomic_flag_wait and atomic_flag_wait_explicit, and
—(2.5) atomic_ref<T>::wait.

— end note ]
3 [Note 3 : The following functions are atomic notifying operations:

—(3.1) atomic<T>::notify_one and atomic<T>::notify_all,
—(3.2) atomic_flag::notify_one and atomic_flag::notify_all,
—(3.3) atomic_notify_one and atomic_notify_all,
—(3.4) atomic_flag_notify_one and atomic_flag_notify_all, and
—(3.5) atomic_ref<T>::notify_one and atomic_ref<T>::notify_all.

— end note ]
4 A call to an atomic waiting operation on an atomic object M is eligible to be unblocked by a call to an atomic

notifying operation on M if there exist side effects X and Y on M such that:
—(4.1) the atomic waiting operation has blocked after observing the result of X,
—(4.2) X precedes Y in the modification order of M, and
—(4.3) Y happens before the call to the atomic notifying operation.

33.5.7 Class template atomic_ref [atomics.ref.generic]
33.5.7.1 General [atomics.ref.generic.general]

namespace std {
template<class T> struct atomic_ref {
private:

T* ptr; // exposition only

public:
using value_type = T;
static constexpr size_t required_alignment = implementation-defined ;

static constexpr bool is_always_lock_free = implementation-defined ;
bool is_lock_free() const noexcept;

explicit atomic_ref(T&);
atomic_ref(const atomic_ref&) noexcept;
atomic_ref& operator=(const atomic_ref&) = delete;

void store(T, memory_order = memory_order::seq_cst) const noexcept;
T operator=(T) const noexcept;
T load(memory_order = memory_order::seq_cst) const noexcept;
operator T() const noexcept;

T exchange(T, memory_order = memory_order::seq_cst) const noexcept;
bool compare_exchange_weak(T&, T,

memory_order, memory_order) const noexcept;
bool compare_exchange_strong(T&, T,

memory_order, memory_order) const noexcept;
bool compare_exchange_weak(T&, T,

memory_order = memory_order::seq_cst) const noexcept;
bool compare_exchange_strong(T&, T,

memory_order = memory_order::seq_cst) const noexcept;

void wait(T, memory_order = memory_order::seq_cst) const noexcept;
void notify_one() const noexcept;
void notify_all() const noexcept;

};
}
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1 An atomic_ref object applies atomic operations (33.5.1) to the object referenced by *ptr such that, for the
lifetime (6.7.3) of the atomic_ref object, the object referenced by *ptr is an atomic object (6.9.2.2).

2 The program is ill-formed if is_trivially_copyable_v<T> is false.
3 The lifetime (6.7.3) of an object referenced by *ptr shall exceed the lifetime of all atomic_refs that reference

the object. While any atomic_ref instances exist that reference the *ptr object, all accesses to that object
shall exclusively occur through those atomic_ref instances. No subobject of the object referenced by
atomic_ref shall be concurrently referenced by any other atomic_ref object.

4 Atomic operations applied to an object through a referencing atomic_ref are atomic with respect to atomic
operations applied through any other atomic_ref referencing the same object.
[Note 1 : Atomic operations or the atomic_ref constructor can acquire a shared resource, such as a lock associated
with the referenced object, to enable atomic operations to be applied to the referenced object. — end note ]

33.5.7.2 Operations [atomics.ref.ops]

static constexpr size_t required_alignment;

1 The alignment required for an object to be referenced by an atomic reference, which is at least
alignof(T).

2 [Note 1 : Hardware could require an object referenced by an atomic_ref to have stricter alignment (6.7.6)
than other objects of type T. Further, whether operations on an atomic_ref are lock-free could depend on
the alignment of the referenced object. For example, lock-free operations on std::complex<double> could be
supported only if aligned to 2*alignof(double). — end note ]

static constexpr bool is_always_lock_free;

3 The static data member is_always_lock_free is true if the atomic_ref type’s operations are always
lock-free, and false otherwise.

bool is_lock_free() const noexcept;

4 Returns: true if operations on all objects of the type atomic_ref<T> are lock-free, false otherwise.

atomic_ref(T& obj);

5 Preconditions: The referenced object is aligned to required_alignment.
6 Postconditions: *this references obj.
7 Throws: Nothing.

atomic_ref(const atomic_ref& ref) noexcept;

8 Postconditions: *this references the object referenced by ref.

void store(T desired, memory_order order = memory_order::seq_cst) const noexcept;

9 Preconditions: The order argument is neither memory_order::consume, memory_order::acquire,
nor memory_order::acq_rel.

10 Effects: Atomically replaces the value referenced by *ptr with the value of desired. Memory is affected
according to the value of order.

T operator=(T desired) const noexcept;

11 Effects: Equivalent to:
store(desired);
return desired;

T load(memory_order order = memory_order::seq_cst) const noexcept;

12 Preconditions: The order argument is neither memory_order::release nor memory_order::acq_rel.
13 Effects: Memory is affected according to the value of order.
14 Returns: Atomically returns the value referenced by *ptr.

operator T() const noexcept;

15 Effects: Equivalent to: return load();

§ 33.5.7.2 1811



© ISO/IEC N4950

T exchange(T desired, memory_order order = memory_order::seq_cst) const noexcept;

16 Effects: Atomically replaces the value referenced by *ptr with desired. Memory is affected according
to the value of order. This operation is an atomic read-modify-write operation (6.9.2).

17 Returns: Atomically returns the value referenced by *ptr immediately before the effects.

bool compare_exchange_weak(T& expected, T desired,
memory_order success, memory_order failure) const noexcept;

bool compare_exchange_strong(T& expected, T desired,
memory_order success, memory_order failure) const noexcept;

bool compare_exchange_weak(T& expected, T desired,
memory_order order = memory_order::seq_cst) const noexcept;

bool compare_exchange_strong(T& expected, T desired,
memory_order order = memory_order::seq_cst) const noexcept;

18 Preconditions: The failure argument is neither memory_order::release nor memory_order::acq_-
rel.

19 Effects: Retrieves the value in expected. It then atomically compares the value representation of the
value referenced by *ptr for equality with that previously retrieved from expected, and if true, replaces
the value referenced by *ptr with that in desired. If and only if the comparison is true, memory
is affected according to the value of success, and if the comparison is false, memory is affected
according to the value of failure. When only one memory_order argument is supplied, the value of
success is order, and the value of failure is order except that a value of memory_order::acq_rel
shall be replaced by the value memory_order::acquire and a value of memory_order::release shall
be replaced by the value memory_order::relaxed. If and only if the comparison is false then, after
the atomic operation, the value in expected is replaced by the value read from the value referenced
by *ptr during the atomic comparison. If the operation returns true, these operations are atomic
read-modify-write operations (6.9.2.2) on the value referenced by *ptr. Otherwise, these operations
are atomic load operations on that memory.

20 Returns: The result of the comparison.
21 Remarks: A weak compare-and-exchange operation may fail spuriously. That is, even when the contents

of memory referred to by expected and ptr are equal, it may return false and store back to expected
the same memory contents that were originally there.
[Note 2 : This spurious failure enables implementation of compare-and-exchange on a broader class of machines,
e.g., load-locked store-conditional machines. A consequence of spurious failure is that nearly all uses of weak
compare-and-exchange will be in a loop. When a compare-and-exchange is in a loop, the weak version will yield
better performance on some platforms. When a weak compare-and-exchange would require a loop and a strong
one would not, the strong one is preferable. — end note ]

void wait(T old, memory_order order = memory_order::seq_cst) const noexcept;

22 Preconditions: order is neither memory_order::release nor memory_order::acq_rel.
23 Effects: Repeatedly performs the following steps, in order:

—(23.1) Evaluates load(order) and compares its value representation for equality against that of old.
—(23.2) If they compare unequal, returns.
—(23.3) Blocks until it is unblocked by an atomic notifying operation or is unblocked spuriously.

24 Remarks: This function is an atomic waiting operation (33.5.6) on atomic object *ptr.

void notify_one() const noexcept;

25 Effects: Unblocks the execution of at least one atomic waiting operation on *ptr that is eligible to be
unblocked (33.5.6) by this call, if any such atomic waiting operations exist.

26 Remarks: This function is an atomic notifying operation (33.5.6) on atomic object *ptr.
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void notify_all() const noexcept;

27 Effects: Unblocks the execution of all atomic waiting operations on *ptr that are eligible to be
unblocked (33.5.6) by this call.

28 Remarks: This function is an atomic notifying operation (33.5.6) on atomic object *ptr.

33.5.7.3 Specializations for integral types [atomics.ref.int]
1 There are specializations of the atomic_ref class template for the integral types char, signed char,

unsigned char, short, unsigned short, int, unsigned int, long, unsigned long, long long, unsigned
long long, char8_t, char16_t, char32_t, wchar_t, and any other types needed by the typedefs in the header
<cstdint> (17.4.1). For each such type integral-type , the specialization atomic_ref<integral-type >
provides additional atomic operations appropriate to integral types.
[Note 1 : The specialization atomic_ref<bool> uses the primary template (33.5.7). — end note ]

namespace std {
template<> struct atomic_ref<integral-type > {
private:

integral-type * ptr; // exposition only

public:
using value_type = integral-type ;
using difference_type = value_type;
static constexpr size_t required_alignment = implementation-defined ;

static constexpr bool is_always_lock_free = implementation-defined ;
bool is_lock_free() const noexcept;

explicit atomic_ref(integral-type &);
atomic_ref(const atomic_ref&) noexcept;
atomic_ref& operator=(const atomic_ref&) = delete;

void store(integral-type, memory_order = memory_order::seq_cst) const noexcept;
integral-type operator=(integral-type ) const noexcept;
integral-type load(memory_order = memory_order::seq_cst) const noexcept;
operator integral-type() const noexcept;

integral-type exchange(integral-type,
memory_order = memory_order::seq_cst) const noexcept;

bool compare_exchange_weak(integral-type &, integral-type ,
memory_order, memory_order) const noexcept;

bool compare_exchange_strong(integral-type &, integral-type ,
memory_order, memory_order) const noexcept;

bool compare_exchange_weak(integral-type &, integral-type ,
memory_order = memory_order::seq_cst) const noexcept;

bool compare_exchange_strong(integral-type &, integral-type ,
memory_order = memory_order::seq_cst) const noexcept;

integral-type fetch_add(integral-type,
memory_order = memory_order::seq_cst) const noexcept;

integral-type fetch_sub(integral-type,
memory_order = memory_order::seq_cst) const noexcept;

integral-type fetch_and(integral-type,
memory_order = memory_order::seq_cst) const noexcept;

integral-type fetch_or(integral-type,
memory_order = memory_order::seq_cst) const noexcept;

integral-type fetch_xor(integral-type,
memory_order = memory_order::seq_cst) const noexcept;

integral-type operator++(int) const noexcept;
integral-type operator--(int) const noexcept;
integral-type operator++() const noexcept;
integral-type operator--() const noexcept;
integral-type operator+=(integral-type) const noexcept;
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integral-type operator-=(integral-type) const noexcept;
integral-type operator&=(integral-type) const noexcept;
integral-type operator|=(integral-type) const noexcept;
integral-type operator^=(integral-type) const noexcept;

void wait(integral-type, memory_order = memory_order::seq_cst) const noexcept;
void notify_one() const noexcept;
void notify_all() const noexcept;

};
}

2 Descriptions are provided below only for members that differ from the primary template.
3 The following operations perform arithmetic computations. The correspondence among key, operator, and

computation is specified in Table 145.

integral-type fetch_key(integral-type operand,
memory_order order = memory_order::seq_cst) const noexcept;

4 Effects: Atomically replaces the value referenced by *ptr with the result of the computation applied
to the value referenced by *ptr and the given operand. Memory is affected according to the value of
order. These operations are atomic read-modify-write operations (6.9.2.2).

5 Returns: Atomically, the value referenced by *ptr immediately before the effects.
6 Remarks: For signed integer types, the result is as if the object value and parameters were converted to

their corresponding unsigned types, the computation performed on those types, and the result converted
back to the signed type.
[Note 2 : There are no undefined results arising from the computation. — end note ]

integral-type operator op =(integral-type operand) const noexcept;

7 Effects: Equivalent to: return fetch_key(operand) op operand;

33.5.7.4 Specializations for floating-point types [atomics.ref.float]
1 There are specializations of the atomic_ref class template for all cv-unqualified floating-point types. For

each such type floating-point-type , the specialization atomic_ref<floating-point > provides additional
atomic operations appropriate to floating-point types.

namespace std {
template<> struct atomic_ref<floating-point-type > {
private:

floating-point-type * ptr; // exposition only

public:
using value_type = floating-point-type ;
using difference_type = value_type;
static constexpr size_t required_alignment = implementation-defined ;

static constexpr bool is_always_lock_free = implementation-defined ;
bool is_lock_free() const noexcept;

explicit atomic_ref(floating-point-type &);
atomic_ref(const atomic_ref&) noexcept;
atomic_ref& operator=(const atomic_ref&) = delete;

void store(floating-point-type, memory_order = memory_order::seq_cst) const noexcept;
floating-point-type operator=(floating-point-type ) const noexcept;
floating-point-type load(memory_order = memory_order::seq_cst) const noexcept;
operator floating-point-type() const noexcept;

floating-point-type exchange(floating-point-type,
memory_order = memory_order::seq_cst) const noexcept;

bool compare_exchange_weak(floating-point-type &, floating-point-type,
memory_order, memory_order) const noexcept;

bool compare_exchange_strong(floating-point-type &, floating-point-type,
memory_order, memory_order) const noexcept;
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bool compare_exchange_weak(floating-point-type &, floating-point-type,
memory_order = memory_order::seq_cst) const noexcept;

bool compare_exchange_strong(floating-point-type &, floating-point-type,
memory_order = memory_order::seq_cst) const noexcept;

floating-point-type fetch_add(floating-point-type,
memory_order = memory_order::seq_cst) const noexcept;

floating-point-type fetch_sub(floating-point-type,
memory_order = memory_order::seq_cst) const noexcept;

floating-point-type operator+=(floating-point-type ) const noexcept;
floating-point-type operator-=(floating-point-type ) const noexcept;

void wait(floating-point-type, memory_order = memory_order::seq_cst) const noexcept;
void notify_one() const noexcept;
void notify_all() const noexcept;

};
}

2 Descriptions are provided below only for members that differ from the primary template.
3 The following operations perform arithmetic computations. The correspondence among key, operator, and

computation is specified in Table 145.

floating-point-type fetch_key(floating-point-type operand,
memory_order order = memory_order::seq_cst) const noexcept;

4 Effects: Atomically replaces the value referenced by *ptr with the result of the computation applied
to the value referenced by *ptr and the given operand. Memory is affected according to the value of
order. These operations are atomic read-modify-write operations (6.9.2.2).

5 Returns: Atomically, the value referenced by *ptr immediately before the effects.
6 Remarks: If the result is not a representable value for its type (7.1), the result is unspecified, but the op-

erations otherwise have no undefined behavior. Atomic arithmetic operations on floating-point-type
should conform to the std::numeric_limits<floating-point-type > traits associated with the
floating-point type (17.3.3). The floating-point environment (28.3) for atomic arithmetic operations on
floating-point-type may be different than the calling thread’s floating-point environment.

floating-point-type operator op =(floating-point-type operand) const noexcept;

7 Effects: Equivalent to: return fetch_key (operand) op operand;

33.5.7.5 Partial specialization for pointers [atomics.ref.pointer]
namespace std {

template<class T> struct atomic_ref<T*> {
private:

T** ptr; // exposition only

public:
using value_type = T*;
using difference_type = ptrdiff_t;
static constexpr size_t required_alignment = implementation-defined ;

static constexpr bool is_always_lock_free = implementation-defined ;
bool is_lock_free() const noexcept;

explicit atomic_ref(T*&);
atomic_ref(const atomic_ref&) noexcept;
atomic_ref& operator=(const atomic_ref&) = delete;

void store(T*, memory_order = memory_order::seq_cst) const noexcept;
T* operator=(T*) const noexcept;
T* load(memory_order = memory_order::seq_cst) const noexcept;
operator T*() const noexcept;
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T* exchange(T*, memory_order = memory_order::seq_cst) const noexcept;
bool compare_exchange_weak(T*&, T*,

memory_order, memory_order) const noexcept;
bool compare_exchange_strong(T*&, T*,

memory_order, memory_order) const noexcept;
bool compare_exchange_weak(T*&, T*,

memory_order = memory_order::seq_cst) const noexcept;
bool compare_exchange_strong(T*&, T*,

memory_order = memory_order::seq_cst) const noexcept;

T* fetch_add(difference_type, memory_order = memory_order::seq_cst) const noexcept;
T* fetch_sub(difference_type, memory_order = memory_order::seq_cst) const noexcept;

T* operator++(int) const noexcept;
T* operator--(int) const noexcept;
T* operator++() const noexcept;
T* operator--() const noexcept;
T* operator+=(difference_type) const noexcept;
T* operator-=(difference_type) const noexcept;

void wait(T*, memory_order = memory_order::seq_cst) const noexcept;
void notify_one() const noexcept;
void notify_all() const noexcept;

};
}

1 Descriptions are provided below only for members that differ from the primary template.
2 The following operations perform arithmetic computations. The correspondence among key, operator, and

computation is specified in Table 146.

T* fetch_key(difference_type operand, memory_order order = memory_order::seq_cst) const noexcept;

3 Mandates: T is a complete object type.
4 Effects: Atomically replaces the value referenced by *ptr with the result of the computation applied

to the value referenced by *ptr and the given operand. Memory is affected according to the value of
order. These operations are atomic read-modify-write operations (6.9.2.2).

5 Returns: Atomically, the value referenced by *ptr immediately before the effects.
6 Remarks: The result may be an undefined address, but the operations otherwise have no undefined

behavior.

T* operator op =(difference_type operand) const noexcept;

7 Effects: Equivalent to: return fetch_key (operand) op operand;

33.5.7.6 Member operators common to integers and pointers to objects [atomics.ref.memop]

value_type operator++(int) const noexcept;

1 Effects: Equivalent to: return fetch_add(1);

value_type operator--(int) const noexcept;

2 Effects: Equivalent to: return fetch_sub(1);

value_type operator++() const noexcept;

3 Effects: Equivalent to: return fetch_add(1) + 1;

value_type operator--() const noexcept;

4 Effects: Equivalent to: return fetch_sub(1) - 1;

33.5.8 Class template atomic [atomics.types.generic]
33.5.8.1 General [atomics.types.generic.general]

namespace std {
template<class T> struct atomic {
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using value_type = T;

static constexpr bool is_always_lock_free = implementation-defined ;
bool is_lock_free() const volatile noexcept;
bool is_lock_free() const noexcept;

// 33.5.8.2, operations on atomic types
constexpr atomic() noexcept(is_nothrow_default_constructible_v<T>);
constexpr atomic(T) noexcept;
atomic(const atomic&) = delete;
atomic& operator=(const atomic&) = delete;
atomic& operator=(const atomic&) volatile = delete;

T load(memory_order = memory_order::seq_cst) const volatile noexcept;
T load(memory_order = memory_order::seq_cst) const noexcept;
operator T() const volatile noexcept;
operator T() const noexcept;
void store(T, memory_order = memory_order::seq_cst) volatile noexcept;
void store(T, memory_order = memory_order::seq_cst) noexcept;
T operator=(T) volatile noexcept;
T operator=(T) noexcept;

T exchange(T, memory_order = memory_order::seq_cst) volatile noexcept;
T exchange(T, memory_order = memory_order::seq_cst) noexcept;
bool compare_exchange_weak(T&, T, memory_order, memory_order) volatile noexcept;
bool compare_exchange_weak(T&, T, memory_order, memory_order) noexcept;
bool compare_exchange_strong(T&, T, memory_order, memory_order) volatile noexcept;
bool compare_exchange_strong(T&, T, memory_order, memory_order) noexcept;
bool compare_exchange_weak(T&, T, memory_order = memory_order::seq_cst) volatile noexcept;
bool compare_exchange_weak(T&, T, memory_order = memory_order::seq_cst) noexcept;
bool compare_exchange_strong(T&, T, memory_order = memory_order::seq_cst) volatile noexcept;
bool compare_exchange_strong(T&, T, memory_order = memory_order::seq_cst) noexcept;

void wait(T, memory_order = memory_order::seq_cst) const volatile noexcept;
void wait(T, memory_order = memory_order::seq_cst) const noexcept;
void notify_one() volatile noexcept;
void notify_one() noexcept;
void notify_all() volatile noexcept;
void notify_all() noexcept;

};
}

1 The template argument for T shall meet the Cpp17CopyConstructible and Cpp17CopyAssignable requirements.
The program is ill-formed if any of

—(1.1) is_trivially_copyable_v<T>,
—(1.2) is_copy_constructible_v<T>,
—(1.3) is_move_constructible_v<T>,
—(1.4) is_copy_assignable_v<T>, or
—(1.5) is_move_assignable_v<T>

is false.
[Note 1 : Type arguments that are not also statically initializable can be difficult to use. — end note ]

2 The specialization atomic<bool> is a standard-layout struct.
3 [Note 2 : The representation of an atomic specialization need not have the same size and alignment requirement as its

corresponding argument type. — end note ]

33.5.8.2 Operations on atomic types [atomics.types.operations]

constexpr atomic() noexcept(is_nothrow_default_constructible_v<T>);

1 Mandates: is_default_constructible_v<T> is true.
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2 Effects: Initializes the atomic object with the value of T(). Initialization is not an atomic operation
(6.9.2).

constexpr atomic(T desired) noexcept;

3 Effects: Initializes the object with the value desired. Initialization is not an atomic operation (6.9.2).
[Note 1 : It is possible to have an access to an atomic object A race with its construction, for example by
communicating the address of the just-constructed object A to another thread via memory_order::relaxed
operations on a suitable atomic pointer variable, and then immediately accessing A in the receiving thread. This
results in undefined behavior. — end note ]

static constexpr bool is_always_lock_free = implementation-defined ;

4 The static data member is_always_lock_free is true if the atomic type’s operations are always
lock-free, and false otherwise.
[Note 2 : The value of is_always_lock_free is consistent with the value of the corresponding ATOMIC_..._-
LOCK_FREE macro, if defined. — end note ]

bool is_lock_free() const volatile noexcept;
bool is_lock_free() const noexcept;

5 Returns: true if the object’s operations are lock-free, false otherwise.
[Note 3 : The return value of the is_lock_free member function is consistent with the value of is_always_-
lock_free for the same type. — end note ]

void store(T desired, memory_order order = memory_order::seq_cst) volatile noexcept;
void store(T desired, memory_order order = memory_order::seq_cst) noexcept;

6 Constraints: For the volatile overload of this function, is_always_lock_free is true.
7 Preconditions: The order argument is neither memory_order::consume, memory_order::acquire,

nor memory_order::acq_rel.
8 Effects: Atomically replaces the value pointed to by this with the value of desired. Memory is

affected according to the value of order.

T operator=(T desired) volatile noexcept;
T operator=(T desired) noexcept;

9 Constraints: For the volatile overload of this function, is_always_lock_free is true.
10 Effects: Equivalent to store(desired).
11 Returns: desired.

T load(memory_order order = memory_order::seq_cst) const volatile noexcept;
T load(memory_order order = memory_order::seq_cst) const noexcept;

12 Constraints: For the volatile overload of this function, is_always_lock_free is true.
13 Preconditions: The order argument is neither memory_order::release nor memory_order::acq_rel.
14 Effects: Memory is affected according to the value of order.
15 Returns: Atomically returns the value pointed to by this.

operator T() const volatile noexcept;
operator T() const noexcept;

16 Constraints: For the volatile overload of this function, is_always_lock_free is true.
17 Effects: Equivalent to: return load();

T exchange(T desired, memory_order order = memory_order::seq_cst) volatile noexcept;
T exchange(T desired, memory_order order = memory_order::seq_cst) noexcept;

18 Constraints: For the volatile overload of this function, is_always_lock_free is true.
19 Effects: Atomically replaces the value pointed to by this with desired. Memory is affected according

to the value of order. These operations are atomic read-modify-write operations (6.9.2).
20 Returns: Atomically returns the value pointed to by this immediately before the effects.
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bool compare_exchange_weak(T& expected, T desired,
memory_order success, memory_order failure) volatile noexcept;

bool compare_exchange_weak(T& expected, T desired,
memory_order success, memory_order failure) noexcept;

bool compare_exchange_strong(T& expected, T desired,
memory_order success, memory_order failure) volatile noexcept;

bool compare_exchange_strong(T& expected, T desired,
memory_order success, memory_order failure) noexcept;

bool compare_exchange_weak(T& expected, T desired,
memory_order order = memory_order::seq_cst) volatile noexcept;

bool compare_exchange_weak(T& expected, T desired,
memory_order order = memory_order::seq_cst) noexcept;

bool compare_exchange_strong(T& expected, T desired,
memory_order order = memory_order::seq_cst) volatile noexcept;

bool compare_exchange_strong(T& expected, T desired,
memory_order order = memory_order::seq_cst) noexcept;

21 Constraints: For the volatile overload of this function, is_always_lock_free is true.
22 Preconditions: The failure argument is neither memory_order::release nor memory_order::acq_-

rel.
23 Effects: Retrieves the value in expected. It then atomically compares the value representation of

the value pointed to by this for equality with that previously retrieved from expected, and if true,
replaces the value pointed to by this with that in desired. If and only if the comparison is true,
memory is affected according to the value of success, and if the comparison is false, memory is affected
according to the value of failure. When only one memory_order argument is supplied, the value of
success is order, and the value of failure is order except that a value of memory_order::acq_rel
shall be replaced by the value memory_order::acquire and a value of memory_order::release shall
be replaced by the value memory_order::relaxed. If and only if the comparison is false then, after
the atomic operation, the value in expected is replaced by the value pointed to by this during the
atomic comparison. If the operation returns true, these operations are atomic read-modify-write
operations (6.9.2) on the memory pointed to by this. Otherwise, these operations are atomic load
operations on that memory.

24 Returns: The result of the comparison.
25 [Note 4 : For example, the effect of compare_exchange_strong on objects without padding bits (6.8.1) is

if (memcmp(this, &expected, sizeof(*this)) == 0)
memcpy(this, &desired, sizeof(*this));

else
memcpy(&expected, this, sizeof(*this));

— end note ]
[Example 1 : The expected use of the compare-and-exchange operations is as follows. The compare-and-exchange
operations will update expected when another iteration of the loop is needed.

expected = current.load();
do {

desired = function(expected);
} while (!current.compare_exchange_weak(expected, desired));

— end example ]
[Example 2 : Because the expected value is updated only on failure, code releasing the memory containing
the expected value on success will work. For example, list head insertion will act atomically and would not
introduce a data race in the following code:

do {
p->next = head; // make new list node point to the current head

} while (!head.compare_exchange_weak(p->next, p)); // try to insert
— end example ]

26 Implementations should ensure that weak compare-and-exchange operations do not consistently return
false unless either the atomic object has value different from expected or there are concurrent
modifications to the atomic object.
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27 Remarks: A weak compare-and-exchange operation may fail spuriously. That is, even when the contents
of memory referred to by expected and this are equal, it may return false and store back to expected
the same memory contents that were originally there.
[Note 5 : This spurious failure enables implementation of compare-and-exchange on a broader class of machines,
e.g., load-locked store-conditional machines. A consequence of spurious failure is that nearly all uses of weak
compare-and-exchange will be in a loop. When a compare-and-exchange is in a loop, the weak version will yield
better performance on some platforms. When a weak compare-and-exchange would require a loop and a strong
one would not, the strong one is preferable. — end note ]

28 [Note 6 : Under cases where the memcpy and memcmp semantics of the compare-and-exchange operations apply, the
comparisons can fail for values that compare equal with operator== if the value representation has trap bits or
alternate representations of the same value. Notably, on implementations conforming to ISO/IEC/IEEE 60559,
floating-point -0.0 and +0.0 will not compare equal with memcmp but will compare equal with operator==, and
NaNs with the same payload will compare equal with memcmp but will not compare equal with operator==.

— end note ]
[Note 7 : Because compare-and-exchange acts on an object’s value representation, padding bits that never
participate in the object’s value representation are ignored. As a consequence, the following code is guaranteed
to avoid spurious failure:

struct padded {
char clank = 0x42;
// Padding here.
unsigned biff = 0xC0DEFEFE;

};
atomic<padded> pad = {};

bool zap() {
padded expected, desired{0, 0};
return pad.compare_exchange_strong(expected, desired);

}

— end note ]
[Note 8 : For a union with bits that participate in the value representation of some members but not others,
compare-and-exchange might always fail. This is because such padding bits have an indeterminate value when
they do not participate in the value representation of the active member. As a consequence, the following code
is not guaranteed to ever succeed:

union pony {
double celestia = 0.;
short luna; // padded

};
atomic<pony> princesses = {};

bool party(pony desired) {
pony expected;
return princesses.compare_exchange_strong(expected, desired);

}

— end note ]

void wait(T old, memory_order order = memory_order::seq_cst) const volatile noexcept;
void wait(T old, memory_order order = memory_order::seq_cst) const noexcept;

29 Preconditions: order is neither memory_order::release nor memory_order::acq_rel.
30 Effects: Repeatedly performs the following steps, in order:

—(30.1) Evaluates load(order) and compares its value representation for equality against that of old.
—(30.2) If they compare unequal, returns.
—(30.3) Blocks until it is unblocked by an atomic notifying operation or is unblocked spuriously.

31 Remarks: This function is an atomic waiting operation (33.5.6).

void notify_one() volatile noexcept;
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void notify_one() noexcept;

32 Effects: Unblocks the execution of at least one atomic waiting operation that is eligible to be unblocked
(33.5.6) by this call, if any such atomic waiting operations exist.

33 Remarks: This function is an atomic notifying operation (33.5.6).

void notify_all() volatile noexcept;
void notify_all() noexcept;

34 Effects: Unblocks the execution of all atomic waiting operations that are eligible to be unblocked (33.5.6)
by this call.

35 Remarks: This function is an atomic notifying operation (33.5.6).

33.5.8.3 Specializations for integers [atomics.types.int]
1 There are specializations of the atomic class template for the integral types char, signed char, unsigned

char, short, unsigned short, int, unsigned int, long, unsigned long, long long, unsigned long
long, char8_t, char16_t, char32_t, wchar_t, and any other types needed by the typedefs in the header
<cstdint> (17.4.1). For each such type integral-type , the specialization atomic<integral-type > provides
additional atomic operations appropriate to integral types.
[Note 1 : The specialization atomic<bool> uses the primary template (33.5.8). — end note ]

namespace std {
template<> struct atomic<integral-type > {

using value_type = integral-type ;
using difference_type = value_type;

static constexpr bool is_always_lock_free = implementation-defined ;
bool is_lock_free() const volatile noexcept;
bool is_lock_free() const noexcept;

constexpr atomic() noexcept;
constexpr atomic(integral-type) noexcept;
atomic(const atomic&) = delete;
atomic& operator=(const atomic&) = delete;
atomic& operator=(const atomic&) volatile = delete;

void store(integral-type, memory_order = memory_order::seq_cst) volatile noexcept;
void store(integral-type, memory_order = memory_order::seq_cst) noexcept;
integral-type operator=(integral-type) volatile noexcept;
integral-type operator=(integral-type) noexcept;
integral-type load(memory_order = memory_order::seq_cst) const volatile noexcept;
integral-type load(memory_order = memory_order::seq_cst) const noexcept;
operator integral-type() const volatile noexcept;
operator integral-type() const noexcept;

integral-type exchange(integral-type,
memory_order = memory_order::seq_cst) volatile noexcept;

integral-type exchange(integral-type,
memory_order = memory_order::seq_cst) noexcept;

bool compare_exchange_weak(integral-type &, integral-type,
memory_order, memory_order) volatile noexcept;

bool compare_exchange_weak(integral-type &, integral-type,
memory_order, memory_order) noexcept;

bool compare_exchange_strong(integral-type &, integral-type,
memory_order, memory_order) volatile noexcept;

bool compare_exchange_strong(integral-type &, integral-type,
memory_order, memory_order) noexcept;

bool compare_exchange_weak(integral-type &, integral-type,
memory_order = memory_order::seq_cst) volatile noexcept;

bool compare_exchange_weak(integral-type &, integral-type,
memory_order = memory_order::seq_cst) noexcept;

bool compare_exchange_strong(integral-type &, integral-type,
memory_order = memory_order::seq_cst) volatile noexcept;
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bool compare_exchange_strong(integral-type &, integral-type,
memory_order = memory_order::seq_cst) noexcept;

integral-type fetch_add(integral-type,
memory_order = memory_order::seq_cst) volatile noexcept;

integral-type fetch_add(integral-type,
memory_order = memory_order::seq_cst) noexcept;

integral-type fetch_sub(integral-type,
memory_order = memory_order::seq_cst) volatile noexcept;

integral-type fetch_sub(integral-type,
memory_order = memory_order::seq_cst) noexcept;

integral-type fetch_and(integral-type,
memory_order = memory_order::seq_cst) volatile noexcept;

integral-type fetch_and(integral-type,
memory_order = memory_order::seq_cst) noexcept;

integral-type fetch_or(integral-type,
memory_order = memory_order::seq_cst) volatile noexcept;

integral-type fetch_or(integral-type,
memory_order = memory_order::seq_cst) noexcept;

integral-type fetch_xor(integral-type,
memory_order = memory_order::seq_cst) volatile noexcept;

integral-type fetch_xor(integral-type,
memory_order = memory_order::seq_cst) noexcept;

integral-type operator++(int) volatile noexcept;
integral-type operator++(int) noexcept;
integral-type operator--(int) volatile noexcept;
integral-type operator--(int) noexcept;
integral-type operator++() volatile noexcept;
integral-type operator++() noexcept;
integral-type operator--() volatile noexcept;
integral-type operator--() noexcept;
integral-type operator+=(integral-type) volatile noexcept;
integral-type operator+=(integral-type) noexcept;
integral-type operator-=(integral-type) volatile noexcept;
integral-type operator-=(integral-type) noexcept;
integral-type operator&=(integral-type) volatile noexcept;
integral-type operator&=(integral-type) noexcept;
integral-type operator|=(integral-type) volatile noexcept;
integral-type operator|=(integral-type) noexcept;
integral-type operator^=(integral-type) volatile noexcept;
integral-type operator^=(integral-type) noexcept;

void wait(integral-type, memory_order = memory_order::seq_cst) const volatile noexcept;
void wait(integral-type, memory_order = memory_order::seq_cst) const noexcept;
void notify_one() volatile noexcept;
void notify_one() noexcept;
void notify_all() volatile noexcept;
void notify_all() noexcept;

};
}

2 The atomic integral specializations are standard-layout structs. They each have a trivial destructor.
3 Descriptions are provided below only for members that differ from the primary template.
4 The following operations perform arithmetic computations. The correspondence among key, operator, and

computation is specified in Table 145.

T fetch_key(T operand, memory_order order = memory_order::seq_cst) volatile noexcept;
T fetch_key(T operand, memory_order order = memory_order::seq_cst) noexcept;

5 Constraints: For the volatile overload of this function, is_always_lock_free is true.
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Table 145: Atomic arithmetic computations [tab:atomic.types.int.comp]

key Op Computation key Op Computation
add + addition sub - subtraction
or | bitwise inclusive or xor ^ bitwise exclusive or
and & bitwise and

6 Effects: Atomically replaces the value pointed to by this with the result of the computation applied
to the value pointed to by this and the given operand. Memory is affected according to the value of
order. These operations are atomic read-modify-write operations (6.9.2).

7 Returns: Atomically, the value pointed to by this immediately before the effects.
8 Remarks: For signed integer types, the result is as if the object value and parameters were converted to

their corresponding unsigned types, the computation performed on those types, and the result converted
back to the signed type.
[Note 2 : There are no undefined results arising from the computation. — end note ]

T operator op =(T operand) volatile noexcept;
T operator op =(T operand) noexcept;

9 Constraints: For the volatile overload of this function, is_always_lock_free is true.
10 Effects: Equivalent to: return fetch_key (operand) op operand;

33.5.8.4 Specializations for floating-point types [atomics.types.float]
1 There are specializations of the atomic class template for all cv-unqualified floating-point types. For each

such type floating-point-type, the specialization atomic<floating-point-type > provides additional
atomic operations appropriate to floating-point types.

namespace std {
template<> struct atomic<floating-point-type > {

using value_type = floating-point-type;
using difference_type = value_type;

static constexpr bool is_always_lock_free = implementation-defined ;
bool is_lock_free() const volatile noexcept;
bool is_lock_free() const noexcept;

constexpr atomic() noexcept;
constexpr atomic(floating-point-type ) noexcept;
atomic(const atomic&) = delete;
atomic& operator=(const atomic&) = delete;
atomic& operator=(const atomic&) volatile = delete;

void store(floating-point-type, memory_order = memory_order::seq_cst) volatile noexcept;
void store(floating-point-type, memory_order = memory_order::seq_cst) noexcept;
floating-point-type operator=(floating-point-type ) volatile noexcept;
floating-point-type operator=(floating-point-type ) noexcept;
floating-point-type load(memory_order = memory_order::seq_cst) volatile noexcept;
floating-point-type load(memory_order = memory_order::seq_cst) noexcept;
operator floating-point-type() volatile noexcept;
operator floating-point-type() noexcept;

floating-point-type exchange(floating-point-type,
memory_order = memory_order::seq_cst) volatile noexcept;

floating-point-type exchange(floating-point-type,
memory_order = memory_order::seq_cst) noexcept;

bool compare_exchange_weak(floating-point-type &, floating-point-type,
memory_order, memory_order) volatile noexcept;

bool compare_exchange_weak(floating-point-type &, floating-point-type,
memory_order, memory_order) noexcept;

bool compare_exchange_strong(floating-point-type &, floating-point-type,
memory_order, memory_order) volatile noexcept;
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bool compare_exchange_strong(floating-point-type &, floating-point-type,
memory_order, memory_order) noexcept;

bool compare_exchange_weak(floating-point-type &, floating-point-type,
memory_order = memory_order::seq_cst) volatile noexcept;

bool compare_exchange_weak(floating-point-type &, floating-point-type,
memory_order = memory_order::seq_cst) noexcept;

bool compare_exchange_strong(floating-point-type &, floating-point-type,
memory_order = memory_order::seq_cst) volatile noexcept;

bool compare_exchange_strong(floating-point-type &, floating-point-type,
memory_order = memory_order::seq_cst) noexcept;

floating-point-type fetch_add(floating-point-type,
memory_order = memory_order::seq_cst) volatile noexcept;

floating-point-type fetch_add(floating-point-type,
memory_order = memory_order::seq_cst) noexcept;

floating-point-type fetch_sub(floating-point-type,
memory_order = memory_order::seq_cst) volatile noexcept;

floating-point-type fetch_sub(floating-point-type,
memory_order = memory_order::seq_cst) noexcept;

floating-point-type operator+=(floating-point-type ) volatile noexcept;
floating-point-type operator+=(floating-point-type ) noexcept;
floating-point-type operator-=(floating-point-type ) volatile noexcept;
floating-point-type operator-=(floating-point-type ) noexcept;

void wait(floating-point-type, memory_order = memory_order::seq_cst) const volatile noexcept;
void wait(floating-point-type, memory_order = memory_order::seq_cst) const noexcept;
void notify_one() volatile noexcept;
void notify_one() noexcept;
void notify_all() volatile noexcept;
void notify_all() noexcept;

};
}

2 The atomic floating-point specializations are standard-layout structs. They each have a trivial destructor.
3 Descriptions are provided below only for members that differ from the primary template.
4 The following operations perform arithmetic addition and subtraction computations. The correspondence

among key, operator, and computation is specified in Table 145.

T fetch_key(T operand, memory_order order = memory_order::seq_cst) volatile noexcept;
T fetch_key(T operand, memory_order order = memory_order::seq_cst) noexcept;

5 Constraints: For the volatile overload of this function, is_always_lock_free is true.
6 Effects: Atomically replaces the value pointed to by this with the result of the computation applied

to the value pointed to by this and the given operand. Memory is affected according to the value of
order. These operations are atomic read-modify-write operations (6.9.2).

7 Returns: Atomically, the value pointed to by this immediately before the effects.
8 Remarks: If the result is not a representable value for its type (7.1) the result is unspecified, but the op-

erations otherwise have no undefined behavior. Atomic arithmetic operations on floating-point-type
should conform to the std::numeric_limits<floating-point-type > traits associated with the
floating-point type (17.3.3). The floating-point environment (28.3) for atomic arithmetic operations on
floating-point-type may be different than the calling thread’s floating-point environment.

T operator op =(T operand) volatile noexcept;
T operator op =(T operand) noexcept;

9 Constraints: For the volatile overload of this function, is_always_lock_free is true.
10 Effects: Equivalent to: return fetch_key (operand) op operand;
11 Remarks: If the result is not a representable value for its type (7.1) the result is unspecified, but the op-

erations otherwise have no undefined behavior. Atomic arithmetic operations on floating-point-type
should conform to the std::numeric_limits<floating-point-type > traits associated with the
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floating-point type (17.3.3). The floating-point environment (28.3) for atomic arithmetic operations on
floating-point-type may be different than the calling thread’s floating-point environment.

33.5.8.5 Partial specialization for pointers [atomics.types.pointer]
namespace std {

template<class T> struct atomic<T*> {
using value_type = T*;
using difference_type = ptrdiff_t;

static constexpr bool is_always_lock_free = implementation-defined ;
bool is_lock_free() const volatile noexcept;
bool is_lock_free() const noexcept;

constexpr atomic() noexcept;
constexpr atomic(T*) noexcept;
atomic(const atomic&) = delete;
atomic& operator=(const atomic&) = delete;
atomic& operator=(const atomic&) volatile = delete;

void store(T*, memory_order = memory_order::seq_cst) volatile noexcept;
void store(T*, memory_order = memory_order::seq_cst) noexcept;
T* operator=(T*) volatile noexcept;
T* operator=(T*) noexcept;
T* load(memory_order = memory_order::seq_cst) const volatile noexcept;
T* load(memory_order = memory_order::seq_cst) const noexcept;
operator T*() const volatile noexcept;
operator T*() const noexcept;

T* exchange(T*, memory_order = memory_order::seq_cst) volatile noexcept;
T* exchange(T*, memory_order = memory_order::seq_cst) noexcept;
bool compare_exchange_weak(T*&, T*, memory_order, memory_order) volatile noexcept;
bool compare_exchange_weak(T*&, T*, memory_order, memory_order) noexcept;
bool compare_exchange_strong(T*&, T*, memory_order, memory_order) volatile noexcept;
bool compare_exchange_strong(T*&, T*, memory_order, memory_order) noexcept;
bool compare_exchange_weak(T*&, T*,

memory_order = memory_order::seq_cst) volatile noexcept;
bool compare_exchange_weak(T*&, T*,

memory_order = memory_order::seq_cst) noexcept;
bool compare_exchange_strong(T*&, T*,

memory_order = memory_order::seq_cst) volatile noexcept;
bool compare_exchange_strong(T*&, T*,

memory_order = memory_order::seq_cst) noexcept;

T* fetch_add(ptrdiff_t, memory_order = memory_order::seq_cst) volatile noexcept;
T* fetch_add(ptrdiff_t, memory_order = memory_order::seq_cst) noexcept;
T* fetch_sub(ptrdiff_t, memory_order = memory_order::seq_cst) volatile noexcept;
T* fetch_sub(ptrdiff_t, memory_order = memory_order::seq_cst) noexcept;

T* operator++(int) volatile noexcept;
T* operator++(int) noexcept;
T* operator--(int) volatile noexcept;
T* operator--(int) noexcept;
T* operator++() volatile noexcept;
T* operator++() noexcept;
T* operator--() volatile noexcept;
T* operator--() noexcept;
T* operator+=(ptrdiff_t) volatile noexcept;
T* operator+=(ptrdiff_t) noexcept;
T* operator-=(ptrdiff_t) volatile noexcept;
T* operator-=(ptrdiff_t) noexcept;

void wait(T*, memory_order = memory_order::seq_cst) const volatile noexcept;
void wait(T*, memory_order = memory_order::seq_cst) const noexcept;
void notify_one() volatile noexcept;

§ 33.5.8.5 1825



© ISO/IEC N4950

void notify_one() noexcept;
void notify_all() volatile noexcept;
void notify_all() noexcept;

};
}

1 There is a partial specialization of the atomic class template for pointers. Specializations of this partial
specialization are standard-layout structs. They each have a trivial destructor.

2 Descriptions are provided below only for members that differ from the primary template.
3 The following operations perform pointer arithmetic. The correspondence among key, operator, and compu-

tation is specified in Table 146.

Table 146: Atomic pointer computations [tab:atomic.types.pointer.comp]

key Op Computation key Op Computation
add + addition sub - subtraction

T* fetch_key(ptrdiff_t operand, memory_order order = memory_order::seq_cst) volatile noexcept;
T* fetch_key(ptrdiff_t operand, memory_order order = memory_order::seq_cst) noexcept;

4 Constraints: For the volatile overload of this function, is_always_lock_free is true.
5 Mandates: T is a complete object type.

[Note 1 : Pointer arithmetic on void* or function pointers is ill-formed. — end note ]
6 Effects: Atomically replaces the value pointed to by this with the result of the computation applied

to the value pointed to by this and the given operand. Memory is affected according to the value of
order. These operations are atomic read-modify-write operations (6.9.2).

7 Returns: Atomically, the value pointed to by this immediately before the effects.
8 Remarks: The result may be an undefined address, but the operations otherwise have no undefined

behavior.

T* operator op =(ptrdiff_t operand) volatile noexcept;
T* operator op =(ptrdiff_t operand) noexcept;

9 Constraints: For the volatile overload of this function, is_always_lock_free is true.
10 Effects: Equivalent to: return fetch_key (operand) op operand;

33.5.8.6 Member operators common to integers and pointers to objects[atomics.types.memop]

value_type operator++(int) volatile noexcept;
value_type operator++(int) noexcept;

1 Constraints: For the volatile overload of this function, is_always_lock_free is true.
2 Effects: Equivalent to: return fetch_add(1);

value_type operator--(int) volatile noexcept;
value_type operator--(int) noexcept;

3 Constraints: For the volatile overload of this function, is_always_lock_free is true.
4 Effects: Equivalent to: return fetch_sub(1);

value_type operator++() volatile noexcept;
value_type operator++() noexcept;

5 Constraints: For the volatile overload of this function, is_always_lock_free is true.
6 Effects: Equivalent to: return fetch_add(1) + 1;

value_type operator--() volatile noexcept;
value_type operator--() noexcept;

7 Constraints: For the volatile overload of this function, is_always_lock_free is true.
8 Effects: Equivalent to: return fetch_sub(1) - 1;
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33.5.8.7 Partial specializations for smart pointers [util.smartptr.atomic]
33.5.8.7.1 General [util.smartptr.atomic.general]

1 The library provides partial specializations of the atomic template for shared-ownership smart pointers
(20.3.2).
[Note 1 : The partial specializations are declared in header <memory> (20.2.2). — end note ]

The behavior of all operations is as specified in 33.5.8, unless specified otherwise. The template parameter T
of these partial specializations may be an incomplete type.

2 All changes to an atomic smart pointer in 33.5.8.7, and all associated use_count increments, are guaranteed
to be performed atomically. Associated use_count decrements are sequenced after the atomic operation, but
are not required to be part of it. Any associated deletion and deallocation are sequenced after the atomic
update step and are not part of the atomic operation.
[Note 2 : If the atomic operation uses locks, locks acquired by the implementation will be held when any use_count
adjustments are performed, and will not be held when any destruction or deallocation resulting from this is performed.

— end note ]
3 [Example 1 :

template<typename T> class atomic_list {
struct node {

T t;
shared_ptr<node> next;

};
atomic<shared_ptr<node>> head;

public:
shared_ptr<node> find(T t) const {

auto p = head.load();
while (p && p->t != t)

p = p->next;

return p;
}

void push_front(T t) {
auto p = make_shared<node>();
p->t = t;
p->next = head;
while (!head.compare_exchange_weak(p->next, p)) {}

}
};

— end example ]

33.5.8.7.2 Partial specialization for shared_ptr [util.smartptr.atomic.shared]
namespace std {

template<class T> struct atomic<shared_ptr<T>> {
using value_type = shared_ptr<T>;

static constexpr bool is_always_lock_free = implementation-defined ;
bool is_lock_free() const noexcept;

constexpr atomic() noexcept;
constexpr atomic(nullptr_t) noexcept : atomic() { }
atomic(shared_ptr<T> desired) noexcept;
atomic(const atomic&) = delete;
void operator=(const atomic&) = delete;

shared_ptr<T> load(memory_order order = memory_order::seq_cst) const noexcept;
operator shared_ptr<T>() const noexcept;
void store(shared_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept;
void operator=(shared_ptr<T> desired) noexcept;
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shared_ptr<T> exchange(shared_ptr<T> desired,
memory_order order = memory_order::seq_cst) noexcept;

bool compare_exchange_weak(shared_ptr<T>& expected, shared_ptr<T> desired,
memory_order success, memory_order failure) noexcept;

bool compare_exchange_strong(shared_ptr<T>& expected, shared_ptr<T> desired,
memory_order success, memory_order failure) noexcept;

bool compare_exchange_weak(shared_ptr<T>& expected, shared_ptr<T> desired,
memory_order order = memory_order::seq_cst) noexcept;

bool compare_exchange_strong(shared_ptr<T>& expected, shared_ptr<T> desired,
memory_order order = memory_order::seq_cst) noexcept;

void wait(shared_ptr<T> old, memory_order order = memory_order::seq_cst) const noexcept;
void notify_one() noexcept;
void notify_all() noexcept;

private:
shared_ptr<T> p; // exposition only

};
}

constexpr atomic() noexcept;

1 Effects: Initializes p{}.

atomic(shared_ptr<T> desired) noexcept;

2 Effects: Initializes the object with the value desired. Initialization is not an atomic operation (6.9.2).
[Note 1 : It is possible to have an access to an atomic object A race with its construction, for example, by
communicating the address of the just-constructed object A to another thread via memory_order::relaxed
operations on a suitable atomic pointer variable, and then immediately accessing A in the receiving thread. This
results in undefined behavior. — end note ]

void store(shared_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept;

3 Preconditions: order is neither memory_order::consume, memory_order::acquire, nor memory_-
order::acq_rel.

4 Effects: Atomically replaces the value pointed to by this with the value of desired as if by
p.swap(desired). Memory is affected according to the value of order.

void operator=(shared_ptr<T> desired) noexcept;

5 Effects: Equivalent to store(desired).

shared_ptr<T> load(memory_order order = memory_order::seq_cst) const noexcept;

6 Preconditions: order is neither memory_order::release nor memory_order::acq_rel.
7 Effects: Memory is affected according to the value of order.
8 Returns: Atomically returns p.

operator shared_ptr<T>() const noexcept;

9 Effects: Equivalent to: return load();

shared_ptr<T> exchange(shared_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept;

10 Effects: Atomically replaces p with desired as if by p.swap(desired). Memory is affected according
to the value of order. This is an atomic read-modify-write operation (6.9.2.2).

11 Returns: Atomically returns the value of p immediately before the effects.

bool compare_exchange_weak(shared_ptr<T>& expected, shared_ptr<T> desired,
memory_order success, memory_order failure) noexcept;

bool compare_exchange_strong(shared_ptr<T>& expected, shared_ptr<T> desired,
memory_order success, memory_order failure) noexcept;

12 Preconditions: failure is neither memory_order::release nor memory_order::acq_rel.

§ 33.5.8.7.2 1828



© ISO/IEC N4950

13 Effects: If p is equivalent to expected, assigns desired to p and has synchronization semantics
corresponding to the value of success, otherwise assigns p to expected and has synchronization
semantics corresponding to the value of failure.

14 Returns: true if p was equivalent to expected, false otherwise.
15 Remarks: Two shared_ptr objects are equivalent if they store the same pointer value and either share

ownership or are both empty. The weak form may fail spuriously. See 33.5.8.2.
16 If the operation returns true, expected is not accessed after the atomic update and the operation

is an atomic read-modify-write operation (6.9.2) on the memory pointed to by this. Otherwise, the
operation is an atomic load operation on that memory, and expected is updated with the existing value
read from the atomic object in the attempted atomic update. The use_count update corresponding to
the write to expected is part of the atomic operation. The write to expected itself is not required to
be part of the atomic operation.

bool compare_exchange_weak(shared_ptr<T>& expected, shared_ptr<T> desired,
memory_order order = memory_order::seq_cst) noexcept;

17 Effects: Equivalent to:
return compare_exchange_weak(expected, desired, order, fail_order);

where fail_order is the same as order except that a value of memory_order::acq_rel shall be replaced
by the value memory_order::acquire and a value of memory_order::release shall be replaced by
the value memory_order::relaxed.

bool compare_exchange_strong(shared_ptr<T>& expected, shared_ptr<T> desired,
memory_order order = memory_order::seq_cst) noexcept;

18 Effects: Equivalent to:
return compare_exchange_strong(expected, desired, order, fail_order);

where fail_order is the same as order except that a value of memory_order::acq_rel shall be replaced
by the value memory_order::acquire and a value of memory_order::release shall be replaced by
the value memory_order::relaxed.

void wait(shared_ptr<T> old, memory_order order = memory_order::seq_cst) const noexcept;

19 Preconditions: order is neither memory_order::release nor memory_order::acq_rel.
20 Effects: Repeatedly performs the following steps, in order:

—(20.1) Evaluates load(order) and compares it to old.
—(20.2) If the two are not equivalent, returns.
—(20.3) Blocks until it is unblocked by an atomic notifying operation or is unblocked spuriously.

21 Remarks: Two shared_ptr objects are equivalent if they store the same pointer and either share
ownership or are both empty. This function is an atomic waiting operation (33.5.6).

void notify_one() noexcept;

22 Effects: Unblocks the execution of at least one atomic waiting operation that is eligible to be unblocked
(33.5.6) by this call, if any such atomic waiting operations exist.

23 Remarks: This function is an atomic notifying operation (33.5.6).

void notify_all() noexcept;

24 Effects: Unblocks the execution of all atomic waiting operations that are eligible to be unblocked (33.5.6)
by this call.

25 Remarks: This function is an atomic notifying operation (33.5.6).

33.5.8.7.3 Partial specialization for weak_ptr [util.smartptr.atomic.weak]
namespace std {

template<class T> struct atomic<weak_ptr<T>> {
using value_type = weak_ptr<T>;
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static constexpr bool is_always_lock_free = implementation-defined ;
bool is_lock_free() const noexcept;

constexpr atomic() noexcept;
atomic(weak_ptr<T> desired) noexcept;
atomic(const atomic&) = delete;
void operator=(const atomic&) = delete;

weak_ptr<T> load(memory_order order = memory_order::seq_cst) const noexcept;
operator weak_ptr<T>() const noexcept;
void store(weak_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept;
void operator=(weak_ptr<T> desired) noexcept;

weak_ptr<T> exchange(weak_ptr<T> desired,
memory_order order = memory_order::seq_cst) noexcept;

bool compare_exchange_weak(weak_ptr<T>& expected, weak_ptr<T> desired,
memory_order success, memory_order failure) noexcept;

bool compare_exchange_strong(weak_ptr<T>& expected, weak_ptr<T> desired,
memory_order success, memory_order failure) noexcept;

bool compare_exchange_weak(weak_ptr<T>& expected, weak_ptr<T> desired,
memory_order order = memory_order::seq_cst) noexcept;

bool compare_exchange_strong(weak_ptr<T>& expected, weak_ptr<T> desired,
memory_order order = memory_order::seq_cst) noexcept;

void wait(weak_ptr<T> old, memory_order order = memory_order::seq_cst) const noexcept;
void notify_one() noexcept;
void notify_all() noexcept;

private:
weak_ptr<T> p; // exposition only

};
}

constexpr atomic() noexcept;

1 Effects: Initializes p{}.

atomic(weak_ptr<T> desired) noexcept;

2 Effects: Initializes the object with the value desired. Initialization is not an atomic operation (6.9.2).
[Note 1 : It is possible to have an access to an atomic object A race with its construction, for example, by
communicating the address of the just-constructed object A to another thread via memory_order::relaxed
operations on a suitable atomic pointer variable, and then immediately accessing A in the receiving thread. This
results in undefined behavior. — end note ]

void store(weak_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept;

3 Preconditions: order is neither memory_order::consume, memory_order::acquire, nor memory_-
order::acq_rel.

4 Effects: Atomically replaces the value pointed to by this with the value of desired as if by
p.swap(desired). Memory is affected according to the value of order.

void operator=(weak_ptr<T> desired) noexcept;

5 Effects: Equivalent to store(desired).

weak_ptr<T> load(memory_order order = memory_order::seq_cst) const noexcept;

6 Preconditions: order is neither memory_order::release nor memory_order::acq_rel.
7 Effects: Memory is affected according to the value of order.
8 Returns: Atomically returns p.

operator weak_ptr<T>() const noexcept;

9 Effects: Equivalent to: return load();
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weak_ptr<T> exchange(weak_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept;

10 Effects: Atomically replaces p with desired as if by p.swap(desired). Memory is affected according
to the value of order. This is an atomic read-modify-write operation (6.9.2.2).

11 Returns: Atomically returns the value of p immediately before the effects.

bool compare_exchange_weak(weak_ptr<T>& expected, weak_ptr<T> desired,
memory_order success, memory_order failure) noexcept;

bool compare_exchange_strong(weak_ptr<T>& expected, weak_ptr<T> desired,
memory_order success, memory_order failure) noexcept;

12 Preconditions: failure is neither memory_order::release nor memory_order::acq_rel.
13 Effects: If p is equivalent to expected, assigns desired to p and has synchronization semantics

corresponding to the value of success, otherwise assigns p to expected and has synchronization
semantics corresponding to the value of failure.

14 Returns: true if p was equivalent to expected, false otherwise.
15 Remarks: Two weak_ptr objects are equivalent if they store the same pointer value and either share

ownership or are both empty. The weak form may fail spuriously. See 33.5.8.2.
16 If the operation returns true, expected is not accessed after the atomic update and the operation

is an atomic read-modify-write operation (6.9.2) on the memory pointed to by this. Otherwise, the
operation is an atomic load operation on that memory, and expected is updated with the existing value
read from the atomic object in the attempted atomic update. The use_count update corresponding to
the write to expected is part of the atomic operation. The write to expected itself is not required to
be part of the atomic operation.

bool compare_exchange_weak(weak_ptr<T>& expected, weak_ptr<T> desired,
memory_order order = memory_order::seq_cst) noexcept;

17 Effects: Equivalent to:
return compare_exchange_weak(expected, desired, order, fail_order);

where fail_order is the same as order except that a value of memory_order::acq_rel shall be replaced
by the value memory_order::acquire and a value of memory_order::release shall be replaced by
the value memory_order::relaxed.

bool compare_exchange_strong(weak_ptr<T>& expected, weak_ptr<T> desired,
memory_order order = memory_order::seq_cst) noexcept;

18 Effects: Equivalent to:
return compare_exchange_strong(expected, desired, order, fail_order);

where fail_order is the same as order except that a value of memory_order::acq_rel shall be replaced
by the value memory_order::acquire and a value of memory_order::release shall be replaced by
the value memory_order::relaxed.

void wait(weak_ptr<T> old, memory_order order = memory_order::seq_cst) const noexcept;

19 Preconditions: order is neither memory_order::release nor memory_order::acq_rel.
20 Effects: Repeatedly performs the following steps, in order:

—(20.1) Evaluates load(order) and compares it to old.
—(20.2) If the two are not equivalent, returns.
—(20.3) Blocks until it is unblocked by an atomic notifying operation or is unblocked spuriously.

21 Remarks: Two weak_ptr objects are equivalent if they store the same pointer and either share ownership
or are both empty. This function is an atomic waiting operation (33.5.6).

void notify_one() noexcept;

22 Effects: Unblocks the execution of at least one atomic waiting operation that is eligible to be unblocked
(33.5.6) by this call, if any such atomic waiting operations exist.

23 Remarks: This function is an atomic notifying operation (33.5.6).
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void notify_all() noexcept;

24 Effects: Unblocks the execution of all atomic waiting operations that are eligible to be unblocked (33.5.6)
by this call.

25 Remarks: This function is an atomic notifying operation (33.5.6).

33.5.9 Non-member functions [atomics.nonmembers]
1 A non-member function template whose name matches the pattern atomic_f or the pattern atomic_f _-

explicit invokes the member function f , with the value of the first parameter as the object expression and
the values of the remaining parameters (if any) as the arguments of the member function call, in order. An
argument for a parameter of type atomic<T>::value_type* is dereferenced when passed to the member
function call. If no such member function exists, the program is ill-formed.

2 [Note 1 : The non-member functions enable programmers to write code that can be compiled as either C or C++, for
example in a shared header file. — end note ]

33.5.10 Flag type and operations [atomics.flag]
namespace std {

struct atomic_flag {
constexpr atomic_flag() noexcept;
atomic_flag(const atomic_flag&) = delete;
atomic_flag& operator=(const atomic_flag&) = delete;
atomic_flag& operator=(const atomic_flag&) volatile = delete;

bool test(memory_order = memory_order::seq_cst) const volatile noexcept;
bool test(memory_order = memory_order::seq_cst) const noexcept;
bool test_and_set(memory_order = memory_order::seq_cst) volatile noexcept;
bool test_and_set(memory_order = memory_order::seq_cst) noexcept;
void clear(memory_order = memory_order::seq_cst) volatile noexcept;
void clear(memory_order = memory_order::seq_cst) noexcept;

void wait(bool, memory_order = memory_order::seq_cst) const volatile noexcept;
void wait(bool, memory_order = memory_order::seq_cst) const noexcept;
void notify_one() volatile noexcept;
void notify_one() noexcept;
void notify_all() volatile noexcept;
void notify_all() noexcept;

};
}

1 The atomic_flag type provides the classic test-and-set functionality. It has two states, set and clear.
2 Operations on an object of type atomic_flag shall be lock-free. The operations should also be address-free.
3 The atomic_flag type is a standard-layout struct. It has a trivial destructor.

constexpr atomic_flag::atomic_flag() noexcept;

4 Effects: Initializes *this to the clear state.

bool atomic_flag_test(const volatile atomic_flag* object) noexcept;
bool atomic_flag_test(const atomic_flag* object) noexcept;
bool atomic_flag_test_explicit(const volatile atomic_flag* object,

memory_order order) noexcept;
bool atomic_flag_test_explicit(const atomic_flag* object,

memory_order order) noexcept;
bool atomic_flag::test(memory_order order = memory_order::seq_cst) const volatile noexcept;
bool atomic_flag::test(memory_order order = memory_order::seq_cst) const noexcept;

5 For atomic_flag_test, let order be memory_order::seq_cst.
6 Preconditions: order is neither memory_order::release nor memory_order::acq_rel.
7 Effects: Memory is affected according to the value of order.
8 Returns: Atomically returns the value pointed to by object or this.
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bool atomic_flag_test_and_set(volatile atomic_flag* object) noexcept;
bool atomic_flag_test_and_set(atomic_flag* object) noexcept;
bool atomic_flag_test_and_set_explicit(volatile atomic_flag* object, memory_order order) noexcept;
bool atomic_flag_test_and_set_explicit(atomic_flag* object, memory_order order) noexcept;
bool atomic_flag::test_and_set(memory_order order = memory_order::seq_cst) volatile noexcept;
bool atomic_flag::test_and_set(memory_order order = memory_order::seq_cst) noexcept;

9 Effects: Atomically sets the value pointed to by object or by this to true. Memory is affected
according to the value of order. These operations are atomic read-modify-write operations (6.9.2).

10 Returns: Atomically, the value of the object immediately before the effects.

void atomic_flag_clear(volatile atomic_flag* object) noexcept;
void atomic_flag_clear(atomic_flag* object) noexcept;
void atomic_flag_clear_explicit(volatile atomic_flag* object, memory_order order) noexcept;
void atomic_flag_clear_explicit(atomic_flag* object, memory_order order) noexcept;
void atomic_flag::clear(memory_order order = memory_order::seq_cst) volatile noexcept;
void atomic_flag::clear(memory_order order = memory_order::seq_cst) noexcept;

11 Preconditions: The order argument is neither memory_order::consume, memory_order::acquire,
nor memory_order::acq_rel.

12 Effects: Atomically sets the value pointed to by object or by this to false. Memory is affected
according to the value of order.

void atomic_flag_wait(const volatile atomic_flag* object, bool old) noexcept;
void atomic_flag_wait(const atomic_flag* object, bool old) noexcept;
void atomic_flag_wait_explicit(const volatile atomic_flag* object,

bool old, memory_order order) noexcept;
void atomic_flag_wait_explicit(const atomic_flag* object,

bool old, memory_order order) noexcept;
void atomic_flag::wait(bool old, memory_order order =

memory_order::seq_cst) const volatile noexcept;
void atomic_flag::wait(bool old, memory_order order =

memory_order::seq_cst) const noexcept;

13 For atomic_flag_wait, let order be memory_order::seq_cst. Let flag be object for the non-
member functions and this for the member functions.

14 Preconditions: order is neither memory_order::release nor memory_order::acq_rel.
15 Effects: Repeatedly performs the following steps, in order:

—(15.1) Evaluates flag->test(order) != old.
—(15.2) If the result of that evaluation is true, returns.
—(15.3) Blocks until it is unblocked by an atomic notifying operation or is unblocked spuriously.

16 Remarks: This function is an atomic waiting operation (33.5.6).

void atomic_flag_notify_one(volatile atomic_flag* object) noexcept;
void atomic_flag_notify_one(atomic_flag* object) noexcept;
void atomic_flag::notify_one() volatile noexcept;
void atomic_flag::notify_one() noexcept;

17 Effects: Unblocks the execution of at least one atomic waiting operation that is eligible to be unblocked
(33.5.6) by this call, if any such atomic waiting operations exist.

18 Remarks: This function is an atomic notifying operation (33.5.6).

void atomic_flag_notify_all(volatile atomic_flag* object) noexcept;
void atomic_flag_notify_all(atomic_flag* object) noexcept;
void atomic_flag::notify_all() volatile noexcept;
void atomic_flag::notify_all() noexcept;

19 Effects: Unblocks the execution of all atomic waiting operations that are eligible to be unblocked (33.5.6)
by this call.

20 Remarks: This function is an atomic notifying operation (33.5.6).
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#define ATOMIC_FLAG_INIT see below

21 Remarks: The macro ATOMIC_FLAG_INIT is defined in such a way that it can be used to initialize an
object of type atomic_flag to the clear state. The macro can be used in the form:

atomic_flag guard = ATOMIC_FLAG_INIT;

It is unspecified whether the macro can be used in other initialization contexts. For a complete
static-duration object, that initialization shall be static.

33.5.11 Fences [atomics.fences]
1 This subclause introduces synchronization primitives called fences. Fences can have acquire semantics, release

semantics, or both. A fence with acquire semantics is called an acquire fence. A fence with release semantics
is called a release fence.

2 A release fence A synchronizes with an acquire fence B if there exist atomic operations X and Y , both
operating on some atomic object M , such that A is sequenced before X, X modifies M , Y is sequenced
before B, and Y reads the value written by X or a value written by any side effect in the hypothetical release
sequence X would head if it were a release operation.

3 A release fence A synchronizes with an atomic operation B that performs an acquire operation on an atomic
object M if there exists an atomic operation X such that A is sequenced before X, X modifies M , and B
reads the value written by X or a value written by any side effect in the hypothetical release sequence X
would head if it were a release operation.

4 An atomic operation A that is a release operation on an atomic object M synchronizes with an acquire fence
B if there exists some atomic operation X on M such that X is sequenced before B and reads the value
written by A or a value written by any side effect in the release sequence headed by A.

extern "C" void atomic_thread_fence(memory_order order) noexcept;

5 Effects: Depending on the value of order, this operation:
—(5.1) has no effects, if order == memory_order::relaxed;
—(5.2) is an acquire fence, if order == memory_order::acquire or order == memory_order::consume;
—(5.3) is a release fence, if order == memory_order::release;
—(5.4) is both an acquire fence and a release fence, if order == memory_order::acq_rel;
—(5.5) is a sequentially consistent acquire and release fence, if order == memory_order::seq_cst.

extern "C" void atomic_signal_fence(memory_order order) noexcept;

6 Effects: Equivalent to atomic_thread_fence(order), except that the resulting ordering constraints
are established only between a thread and a signal handler executed in the same thread.

7 [Note 1 : atomic_signal_fence can be used to specify the order in which actions performed by the thread
become visible to the signal handler. Compiler optimizations and reorderings of loads and stores are inhibited in
the same way as with atomic_thread_fence, but the hardware fence instructions that atomic_thread_fence
would have inserted are not emitted. — end note ]

33.5.12 C compatibility [stdatomic.h.syn]
The header <stdatomic.h> provides the following definitions:

template<class T>
using std-atomic = std::atomic<T>; // exposition only

#define _Atomic(T) std-atomic <T>

#define ATOMIC_BOOL_LOCK_FREE see below
#define ATOMIC_CHAR_LOCK_FREE see below
#define ATOMIC_CHAR16_T_LOCK_FREE see below
#define ATOMIC_CHAR32_T_LOCK_FREE see below
#define ATOMIC_WCHAR_T_LOCK_FREE see below
#define ATOMIC_SHORT_LOCK_FREE see below
#define ATOMIC_INT_LOCK_FREE see below
#define ATOMIC_LONG_LOCK_FREE see below
#define ATOMIC_LLONG_LOCK_FREE see below
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#define ATOMIC_POINTER_LOCK_FREE see below

using std::memory_order; // see below
using std::memory_order_relaxed; // see below
using std::memory_order_consume; // see below
using std::memory_order_acquire; // see below
using std::memory_order_release; // see below
using std::memory_order_acq_rel; // see below
using std::memory_order_seq_cst; // see below

using std::atomic_flag; // see below

using std::atomic_bool; // see below
using std::atomic_char; // see below
using std::atomic_schar; // see below
using std::atomic_uchar; // see below
using std::atomic_short; // see below
using std::atomic_ushort; // see below
using std::atomic_int; // see below
using std::atomic_uint; // see below
using std::atomic_long; // see below
using std::atomic_ulong; // see below
using std::atomic_llong; // see below
using std::atomic_ullong; // see below
using std::atomic_char8_t; // see below
using std::atomic_char16_t; // see below
using std::atomic_char32_t; // see below
using std::atomic_wchar_t; // see below
using std::atomic_int8_t; // see below
using std::atomic_uint8_t; // see below
using std::atomic_int16_t; // see below
using std::atomic_uint16_t; // see below
using std::atomic_int32_t; // see below
using std::atomic_uint32_t; // see below
using std::atomic_int64_t; // see below
using std::atomic_uint64_t; // see below
using std::atomic_int_least8_t; // see below
using std::atomic_uint_least8_t; // see below
using std::atomic_int_least16_t; // see below
using std::atomic_uint_least16_t; // see below
using std::atomic_int_least32_t; // see below
using std::atomic_uint_least32_t; // see below
using std::atomic_int_least64_t; // see below
using std::atomic_uint_least64_t; // see below
using std::atomic_int_fast8_t; // see below
using std::atomic_uint_fast8_t; // see below
using std::atomic_int_fast16_t; // see below
using std::atomic_uint_fast16_t; // see below
using std::atomic_int_fast32_t; // see below
using std::atomic_uint_fast32_t; // see below
using std::atomic_int_fast64_t; // see below
using std::atomic_uint_fast64_t; // see below
using std::atomic_intptr_t; // see below
using std::atomic_uintptr_t; // see below
using std::atomic_size_t; // see below
using std::atomic_ptrdiff_t; // see below
using std::atomic_intmax_t; // see below
using std::atomic_uintmax_t; // see below

using std::atomic_is_lock_free; // see below
using std::atomic_load; // see below
using std::atomic_load_explicit; // see below
using std::atomic_store; // see below
using std::atomic_store_explicit; // see below
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using std::atomic_exchange; // see below
using std::atomic_exchange_explicit; // see below
using std::atomic_compare_exchange_strong; // see below
using std::atomic_compare_exchange_strong_explicit; // see below
using std::atomic_compare_exchange_weak; // see below
using std::atomic_compare_exchange_weak_explicit; // see below
using std::atomic_fetch_add; // see below
using std::atomic_fetch_add_explicit; // see below
using std::atomic_fetch_sub; // see below
using std::atomic_fetch_sub_explicit; // see below
using std::atomic_fetch_and; // see below
using std::atomic_fetch_and_explicit; // see below
using std::atomic_fetch_or; // see below
using std::atomic_fetch_or_explicit; // see below
using std::atomic_fetch_xor; // see below
using std::atomic_fetch_xor_explicit; // see below
using std::atomic_flag_test_and_set; // see below
using std::atomic_flag_test_and_set_explicit; // see below
using std::atomic_flag_clear; // see below
using std::atomic_flag_clear_explicit; // see below
#define ATOMIC_FLAG_INIT see below

using std::atomic_thread_fence; // see below
using std::atomic_signal_fence; // see below

1 Each using-declaration for some name A in the synopsis above makes available the same entity as std::A
declared in <atomic> (33.5.2). Each macro listed above other than _Atomic(T) is defined as in <atomic>. It
is unspecified whether <stdatomic.h> makes available any declarations in namespace std.

2 Each of the using-declarations for intN_t, uintN_t, intptr_t, and uintptr_t listed above is defined if and
only if the implementation defines the corresponding typedef-name in 33.5.2.

3 Neither the _Atomic macro, nor any of the non-macro global namespace declarations, are provided by any
C++ standard library header other than <stdatomic.h>.

4 Recommended practice: Implementations should ensure that C and C++ representations of atomic objects are
compatible, so that the same object can be accessed as both an _Atomic(T) from C code and an atomic<T>
from C++ code. The representations should be the same, and the mechanisms used to ensure atomicity and
memory ordering should be compatible.

33.6 Mutual exclusion [thread.mutex]
33.6.1 General [thread.mutex.general]

1 Subclause 33.6 provides mechanisms for mutual exclusion: mutexes, locks, and call once. These mechanisms
ease the production of race-free programs (6.9.2).

33.6.2 Header <mutex> synopsis [mutex.syn]
namespace std {

// 33.6.4.2.2, class mutex
class mutex;
// 33.6.4.2.3, class recursive_mutex
class recursive_mutex;
// 33.6.4.3.2 class timed_mutex
class timed_mutex;
// 33.6.4.3.3, class recursive_timed_mutex
class recursive_timed_mutex;

struct defer_lock_t { explicit defer_lock_t() = default; };
struct try_to_lock_t { explicit try_to_lock_t() = default; };
struct adopt_lock_t { explicit adopt_lock_t() = default; };

inline constexpr defer_lock_t defer_lock { };
inline constexpr try_to_lock_t try_to_lock { };
inline constexpr adopt_lock_t adopt_lock { };
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// 33.6.5, locks
template<class Mutex> class lock_guard;
template<class... MutexTypes> class scoped_lock;
template<class Mutex> class unique_lock;

template<class Mutex>
void swap(unique_lock<Mutex>& x, unique_lock<Mutex>& y) noexcept;

// 33.6.6, generic locking algorithms
template<class L1, class L2, class... L3> int try_lock(L1&, L2&, L3&...);
template<class L1, class L2, class... L3> void lock(L1&, L2&, L3&...);

struct once_flag;

template<class Callable, class... Args>
void call_once(once_flag& flag, Callable&& func, Args&&... args);

}

33.6.3 Header <shared_mutex> synopsis [shared.mutex.syn]
namespace std {

// 33.6.4.4.2, class shared_mutex
class shared_mutex;
// 33.6.4.5.2, class shared_timed_mutex
class shared_timed_mutex;
// 33.6.5.5, class template shared_lock
template<class Mutex> class shared_lock;
template<class Mutex>

void swap(shared_lock<Mutex>& x, shared_lock<Mutex>& y) noexcept;
}

33.6.4 Mutex requirements [thread.mutex.requirements]
33.6.4.1 In general [thread.mutex.requirements.general]

1 A mutex object facilitates protection against data races and allows safe synchronization of data between
execution agents (33.2.5). An execution agent owns a mutex from the time it successfully calls one of the lock
functions until it calls unlock. Mutexes can be either recursive or non-recursive, and can grant simultaneous
ownership to one or many execution agents. Both recursive and non-recursive mutexes are supplied.

33.6.4.2 Mutex types [thread.mutex.requirements.mutex]
33.6.4.2.1 General [thread.mutex.requirements.mutex.general]

1 The mutex types are the standard library types mutex, recursive_mutex, timed_mutex, recursive_timed_-
mutex, shared_mutex, and shared_timed_mutex. They meet the requirements set out in 33.6.4.2. In this
description, m denotes an object of a mutex type.
[Note 1 : The mutex types meet the Cpp17Lockable requirements (33.2.5.3). — end note ]

2 The mutex types meet Cpp17DefaultConstructible and Cpp17Destructible. If initialization of an object of a
mutex type fails, an exception of type system_error is thrown. The mutex types are neither copyable nor
movable.

3 The error conditions for error codes, if any, reported by member functions of the mutex types are as follows:
—(3.1) resource_unavailable_try_again — if any native handle type manipulated is not available.
—(3.2) operation_not_permitted — if the thread does not have the privilege to perform the operation.
—(3.3) invalid_argument — if any native handle type manipulated as part of mutex construction is incorrect.

4 The implementation provides lock and unlock operations, as described below. For purposes of determining
the existence of a data race, these behave as atomic operations (6.9.2). The lock and unlock operations on a
single mutex appears to occur in a single total order.
[Note 2 : This can be viewed as the modification order (6.9.2) of the mutex. — end note ]
[Note 3 : Construction and destruction of an object of a mutex type need not be thread-safe; other synchronization
can be used to ensure that mutex objects are initialized and visible to other threads. — end note ]
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5 The expression m.lock() is well-formed and has the following semantics:
6 Preconditions: If m is of type mutex, timed_mutex, shared_mutex, or shared_timed_mutex, the calling

thread does not own the mutex.
7 Effects: Blocks the calling thread until ownership of the mutex can be obtained for the calling thread.
8 Synchronization: Prior unlock() operations on the same object synchronize with (6.9.2) this operation.
9 Postconditions: The calling thread owns the mutex.

10 Return type: void.
11 Throws: system_error when an exception is required (33.2.2).
12 Error conditions:

—(12.1) operation_not_permitted — if the thread does not have the privilege to perform the operation.
—(12.2) resource_deadlock_would_occur — if the implementation detects that a deadlock would occur.

13 The expression m.try_lock() is well-formed and has the following semantics:
14 Preconditions: If m is of type mutex, timed_mutex, shared_mutex, or shared_timed_mutex, the calling

thread does not own the mutex.
15 Effects: Attempts to obtain ownership of the mutex for the calling thread without blocking. If ownership

is not obtained, there is no effect and try_lock() immediately returns. An implementation may fail to
obtain the lock even if it is not held by any other thread.
[Note 4 : This spurious failure is normally uncommon, but allows interesting implementations based on a simple
compare and exchange (33.5). — end note ]

An implementation should ensure that try_lock() does not consistently return false in the absence
of contending mutex acquisitions.

16 Synchronization: If try_lock() returns true, prior unlock() operations on the same object synchronize
with (6.9.2) this operation.
[Note 5 : Since lock() does not synchronize with a failed subsequent try_lock(), the visibility rules are weak
enough that little would be known about the state after a failure, even in the absence of spurious failures.

— end note ]
17 Return type: bool.
18 Returns: true if ownership was obtained, otherwise false.
19 Throws: Nothing.
20 The expression m.unlock() is well-formed and has the following semantics:
21 Preconditions: The calling thread owns the mutex.
22 Effects: Releases the calling thread’s ownership of the mutex.
23 Return type: void.
24 Synchronization: This operation synchronizes with (6.9.2) subsequent lock operations that obtain

ownership on the same object.
25 Throws: Nothing.

33.6.4.2.2 Class mutex [thread.mutex.class]
namespace std {

class mutex {
public:

constexpr mutex() noexcept;
~mutex();

mutex(const mutex&) = delete;
mutex& operator=(const mutex&) = delete;

void lock();
bool try_lock();
void unlock();
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using native_handle_type = implementation-defined; // see 33.2.3
native_handle_type native_handle(); // see 33.2.3

};
}

1 The class mutex provides a non-recursive mutex with exclusive ownership semantics. If one thread owns a
mutex object, attempts by another thread to acquire ownership of that object will fail (for try_lock()) or
block (for lock()) until the owning thread has released ownership with a call to unlock().

2 [Note 1 : After a thread A has called unlock(), releasing a mutex, it is possible for another thread B to lock the same
mutex, observe that it is no longer in use, unlock it, and destroy it, before thread A appears to have returned from its
unlock call. Implementations are required to handle such scenarios correctly, as long as thread A doesn’t access the
mutex after the unlock call returns. These cases typically occur when a reference-counted object contains a mutex
that is used to protect the reference count. — end note ]

3 The class mutex meets all of the mutex requirements (33.6.4). It is a standard-layout class (11.2).
4 [Note 2 : A program can deadlock if the thread that owns a mutex object calls lock() on that object. If the

implementation can detect the deadlock, a resource_deadlock_would_occur error condition might be observed.
— end note ]

5 The behavior of a program is undefined if it destroys a mutex object owned by any thread or a thread
terminates while owning a mutex object.

33.6.4.2.3 Class recursive_mutex [thread.mutex.recursive]
namespace std {

class recursive_mutex {
public:

recursive_mutex();
~recursive_mutex();

recursive_mutex(const recursive_mutex&) = delete;
recursive_mutex& operator=(const recursive_mutex&) = delete;

void lock();
bool try_lock() noexcept;
void unlock();

using native_handle_type = implementation-defined; // see 33.2.3
native_handle_type native_handle(); // see 33.2.3

};
}

1 The class recursive_mutex provides a recursive mutex with exclusive ownership semantics. If one thread
owns a recursive_mutex object, attempts by another thread to acquire ownership of that object will fail
(for try_lock()) or block (for lock()) until the first thread has completely released ownership.

2 The class recursive_mutex meets all of the mutex requirements (33.6.4). It is a standard-layout class (11.2).
3 A thread that owns a recursive_mutex object may acquire additional levels of ownership by calling lock()

or try_lock() on that object. It is unspecified how many levels of ownership may be acquired by a single
thread. If a thread has already acquired the maximum level of ownership for a recursive_mutex object,
additional calls to try_lock() fail, and additional calls to lock() throw an exception of type system_error.
A thread shall call unlock() once for each level of ownership acquired by calls to lock() and try_lock().
Only when all levels of ownership have been released may ownership be acquired by another thread.

4 The behavior of a program is undefined if:
—(4.1) it destroys a recursive_mutex object owned by any thread or
—(4.2) a thread terminates while owning a recursive_mutex object.

33.6.4.3 Timed mutex types [thread.timedmutex.requirements]
33.6.4.3.1 General [thread.timedmutex.requirements.general]

1 The timed mutex types are the standard library types timed_mutex, recursive_timed_mutex, and shared_-
timed_mutex. They meet the requirements set out below. In this description, m denotes an object of a mutex
type, rel_time denotes an object of an instantiation of duration (29.5), and abs_time denotes an object of
an instantiation of time_point (29.6).
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[Note 1 : The timed mutex types meet the Cpp17TimedLockable requirements (33.2.5.4). — end note ]
2 The expression m.try_lock_for(rel_time) is well-formed and has the following semantics:
3 Preconditions: If m is of type timed_mutex or shared_timed_mutex, the calling thread does not own

the mutex.
4 Effects: The function attempts to obtain ownership of the mutex within the relative timeout (33.2.4)

specified by rel_time. If the time specified by rel_time is less than or equal to rel_time.zero(), the
function attempts to obtain ownership without blocking (as if by calling try_lock()). The function
returns within the timeout specified by rel_time only if it has obtained ownership of the mutex object.
[Note 2 : As with try_lock(), there is no guarantee that ownership will be obtained if the lock is available, but
implementations are expected to make a strong effort to do so. — end note ]

5 Synchronization: If try_lock_for() returns true, prior unlock() operations on the same object
synchronize with (6.9.2) this operation.

6 Return type: bool.
7 Returns: true if ownership was obtained, otherwise false.
8 Throws: Timeout-related exceptions (33.2.4).
9 The expression m.try_lock_until(abs_time) is well-formed and has the following semantics:

10 Preconditions: If m is of type timed_mutex or shared_timed_mutex, the calling thread does not own
the mutex.

11 Effects: The function attempts to obtain ownership of the mutex. If abs_time has already passed, the
function attempts to obtain ownership without blocking (as if by calling try_lock()). The function
returns before the absolute timeout (33.2.4) specified by abs_time only if it has obtained ownership of
the mutex object.
[Note 3 : As with try_lock(), there is no guarantee that ownership will be obtained if the lock is available, but
implementations are expected to make a strong effort to do so. — end note ]

12 Synchronization: If try_lock_until() returns true, prior unlock() operations on the same object
synchronize with (6.9.2) this operation.

13 Return type: bool.
14 Returns: true if ownership was obtained, otherwise false.
15 Throws: Timeout-related exceptions (33.2.4).

33.6.4.3.2 Class timed_mutex [thread.timedmutex.class]
namespace std {

class timed_mutex {
public:

timed_mutex();
~timed_mutex();

timed_mutex(const timed_mutex&) = delete;
timed_mutex& operator=(const timed_mutex&) = delete;

void lock(); // blocking
bool try_lock();
template<class Rep, class Period>

bool try_lock_for(const chrono::duration<Rep, Period>& rel_time);
template<class Clock, class Duration>

bool try_lock_until(const chrono::time_point<Clock, Duration>& abs_time);
void unlock();

using native_handle_type = implementation-defined; // see 33.2.3
native_handle_type native_handle(); // see 33.2.3

};
}

1 The class timed_mutex provides a non-recursive mutex with exclusive ownership semantics. If one thread
owns a timed_mutex object, attempts by another thread to acquire ownership of that object will fail (for
try_lock()) or block (for lock(), try_lock_for(), and try_lock_until()) until the owning thread has
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released ownership with a call to unlock() or the call to try_lock_for() or try_lock_until() times out
(having failed to obtain ownership).

2 The class timed_mutex meets all of the timed mutex requirements (33.6.4.3). It is a standard-layout
class (11.2).

3 The behavior of a program is undefined if:
—(3.1) it destroys a timed_mutex object owned by any thread,
—(3.2) a thread that owns a timed_mutex object calls lock(), try_lock(), try_lock_for(), or try_lock_-

until() on that object, or
—(3.3) a thread terminates while owning a timed_mutex object.

33.6.4.3.3 Class recursive_timed_mutex [thread.timedmutex.recursive]
namespace std {

class recursive_timed_mutex {
public:

recursive_timed_mutex();
~recursive_timed_mutex();

recursive_timed_mutex(const recursive_timed_mutex&) = delete;
recursive_timed_mutex& operator=(const recursive_timed_mutex&) = delete;

void lock(); // blocking
bool try_lock() noexcept;
template<class Rep, class Period>

bool try_lock_for(const chrono::duration<Rep, Period>& rel_time);
template<class Clock, class Duration>

bool try_lock_until(const chrono::time_point<Clock, Duration>& abs_time);
void unlock();

using native_handle_type = implementation-defined; // see 33.2.3
native_handle_type native_handle(); // see 33.2.3

};
}

1 The class recursive_timed_mutex provides a recursive mutex with exclusive ownership semantics. If one
thread owns a recursive_timed_mutex object, attempts by another thread to acquire ownership of that
object will fail (for try_lock()) or block (for lock(), try_lock_for(), and try_lock_until()) until the
owning thread has completely released ownership or the call to try_lock_for() or try_lock_until() times
out (having failed to obtain ownership).

2 The class recursive_timed_mutex meets all of the timed mutex requirements (33.6.4.3). It is a standard-
layout class (11.2).

3 A thread that owns a recursive_timed_mutex object may acquire additional levels of ownership by calling
lock(), try_lock(), try_lock_for(), or try_lock_until() on that object. It is unspecified how many
levels of ownership may be acquired by a single thread. If a thread has already acquired the maximum level of
ownership for a recursive_timed_mutex object, additional calls to try_lock(), try_lock_for(), or try_-
lock_until() fail, and additional calls to lock() throw an exception of type system_error. A thread shall
call unlock() once for each level of ownership acquired by calls to lock(), try_lock(), try_lock_for(),
and try_lock_until(). Only when all levels of ownership have been released may ownership of the object
be acquired by another thread.

4 The behavior of a program is undefined if:
—(4.1) it destroys a recursive_timed_mutex object owned by any thread, or
—(4.2) a thread terminates while owning a recursive_timed_mutex object.

33.6.4.4 Shared mutex types [thread.sharedmutex.requirements]
33.6.4.4.1 General [thread.sharedmutex.requirements.general]

1 The standard library types shared_mutex and shared_timed_mutex are shared mutex types. Shared mutex
types meet the requirements of mutex types (33.6.4.2) and additionally meet the requirements set out below.
In this description, m denotes an object of a shared mutex type.
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[Note 1 : The shared mutex types meet the Cpp17SharedLockable requirements (33.2.5.5). — end note ]
2 In addition to the exclusive lock ownership mode specified in 33.6.4.2, shared mutex types provide a shared

lock ownership mode. Multiple execution agents can simultaneously hold a shared lock ownership of a shared
mutex type. But no execution agent holds a shared lock while another execution agent holds an exclusive
lock on the same shared mutex type, and vice-versa. The maximum number of execution agents which can
share a shared lock on a single shared mutex type is unspecified, but is at least 10000. If more than the
maximum number of execution agents attempt to obtain a shared lock, the excess execution agents block
until the number of shared locks are reduced below the maximum amount by other execution agents releasing
their shared lock.

3 The expression m.lock_shared() is well-formed and has the following semantics:
4 Preconditions: The calling thread has no ownership of the mutex.
5 Effects: Blocks the calling thread until shared ownership of the mutex can be obtained for the calling

thread. If an exception is thrown then a shared lock has not been acquired for the current thread.
6 Synchronization: Prior unlock() operations on the same object synchronize with (6.9.2) this operation.
7 Postconditions: The calling thread has a shared lock on the mutex.
8 Return type: void.
9 Throws: system_error when an exception is required (33.2.2).

10 Error conditions:
—(10.1) operation_not_permitted — if the thread does not have the privilege to perform the operation.
—(10.2) resource_deadlock_would_occur — if the implementation detects that a deadlock would occur.

11 The expression m.unlock_shared() is well-formed and has the following semantics:
12 Preconditions: The calling thread holds a shared lock on the mutex.
13 Effects: Releases a shared lock on the mutex held by the calling thread.
14 Return type: void.
15 Synchronization: This operation synchronizes with (6.9.2) subsequent lock() operations that obtain

ownership on the same object.
16 Throws: Nothing.
17 The expression m.try_lock_shared() is well-formed and has the following semantics:
18 Preconditions: The calling thread has no ownership of the mutex.
19 Effects: Attempts to obtain shared ownership of the mutex for the calling thread without blocking. If

shared ownership is not obtained, there is no effect and try_lock_shared() immediately returns. An
implementation may fail to obtain the lock even if it is not held by any other thread.

20 Synchronization: If try_lock_shared() returns true, prior unlock() operations on the same object
synchronize with (6.9.2) this operation.

21 Return type: bool.
22 Returns: true if the shared lock was acquired, otherwise false.
23 Throws: Nothing.

33.6.4.4.2 Class shared_mutex [thread.sharedmutex.class]
namespace std {

class shared_mutex {
public:

shared_mutex();
~shared_mutex();

shared_mutex(const shared_mutex&) = delete;
shared_mutex& operator=(const shared_mutex&) = delete;

// exclusive ownership
void lock(); // blocking
bool try_lock();
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void unlock();

// shared ownership
void lock_shared(); // blocking
bool try_lock_shared();
void unlock_shared();

using native_handle_type = implementation-defined; // see 33.2.3
native_handle_type native_handle(); // see 33.2.3

};
}

1 The class shared_mutex provides a non-recursive mutex with shared ownership semantics.
2 The class shared_mutex meets all of the shared mutex requirements (33.6.4.4). It is a standard-layout

class (11.2).
3 The behavior of a program is undefined if:

—(3.1) it destroys a shared_mutex object owned by any thread,
—(3.2) a thread attempts to recursively gain any ownership of a shared_mutex, or
—(3.3) a thread terminates while possessing any ownership of a shared_mutex.

4 shared_mutex may be a synonym for shared_timed_mutex.

33.6.4.5 Shared timed mutex types [thread.sharedtimedmutex.requirements]
33.6.4.5.1 General [thread.sharedtimedmutex.requirements.general]

1 The standard library type shared_timed_mutex is a shared timed mutex type. Shared timed mutex types
meet the requirements of timed mutex types (33.6.4.3), shared mutex types (33.6.4.4), and additionally
meet the requirements set out below. In this description, m denotes an object of a shared timed mutex type,
rel_time denotes an object of an instantiation of duration (29.5), and abs_time denotes an object of an
instantiation of time_point (29.6).
[Note 1 : The shared timed mutex types meet the Cpp17SharedTimedLockable requirements (33.2.5.6). — end note ]

2 The expression m.try_lock_shared_for(rel_time) is well-formed and has the following semantics:
3 Preconditions: The calling thread has no ownership of the mutex.
4 Effects: Attempts to obtain shared lock ownership for the calling thread within the relative timeout

(33.2.4) specified by rel_time. If the time specified by rel_time is less than or equal to rel_-
time.zero(), the function attempts to obtain ownership without blocking (as if by calling try_lock_-
shared()). The function returns within the timeout specified by rel_time only if it has obtained
shared ownership of the mutex object.
[Note 2 : As with try_lock(), there is no guarantee that ownership will be obtained if the lock is available, but
implementations are expected to make a strong effort to do so. — end note ]

If an exception is thrown then a shared lock has not been acquired for the current thread.
5 Synchronization: If try_lock_shared_for() returns true, prior unlock() operations on the same

object synchronize with (6.9.2) this operation.
6 Return type: bool.
7 Returns: true if the shared lock was acquired, otherwise false.
8 Throws: Timeout-related exceptions (33.2.4).
9 The expression m.try_lock_shared_until(abs_time) is well-formed and has the following semantics:

10 Preconditions: The calling thread has no ownership of the mutex.
11 Effects: The function attempts to obtain shared ownership of the mutex. If abs_time has already

passed, the function attempts to obtain shared ownership without blocking (as if by calling try_lock_-
shared()). The function returns before the absolute timeout (33.2.4) specified by abs_time only if it
has obtained shared ownership of the mutex object.
[Note 3 : As with try_lock(), there is no guarantee that ownership will be obtained if the lock is available, but
implementations are expected to make a strong effort to do so. — end note ]
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If an exception is thrown then a shared lock has not been acquired for the current thread.
12 Synchronization: If try_lock_shared_until() returns true, prior unlock() operations on the same

object synchronize with (6.9.2) this operation.
13 Return type: bool.
14 Returns: true if the shared lock was acquired, otherwise false.
15 Throws: Timeout-related exceptions (33.2.4).

33.6.4.5.2 Class shared_timed_mutex [thread.sharedtimedmutex.class]
namespace std {

class shared_timed_mutex {
public:

shared_timed_mutex();
~shared_timed_mutex();

shared_timed_mutex(const shared_timed_mutex&) = delete;
shared_timed_mutex& operator=(const shared_timed_mutex&) = delete;

// exclusive ownership
void lock(); // blocking
bool try_lock();
template<class Rep, class Period>

bool try_lock_for(const chrono::duration<Rep, Period>& rel_time);
template<class Clock, class Duration>

bool try_lock_until(const chrono::time_point<Clock, Duration>& abs_time);
void unlock();

// shared ownership
void lock_shared(); // blocking
bool try_lock_shared();
template<class Rep, class Period>

bool try_lock_shared_for(const chrono::duration<Rep, Period>& rel_time);
template<class Clock, class Duration>

bool try_lock_shared_until(const chrono::time_point<Clock, Duration>& abs_time);
void unlock_shared();

};
}

1 The class shared_timed_mutex provides a non-recursive mutex with shared ownership semantics.
2 The class shared_timed_mutex meets all of the shared timed mutex requirements (33.6.4.5). It is a standard-

layout class (11.2).
3 The behavior of a program is undefined if:

—(3.1) it destroys a shared_timed_mutex object owned by any thread,
—(3.2) a thread attempts to recursively gain any ownership of a shared_timed_mutex, or
—(3.3) a thread terminates while possessing any ownership of a shared_timed_mutex.

33.6.5 Locks [thread.lock]
33.6.5.1 General [thread.lock.general]

1 A lock is an object that holds a reference to a lockable object and may unlock the lockable object during the
lock’s destruction (such as when leaving block scope). An execution agent may use a lock to aid in managing
ownership of a lockable object in an exception safe manner. A lock is said to own a lockable object if it is
currently managing the ownership of that lockable object for an execution agent. A lock does not manage
the lifetime of the lockable object it references.
[Note 1 : Locks are intended to ease the burden of unlocking the lockable object under both normal and exceptional
circumstances. — end note ]

2 Some lock constructors take tag types which describe what should be done with the lockable object during
the lock’s construction.
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namespace std {
struct defer_lock_t { }; // do not acquire ownership of the mutex
struct try_to_lock_t { }; // try to acquire ownership of the mutex

// without blocking
struct adopt_lock_t { }; // assume the calling thread has already

// obtained mutex ownership and manage it

inline constexpr defer_lock_t defer_lock { };
inline constexpr try_to_lock_t try_to_lock { };
inline constexpr adopt_lock_t adopt_lock { };

}

33.6.5.2 Class template lock_guard [thread.lock.guard]
namespace std {

template<class Mutex>
class lock_guard {
public:

using mutex_type = Mutex;

explicit lock_guard(mutex_type& m);
lock_guard(mutex_type& m, adopt_lock_t);
~lock_guard();

lock_guard(const lock_guard&) = delete;
lock_guard& operator=(const lock_guard&) = delete;

private:
mutex_type& pm; // exposition only

};
}

1 An object of type lock_guard controls the ownership of a lockable object within a scope. A lock_guard object
maintains ownership of a lockable object throughout the lock_guard object’s lifetime (6.7.3). The behavior
of a program is undefined if the lockable object referenced by pm does not exist for the entire lifetime of the
lock_guard object. The supplied Mutex type shall meet the Cpp17BasicLockable requirements (33.2.5.2).

explicit lock_guard(mutex_type& m);

2 Effects: Initializes pm with m. Calls m.lock().

lock_guard(mutex_type& m, adopt_lock_t);

3 Preconditions: The calling thread holds a non-shared lock on m.
4 Effects: Initializes pm with m.
5 Throws: Nothing.

~lock_guard();

6 Effects: Equivalent to: pm.unlock()

33.6.5.3 Class template scoped_lock [thread.lock.scoped]
namespace std {

template<class... MutexTypes>
class scoped_lock {
public:

using mutex_type = see below ; // Only if sizeof...(MutexTypes) == 1 is true

explicit scoped_lock(MutexTypes&... m);
explicit scoped_lock(adopt_lock_t, MutexTypes&... m);
~scoped_lock();

scoped_lock(const scoped_lock&) = delete;
scoped_lock& operator=(const scoped_lock&) = delete;
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private:
tuple<MutexTypes&...> pm; // exposition only

};
}

1 An object of type scoped_lock controls the ownership of lockable objects within a scope. A scoped_lock
object maintains ownership of lockable objects throughout the scoped_lock object’s lifetime (6.7.3). The
behavior of a program is undefined if the lockable objects referenced by pm do not exist for the entire lifetime
of the scoped_lock object.

—(1.1) If sizeof...(MutexTypes) is one, let Mutex denote the sole type constituting the pack MutexTypes.
Mutex shall meet the Cpp17BasicLockable requirements (33.2.5.2). The member typedef-name mutex_-
type denotes the same type as Mutex.

—(1.2) Otherwise, all types in the template parameter pack MutexTypes shall meet the Cpp17Lockable
requirements (33.2.5.3) and there is no member mutex_type.

explicit scoped_lock(MutexTypes&... m);

2 Effects: Initializes pm with tie(m...). Then if sizeof...(MutexTypes) is 0, no effects. Otherwise if
sizeof...(MutexTypes) is 1, then m.lock(). Otherwise, lock(m...).

explicit scoped_lock(adopt_lock_t, MutexTypes&... m);

3 Preconditions: The calling thread holds a non-shared lock on each element of m.
4 Effects: Initializes pm with tie(m...).
5 Throws: Nothing.

~scoped_lock();

6 Effects: For all i in [0, sizeof...(MutexTypes)), get<i>(pm).unlock().

33.6.5.4 Class template unique_lock [thread.lock.unique]
33.6.5.4.1 General [thread.lock.unique.general]

namespace std {
template<class Mutex>
class unique_lock {
public:

using mutex_type = Mutex;

// 33.6.5.4.2, construct/copy/destroy
unique_lock() noexcept;
explicit unique_lock(mutex_type& m);
unique_lock(mutex_type& m, defer_lock_t) noexcept;
unique_lock(mutex_type& m, try_to_lock_t);
unique_lock(mutex_type& m, adopt_lock_t);
template<class Clock, class Duration>

unique_lock(mutex_type& m, const chrono::time_point<Clock, Duration>& abs_time);
template<class Rep, class Period>

unique_lock(mutex_type& m, const chrono::duration<Rep, Period>& rel_time);
~unique_lock();

unique_lock(const unique_lock&) = delete;
unique_lock& operator=(const unique_lock&) = delete;

unique_lock(unique_lock&& u) noexcept;
unique_lock& operator=(unique_lock&& u);

// 33.6.5.4.3, locking
void lock();
bool try_lock();

template<class Rep, class Period>
bool try_lock_for(const chrono::duration<Rep, Period>& rel_time);
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template<class Clock, class Duration>
bool try_lock_until(const chrono::time_point<Clock, Duration>& abs_time);

void unlock();

// 33.6.5.4.4, modifiers
void swap(unique_lock& u) noexcept;
mutex_type* release() noexcept;

// 33.6.5.4.5, observers
bool owns_lock() const noexcept;
explicit operator bool () const noexcept;
mutex_type* mutex() const noexcept;

private:
mutex_type* pm; // exposition only
bool owns; // exposition only

};
}

1 An object of type unique_lock controls the ownership of a lockable object within a scope. Ownership of
the lockable object may be acquired at construction or after construction, and may be transferred, after
acquisition, to another unique_lock object. Objects of type unique_lock are not copyable but are movable.
The behavior of a program is undefined if the contained pointer pm is not null and the lockable object pointed
to by pm does not exist for the entire remaining lifetime (6.7.3) of the unique_lock object. The supplied
Mutex type shall meet the Cpp17BasicLockable requirements (33.2.5.2).

2 [Note 1 : unique_lock<Mutex> meets the Cpp17BasicLockable requirements. If Mutex meets the Cpp17Lockable
requirements (33.2.5.3), unique_lock<Mutex> also meets the Cpp17Lockable requirements; if Mutex meets the
Cpp17TimedLockable requirements (33.2.5.4), unique_lock<Mutex> also meets the Cpp17TimedLockable requirements.

— end note ]

33.6.5.4.2 Constructors, destructor, and assignment [thread.lock.unique.cons]

unique_lock() noexcept;

1 Postconditions: pm == nullptr and owns == false.

explicit unique_lock(mutex_type& m);

2 Effects: Calls m.lock().
3 Postconditions: pm == addressof(m) and owns == true.

unique_lock(mutex_type& m, defer_lock_t) noexcept;

4 Postconditions: pm == addressof(m) and owns == false.

unique_lock(mutex_type& m, try_to_lock_t);

5 Preconditions: The supplied Mutex type meets the Cpp17Lockable requirements (33.2.5.3).
6 Effects: Calls m.try_lock().
7 Postconditions: pm == addressof(m) and owns == res, where res is the value returned by the call

to m.try_lock().

unique_lock(mutex_type& m, adopt_lock_t);

8 Preconditions: The calling thread holds a non-shared lock on m.
9 Postconditions: pm == addressof(m) and owns == true.

10 Throws: Nothing.

template<class Clock, class Duration>
unique_lock(mutex_type& m, const chrono::time_point<Clock, Duration>& abs_time);

11 Preconditions: The supplied Mutex type meets the Cpp17TimedLockable requirements (33.2.5.4).
12 Effects: Calls m.try_lock_until(abs_time).
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13 Postconditions: pm == addressof(m) and owns == res, where res is the value returned by the call
to m.try_lock_until(abs_time).

template<class Rep, class Period>
unique_lock(mutex_type& m, const chrono::duration<Rep, Period>& rel_time);

14 Preconditions: The supplied Mutex type meets the Cpp17TimedLockable requirements (33.2.5.4).
15 Effects: Calls m.try_lock_for(rel_time).
16 Postconditions: pm == addressof(m) and owns == res, where res is the value returned by the call

to m.try_lock_for(rel_time).

unique_lock(unique_lock&& u) noexcept;

17 Postconditions: pm == u_p.pm and owns == u_p.owns (where u_p is the state of u just prior to this
construction), u.pm == 0 and u.owns == false.

unique_lock& operator=(unique_lock&& u);

18 Effects: If owns calls pm->unlock().
19 Postconditions: pm == u_p.pm and owns == u_p.owns (where u_p is the state of u just prior to this

construction), u.pm == 0 and u.owns == false.
20 [Note 1 : With a recursive mutex it is possible for both *this and u to own the same mutex before the assignment.

In this case, *this will own the mutex after the assignment and u will not. — end note ]
21 Throws: Nothing.

~unique_lock();

22 Effects: If owns calls pm->unlock().

33.6.5.4.3 Locking [thread.lock.unique.locking]

void lock();

1 Effects: As if by pm->lock().
2 Postconditions: owns == true.
3 Throws: Any exception thrown by pm->lock(). system_error when an exception is required (33.2.2).
4 Error conditions:

—(4.1) operation_not_permitted — if pm is nullptr.
—(4.2) resource_deadlock_would_occur — if on entry owns is true.

bool try_lock();

5 Preconditions: The supplied Mutex meets the Cpp17Lockable requirements (33.2.5.3).
6 Effects: As if by pm->try_lock().
7 Postconditions: owns == res, where res is the value returned by pm->try_lock().
8 Returns: The value returned by pm->try_lock().
9 Throws: Any exception thrown by pm->try_lock(). system_error when an exception is required

(33.2.2).
10 Error conditions:

—(10.1) operation_not_permitted — if pm is nullptr.
—(10.2) resource_deadlock_would_occur — if on entry owns is true.

template<class Clock, class Duration>
bool try_lock_until(const chrono::time_point<Clock, Duration>& abs_time);

11 Preconditions: The supplied Mutex type meets the Cpp17TimedLockable requirements (33.2.5.4).
12 Effects: As if by pm->try_lock_until(abs_time).
13 Postconditions: owns == res, where res is the value returned by pm->try_lock_until(abs_time).
14 Returns: The value returned by pm->try_lock_until(abs_time).
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15 Throws: Any exception thrown by pm->try_lock_until(abstime). system_error when an exception
is required (33.2.2).

16 Error conditions:
—(16.1) operation_not_permitted — if pm is nullptr.
—(16.2) resource_deadlock_would_occur — if on entry owns is true.

template<class Rep, class Period>
bool try_lock_for(const chrono::duration<Rep, Period>& rel_time);

17 Preconditions: The supplied Mutex type meets the Cpp17TimedLockable requirements (33.2.5.4).
18 Effects: As if by pm->try_lock_for(rel_time).
19 Postconditions: owns == res, where res is the value returned by pm->try_lock_for(rel_time).
20 Returns: The value returned by pm->try_lock_for(rel_time).
21 Throws: Any exception thrown by pm->try_lock_for(rel_time). system_error when an exception

is required (33.2.2).
22 Error conditions:

—(22.1) operation_not_permitted — if pm is nullptr.
—(22.2) resource_deadlock_would_occur — if on entry owns is true.

void unlock();

23 Effects: As if by pm->unlock().
24 Postconditions: owns == false.
25 Throws: system_error when an exception is required (33.2.2).
26 Error conditions:

—(26.1) operation_not_permitted — if on entry owns is false.

33.6.5.4.4 Modifiers [thread.lock.unique.mod]

void swap(unique_lock& u) noexcept;

1 Effects: Swaps the data members of *this and u.

mutex_type* release() noexcept;

2 Postconditions: pm == 0 and owns == false.
3 Returns: The previous value of pm.

template<class Mutex>
void swap(unique_lock<Mutex>& x, unique_lock<Mutex>& y) noexcept;

4 Effects: As if by x.swap(y).

33.6.5.4.5 Observers [thread.lock.unique.obs]

bool owns_lock() const noexcept;

1 Returns: owns.

explicit operator bool() const noexcept;

2 Returns: owns.

mutex_type *mutex() const noexcept;

3 Returns: pm.

33.6.5.5 Class template shared_lock [thread.lock.shared]
33.6.5.5.1 General [thread.lock.shared.general]

namespace std {
template<class Mutex>
class shared_lock {
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public:
using mutex_type = Mutex;

// 33.6.5.5.2, construct/copy/destroy
shared_lock() noexcept;
explicit shared_lock(mutex_type& m); // blocking
shared_lock(mutex_type& m, defer_lock_t) noexcept;
shared_lock(mutex_type& m, try_to_lock_t);
shared_lock(mutex_type& m, adopt_lock_t);
template<class Clock, class Duration>

shared_lock(mutex_type& m, const chrono::time_point<Clock, Duration>& abs_time);
template<class Rep, class Period>

shared_lock(mutex_type& m, const chrono::duration<Rep, Period>& rel_time);
~shared_lock();

shared_lock(const shared_lock&) = delete;
shared_lock& operator=(const shared_lock&) = delete;

shared_lock(shared_lock&& u) noexcept;
shared_lock& operator=(shared_lock&& u) noexcept;

// 33.6.5.5.3, locking
void lock(); // blocking
bool try_lock();
template<class Rep, class Period>

bool try_lock_for(const chrono::duration<Rep, Period>& rel_time);
template<class Clock, class Duration>

bool try_lock_until(const chrono::time_point<Clock, Duration>& abs_time);
void unlock();

// 33.6.5.5.4, modifiers
void swap(shared_lock& u) noexcept;
mutex_type* release() noexcept;

// 33.6.5.5.5, observers
bool owns_lock() const noexcept;
explicit operator bool () const noexcept;
mutex_type* mutex() const noexcept;

private:
mutex_type* pm; // exposition only
bool owns; // exposition only

};
}

1 An object of type shared_lock controls the shared ownership of a lockable object within a scope. Shared
ownership of the lockable object may be acquired at construction or after construction, and may be transferred,
after acquisition, to another shared_lock object. Objects of type shared_lock are not copyable but are
movable. The behavior of a program is undefined if the contained pointer pm is not null and the lockable
object pointed to by pm does not exist for the entire remaining lifetime (6.7.3) of the shared_lock object.
The supplied Mutex type shall meet the Cpp17SharedLockable requirements (33.2.5.5).

2 [Note 1 : shared_lock<Mutex> meets the Cpp17Lockable requirements (33.2.5.3). If Mutex meets the Cpp17Shared-
TimedLockable requirements (33.2.5.6), shared_lock<Mutex> also meets the Cpp17TimedLockable requirements
(33.2.5.4). — end note ]

33.6.5.5.2 Constructors, destructor, and assignment [thread.lock.shared.cons]

shared_lock() noexcept;

1 Postconditions: pm == nullptr and owns == false.

explicit shared_lock(mutex_type& m);

2 Effects: Calls m.lock_shared().
3 Postconditions: pm == addressof(m) and owns == true.
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shared_lock(mutex_type& m, defer_lock_t) noexcept;

4 Postconditions: pm == addressof(m) and owns == false.

shared_lock(mutex_type& m, try_to_lock_t);

5 Effects: Calls m.try_lock_shared().
6 Postconditions: pm == addressof(m) and owns == res where res is the value returned by the call to

m.try_lock_shared().

shared_lock(mutex_type& m, adopt_lock_t);

7 Preconditions: The calling thread holds a shared lock on m.
8 Postconditions: pm == addressof(m) and owns == true.

template<class Clock, class Duration>
shared_lock(mutex_type& m,

const chrono::time_point<Clock, Duration>& abs_time);

9 Preconditions: Mutex meets the Cpp17SharedTimedLockable requirements (33.2.5.6).
10 Effects: Calls m.try_lock_shared_until(abs_time).
11 Postconditions: pm == addressof(m) and owns == res where res is the value returned by the call to

m.try_lock_shared_until(abs_time).

template<class Rep, class Period>
shared_lock(mutex_type& m,

const chrono::duration<Rep, Period>& rel_time);

12 Preconditions: Mutex meets the Cpp17SharedTimedLockable requirements (33.2.5.6).
13 Effects: Calls m.try_lock_shared_for(rel_time).
14 Postconditions: pm == addressof(m) and owns == res where res is the value returned by the call to

m.try_lock_shared_for(rel_time).

~shared_lock();

15 Effects: If owns calls pm->unlock_shared().

shared_lock(shared_lock&& sl) noexcept;

16 Postconditions: pm == sl_p.pm and owns == sl_p.owns (where sl_p is the state of sl just prior to
this construction), sl.pm == nullptr and sl.owns == false.

shared_lock& operator=(shared_lock&& sl) noexcept;

17 Effects: If owns calls pm->unlock_shared().
18 Postconditions: pm == sl_p.pm and owns == sl_p.owns (where sl_p is the state of sl just prior to

this assignment), sl.pm == nullptr and sl.owns == false.

33.6.5.5.3 Locking [thread.lock.shared.locking]

void lock();

1 Effects: As if by pm->lock_shared().
2 Postconditions: owns == true.
3 Throws: Any exception thrown by pm->lock_shared(). system_error when an exception is required

(33.2.2).
4 Error conditions:

—(4.1) operation_not_permitted — if pm is nullptr.
—(4.2) resource_deadlock_would_occur — if on entry owns is true.

bool try_lock();

5 Effects: As if by pm->try_lock_shared().
6 Postconditions: owns == res, where res is the value returned by the call to pm->try_lock_shared().
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7 Returns: The value returned by the call to pm->try_lock_shared().
8 Throws: Any exception thrown by pm->try_lock_shared(). system_error when an exception is

required (33.2.2).
9 Error conditions:

—(9.1) operation_not_permitted — if pm is nullptr.
—(9.2) resource_deadlock_would_occur — if on entry owns is true.

template<class Clock, class Duration>
bool try_lock_until(const chrono::time_point<Clock, Duration>& abs_time);

10 Preconditions: Mutex meets the Cpp17SharedTimedLockable requirements (33.2.5.6).
11 Effects: As if by pm->try_lock_shared_until(abs_time).
12 Postconditions: owns == res, where res is the value returned by the call to pm->try_lock_shared_-

until(abs_time).
13 Returns: The value returned by the call to pm->try_lock_shared_until(abs_time).
14 Throws: Any exception thrown by pm->try_lock_shared_until(abs_time). system_error when an

exception is required (33.2.2).
15 Error conditions:

—(15.1) operation_not_permitted — if pm is nullptr.
—(15.2) resource_deadlock_would_occur — if on entry owns is true.

template<class Rep, class Period>
bool try_lock_for(const chrono::duration<Rep, Period>& rel_time);

16 Preconditions: Mutex meets the Cpp17SharedTimedLockable requirements (33.2.5.6).
17 Effects: As if by pm->try_lock_shared_for(rel_time).
18 Postconditions: owns == res, where res is the value returned by the call to pm->try_lock_shared_-

for(rel_time).
19 Returns: The value returned by the call to pm->try_lock_shared_for(rel_time).
20 Throws: Any exception thrown by pm->try_lock_shared_for(rel_time). system_error when an

exception is required (33.2.2).
21 Error conditions:

—(21.1) operation_not_permitted — if pm is nullptr.
—(21.2) resource_deadlock_would_occur — if on entry owns is true.

void unlock();

22 Effects: As if by pm->unlock_shared().
23 Postconditions: owns == false.
24 Throws: system_error when an exception is required (33.2.2).
25 Error conditions:

—(25.1) operation_not_permitted — if on entry owns is false.

33.6.5.5.4 Modifiers [thread.lock.shared.mod]

void swap(shared_lock& sl) noexcept;

1 Effects: Swaps the data members of *this and sl.

mutex_type* release() noexcept;

2 Postconditions: pm == nullptr and owns == false.
3 Returns: The previous value of pm.

§ 33.6.5.5.4 1852



© ISO/IEC N4950

template<class Mutex>
void swap(shared_lock<Mutex>& x, shared_lock<Mutex>& y) noexcept;

4 Effects: As if by x.swap(y).

33.6.5.5.5 Observers [thread.lock.shared.obs]

bool owns_lock() const noexcept;

1 Returns: owns.

explicit operator bool() const noexcept;

2 Returns: owns.

mutex_type* mutex() const noexcept;

3 Returns: pm.

33.6.6 Generic locking algorithms [thread.lock.algorithm]
template<class L1, class L2, class... L3> int try_lock(L1&, L2&, L3&...);

1 Preconditions: Each template parameter type meets the Cpp17Lockable requirements.
[Note 1 : The unique_lock class template meets these requirements when suitably instantiated. — end note ]

2 Effects: Calls try_lock() for each argument in order beginning with the first until all arguments have
been processed or a call to try_lock() fails, either by returning false or by throwing an exception. If a
call to try_lock() fails, unlock() is called for all prior arguments with no further calls to try_lock().

3 Returns: -1 if all calls to try_lock() returned true, otherwise a zero-based index value that indicates
the argument for which try_lock() returned false.

template<class L1, class L2, class... L3> void lock(L1&, L2&, L3&...);

4 Preconditions: Each template parameter type meets the Cpp17Lockable requirements.
[Note 2 : The unique_lock class template meets these requirements when suitably instantiated. — end note ]

5 Effects: All arguments are locked via a sequence of calls to lock(), try_lock(), or unlock() on each
argument. The sequence of calls does not result in deadlock, but is otherwise unspecified.
[Note 3 : A deadlock avoidance algorithm such as try-and-back-off can be used, but the specific algorithm is not
specified to avoid over-constraining implementations. — end note ]

If a call to lock() or try_lock() throws an exception, unlock() is called for any argument that had
been locked by a call to lock() or try_lock().

33.6.7 Call once [thread.once]
33.6.7.1 Struct once_flag [thread.once.onceflag]

namespace std {
struct once_flag {

constexpr once_flag() noexcept;

once_flag(const once_flag&) = delete;
once_flag& operator=(const once_flag&) = delete;

};
}

1 The class once_flag is an opaque data structure that call_once uses to initialize data without causing a
data race or deadlock.

constexpr once_flag() noexcept;

2 Synchronization: The construction of a once_flag object is not synchronized.
3 Postconditions: The object’s internal state is set to indicate to an invocation of call_once with the

object as its initial argument that no function has been called.
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33.6.7.2 Function call_once [thread.once.callonce]

template<class Callable, class... Args>
void call_once(once_flag& flag, Callable&& func, Args&&... args);

1 Mandates: is_invocable_v<Callable, Args...> is true.
2 Effects: An execution of call_once that does not call its func is a passive execution. An execu-

tion of call_once that calls its func is an active execution. An active execution calls INVOKE(
std::forward<Callable>(func), std::forward<Args>(args)...) (22.10.4). If such a call to func
throws an exception the execution is exceptional, otherwise it is returning. An exceptional execution
propagates the exception to the caller of call_once. Among all executions of call_once for any given
once_flag: at most one is a returning execution; if there is a returning execution, it is the last active
execution; and there are passive executions only if there is a returning execution.
[Note 1 : Passive executions allow other threads to reliably observe the results produced by the earlier returning
execution. — end note ]

3 Synchronization: For any given once_flag: all active executions occur in a total order; completion
of an active execution synchronizes with (6.9.2) the start of the next one in this total order; and the
returning execution synchronizes with the return from all passive executions.

4 Throws: system_error when an exception is required (33.2.2), or any exception thrown by func.
5 [Example 1 :

// global flag, regular function
void init();
std::once_flag flag;

void f() {
std::call_once(flag, init);

}

// function static flag, function object
struct initializer {

void operator()();
};

void g() {
static std::once_flag flag2;
std::call_once(flag2, initializer());

}

// object flag, member function
class information {

std::once_flag verified;
void verifier();

public:
void verify() { std::call_once(verified, &information::verifier, *this); }

};

— end example ]

33.7 Condition variables [thread.condition]
33.7.1 General [thread.condition.general]

1 Condition variables provide synchronization primitives used to block a thread until notified by some other
thread that some condition is met or until a system time is reached. Class condition_variable provides a
condition variable that can only wait on an object of type unique_lock<mutex>, allowing the implementation
to be more efficient. Class condition_variable_any provides a general condition variable that can wait on
objects of user-supplied lock types.

2 Condition variables permit concurrent invocation of the wait, wait_for, wait_until, notify_one and
notify_all member functions.

3 The executions of notify_one and notify_all are atomic. The executions of wait, wait_for, and wait_-
until are performed in three atomic parts:
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1. the release of the mutex and entry into the waiting state;
2. the unblocking of the wait; and
3. the reacquisition of the lock.

4 The implementation behaves as if all executions of notify_one, notify_all, and each part of the wait,
wait_for, and wait_until executions are executed in a single unspecified total order consistent with the
“happens before” order.

5 Condition variable construction and destruction need not be synchronized.

33.7.2 Header <condition_variable> synopsis [condition.variable.syn]
namespace std {

// 33.7.4, class condition_variable
class condition_variable;
// 33.7.5, class condition_variable_any
class condition_variable_any;

// 33.7.3, non-member functions
void notify_all_at_thread_exit(condition_variable& cond, unique_lock<mutex> lk);

enum class cv_status { no_timeout, timeout };
}

33.7.3 Non-member functions [thread.condition.nonmember]
void notify_all_at_thread_exit(condition_variable& cond, unique_lock<mutex> lk);

1 Preconditions: lk is locked by the calling thread and either
—(1.1) no other thread is waiting on cond, or
—(1.2) lk.mutex() returns the same value for each of the lock arguments supplied by all concurrently

waiting (via wait, wait_for, or wait_until) threads.
2 Effects: Transfers ownership of the lock associated with lk into internal storage and schedules cond to

be notified when the current thread exits, after all objects of thread storage duration associated with
the current thread have been destroyed. This notification is equivalent to:

lk.unlock();
cond.notify_all();

3 Synchronization: The implied lk.unlock() call is sequenced after the destruction of all objects with
thread storage duration associated with the current thread.

4 [Note 1 : The supplied lock is held until the thread exits, which might cause deadlock due to lock ordering
issues. — end note ]

5 [Note 2 : It is the user’s responsibility to ensure that waiting threads do not erroneously assume that the thread
has finished if they experience spurious wakeups. This typically requires that the condition being waited for
is satisfied while holding the lock on lk, and that this lock is not released and reacquired prior to calling
notify_all_at_thread_exit. — end note ]

33.7.4 Class condition_variable [thread.condition.condvar]
namespace std {

class condition_variable {
public:

condition_variable();
~condition_variable();

condition_variable(const condition_variable&) = delete;
condition_variable& operator=(const condition_variable&) = delete;

void notify_one() noexcept;
void notify_all() noexcept;
void wait(unique_lock<mutex>& lock);
template<class Predicate>

void wait(unique_lock<mutex>& lock, Predicate pred);
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template<class Clock, class Duration>
cv_status wait_until(unique_lock<mutex>& lock,

const chrono::time_point<Clock, Duration>& abs_time);
template<class Clock, class Duration, class Predicate>

bool wait_until(unique_lock<mutex>& lock,
const chrono::time_point<Clock, Duration>& abs_time,
Predicate pred);

template<class Rep, class Period>
cv_status wait_for(unique_lock<mutex>& lock,

const chrono::duration<Rep, Period>& rel_time);
template<class Rep, class Period, class Predicate>

bool wait_for(unique_lock<mutex>& lock,
const chrono::duration<Rep, Period>& rel_time,
Predicate pred);

using native_handle_type = implementation-defined; // see 33.2.3
native_handle_type native_handle(); // see 33.2.3

};
}

1 The class condition_variable is a standard-layout class (11.2).

condition_variable();

2 Throws: system_error when an exception is required (33.2.2).
3 Error conditions:

—(3.1) resource_unavailable_try_again — if some non-memory resource limitation prevents initial-
ization.

~condition_variable();

4 Preconditions: There is no thread blocked on *this.
[Note 1 : That is, all threads have been notified; they can subsequently block on the lock specified in the wait.
This relaxes the usual rules, which would have required all wait calls to happen before destruction. Only the
notification to unblock the wait needs to happen before destruction. Undefined behavior ensues if a thread
waits on *this once the destructor has been started, especially when the waiting threads are calling the wait
functions in a loop or using the overloads of wait, wait_for, or wait_until that take a predicate. — end note ]

void notify_one() noexcept;

5 Effects: If any threads are blocked waiting for *this, unblocks one of those threads.

void notify_all() noexcept;

6 Effects: Unblocks all threads that are blocked waiting for *this.

void wait(unique_lock<mutex>& lock);

7 Preconditions: lock.owns_lock() is true and lock.mutex() is locked by the calling thread, and either
—(7.1) no other thread is waiting on this condition_variable object or
—(7.2) lock.mutex() returns the same value for each of the lock arguments supplied by all concurrently

waiting (via wait, wait_for, or wait_until) threads.
8 Effects:

—(8.1) Atomically calls lock.unlock() and blocks on *this.
—(8.2) When unblocked, calls lock.lock() (possibly blocking on the lock), then returns.
—(8.3) The function will unblock when signaled by a call to notify_one() or a call to notify_all(), or

spuriously.
9 Postconditions: lock.owns_lock() is true and lock.mutex() is locked by the calling thread.

10 Throws: Nothing.
11 Remarks: If the function fails to meet the postcondition, terminate() is invoked (14.6.2).

[Note 2 : This can happen if the re-locking of the mutex throws an exception. — end note ]
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template<class Predicate>
void wait(unique_lock<mutex>& lock, Predicate pred);

12 Preconditions: lock.owns_lock() is true and lock.mutex() is locked by the calling thread, and either
—(12.1) no other thread is waiting on this condition_variable object or
—(12.2) lock.mutex() returns the same value for each of the lock arguments supplied by all concurrently

waiting (via wait, wait_for, or wait_until) threads.
13 Effects: Equivalent to:

while (!pred())
wait(lock);

14 Postconditions: lock.owns_lock() is true and lock.mutex() is locked by the calling thread.
15 Throws: Any exception thrown by pred.
16 Remarks: If the function fails to meet the postcondition, terminate() is invoked (14.6.2).

[Note 3 : This can happen if the re-locking of the mutex throws an exception. — end note ]

template<class Clock, class Duration>
cv_status wait_until(unique_lock<mutex>& lock,

const chrono::time_point<Clock, Duration>& abs_time);

17 Preconditions: lock.owns_lock() is true and lock.mutex() is locked by the calling thread, and either
—(17.1) no other thread is waiting on this condition_variable object or
—(17.2) lock.mutex() returns the same value for each of the lock arguments supplied by all concurrently

waiting (via wait, wait_for, or wait_until) threads.
18 Effects:

—(18.1) Atomically calls lock.unlock() and blocks on *this.
—(18.2) When unblocked, calls lock.lock() (possibly blocking on the lock), then returns.
—(18.3) The function will unblock when signaled by a call to notify_one(), a call to notify_all(),

expiration of the absolute timeout (33.2.4) specified by abs_time, or spuriously.
—(18.4) If the function exits via an exception, lock.lock() is called prior to exiting the function.

19 Postconditions: lock.owns_lock() is true and lock.mutex() is locked by the calling thread.
20 Returns: cv_status::timeout if the absolute timeout (33.2.4) specified by abs_time expired, otherwise

cv_status::no_timeout.
21 Throws: Timeout-related exceptions (33.2.4).
22 Remarks: If the function fails to meet the postcondition, terminate() is invoked (14.6.2).

[Note 4 : This can happen if the re-locking of the mutex throws an exception. — end note ]

template<class Rep, class Period>
cv_status wait_for(unique_lock<mutex>& lock,

const chrono::duration<Rep, Period>& rel_time);

23 Preconditions: lock.owns_lock() is true and lock.mutex() is locked by the calling thread, and either
—(23.1) no other thread is waiting on this condition_variable object or
—(23.2) lock.mutex() returns the same value for each of the lock arguments supplied by all concurrently

waiting (via wait, wait_for, or wait_until) threads.
24 Effects: Equivalent to:

return wait_until(lock, chrono::steady_clock::now() + rel_time);

25 Postconditions: lock.owns_lock() is true and lock.mutex() is locked by the calling thread.
26 Returns: cv_status::timeout if the relative timeout (33.2.4) specified by rel_time expired, otherwise

cv_status::no_timeout.
27 Throws: Timeout-related exceptions (33.2.4).
28 Remarks: If the function fails to meet the postcondition, terminate is invoked (14.6.2).

[Note 5 : This can happen if the re-locking of the mutex throws an exception. — end note ]
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template<class Clock, class Duration, class Predicate>
bool wait_until(unique_lock<mutex>& lock,

const chrono::time_point<Clock, Duration>& abs_time,
Predicate pred);

29 Preconditions: lock.owns_lock() is true and lock.mutex() is locked by the calling thread, and either
—(29.1) no other thread is waiting on this condition_variable object or
—(29.2) lock.mutex() returns the same value for each of the lock arguments supplied by all concurrently

waiting (via wait, wait_for, or wait_until) threads.
30 Effects: Equivalent to:

while (!pred())
if (wait_until(lock, abs_time) == cv_status::timeout)

return pred();
return true;

31 Postconditions: lock.owns_lock() is true and lock.mutex() is locked by the calling thread.
32 [Note 6 : The returned value indicates whether the predicate evaluated to true regardless of whether the timeout

was triggered. — end note ]
33 Throws: Timeout-related exceptions (33.2.4) or any exception thrown by pred.
34 Remarks: If the function fails to meet the postcondition, terminate() is invoked (14.6.2).

[Note 7 : This can happen if the re-locking of the mutex throws an exception. — end note ]

template<class Rep, class Period, class Predicate>
bool wait_for(unique_lock<mutex>& lock,

const chrono::duration<Rep, Period>& rel_time,
Predicate pred);

35 Preconditions: lock.owns_lock() is true and lock.mutex() is locked by the calling thread, and either
—(35.1) no other thread is waiting on this condition_variable object or
—(35.2) lock.mutex() returns the same value for each of the lock arguments supplied by all concurrently

waiting (via wait, wait_for, or wait_until) threads.
36 Effects: Equivalent to:

return wait_until(lock, chrono::steady_clock::now() + rel_time, std::move(pred));
37 [Note 8 : There is no blocking if pred() is initially true, even if the timeout has already expired. — end note ]
38 Postconditions: lock.owns_lock() is true and lock.mutex() is locked by the calling thread.
39 [Note 9 : The returned value indicates whether the predicate evaluates to true regardless of whether the timeout

was triggered. — end note ]
40 Throws: Timeout-related exceptions (33.2.4) or any exception thrown by pred.
41 Remarks: If the function fails to meet the postcondition, terminate() is invoked (14.6.2).

[Note 10 : This can happen if the re-locking of the mutex throws an exception. — end note ]

33.7.5 Class condition_variable_any [thread.condition.condvarany]
33.7.5.1 General [thread.condition.condvarany.general]

1 In this subclause 33.7.5, template arguments for template parameters named Lock shall meet the Cpp17Basic-
Lockable requirements (33.2.5.2).
[Note 1 : All of the standard mutex types meet this requirement. If a type other than one of the standard mutex
types or a unique_lock wrapper for a standard mutex type is used with condition_variable_any, any necessary
synchronization is assumed to be in place with respect to the predicate associated with the condition_variable_any
instance. — end note ]

namespace std {
class condition_variable_any {
public:

condition_variable_any();
~condition_variable_any();
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condition_variable_any(const condition_variable_any&) = delete;
condition_variable_any& operator=(const condition_variable_any&) = delete;

void notify_one() noexcept;
void notify_all() noexcept;

// 33.7.5.2, noninterruptible waits
template<class Lock>

void wait(Lock& lock);
template<class Lock, class Predicate>

void wait(Lock& lock, Predicate pred);

template<class Lock, class Clock, class Duration>
cv_status wait_until(Lock& lock, const chrono::time_point<Clock, Duration>& abs_time);

template<class Lock, class Clock, class Duration, class Predicate>
bool wait_until(Lock& lock, const chrono::time_point<Clock, Duration>& abs_time,

Predicate pred);
template<class Lock, class Rep, class Period>

cv_status wait_for(Lock& lock, const chrono::duration<Rep, Period>& rel_time);
template<class Lock, class Rep, class Period, class Predicate>

bool wait_for(Lock& lock, const chrono::duration<Rep, Period>& rel_time, Predicate pred);

// 33.7.5.3, interruptible waits
template<class Lock, class Predicate>

bool wait(Lock& lock, stop_token stoken, Predicate pred);
template<class Lock, class Clock, class Duration, class Predicate>

bool wait_until(Lock& lock, stop_token stoken,
const chrono::time_point<Clock, Duration>& abs_time, Predicate pred);

template<class Lock, class Rep, class Period, class Predicate>
bool wait_for(Lock& lock, stop_token stoken,

const chrono::duration<Rep, Period>& rel_time, Predicate pred);
};

}

condition_variable_any();

2 Throws: bad_alloc or system_error when an exception is required (33.2.2).
3 Error conditions:

—(3.1) resource_unavailable_try_again — if some non-memory resource limitation prevents initial-
ization.

—(3.2) operation_not_permitted — if the thread does not have the privilege to perform the operation.

~condition_variable_any();

4 Preconditions: There is no thread blocked on *this.
[Note 2 : That is, all threads have been notified; they can subsequently block on the lock specified in the wait.
This relaxes the usual rules, which would have required all wait calls to happen before destruction. Only the
notification to unblock the wait needs to happen before destruction. Undefined behavior ensues if a thread
waits on *this once the destructor has been started, especially when the waiting threads are calling the wait
functions in a loop or using the overloads of wait, wait_for, or wait_until that take a predicate. — end note ]

void notify_one() noexcept;

5 Effects: If any threads are blocked waiting for *this, unblocks one of those threads.

void notify_all() noexcept;

6 Effects: Unblocks all threads that are blocked waiting for *this.

33.7.5.2 Noninterruptible waits [thread.condvarany.wait]

template<class Lock>
void wait(Lock& lock);

1 Effects:
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—(1.1) Atomically calls lock.unlock() and blocks on *this.
—(1.2) When unblocked, calls lock.lock() (possibly blocking on the lock) and returns.
—(1.3) The function will unblock when signaled by a call to notify_one(), a call to notify_all(), or

spuriously.
2 Postconditions: lock is locked by the calling thread.
3 Throws: Nothing.
4 Remarks: If the function fails to meet the postcondition, terminate() is invoked (14.6.2).

[Note 1 : This can happen if the re-locking of the mutex throws an exception. — end note ]

template<class Lock, class Predicate>
void wait(Lock& lock, Predicate pred);

5 Effects: Equivalent to:
while (!pred())

wait(lock);

template<class Lock, class Clock, class Duration>
cv_status wait_until(Lock& lock, const chrono::time_point<Clock, Duration>& abs_time);

6 Effects:
—(6.1) Atomically calls lock.unlock() and blocks on *this.
—(6.2) When unblocked, calls lock.lock() (possibly blocking on the lock) and returns.
—(6.3) The function will unblock when signaled by a call to notify_one(), a call to notify_all(),

expiration of the absolute timeout (33.2.4) specified by abs_time, or spuriously.
—(6.4) If the function exits via an exception, lock.lock() is called prior to exiting the function.

7 Postconditions: lock is locked by the calling thread.
8 Returns: cv_status::timeout if the absolute timeout (33.2.4) specified by abs_time expired, otherwise

cv_status::no_timeout.
9 Throws: Timeout-related exceptions (33.2.4).

10 Remarks: If the function fails to meet the postcondition, terminate() is invoked (14.6.2).
[Note 2 : This can happen if the re-locking of the mutex throws an exception. — end note ]

template<class Lock, class Rep, class Period>
cv_status wait_for(Lock& lock, const chrono::duration<Rep, Period>& rel_time);

11 Effects: Equivalent to:
return wait_until(lock, chrono::steady_clock::now() + rel_time);

12 Postconditions: lock is locked by the calling thread.
13 Returns: cv_status::timeout if the relative timeout (33.2.4) specified by rel_time expired, otherwise

cv_status::no_timeout.
14 Throws: Timeout-related exceptions (33.2.4).
15 Remarks: If the function fails to meet the postcondition, terminate is invoked (14.6.2).

[Note 3 : This can happen if the re-locking of the mutex throws an exception. — end note ]

template<class Lock, class Clock, class Duration, class Predicate>
bool wait_until(Lock& lock, const chrono::time_point<Clock, Duration>& abs_time, Predicate pred);

16 Effects: Equivalent to:
while (!pred())

if (wait_until(lock, abs_time) == cv_status::timeout)
return pred();

return true;
17 [Note 4 : There is no blocking if pred() is initially true, or if the timeout has already expired. — end note ]
18 [Note 5 : The returned value indicates whether the predicate evaluates to true regardless of whether the timeout

was triggered. — end note ]
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template<class Lock, class Rep, class Period, class Predicate>
bool wait_for(Lock& lock, const chrono::duration<Rep, Period>& rel_time, Predicate pred);

19 Effects: Equivalent to:
return wait_until(lock, chrono::steady_clock::now() + rel_time, std::move(pred));

33.7.5.3 Interruptible waits [thread.condvarany.intwait]
1 The following wait functions will be notified when there is a stop request on the passed stop_token. In that

case the functions return immediately, returning false if the predicate evaluates to false.

template<class Lock, class Predicate>
bool wait(Lock& lock, stop_token stoken, Predicate pred);

2 Effects: Registers for the duration of this call *this to get notified on a stop request on stoken during
this call and then equivalent to:

while (!stoken.stop_requested()) {
if (pred())

return true;
wait(lock);

}
return pred();

3 [Note 1 : The returned value indicates whether the predicate evaluated to true regardless of whether there was
a stop request. — end note ]

4 Postconditions: lock is locked by the calling thread.
5 Throws: Any exception thrown by pred.
6 Remarks: If the function fails to meet the postcondition, terminate is called (14.6.2).

[Note 2 : This can happen if the re-locking of the mutex throws an exception. — end note ]

template<class Lock, class Clock, class Duration, class Predicate>
bool wait_until(Lock& lock, stop_token stoken,

const chrono::time_point<Clock, Duration>& abs_time, Predicate pred);

7 Effects: Registers for the duration of this call *this to get notified on a stop request on stoken during
this call and then equivalent to:

while (!stoken.stop_requested()) {
if (pred())

return true;
if (wait_until(lock, abs_time) == cv_status::timeout)

return pred();
}
return pred();

8 [Note 3 : There is no blocking if pred() is initially true, stoken.stop_requested() was already true or the
timeout has already expired. — end note ]

9 [Note 4 : The returned value indicates whether the predicate evaluated to true regardless of whether the timeout
was triggered or a stop request was made. — end note ]

10 Postconditions: lock is locked by the calling thread.
11 Throws: Timeout-related exceptions (33.2.4), or any exception thrown by pred.
12 Remarks: If the function fails to meet the postcondition, terminate is called (14.6.2).

[Note 5 : This can happen if the re-locking of the mutex throws an exception. — end note ]

template<class Lock, class Rep, class Period, class Predicate>
bool wait_for(Lock& lock, stop_token stoken,

const chrono::duration<Rep, Period>& rel_time, Predicate pred);

13 Effects: Equivalent to:
return wait_until(lock, std::move(stoken), chrono::steady_clock::now() + rel_time,

std::move(pred));
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33.8 Semaphore [thread.sema]
33.8.1 General [thread.sema.general]

1 Semaphores are lightweight synchronization primitives used to constrain concurrent access to a shared
resource. They are widely used to implement other synchronization primitives and, whenever both are
applicable, can be more efficient than condition variables.

2 A counting semaphore is a semaphore object that models a non-negative resource count. A binary semaphore
is a semaphore object that has only two states. A binary semaphore should be more efficient than the default
implementation of a counting semaphore with a unit resource count.

33.8.2 Header <semaphore> synopsis [semaphore.syn]
namespace std {

// 33.8.3, class template counting_semaphore
template<ptrdiff_t least_max_value = implementation-defined >

class counting_semaphore;

using binary_semaphore = counting_semaphore<1>;
}

33.8.3 Class template counting_semaphore [thread.sema.cnt]
namespace std {

template<ptrdiff_t least_max_value = implementation-defined >
class counting_semaphore {
public:

static constexpr ptrdiff_t max() noexcept;

constexpr explicit counting_semaphore(ptrdiff_t desired);
~counting_semaphore();

counting_semaphore(const counting_semaphore&) = delete;
counting_semaphore& operator=(const counting_semaphore&) = delete;

void release(ptrdiff_t update = 1);
void acquire();
bool try_acquire() noexcept;
template<class Rep, class Period>

bool try_acquire_for(const chrono::duration<Rep, Period>& rel_time);
template<class Clock, class Duration>

bool try_acquire_until(const chrono::time_point<Clock, Duration>& abs_time);

private:
ptrdiff_t counter; // exposition only

};
}

1 Class template counting_semaphore maintains an internal counter that is initialized when the semaphore
is created. The counter is decremented when a thread acquires the semaphore, and is incremented when
a thread releases the semaphore. If a thread tries to acquire the semaphore when the counter is zero, the
thread will block until another thread increments the counter by releasing the semaphore.

2 least_max_value shall be non-negative; otherwise the program is ill-formed.
3 Concurrent invocations of the member functions of counting_semaphore, other than its destructor, do not

introduce data races.

static constexpr ptrdiff_t max() noexcept;

4 Returns: The maximum value of counter. This value is greater than or equal to least_max_value.

constexpr explicit counting_semaphore(ptrdiff_t desired);

5 Preconditions: desired >= 0 is true, and desired <= max() is true.
6 Effects: Initializes counter with desired.
7 Throws: Nothing.
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void release(ptrdiff_t update = 1);

8 Preconditions: update >= 0 is true, and update <= max() - counter is true.
9 Effects: Atomically execute counter += update. Then, unblocks any threads that are waiting for

counter to be greater than zero.
10 Synchronization: Strongly happens before invocations of try_acquire that observe the result of the

effects.
11 Throws: system_error when an exception is required (33.2.2).
12 Error conditions: Any of the error conditions allowed for mutex types (33.6.4.2).

bool try_acquire() noexcept;

13 Effects: Attempts to atomically decrement counter if it is positive, without blocking. If counter is
not decremented, there is no effect and try_acquire immediately returns. An implementation may
fail to decrement counter even if it is positive.
[Note 1 : This spurious failure is normally uncommon, but allows interesting implementations based on a simple
compare and exchange (33.5). — end note ]

An implementation should ensure that try_acquire does not consistently return false in the absence
of contending semaphore operations.

14 Returns: true if counter was decremented, otherwise false.

void acquire();

15 Effects: Repeatedly performs the following steps, in order:
—(15.1) Evaluates try_acquire(). If the result is true, returns.
—(15.2) Blocks on *this until counter is greater than zero.

16 Throws: system_error when an exception is required (33.2.2).
17 Error conditions: Any of the error conditions allowed for mutex types (33.6.4.2).

template<class Rep, class Period>
bool try_acquire_for(const chrono::duration<Rep, Period>& rel_time);

template<class Clock, class Duration>
bool try_acquire_until(const chrono::time_point<Clock, Duration>& abs_time);

18 Effects: Repeatedly performs the following steps, in order:
—(18.1) Evaluates try_acquire(). If the result is true, returns true.
—(18.2) Blocks on *this until counter is greater than zero or until the timeout expires. If it is unblocked

by the timeout expiring, returns false.
The timeout expires (33.2.4) when the current time is after abs_time (for try_acquire_until) or
when at least rel_time has passed from the start of the function (for try_acquire_for).

19 Throws: Timeout-related exceptions (33.2.4), or system_error when a non-timeout-related exception
is required (33.2.2).

20 Error conditions: Any of the error conditions allowed for mutex types (33.6.4.2).

33.9 Coordination types [thread.coord]
33.9.1 General [thread.coord.general]

1 Subclause 33.9 describes various concepts related to thread coordination, and defines the coordination types
latch and barrier. These types facilitate concurrent computation performed by a number of threads.

33.9.2 Latches [thread.latch]
33.9.2.1 General [thread.latch.general]

1 A latch is a thread coordination mechanism that allows any number of threads to block until an expected
number of threads arrive at the latch (via the count_down function). The expected count is set when the
latch is created. An individual latch is a single-use object; once the expected count has been reached, the
latch cannot be reused.
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33.9.2.2 Header <latch> synopsis [latch.syn]
namespace std {

class latch;
}

33.9.2.3 Class latch [thread.latch.class]
namespace std {

class latch {
public:

static constexpr ptrdiff_t max() noexcept;

constexpr explicit latch(ptrdiff_t expected);
~latch();

latch(const latch&) = delete;
latch& operator=(const latch&) = delete;

void count_down(ptrdiff_t update = 1);
bool try_wait() const noexcept;
void wait() const;
void arrive_and_wait(ptrdiff_t update = 1);

private:
ptrdiff_t counter; // exposition only

};
}

1 A latch maintains an internal counter that is initialized when the latch is created. Threads can block on the
latch object, waiting for counter to be decremented to zero.

2 Concurrent invocations of the member functions of latch, other than its destructor, do not introduce data
races.

static constexpr ptrdiff_t max() noexcept;

3 Returns: The maximum value of counter that the implementation supports.

constexpr explicit latch(ptrdiff_t expected);

4 Preconditions: expected >= 0 is true and expected <= max() is true.
5 Effects: Initializes counter with expected.
6 Throws: Nothing.

void count_down(ptrdiff_t update = 1);

7 Preconditions: update >= 0 is true, and update <= counter is true.
8 Effects: Atomically decrements counter by update. If counter is equal to zero, unblocks all threads

blocked on *this.
9 Synchronization: Strongly happens before the returns from all calls that are unblocked.

10 Throws: system_error when an exception is required (33.2.2).
11 Error conditions: Any of the error conditions allowed for mutex types (33.6.4.2).

bool try_wait() const noexcept;

12 Returns: With very low probability false. Otherwise counter == 0.

void wait() const;

13 Effects: If counter equals zero, returns immediately. Otherwise, blocks on *this until a call to
count_down that decrements counter to zero.

14 Throws: system_error when an exception is required (33.2.2).
15 Error conditions: Any of the error conditions allowed for mutex types (33.6.4.2).
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void arrive_and_wait(ptrdiff_t update = 1);

16 Effects: Equivalent to:
count_down(update);
wait();

33.9.3 Barriers [thread.barrier]
33.9.3.1 General [thread.barrier.general]

1 A barrier is a thread coordination mechanism whose lifetime consists of a sequence of barrier phases, where
each phase allows at most an expected number of threads to block until the expected number of threads
arrive at the barrier.
[Note 1 : A barrier is useful for managing repeated tasks that are handled by multiple threads. — end note ]

33.9.3.2 Header <barrier> synopsis [barrier.syn]
namespace std {

template<class CompletionFunction = see below >
class barrier;

}

33.9.3.3 Class template barrier [thread.barrier.class]
namespace std {

template<class CompletionFunction = see below >
class barrier {
public:

using arrival_token = see below ;

static constexpr ptrdiff_t max() noexcept;

constexpr explicit barrier(ptrdiff_t expected,
CompletionFunction f = CompletionFunction());

~barrier();

barrier(const barrier&) = delete;
barrier& operator=(const barrier&) = delete;

[[nodiscard]] arrival_token arrive(ptrdiff_t update = 1);
void wait(arrival_token&& arrival) const;

void arrive_and_wait();
void arrive_and_drop();

private:
CompletionFunction completion; // exposition only

};
}

1 Each barrier phase consists of the following steps:
—(1.1) The expected count is decremented by each call to arrive or arrive_and_drop.
—(1.2) Exactly once after the expected count reaches zero, a thread executes the completion step during its

call to arrive, arrive_and_drop, or wait, except that it is implementation-defined whether the step
executes if no thread calls wait.

—(1.3) When the completion step finishes, the expected count is reset to what was specified by the expected
argument to the constructor, possibly adjusted by calls to arrive_and_drop, and the next phase starts.

2 Each phase defines a phase synchronization point. Threads that arrive at the barrier during the phase can
block on the phase synchronization point by calling wait, and will remain blocked until the phase completion
step is run.

3 The phase completion step that is executed at the end of each phase has the following effects:
—(3.1) Invokes the completion function, equivalent to completion().
—(3.2) Unblocks all threads that are blocked on the phase synchronization point.
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The end of the completion step strongly happens before the returns from all calls that were unblocked by the
completion step. For specializations that do not have the default value of the CompletionFunction template
parameter, the behavior is undefined if any of the barrier object’s member functions other than wait are
called while the completion step is in progress.

4 Concurrent invocations of the member functions of barrier, other than its destructor, do not introduce data
races. The member functions arrive and arrive_and_drop execute atomically.

5 CompletionFunction shall meet the Cpp17MoveConstructible (Table 31) and Cpp17Destructible (Table 35)
requirements. is_nothrow_invocable_v<CompletionFunction&> shall be true.

6 The default value of the CompletionFunction template parameter is an unspecified type, such that, in
addition to satisfying the requirements of CompletionFunction, it meets the Cpp17DefaultConstructible
requirements (Table 30) and completion() has no effects.

7 barrier::arrival_token is an unspecified type, such that it meets the Cpp17MoveConstructible (Table 31),
Cpp17MoveAssignable (Table 33), and Cpp17Destructible (Table 35) requirements.

static constexpr ptrdiff_t max() noexcept;

8 Returns: The maximum expected count that the implementation supports.

constexpr explicit barrier(ptrdiff_t expected,
CompletionFunction f = CompletionFunction());

9 Preconditions: expected >= 0 is true and expected <= max() is true.
10 Effects: Sets both the initial expected count for each barrier phase and the current expected count for

the first phase to expected. Initializes completion with std::move(f). Starts the first phase.
[Note 1 : If expected is 0 this object can only be destroyed. — end note ]

11 Throws: Any exception thrown by CompletionFunction’s move constructor.

[[nodiscard]] arrival_token arrive(ptrdiff_t update = 1);

12 Preconditions: update > 0 is true, and update is less than or equal to the expected count for the
current barrier phase.

13 Effects: Constructs an object of type arrival_token that is associated with the phase synchronization
point for the current phase. Then, decrements the expected count by update.

14 Synchronization: The call to arrive strongly happens before the start of the phase completion step for
the current phase.

15 Returns: The constructed arrival_token object.
16 Throws: system_error when an exception is required (33.2.2).
17 Error conditions: Any of the error conditions allowed for mutex types (33.6.4.2).
18 [Note 2 : This call can cause the completion step for the current phase to start. — end note ]

void wait(arrival_token&& arrival) const;

19 Preconditions: arrival is associated with the phase synchronization point for the current phase or the
immediately preceding phase of the same barrier object.

20 Effects: Blocks at the synchronization point associated with std::move(arrival) until the phase
completion step of the synchronization point’s phase is run.
[Note 3 : If arrival is associated with the synchronization point for a previous phase, the call returns immediately.

— end note ]
21 Throws: system_error when an exception is required (33.2.2).
22 Error conditions: Any of the error conditions allowed for mutex types (33.6.4.2).

void arrive_and_wait();

23 Effects: Equivalent to: wait(arrive()).

void arrive_and_drop();

24 Preconditions: The expected count for the current barrier phase is greater than zero.
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25 Effects: Decrements the initial expected count for all subsequent phases by one. Then decrements the
expected count for the current phase by one.

26 Synchronization: The call to arrive_and_drop strongly happens before the start of the phase completion
step for the current phase.

27 Throws: system_error when an exception is required (33.2.2).
28 Error conditions: Any of the error conditions allowed for mutex types (33.6.4.2).
29 [Note 4 : This call can cause the completion step for the current phase to start. — end note ]

33.10 Futures [futures]
33.10.1 Overview [futures.overview]

1 33.10 describes components that a C++ program can use to retrieve in one thread the result (value or
exception) from a function that has run in the same thread or another thread.
[Note 1 : These components are not restricted to multi-threaded programs but can be useful in single-threaded
programs as well. — end note ]

33.10.2 Header <future> synopsis [future.syn]
namespace std {

enum class future_errc {
broken_promise = implementation-defined ,
future_already_retrieved = implementation-defined ,
promise_already_satisfied = implementation-defined ,
no_state = implementation-defined

};

enum class launch : unspecified {
async = unspecified ,
deferred = unspecified ,
implementation-defined

};

enum class future_status {
ready,
timeout,
deferred

};

// 33.10.3, error handling
template<> struct is_error_code_enum<future_errc> : public true_type { };
error_code make_error_code(future_errc e) noexcept;
error_condition make_error_condition(future_errc e) noexcept;

const error_category& future_category() noexcept;

// 33.10.4, class future_error
class future_error;

// 33.10.6, class template promise
template<class R> class promise;
template<class R> class promise<R&>;
template<> class promise<void>;

template<class R>
void swap(promise<R>& x, promise<R>& y) noexcept;

template<class R, class Alloc>
struct uses_allocator<promise<R>, Alloc>;

// 33.10.7, class template future
template<class R> class future;
template<class R> class future<R&>;
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template<> class future<void>;

// 33.10.8, class template shared_future
template<class R> class shared_future;
template<class R> class shared_future<R&>;
template<> class shared_future<void>;

// 33.10.10, class template packaged_task
template<class> class packaged_task; // not defined
template<class R, class... ArgTypes>

class packaged_task<R(ArgTypes...)>;

template<class R, class... ArgTypes>
void swap(packaged_task<R(ArgTypes...)>&, packaged_task<R(ArgTypes...)>&) noexcept;

// 33.10.9, function template async
template<class F, class... Args>

[[nodiscard]] future<invoke_result_t<decay_t<F>, decay_t<Args>...>>
async(F&& f, Args&&... args);

template<class F, class... Args>
[[nodiscard]] future<invoke_result_t<decay_t<F>, decay_t<Args>...>>

async(launch policy, F&& f, Args&&... args);
}

1 The enum type launch is a bitmask type (16.3.3.3.3) with elements launch::async and launch::deferred.
[Note 1 : Implementations can provide bitmasks to specify restrictions on task interaction by functions launched by
async() applicable to a corresponding subset of available launch policies. Implementations can extend the behavior
of the first overload of async() by adding their extensions to the launch policy under the “as if” rule. — end note ]

2 The enum values of future_errc are distinct and not zero.

33.10.3 Error handling [futures.errors]
const error_category& future_category() noexcept;

1 Returns: A reference to an object of a type derived from class error_category.
2 The object’s default_error_condition and equivalent virtual functions shall behave as specified for

the class error_category. The object’s name virtual function returns a pointer to the string "future".

error_code make_error_code(future_errc e) noexcept;

3 Returns: error_code(static_cast<int>(e), future_category()).

error_condition make_error_condition(future_errc e) noexcept;

4 Returns: error_condition(static_cast<int>(e), future_category()).

33.10.4 Class future_error [futures.future.error]
namespace std {

class future_error : public logic_error {
public:

explicit future_error(future_errc e);

const error_code& code() const noexcept;
const char* what() const noexcept;

private:
error_code ec_; // exposition only

};
}

explicit future_error(future_errc e);

1 Effects: Initializes ec_ with make_error_code(e).
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const error_code& code() const noexcept;

2 Returns: ec_.

const char* what() const noexcept;

3 Returns: An ntbs incorporating code().message().

33.10.5 Shared state [futures.state]
1 Many of the classes introduced in subclause 33.10 use some state to communicate results. This shared state

consists of some state information and some (possibly not yet evaluated) result, which can be a (possibly
void) value or an exception.
[Note 1 : Futures, promises, and tasks defined in this Clause reference such shared state. — end note ]

2 [Note 2 : The result can be any kind of object including a function to compute that result, as used by async when
policy is launch::deferred. — end note ]

3 An asynchronous return object is an object that reads results from a shared state. A waiting function of an
asynchronous return object is one that potentially blocks to wait for the shared state to be made ready. If a
waiting function can return before the state is made ready because of a timeout (33.2.5), then it is a timed
waiting function, otherwise it is a non-timed waiting function.

4 An asynchronous provider is an object that provides a result to a shared state. The result of a shared state
is set by respective functions on the asynchronous provider.
[Note 3 : Such as promises or tasks. — end note ]

The means of setting the result of a shared state is specified in the description of those classes and functions
that create such a state object.

5 When an asynchronous return object or an asynchronous provider is said to release its shared state, it means:
—(5.1) if the return object or provider holds the last reference to its shared state, the shared state is destroyed;

and
—(5.2) the return object or provider gives up its reference to its shared state; and
—(5.3) these actions will not block for the shared state to become ready, except that it may block if all of the

following are true: the shared state was created by a call to std::async, the shared state is not yet
ready, and this was the last reference to the shared state.

6 When an asynchronous provider is said to make its shared state ready, it means:
—(6.1) first, the provider marks its shared state as ready; and
—(6.2) second, the provider unblocks any execution agents waiting for its shared state to become ready.

7 When an asynchronous provider is said to abandon its shared state, it means:
—(7.1) first, if that state is not ready, the provider

—(7.1.1) stores an exception object of type future_error with an error condition of broken_promise
within its shared state; and then

—(7.1.2) makes its shared state ready;
—(7.2) second, the provider releases its shared state.

8 A shared state is ready only if it holds a value or an exception ready for retrieval. Waiting for a shared
state to become ready may invoke code to compute the result on the waiting thread if so specified in the
description of the class or function that creates the state object.

9 Calls to functions that successfully set the stored result of a shared state synchronize with (6.9.2) calls to
functions successfully detecting the ready state resulting from that setting. The storage of the result (whether
normal or exceptional) into the shared state synchronizes with (6.9.2) the successful return from a call to a
waiting function on the shared state.

10 Some functions (e.g., promise::set_value_at_thread_exit) delay making the shared state ready until the
calling thread exits. The destruction of each of that thread’s objects with thread storage duration (6.7.5.3) is
sequenced before making that shared state ready.

11 Access to the result of the same shared state may conflict (6.9.2).
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[Note 4 : This explicitly specifies that the result of the shared state is visible in the objects that reference this state
in the sense of data race avoidance (16.4.6.10). For example, concurrent accesses through references returned by
shared_future::get() (33.10.8) must either use read-only operations or provide additional synchronization. — end
note ]

33.10.6 Class template promise [futures.promise]
namespace std {

template<class R>
class promise {
public:

promise();
template<class Allocator>

promise(allocator_arg_t, const Allocator& a);
promise(promise&& rhs) noexcept;
promise(const promise&) = delete;
~promise();

// assignment
promise& operator=(promise&& rhs) noexcept;
promise& operator=(const promise&) = delete;
void swap(promise& other) noexcept;

// retrieving the result
future<R> get_future();

// setting the result
void set_value(see below );
void set_exception(exception_ptr p);

// setting the result with deferred notification
void set_value_at_thread_exit(see below );
void set_exception_at_thread_exit(exception_ptr p);

};

template<class R, class Alloc>
struct uses_allocator<promise<R>, Alloc>;

}

1 For the primary template, R shall be an object type that meets the Cpp17Destructible requirements.
2 The implementation provides the template promise and two specializations, promise<R&> and promise<

void>. These differ only in the argument type of the member functions set_value and set_value_at_-
thread_exit, as set out in their descriptions, below.

3 The set_value, set_exception, set_value_at_thread_exit, and set_exception_at_thread_exit mem-
ber functions behave as though they acquire a single mutex associated with the promise object while updating
the promise object.

template<class R, class Alloc>
struct uses_allocator<promise<R>, Alloc>

: true_type { };

4 Preconditions: Alloc meets the Cpp17Allocator requirements (16.4.4.6.1).

promise();
template<class Allocator>

promise(allocator_arg_t, const Allocator& a);

5 Effects: Creates a shared state. The second constructor uses the allocator a to allocate memory for the
shared state.

promise(promise&& rhs) noexcept;

6 Effects: Transfers ownership of the shared state of rhs (if any) to the newly-constructed object.
7 Postconditions: rhs has no shared state.
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~promise();

8 Effects: Abandons any shared state (33.10.5).

promise& operator=(promise&& rhs) noexcept;

9 Effects: Abandons any shared state (33.10.5) and then as if promise(std::move(rhs)).swap(*this).
10 Returns: *this.

void swap(promise& other) noexcept;

11 Effects: Exchanges the shared state of *this and other.
12 Postconditions: *this has the shared state (if any) that other had prior to the call to swap. other

has the shared state (if any) that *this had prior to the call to swap.

future<R> get_future();

13 Synchronization: Calls to this function do not introduce data races (6.9.2) with calls to set_value,
set_exception, set_value_at_thread_exit, or set_exception_at_thread_exit.
[Note 1 : Such calls need not synchronize with each other. — end note ]

14 Returns: A future<R> object with the same shared state as *this.
15 Throws: future_error if *this has no shared state or if get_future has already been called on a

promise with the same shared state as *this.
16 Error conditions:

—(16.1) future_already_retrieved if get_future has already been called on a promise with the same
shared state as *this.

—(16.2) no_state if *this has no shared state.

void promise::set_value(const R& r);
void promise::set_value(R&& r);
void promise<R&>::set_value(R& r);
void promise<void>::set_value();

17 Effects: Atomically stores the value r in the shared state and makes that state ready (33.10.5).
18 Throws:

—(18.1) future_error if its shared state already has a stored value or exception, or
—(18.2) for the first version, any exception thrown by the constructor selected to copy an object of R, or
—(18.3) for the second version, any exception thrown by the constructor selected to move an object of R.

19 Error conditions:
—(19.1) promise_already_satisfied if its shared state already has a stored value or exception.
—(19.2) no_state if *this has no shared state.

void set_exception(exception_ptr p);

20 Preconditions: p is not null.
21 Effects: Atomically stores the exception pointer p in the shared state and makes that state ready

(33.10.5).
22 Throws: future_error if its shared state already has a stored value or exception.
23 Error conditions:

—(23.1) promise_already_satisfied if its shared state already has a stored value or exception.
—(23.2) no_state if *this has no shared state.

void promise::set_value_at_thread_exit(const R& r);
void promise::set_value_at_thread_exit(R&& r);
void promise<R&>::set_value_at_thread_exit(R& r);
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void promise<void>::set_value_at_thread_exit();

24 Effects: Stores the value r in the shared state without making that state ready immediately. Schedules
that state to be made ready when the current thread exits, after all objects of thread storage duration
associated with the current thread have been destroyed.

25 Throws:
—(25.1) future_error if its shared state already has a stored value or exception, or
—(25.2) for the first version, any exception thrown by the constructor selected to copy an object of R, or
—(25.3) for the second version, any exception thrown by the constructor selected to move an object of R.

26 Error conditions:
—(26.1) promise_already_satisfied if its shared state already has a stored value or exception.
—(26.2) no_state if *this has no shared state.

void set_exception_at_thread_exit(exception_ptr p);

27 Preconditions: p is not null.
28 Effects: Stores the exception pointer p in the shared state without making that state ready immediately.

Schedules that state to be made ready when the current thread exits, after all objects of thread storage
duration associated with the current thread have been destroyed.

29 Throws: future_error if an error condition occurs.
30 Error conditions:

—(30.1) promise_already_satisfied if its shared state already has a stored value or exception.
—(30.2) no_state if *this has no shared state.

template<class R>
void swap(promise<R>& x, promise<R>& y) noexcept;

31 Effects: As if by x.swap(y).

33.10.7 Class template future [futures.unique.future]
1 The class template future defines a type for asynchronous return objects which do not share their shared

state with other asynchronous return objects. A default-constructed future object has no shared state. A
future object with shared state can be created by functions on asynchronous providers (33.10.5) or by the
move constructor and shares its shared state with the original asynchronous provider. The result (value or
exception) of a future object can be set by calling a respective function on an object that shares the same
shared state.

2 [Note 1 : Member functions of future do not synchronize with themselves or with member functions of shared_future.
— end note ]

3 The effect of calling any member function other than the destructor, the move-assignment operator, share,
or valid on a future object for which valid() == false is undefined.
[Note 2 : It is valid to move from a future object for which valid() == false. — end note ]

Recommended practice: Implementations should detect this case and throw an object of type future_error
with an error condition of future_errc::no_state.

namespace std {
template<class R>
class future {
public:

future() noexcept;
future(future&&) noexcept;
future(const future&) = delete;
~future();
future& operator=(const future&) = delete;
future& operator=(future&&) noexcept;
shared_future<R> share() noexcept;
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// retrieving the value
see below get();

// functions to check state
bool valid() const noexcept;

void wait() const;
template<class Rep, class Period>

future_status wait_for(const chrono::duration<Rep, Period>& rel_time) const;
template<class Clock, class Duration>

future_status wait_until(const chrono::time_point<Clock, Duration>& abs_time) const;
};

}

4 For the primary template, R shall be an object type that meets the Cpp17Destructible requirements.
5 The implementation provides the template future and two specializations, future<R&> and future<void>.

These differ only in the return type and return value of the member function get, as set out in its description,
below.

future() noexcept;

6 Effects: The object does not refer to a shared state.
7 Postconditions: valid() == false.

future(future&& rhs) noexcept;

8 Effects: Move constructs a future object that refers to the shared state that was originally referred to
by rhs (if any).

9 Postconditions:
—(9.1) valid() returns the same value as rhs.valid() prior to the constructor invocation.
—(9.2) rhs.valid() == false.

~future();

10 Effects:
—(10.1) Releases any shared state (33.10.5);
—(10.2) destroys *this.

future& operator=(future&& rhs) noexcept;

11 Effects: If addressof(rhs) == this is true, there are no effects. Otherwise:
—(11.1) Releases any shared state (33.10.5).
—(11.2) move assigns the contents of rhs to *this.

12 Postconditions:
—(12.1) valid() returns the same value as rhs.valid() prior to the assignment.
—(12.2) If addressof(rhs) == this is false, rhs.valid() == false.

shared_future<R> share() noexcept;

13 Postconditions: valid() == false.
14 Returns: shared_future<R>(std::move(*this)).

R future::get();
R& future<R&>::get();
void future<void>::get();

15 [Note 3 : As described above, the template and its two required specializations differ only in the return type
and return value of the member function get. — end note ]

16 Effects:
—(16.1) wait()s until the shared state is ready, then retrieves the value stored in the shared state;
—(16.2) releases any shared state (33.10.5).
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17 Postconditions: valid() == false.
18 Returns:

—(18.1) future::get() returns the value v stored in the object’s shared state as std::move(v).
—(18.2) future<R&>::get() returns the reference stored as value in the object’s shared state.
—(18.3) future<void>::get() returns nothing.

19 Throws: The stored exception, if an exception was stored in the shared state.

bool valid() const noexcept;

20 Returns: true only if *this refers to a shared state.

void wait() const;

21 Effects: Blocks until the shared state is ready.

template<class Rep, class Period>
future_status wait_for(const chrono::duration<Rep, Period>& rel_time) const;

22 Effects: None if the shared state contains a deferred function (33.10.9), otherwise blocks until the
shared state is ready or until the relative timeout (33.2.4) specified by rel_time has expired.

23 Returns:
—(23.1) future_status::deferred if the shared state contains a deferred function.
—(23.2) future_status::ready if the shared state is ready.
—(23.3) future_status::timeout if the function is returning because the relative timeout (33.2.4) specified

by rel_time has expired.
24 Throws: timeout-related exceptions (33.2.4).

template<class Clock, class Duration>
future_status wait_until(const chrono::time_point<Clock, Duration>& abs_time) const;

25 Effects: None if the shared state contains a deferred function (33.10.9), otherwise blocks until the
shared state is ready or until the absolute timeout (33.2.4) specified by abs_time has expired.

26 Returns:
—(26.1) future_status::deferred if the shared state contains a deferred function.
—(26.2) future_status::ready if the shared state is ready.
—(26.3) future_status::timeout if the function is returning because the absolute timeout (33.2.4)

specified by abs_time has expired.
27 Throws: timeout-related exceptions (33.2.4).

33.10.8 Class template shared_future [futures.shared.future]
1 The class template shared_future defines a type for asynchronous return objects which may share their

shared state with other asynchronous return objects. A default-constructed shared_future object has no
shared state. A shared_future object with shared state can be created by conversion from a future object
and shares its shared state with the original asynchronous provider (33.10.5) of the shared state. The result
(value or exception) of a shared_future object can be set by calling a respective function on an object that
shares the same shared state.

2 [Note 1 : Member functions of shared_future do not synchronize with themselves, but they synchronize with the
shared state. — end note ]

3 The effect of calling any member function other than the destructor, the move-assignment operator, the
copy-assignment operator, or valid() on a shared_future object for which valid() == false is undefined.
[Note 2 : It is valid to copy or move from a shared_future object for which valid() is false. — end note ]

Recommended practice: Implementations should detect this case and throw an object of type future_error
with an error condition of future_errc::no_state.

namespace std {
template<class R>
class shared_future {
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public:
shared_future() noexcept;
shared_future(const shared_future& rhs) noexcept;
shared_future(future<R>&&) noexcept;
shared_future(shared_future&& rhs) noexcept;
~shared_future();
shared_future& operator=(const shared_future& rhs) noexcept;
shared_future& operator=(shared_future&& rhs) noexcept;

// retrieving the value
see below get() const;

// functions to check state
bool valid() const noexcept;

void wait() const;
template<class Rep, class Period>

future_status wait_for(const chrono::duration<Rep, Period>& rel_time) const;
template<class Clock, class Duration>

future_status wait_until(const chrono::time_point<Clock, Duration>& abs_time) const;
};

}

4 For the primary template, R shall be an object type that meets the Cpp17Destructible requirements.
5 The implementation provides the template shared_future and two specializations, shared_future<R&> and

shared_future<void>. These differ only in the return type and return value of the member function get,
as set out in its description, below.

shared_future() noexcept;

6 Effects: The object does not refer to a shared state.
7 Postconditions: valid() == false.

shared_future(const shared_future& rhs) noexcept;

8 Effects: The object refers to the same shared state as rhs (if any).
9 Postconditions: valid() returns the same value as rhs.valid().

shared_future(future<R>&& rhs) noexcept;
shared_future(shared_future&& rhs) noexcept;

10 Effects: Move constructs a shared_future object that refers to the shared state that was originally
referred to by rhs (if any).

11 Postconditions:
—(11.1) valid() returns the same value as rhs.valid() returned prior to the constructor invocation.
—(11.2) rhs.valid() == false.

~shared_future();

12 Effects:
—(12.1) Releases any shared state (33.10.5);
—(12.2) destroys *this.

shared_future& operator=(shared_future&& rhs) noexcept;

13 Effects: If addressof(rhs) == this is true, there are no effects. Otherwise:
—(13.1) Releases any shared state (33.10.5);
—(13.2) move assigns the contents of rhs to *this.

14 Postconditions:
—(14.1) valid() returns the same value as rhs.valid() returned prior to the assignment.
—(14.2) If addressof(rhs) == this is false, rhs.valid() == false.
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shared_future& operator=(const shared_future& rhs) noexcept;

15 Effects: If addressof(rhs) == this is true, there are no effects. Otherwise:
—(15.1) Releases any shared state (33.10.5);
—(15.2) assigns the contents of rhs to *this.

[Note 3 : As a result, *this refers to the same shared state as rhs (if any). — end note ]
16 Postconditions: valid() == rhs.valid().

const R& shared_future::get() const;
R& shared_future<R&>::get() const;
void shared_future<void>::get() const;

17 [Note 4 : As described above, the template and its two required specializations differ only in the return type
and return value of the member function get. — end note ]

18 [Note 5 : Access to a value object stored in the shared state is unsynchronized, so operations on R might
introduce a data race (6.9.2). — end note ]

19 Effects: wait()s until the shared state is ready, then retrieves the value stored in the shared state.
20 Returns:

—(20.1) shared_future::get() returns a const reference to the value stored in the object’s shared state.
[Note 6 : Access through that reference after the shared state has been destroyed produces undefined
behavior; this can be avoided by not storing the reference in any storage with a greater lifetime than the
shared_future object that returned the reference. — end note ]

—(20.2) shared_future<R&>::get() returns the reference stored as value in the object’s shared state.
—(20.3) shared_future<void>::get() returns nothing.

21 Throws: The stored exception, if an exception was stored in the shared state.

bool valid() const noexcept;

22 Returns: true only if *this refers to a shared state.

void wait() const;

23 Effects: Blocks until the shared state is ready.

template<class Rep, class Period>
future_status wait_for(const chrono::duration<Rep, Period>& rel_time) const;

24 Effects: None if the shared state contains a deferred function (33.10.9), otherwise blocks until the
shared state is ready or until the relative timeout (33.2.4) specified by rel_time has expired.

25 Returns:
—(25.1) future_status::deferred if the shared state contains a deferred function.
—(25.2) future_status::ready if the shared state is ready.
—(25.3) future_status::timeout if the function is returning because the relative timeout (33.2.4) specified

by rel_time has expired.
26 Throws: timeout-related exceptions (33.2.4).

template<class Clock, class Duration>
future_status wait_until(const chrono::time_point<Clock, Duration>& abs_time) const;

27 Effects: None if the shared state contains a deferred function (33.10.9), otherwise blocks until the
shared state is ready or until the absolute timeout (33.2.4) specified by abs_time has expired.

28 Returns:
—(28.1) future_status::deferred if the shared state contains a deferred function.
—(28.2) future_status::ready if the shared state is ready.
—(28.3) future_status::timeout if the function is returning because the absolute timeout (33.2.4)

specified by abs_time has expired.
29 Throws: timeout-related exceptions (33.2.4).
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33.10.9 Function template async [futures.async]
1 The function template async provides a mechanism to launch a function potentially in a new thread and

provides the result of the function in a future object with which it shares a shared state.

template<class F, class... Args>
[[nodiscard]] future<invoke_result_t<decay_t<F>, decay_t<Args>...>>

async(F&& f, Args&&... args);
template<class F, class... Args>

[[nodiscard]] future<invoke_result_t<decay_t<F>, decay_t<Args>...>>
async(launch policy, F&& f, Args&&... args);

2 Mandates: The following are all true:
—(2.1) is_constructible_v<decay_t<F>, F>,
—(2.2) (is_constructible_v<decay_t<Args>, Args> && ...), and
—(2.3) is_invocable_v<decay_t<F>, decay_t<Args>...>.

3 Effects: The first function behaves the same as a call to the second function with a policy argument of
launch::async | launch::deferred and the same arguments for F and Args. The second function
creates a shared state that is associated with the returned future object. The further behavior of
the second function depends on the policy argument as follows (if more than one of these conditions
applies, the implementation may choose any of the corresponding policies):

—(3.1) If launch::async is set in policy, calls invoke(auto(std::forward<F>(f)), auto(std::for-
ward<Args>(args))...) (22.10.5, 33.4.3.3) as if in a new thread of execution represented by a
thread object with the values produced by auto being materialized (7.3.5) in the thread that called
async. Any return value is stored as the result in the shared state. Any exception propagated from
the execution of invoke(auto(std::forward<F>(f)), auto(std::forward<Args>(args))...)
is stored as the exceptional result in the shared state. The thread object is stored in the shared
state and affects the behavior of any asynchronous return objects that reference that state.

—(3.2) If launch::deferred is set in policy, stores auto(std::forward<F>(f)) and auto(std::for-
ward<Args>(args))... in the shared state. These copies of f and args constitute a deferred
function. Invocation of the deferred function evaluates invoke(std::move(g), std::move(xyz))
where g is the stored value of auto(std::forward<F>(f)) and xyz is the stored copy of
auto(std::forward<Args>(args)).... Any return value is stored as the result in the shared
state. Any exception propagated from the execution of the deferred function is stored as the
exceptional result in the shared state. The shared state is not made ready until the function
has completed. The first call to a non-timed waiting function (33.10.5) on an asynchronous
return object referring to this shared state invokes the deferred function in the thread that called
the waiting function. Once evaluation of invoke(std::move(g), std::move(xyz)) begins, the
function is no longer considered deferred.
Recommended practice: If this policy is specified together with other policies, such as when using a
policy value of launch::async | launch::deferred, implementations should defer invocation
or the selection of the policy when no more concurrency can be effectively exploited.

—(3.3) If no value is set in the launch policy, or a value is set that is neither specified in this document
nor by the implementation, the behavior is undefined.

4 Synchronization: The invocation of async synchronizes with the invocation of f. The completion of
the function f is sequenced before the shared state is made ready.
[Note 1 : These apply regardless of the provided policy argument, and even if the corresponding future object
is moved to another thread. However, it is possible for f not to be called at all, in which case its completion
never happens. — end note ]

If the implementation chooses the launch::async policy,
—(4.1) a call to a waiting function on an asynchronous return object that shares the shared state created

by this async call shall block until the associated thread has completed, as if joined, or else time
out (33.4.3.6);

—(4.2) the associated thread completion synchronizes with (6.9.2) the return from the first function that
successfully detects the ready status of the shared state or with the return from the last function
that releases the shared state, whichever happens first.
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5 Returns: An object of type future<invoke_result_t<decay_t<F>, decay_t<Args>...>> that refers
to the shared state created by this call to async.
[Note 2 : If a future obtained from async is moved outside the local scope, the future’s destructor can block for
the shared state to become ready. — end note ]

6 Throws: system_error if policy == launch::async and the implementation is unable to start a new
thread, or std::bad_alloc if memory for the internal data structures cannot be allocated.

7 Error conditions:
—(7.1) resource_unavailable_try_again — if policy == launch::async and the system is unable

to start a new thread.
8 [Example 1 :

int work1(int value);
int work2(int value);
int work(int value) {

auto handle = std::async([=]{ return work2(value); });
int tmp = work1(value);
return tmp + handle.get(); // #1

}

[Note 3 : Line #1 might not result in concurrency because the async call uses the default policy, which might use
launch::deferred, in which case the lambda might not be invoked until the get() call; in that case, work1 and
work2 are called on the same thread and there is no concurrency. — end note ]
— end example ]

33.10.10 Class template packaged_task [futures.task]
33.10.10.1 General [futures.task.general]

1 The class template packaged_task defines a type for wrapping a function or callable object so that the
return value of the function or callable object is stored in a future when it is invoked.

2 When the packaged_task object is invoked, its stored task is invoked and the result (whether normal or
exceptional) stored in the shared state. Any futures that share the shared state will then be able to access
the stored result.

namespace std {
template<class> class packaged_task; // not defined

template<class R, class... ArgTypes>
class packaged_task<R(ArgTypes...)> {
public:

// construction and destruction
packaged_task() noexcept;
template<class F>

explicit packaged_task(F&& f);
~packaged_task();

// no copy
packaged_task(const packaged_task&) = delete;
packaged_task& operator=(const packaged_task&) = delete;

// move support
packaged_task(packaged_task&& rhs) noexcept;
packaged_task& operator=(packaged_task&& rhs) noexcept;
void swap(packaged_task& other) noexcept;

bool valid() const noexcept;

// result retrieval
future<R> get_future();

// execution
void operator()(ArgTypes... );
void make_ready_at_thread_exit(ArgTypes...);
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void reset();
};

template<class R, class... ArgTypes>
packaged_task(R (*)(ArgTypes...)) -> packaged_task<R(ArgTypes...)>;

template<class F> packaged_task(F) -> packaged_task<see below >;
}

33.10.10.2 Member functions [futures.task.members]

packaged_task() noexcept;

1 Effects: The object has no shared state and no stored task.

template<class F>
explicit packaged_task(F&& f);

2 Constraints: remove_cvref_t<F> is not the same type as packaged_task<R(ArgTypes...)>.
3 Mandates: is_invocable_r_v<R, F&, ArgTypes...> is true.
4 Preconditions: Invoking a copy of f behaves the same as invoking f.
5 Effects: Constructs a new packaged_task object with a shared state and initializes the object’s stored

task with std::forward<F>(f).
6 Throws: Any exceptions thrown by the copy or move constructor of f, or bad_alloc if memory for the

internal data structures cannot be allocated.

template<class F> packaged_task(F) -> packaged_task<see below >;

7 Constraints: &F::operator() is well-formed when treated as an unevaluated operand (7.2.3) and either
—(7.1) F::operator() is a non-static member function and decltype(&F::operator()) is either of the

form R(G::*)(A...) cv &opt noexceptopt or of the form R(*)(G, A...) noexceptopt for a type
G, or

—(7.2) F::operator() is a static member function and decltype(&F::operator()) is of the form
R(*)(A...) noexceptopt .

8 Remarks: The deduced type is packaged_task<R(A...)>.

packaged_task(packaged_task&& rhs) noexcept;

9 Effects: Transfers ownership of rhs’s shared state to *this, leaving rhs with no shared state. Moves
the stored task from rhs to *this.

10 Postconditions: rhs has no shared state.

packaged_task& operator=(packaged_task&& rhs) noexcept;

11 Effects:
—(11.1) Releases any shared state (33.10.5);
—(11.2) calls packaged_task(std::move(rhs)).swap(*this).

~packaged_task();

12 Effects: Abandons any shared state (33.10.5).

void swap(packaged_task& other) noexcept;

13 Effects: Exchanges the shared states and stored tasks of *this and other.
14 Postconditions: *this has the same shared state and stored task (if any) as other prior to the call to

swap. other has the same shared state and stored task (if any) as *this prior to the call to swap.

bool valid() const noexcept;

15 Returns: true only if *this has a shared state.
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future<R> get_future();

16 Synchronization: Calls to this function do not introduce data races (6.9.2) with calls to operator() or
make_ready_at_thread_exit.
[Note 1 : Such calls need not synchronize with each other. — end note ]

17 Returns: A future object that shares the same shared state as *this.
18 Throws: A future_error object if an error occurs.
19 Error conditions:

—(19.1) future_already_retrieved if get_future has already been called on a packaged_task object
with the same shared state as *this.

—(19.2) no_state if *this has no shared state.

void operator()(ArgTypes... args);

20 Effects: As if by INVOKE<R>(f, t1, t2, . . . , tN ) (22.10.4), where f is the stored task of *this and
t1, t2, . . . , tN are the values in args.... If the task returns normally, the return value is stored as
the asynchronous result in the shared state of *this, otherwise the exception thrown by the task is
stored. The shared state of *this is made ready, and any threads blocked in a function waiting for the
shared state of *this to become ready are unblocked.

21 Throws: A future_error exception object if there is no shared state or the stored task has already
been invoked.

22 Error conditions:
—(22.1) promise_already_satisfied if the stored task has already been invoked.
—(22.2) no_state if *this has no shared state.

void make_ready_at_thread_exit(ArgTypes... args);

23 Effects: As if by INVOKE<R>(f, t1, t2, . . . , tN ) (22.10.4), where f is the stored task and t1, t2,
. . . , tN are the values in args.... If the task returns normally, the return value is stored as the
asynchronous result in the shared state of *this, otherwise the exception thrown by the task is stored.
In either case, this is done without making that state ready (33.10.5) immediately. Schedules the shared
state to be made ready when the current thread exits, after all objects of thread storage duration
associated with the current thread have been destroyed.

24 Throws: future_error if an error condition occurs.
25 Error conditions:

—(25.1) promise_already_satisfied if the stored task has already been invoked.
—(25.2) no_state if *this has no shared state.

void reset();

26 Effects: As if *this = packaged_task(std::move(f)), where f is the task stored in *this.
[Note 2 : This constructs a new shared state for *this. The old state is abandoned (33.10.5). — end note ]

27 Throws:
—(27.1) bad_alloc if memory for the new shared state cannot be allocated.
—(27.2) Any exception thrown by the move constructor of the task stored in the shared state.
—(27.3) future_error with an error condition of no_state if *this has no shared state.

33.10.10.3 Globals [futures.task.nonmembers]

template<class R, class... ArgTypes>
void swap(packaged_task<R(ArgTypes...)>& x, packaged_task<R(ArgTypes...)>& y) noexcept;

1 Effects: As if by x.swap(y).
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Annex A (informative)
Grammar summary [gram]
A.1 General [gram.general]

1 This summary of C++ grammar is intended to be an aid to comprehension. It is not an exact statement
of the language. In particular, the grammar described here accepts a superset of valid C++ constructs.
Disambiguation rules (8.9, 9.2, 6.5.2) are applied to distinguish expressions from declarations. Further, access
control, ambiguity, and type rules are used to weed out syntactically valid but meaningless constructs.

A.2 Keywords [gram.key]
1 New context-dependent keywords are introduced into a program by typedef (9.2.4), namespace (9.8.2),

class (Clause 11), enumeration (9.7.1), and template (Clause 13) declarations.
typedef-name:

identifier
simple-template-id

namespace-name:
identifier
namespace-alias

namespace-alias:
identifier

class-name:
identifier
simple-template-id

enum-name:
identifier

template-name:
identifier

A.3 Lexical conventions [gram.lex]
n-char : one of

any member of the translation character set except the u+007d right curly bracket or new-line
character

n-char-sequence :
n-char
n-char-sequence n-char

named-universal-character :
\N{ n-char-sequence }

hex-quad :
hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit

simple-hexadecimal-digit-sequence :
hexadecimal-digit
simple-hexadecimal-digit-sequence hexadecimal-digit

universal-character-name :
\u hex-quad
\U hex-quad hex-quad
\u{ simple-hexadecimal-digit-sequence }
named-universal-character
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preprocessing-token :
header-name
import-keyword
module-keyword
export-keyword
identifier
pp-number
character-literal
user-defined-character-literal
string-literal
user-defined-string-literal
preprocessing-op-or-punc
each non-whitespace character that cannot be one of the above

token :
identifier
keyword
literal
operator-or-punctuator

header-name :
< h-char-sequence >
" q-char-sequence "

h-char-sequence :
h-char
h-char-sequence h-char

h-char :
any member of the translation character set except new-line and u+003e greater-than sign

q-char-sequence :
q-char
q-char-sequence q-char

q-char :
any member of the translation character set except new-line and u+0022 quotation mark

pp-number :
digit
. digit
pp-number identifier-continue
pp-number ’ digit
pp-number ’ nondigit
pp-number e sign
pp-number E sign
pp-number p sign
pp-number P sign
pp-number .

identifier :
identifier-start
identifier identifier-continue

identifier-start :
nondigit
an element of the translation character set with the Unicode property XID_Start

identifier-continue :
digit
nondigit
an element of the translation character set with the Unicode property XID_Continue

nondigit : one of
a b c d e f g h i j k l m
n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z _

digit : one of
0 1 2 3 4 5 6 7 8 9
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keyword :
any identifier listed in Table 5
import-keyword
module-keyword
export-keyword

preprocessing-op-or-punc :
preprocessing-operator
operator-or-punctuator

preprocessing-operator : one of
# ## %: %:%:

operator-or-punctuator : one of
{ } [ ] ( )
<: :> <% %> ; : ...
? :: . .* -> ->* ~
! + - * / % ^ & |
= += -= *= /= %= ^= &= |=
== != < > <= >= <=> && ||
<< >> <<= >>= ++ -- ,
and or xor not bitand bitor compl
and_eq or_eq xor_eq not_eq

literal :
integer-literal
character-literal
floating-point-literal
string-literal
boolean-literal
pointer-literal
user-defined-literal

integer-literal :
binary-literal integer-suffixopt
octal-literal integer-suffixopt
decimal-literal integer-suffixopt
hexadecimal-literal integer-suffixopt

binary-literal :
0b binary-digit
0B binary-digit
binary-literal ’opt binary-digit

octal-literal :
0
octal-literal ’opt octal-digit

decimal-literal :
nonzero-digit
decimal-literal ’opt digit

hexadecimal-literal :
hexadecimal-prefix hexadecimal-digit-sequence

binary-digit : one of
0 1

octal-digit : one of
0 1 2 3 4 5 6 7

nonzero-digit : one of
1 2 3 4 5 6 7 8 9

hexadecimal-prefix : one of
0x 0X

hexadecimal-digit-sequence :
hexadecimal-digit
hexadecimal-digit-sequence ’opt hexadecimal-digit
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hexadecimal-digit : one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

integer-suffix :
unsigned-suffix long-suffixopt
unsigned-suffix long-long-suffixopt
unsigned-suffix size-suffixopt
long-suffix unsigned-suffixopt
long-long-suffix unsigned-suffixopt
size-suffix unsigned-suffixopt

unsigned-suffix : one of
u U

long-suffix : one of
l L

long-long-suffix : one of
ll LL

size-suffix : one of
z Z

character-literal :
encoding-prefixopt ’ c-char-sequence ’

encoding-prefix : one of
u8 u U L

c-char-sequence :
c-char
c-char-sequence c-char

c-char :
basic-c-char
escape-sequence
universal-character-name

basic-c-char :
any member of the translation character set except the u+0027 apostrophe,

u+005c reverse solidus, or new-line character
escape-sequence :

simple-escape-sequence
numeric-escape-sequence
conditional-escape-sequence

simple-escape-sequence :
\ simple-escape-sequence-char

simple-escape-sequence-char : one of
’ " ? \ a b f n r t v

numeric-escape-sequence :
octal-escape-sequence
hexadecimal-escape-sequence

simple-octal-digit-sequence :
octal-digit
simple-octal-digit-sequence octal-digit

octal-escape-sequence :
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit
\o{ simple-octal-digit-sequence }

hexadecimal-escape-sequence :
\x simple-hexadecimal-digit-sequence
\x{ simple-hexadecimal-digit-sequence }
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conditional-escape-sequence :
\ conditional-escape-sequence-char

conditional-escape-sequence-char :
any member of the basic character set that is not an octal-digit, a simple-escape-sequence-char, or the
characters N, o, u, U, or x

floating-point-literal :
decimal-floating-point-literal
hexadecimal-floating-point-literal

decimal-floating-point-literal :
fractional-constant exponent-partopt floating-point-suffixopt
digit-sequence exponent-part floating-point-suffixopt

hexadecimal-floating-point-literal :
hexadecimal-prefix hexadecimal-fractional-constant binary-exponent-part floating-point-suffixopt
hexadecimal-prefix hexadecimal-digit-sequence binary-exponent-part floating-point-suffixopt

fractional-constant :
digit-sequenceopt . digit-sequence
digit-sequence .

hexadecimal-fractional-constant :
hexadecimal-digit-sequenceopt . hexadecimal-digit-sequence
hexadecimal-digit-sequence .

exponent-part :
e signopt digit-sequence
E signopt digit-sequence

binary-exponent-part :
p signopt digit-sequence
P signopt digit-sequence

sign : one of
+ -

digit-sequence :
digit
digit-sequence ’opt digit

floating-point-suffix : one of
f l f16 f32 f64 f128 bf16 F L F16 F32 F64 F128 BF16

string-literal :
encoding-prefixopt " s-char-sequenceopt "
encoding-prefixopt R raw-string

s-char-sequence :
s-char
s-char-sequence s-char

s-char :
basic-s-char
escape-sequence
universal-character-name

basic-s-char :
any member of the translation character set except the u+0022 quotation mark,

u+005c reverse solidus, or new-line character
raw-string :

" d-char-sequenceopt ( r-char-sequenceopt ) d-char-sequenceopt "

r-char-sequence :
r-char
r-char-sequence r-char

r-char :
any member of the translation character set, except a u+0029 right parenthesis followed by

the initial d-char-sequence (which may be empty) followed by a u+0022 quotation mark
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d-char-sequence :
d-char
d-char-sequence d-char

d-char :
any member of the basic character set except:

u+0020 space, u+0028 left parenthesis, u+0029 right parenthesis, u+005c reverse solidus,
u+0009 character tabulation, u+000b line tabulation, u+000c form feed, and new-line

boolean-literal :
false
true

pointer-literal :
nullptr

user-defined-literal :
user-defined-integer-literal
user-defined-floating-point-literal
user-defined-string-literal
user-defined-character-literal

user-defined-integer-literal :
decimal-literal ud-suffix
octal-literal ud-suffix
hexadecimal-literal ud-suffix
binary-literal ud-suffix

user-defined-floating-point-literal :
fractional-constant exponent-partopt ud-suffix
digit-sequence exponent-part ud-suffix
hexadecimal-prefix hexadecimal-fractional-constant binary-exponent-part ud-suffix
hexadecimal-prefix hexadecimal-digit-sequence binary-exponent-part ud-suffix

user-defined-string-literal :
string-literal ud-suffix

user-defined-character-literal :
character-literal ud-suffix

ud-suffix :
identifier

A.4 Basics [gram.basic]
translation-unit :

declaration-seqopt
global-module-fragmentopt module-declaration declaration-seqopt private-module-fragmentopt

A.5 Expressions [gram.expr]
primary-expression :

literal
this
( expression )
id-expression
lambda-expression
fold-expression
requires-expression

id-expression :
unqualified-id
qualified-id

unqualified-id :
identifier
operator-function-id
conversion-function-id
literal-operator-id
~ type-name
~ decltype-specifier
template-id
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qualified-id :
nested-name-specifier templateopt unqualified-id

nested-name-specifier :
::
type-name ::
namespace-name ::
decltype-specifier ::
nested-name-specifier identifier ::
nested-name-specifier templateopt simple-template-id ::

lambda-expression :
lambda-introducer attribute-specifier-seqopt lambda-declarator compound-statement
lambda-introducer < template-parameter-list > requires-clauseopt attribute-specifier-seqopt

lambda-declarator compound-statement
lambda-introducer :

[ lambda-captureopt ]

lambda-declarator :
lambda-specifier-seq noexcept-specifieropt attribute-specifier-seqopt trailing-return-typeopt
noexcept-specifier attribute-specifier-seqopt trailing-return-typeopt
trailing-return-typeopt
( parameter-declaration-clause ) lambda-specifier-seqopt noexcept-specifieropt attribute-specifier-seqopt

trailing-return-typeopt requires-clauseopt

lambda-specifier :
consteval
constexpr
mutable
static

lambda-specifier-seq :
lambda-specifier
lambda-specifier lambda-specifier-seq

lambda-capture :
capture-default
capture-list
capture-default , capture-list

capture-default :
&
=

capture-list :
capture
capture-list , capture

capture :
simple-capture
init-capture

simple-capture :
identifier ...opt
& identifier ...opt
this
* this

init-capture :
...opt identifier initializer
& ...opt identifier initializer

fold-expression :
( cast-expression fold-operator ... )
( ... fold-operator cast-expression )
( cast-expression fold-operator ... fold-operator cast-expression )

fold-operator : one of
+ - * / % ^ & | << >>
+= -= *= /= %= ^= &= |= <<= >>= =
== != < > <= >= && || , .* ->*
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requires-expression :
requires requirement-parameter-listopt requirement-body

requirement-parameter-list :
( parameter-declaration-clause )

requirement-body :
{ requirement-seq }

requirement-seq :
requirement
requirement requirement-seq

requirement :
simple-requirement
type-requirement
compound-requirement
nested-requirement

simple-requirement :
expression ;

type-requirement :
typename nested-name-specifieropt type-name ;

compound-requirement :
{ expression } noexceptopt return-type-requirementopt ;

return-type-requirement :
-> type-constraint

nested-requirement :
requires constraint-expression ;

postfix-expression :
primary-expression
postfix-expression [ expression-listopt ]
postfix-expression ( expression-listopt )
simple-type-specifier ( expression-listopt )
typename-specifier ( expression-listopt )
simple-type-specifier braced-init-list
typename-specifier braced-init-list
postfix-expression . templateopt id-expression
postfix-expression -> templateopt id-expression
postfix-expression ++
postfix-expression --
dynamic_cast < type-id > ( expression )
static_cast < type-id > ( expression )
reinterpret_cast < type-id > ( expression )
const_cast < type-id > ( expression )
typeid ( expression )
typeid ( type-id )

expression-list :
initializer-list

unary-expression :
postfix-expression
unary-operator cast-expression
++ cast-expression
-- cast-expression
await-expression
sizeof unary-expression
sizeof ( type-id )
sizeof ... ( identifier )
alignof ( type-id )
noexcept-expression
new-expression
delete-expression

unary-operator : one of
* & + - ! ~
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await-expression :
co_await cast-expression

noexcept-expression :
noexcept ( expression )

new-expression :
::opt new new-placementopt new-type-id new-initializeropt
::opt new new-placementopt ( type-id ) new-initializeropt

new-placement :
( expression-list )

new-type-id :
type-specifier-seq new-declaratoropt

new-declarator :
ptr-operator new-declaratoropt
noptr-new-declarator

noptr-new-declarator :
[ expressionopt ] attribute-specifier-seqopt
noptr-new-declarator [ constant-expression ] attribute-specifier-seqopt

new-initializer :
( expression-listopt )
braced-init-list

delete-expression :
::opt delete cast-expression
::opt delete [ ] cast-expression

cast-expression :
unary-expression
( type-id ) cast-expression

pm-expression :
cast-expression
pm-expression .* cast-expression
pm-expression ->* cast-expression

multiplicative-expression :
pm-expression
multiplicative-expression * pm-expression
multiplicative-expression / pm-expression
multiplicative-expression % pm-expression

additive-expression :
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

shift-expression :
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

compare-expression :
shift-expression
compare-expression <=> shift-expression

relational-expression :
compare-expression
relational-expression < compare-expression
relational-expression > compare-expression
relational-expression <= compare-expression
relational-expression >= compare-expression

equality-expression :
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression
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and-expression :
equality-expression
and-expression & equality-expression

exclusive-or-expression :
and-expression
exclusive-or-expression ^ and-expression

inclusive-or-expression :
exclusive-or-expression
inclusive-or-expression | exclusive-or-expression

logical-and-expression :
inclusive-or-expression
logical-and-expression && inclusive-or-expression

logical-or-expression :
logical-and-expression
logical-or-expression || logical-and-expression

conditional-expression :
logical-or-expression
logical-or-expression ? expression : assignment-expression

yield-expression :
co_yield assignment-expression
co_yield braced-init-list

throw-expression :
throw assignment-expressionopt

assignment-expression :
conditional-expression
yield-expression
throw-expression
logical-or-expression assignment-operator initializer-clause

assignment-operator : one of
= *= /= %= += -= >>= <<= &= ^= |=

expression :
assignment-expression
expression , assignment-expression

constant-expression :
conditional-expression

A.6 Statements [gram.stmt]
statement :

labeled-statement
attribute-specifier-seqopt expression-statement
attribute-specifier-seqopt compound-statement
attribute-specifier-seqopt selection-statement
attribute-specifier-seqopt iteration-statement
attribute-specifier-seqopt jump-statement
declaration-statement
attribute-specifier-seqopt try-block

init-statement :
expression-statement
simple-declaration
alias-declaration

condition :
expression
attribute-specifier-seqopt decl-specifier-seq declarator brace-or-equal-initializer

label :
attribute-specifier-seqopt identifier :
attribute-specifier-seqopt case constant-expression :
attribute-specifier-seqopt default :
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labeled-statement :
label statement

expression-statement :
expressionopt ;

compound-statement :
{ statement-seqopt label-seqopt }

statement-seq :
statement
statement-seq statement

label-seq :
label
label-seq label

selection-statement :
if constexpropt ( init-statementopt condition ) statement
if constexpropt ( init-statementopt condition ) statement else statement
if !opt consteval compound-statement
if !opt consteval compound-statement else statement
switch ( init-statementopt condition ) statement

iteration-statement :
while ( condition ) statement
do statement while ( expression ) ;
for ( init-statement conditionopt ; expressionopt ) statement
for ( init-statementopt for-range-declaration : for-range-initializer ) statement

for-range-declaration :
attribute-specifier-seqopt decl-specifier-seq declarator
attribute-specifier-seqopt decl-specifier-seq ref-qualifieropt [ identifier-list ]

for-range-initializer :
expr-or-braced-init-list

jump-statement :
break ;
continue ;
return expr-or-braced-init-listopt ;
coroutine-return-statement
goto identifier ;

coroutine-return-statement :
co_return expr-or-braced-init-listopt ;

declaration-statement :
block-declaration

A.7 Declarations [gram.dcl]
declaration-seq :

declaration
declaration-seq declaration

declaration :
name-declaration
special-declaration

name-declaration :
block-declaration
nodeclspec-function-declaration
function-definition
template-declaration
deduction-guide
linkage-specification
namespace-definition
empty-declaration
attribute-declaration
module-import-declaration
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special-declaration :
explicit-instantiation
explicit-specialization
export-declaration

block-declaration :
simple-declaration
asm-declaration
namespace-alias-definition
using-declaration
using-enum-declaration
using-directive
static_assert-declaration
alias-declaration
opaque-enum-declaration

nodeclspec-function-declaration :
attribute-specifier-seqopt declarator ;

alias-declaration :
using identifier attribute-specifier-seqopt = defining-type-id ;

simple-declaration :
decl-specifier-seq init-declarator-listopt ;
attribute-specifier-seq decl-specifier-seq init-declarator-list ;
attribute-specifier-seqopt decl-specifier-seq ref-qualifieropt [ identifier-list ] initializer ;

static_assert-declaration :
static_assert ( constant-expression ) ;
static_assert ( constant-expression , string-literal ) ;

empty-declaration :
;

attribute-declaration :
attribute-specifier-seq ;

decl-specifier :
storage-class-specifier
defining-type-specifier
function-specifier
friend
typedef
constexpr
consteval
constinit
inline

decl-specifier-seq :
decl-specifier attribute-specifier-seqopt
decl-specifier decl-specifier-seq

storage-class-specifier :
static
thread_local
extern
mutable

function-specifier :
virtual
explicit-specifier

explicit-specifier :
explicit ( constant-expression )
explicit

typedef-name :
identifier
simple-template-id
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type-specifier :
simple-type-specifier
elaborated-type-specifier
typename-specifier
cv-qualifier

type-specifier-seq :
type-specifier attribute-specifier-seqopt
type-specifier type-specifier-seq

defining-type-specifier :
type-specifier
class-specifier
enum-specifier

defining-type-specifier-seq :
defining-type-specifier attribute-specifier-seqopt
defining-type-specifier defining-type-specifier-seq

simple-type-specifier :
nested-name-specifieropt type-name
nested-name-specifier template simple-template-id
decltype-specifier
placeholder-type-specifier
nested-name-specifieropt template-name
char
char8_t
char16_t
char32_t
wchar_t
bool
short
int
long
signed
unsigned
float
double
void

type-name :
class-name
enum-name
typedef-name

elaborated-type-specifier :
class-key attribute-specifier-seqopt nested-name-specifieropt identifier
class-key simple-template-id
class-key nested-name-specifier templateopt simple-template-id
enum nested-name-specifieropt identifier

decltype-specifier :
decltype ( expression )

placeholder-type-specifier :
type-constraintopt auto
type-constraintopt decltype ( auto )

init-declarator-list :
init-declarator
init-declarator-list , init-declarator

init-declarator :
declarator initializeropt
declarator requires-clause

declarator :
ptr-declarator
noptr-declarator parameters-and-qualifiers trailing-return-type
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ptr-declarator :
noptr-declarator
ptr-operator ptr-declarator

noptr-declarator :
declarator-id attribute-specifier-seqopt
noptr-declarator parameters-and-qualifiers
noptr-declarator [ constant-expressionopt ] attribute-specifier-seqopt
( ptr-declarator )

parameters-and-qualifiers :
( parameter-declaration-clause ) cv-qualifier-seqopt

ref-qualifieropt noexcept-specifieropt attribute-specifier-seqopt

trailing-return-type :
-> type-id

ptr-operator :
* attribute-specifier-seqopt cv-qualifier-seqopt
& attribute-specifier-seqopt
&& attribute-specifier-seqopt
nested-name-specifier * attribute-specifier-seqopt cv-qualifier-seqopt

cv-qualifier-seq :
cv-qualifier cv-qualifier-seqopt

cv-qualifier :
const
volatile

ref-qualifier :
&
&&

declarator-id :
...opt id-expression

type-id :
type-specifier-seq abstract-declaratoropt

defining-type-id :
defining-type-specifier-seq abstract-declaratoropt

abstract-declarator :
ptr-abstract-declarator
noptr-abstract-declaratoropt parameters-and-qualifiers trailing-return-type
abstract-pack-declarator

ptr-abstract-declarator :
noptr-abstract-declarator
ptr-operator ptr-abstract-declaratoropt

noptr-abstract-declarator :
noptr-abstract-declaratoropt parameters-and-qualifiers
noptr-abstract-declaratoropt [ constant-expressionopt ] attribute-specifier-seqopt
( ptr-abstract-declarator )

abstract-pack-declarator :
noptr-abstract-pack-declarator
ptr-operator abstract-pack-declarator

noptr-abstract-pack-declarator :
noptr-abstract-pack-declarator parameters-and-qualifiers
noptr-abstract-pack-declarator [ constant-expressionopt ] attribute-specifier-seqopt
...

parameter-declaration-clause :
parameter-declaration-listopt ...opt
parameter-declaration-list , ...

parameter-declaration-list :
parameter-declaration
parameter-declaration-list , parameter-declaration
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parameter-declaration :
attribute-specifier-seqopt thisopt decl-specifier-seq declarator
attribute-specifier-seqopt decl-specifier-seq declarator = initializer-clause
attribute-specifier-seqopt thisopt decl-specifier-seq abstract-declaratoropt
attribute-specifier-seqopt decl-specifier-seq abstract-declaratoropt = initializer-clause

initializer :
brace-or-equal-initializer
( expression-list )

brace-or-equal-initializer :
= initializer-clause
braced-init-list

initializer-clause :
assignment-expression
braced-init-list

braced-init-list :
{ initializer-list ,opt }
{ designated-initializer-list ,opt }
{ }

initializer-list :
initializer-clause ...opt
initializer-list , initializer-clause ...opt

designated-initializer-list :
designated-initializer-clause
designated-initializer-list , designated-initializer-clause

designated-initializer-clause :
designator brace-or-equal-initializer

designator :
. identifier

expr-or-braced-init-list :
expression
braced-init-list

function-definition :
attribute-specifier-seqopt decl-specifier-seqopt declarator virt-specifier-seqopt function-body
attribute-specifier-seqopt decl-specifier-seqopt declarator requires-clause function-body

function-body :
ctor-initializeropt compound-statement
function-try-block
= default ;
= delete ;

enum-name :
identifier

enum-specifier :
enum-head { enumerator-listopt }
enum-head { enumerator-list , }

enum-head :
enum-key attribute-specifier-seqopt enum-head-nameopt enum-baseopt

enum-head-name :
nested-name-specifieropt identifier

opaque-enum-declaration :
enum-key attribute-specifier-seqopt enum-head-name enum-baseopt ;

enum-key :
enum
enum class
enum struct

enum-base :
: type-specifier-seq

§ A.7 1895



© ISO/IEC N4950

enumerator-list :
enumerator-definition
enumerator-list , enumerator-definition

enumerator-definition :
enumerator
enumerator = constant-expression

enumerator :
identifier attribute-specifier-seqopt

using-enum-declaration :
using enum using-enum-declarator ;

using-enum-declarator :
nested-name-specifieropt identifier
nested-name-specifieropt simple-template-id

namespace-name :
identifier
namespace-alias

namespace-definition :
named-namespace-definition
unnamed-namespace-definition
nested-namespace-definition

named-namespace-definition :
inlineopt namespace attribute-specifier-seqopt identifier { namespace-body }

unnamed-namespace-definition :
inlineopt namespace attribute-specifier-seqopt { namespace-body }

nested-namespace-definition :
namespace enclosing-namespace-specifier :: inlineopt identifier { namespace-body }

enclosing-namespace-specifier :
identifier
enclosing-namespace-specifier :: inlineopt identifier

namespace-body :
declaration-seqopt

namespace-alias :
identifier

namespace-alias-definition :
namespace identifier = qualified-namespace-specifier ;

qualified-namespace-specifier :
nested-name-specifieropt namespace-name

using-directive :
attribute-specifier-seqopt using namespace nested-name-specifieropt namespace-name ;

using-declaration :
using using-declarator-list ;

using-declarator-list :
using-declarator ...opt
using-declarator-list , using-declarator ...opt

using-declarator :
typenameopt nested-name-specifier unqualified-id

asm-declaration :
attribute-specifier-seqopt asm ( string-literal ) ;

linkage-specification :
extern string-literal { declaration-seqopt }
extern string-literal name-declaration

attribute-specifier-seq :
attribute-specifier-seqopt attribute-specifier
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attribute-specifier :
[ [ attribute-using-prefixopt attribute-list ] ]
alignment-specifier

alignment-specifier :
alignas ( type-id ...opt )
alignas ( constant-expression ...opt )

attribute-using-prefix :
using attribute-namespace :

attribute-list :
attributeopt
attribute-list , attributeopt
attribute ...
attribute-list , attribute ...

attribute :
attribute-token attribute-argument-clauseopt

attribute-token :
identifier
attribute-scoped-token

attribute-scoped-token :
attribute-namespace :: identifier

attribute-namespace :
identifier

attribute-argument-clause :
( balanced-token-seqopt )

balanced-token-seq :
balanced-token
balanced-token-seq balanced-token

balanced-token :
( balanced-token-seqopt )
[ balanced-token-seqopt ]
{ balanced-token-seqopt }
any token other than a parenthesis, a bracket, or a brace

A.8 Modules [gram.module]
module-declaration :

export-keywordopt module-keyword module-name module-partitionopt attribute-specifier-seqopt ;

module-name :
module-name-qualifieropt identifier

module-partition :
: module-name-qualifieropt identifier

module-name-qualifier :
identifier .
module-name-qualifier identifier .

export-declaration :
export name-declaration
export { declaration-seqopt }
export-keyword module-import-declaration

module-import-declaration :
import-keyword module-name attribute-specifier-seqopt ;
import-keyword module-partition attribute-specifier-seqopt ;
import-keyword header-name attribute-specifier-seqopt ;

global-module-fragment :
module-keyword ; declaration-seqopt

private-module-fragment :
module-keyword : private ; declaration-seqopt
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A.9 Classes [gram.class]
class-name :

identifier
simple-template-id

class-specifier :
class-head { member-specificationopt }

class-head :
class-key attribute-specifier-seqopt class-head-name class-virt-specifieropt base-clauseopt
class-key attribute-specifier-seqopt base-clauseopt

class-head-name :
nested-name-specifieropt class-name

class-virt-specifier :
final

class-key :
class
struct
union

member-specification :
member-declaration member-specificationopt
access-specifier : member-specificationopt

member-declaration :
attribute-specifier-seqopt decl-specifier-seqopt member-declarator-listopt ;
function-definition
using-declaration
using-enum-declaration
static_assert-declaration
template-declaration
explicit-specialization
deduction-guide
alias-declaration
opaque-enum-declaration
empty-declaration

member-declarator-list :
member-declarator
member-declarator-list , member-declarator

member-declarator :
declarator virt-specifier-seqopt pure-specifieropt
declarator requires-clause
declarator brace-or-equal-initializeropt
identifieropt attribute-specifier-seqopt : constant-expression brace-or-equal-initializeropt

virt-specifier-seq :
virt-specifier
virt-specifier-seq virt-specifier

virt-specifier :
override
final

pure-specifier :
= 0

conversion-function-id :
operator conversion-type-id

conversion-type-id :
type-specifier-seq conversion-declaratoropt

conversion-declarator :
ptr-operator conversion-declaratoropt

base-clause :
: base-specifier-list
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base-specifier-list :
base-specifier ...opt
base-specifier-list , base-specifier ...opt

base-specifier :
attribute-specifier-seqopt class-or-decltype
attribute-specifier-seqopt virtual access-specifieropt class-or-decltype
attribute-specifier-seqopt access-specifier virtualopt class-or-decltype

class-or-decltype :
nested-name-specifieropt type-name
nested-name-specifier template simple-template-id
decltype-specifier

access-specifier :
private
protected
public

ctor-initializer :
: mem-initializer-list

mem-initializer-list :
mem-initializer ...opt
mem-initializer-list , mem-initializer ...opt

mem-initializer :
mem-initializer-id ( expression-listopt )
mem-initializer-id braced-init-list

mem-initializer-id :
class-or-decltype
identifier

A.10 Overloading [gram.over]
operator-function-id :

operator operator
operator : one of

new delete new[] delete[] co_await ( ) [ ] -> ->*
~ ! + - * / % ^ &
| = += -= *= /= %= ^= &=
|= == != < > <= >= <=> &&
|| << >> <<= >>= ++ -- ,

literal-operator-id :
operator string-literal identifier
operator user-defined-string-literal

A.11 Templates [gram.temp]
template-declaration :

template-head declaration
template-head concept-definition

template-head :
template < template-parameter-list > requires-clauseopt

template-parameter-list :
template-parameter
template-parameter-list , template-parameter

requires-clause :
requires constraint-logical-or-expression

constraint-logical-or-expression :
constraint-logical-and-expression
constraint-logical-or-expression || constraint-logical-and-expression

constraint-logical-and-expression :
primary-expression
constraint-logical-and-expression && primary-expression
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template-parameter :
type-parameter
parameter-declaration

type-parameter :
type-parameter-key ...opt identifieropt
type-parameter-key identifieropt = type-id
type-constraint ...opt identifieropt
type-constraint identifieropt = type-id
template-head type-parameter-key ...opt identifieropt
template-head type-parameter-key identifieropt = id-expression

type-parameter-key :
class
typename

type-constraint :
nested-name-specifieropt concept-name
nested-name-specifieropt concept-name < template-argument-listopt >

simple-template-id :
template-name < template-argument-listopt >

template-id :
simple-template-id
operator-function-id < template-argument-listopt >
literal-operator-id < template-argument-listopt >

template-name :
identifier

template-argument-list :
template-argument ...opt
template-argument-list , template-argument ...opt

template-argument :
constant-expression
type-id
id-expression

constraint-expression :
logical-or-expression

deduction-guide :
explicit-specifieropt template-name ( parameter-declaration-clause ) -> simple-template-id ;

concept-definition :
concept concept-name attribute-specifier-seqopt = constraint-expression ;

concept-name :
identifier

typename-specifier :
typename nested-name-specifier identifier
typename nested-name-specifier templateopt simple-template-id

explicit-instantiation :
externopt template declaration

explicit-specialization :
template < > declaration

A.12 Exception handling [gram.except]
try-block :

try compound-statement handler-seq
function-try-block :

try ctor-initializeropt compound-statement handler-seq
handler-seq :

handler handler-seqopt

handler :
catch ( exception-declaration ) compound-statement
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exception-declaration :
attribute-specifier-seqopt type-specifier-seq declarator
attribute-specifier-seqopt type-specifier-seq abstract-declaratoropt
...

noexcept-specifier :
noexcept ( constant-expression )
noexcept

A.13 Preprocessing directives [gram.cpp]
preprocessing-file :

groupopt
module-file

module-file :
pp-global-module-fragmentopt pp-module groupopt pp-private-module-fragmentopt

pp-global-module-fragment :
module ; new-line groupopt

pp-private-module-fragment :
module : private ; new-line groupopt

group :
group-part
group group-part

group-part :
control-line
if-section
text-line
# conditionally-supported-directive

control-line :
# include pp-tokens new-line
pp-import
# define identifier replacement-list new-line
# define identifier lparen identifier-listopt ) replacement-list new-line
# define identifier lparen ... ) replacement-list new-line
# define identifier lparen identifier-list , ... ) replacement-list new-line
# undef identifier new-line
# line pp-tokens new-line
# error pp-tokensopt new-line
# warning pp-tokensopt new-line
# pragma pp-tokensopt new-line
# new-line

if-section :
if-group elif-groupsopt else-groupopt endif-line

if-group :
# if constant-expression new-line groupopt
# ifdef identifier new-line groupopt
# ifndef identifier new-line groupopt

elif-groups :
elif-group
elif-groups elif-group

elif-group :
# elif constant-expression new-line groupopt
# elifdef identifier new-line groupopt
# elifndef identifier new-line groupopt

else-group :
# else new-line groupopt

endif-line :
# endif new-line
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text-line :
pp-tokensopt new-line

conditionally-supported-directive :
pp-tokens new-line

lparen :
a ( character not immediately preceded by whitespace

identifier-list :
identifier
identifier-list , identifier

replacement-list :
pp-tokensopt

pp-tokens :
preprocessing-token
pp-tokens preprocessing-token

new-line :
the new-line character

defined-macro-expression :
defined identifier
defined ( identifier )

h-preprocessing-token :
any preprocessing-token other than >

h-pp-tokens :
h-preprocessing-token
h-pp-tokens h-preprocessing-token

header-name-tokens :
string-literal
< h-pp-tokens >

has-include-expression :
__has_include ( header-name )
__has_include ( header-name-tokens )

has-attribute-expression :
__has_cpp_attribute ( pp-tokens )

pp-module :
exportopt module pp-tokensopt ; new-line

pp-import :
exportopt import header-name pp-tokensopt ; new-line
exportopt import header-name-tokens pp-tokensopt ; new-line
exportopt import pp-tokens ; new-line

va-opt-replacement :
__VA_OPT__ ( pp-tokensopt )
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Annex B (normative)
Implementation quantities [implimits]

1 Because computers are finite, C++ implementations are inevitably limited in the size of the programs
they can successfully process. Every implementation shall document those limitations where known. This
documentation may cite fixed limits where they exist, say how to compute variable limits as a function of
available resources, or say that fixed limits do not exist or are unknown.

2 The limits may constrain quantities that include those described below or others. The bracketed number
following each quantity is recommended as the minimum for that quantity. However, these quantities are
only guidelines and do not determine compliance.

—(2.1) Nesting levels of compound statements (8.4), iteration control structures (8.6), and selection control
structures (8.5) [256].

—(2.2) Nesting levels of conditional inclusion (15.2) [256].
—(2.3) Pointer (9.3.4.2), pointer-to-member (9.3.4.4), array (9.3.4.5), and function (9.3.4.6) declarators (in any

combination) modifying a type in a declaration [256].
—(2.4) Nesting levels of parenthesized expressions (7.5.3) within a full-expression [256].
—(2.5) Number of characters in an internal identifier (5.10) or macro name (15.6) [1 024].
—(2.6) Number of characters in an external identifier (5.10, 6.6) [1 024].
—(2.7) External identifiers (6.6) in one translation unit [65 536].
—(2.8) Identifiers with block scope declared in one block (6.4.3) [1 024].
—(2.9) Structured bindings (9.6) introduced in one declaration [256].
—(2.10) Macro identifiers (15.6) simultaneously defined in one translation unit [65 536].
—(2.11) Parameters in one function definition (9.5.1) [256].
—(2.12) Arguments in one function call (7.6.1.3) [256].
—(2.13) Parameters in one macro definition (15.6) [256].
—(2.14) Arguments in one macro invocation (15.6) [256].
—(2.15) Characters in one logical source line (5.2) [65 536].
—(2.16) Characters in a string-literal (5.13.5) (after concatenation (5.2)) [65 536].
—(2.17) Size of an object (6.7.2) [262 144].
—(2.18) Nesting levels for #include files (15.3) [256].
—(2.19) Case labels for a switch statement (8.5.3) (excluding those for any nested switch statements) [16 384].
—(2.20) Non-static data members (including inherited ones) in a single class (11.4) [16 384].
—(2.21) Lambda-captures in one lambda-expression (7.5.5.3) [256].
—(2.22) Enumeration constants in a single enumeration (9.7.1) [4 096].
—(2.23) Levels of nested class definitions (11.4.12) in a single member-specification [256].
—(2.24) Functions registered by atexit() (17.5) [32].
—(2.25) Functions registered by at_quick_exit() (17.5) [32].
—(2.26) Direct and indirect base classes (11.7) [16 384].
—(2.27) Direct base classes for a single class (11.7) [1 024].
—(2.28) Class members declared in a single member-specification (including member functions) (11.4) [4 096].
—(2.29) Final overriding virtual functions in a class, accessible or not (11.7.3) [16 384].
—(2.30) Direct and indirect virtual bases of a class (11.7.2) [1 024].
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—(2.31) Static data members of a class (11.4.9.3) [1 024].
—(2.32) Friend declarations in a class (11.8.4) [4 096].
—(2.33) Access control declarations in a class (11.8.2) [4 096].
—(2.34) Member initializers in a constructor definition (11.9.3) [6 144].
—(2.35) initializer-clauses in one braced-init-list (9.4) [16 384].
—(2.36) Scope qualifications of one identifier (7.5.4.3) [256].
—(2.37) Nested linkage-specifications (9.11) [1 024].
—(2.38) Recursive constexpr function invocations (9.2.6) [512].
—(2.39) Full-expressions evaluated within a core constant expression (7.7) [1 048 576].
—(2.40) Template parameters in a template declaration (13.2) [1 024].
—(2.41) Recursively nested template instantiations (13.9.2), including substitution during template argument

deduction (13.10.3) [1 024].
—(2.42) Handlers per try block (14.4) [256].
—(2.43) Number of placeholders (22.10.15.5) [10].
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Annex C (informative)
Compatibility [diff]
C.1 C++ and ISO C++ 2020 [diff.cpp20]
C.1.1 General [diff.cpp20.general]

1 Subclause C.1 lists the differences between C++ and ISO C++ 2020 (ISO/IEC 14882:2020, Programming
Languages — C++), by the chapters of this document.

C.1.2 Clause 5: lexical conventions [diff.cpp20.lex]
1 Affected subclause: 5.10

Change: Previously valid identifiers containing characters not present in UAX #44 properties XID_Start or
XID_Continue, or not in Normalization Form C, are now rejected.
Rationale: Prevent confusing characters in identifiers. Requiring normalization of names ensures consistent
linker behavior.
Effect on original feature: Some identifiers are no longer well-formed.

2 Affected subclause: 5.13.5
Change: Concatenated string-literals can no longer have conflicting encoding-prefixes.
Rationale: Removal of unimplemented conditionally-supported feature.
Effect on original feature: Concatenation of string-literals with different encoding-prefixes is now ill-formed.
For example:

auto c = L"a" U"b"; // was conditionally-supported; now ill-formed

C.1.3 Clause 7: expressions [diff.cpp20.expr]
1 Affected subclause: 7.5.4.2

Change: Change move-eligible id-expressions from lvalues to xvalues.
Rationale: Simplify the rules for implicit move.
Effect on original feature: Valid C++ 2020 code that relies on a returned id-expression’s being an lvalue
may change behavior or fail to compile. For example:

decltype(auto) f(int&& x) { return (x); } // returns int&&; previously returned int&
int& g(int&& x) { return x; } // ill-formed; previously well-formed

2 Affected subclause: 7.6.1.2
Change: Change the meaning of comma in subscript expressions.
Rationale: Enable repurposing a deprecated syntax to support multidimensional indexing.
Effect on original feature: Valid C++ 2020 code that uses a comma expression within a subscript expression
may fail to compile. For example:

arr[1, 2] // was equivalent to arr[(1, 2)],
// now equivalent to arr.operator[](1, 2) or ill-formed

C.1.4 Clause 8: statements [diff.cpp20.stmt]
1 Affected subclause: 8.6.5

Change: The lifetime of temporary objects in the for-range-initializer is extended until the end of the
loop (6.7.7).
Rationale: Improve usability of the range-based for statement.
Effect on original feature: Destructors of some temporary objects are invoked later. For example:

void f() {
std::vector<int> v = { 42, 17, 13 };
std::mutex m;

for (int x :
static_cast<void>(std::lock_guard<std::mutex>(m)), v) { // lock released in C++ 2020

std::lock_guard<std::mutex> guard(m); // OK in C++ 2020, now deadlocks
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}
}

C.1.5 Clause 9: declarations [diff.cpp20.dcl]
1 Affected subclause: 9.4.3

Change: UTF-8 string literals may initialize arrays of char or unsigned char.
Rationale: Compatibility with previously written code that conformed to previous versions of this document.
Effect on original feature: Arrays of char or unsigned char may now be initialized with a UTF-8 string
literal. This can affect initialization that includes arrays that are directly initialized within class types,
typically aggregates. For example:

struct A {
char8_t s[10];

};
struct B {

char s[10];
};

void f(A);
void f(B);

int main() {
f({u8""}); // ambiguous

}

C.1.6 Clause 13: templates [diff.cpp20.temp]
1 Affected subclause: 13.10.3.6

Change: Deducing template arguments from exception specifications.
Rationale: Facilitate generic handling of throwing and non-throwing functions.
Effect on original feature: Valid ISO C++ 2020 code may be ill-formed in this revision of C++. For
example:

template<bool> struct A { };
template<bool B> void f(void (*)(A<B>) noexcept(B));
void g(A<false>) noexcept;
void h() {

f(g); // ill-formed; previously well-formed
}

C.1.7 Clause 16: library introduction [diff.cpp20.library]
1 Affected subclause: 16.4.2.3

Change: New headers.
Rationale: New functionality.
Effect on original feature: The following C++ headers are new: <expected> (22.8.2), <flat_map> (24.6.4),
<flat_set> (24.6.5), <generator> (26.8.2), <print> (31.7.4), <spanstream> (31.9.2), <stacktrace> (19.6.2),
and <stdatomic.h> (33.5.12). Valid C++ 2020 code that #includes headers with these names may be invalid
in this revision of C++.

C.1.8 Clause 18: concepts library [diff.cpp20.concepts]
1 Affected subclauses: 17.11.4, 18.5.4, and 18.5.5

Change: Replace common_reference_with in three_way_comparable_with, equality_comparable_with,
and totally_ordered_with with an exposition-only concept.
Rationale: Allow uncopyable, but movable, types to model these concepts.
Effect on original feature: Valid C++ 2020 code relying on subsumption with common_reference_with
may fail to compile in this revision of C++. For example:

template<class T, class U>
requires equality_comparable_with<T, U>

bool attempted_equals(const T&, const U& u); // previously selected overload
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template<class T, class U>
requires common_reference_with<const remove_reference_t<T>&, const remove_reference_t<U>&>

bool attempted_equals(const T& t, const U& u); // ambiguous overload; previously
// rejected by partial ordering

bool test(shared_ptr<int> p) {
return attempted_equals(p, nullptr); // ill-formed; previously well-formed

}

C.1.9 Clause 20: memory management library [diff.cpp20.memory]
1 Affected subclause: 20.2.9.1

Change: Forbid partial and explicit program-defined specializations of allocator_traits.
Rationale: Allow addition of allocate_at_least to allocator_traits, and potentially other members
in the future.
Effect on original feature: Valid C++ 2020 code that partially or explicitly specializes allocator_traits
is ill-formed with no diagnostic required in this revision of C++.

C.1.10 Clause 22: general utilities library [diff.cpp20.utilities]
1 Affected subclause: 22.14

Change: Signature changes: format, format_to, vformat_to, format_to_n, formatted_size. Removal
of format_args_t.
Rationale: Improve safety via compile-time format string checks, avoid unnecessary template instantiations.
Effect on original feature: Valid C++ 2020 code that contained errors in format strings or relied on
previous format string signatures or format_args_t may become ill-formed. For example:

auto s = std::format("{:d}", "I am not a number"); // ill-formed,
// previously threw format_error

2 Affected subclause: 22.14
Change: Signature changes: format, format_to, format_to_n, formatted_size.
Rationale: Enable formatting of views that do not support iteration when const-qualified and that are not
copyable.
Effect on original feature: Valid C++ 2020 code that passes bit fields to formatting functions may become
ill-formed. For example:

struct tiny {
int bit: 1;

};

auto t = tiny();
std::format("{}", t.bit); // ill-formed, previously returned "0"

3 Affected subclause: 22.14.2.2
Change: Restrict types of formatting arguments used as width or precision in a std-format-spec.
Rationale: Disallow types that do not have useful or portable semantics as a formatting width or precision.
Effect on original feature: Valid C++ 2020 code that passes a boolean or character type as arg-id becomes
invalid. For example:

std::format("{:*^{}}", "", true); // ill-formed, previously returned "*"
std::format("{:*^{}}", "", '1'); // ill-formed, previously returned an

// implementation-defined number of ’*’ characters
4 Affected subclause: 22.14.6.3

Change: Removed the formatter specialization:
template<size_t N> struct formatter<const charT[N], charT>;

Rationale: The specialization is inconsistent with the design of formatter, which is intended to be
instantiated only with cv-unqualified object types.
Effect on original feature: Valid C++ 2020 code that instantiated the removed specialization can become
ill-formed.

C.1.11 Clause 23: strings library [diff.cpp20.strings]
1 Affected subclause: 23.4

Change: Additional rvalue overload for the substr member function and the corresponding constructor.
Rationale: Improve efficiency of operations on rvalues.
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Effect on original feature: Valid C++ 2020 code that created a substring by calling substr (or the
corresponding constructor) on an xvalue expression with type S that is a specialization of basic_string
may change meaning in this revision of C++. For example:

std::string s1 = "some long string that forces allocation", s2 = s1;
std::move(s1).substr(10, 5);
assert(s1 == s2); // unspecified, previously guaranteed to be true
std::string s3(std::move(s2), 10, 5);
assert(s1 == s2); // unspecified, previously guaranteed to be true

C.1.12 Clause 24: containers library [diff.cpp20.containers]
1 Affected subclauses: 24.2.7 and 24.2.8

Change: Heterogeneous extract and erase overloads for associative containers.
Rationale: Improve efficiency of erasing elements from associative containers.
Effect on original feature: Valid C++ 2020 code may fail to compile in this revision of C++. For example:

struct B {
auto operator<=>(const B&) const = default;

};

struct D : private B {
void f(std::set<B, std::less<>>& s) {

s.erase(*this); // ill formed; previously well-formed
}

};

C.1.13 Clause 33: concurrency support library [diff.cpp20.thread]
1 Affected subclause: 33.9.3

Change: In this revision of C++, it is implementation-defined whether a barrier’s phase completion step
runs if no thread calls wait. Previously the phase completion step was guaranteed to run on the last thread
that calls arrive or arrive_and_drop during the phase. In this revision of C++, it can run on any of the
threads that arrived or waited at the barrier during the phase.
Rationale: Correct contradictory wording and improve implementation flexibility for performance.
Effect on original feature: Valid C++ 2020 code using a barrier might have different semantics in this
revision of C++ if it depends on a completion function’s side effects occurring exactly once, on a specific
thread running the phase completion step, or on a completion function’s side effects occurring without wait
having been called. For example:

auto b0 = std::barrier(1);
b0.arrive();
b0.arrive(); // implementation-defined; previously well-defined

int data = 0;
auto b1 = std::barrier(1, [&] { data++; });
b1.arrive();
assert(data == 1); // implementation-defined; previously well-defined
b1.arrive(); // implementation-defined; previously well-defined

C.2 C++ and ISO C++ 2017 [diff.cpp17]
C.2.1 General [diff.cpp17.general]

1 Subclause C.2 lists the differences between C++ and ISO C++ 2017 (ISO/IEC 14882:2017, Programming
Languages — C++), by the chapters of this document.

C.2.2 Clause 5: lexical conventions [diff.cpp17.lex]
1 Affected subclauses: 5.4, 10.1, 10.3, 15.1, 15.4, and 15.5

Change: New identifiers with special meaning.
Rationale: Required for new features.
Effect on original feature: Logical lines beginning with module or import may be interpreted differently
in this revision of C++. For example:

class module {};
module m1; // was variable declaration; now module-declaration
module *m2; // variable declaration
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class import {};
import j1; // was variable declaration; now module-import-declaration
::import j2; // variable declaration

2 Affected subclause: 5.8
Change: header-name tokens are formed in more contexts.
Rationale: Required for new features.
Effect on original feature: When the identifier import is followed by a < character, a header-name token
may be formed. For example:

template<typename> class import {};
import<int> f(); // ill-formed; previously well-formed
::import<int> g(); // OK

3 Affected subclause: 5.11
Change: New keywords.
Rationale: Required for new features.

—(3.1) The char8_t keyword is added to differentiate the types of ordinary and UTF-8 literals (5.13.5).
—(3.2) The concept keyword is added to enable the definition of concepts (13.7.9).
—(3.3) The consteval keyword is added to declare immediate functions (9.2.6).
—(3.4) The constinit keyword is added to prevent unintended dynamic initialization (9.2.7).
—(3.5) The co_await, co_yield, and co_return keywords are added to enable the definition of coroutines

(9.5.4).
—(3.6) The requires keyword is added to introduce constraints through a requires-clause (13.1) or a requires-

expression (7.5.7).
Effect on original feature: Valid C++ 2017 code using char8_t, concept, consteval, constinit, co_-
await, co_yield, co_return, or requires as an identifier is not valid in this revision of C++.

4 Affected subclause: 5.12
Change: New operator <=>.
Rationale: Necessary for new functionality.
Effect on original feature: Valid C++ 2017 code that contains a <= token immediately followed by a >
token may be ill-formed or have different semantics in this revision of C++. For example:

namespace N {
struct X {};
bool operator<=(X, X);
template<bool(X, X)> struct Y {};
Y<operator<=> y; // ill-formed; previously well-formed

}

5 Affected subclause: 5.13
Change: Type of UTF-8 string and character literals.
Rationale: Required for new features. The changed types enable function overloading, template specialization,
and type deduction to distinguish ordinary and UTF-8 string and character literals.
Effect on original feature: Valid C++ 2017 code that depends on UTF-8 string literals having type “array
of const char” and UTF-8 character literals having type “char” is not valid in this revision of C++. For
example:

const auto *u8s = u8"text"; // u8s previously deduced as const char*; now deduced as const char8_t*
const char *ps = u8s; // ill-formed; previously well-formed

auto u8c = u8'c'; // u8c previously deduced as char; now deduced as char8_t
char *pc = &u8c; // ill-formed; previously well-formed

std::string s = u8"text"; // ill-formed; previously well-formed

void f(const char *s);
f(u8"text"); // ill-formed; previously well-formed

template<typename> struct ct;
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template<> struct ct<char> {
using type = char;

};
ct<decltype(u8'c')>::type x; // ill-formed; previously well-formed.

C.2.3 Clause 6: basics [diff.cpp17.basic]
1 Affected subclause: 6.7.3

Change: A pseudo-destructor call ends the lifetime of the object to which it is applied.
Rationale: Increase consistency of the language model.
Effect on original feature: Valid ISO C++ 2017 code may be ill-formed or have undefined behavior in this
revision of C++. For example:

int f() {
int a = 123;
using T = int;
a.~T();
return a; // undefined behavior; previously returned 123

}

2 Affected subclause: 6.9.2.2
Change: Except for the initial release operation, a release sequence consists solely of atomic read-modify-
write operations.
Rationale: Removal of rarely used and confusing feature.
Effect on original feature: If a memory_order_release atomic store is followed by a memory_order_-
relaxed store to the same variable by the same thread, then reading the latter value with a memory_order_-
acquire load no longer provides any “happens before” guarantees, even in the absence of intervening stores
by another thread.

C.2.4 Clause 7: expressions [diff.cpp17.expr]
1 Affected subclause: 7.5.5.3

Change: Implicit lambda capture may capture additional entities.
Rationale: Rule simplification, necessary to resolve interactions with constexpr if.
Effect on original feature: Lambdas with a capture-default may capture local entities that were not
captured in C++ 2017 if those entities are only referenced in contexts that do not result in an odr-use.

C.2.5 Clause 9: declarations [diff.cpp17.dcl.dcl]
1 Affected subclause: 9.2.4

Change: Unnamed classes with a typedef name for linkage purposes can contain only C-compatible
constructs.
Rationale: Necessary for implementability.
Effect on original feature: Valid C++ 2017 code may be ill-formed in this revision of C++. For example:

typedef struct {
void f() {} // ill-formed; previously well-formed

} S;

2 Affected subclause: 9.3.4.7
Change: A function cannot have different default arguments in different translation units.
Rationale: Required for modules support.
Effect on original feature: Valid C++ 2017 code may be ill-formed in this revision of C++, with no
diagnostic required. For example:

// Translation unit 1
int f(int a = 42);
int g() { return f(); }

// Translation unit 2
int f(int a = 76) { return a; } // ill-formed, no diagnostic required; previously well-formed
int g();
int main() { return g(); } // used to return 42

3 Affected subclause: 9.4.2
Change: A class that has user-declared constructors is never an aggregate.
Rationale: Remove potentially error-prone aggregate initialization which may apply notwithstanding the
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declared constructors of a class.
Effect on original feature: Valid C++ 2017 code that aggregate-initializes a type with a user-declared
constructor may be ill-formed or have different semantics in this revision of C++. For example:

struct A { // not an aggregate; previously an aggregate
A() = delete;

};

struct B { // not an aggregate; previously an aggregate
B() = default;
int i = 0;

};

struct C { // not an aggregate; previously an aggregate
C(C&&) = default;
int a, b;

};

A a{}; // ill-formed; previously well-formed
B b = {1}; // ill-formed; previously well-formed
auto* c = new C{2, 3}; // ill-formed; previously well-formed

struct Y;

struct X {
operator Y();

};

struct Y { // not an aggregate; previously an aggregate
Y(const Y&) = default;
X x;

};

Y y{X{}}; // copy constructor call; previously aggregate-initialization
4 Affected subclause: 9.4.5

Change: Boolean conversion from a pointer or pointer-to-member type is now a narrowing conversion.
Rationale: Catches bugs.
Effect on original feature: Valid C++ 2017 code may fail to compile in this revision of C++. For example:

bool y[] = { "bc" }; // ill-formed; previously well-formed

C.2.6 Clause 11: classes [diff.cpp17.class]
1 Affected subclauses: 11.4.5 and 11.4.8.3

Change: The class name can no longer be used parenthesized immediately after an explicit decl-specifier
in a constructor declaration. The conversion-function-id can no longer be used parenthesized immediately
after an explicit decl-specifier in a conversion function declaration.
Rationale: Necessary for new functionality.
Effect on original feature: Valid C++ 2017 code may fail to compile in this revision of C++. For example:

struct S {
explicit (S)(const S&); // ill-formed; previously well-formed
explicit (operator int)(); // ill-formed; previously well-formed
explicit(true) (S)(int); // OK

};

2 Affected subclauses: 11.4.5 and 11.4.7
Change: A simple-template-id is no longer valid as the declarator-id of a constructor or destructor.
Rationale: Remove potentially error-prone option for redundancy.
Effect on original feature: Valid C++ 2017 code may fail to compile in this revision of C++. For example:

template<class T>
struct A {

A<T>(); // error: simple-template-id not allowed for constructor
A(int); // OK, injected-class-name used
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~A<T>(); // error: simple-template-id not allowed for destructor
};

3 Affected subclause: 11.9.6
Change: A function returning an implicitly movable entity may invoke a constructor taking an rvalue
reference to a type different from that of the returned expression. Function and catch-clause parameters can
be thrown using move constructors.
Rationale: Side effect of making it easier to write more efficient code that takes advantage of moves.
Effect on original feature: Valid C++ 2017 code may fail to compile or have different semantics in this
revision of C++. For example:

struct base {
base();
base(base const &);

private:
base(base &&);

};

struct derived : base {};

base f(base b) {
throw b; // error: base(base &&) is private
derived d;
return d; // error: base(base &&) is private

}

struct S {
S(const char *s) : m(s) { }
S(const S&) = default;
S(S&& other) : m(other.m) { other.m = nullptr; }
const char * m;

};

S consume(S&& s) { return s; }

void g() {
S s("text");
consume(static_cast<S&&>(s));
char c = *s.m; // undefined behavior; previously ok

}

C.2.7 Clause 12: overloading [diff.cpp17.over]
1 Affected subclause: 12.2.2.3

Change: Equality and inequality expressions can now find reversed and rewritten candidates.
Rationale: Improve consistency of equality with three-way comparison and make it easier to write the full
complement of equality operations.
Effect on original feature: For certain pairs of types where one is convertible to the other, equality or
inequality expressions between an object of one type and an object of the other type invoke a different
operator. Also, for certain types, equality or inequality expressions between two objects of that type become
ambiguous. For example:

struct A {
operator int() const;

};

bool operator==(A, int); // #1
// #2 is built-in candidate: bool operator==(int, int);
// #3 is built-in candidate: bool operator!=(int, int);

int check(A x, A y) {
return (x == y) + // ill-formed; previously well-formed

(10 == x) + // calls #1, previously selected #2
(10 != x); // calls #1, previously selected #3

}
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2 Affected subclause: 12.2.2.3
Change: Overload resolution may change for equality operators (7.6.10).
Rationale: Support calling operator== with reversed order of arguments.
Effect on original feature: Valid C++ 2017 code that uses equality operators with conversion functions
may be ill-formed or have different semantics in this revision of C++. For example:

struct A {
operator int() const { return 10; }

};

bool operator==(A, int); // #1
// #2 is built-in candidate: bool operator==(int, int);
bool b = 10 == A(); // calls #1 with reversed order of arguments; previously selected #2

struct B {
bool operator==(const B&); // member function with no cv-qualifier

};
B b1;
bool eq = (b1 == b1); // ambiguous; previously well-formed

C.2.8 Clause 13: templates [diff.cpp17.temp]
1 Affected subclause: 13.3

Change: An unqualified-id that is followed by a < and for which name lookup finds nothing or finds a
function will be treated as a template-name in order to potentially cause argument dependent lookup to be
performed.
Rationale: It was problematic to call a function template with an explicit template argument list via
argument dependent lookup because of the need to have a template with the same name visible via normal
lookup.
Effect on original feature: Previously valid code that uses a function name as the left operand of a <
operator would become ill-formed. For example:

struct A {};
bool operator<(void (*fp)(), A);
void f() {}
int main() {

A a;
f < a; // ill-formed; previously well-formed
(f) < a; // still well-formed

}

C.2.9 Clause 14: exception handling [diff.cpp17.except]
1 Affected subclause: 14.5

Change: Remove throw() exception specification.
Rationale: Removal of obsolete feature that has been replaced by noexcept.
Effect on original feature: A valid C++ 2017 function declaration, member function declaration, function
pointer declaration, or function reference declaration that uses throw() for its exception specification will be
rejected as ill-formed in this revision of C++. It should simply be replaced with noexcept for no change of
meaning since C++ 2017.
[Note 1 : There is no way to write a function declaration that is non-throwing in this revision of C++ and is also
non-throwing in C++ 2003 except by using the preprocessor to generate a different token sequence in each case. — end
note ]

C.2.10 Clause 16: library introduction [diff.cpp17.library]
1 Affected subclause: 16.4.2.3

Change: New headers.
Rationale: New functionality.
Effect on original feature: The following C++ headers are new: <barrier> (33.9.3.2), <bit> (22.15.2),
<charconv> (22.13.1), <compare> (17.11.1), <concepts> (18.3), <coroutine> (17.12.2), <format> (22.14.1),
<latch> (33.9.2.2), <numbers> (28.8.1), <ranges> (26.2), <semaphore> (33.8.2), <source_location> (17.8.1),
<span> (24.7.2.1), <stop_token> (33.3.2), <syncstream> (31.11.1), and <version> (17.3.1). Valid C++ 2017
code that #includes headers with these names may be invalid in this revision of C++.
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2 Affected subclause: 16.4.2.3
Change: Remove vacuous C++ header files.
Rationale: The empty headers implied a false requirement to achieve C compatibility with the C++ headers.
Effect on original feature: A valid C++ 2017 program that #includes any of the following headers may
fail to compile: <ccomplex>, <ciso646>, <cstdalign>, <cstdbool>, and <ctgmath>. To retain the same
behavior:

—(2.1) a #include of <ccomplex> can be replaced by a #include of <complex> (28.4.2),
—(2.2) a #include of <ctgmath> can be replaced by a #include of <cmath> (28.7.1) and a #include of

<complex>, and
—(2.3) a #include of <ciso646>, <cstdalign>, or <cstdbool> can simply be removed.

C.2.11 Clause 24: containers library [diff.cpp17.containers]
1 Affected subclauses: 24.3.9 and 24.3.10

Change: Return types of remove, remove_if, and unique changed from void to container::size_type.
Rationale: Improve efficiency and convenience of finding number of removed elements.
Effect on original feature: Code that depends on the return types might have different semantics in this
revision of C++. Translation units compiled against this version of C++ may be incompatible with translation
units compiled against C++ 2017, either failing to link or having undefined behavior.

C.2.12 Clause 25: iterators library [diff.cpp17.iterators]
1 Affected subclause: 25.3.2.3

Change: The specialization of iterator_traits for void* and for function pointer types no longer contains
any nested typedefs.
Rationale: Corrects an issue misidentifying pointer types that are not incrementable as iterator types.
Effect on original feature: A valid C++ 2017 program that relies on the presence of the typedefs may fail
to compile, or have different behavior.

C.2.13 Clause 27: algorithms library [diff.cpp17.alg.reqs]
1 Affected subclause: 27.2

Change: The number and order of deducible template parameters for algorithm declarations is now
unspecified, instead of being as-declared.
Rationale: Increase implementor freedom and allow some function templates to be implemented as function
objects with templated call operators.
Effect on original feature: A valid C++ 2017 program that passes explicit template arguments to algorithms
not explicitly specified to allow such in this version of C++ may fail to compile or have undefined behavior.

C.2.14 Clause 31: input/output library [diff.cpp17.input.output]
1 Affected subclause: 31.7.5.3.3

Change: Character array extraction only takes array types.
Rationale: Increase safety via preventing buffer overflow at compile time.
Effect on original feature: Valid C++ 2017 code may fail to compile in this revision of C++. For example:

auto p = new char[100];
char q[100];
std::cin >> std::setw(20) >> p; // ill-formed; previously well-formed
std::cin >> std::setw(20) >> q; // OK

2 Affected subclause: 31.7.6.3.4
Change: Overload resolution for ostream inserters used with UTF-8 literals.
Rationale: Required for new features.
Effect on original feature: Valid C++ 2017 code that passes UTF-8 literals to basic_ostream<char,
...>::operator<< or basic_ostream<wchar_t, ...>::operator<< is now ill-formed. For example:

std::cout << u8"text"; // previously called operator<<(const char*) and printed a string;
// now ill-formed

std::cout << u8'X'; // previously called operator<<(char) and printed a character;
// now ill-formed

3 Affected subclause: 31.7.6.3.4
Change: Overload resolution for ostream inserters used with wchar_t, char16_t, or char32_t types.
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Rationale: Removal of surprising behavior.
Effect on original feature: Valid C++ 2017 code that passes wchar_t, char16_t, or char32_t characters
or strings to basic_ostream<char, ...>::operator<< or that passes char16_t or char32_t characters or
strings to basic_ostream<wchar_t, ...>::operator<< is now ill-formed. For example:

std::cout << u"text"; // previously formatted the string as a pointer value;
// now ill-formed

std::cout << u'X'; // previously formatted the character as an integer value;
// now ill-formed

4 Affected subclause: 31.12.6
Change: Return type of filesystem path format observer member functions.
Rationale: Required for new features.
Effect on original feature: Valid C++ 2017 code that depends on the u8string() and generic_u8string()
member functions of std::filesystem::path returning std::string is not valid in this revision of C++.
For example:

std::filesystem::path p;
std::string s1 = p.u8string(); // ill-formed; previously well-formed
std::string s2 = p.generic_u8string(); // ill-formed; previously well-formed

C.2.15 Annex D: compatibility features [diff.cpp17.depr]
1 Change: Remove uncaught_exception.

Rationale: The function did not have a clear specification when multiple exceptions were active, and has
been superseded by uncaught_exceptions.
Effect on original feature: A valid C++ 2017 program that calls std::uncaught_exception may fail to
compile. It can be revised to use std::uncaught_exceptions instead, for clear and portable semantics.

2 Change: Remove support for adaptable function API.
Rationale: The deprecated support relied on a limited convention that could not be extended to support
the general case or new language features. It has been superseded by direct language support with decltype,
and by the std::bind and std::not_fn function templates.
Effect on original feature: A valid C++ 2017 program that relies on the presence of result_type,
argument_type, first_argument_type, or second_argument_type in a standard library class may fail to
compile. A valid C++ 2017 program that calls not1 or not2, or uses the class templates unary_negate or
binary_negate, may fail to compile.

3 Change: Remove redundant members from std::allocator.
Rationale: std::allocator was overspecified, encouraging direct usage in user containers rather than
relying on std::allocator_traits, leading to poor containers.
Effect on original feature: A valid C++ 2017 program that directly makes use of the pointer, const_-
pointer, reference, const_reference, rebind, address, construct, destroy, or max_size members of
std::allocator, or that directly calls allocate with an additional hint argument, may fail to compile.

4 Change: Remove raw_storage_iterator.
Rationale: The iterator encouraged use of potentially-throwing algorithms, but did not return the number
of elements successfully constructed, as would be necessary to destroy them.
Effect on original feature: A valid C++ 2017 program that uses this iterator class may fail to compile.

5 Change: Remove temporary buffers API.
Rationale: The temporary buffer facility was intended to provide an efficient optimization for small memory
requests, but there is little evidence this was achieved in practice, while requiring the user to provide their
own exception-safe wrappers to guard use of the facility in many cases.
Effect on original feature: A valid C++ 2017 program that calls get_temporary_buffer or return_-
temporary_buffer may fail to compile.

6 Change: Remove shared_ptr::unique.
Rationale: The result of a call to this member function is not reliable in the presence of multiple threads
and weak pointers. The member function use_count is similarly unreliable, but has a clearer contract in
such cases, and remains available for well-defined use in single-threaded cases.
Effect on original feature: A valid C++ 2017 program that calls unique on a shared_ptr object may fail
to compile.

7 Affected subclause: D.19
Change: Remove deprecated type traits.
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Rationale: The traits had unreliable or awkward interfaces. The is_literal_type trait provided no way
to detect which subset of constructors and member functions of a type were declared constexpr. The
result_of trait had a surprising syntax that did not directly support function types. It has been superseded
by the invoke_result trait.
Effect on original feature: A valid C++ 2017 program that relies on the is_literal_type or result_of
type traits, on the is_literal_type_v variable template, or on the result_of_t alias template may fail to
compile.

C.3 C++ and ISO C++ 2014 [diff.cpp14]
C.3.1 General [diff.cpp14.general]

1 Subclause C.3 lists the differences between C++ and ISO C++ 2014 (ISO/IEC 14882:2014, Programming
Languages — C++), in addition to those listed above, by the chapters of this document.

C.3.2 Clause 5: lexical conventions [diff.cpp14.lex]
1 Affected subclause: 5.2

Change: Removal of trigraph support as a required feature.
Rationale: Prevents accidental uses of trigraphs in non-raw string literals and comments.
Effect on original feature: Valid C++ 2014 code that uses trigraphs may not be valid or may have different
semantics in this revision of C++. Implementations may choose to translate trigraphs as specified in C++

2014 if they appear outside of a raw string literal, as part of the implementation-defined mapping from input
source file characters to the translation character set.

2 Affected subclause: 5.9
Change: pp-number can contain p sign and P sign.
Rationale: Necessary to enable hexadecimal-floating-point-literals.
Effect on original feature: Valid C++ 2014 code may fail to compile or produce different results in this
revision of C++. Specifically, character sequences like 0p+0 and 0e1_p+0 are three separate tokens each in
C++ 2014, but one single token in this revision of C++. For example:

#define F(a) b ## a
int b0p = F(0p+0); // ill-formed; equivalent to “int b0p = b0p + 0;” in C++ 2014

C.3.3 Clause 7: expressions [diff.cpp14.expr]
1 Affected subclauses: 7.6.1.6 and 7.6.2.3

Change: Remove increment operator with bool operand.
Rationale: Obsolete feature with occasionally surprising semantics.
Effect on original feature: A valid C++ 2014 expression utilizing the increment operator on a bool lvalue
is ill-formed in this revision of C++.

2 Affected subclauses: 7.6.2.8 and 7.6.2.9
Change: Dynamic allocation mechanism for over-aligned types.
Rationale: Simplify use of over-aligned types.
Effect on original feature: In C++ 2014 code that uses a new-expression to allocate an object with an over-
aligned class type, where that class has no allocation functions of its own, ::operator new(std::size_t) is
used to allocate the memory. In this revision of C++, ::operator new(std::size_t, std::align_val_t)
is used instead.

C.3.4 Clause 9: declarations [diff.cpp14.dcl.dcl]
1 Affected subclause: 9.2.2

Change: Removal of register storage-class-specifier .
Rationale: Enable repurposing of deprecated keyword in future revisions of C++.
Effect on original feature: A valid C++ 2014 declaration utilizing the register storage-class-specifier is
ill-formed in this revision of C++. The specifier can simply be removed to retain the original meaning.

2 Affected subclause: 9.2.9.6
Change: auto deduction from braced-init-list.
Rationale: More intuitive deduction behavior.
Effect on original feature: Valid C++ 2014 code may fail to compile or may change meaning in this
revision of C++. For example:

auto x1{1}; // was std::initializer_list<int>, now int
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auto x2{1, 2}; // was std::initializer_list<int>, now ill-formed
3 Affected subclause: 9.3.4.6

Change: Make exception specifications be part of the type system.
Rationale: Improve type-safety.
Effect on original feature: Valid C++ 2014 code may fail to compile or change meaning in this revision of
C++. For example:

void g1() noexcept;
void g2();
template<class T> int f(T *, T *);
int x = f(g1, g2); // ill-formed; previously well-formed

4 Affected subclause: 9.4.2
Change: Definition of an aggregate is extended to apply to user-defined types with base classes.
Rationale: To increase convenience of aggregate initialization.
Effect on original feature: Valid C++ 2014 code may fail to compile or produce different results in this
revision of C++; initialization from an empty initializer list will perform aggregate initialization instead of
invoking a default constructor for the affected types. For example:

struct derived;
struct base {

friend struct derived;
private:

base();
};
struct derived : base {};

derived d1{}; // error; the code was well-formed in C++ 2014
derived d2; // still OK

C.3.5 Clause 11: classes [diff.cpp14.class]
1 Affected subclause: 11.9.4

Change: Inheriting a constructor no longer injects a constructor into the derived class.
Rationale: Better interaction with other language features.
Effect on original feature: Valid C++ 2014 code that uses inheriting constructors may not be valid or
may have different semantics. A using-declaration that names a constructor now makes the corresponding
base class constructors visible to initializations of the derived class rather than declaring additional derived
class constructors. For example:

struct A {
template<typename T> A(T, typename T::type = 0);
A(int);

};
struct B : A {

using A::A;
B(int);

};
B b(42L); // now calls B(int), used to call B<long>(long),

// which called A(int) due to substitution failure
// in A<long>(long).

C.3.6 Clause 13: templates [diff.cpp14.temp]
1 Affected subclause: 13.10.3.6

Change: Allowance to deduce from the type of a non-type template argument.
Rationale: In combination with the ability to declare non-type template arguments with placeholder types,
allows partial specializations to decompose from the type deduced for the non-type template argument.
Effect on original feature: Valid C++ 2014 code may fail to compile or produce different results in this
revision of C++. For example:

template <int N> struct A;
template <typename T, T N> int foo(A<N> *) = delete;
void foo(void *);
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void bar(A<0> *p) {
foo(p); // ill-formed; previously well-formed

}

C.3.7 Clause 14: exception handling [diff.cpp14.except]
1 Affected subclause: 14.5

Change: Remove dynamic exception specifications.
Rationale: Dynamic exception specifications were a deprecated feature that was complex and brittle in use.
They interacted badly with the type system, which became a more significant issue in this revision of C++

where (non-dynamic) exception specifications are part of the function type.
Effect on original feature: A valid C++ 2014 function declaration, member function declaration, function
pointer declaration, or function reference declaration, if it has a potentially throwing dynamic exception
specification, is rejected as ill-formed in this revision of C++. Violating a non-throwing dynamic exception
specification calls terminate rather than unexpected, and it is unspecified whether stack unwinding is
performed prior to such a call.

C.3.8 Clause 16: library introduction [diff.cpp14.library]
1 Affected subclause: 16.4.2.3

Change: New headers.
Rationale: New functionality.
Effect on original feature: The following C++ headers are new: <any> (22.7.2), <charconv> (22.13.1),
<execution> (22.12.2), <filesystem> (31.12.4), <memory_resource> (20.4.1), <optional> (22.5.2),
<string_view> (23.3.2), and <variant> (22.6.2). Valid C++ 2014 code that #includes headers with these
names may be invalid in this revision of C++.

2 Affected subclause: 16.4.5.2.3
Change: New reserved namespaces.
Rationale: Reserve namespaces for future revisions of the standard library that might otherwise be
incompatible with existing programs.
Effect on original feature: The global namespaces std followed by an arbitrary sequence of digits (5.10)
are reserved for future standardization. Valid C++ 2014 code that uses such a top-level namespace, e.g., std2,
may be invalid in this revision of C++.

C.3.9 Clause 22: general utilities library [diff.cpp14.utilities]
1 Affected subclause: 22.10.17

Change: Constructors taking allocators removed.
Rationale: No implementation consensus.
Effect on original feature: Valid C++ 2014 code may fail to compile or may change meaning in this
revision of C++. Specifically, constructing a std::function with an allocator is ill-formed and uses-allocator
construction will not pass an allocator to std::function constructors in this revision of C++.

2 Affected subclause: 20.3.2.2
Change: Different constraint on conversions from unique_ptr.
Rationale: Adding array support to shared_ptr, via the syntax shared_ptr<T[]> and shared_ptr<T[N]>.
Effect on original feature: Valid C++ 2014 code may fail to compile or may change meaning in this
revision of C++. For example:

#include <memory>
std::unique_ptr<int[]> arr(new int[1]);
std::shared_ptr<int> ptr(std::move(arr)); // error: int(*)[] is not compatible with int*

C.3.10 Clause 23: strings library [diff.cpp14.string]
1 Affected subclause: 23.4.3

Change: Non-const .data() member added.
Rationale: The lack of a non-const .data() differed from the similar member of std::vector. This change
regularizes behavior.
Effect on original feature: Overloaded functions which have differing code paths for char* and const
char* arguments will execute differently when called with a non-const string’s .data() member in this
revision of C++. For example:

int f(char *) = delete;
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int f(const char *);
string s;
int x = f(s.data()); // ill-formed; previously well-formed

C.3.11 Clause 24: containers library [diff.cpp14.containers]
1 Affected subclause: 24.2.7

Change: Requirements change:
Rationale: Increase portability, clarification of associative container requirements.
Effect on original feature: Valid C++ 2014 code that attempts to use associative containers having a
comparison object with non-const function call operator may fail to compile in this revision of C++. For
example:

#include <set>

struct compare
{

bool operator()(int a, int b)
{

return a < b;
}

};

int main() {
const std::set<int, compare> s;
s.find(0);

}

C.3.12 Annex D: compatibility features [diff.cpp14.depr]
1 Change: The class templates auto_ptr, unary_function, and binary_function, the function templates

random_shuffle, and the function templates (and their return types) ptr_fun, mem_fun, mem_fun_ref,
bind1st, and bind2nd are not defined.
Rationale: Superseded by new features.
Effect on original feature: Valid C++ 2014 code that uses these class templates and function templates
may fail to compile in this revision of C++.

2 Change: Remove old iostreams members [depr.ios.members].
Rationale: Redundant feature for compatibility with pre-standard code has served its time.
Effect on original feature: A valid C++ 2014 program using these identifiers may be ill-formed in this
revision of C++.

C.4 C++ and ISO C++ 2011 [diff.cpp11]
C.4.1 General [diff.cpp11.general]

1 Subclause C.4 lists the differences between C++ and ISO C++ 2011 (ISO/IEC 14882:2011, Programming
Languages — C++), in addition to those listed above, by the chapters of this document.

C.4.2 Clause 5: lexical conventions [diff.cpp11.lex]
1 Affected subclause: 5.9

Change: pp-number can contain one or more single quotes.
Rationale: Necessary to enable single quotes as digit separators.
Effect on original feature: Valid C++ 2011 code may fail to compile or may change meaning in this
revision of C++. For example, the following code is valid both in C++ 2011 and in this revision of C++, but
the macro invocation produces different outcomes because the single quotes delimit a character-literal in C++

2011, whereas they are digit separators in this revision of C++. For example:
#define M(x, ...) __VA_ARGS__
int x[2] = { M(1'2,3'4, 5) };
// int x[2] = { 5 }; — C++ 2011
// int x[2] = { 3’4, 5 }; — this revision of C++

§ C.4.2 1919



© ISO/IEC N4950

C.4.3 Clause 6: basics [diff.cpp11.basic]
1 Affected subclause: 6.7.5.5.3

Change: New usual (non-placement) deallocator.
Rationale: Required for sized deallocation.
Effect on original feature: Valid C++ 2011 code can declare a global placement allocation function and
deallocation function as follows:

void* operator new(std::size_t, std::size_t);
void operator delete(void*, std::size_t) noexcept;

In this revision of C++, however, the declaration of operator delete might match a predefined usual
(non-placement) operator delete (6.7.5.5). If so, the program is ill-formed, as it was for class member
allocation functions and deallocation functions (7.6.2.8).

C.4.4 Clause 7: expressions [diff.cpp11.expr]
1 Affected subclause: 7.6.16

Change: A conditional expression with a throw expression as its second or third operand keeps the type
and value category of the other operand.
Rationale: Formerly mandated conversions (lvalue-to-rvalue (7.3.2), array-to-pointer (7.3.3), and function-
to-pointer (7.3.4) standard conversions), especially the creation of the temporary due to lvalue-to-rvalue
conversion, were considered gratuitous and surprising.
Effect on original feature: Valid C++ 2011 code that relies on the conversions may behave differently in
this revision of C++. For example:

struct S {
int x = 1;
void mf() { x = 2; }

};
int f(bool cond) {

S s;
(cond ? s : throw 0).mf();
return s.x;

}

In C++ 2011, f(true) returns 1. In this revision of C++, it returns 2.
sizeof(true ? "" : throw 0)

In C++ 2011, the expression yields sizeof(const char*). In this revision of C++, it yields sizeof(const
char[1]).

C.4.5 Clause 9: declarations [diff.cpp11.dcl.dcl]
1 Affected subclause: 9.2.6

Change: constexpr non-static member functions are not implicitly const member functions.
Rationale: Necessary to allow constexpr member functions to mutate the object.
Effect on original feature: Valid C++ 2011 code may fail to compile in this revision of C++. For example:

struct S {
constexpr const int &f();
int &f();

};

This code is valid in C++ 2011 but invalid in this revision of C++ because it declares the same member
function twice with different return types.

2 Affected subclause: 9.4.2
Change: Classes with default member initializers can be aggregates.
Rationale: Necessary to allow default member initializers to be used by aggregate initialization.
Effect on original feature: Valid C++ 2011 code may fail to compile or may change meaning in this
revision of C++. For example:

struct S { // Aggregate in C++ 2014 onwards.
int m = 1;

};
struct X {

operator int();
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operator S();
};
X a{};
S b{a}; // uses copy constructor in C++ 2011,

// performs aggregate initialization in this revision of C++

C.4.6 Clause 16: library introduction [diff.cpp11.library]
1 Affected subclause: 16.4.2.3

Change: New header.
Rationale: New functionality.
Effect on original feature: The C++ header <shared_mutex> (33.6.3) is new. Valid C++ 2011 code that
#includes a header with that name may be invalid in this revision of C++.

C.4.7 Clause 31: input/output library [diff.cpp11.input.output]
1 Affected subclause: 31.13

Change: gets is not defined.
Rationale: Use of gets is considered dangerous.
Effect on original feature: Valid C++ 2011 code that uses the gets function may fail to compile in this
revision of C++.

C.5 C++ and ISO C++ 2003 [diff.cpp03]
C.5.1 General [diff.cpp03.general]

1 Subclause C.5 lists the differences between C++ and ISO C++ 2003 (ISO/IEC 14882:2003, Programming
Languages — C++), in addition to those listed above, by the chapters of this document.

C.5.2 Clause 5: lexical conventions [diff.cpp03.lex]
1 Affected subclause: 5.4

Change: New kinds of string-literals.
Rationale: Required for new features.
Effect on original feature: Valid C++ 2003 code may fail to compile or produce different results in this
revision of C++. Specifically, macros named R, u8, u8R, u, uR, U, UR, or LR will not be expanded when adjacent
to a string-literal but will be interpreted as part of the string-literal . For example:

#define u8 "abc"
const char* s = u8"def"; // Previously "abcdef", now "def"

2 Affected subclause: 5.4
Change: User-defined literal string support.
Rationale: Required for new features.
Effect on original feature: Valid C++ 2003 code may fail to compile or produce different results in this
revision of C++. For example:

#define _x "there"
"hello"_x // #1

Previously, #1 would have consisted of two separate preprocessing tokens and the macro _x would have been
expanded. In this revision of C++, #1 consists of a single preprocessing token, so the macro is not expanded.

3 Affected subclause: 5.11
Change: New keywords.
Rationale: Required for new features.
Effect on original feature: Added to Table 5, the following identifiers are new keywords: alignas, alignof,
char16_t, char32_t, constexpr, decltype, noexcept, nullptr, static_assert, and thread_local. Valid
C++ 2003 code using these identifiers is invalid in this revision of C++.

4 Affected subclause: 5.13.2
Change: Type of integer literals.
Rationale: C99 compatibility.
Effect on original feature: Certain integer literals larger than can be represented by long could change
from an unsigned integer type to signed long long.
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C.5.3 Clause 7: expressions [diff.cpp03.expr]
1 Affected subclause: 7.3.12

Change: Only literals are integer null pointer constants.
Rationale: Removing surprising interactions with templates and constant expressions.
Effect on original feature: Valid C++ 2003 code may fail to compile or produce different results in this
revision of C++. For example:

void f(void *); // #1
void f(...); // #2
template<int N> void g() {

f(0*N); // calls #2; used to call #1
}

2 Affected subclause: 7.6.5
Change: Specify rounding for results of integer / and %.
Rationale: Increase portability, C99 compatibility.
Effect on original feature: Valid C++ 2003 code that uses integer division rounds the result toward 0 or
toward negative infinity, whereas this revision of C++ always rounds the result toward 0.

3 Affected subclause: 7.6.14
Change: && is valid in a type-name.
Rationale: Required for new features.
Effect on original feature: Valid C++ 2003 code may fail to compile or produce different results in this
revision of C++. For example:

bool b1 = new int && false; // previously false, now ill-formed
struct S { operator int(); };
bool b2 = &S::operator int && false; // previously false, now ill-formed

C.5.4 Clause 9: declarations [diff.cpp03.dcl.dcl]
1 Affected subclause: 9.2

Change: Remove auto as a storage class specifier.
Rationale: New feature.
Effect on original feature: Valid C++ 2003 code that uses the keyword auto as a storage class specifier
may be invalid in this revision of C++. In this revision of C++, auto indicates that the type of a variable is
to be deduced from its initializer expression.

2 Affected subclause: 9.4.5
Change: Narrowing restrictions in aggregate initializers.
Rationale: Catches bugs.
Effect on original feature: Valid C++ 2003 code may fail to compile in this revision of C++. For example:

int x[] = { 2.0 };

This code is valid in C++ 2003 but invalid in this revision of C++ because double to int is a narrowing
conversion.

C.5.5 Clause 11: classes [diff.cpp03.class]
1 Affected subclauses: 11.4.5.2, 11.4.7, 11.4.5.3, and 11.4.6

Change: Implicitly-declared special member functions are defined as deleted when the implicit definition
would have been ill-formed.
Rationale: Improves template argument deduction failure.
Effect on original feature: A valid C++ 2003 program that uses one of these special member functions
in a context where the definition is not required (e.g., in an expression that is not potentially evaluated)
becomes ill-formed.

2 Affected subclause: 11.4.7
Change: User-declared destructors have an implicit exception specification.
Rationale: Clarification of destructor requirements.
Effect on original feature: Valid C++ 2003 code may execute differently in this revision of C++. In
particular, destructors that throw exceptions will call std::terminate (without calling std::unexpected)
if their exception specification is non-throwing.
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C.5.6 Clause 13: templates [diff.cpp03.temp]
1 Affected subclause: 13.2

Change: Repurpose export for modules (Clause 10, 15.4, 15.5).
Rationale: No implementation consensus for the C++ 2003 meaning of export.
Effect on original feature: A valid C++ 2003 program containing export is ill-formed in this revision of
C++.

2 Affected subclause: 13.4
Change: Remove whitespace requirement for nested closing template right angle brackets.
Rationale: Considered a persistent but minor annoyance. Template aliases representing non-class types
would exacerbate whitespace issues.
Effect on original feature: Change to semantics of well-defined expression. A valid C++ 2003 expression
containing a right angle bracket (“>”) followed immediately by another right angle bracket may now be
treated as closing two templates. For example:

template <class T> struct X { };
template <int N> struct Y { };
X< Y< 1 >> 2 > > x;

This code is valid in C++ 2003 because “>>” is a right-shift operator, but invalid in this revision of C++

because “>>” closes two templates.
3 Affected subclause: 13.8.4.2

Change: Allow dependent calls of functions with internal linkage.
Rationale: Overly constrained, simplify overload resolution rules.
Effect on original feature: A valid C++ 2003 program can get a different result in this revision of C++.

C.5.7 Clause 16: library introduction [diff.cpp03.library]
1 Affected: Clause 16 – Clause 33

Change: New reserved identifiers.
Rationale: Required by new features.
Effect on original feature: Valid C++ 2003 code that uses any identifiers added to the C++ standard
library by later revisions of C++ may fail to compile or produce different results in this revision of C++.
A comprehensive list of identifiers used by the C++ standard library can be found in the Index of Library
Names in this document.

2 Affected subclause: 16.4.2.3
Change: New headers.
Rationale: New functionality.
Effect on original feature: The following C++ headers are new: <array> (24.3.2), <atomic> (33.5.2),
<chrono> (29.2), <codecvt> (D.26.2), <condition_variable> (33.7.2), <forward_list> (24.3.4), <future>
(33.10.2), <initializer_list> (17.10.2), <mutex> (33.6.2), <random> (28.5.2), <ratio> (21.4.2), <regex>
(32.3), <scoped_allocator> (20.5.1), <system_error> (19.5.2), <thread> (33.4.2), <tuple> (22.4.2), <type-
index> (22.11.1), <type_traits> (21.3.3), <unordered_map> (24.5.2), and <unordered_set> (24.5.3). In
addition the following C compatibility headers are new: <cfenv> (28.3.1), <cinttypes> (31.13.2), <cstdint>
(17.4.1), and <cuchar> (23.5.5). Valid C++ 2003 code that #includes headers with these names may be
invalid in this revision of C++.

3 Affected subclause: 16.4.4.3
Effect on original feature: Function swap moved to a different header
Rationale: Remove dependency on <algorithm> (27.4) for swap.
Effect on original feature: Valid C++ 2003 code that has been compiled expecting swap to be in
<algorithm> (27.4) may have to instead include <utility> (22.2.1).

4 Affected subclause: 16.4.5.2.2
Change: New reserved namespace.
Rationale: New functionality.
Effect on original feature: The global namespace posix is now reserved for standardization. Valid C++

2003 code that uses a top-level namespace posix may be invalid in this revision of C++.
5 Affected subclause: 16.4.6.3

Change: Additional restrictions on macro names.
Rationale: Avoid hard to diagnose or non-portable constructs.
Effect on original feature: Names of attribute identifiers may not be used as macro names. Valid C++
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2003 code that defines override, final, carries_dependency, or noreturn as macros is invalid in this
revision of C++.

C.5.8 Clause 17: language support library [diff.cpp03.language.support]
1 Affected subclause: 17.6.3.2

Change: operator new may throw exceptions other than std::bad_alloc.
Rationale: Consistent application of noexcept.
Effect on original feature: Valid C++ 2003 code that assumes that global operator new only throws
std::bad_alloc may execute differently in this revision of C++. Valid C++ 2003 code that replaces the
global replaceable operator new is ill-formed in this revision of C++, because the exception specification of
throw(std::bad_alloc) was removed.

C.5.9 Clause 19: diagnostics library [diff.cpp03.diagnostics]
1 Affected subclause: 19.4

Change: Thread-local error numbers.
Rationale: Support for new thread facilities.
Effect on original feature: Valid but implementation-specific C++ 2003 code that relies on errno being
the same across threads may change behavior in this revision of C++.

C.5.10 Clause 22: general utilities library [diff.cpp03.utilities]
1 Affected subclauses: 22.10.6, 22.10.7, 22.10.8, 22.10.10, and 22.10.11

Change: Standard function object types no longer derived from std::unary_function or std::binary_-
function.
Rationale: Superseded by new feature; unary_function and binary_function are no longer defined.
Effect on original feature: Valid C++ 2003 code that depends on function object types being derived from
unary_function or binary_function may fail to compile in this revision of C++.

C.5.11 Clause 23: strings library [diff.cpp03.strings]
1 Affected subclause: 23.4

Change: basic_string requirements no longer allow reference-counted strings.
Rationale: Invalidation is subtly different with reference-counted strings. This change regularizes behavior.
Effect on original feature: Valid C++ 2003 code may execute differently in this revision of C++.

2 Affected subclause: 23.4.3.2
Change: Loosen basic_string invalidation rules.
Rationale: Allow small-string optimization.
Effect on original feature: Valid C++ 2003 code may execute differently in this revision of C++. Some
const member functions, such as data and c_str, no longer invalidate iterators.

C.5.12 Clause 24: containers library [diff.cpp03.containers]
1 Affected subclause: 24.2

Change: Complexity of size() member functions now constant.
Rationale: Lack of specification of complexity of size() resulted in divergent implementations with
inconsistent performance characteristics.
Effect on original feature: Some container implementations that conform to C++ 2003 may not conform
to the specified size() requirements in this revision of C++. Adjusting containers such as std::list to the
stricter requirements may require incompatible changes.

2 Affected subclause: 24.2
Change: Requirements change: relaxation.
Rationale: Clarification.
Effect on original feature: Valid C++ 2003 code that attempts to meet the specified container requirements
may now be over-specified. Code that attempted to be portable across containers may need to be adjusted as
follows:

—(2.1) not all containers provide size(); use empty() instead of size() == 0;
—(2.2) not all containers are empty after construction (array);
—(2.3) not all containers have constant complexity for swap() (array).
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3 Affected subclause: 24.2
Change: Requirements change: default constructible.
Rationale: Clarification of container requirements.
Effect on original feature: Valid C++ 2003 code that attempts to explicitly instantiate a container using a
user-defined type with no default constructor may fail to compile.

4 Affected subclauses: 24.2.4 and 24.2.7
Change: Signature changes: from void return types.
Rationale: Old signature threw away useful information that may be expensive to recalculate.
Effect on original feature: The following member functions have changed:

—(4.1) erase(iter) for set, multiset, map, multimap
—(4.2) erase(begin, end) for set, multiset, map, multimap
—(4.3) insert(pos, num, val) for vector, deque, list, forward_list
—(4.4) insert(pos, beg, end) for vector, deque, list, forward_list

Valid C++ 2003 code that relies on these functions returning void (e.g., code that creates a pointer to member
function that points to one of these functions) will fail to compile with this revision of C++.

5 Affected subclauses: 24.2.4 and 24.2.7
Change: Signature changes: from iterator to const_iterator parameters.
Rationale: Overspecification.
Effect on original feature: The signatures of the following member functions changed from taking an
iterator to taking a const_iterator:

—(5.1) insert(iter, val) for vector, deque, list, set, multiset, map, multimap
—(5.2) insert(pos, beg, end) for vector, deque, list, forward_list
—(5.3) erase(begin, end) for set, multiset, map, multimap
—(5.4) all forms of list::splice
—(5.5) all forms of list::merge

Valid C++ 2003 code that uses these functions may fail to compile with this revision of C++.
6 Affected subclauses: 24.2.4 and 24.2.7

Change: Signature changes: resize.
Rationale: Performance, compatibility with move semantics.
Effect on original feature: For vector, deque, and list the fill value passed to resize is now passed by
reference instead of by value, and an additional overload of resize has been added. Valid C++ 2003 code
that uses this function may fail to compile with this revision of C++.

C.5.13 Clause 27: algorithms library [diff.cpp03.algorithms]
1 Affected subclause: 27.1

Change: Result state of inputs after application of some algorithms.
Rationale: Required by new feature.
Effect on original feature: A valid C++ 2003 program may detect that an object with a valid but unspecified
state has a different valid but unspecified state with this revision of C++. For example, std::remove and
std::remove_if may leave the tail of the input sequence with a different set of values than previously.

C.5.14 Clause 28: numerics library [diff.cpp03.numerics]
1 Affected subclause: 28.4

Change: Specified representation of complex numbers.
Rationale: Compatibility with C99.
Effect on original feature: Valid C++ 2003 code that uses implementation-specific knowledge about the
binary representation of the required template specializations of std::complex may not be compatible with
this revision of C++.

C.5.15 Clause 30: localization library [diff.cpp03.locale]
1 Affected subclause: 30.4.3.2.3

Change: The num_get facet recognizes hexadecimal floating point values.
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Rationale: Required by new feature.
Effect on original feature: Valid C++ 2003 code may have different behavior in this revision of C++.

C.5.16 Clause 31: input/output library [diff.cpp03.input.output]
1 Affected subclauses: 31.7.5.2.4, 31.7.6.2.4, and 31.5.4.4

Change: Specify use of explicit in existing boolean conversion functions.
Rationale: Clarify intentions, avoid workarounds.
Effect on original feature: Valid C++ 2003 code that relies on implicit boolean conversions will fail to
compile with this revision of C++. Such conversions occur in the following conditions:

—(1.1) passing a value to a function that takes an argument of type bool;
—(1.2) using operator== to compare to false or true;
—(1.3) returning a value from a function with a return type of bool;
—(1.4) initializing members of type bool via aggregate initialization;
—(1.5) initializing a const bool& which would bind to a temporary object.

2 Affected subclause: 31.5.2.2.1
Change: Change base class of std::ios_base::failure.
Rationale: More detailed error messages.
Effect on original feature: std::ios_base::failure is no longer derived directly from std::exception,
but is now derived from std::system_error, which in turn is derived from std::runtime_error. Valid
C++ 2003 code that assumes that std::ios_base::failure is derived directly from std::exception may
execute differently in this revision of C++.

3 Affected subclause: 31.5.2
Change: Flag types in std::ios_base are now bitmasks with values defined as constexpr static members.
Rationale: Required for new features.
Effect on original feature: Valid C++ 2003 code that relies on std::ios_base flag types being represented
as std::bitset or as an integer type may fail to compile with this revision of C++. For example:

#include <iostream>

int main() {
int flag = std::ios_base::hex;
std::cout.setf(flag); // error: setf does not take argument of type int

}

C.6 C++ and ISO C [diff.iso]
C.6.1 General [diff.iso.general]

1 Subclause C.6 lists the differences between C++ and ISO C, in addition to those listed above, by the chapters
of this document.

C.6.2 Clause 5: lexical conventions [diff.lex]
1 Affected subclause: 5.11

Change: New Keywords
New keywords are added to C++; see 5.11.
Rationale: These keywords were added in order to implement the new semantics of C++.
Effect on original feature: Change to semantics of well-defined feature. Any ISO C programs that used
any of these keywords as identifiers are not valid C++ programs.
Difficulty of converting: Syntactic transformation. Converting one specific program is easy. Converting a
large collection of related programs takes more work.
How widely used: Common.

2 Affected subclause: 5.13.3
Change: Type of character-literal is changed from int to char.
Rationale: This is needed for improved overloaded function argument type matching. For example:

int function( int i );
int function( char c );
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function( 'x' );

It is preferable that this call match the second version of function rather than the first.
Effect on original feature: Change to semantics of well-defined feature. ISO C programs which depend on

sizeof('x') == sizeof(int)

will not work the same as C++ programs.
Difficulty of converting: Simple.
How widely used: Programs which depend upon sizeof(’x’) are probably rare.

3 Affected subclause: 5.13.5
Change: Concatenated string-literals can no longer have conflicting encoding-prefixes.
Rationale: Removal of non-portable feature.
Effect on original feature: Concatenation of string-literals with different encoding-prefixes is now ill-formed.
Difficulty of converting: Syntactic transformation.
How widely used: Seldom.

4 Affected subclause: 5.13.5
Change: String literals made const.
The type of a string-literal is changed from “array of char” to “array of const char”. The type of a UTF-8
string literal is changed from “array of char” to “array of const char8_t”. The type of a UTF-16 string
literal is changed from “array of some-integer-type” to “array of const char16_t”. The type of a UTF-32
string literal is changed from “array of some-integer-type” to “array of const char32_t”. The type of a wide
string literal is changed from “array of wchar_t” to “array of const wchar_t”.
Rationale: This avoids calling an inappropriate overloaded function, which might expect to be able to
modify its argument.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Syntactic transformation. The fix is to add a cast:

char* p = "abc"; // valid in C, invalid in C++

void f(char*) {
char* p = (char*)"abc"; // OK, cast added
f(p);
f((char*)"def"); // OK, cast added

}

How widely used: Programs that have a legitimate reason to treat string literal objects as potentially
modifiable memory are probably rare.

C.6.3 Clause 6: basics [diff.basic]
1 Affected subclause: 6.2

Change: C++ does not have “tentative definitions” as in C.
E.g., at file scope,

int i;
int i;

is valid in C, invalid in C++. This makes it impossible to define mutually referential file-local objects with
static storage duration, if initializers are restricted to the syntactic forms of C. For example,

struct X { int i; struct X* next; };

static struct X a;
static struct X b = { 0, &a };
static struct X a = { 1, &b };

Rationale: This avoids having different initialization rules for fundamental types and user-defined types.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. In C++, the initializer for one of a set of mutually-
referential file-local objects with static storage duration must invoke a function call to achieve the initialization.
How widely used: Seldom.

2 Affected subclause: 6.4
Change: A struct is a scope in C++, not in C. For example,
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struct X {
struct Y { int a; } b;

};
struct Y c;

is valid in C but not in C++, which would require X::Y c;.
Rationale: Class scope is crucial to C++, and a struct is a class.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used: C programs use struct extremely frequently, but the change is only noticeable when
struct, enumeration, or enumerator names are referred to outside the struct. The latter is probably rare.

3 Affected subclause: 6.6 [also 9.2.9]
Change: A name of file scope that is explicitly declared const, and not explicitly declared extern, has
internal linkage, while in C it would have external linkage.
Rationale: Because const objects may be used as values during translation in C++, this feature urges
programmers to provide an explicit initializer for each const object. This feature allows the user to put const
objects in source files that are included in more than one translation unit.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used: Seldom.

4 Affected subclause: 6.9.3.1
Change: The main function cannot be called recursively and cannot have its address taken.
Rationale: The main function may require special actions.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Trivial: create an intermediary function such as mymain(argc, argv).
How widely used: Seldom.

5 Affected subclause: 6.8
Change: C allows “compatible types” in several places, C++ does not.
For example, otherwise-identical struct types with different tag names are “compatible” in C but are
distinctly different types in C++.
Rationale: Stricter type checking is essential for C++.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. The “typesafe linkage” mechanism will find many, but
not all, of such problems. Those problems not found by typesafe linkage will continue to function properly,
according to the “layout compatibility rules” of this document.
How widely used: Common.

C.6.4 Clause 7: expressions [diff.expr]
1 Affected subclause: 7.3.12

Change: Converting void* to a pointer-to-object type requires casting.
char a[10];
void* b=a;
void foo() {

char* c=b;
}

ISO C accepts this usage of pointer to void being assigned to a pointer to object type. C++ does not.
Rationale: C++ tries harder than C to enforce compile-time type safety.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Can be automated. Violations will be diagnosed by the C++ translator. The fix
is to add a cast. For example:

char* c = (char*) b;

How widely used: This is fairly widely used but it is good programming practice to add the cast when
assigning pointer-to-void to pointer-to-object. Some ISO C translators will give a warning if the cast is not
used.

2 Affected subclauses: 7.6.1.6 and 7.6.2.3
Change: Decrement operator is not allowed with bool operand.
Rationale: Feature with surprising semantics.
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Effect on original feature: A valid ISO C expression utilizing the decrement operator on a bool lvalue
(for instance, via the C typedef in <stdbool.h> (17.14.5)) is ill-formed in C++.

3 Affected subclauses: 7.6.2.5 and 7.6.3
Change: In C++, types can only be defined in declarations, not in expressions.
In C, a sizeof expression or cast expression may define a new type. For example,

p = (void*)(struct x {int i;} *)0;

defines a new type, struct x.
Rationale: This prohibition helps to clarify the location of definitions in the source code.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Syntactic transformation.
How widely used: Seldom.

4 Affected subclauses: 7.6.16, 7.6.19, and 7.6.20
Change: The result of a conditional expression, an assignment expression, or a comma expression may be
an lvalue.
Rationale: C++ is an object-oriented language, placing relatively more emphasis on lvalues. For example,
function calls may yield lvalues.
Effect on original feature: Change to semantics of well-defined feature. Some C expressions that implicitly
rely on lvalue-to-rvalue conversions will yield different results. For example,

char arr[100];
sizeof(0, arr)

yields 100 in C++ and sizeof(char*) in C.
Difficulty of converting: Programs must add explicit casts to the appropriate rvalue.
How widely used: Rare.

C.6.5 Clause 8: statements [diff.stat]
1 Affected subclauses: 8.5.3 and 8.7.6

Change: It is now invalid to jump past a declaration with explicit or implicit initializer (except across entire
block not entered).
Rationale: Constructors used in initializers may allocate resources which need to be de-allocated upon
leaving the block. Allowing jump past initializers would require complicated runtime determination of
allocation. Furthermore, many operations on such an uninitialized object have undefined behavior. With this
simple compile-time rule, C++ assures that if an initialized variable is in scope, then it has assuredly been
initialized.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used: Seldom.

2 Affected subclause: 8.7.4
Change: It is now invalid to return (explicitly or implicitly) from a function which is declared to return a
value without actually returning a value.
Rationale: The caller and callee may assume fairly elaborate return-value mechanisms for the return of class
objects. If some flow paths execute a return without specifying any value, the implementation must embody
many more complications. Besides, promising to return a value of a given type, and then not returning such
a value, has always been recognized to be a questionable practice, tolerated only because very-old C had no
distinction between functions with void and int return types.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. Add an appropriate return value to the source code,
such as zero.
How widely used: Seldom. For several years, many existing C implementations have produced warnings in
this case.

C.6.6 Clause 9: declarations [diff.dcl]
1 Affected subclause: 9.2.2

Change: In C++, the static or extern specifiers can only be applied to names of objects or functions.
Using these specifiers with type declarations is illegal in C++. In C, these specifiers are ignored when used on
type declarations.
Example:
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static struct S { // valid C, invalid in C++

int i;
};

Rationale: Storage class specifiers don’t have any meaning when associated with a type. In C++, class
members can be declared with the static storage class specifier. Storage class specifiers on type declarations
can be confusing for users.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Syntactic transformation.
How widely used: Seldom.

2 Affected subclause: 9.2.2
Change: In C++, register is not a storage class specifier.
Rationale: The storage class specifier had no effect in C++.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Syntactic transformation.
How widely used: Common.

3 Affected subclause: 9.2.4
Change: A C++ typedef-name must be different from any class type name declared in the same scope (except
if the typedef is a synonym of the class name with the same name). In C, a typedef-name and a struct tag
name declared in the same scope can have the same name (because they have different name spaces).
Example:

typedef struct name1 { /* ... */ } name1; // valid C and C++

struct name { /* ... */ };
typedef int name; // valid C, invalid C++

Rationale: For ease of use, C++ doesn’t require that a type name be prefixed with the keywords class,
struct or union when used in object declarations or type casts.
Example:

class name { /* ... */ };
name i; // i has type class name

Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. One of the 2 types has to be renamed.
How widely used: Seldom.

4 Affected subclause: 9.2.9 [see also 6.6]
Change: Const objects must be initialized in C++ but can be left uninitialized in C.
Rationale: A const object cannot be assigned to so it must be initialized to hold a useful value.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used: Seldom.

5 Affected subclause: 9.2.9.6
Change: The keyword auto cannot be used as a storage class specifier.
Example:

void f() {
auto int x; // valid C, invalid C++

}

Rationale: Allowing the use of auto to deduce the type of a variable from its initializer results in undesired
interpretations of auto as a storage class specifier in certain contexts.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Syntactic transformation.
How widely used: Rare.

6 Affected subclause: 9.3.4.6
Change: In C++, a function declared with an empty parameter list takes no arguments. In C, an empty
parameter list means that the number and type of the function arguments are unknown.
Example:

int f(); // means int f(void) in C++
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// int f( unknown ) in C

Rationale: This is to avoid erroneous function calls (i.e., function calls with the wrong number or type of
arguments).
Effect on original feature: Change to semantics of well-defined feature. This feature was marked as
“obsolescent” in C.
Difficulty of converting: Syntactic transformation. The function declarations using C incomplete
declaration style must be completed to become full prototype declarations. A program may need to be
updated further if different calls to the same (non-prototype) function have different numbers of arguments
or if the type of corresponding arguments differed.
How widely used: Common.

7 Affected subclause: 9.3.4.6 [see 7.6.2.5]
Change: In C++, types may not be defined in return or parameter types. In C, these type definitions are
allowed.
Example:

void f( struct S { int a; } arg ) {} // valid C, invalid C++

enum E { A, B, C } f() {} // valid C, invalid C++

Rationale: When comparing types in different translation units, C++ relies on name equivalence when C
relies on structural equivalence. Regarding parameter types: since the type defined in a parameter list would
be in the scope of the function, the only legal calls in C++ would be from within the function itself.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. The type definitions must be moved to file scope, or in
header files.
How widely used: Seldom. This style of type definition is seen as poor coding style.

8 Affected subclause: 9.5
Change: In C++, the syntax for function definition excludes the “old-style” C function. In C, “old-style”
syntax is allowed, but deprecated as “obsolescent”.
Rationale: Prototypes are essential to type safety.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Syntactic transformation.
How widely used: Common in old programs, but already known to be obsolescent.

9 Affected subclause: 9.4.2
Change: In C++, designated initialization support is restricted compared to the corresponding functionality
in C. In C++, designators for non-static data members must be specified in declaration order, designators
for array elements and nested designators are not supported, and designated and non-designated initializers
cannot be mixed in the same initializer list.
Example:

struct A { int x, y; };
struct B { struct A a; };
struct A a = {.y = 1, .x = 2}; // valid C, invalid C++

int arr[3] = {[1] = 5}; // valid C, invalid C++

struct B b = {.a.x = 0}; // valid C, invalid C++

struct A c = {.x = 1, 2}; // valid C, invalid C++

Rationale: In C++, members are destroyed in reverse construction order and the elements of an initializer
list are evaluated in lexical order, so field initializers must be specified in order. Array designators conflict
with lambda-expression syntax. Nested designators are seldom used.
Effect on original feature: Deletion of feature that is incompatible with C++.
Difficulty of converting: Syntactic transformation.
How widely used: Out-of-order initializers are common. The other features are seldom used.

10 Affected subclause: 9.4.3
Change: In C++, when initializing an array of character with a string, the number of characters in the
string (including the terminating ’\0’) must not exceed the number of elements in the array. In C, an array
can be initialized with a string even if the array is not large enough to contain the string-terminating ’\0’.
Example:

char array[4] = "abcd"; // valid C, invalid C++
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Rationale: When these non-terminated arrays are manipulated by standard string functions, there is
potential for major catastrophe.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. The arrays must be declared one element bigger to
contain the string terminating ’\0’.
How widely used: Seldom. This style of array initialization is seen as poor coding style.

11 Affected subclause: 9.7.1
Change: C++ objects of enumeration type can only be assigned values of the same enumeration type. In C,
objects of enumeration type can be assigned values of any integral type.
Example:

enum color { red, blue, green };
enum color c = 1; // valid C, invalid C++

Rationale: The type-safe nature of C++.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Syntactic transformation. (The type error produced by the assignment can be
automatically corrected by applying an explicit cast.)
How widely used: Common.

12 Affected subclause: 9.7.1
Change: In C++, the type of an enumerator is its enumeration. In C, the type of an enumerator is int.
Example:

enum e { A };
sizeof(A) == sizeof(int) // in C
sizeof(A) == sizeof(e) // in C++

/∗ and sizeof(int) is not necessarily equal to sizeof(e) ∗/

Rationale: In C++, an enumeration is a distinct type.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used: Seldom. The only time this affects existing C code is when the size of an enumerator is
taken. Taking the size of an enumerator is not a common C coding practice.

13 Affected subclause: 9.12.2
Change: In C++, an alignment-specifier is an attribute-specifier . In C, an alignment-specifier is a declaration-
specifier .
Example:

#include <stdalign.h>
unsigned alignas(8) int x; // valid C, invalid C++

unsigned int y alignas(8); // valid C++, invalid C

Rationale: C++ requires unambiguous placement of the alignment-specifier .
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Syntactic transformation.
How widely used: Seldom.

C.6.7 Clause 11: classes [diff.class]
1 Affected subclause: 11.3 [see also 9.2.4]

Change: In C++, a class declaration introduces the class name into the scope where it is declared and hides
any object, function or other declaration of that name in an enclosing scope. In C, an inner scope declaration
of a struct tag name never hides the name of an object or function in an outer scope.
Example:

int x[99];
void f() {

struct x { int a; };
sizeof(x); /∗ size of the array in C ∗/
/∗ size of the struct in C++ ∗/

}
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Rationale: This is one of the few incompatibilities between C and C++ that can be attributed to the new
C++ name space definition where a name can be declared as a type and as a non-type in a single scope
causing the non-type name to hide the type name and requiring that the keywords class, struct, union
or enum be used to refer to the type name. This new name space definition provides important notational
conveniences to C++ programmers and helps making the use of the user-defined types as similar as possible
to the use of fundamental types. The advantages of the new name space definition were judged to outweigh
by far the incompatibility with C described above.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation. If the hidden name that needs to be accessed is at
global scope, the :: C++ operator can be used. If the hidden name is at block scope, either the type or the
struct tag has to be renamed.
How widely used: Seldom.

2 Affected subclause: 11.4.5.3
Change: Copying volatile objects.
The implicitly-declared copy constructor and implicitly-declared copy assignment operator cannot make a
copy of a volatile lvalue. For example, the following is valid in ISO C:

struct X { int i; };
volatile struct X x1 = {0};
struct X x2 = x1; // invalid C++

struct X x3;
x3 = x1; // also invalid C++

Rationale: Several alternatives were debated at length. Changing the parameter to volatile const X&
would greatly complicate the generation of efficient code for class objects. Discussion of providing two
alternative signatures for these implicitly-defined operations raised unanswered concerns about creating
ambiguities and complicating the rules that specify the formation of these operators according to the bases
and members.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. If volatile semantics are required for the copy, a
user-declared constructor or assignment must be provided. If non-volatile semantics are required, an explicit
const_cast can be used.
How widely used: Seldom.

3 Affected subclause: 11.4.10
Change: Bit-fields of type plain int are signed.
Rationale: The signedness needs to be consistent among template specializations. For consistency, the
implementation freedom was eliminated for non-dependent types, too.
Effect on original feature: The choice is implementation-defined in C, but not so in C++.
Difficulty of converting: Syntactic transformation.
How widely used: Seldom.

4 Affected subclause: 11.4.12
Change: In C++, the name of a nested class is local to its enclosing class. In C the name of the nested class
belongs to the same scope as the name of the outermost enclosing class.
Example:

struct X {
struct Y { /* ... */ } y;

};
struct Y yy; // valid C, invalid C++

Rationale: C++ classes have member functions which require that classes establish scopes. The C rule would
leave classes as an incomplete scope mechanism which would prevent C++ programmers from maintaining
locality within a class. A coherent set of scope rules for C++ based on the C rule would be very complicated
and C++ programmers would be unable to predict reliably the meanings of nontrivial examples involving
nested or local functions.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation. To make the struct type name visible in the scope of
the enclosing struct, the struct tag can be declared in the scope of the enclosing struct, before the enclosing
struct is defined. Example:

struct Y; // struct Y and struct X are at the same scope

§ C.6.7 1933



© ISO/IEC N4950

struct X {
struct Y { /* ... */ } y;

};

All the definitions of C struct types enclosed in other struct definitions and accessed outside the scope of
the enclosing struct can be exported to the scope of the enclosing struct. Note: this is a consequence of the
difference in scope rules, which is documented in 6.4.
How widely used: Seldom.

5 Affected subclause: 6.5.2
Change: In C++, a typedef-name may not be redeclared in a class definition after being used in that
definition.
Example:

typedef int I;
struct S {

I i;
int I; // valid C, invalid C++

};

Rationale: When classes become complicated, allowing such a redefinition after the type has been used can
create confusion for C++ programmers as to what the meaning of I really is.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. Either the type or the struct member has to be
renamed.
How widely used: Seldom.

C.6.8 Clause 15: preprocessing directives [diff.cpp]
1 Affected subclause: 15.11

Change: Whether __STDC__ is defined and if so, what its value is, are implementation-defined.
Rationale: C++ is not identical to ISO C. Mandating that __STDC__ be defined would require that
translators make an incorrect claim.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used: Programs and headers that reference __STDC__ are quite common.

C.7 C standard library [diff.library]
C.7.1 General [diff.library.general]

1 Subclause C.7 summarizes the explicit changes in headers, definitions, declarations, or behavior between the
C standard library in the C standard and the parts of the C++ standard library that were included from the
C standard library.

C.7.2 Modifications to headers [diff.mods.to.headers]
1 For compatibility with the C standard library, the C++ standard library provides the C headers enumerated

in 17.14.
2 There are no C++ headers for the C standard library’s headers <stdnoreturn.h> and <threads.h>, nor are

these headers from the C standard library headers themselves part of C++.
3 The C headers <complex.h> and <tgmath.h> do not contain any of the content from the C standard library

and instead merely include other headers from the C++ standard library.

C.7.3 Modifications to definitions [diff.mods.to.definitions]
C.7.3.1 Types char16_t and char32_t [diff.char16]

1 The types char16_t and char32_t are distinct types rather than typedefs to existing integral types. The
tokens char16_t and char32_t are keywords in C++ (5.11). They do not appear as macro or type names
defined in <cuchar> (23.5.5).

C.7.3.2 Type wchar_t [diff.wchar.t]
1 The type wchar_t is a distinct type rather than a typedef to an existing integral type. The token wchar_t is

a keyword in C++ (5.11). It does not appear as a macro or type name defined in any of <cstddef> (17.2.1),
<cstdlib> (17.2.2), or <cwchar> (23.5.4).
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C.7.3.3 Header <assert.h> [diff.header.assert.h]
1 The token static_assert is a keyword in C++. It does not appear as a macro name defined in <cassert>

(19.3.2).

C.7.3.4 Header <iso646.h> [diff.header.iso646.h]
1 The tokens and, and_eq, bitand, bitor, compl, not, not_eq, or, or_eq, xor, and xor_eq are keywords in

C++ (5.11), and are not introduced as macros by <iso646.h> (17.14.3).

C.7.3.5 Header <stdalign.h> [diff.header.stdalign.h]
1 The token alignas is a keyword in C++ (5.11), and is not introduced as a macro by <stdalign.h> (17.14.4).

C.7.3.6 Header <stdbool.h> [diff.header.stdbool.h]
1 The tokens bool, true, and false are keywords in C++ (5.11), and are not introduced as macros by

<stdbool.h> (17.14.5).

C.7.3.7 Macro NULL [diff.null]
1 The macro NULL, defined in any of <clocale> (30.5.1), <cstddef> (17.2.1), <cstdio> (31.13.1), <cstdlib>

(17.2.2), <cstring> (23.5.3), <ctime> (29.14), or <cwchar> (23.5.4), is an implementation-defined null pointer
constant in C++ (17.2).

C.7.4 Modifications to declarations [diff.mods.to.declarations]
1 Header <cstring> (23.5.3): The following functions have different declarations:

—(1.1) strchr
—(1.2) strpbrk
—(1.3) strrchr
—(1.4) strstr
—(1.5) memchr

Subclause 23.5.3 describes the changes.
2 Header <cwchar> (23.5.4): The following functions have different declarations:

—(2.1) wcschr
—(2.2) wcspbrk
—(2.3) wcsrchr
—(2.4) wcsstr
—(2.5) wmemchr

Subclause 23.5.4 describes the changes.
3 Header <cstddef> (17.2.1) declares the names nullptr_t, byte, and to_integer, and the operators and

operator templates in (17.2.5), in addition to the names declared in <stddef.h> (17.14) in the C standard
library.

C.7.5 Modifications to behavior [diff.mods.to.behavior]
C.7.5.1 General [diff.mods.to.behavior.general]

1 Header <cstdlib> (17.2.2): The following functions have different behavior:
—(1.1) atexit
—(1.2) exit
—(1.3) abort

Subclause 17.5 describes the changes.
2 Header <csetjmp> (17.13.3): The following functions have different behavior:

—(2.1) longjmp
Subclause 17.13.3 describes the changes.
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C.7.5.2 Macro offsetof(type, member-designator) [diff.offsetof]
1 The macro offsetof, defined in <cstddef> (17.2.1), accepts a restricted set of type arguments in C++.

Subclause 17.2.4 describes the change.

C.7.5.3 Memory allocation functions [diff.malloc]
1 The functions aligned_alloc, calloc, malloc, and realloc are restricted in C++. Subclause 20.2.12

describes the changes.
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Annex D (normative)
Compatibility features [depr]
D.1 General [depr.general]

1 This Annex describes features of the C++ Standard that are specified for compatibility with existing
implementations.

2 These are deprecated features, where deprecated is defined as: Normative for the current revision of C++, but
having been identified as a candidate for removal from future revisions. An implementation may declare
library names and entities described in this Clause with the deprecated attribute (9.12.5).

D.2 Arithmetic conversion on enumerations [depr.arith.conv.enum]
1 The ability to apply the usual arithmetic conversions (7.4) on operands where one is of enumeration type

and the other is of a different enumeration type or a floating-point type is deprecated.
[Note 1 : Three-way comparisons (7.6.8) between such operands are ill-formed. — end note ]
[Example 1 :

enum E1 { e };
enum E2 { f };
bool b = e <= 3.7; // deprecated
int k = f - e; // deprecated
auto cmp = e <=> f; // error

— end example ]

D.3 Implicit capture of *this by reference [depr.capture.this]
1 For compatibility with prior revisions of C++, a lambda-expression with capture-default = (7.5.5.3) may

implicitly capture *this by reference.
[Example 1 :

struct X {
int x;
void foo(int n) {

auto f = [=]() { x = n; }; // deprecated: x means this->x, not a copy thereof
auto g = [=, this]() { x = n; }; // recommended replacement

}
};

— end example ]

D.4 Array comparisons [depr.array.comp]
1 Equality and relational comparisons (7.6.10, 7.6.9) between two operands of array type are deprecated.

[Note 1 : Three-way comparisons (7.6.8) between such operands are ill-formed. — end note ]
[Example 1 :

int arr1[5];
int arr2[5];
bool same = arr1 == arr2; // deprecated, same as &arr1[0] == &arr2[0],

// does not compare array contents
auto cmp = arr1 <=> arr2; // error

— end example ]

D.5 Deprecated volatile types [depr.volatile.type]
1 Postfix ++ and -- expressions (7.6.1.6) and prefix ++ and -- expressions (7.6.2.3) of volatile-qualified arithmetic

and pointer types are deprecated.
[Example 1 :
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volatile int velociraptor;
++velociraptor; // deprecated

— end example ]
2 Certain assignments where the left operand is a volatile-qualified non-class type are deprecated; see 7.6.19.

[Example 2 :
int neck, tail;
volatile int brachiosaur;
brachiosaur = neck; // OK
tail = brachiosaur; // OK
tail = brachiosaur = neck; // deprecated
brachiosaur += neck; // OK

— end example ]
3 A function type (9.3.4.6) with a parameter with volatile-qualified type or with a volatile-qualified return type

is deprecated.
[Example 3 :

volatile struct amber jurassic(); // deprecated
void trex(volatile short left_arm, volatile short right_arm); // deprecated
void fly(volatile struct pterosaur* pteranodon); // OK

— end example ]
4 A structured binding (9.6) of a volatile-qualified type is deprecated.

[Example 4 :
struct linhenykus { short forelimb; };
void park(linhenykus alvarezsauroid) {

volatile auto [what_is_this] = alvarezsauroid; // deprecated
// ...

}

— end example ]

D.6 Redeclaration of static constexpr data members [depr.static.constexpr]
1 For compatibility with prior revisions of C++, a constexpr static data member may be redundantly redeclared

outside the class with no initializer. This usage is deprecated.
[Example 1 :

struct A {
static constexpr int n = 5; // definition (declaration in C++ 2014)

};

constexpr int A::n; // redundant declaration (definition in C++ 2014)
— end example ]

D.7 Non-local use of TU-local entities [depr.local]
1 A declaration of a non-TU-local entity that is an exposure (6.6) is deprecated.

[Note 1 : Such a declaration in an importable module unit is ill-formed. — end note ]
[Example 1 :

namespace {
struct A {

void f() {}
};

}
A h(); // deprecated: not internal linkage
inline void g() {A().f();} // deprecated: inline and not internal linkage

— end example ]
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D.8 Implicit declaration of copy functions [depr.impldec]
1 The implicit definition of a copy constructor (11.4.5.3) as defaulted is deprecated if the class has a user-

declared copy assignment operator or a user-declared destructor (11.4.7). The implicit definition of a copy
assignment operator (11.4.6) as defaulted is deprecated if the class has a user-declared copy constructor or a
user-declared destructor. It is possible that future versions of C++ will specify that these implicit definitions
are deleted (9.5.3).

D.9 Literal operator function declarations using an identifier [depr.lit]
1 A literal-operator-id (12.6) of the form

operator string-literal identifier

is deprecated.

D.10 template keyword before qualified names [depr.template.template]
1 The use of the keyword template before the qualified name of a class or alias template without a template

argument list is deprecated (13.3).

D.11 Requires paragraph [depr.res.on.required]
1 In addition to the elements specified in 16.3.2.4, descriptions of function semantics may also contain a

Requires: element to denote the preconditions for calling a function.
2 Violation of any preconditions specified in a function’s Requires: element results in undefined behavior unless

the function’s Throws: element specifies throwing an exception when the precondition is violated.

D.12 has_denorm members in numeric_limits [depr.numeric.limits.has.denorm]
1 The following type is defined in addition to those specified in <limits> (17.3.3):

namespace std {
enum float_denorm_style {

denorm_indeterminate = -1,
denorm_absent = 0,
denorm_present = 1

};
}

2 The following members are defined in addition to those specified in 17.3.5.1:
static constexpr float_denorm_style has_denorm = denorm_absent;
static constexpr bool has_denorm_loss = false;

3 The values of has_denorm and has_denorm_loss of specializations of numeric_limits are unspecified.
4 The following members of the specialization numeric_limits<bool> are defined in addition to those specified

in 17.3.5.3:
static constexpr float_denorm_style has_denorm = denorm_absent;
static constexpr bool has_denorm_loss = false;

D.13 Deprecated C macros [depr.c.macros]
1 The header <stdalign.h> has the following macro:

#define __alignas_is_defined 1

2 The header <stdbool.h> has the following macro:
#define __bool_true_false_are_defined 1

D.14 Relational operators [depr.relops]
1 The header <utility> (22.2.1) has the following additions:

namespace std::rel_ops {
template<class T> bool operator!=(const T&, const T&);
template<class T> bool operator> (const T&, const T&);
template<class T> bool operator<=(const T&, const T&);
template<class T> bool operator>=(const T&, const T&);

}

§ D.14 1939



© ISO/IEC N4950

2 To avoid redundant definitions of operator!= out of operator== and operators >, <=, and >= out of
operator<, the library provides the following:

template<class T> bool operator!=(const T& x, const T& y);

3 Requires: Type T is Cpp17EqualityComparable (Table 28).
4 Returns: !(x == y).

template<class T> bool operator>(const T& x, const T& y);

5 Requires: Type T is Cpp17LessThanComparable (Table 29).
6 Returns: y < x.

template<class T> bool operator<=(const T& x, const T& y);

7 Requires: Type T is Cpp17LessThanComparable (Table 29).
8 Returns: !(y < x).

template<class T> bool operator>=(const T& x, const T& y);

9 Requires: Type T is Cpp17LessThanComparable (Table 29).
10 Returns: !(x < y).

D.15 char* streams [depr.str.strstreams]
D.15.1 Header <strstream> synopsis [depr.strstream.syn]

1 The header <strstream> defines types that associate stream buffers with character array objects and assist
reading and writing such objects.

namespace std {
class strstreambuf;
class istrstream;
class ostrstream;
class strstream;

}

D.15.2 Class strstreambuf [depr.strstreambuf]
D.15.2.1 General [depr.strstreambuf.general]

namespace std {
class strstreambuf : public basic_streambuf<char> {
public:

strstreambuf() : strstreambuf(0) {}
explicit strstreambuf(streamsize alsize_arg);
strstreambuf(void* (*palloc_arg)(size_t), void (*pfree_arg)(void*));
strstreambuf(char* gnext_arg, streamsize n, char* pbeg_arg = nullptr);
strstreambuf(const char* gnext_arg, streamsize n);

strstreambuf(signed char* gnext_arg, streamsize n,
signed char* pbeg_arg = nullptr);

strstreambuf(const signed char* gnext_arg, streamsize n);
strstreambuf(unsigned char* gnext_arg, streamsize n,

unsigned char* pbeg_arg = nullptr);
strstreambuf(const unsigned char* gnext_arg, streamsize n);

virtual ~strstreambuf();

void freeze(bool freezefl = true);
char* str();
int pcount();

protected:
int_type overflow (int_type c = EOF) override;
int_type pbackfail(int_type c = EOF) override;
int_type underflow() override;
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pos_type seekoff(off_type off, ios_base::seekdir way,
ios_base::openmode which = ios_base::in | ios_base::out) override;

pos_type seekpos(pos_type sp,
ios_base::openmode which = ios_base::in | ios_base::out) override;

streambuf* setbuf(char* s, streamsize n) override;

private:
using strstate = T1; // exposition only
static const strstate allocated; // exposition only
static const strstate constant; // exposition only
static const strstate dynamic; // exposition only
static const strstate frozen; // exposition only
strstate strmode; // exposition only
streamsize alsize; // exposition only
void* (*palloc)(size_t); // exposition only
void (*pfree)(void*); // exposition only

};
}

1 The class strstreambuf associates the input sequence, and possibly the output sequence, with an object of
some character array type, whose elements store arbitrary values. The array object has several attributes.

2 [Note 1 : For the sake of exposition, these are represented as elements of a bitmask type (indicated here as T1) called
strstate. The elements are:

—(2.1) allocated, set when a dynamic array object has been allocated, and hence will be freed by the destructor for
the strstreambuf object;

—(2.2) constant, set when the array object has const elements, so the output sequence cannot be written;
—(2.3) dynamic, set when the array object is allocated (or reallocated) as necessary to hold a character sequence that

can change in length;
—(2.4) frozen, set when the program has requested that the array object not be altered, reallocated, or freed.

— end note ]
3 [Note 2 : For the sake of exposition, the maintained data is presented here as:

—(3.1) strstate strmode, the attributes of the array object associated with the strstreambuf object;
—(3.2) int alsize, the suggested minimum size for a dynamic array object;
—(3.3) void* (*palloc)(size_t), points to the function to call to allocate a dynamic array object;
—(3.4) void (*pfree)(void*), points to the function to call to free a dynamic array object.

— end note ]
4 Each object of class strstreambuf has a seekable area, delimited by the pointers seeklow and seekhigh. If

gnext is a null pointer, the seekable area is undefined. Otherwise, seeklow equals gbeg and seekhigh is
either pend, if pend is not a null pointer, or gend.

D.15.2.2 strstreambuf constructors [depr.strstreambuf.cons]

explicit strstreambuf(streamsize alsize_arg);

1 Effects: Initializes the base class with streambuf(). The postconditions of this function are indicated
in Table D.1.

Table D.1: strstreambuf(streamsize) effects [tab:depr.strstreambuf.cons.sz]

Element Value
strmode dynamic
alsize alsize_arg
palloc a null pointer
pfree a null pointer

strstreambuf(void* (*palloc_arg)(size_t), void (*pfree_arg)(void*));

2 Effects: Initializes the base class with streambuf(). The postconditions of this function are indicated
in Table D.2.
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Table D.2: strstreambuf(void* (*)(size_t), void (*)(void*)) effects
[tab:depr.strstreambuf.cons.alloc]

Element Value
strmode dynamic
alsize an unspecified value
palloc palloc_arg
pfree pfree_arg

strstreambuf(char* gnext_arg, streamsize n, char* pbeg_arg = nullptr);
strstreambuf(signed char* gnext_arg, streamsize n,

signed char* pbeg_arg = nullptr);
strstreambuf(unsigned char* gnext_arg, streamsize n,

unsigned char* pbeg_arg = nullptr);

3 Effects: Initializes the base class with streambuf(). The postconditions of this function are indicated
in Table D.3.

Table D.3: strstreambuf(charT*, streamsize, charT*) effects [tab:depr.strstreambuf.cons.ptr]

Element Value
strmode 0
alsize an unspecified value
palloc a null pointer
pfree a null pointer

4 gnext_arg shall point to the first element of an array object whose number of elements N is determined
as follows:

—(4.1) If n > 0, N is n.
—(4.2) If n == 0, N is std::strlen(gnext_arg).
—(4.3) If n < 0, N is INT_MAX.306

5 If pbeg_arg is a null pointer, the function executes:
setg(gnext_arg, gnext_arg, gnext_arg + N);

6 Otherwise, the function executes:
setg(gnext_arg, gnext_arg, pbeg_arg);
setp(pbeg_arg, pbeg_arg + N);

strstreambuf(const char* gnext_arg, streamsize n);
strstreambuf(const signed char* gnext_arg, streamsize n);
strstreambuf(const unsigned char* gnext_arg, streamsize n);

7 Effects: Behaves the same as strstreambuf((char*)gnext_arg,n), except that the constructor also
sets constant in strmode.

virtual ~strstreambuf();

8 Effects: Destroys an object of class strstreambuf. The function frees the dynamically allocated array
object only if (strmode & allocated) != 0 and (strmode & frozen) == 0. (D.15.2.4 describes how
a dynamically allocated array object is freed.)

D.15.2.3 Member functions [depr.strstreambuf.members]

void freeze(bool freezefl = true);

1 Effects: If strmode & dynamic is nonzero, alters the freeze status of the dynamic array object as
follows:

306) The function signature strlen(const char*) is declared in <cstring> (23.5.3). The macro INT_MAX is defined in <climits>
(17.3.6).
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—(1.1) If freezefl is true, the function sets frozen in strmode.
—(1.2) Otherwise, it clears frozen in strmode.

char* str();

2 Effects: Calls freeze(), then returns the beginning pointer for the input sequence, gbeg.
3 Remarks: The return value can be a null pointer.

int pcount() const;

4 Effects: If the next pointer for the output sequence, pnext, is a null pointer, returns zero. Otherwise,
returns the current effective length of the array object as the next pointer minus the beginning pointer
for the output sequence, pnext - pbeg.

D.15.2.4 strstreambuf overridden virtual functions [depr.strstreambuf.virtuals]

int_type overflow(int_type c = EOF) override;

1 Effects: Appends the character designated by c to the output sequence, if possible, in one of two ways:
—(1.1) If c != EOF and if either the output sequence has a write position available or the function makes

a write position available (as described below), assigns c to *pnext++.
Returns (unsigned char)c.

—(1.2) If c == EOF, there is no character to append.
Returns a value other than EOF.

2 Returns EOF to indicate failure.
3 Remarks: The function can alter the number of write positions available as a result of any call.
4 To make a write position available, the function reallocates (or initially allocates) an array object with

a sufficient number of elements n to hold the current array object (if any), plus at least one additional
write position. How many additional write positions are made available is otherwise unspecified.If
palloc is not a null pointer, the function calls (*palloc)(n) to allocate the new dynamic array object.
Otherwise, it evaluates the expression new charT[n]. In either case, if the allocation fails, the function
returns EOF. Otherwise, it sets allocated in strmode.

5 To free a previously existing dynamic array object whose first element address is p: If pfree is not a
null pointer, the function calls (*pfree)(p). Otherwise, it evaluates the expression delete[]p.

6 If (strmode & dynamic) == 0, or if (strmode & frozen) != 0, the function cannot extend the array
(reallocate it with greater length) to make a write position available.

7 Recommended practice: An implementation should consider alsize in making the decision how many
additional write positions to make available.

int_type pbackfail(int_type c = EOF) override;

8 Puts back the character designated by c to the input sequence, if possible, in one of three ways:
—(8.1) If c != EOF, if the input sequence has a putback position available, and if (char)c == gnext[-1],

assigns gnext - 1 to gnext.
Returns c.

—(8.2) If c != EOF, if the input sequence has a putback position available, and if strmode & constant
is zero, assigns c to *--gnext.
Returns c.

—(8.3) If c == EOF and if the input sequence has a putback position available, assigns gnext - 1 to
gnext.
Returns a value other than EOF.

9 Returns EOF to indicate failure.
10 Remarks: If the function can succeed in more than one of these ways, it is unspecified which way is

chosen. The function can alter the number of putback positions available as a result of any call.
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int_type underflow() override;

11 Effects: Reads a character from the input sequence, if possible, without moving the stream position
past it, as follows:

—(11.1) If the input sequence has a read position available, the function signals success by returning
(unsigned char)*gnext.

—(11.2) Otherwise, if the current write next pointer pnext is not a null pointer and is greater than the
current read end pointer gend, makes a read position available by assigning to gend a value greater
than gnext and no greater than pnext.
Returns (unsigned char)*gnext.

12 Returns EOF to indicate failure.
13 Remarks: The function can alter the number of read positions available as a result of any call.

pos_type seekoff(off_type off, seekdir way, openmode which = in | out) override;

14 Effects: Alters the stream position within one of the controlled sequences, if possible, as indicated in
Table D.4.

Table D.4: seekoff positioning [tab:depr.strstreambuf.seekoff.pos]

Conditions Result
(which & ios::in) != 0 positions the input sequence
(which & ios::out) != 0 positions the output sequence
(which & (ios::in | ios::out)) ==
(ios::in | ios::out) and either
way == ios::beg or way == ios::end

positions both the input and the output sequences

Otherwise the positioning operation fails.

15 For a sequence to be positioned, if its next pointer is a null pointer, the positioning operation fails.
Otherwise, the function determines newoff as indicated in Table D.5.

Table D.5: newoff values [tab:depr.strstreambuf.seekoff.newoff]

Condition newoff Value
way == ios::beg 0
way == ios::cur the next pointer minus the begin-

ning pointer (xnext - xbeg).
way == ios::end seekhigh minus the beginning

pointer (seekhigh - xbeg).

16 If (newoff + off) < (seeklow - xbeg) or (seekhigh - xbeg) < (newoff + off), the positioning
operation fails. Otherwise, the function assigns xbeg + newoff + off to the next pointer xnext.

17 Returns: pos_type(newoff), constructed from the resultant offset newoff (of type off_type), that
stores the resultant stream position, if possible. If the positioning operation fails, or if the constructed
object cannot represent the resultant stream position, the return value is pos_type(off_type(-1)).

pos_type seekpos(pos_type sp, ios_base::openmode which = ios_base::in | ios_base::out) override;

18 Effects: Alters the stream position within one of the controlled sequences, if possible, to correspond to
the stream position stored in sp (as described below).

—(18.1) If (which & ios::in) != 0, positions the input sequence.
—(18.2) If (which & ios::out) != 0, positions the output sequence.
—(18.3) If the function positions neither sequence, the positioning operation fails.

19 For a sequence to be positioned, if its next pointer is a null pointer, the positioning operation fails.
Otherwise, the function determines newoff from sp.offset():
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—(19.1) If newoff is an invalid stream position, has a negative value, or has a value greater than (seekhigh
- seeklow), the positioning operation fails

—(19.2) Otherwise, the function adds newoff to the beginning pointer xbeg and stores the result in the
next pointer xnext.

20 Returns: pos_type(newoff), constructed from the resultant offset newoff (of type off_type), that
stores the resultant stream position, if possible. If the positioning operation fails, or if the constructed
object cannot represent the resultant stream position, the return value is pos_type(off_type(-1)).

streambuf<char>* setbuf(char* s, streamsize n) override;

21 Effects: Behavior is implementation-defined, except that setbuf(0, 0) has no effect.

D.15.3 Class istrstream [depr.istrstream]
D.15.3.1 General [depr.istrstream.general]

namespace std {
class istrstream : public basic_istream<char> {
public:

explicit istrstream(const char* s);
explicit istrstream(char* s);
istrstream(const char* s, streamsize n);
istrstream(char* s, streamsize n);
virtual ~istrstream();

strstreambuf* rdbuf() const;
char* str();

private:
strstreambuf sb; // exposition only

};
}

1 The class istrstream supports the reading of objects of class strstreambuf. It supplies a strstreambuf
object to control the associated array object. For the sake of exposition, the maintained data is presented
here as:

—(1.1) sb, the strstreambuf object.

D.15.3.2 istrstream constructors [depr.istrstream.cons]

explicit istrstream(const char* s);
explicit istrstream(char* s);

1 Effects: Initializes the base class with istream(&sb) and sb with strstreambuf(s, 0). s shall
designate the first element of an ntbs.

istrstream(const char* s, streamsize n);
istrstream(char* s, streamsize n);

2 Effects: Initializes the base class with istream(&sb) and sb with strstreambuf(s, n). s shall
designate the first element of an array whose length is n elements, and n shall be greater than zero.

D.15.3.3 Member functions [depr.istrstream.members]

strstreambuf* rdbuf() const;

1 Returns: const_cast<strstreambuf*>(&sb).

char* str();

2 Returns: rdbuf()->str().

D.15.4 Class ostrstream [depr.ostrstream]
D.15.4.1 General [depr.ostrstream.general]

namespace std {
class ostrstream : public basic_ostream<char> {
public:

ostrstream();
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ostrstream(char* s, int n, ios_base::openmode mode = ios_base::out);
virtual ~ostrstream();

strstreambuf* rdbuf() const;
void freeze(bool freezefl = true);
char* str();
int pcount() const;

private:
strstreambuf sb; // exposition only

};
}

1 The class ostrstream supports the writing of objects of class strstreambuf. It supplies a strstreambuf
object to control the associated array object. For the sake of exposition, the maintained data is presented
here as:

—(1.1) sb, the strstreambuf object.

D.15.4.2 ostrstream constructors [depr.ostrstream.cons]

ostrstream();

1 Effects: Initializes the base class with ostream(&sb) and sb with strstreambuf().

ostrstream(char* s, int n, ios_base::openmode mode = ios_base::out);

2 Effects: Initializes the base class with ostream(&sb), and sb with one of two constructors:
—(2.1) If (mode & app) == 0, then s shall designate the first element of an array of n elements.

The constructor is strstreambuf(s, n, s).
—(2.2) If (mode & app) != 0, then s shall designate the first element of an array of n elements that

contains an ntbs whose first element is designated by s. The constructor is strstreambuf(s, n,
s + std::strlen(s)).307

D.15.4.3 Member functions [depr.ostrstream.members]

strstreambuf* rdbuf() const;

1 Returns: (strstreambuf*)&sb.

void freeze(bool freezefl = true);

2 Effects: Calls rdbuf()->freeze(freezefl).

char* str();

3 Returns: rdbuf()->str().

int pcount() const;

4 Returns: rdbuf()->pcount().

D.15.5 Class strstream [depr.strstream]
D.15.5.1 General [depr.strstream.general]

namespace std {
class strstream

: public basic_iostream<char> {
public:

// types
using char_type = char;
using int_type = char_traits<char>::int_type;
using pos_type = char_traits<char>::pos_type;
using off_type = char_traits<char>::off_type;

307) The function signature strlen(const char*) is declared in <cstring> (23.5.3).
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// constructors/destructor
strstream();
strstream(char* s, int n,

ios_base::openmode mode = ios_base::in|ios_base::out);
virtual ~strstream();

// members
strstreambuf* rdbuf() const;
void freeze(bool freezefl = true);
int pcount() const;
char* str();

private:
strstreambuf sb; // exposition only

};
}

1 The class strstream supports reading and writing from objects of class strstreambuf. It supplies a
strstreambuf object to control the associated array object. For the sake of exposition, the maintained data
is presented here as:

—(1.1) sb, the strstreambuf object.

D.15.5.2 strstream constructors [depr.strstream.cons]

strstream();

1 Effects: Initializes the base class with iostream(&sb).

strstream(char* s, int n,
ios_base::openmode mode = ios_base::in|ios_base::out);

2 Effects: Initializes the base class with iostream(&sb), and sb with one of the two constructors:
—(2.1) If (mode & app) == 0, then s shall designate the first element of an array of n elements. The

constructor is strstreambuf(s,n,s).
—(2.2) If (mode & app) != 0, then s shall designate the first element of an array of n elements that

contains an ntbs whose first element is designated by s. The constructor is strstreambuf(s,n,s
+ std::strlen(s)).

D.15.5.3 strstream destructor [depr.strstream.dest]

virtual ~strstream();

1 Effects: Destroys an object of class strstream.

D.15.5.4 strstream operations [depr.strstream.oper]

strstreambuf* rdbuf() const;

1 Returns: const_cast<strstreambuf*>(&sb).

void freeze(bool freezefl = true);

2 Effects: Calls rdbuf()->freeze(freezefl).

char* str();

3 Returns: rdbuf()->str().

int pcount() const;

4 Returns: rdbuf()->pcount().

D.16 Deprecated error numbers [depr.cerrno]
1 The following macros are defined in addition to those specified in 19.4.2:

#define ENODATA see below
#define ENOSR see below
#define ENOSTR see below
#define ETIME see below
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2 The meaning of these macros is defined by the POSIX standard.
3 The following enum errc enumerators are defined in addition to those specified in 19.5.2:

no_message_available, // ENODATA
no_stream_resources, // ENOSR
not_a_stream, // ENOSTR
stream_timeout, // ETIME

4 The value of each enum errc enumerator above is the same as the value of the <cerrno> macro shown in
the above synopsis.

D.17 The default allocator [depr.default.allocator]
1 The following member is defined in addition to those specified in 20.2.10:

namespace std {
template<class T> class allocator {
public:

using is_always_equal = true_type;
};

}

D.18 Deprecated polymorphic_allocator member function
[depr.mem.poly.allocator.mem]

1 The following member is declared in addition to those members specified in 20.4.3.3:
namespace std::pmr {

template<class Tp = byte>
class polymorphic_allocator {
public:

template <class T>
void destroy(T* p);

};
}

template<class T>
void destroy(T* p);

2 Effects: As if by p->~T().

D.19 Deprecated type traits [depr.meta.types]
1 The header <type_traits> (21.3.3) has the following addition:

namespace std {
template<class T> struct is_pod;
template<class T> constexpr bool is_pod_v = is_pod<T>::value;
template<size_t Len, size_t Align = default-alignment > // see below

struct aligned_storage;
template<size_t Len, size_t Align = default-alignment > // see below

using aligned_storage_t = typename aligned_storage<Len, Align>::type;
template<size_t Len, class... Types>

struct aligned_union;
template<size_t Len, class... Types>

using aligned_union_t = typename aligned_union<Len, Types...>::type;
}

2 The behavior of a program that adds specializations for any of the templates defined in this subclause is
undefined, unless explicitly permitted by the specification of the corresponding template.

template<class T> struct is_pod;

3 Requires: remove_all_extents_t<T> shall be a complete type or cv void.
4 is_pod<T> is a Cpp17UnaryTypeTrait (21.3.2) with a base characteristic of true_type if T is a POD

type, and false_type otherwise. A POD class is a class that is both a trivial class and a standard-layout
class, and has no non-static data members of type non-POD class (or array thereof). A POD type is a
scalar type, a POD class, an array of such a type, or a cv-qualified version of one of these types.

5 [Note 1 : It is unspecified whether a closure type (7.5.5.2) is a POD type. — end note ]
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template<size_t Len, size_t Align = default-alignment >
struct aligned_storage;

6 The value of default-alignment is the most stringent alignment requirement for any object type
whose size is no greater than Len (6.8).

7 Mandates: Len is not zero. Align is equal to alignof(T) for some type T or to default-alignment .
8 The member typedef type denotes a trivial standard-layout type suitable for use as uninitialized storage

for any object whose size is at most Len and whose alignment is a divisor of Align.
9 [Note 2 : Uses of aligned_storage<Len, Align>::type can be replaced by an array std::byte[Len] declared

with alignas(Align). — end note ]
10 [Note 3 : A typical implementation would define aligned_storage as:

template<size_t Len, size_t Alignment>
struct aligned_storage {

typedef struct {
alignas(Alignment) unsigned char __data[Len];

} type;
};

— end note ]

template<size_t Len, class... Types>
struct aligned_union;

11 Mandates: At least one type is provided. Each type in the template parameter pack Types is a complete
object type.

12 The member typedef type denotes a trivial standard-layout type suitable for use as uninitialized
storage for any object whose type is listed in Types; its size shall be at least Len. The static member
alignment_value is an integral constant of type size_t whose value is the strictest alignment of all
types listed in Types.

D.20 Tuple [depr.tuple]
1 The header <tuple> (22.4.2) has the following additions:

namespace std {
template<class T> struct tuple_size<volatile T>;
template<class T> struct tuple_size<const volatile T>;

template<size_t I, class T> struct tuple_element<I, volatile T>;
template<size_t I, class T> struct tuple_element<I, const volatile T>;

}

template<class T> struct tuple_size<volatile T>;
template<class T> struct tuple_size<const volatile T>;

2 Let TS denote tuple_size<T> of the cv-unqualified type T. If the expression TS::value is well-formed
when treated as an unevaluated operand (7.2.3), then specializations of each of the two templates meet
the Cpp17TransformationTrait requirements with a base characteristic of integral_constant<size_t,
TS::value>. Otherwise, they have no member value.

3 Access checking is performed as if in a context unrelated to TS and T. Only the validity of the immediate
context of the expression is considered.

4 In addition to being available via inclusion of the <tuple> (22.4.2) header, the two templates are
available when any of the headers <array> (24.3.2), <ranges> (26.2), or <utility> (22.2.1) are
included.

template<size_t I, class T> struct tuple_element<I, volatile T>;
template<size_t I, class T> struct tuple_element<I, const volatile T>;

5 Let TE denote tuple_element_t<I, T> of the cv-unqualified type T. Then specializations of each of
the two templates meet the Cpp17TransformationTrait requirements with a member typedef type that
names the following type:

—(5.1) for the first specialization, add_volatile_t<TE>, and
—(5.2) for the second specialization, add_cv_t<TE>.
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6 In addition to being available via inclusion of the <tuple> (22.4.2) header, the two templates are
available when any of the headers <array> (24.3.2), <ranges> (26.2), or <utility> (22.2.1) are
included.

D.21 Variant [depr.variant]
1 The header <variant> (22.6.2) has the following additions:

namespace std {
template<class T> struct variant_size<volatile T>;
template<class T> struct variant_size<const volatile T>;

template<size_t I, class T> struct variant_alternative<I, volatile T>;
template<size_t I, class T> struct variant_alternative<I, const volatile T>;

}

template<class T> struct variant_size<volatile T>;
template<class T> struct variant_size<const volatile T>;

2 Let VS denote variant_size<T> of the cv-unqualified type T. Then specializations of each of the
two templates meet the Cpp17UnaryTypeTrait requirements with a base characteristic of integral_-
constant<size_t, VS::value>.

template<size_t I, class T> struct variant_alternative<I, volatile T>;
template<size_t I, class T> struct variant_alternative<I, const volatile T>;

3 Let VA denote variant_alternative<I, T> of the cv-unqualified type T. Then specializations of each
of the two templates meet the Cpp17TransformationTrait requirements with a member typedef type
that names the following type:

—(3.1) for the first specialization, add_volatile_t<VA::type>, and
—(3.2) for the second specialization, add_cv_t<VA::type>.

D.22 Deprecated iterator class template [depr.iterator]
1 The header <iterator> (25.2) has the following addition:

namespace std {
template<class Category, class T, class Distance = ptrdiff_t,

class Pointer = T*, class Reference = T&>
struct iterator {

using iterator_category = Category;
using value_type = T;
using difference_type = Distance;
using pointer = Pointer;
using reference = Reference;

};
}

2 The iterator template may be used as a base class to ease the definition of required types for new iterators.
3 [Note 1 : If the new iterator type is a class template, then these aliases will not be visible from within the iterator

class’s template definition, but only to callers of that class. — end note ]
4 [Example 1 : If a C++ program wants to define a bidirectional iterator for some data structure containing double and

such that it works on a large memory model of the implementation, it can do so with:
class MyIterator :

public iterator<bidirectional_iterator_tag, double, long, T*, T&> {
// code implementing ++, etc.

};

— end example ]

D.23 Deprecated move_iterator access [depr.move.iter.elem]
1 The following member is declared in addition to those members specified in 25.5.4.6:
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namespace std {
template<class Iterator>
class move_iterator {
public:

constexpr pointer operator->() const;
};

}

constexpr pointer operator->() const;

2 Returns: current.

D.24 Deprecated shared_ptr atomic access [depr.util.smartptr.shared.atomic]
1 The header <memory> (20.2.2) has the following additions:

namespace std {
template<class T>

bool atomic_is_lock_free(const shared_ptr<T>* p);

template<class T>
shared_ptr<T> atomic_load(const shared_ptr<T>* p);

template<class T>
shared_ptr<T> atomic_load_explicit(const shared_ptr<T>* p, memory_order mo);

template<class T>
void atomic_store(shared_ptr<T>* p, shared_ptr<T> r);

template<class T>
void atomic_store_explicit(shared_ptr<T>* p, shared_ptr<T> r, memory_order mo);

template<class T>
shared_ptr<T> atomic_exchange(shared_ptr<T>* p, shared_ptr<T> r);

template<class T>
shared_ptr<T> atomic_exchange_explicit(shared_ptr<T>* p, shared_ptr<T> r, memory_order mo);

template<class T>
bool atomic_compare_exchange_weak(shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w);

template<class T>
bool atomic_compare_exchange_strong(shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w);

template<class T>
bool atomic_compare_exchange_weak_explicit(

shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w,
memory_order success, memory_order failure);

template<class T>
bool atomic_compare_exchange_strong_explicit(

shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w,
memory_order success, memory_order failure);

}

2 Concurrent access to a shared_ptr object from multiple threads does not introduce a data race if the access
is done exclusively via the functions in this subclause and the instance is passed as their first argument.

3 The meaning of the arguments of type memory_order is explained in 33.5.4.

template<class T> bool atomic_is_lock_free(const shared_ptr<T>* p);

4 Requires: p shall not be null.
5 Returns: true if atomic access to *p is lock-free, false otherwise.
6 Throws: Nothing.

template<class T> shared_ptr<T> atomic_load(const shared_ptr<T>* p);

7 Requires: p shall not be null.
8 Returns: atomic_load_explicit(p, memory_order::seq_cst).
9 Throws: Nothing.
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template<class T> shared_ptr<T> atomic_load_explicit(const shared_ptr<T>* p, memory_order mo);

10 Requires: p shall not be null.
11 Requires: mo shall not be memory_order::release or memory_order::acq_rel.
12 Returns: *p.
13 Throws: Nothing.

template<class T> void atomic_store(shared_ptr<T>* p, shared_ptr<T> r);

14 Requires: p shall not be null.
15 Effects: As if by atomic_store_explicit(p, r, memory_order::seq_cst).
16 Throws: Nothing.

template<class T> void atomic_store_explicit(shared_ptr<T>* p, shared_ptr<T> r, memory_order mo);

17 Requires: p shall not be null.
18 Requires: mo shall not be memory_order::acquire or memory_order::acq_rel.
19 Effects: As if by p->swap(r).
20 Throws: Nothing.

template<class T> shared_ptr<T> atomic_exchange(shared_ptr<T>* p, shared_ptr<T> r);

21 Requires: p shall not be null.
22 Returns: atomic_exchange_explicit(p, r, memory_order::seq_cst).
23 Throws: Nothing.

template<class T>
shared_ptr<T> atomic_exchange_explicit(shared_ptr<T>* p, shared_ptr<T> r, memory_order mo);

24 Requires: p shall not be null.
25 Effects: As if by p->swap(r).
26 Returns: The previous value of *p.
27 Throws: Nothing.

template<class T>
bool atomic_compare_exchange_weak(shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w);

28 Requires: p shall not be null and v shall not be null.
29 Returns:

atomic_compare_exchange_weak_explicit(p, v, w, memory_order::seq_cst, memory_order::seq_cst)

30 Throws: Nothing.

template<class T>
bool atomic_compare_exchange_strong(shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w);

31 Returns:
atomic_compare_exchange_strong_explicit(p, v, w, memory_order::seq_cst,

memory_order::seq_cst)

template<class T>
bool atomic_compare_exchange_weak_explicit(

shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w,
memory_order success, memory_order failure);

template<class T>
bool atomic_compare_exchange_strong_explicit(

shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w,
memory_order success, memory_order failure);

32 Requires: p shall not be null and v shall not be null. The failure argument shall not be memory_-
order::release nor memory_order::acq_rel.
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33 Effects: If *p is equivalent to *v, assigns w to *p and has synchronization semantics corresponding to
the value of success, otherwise assigns *p to *v and has synchronization semantics corresponding to
the value of failure.

34 Returns: true if *p was equivalent to *v, false otherwise.
35 Throws: Nothing.
36 Remarks: Two shared_ptr objects are equivalent if they store the same pointer value and share

ownership. The weak form may fail spuriously. See 33.5.8.2.

D.25 Deprecated basic_string capacity [depr.string.capacity]
1 The following member is declared in addition to those members specified in 23.4.3.5:

namespace std {
template<class charT, class traits = char_traits<charT>,

class Allocator = allocator<charT>>
class basic_string {
public:

void reserve();
};

}

void reserve();

2 Effects: After this call, capacity() has an unspecified value greater than or equal to size().
[Note 1 : This is a non-binding shrink to fit request. — end note ]

D.26 Deprecated standard code conversion facets [depr.locale.stdcvt]
D.26.1 General [depr.locale.stdcvt.general]

1 The header <codecvt> provides code conversion facets for various character encodings.

D.26.2 Header <codecvt> synopsis [depr.codecvt.syn]
namespace std {

enum codecvt_mode {
consume_header = 4,
generate_header = 2,
little_endian = 1

};

template<class Elem, unsigned long Maxcode = 0x10ffff, codecvt_mode Mode = (codecvt_mode)0>
class codecvt_utf8 : public codecvt<Elem, char, mbstate_t> {
public:

explicit codecvt_utf8(size_t refs = 0);
~codecvt_utf8();

};

template<class Elem, unsigned long Maxcode = 0x10ffff, codecvt_mode Mode = (codecvt_mode)0>
class codecvt_utf16 : public codecvt<Elem, char, mbstate_t> {
public:

explicit codecvt_utf16(size_t refs = 0);
~codecvt_utf16();

};

template<class Elem, unsigned long Maxcode = 0x10ffff, codecvt_mode Mode = (codecvt_mode)0>
class codecvt_utf8_utf16 : public codecvt<Elem, char, mbstate_t> {
public:

explicit codecvt_utf8_utf16(size_t refs = 0);
~codecvt_utf8_utf16();

};
}
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D.26.3 Requirements [depr.locale.stdcvt.req]
1 For each of the three code conversion facets codecvt_utf8, codecvt_utf16, and codecvt_utf8_utf16:

—(1.1) Elem is the wide-character type, such as wchar_t, char16_t, or char32_t.
—(1.2) Maxcode is the largest wide-character code that the facet will read or write without reporting a

conversion error.
—(1.3) If (Mode & consume_header), the facet shall consume an initial header sequence, if present, when

reading a multibyte sequence to determine the endianness of the subsequent multibyte sequence to be
read.

—(1.4) If (Mode & generate_header), the facet shall generate an initial header sequence when writing a
multibyte sequence to advertise the endianness of the subsequent multibyte sequence to be written.

—(1.5) If (Mode & little_endian), the facet shall generate a multibyte sequence in little-endian order, as
opposed to the default big-endian order.

—(1.6) UCS-2 is the same encoding as UTF-16, except that it encodes scalar values in the range u+0000–u+ffff
(Basic Multilingual Plane) only.

2 For the facet codecvt_utf8:
—(2.1) The facet shall convert between UTF-8 multibyte sequences and UCS-2 or UTF-32 (depending on the

size of Elem).
—(2.2) Endianness shall not affect how multibyte sequences are read or written.
—(2.3) The multibyte sequences may be written as either a text or a binary file.

3 For the facet codecvt_utf16:
—(3.1) The facet shall convert between UTF-16 multibyte sequences and UCS-2 or UTF-32 (depending on the

size of Elem).
—(3.2) Multibyte sequences shall be read or written according to the Mode flag, as set out above.
—(3.3) The multibyte sequences may be written only as a binary file. Attempting to write to a text file

produces undefined behavior.
4 For the facet codecvt_utf8_utf16:

—(4.1) The facet shall convert between UTF-8 multibyte sequences and UTF-16 (one or two 16-bit codes)
within the program.

—(4.2) Endianness shall not affect how multibyte sequences are read or written.
—(4.3) The multibyte sequences may be written as either a text or a binary file.

D.27 Deprecated convenience conversion interfaces [depr.conversions]
D.27.1 General [depr.conversions.general]

1 The header <locale> (30.2) has the following additions:
namespace std {

template<class Codecvt, class Elem = wchar_t,
class WideAlloc = allocator<Elem>,
class ByteAlloc = allocator<char>>

class wstring_convert;

template<class Codecvt, class Elem = wchar_t,
class Tr = char_traits<Elem>>

class wbuffer_convert;
}

D.27.2 Class template wstring_convert [depr.conversions.string]
1 Class template wstring_convert performs conversions between a wide string and a byte string. It lets you

specify a code conversion facet (like class template codecvt) to perform the conversions, without affecting
any streams or locales.
[Example 1 : If you want to use the code conversion facet codecvt_utf8 to output to cout a UTF-8 multibyte sequence
corresponding to a wide string, but you don’t want to alter the locale for cout, you can write something like:
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wstring_convert<std::codecvt_utf8<wchar_t>> myconv;
std::string mbstring = myconv.to_bytes(L"Hello\n");
std::cout << mbstring;

— end example ]
namespace std {

template<class Codecvt, class Elem = wchar_t,
class WideAlloc = allocator<Elem>,
class ByteAlloc = allocator<char>>

class wstring_convert {
public:

using byte_string = basic_string<char, char_traits<char>, ByteAlloc>;
using wide_string = basic_string<Elem, char_traits<Elem>, WideAlloc>;
using state_type = typename Codecvt::state_type;
using int_type = typename wide_string::traits_type::int_type;

wstring_convert() : wstring_convert(new Codecvt) {}
explicit wstring_convert(Codecvt* pcvt);
wstring_convert(Codecvt* pcvt, state_type state);
explicit wstring_convert(const byte_string& byte_err,

const wide_string& wide_err = wide_string());
~wstring_convert();

wstring_convert(const wstring_convert&) = delete;
wstring_convert& operator=(const wstring_convert&) = delete;

wide_string from_bytes(char byte);
wide_string from_bytes(const char* ptr);
wide_string from_bytes(const byte_string& str);
wide_string from_bytes(const char* first, const char* last);

byte_string to_bytes(Elem wchar);
byte_string to_bytes(const Elem* wptr);
byte_string to_bytes(const wide_string& wstr);
byte_string to_bytes(const Elem* first, const Elem* last);

size_t converted() const noexcept;
state_type state() const;

private:
byte_string byte_err_string; // exposition only
wide_string wide_err_string; // exposition only
Codecvt* cvtptr; // exposition only
state_type cvtstate; // exposition only
size_t cvtcount; // exposition only

};
}

2 The class template describes an object that controls conversions between wide string objects of class basic_-
string<Elem, char_traits<Elem>, WideAlloc> and byte string objects of class basic_string<char,
char_traits<char>, ByteAlloc>. The class template defines the types wide_string and byte_string as
synonyms for these two types. Conversion between a sequence of Elem values (stored in a wide_string
object) and multibyte sequences (stored in a byte_string object) is performed by an object of class Codecvt,
which meets the requirements of the standard code-conversion facet codecvt<Elem, char, mbstate_t>.

3 An object of this class template stores:
—(3.1) byte_err_string — a byte string to display on errors
—(3.2) wide_err_string — a wide string to display on errors
—(3.3) cvtptr — a pointer to the allocated conversion object (which is freed when the wstring_convert

object is destroyed)
—(3.4) cvtstate — a conversion state object
—(3.5) cvtcount — a conversion count
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size_t converted() const noexcept;

4 Returns: cvtcount.

wide_string from_bytes(char byte);
wide_string from_bytes(const char* ptr);
wide_string from_bytes(const byte_string& str);
wide_string from_bytes(const char* first, const char* last);

5 Effects: The first member function shall convert the single-element sequence byte to a wide string.
The second member function shall convert the null-terminated sequence beginning at ptr to a wide
string. The third member function shall convert the sequence stored in str to a wide string. The
fourth member function shall convert the sequence defined by the range [first, last) to a wide string.

6 In all cases:
—(6.1) If the cvtstate object was not constructed with an explicit value, it shall be set to its default value

(the initial conversion state) before the conversion begins. Otherwise it shall be left unchanged.
—(6.2) The number of input elements successfully converted shall be stored in cvtcount.

7 Returns: If no conversion error occurs, the member function shall return the converted wide string.
Otherwise, if the object was constructed with a wide-error string, the member function shall return the
wide-error string. Otherwise, the member function throws an object of class range_error.

state_type state() const;

8 Returns: cvtstate.

byte_string to_bytes(Elem wchar);
byte_string to_bytes(const Elem* wptr);
byte_string to_bytes(const wide_string& wstr);
byte_string to_bytes(const Elem* first, const Elem* last);

9 Effects: The first member function shall convert the single-element sequence wchar to a byte string.
The second member function shall convert the null-terminated sequence beginning at wptr to a byte
string. The third member function shall convert the sequence stored in wstr to a byte string. The
fourth member function shall convert the sequence defined by the range [first, last) to a byte string.

10 In all cases:
—(10.1) If the cvtstate object was not constructed with an explicit value, it shall be set to its default value

(the initial conversion state) before the conversion begins. Otherwise it shall be left unchanged.
—(10.2) The number of input elements successfully converted shall be stored in cvtcount.

11 Returns: If no conversion error occurs, the member function shall return the converted byte string.
Otherwise, if the object was constructed with a byte-error string, the member function shall return the
byte-error string. Otherwise, the member function shall throw an object of class range_error.

explicit wstring_convert(Codecvt* pcvt);
wstring_convert(Codecvt* pcvt, state_type state);
explicit wstring_convert(const byte_string& byte_err,

const wide_string& wide_err = wide_string());

12 Requires: For the first and second constructors, pcvt != nullptr.
13 Effects: The first constructor shall store pcvt in cvtptr and default values in cvtstate, byte_-

err_string, and wide_err_string. The second constructor shall store pcvt in cvtptr, state in
cvtstate, and default values in byte_err_string and wide_err_string; moreover the stored state
shall be retained between calls to from_bytes and to_bytes. The third constructor shall store new
Codecvt in cvtptr, state_type() in cvtstate, byte_err in byte_err_string, and wide_err in
wide_err_string.

~wstring_convert();

14 Effects: The destructor shall delete cvtptr.

D.27.3 Class template wbuffer_convert [depr.conversions.buffer]
1 Class template wbuffer_convert looks like a wide stream buffer, but performs all its I/O through an

underlying byte stream buffer that you specify when you construct it. Like class template wstring_convert,
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it lets you specify a code conversion facet to perform the conversions, without affecting any streams or locales.
namespace std {

template<class Codecvt, class Elem = wchar_t, class Tr = char_traits<Elem>>
class wbuffer_convert : public basic_streambuf<Elem, Tr> {
public:

using state_type = typename Codecvt::state_type;

wbuffer_convert() : wbuffer_convert(nullptr) {}
explicit wbuffer_convert(streambuf* bytebuf,

Codecvt* pcvt = new Codecvt,
state_type state = state_type());

~wbuffer_convert();

wbuffer_convert(const wbuffer_convert&) = delete;
wbuffer_convert& operator=(const wbuffer_convert&) = delete;

streambuf* rdbuf() const;
streambuf* rdbuf(streambuf* bytebuf);

state_type state() const;

private:
streambuf* bufptr; // exposition only
Codecvt* cvtptr; // exposition only
state_type cvtstate; // exposition only

};
}

2 The class template describes a stream buffer that controls the transmission of elements of type Elem, whose
character traits are described by the class Tr, to and from a byte stream buffer of type streambuf. Conversion
between a sequence of Elem values and multibyte sequences is performed by an object of class Codecvt, which
shall meet the requirements of the standard code-conversion facet codecvt<Elem, char, mbstate_t>.

3 An object of this class template stores:
—(3.1) bufptr — a pointer to its underlying byte stream buffer
—(3.2) cvtptr — a pointer to the allocated conversion object (which is freed when the wbuffer_convert

object is destroyed)
—(3.3) cvtstate — a conversion state object

state_type state() const;

4 Returns: cvtstate.

streambuf* rdbuf() const;

5 Returns: bufptr.

streambuf* rdbuf(streambuf* bytebuf);

6 Effects: Stores bytebuf in bufptr.
7 Returns: The previous value of bufptr.

explicit wbuffer_convert(
streambuf* bytebuf,
Codecvt* pcvt = new Codecvt,
state_type state = state_type());

8 Requires: pcvt != nullptr.
9 Effects: The constructor constructs a stream buffer object, initializes bufptr to bytebuf, initializes

cvtptr to pcvt, and initializes cvtstate to state.

~wbuffer_convert();

10 Effects: The destructor shall delete cvtptr.
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D.28 Deprecated locale category facets [depr.locale.category]
1 The ctype locale category includes the following facets as if they were specified in table Table 104 of 30.3.1.2.1.

codecvt<char16_t, char, mbstate_t>
codecvt<char32_t, char, mbstate_t>

2 The ctype locale category includes the following facets as if they were specified in table Table 105 of 30.3.1.2.1.
codecvt_byname<char16_t, char, mbstate_t>
codecvt_byname<char32_t, char, mbstate_t>

3 The following class template specializations are required in addition to those specified in 30.4.2.5. The
specialization codecvt<char16_t, char, mbstate_t> converts between the UTF-16 and UTF-8 encoding
forms, and the specialization codecvt<char32_t, char, mbstate_t> converts between the UTF-32 and
UTF-8 encoding forms.

D.29 Deprecated filesystem path factory functions [depr.fs.path.factory]
template<class Source>

path u8path(const Source& source);
template<class InputIterator>

path u8path(InputIterator first, InputIterator last);

1 Requires: The source and [first, last) sequences are UTF-8 encoded. The value type of Source and
InputIterator is char or char8_t. Source meets the requirements specified in 31.12.6.4.

2 Returns:
—(2.1) If value_type is char and the current native narrow encoding (31.12.6.3.2) is UTF-8, return

path(source) or path(first, last); otherwise,
—(2.2) if value_type is wchar_t and the native wide encoding is UTF-16, or if value_type is char16_t

or char32_t, convert source or [first, last) to a temporary, tmp, of type string_type and
return path(tmp); otherwise,

—(2.3) convert source or [first, last) to a temporary, tmp, of type u32string and return path(tmp).
3 Remarks: Argument format conversion (31.12.6.3.1) applies to the arguments for these functions. How

Unicode encoding conversions are performed is unspecified.
4 [Example 1 : A string is to be read from a database that is encoded in UTF-8, and used to create a directory

using the native encoding for filenames:
namespace fs = std::filesystem;
std::string utf8_string = read_utf8_data();
fs::create_directory(fs::u8path(utf8_string));

For POSIX-based operating systems with the native narrow encoding set to UTF-8, no encoding or type
conversion occurs.
For POSIX-based operating systems with the native narrow encoding not set to UTF-8, a conversion to UTF-32
occurs, followed by a conversion to the current native narrow encoding. Some Unicode characters may have no
native character set representation.
For Windows-based operating systems a conversion from UTF-8 to UTF-16 occurs. — end example ]
[Note 1 : The example above is representative of a historical use of filesystem::u8path. To indicate a UTF-8
encoding, passing a std::u8string to path’s constructor is preferred as it is consistent with path’s handling of
other encodings. — end note ]

D.30 Deprecated atomic operations [depr.atomics]
D.30.1 General [depr.atomics.general]

1 The header <atomic> (33.5.2) has the following additions.
namespace std {

template<class T>
void atomic_init(volatile atomic<T>*, typename atomic<T>::value_type) noexcept;

template<class T>
void atomic_init(atomic<T>*, typename atomic<T>::value_type) noexcept;

#define ATOMIC_VAR_INIT(value) see below
}
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D.30.2 Volatile access [depr.atomics.volatile]
1 If an atomic (33.5.8) specialization has one of the following overloads, then that overload participates in

overload resolution even if atomic<T>::is_always_lock_free is false:
void store(T desired, memory_order order = memory_order::seq_cst) volatile noexcept;
T operator=(T desired) volatile noexcept;
T load(memory_order order = memory_order::seq_cst) const volatile noexcept;
operator T() const volatile noexcept;
T exchange(T desired, memory_order order = memory_order::seq_cst) volatile noexcept;
bool compare_exchange_weak(T& expected, T desired,

memory_order success, memory_order failure) volatile noexcept;
bool compare_exchange_strong(T& expected, T desired,

memory_order success, memory_order failure) volatile noexcept;
bool compare_exchange_weak(T& expected, T desired,

memory_order order = memory_order::seq_cst) volatile noexcept;
bool compare_exchange_strong(T& expected, T desired,

memory_order order = memory_order::seq_cst) volatile noexcept;
T fetch_key(T operand, memory_order order = memory_order::seq_cst) volatile noexcept;
T operator op=(T operand) volatile noexcept;
T* fetch_key(ptrdiff_t operand, memory_order order = memory_order::seq_cst) volatile noexcept;

D.30.3 Non-member functions [depr.atomics.nonmembers]
template<class T>

void atomic_init(volatile atomic<T>* object, typename atomic<T>::value_type desired) noexcept;
template<class T>

void atomic_init(atomic<T>* object, typename atomic<T>::value_type desired) noexcept;

1 Effects: Equivalent to: atomic_store_explicit(object, desired, memory_order::relaxed);

D.30.4 Operations on atomic types [depr.atomics.types.operations]
#define ATOMIC_VAR_INIT(value) see below

1 The macro expands to a token sequence suitable for constant initialization of an atomic variable of
static storage duration of a type that is initialization-compatible with value.
[Note 1 : This operation possibly needs to initialize locks. — end note ]

Concurrent access to the variable being initialized, even via an atomic operation, constitutes a data
race.
[Example 1 :

atomic<int> v = ATOMIC_VAR_INIT(5);

— end example ]

§ D.30.4 1959



© ISO/IEC N4950

Annex E (informative)
Conformance with UAX #31 [uaxid]
E.1 General [uaxid.general]

1 This Annex describes the choices made in application of UAX #31 (“Unicode Identifier and Pattern Syntax”)
to C++ in terms of the requirements from UAX #31 and how they do or do not apply to C++. In terms
of UAX #31, C++ conforms by meeting the requirements R1 “Default Identifiers” and R4 “Equivalent
Normalized Identifiers”. The other requirements, also listed below, are either alternatives not taken or do not
apply to C++.

E.2 R1 Default identifiers [uaxid.def]
E.2.1 General [uaxid.def.general]

1 UAX #31 specifies a default syntax for identifiers based on properties from the Unicode Character Database,
UAX #44. The general syntax is

<Identifier> := <Start> <Continue>* (<Medial> <Continue>+)*

where <Start> has the XID_Start property, <Continue> has the XID_Continue property, and <Medial> is
a list of characters permitted between continue characters. For C++ we add the character u+005f low line,
or _, to the set of permitted <Start> characters, the <Medial> set is empty, and the <Continue> characters
are unmodified. In the grammar used in UAX #31, this is

<Identifier> := <Start> <Continue>*
<Start> := XID_Start + u+005f
<Continue> := <Start> + XID_Continue

2 This is described in the C++ grammar in 5.10, where identifier is formed from identifier-start or identifier
followed by identifier-continue.

E.2.2 R1a Restricted format characters [uaxid.def.rfmt]
1 If an implementation of UAX #31 wishes to allow format characters such as u+200d zero width joiner

or u+200c zero width non-joiner it must define a profile allowing them, or describe precisely which
combinations are permitted.

2 C++ does not allow format characters in identifiers, so this does not apply.

E.2.3 R1b Stable identifiers [uaxid.def.stable]
1 An implementation of UAX #31 may choose to guarantee that identifiers are stable across versions of the

Unicode Standard. Once a string qualifies as an identifier it does so in all future versions.
2 C++ does not make this guarantee, except to the extent that UAX #31 guarantees the stability of the

XID_Start and XID_Continue properties.

E.3 R2 Immutable identifiers [uaxid.immutable]
1 An implementation may choose to guarantee that the set of identifiers will never change by fixing the set of

code points allowed in identifiers forever.
2 C++ does not choose to make this guarantee. As scripts are added to Unicode, additional characters in those

scripts may become available for use in identifiers.

E.4 R3 Pattern_White_Space and Pattern_Syntax characters [uaxid.pattern]
1 UAX #31 describes how formal languages such as computer languages should describe and implement their

use of whitespace and syntactically significant characters during the processes of lexing and parsing.
2 C++ does not claim conformance with this requirement.
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E.5 R4 Equivalent normalized identifiers [uaxid.eqn]
1 UAX #31 requires that implementations describe how identifiers are compared and considered equivalent.
2 C++ requires that identifiers be in Normalization Form C and therefore identifiers that compare the same

under NFC are equivalent. This is described in 5.10.

E.6 R5 Equivalent case-insensitive identifiers [uaxid.eqci]
1 C++ considers case to be significant in identifier comparison, and does not do any case folding. This

requirement does not apply to C++.

E.7 R6 Filtered normalized identifiers [uaxid.filter]
1 If any characters are excluded from normalization, UAX #31 requires a precise specification of those exclusions.
2 C++ does not make any such exclusions.

E.8 R7 Filtered case-insensitive identifiers [uaxid.filterci]
1 C++ identifiers are case sensitive, and therefore this requirement does not apply.

E.9 R8 Hashtag identifiers [uaxid.hashtag]
1 There are no hashtags in C++, so this requirement does not apply.
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thread.syn (33.4.2) 1795
thread.thread.algorithm (33.4.3.8) 1799
thread.thread.assign (33.4.3.5) 1798
thread.thread.class (33.4.3) 1796
thread.thread.class.general (33.4.3.1) 1796
thread.thread.constr (33.4.3.3) 1797
thread.thread.destr (33.4.3.4) 1798
thread.thread.id (33.4.3.2) 1796
thread.thread.member (33.4.3.6) 1798
thread.thread.static (33.4.3.7) 1799
thread.thread.this (33.4.5) 1802
thread.threads (33.4) 1795
thread.threads.general (33.4.1) 1795
thread.timedmutex.class (33.6.4.3.2) 1840
thread.timedmutex.recursive (33.6.4.3.3) 1841
thread.timedmutex.requirements (33.6.4.3) 1839
thread.timedmutex.requirements.general

(33.6.4.3.1) 1839
time (Clause 29) 1480
time.12 (29.10) 1548
time.cal (29.8) 1517
time.cal.day (29.8.3) 1517
time.cal.day.members (29.8.3.2) 1517
time.cal.day.nonmembers (29.8.3.3) 1518
time.cal.day.overview (29.8.3.1) 1517
time.cal.general (29.8.1) 1517
time.cal.last (29.8.2) 1517
time.cal.md (29.8.9) 1527
time.cal.md.members (29.8.9.2) 1527
time.cal.md.nonmembers (29.8.9.3) 1528
time.cal.md.overview (29.8.9.1) 1527
time.cal.mdlast (29.8.10) 1528
time.cal.month (29.8.4) 1519
time.cal.month.members (29.8.4.2) 1519

time.cal.month.nonmembers (29.8.4.3) 1520
time.cal.month.overview (29.8.4.1) 1519
time.cal.mwd (29.8.11) 1529
time.cal.mwd.members (29.8.11.2) 1529
time.cal.mwd.nonmembers (29.8.11.3) 1530
time.cal.mwd.overview (29.8.11.1) 1529
time.cal.mwdlast (29.8.12) 1530
time.cal.mwdlast.members (29.8.12.2) 1530
time.cal.mwdlast.nonmembers (29.8.12.3) 1530
time.cal.mwdlast.overview (29.8.12.1) 1530
time.cal.operators (29.8.18) 1543
time.cal.wd (29.8.6) 1523
time.cal.wd.members (29.8.6.2) 1524
time.cal.wd.nonmembers (29.8.6.3) 1525
time.cal.wd.overview (29.8.6.1) 1523
time.cal.wdidx (29.8.7) 1525
time.cal.wdidx.members (29.8.7.2) 1526
time.cal.wdidx.nonmembers (29.8.7.3) 1526
time.cal.wdidx.overview (29.8.7.1) 1525
time.cal.wdlast (29.8.8) 1526
time.cal.wdlast.members (29.8.8.2) 1527
time.cal.wdlast.nonmembers (29.8.8.3) 1527
time.cal.wdlast.overview (29.8.8.1) 1526
time.cal.year (29.8.5) 1521
time.cal.year.members (29.8.5.2) 1521
time.cal.year.nonmembers (29.8.5.3) 1522
time.cal.year.overview (29.8.5.1) 1521
time.cal.ym (29.8.13) 1531
time.cal.ym.members (29.8.13.2) 1531
time.cal.ym.nonmembers (29.8.13.3) 1532
time.cal.ym.overview (29.8.13.1) 1531
time.cal.ymd (29.8.14) 1533
time.cal.ymd.members (29.8.14.2) 1533
time.cal.ymd.nonmembers (29.8.14.3) 1535
time.cal.ymd.overview (29.8.14.1) 1533
time.cal.ymdlast (29.8.15) 1536
time.cal.ymdlast.members (29.8.15.2) 1536
time.cal.ymdlast.nonmembers (29.8.15.3) 1537
time.cal.ymdlast.overview (29.8.15.1) 1536
time.cal.ymwd (29.8.16) 1538
time.cal.ymwd.members (29.8.16.2) 1539
time.cal.ymwd.nonmembers (29.8.16.3) 1540
time.cal.ymwd.overview (29.8.16.1) 1538
time.cal.ymwdlast (29.8.17) 1540
time.cal.ymwdlast.members (29.8.17.2) 1541
time.cal.ymwdlast.nonmembers (29.8.17.3) 1542
time.cal.ymwdlast.overview (29.8.17.1) 1540
time.clock (29.7) 1506
time.clock.cast (29.7.10) 1514
time.clock.cast.fn (29.7.10.6) 1516
time.clock.cast.id (29.7.10.2) 1514
time.clock.cast.sys (29.7.10.4) 1515
time.clock.cast.sys.utc (29.7.10.3) 1515
time.clock.cast.utc (29.7.10.5) 1516
time.clock.conv (29.7.10.1) 1514
time.clock.file (29.7.6) 1512
time.clock.file.members (29.7.6.2) 1512
time.clock.file.nonmembers (29.7.6.3) 1513
time.clock.file.overview (29.7.6.1) 1512
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time.clock.general (29.7.1) 1506
time.clock.gps (29.7.5) 1511
time.clock.gps.members (29.7.5.2) 1511
time.clock.gps.nonmembers (29.7.5.3) 1511
time.clock.gps.overview (29.7.5.1) 1511
time.clock.hires (29.7.8) 1513
time.clock.local (29.7.9) 1513
time.clock.req (29.3) 1494
time.clock.steady (29.7.7) 1513
time.clock.system (29.7.2) 1506
time.clock.system.members (29.7.2.2) 1506
time.clock.system.nonmembers (29.7.2.3) 1506
time.clock.system.overview (29.7.2.1) 1506
time.clock.tai (29.7.4) 1509
time.clock.tai.members (29.7.4.2) 1510
time.clock.tai.nonmembers (29.7.4.3) 1510
time.clock.tai.overview (29.7.4.1) 1509
time.clock.utc (29.7.3) 1507
time.clock.utc.members (29.7.3.2) 1508
time.clock.utc.nonmembers (29.7.3.3) 1508
time.clock.utc.overview (29.7.3.1) 1507
time.duration (29.5) 1496
time.duration.alg (29.5.10) 1502
time.duration.arithmetic (29.5.4) 1498
time.duration.cast (29.5.8) 1500
time.duration.comparisons (29.5.7) 1500
time.duration.cons (29.5.2) 1497
time.duration.general (29.5.1) 1496
time.duration.io (29.5.11) 1502
time.duration.literals (29.5.9) 1501
time.duration.nonmember (29.5.6) 1499
time.duration.observer (29.5.3) 1498
time.duration.special (29.5.5) 1498
time.format (29.12) 1561
time.general (29.1) 1480
time.hms (29.9) 1546
time.hms.members (29.9.2) 1546
time.hms.nonmembers (29.9.3) 1548
time.hms.overview (29.9.1) 1546
time.parse (29.13) 1565
time.point (29.6) 1503
time.point.arithmetic (29.6.4) 1504
time.point.cast (29.6.8) 1505
time.point.comparisons (29.6.7) 1505
time.point.cons (29.6.2) 1503
time.point.general (29.6.1) 1503
time.point.nonmember (29.6.6) 1504
time.point.observer (29.6.3) 1504
time.point.special (29.6.5) 1504
time.syn (29.2) 1480
time.traits (29.4) 1495
time.traits.duration.values (29.4.2) 1495
time.traits.is.clock (29.4.4) 1496
time.traits.is.fp (29.4.1) 1495
time.traits.specializations (29.4.3) 1495
time.zone (29.11) 1548
time.zone.db (29.11.2) 1548
time.zone.db.access (29.11.2.3) 1550
time.zone.db.list (29.11.2.2) 1549

time.zone.db.remote (29.11.2.4) 1550
time.zone.db.tzdb (29.11.2.1) 1548
time.zone.exception (29.11.3) 1551
time.zone.exception.ambig (29.11.3.2) 1551
time.zone.exception.nonexist (29.11.3.1) 1551
time.zone.general (29.11.1) 1548
time.zone.info (29.11.4) 1552
time.zone.info.local (29.11.4.2) 1553
time.zone.info.sys (29.11.4.1) 1552
time.zone.leap (29.11.8) 1559
time.zone.leap.members (29.11.8.2) 1560
time.zone.leap.nonmembers (29.11.8.3) 1560
time.zone.leap.overview (29.11.8.1) 1559
time.zone.link (29.11.9) 1561
time.zone.link.members (29.11.9.2) 1561
time.zone.link.nonmembers (29.11.9.3) 1561
time.zone.link.overview (29.11.9.1) 1561
time.zone.members (29.11.5.2) 1554
time.zone.nonmembers (29.11.5.3) 1555
time.zone.overview (29.11.5.1) 1553
time.zone.timezone (29.11.5) 1553
time.zone.zonedtime (29.11.7) 1555
time.zone.zonedtime.ctor (29.11.7.2) 1557
time.zone.zonedtime.members (29.11.7.3) 1558
time.zone.zonedtime.nonmembers (29.11.7.4)

1559
time.zone.zonedtime.overview (29.11.7.1) 1555
time.zone.zonedtraits (29.11.6) 1555
transform.exclusive.scan (27.10.10) 1386
transform.inclusive.scan (27.10.11) 1387
transform.reduce (27.10.6) 1382
tuple (22.4) 691
tuple.apply (22.4.6) 702
tuple.assign (22.4.4.2) 698
tuple.cnstr (22.4.4.1) 695
tuple.common.ref (22.4.10) 704
tuple.creation (22.4.5) 701
tuple.elem (22.4.8) 703
tuple.general (22.4.1) 691
tuple.helper (22.4.7) 702
tuple.like (22.4.3) 693
tuple.rel (22.4.9) 704
tuple.special (22.4.12) 705
tuple.swap (22.4.4.3) 700
tuple.syn (22.4.2) 692
tuple.traits (22.4.11) 705
tuple.tuple (22.4.4) 693
type.descriptions (16.3.3.3) 482
type.descriptions.general (16.3.3.3.1) 482
type.index (22.11) 789
type.index.hash (22.11.4) 790
type.index.members (22.11.3) 789
type.index.overview (22.11.2) 789
type.index.synopsis (22.11.1) 789
type.info (17.7.3) 533
type.traits (21.3) 650
type.traits.general (21.3.1) 650
typeinfo.syn (17.7.2) 533
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uaxid (Annex E) 1960
uaxid.def (E.2) 1960
uaxid.def.general (E.2.1) 1960
uaxid.def.rfmt (E.2.2) 1960
uaxid.def.stable (E.2.3) 1960
uaxid.eqci (E.6) 1961
uaxid.eqn (E.5) 1961
uaxid.filter (E.7) 1961
uaxid.filterci (E.8) 1961
uaxid.general (E.1) 1960
uaxid.hashtag (E.9) 1961
uaxid.immutable (E.3) 1960
uaxid.pattern (E.4) 1960
uncaught.exceptions (17.9.6) 538
underflow.error (19.2.11) 575
uninitialized.construct.default (27.11.3) 1391
uninitialized.construct.value (27.11.4) 1392
uninitialized.copy (27.11.5) 1392
uninitialized.fill (27.11.7) 1394
uninitialized.move (27.11.6) 1393
unique.ptr (20.3.1) 610
unique.ptr.create (20.3.1.5) 617
unique.ptr.dltr (20.3.1.2) 610
unique.ptr.dltr.dflt (20.3.1.2.2) 611
unique.ptr.dltr.dflt1 (20.3.1.2.3) 611
unique.ptr.dltr.general (20.3.1.2.1) 610
unique.ptr.general (20.3.1.1) 610
unique.ptr.io (20.3.1.7) 619
unique.ptr.runtime (20.3.1.4) 615
unique.ptr.runtime.asgn (20.3.1.4.3) 616
unique.ptr.runtime.ctor (20.3.1.4.2) 616
unique.ptr.runtime.general (20.3.1.4.1) 615
unique.ptr.runtime.modifiers (20.3.1.4.5) 617
unique.ptr.runtime.observers (20.3.1.4.4) 617
unique.ptr.single (20.3.1.3) 611
unique.ptr.single.asgn (20.3.1.3.4) 614
unique.ptr.single.ctor (20.3.1.3.2) 612
unique.ptr.single.dtor (20.3.1.3.3) 613
unique.ptr.single.general (20.3.1.3.1) 611
unique.ptr.single.modifiers (20.3.1.3.6) 615
unique.ptr.single.observers (20.3.1.3.5) 614
unique.ptr.special (20.3.1.6) 617
unord (24.5) 958
unord.general (24.5.1) 958
unord.hash (22.10.19) 788
unord.map (24.5.4) 960
unord.map.cnstr (24.5.4.2) 965
unord.map.elem (24.5.4.3) 965
unord.map.erasure (24.5.4.5) 967
unord.map.modifiers (24.5.4.4) 965
unord.map.overview (24.5.4.1) 960
unord.map.syn (24.5.2) 958
unord.multimap (24.5.5) 967
unord.multimap.cnstr (24.5.5.2) 971
unord.multimap.erasure (24.5.5.4) 972
unord.multimap.modifiers (24.5.5.3) 972
unord.multimap.overview (24.5.5.1) 967
unord.multiset (24.5.7) 977
unord.multiset.cnstr (24.5.7.2) 981

unord.multiset.erasure (24.5.7.3) 982
unord.multiset.overview (24.5.7.1) 977
unord.req (24.2.8) 897
unord.req.except (24.2.8.2) 908
unord.req.general (24.2.8.1) 897
unord.set (24.5.6) 972
unord.set.cnstr (24.5.6.2) 976
unord.set.erasure (24.5.6.3) 977
unord.set.overview (24.5.6.1) 972
unord.set.syn (24.5.3) 959
unreachable.sentinel (25.5.8) 1113
upper.bound (27.8.4.3) 1357
using (16.4.3) 489
using.headers (16.4.3.2) 489
using.linkage (16.4.3.3) 490
using.overview (16.4.3.1) 489
usrlit.suffix (16.4.5.3.6) 502
util.sharedptr (20.3.2) 619
util.smartptr.atomic (33.5.8.7) 1827
util.smartptr.atomic.general (33.5.8.7.1) 1827
util.smartptr.atomic.shared (33.5.8.7.2) 1827
util.smartptr.atomic.weak (33.5.8.7.3) 1829
util.smartptr.enab (20.3.2.5) 632
util.smartptr.getdeleter (20.3.2.2.11) 629
util.smartptr.hash (20.3.3) 633
util.smartptr.ownerless (20.3.2.4) 631
util.smartptr.shared (20.3.2.2) 619
util.smartptr.shared.assign (20.3.2.2.4) 623
util.smartptr.shared.cast (20.3.2.2.10) 628
util.smartptr.shared.cmp (20.3.2.2.8) 627
util.smartptr.shared.const (20.3.2.2.2) 621
util.smartptr.shared.create (20.3.2.2.7) 624
util.smartptr.shared.dest (20.3.2.2.3) 623
util.smartptr.shared.general (20.3.2.2.1) 619
util.smartptr.shared.io (20.3.2.2.12) 629
util.smartptr.shared.mod (20.3.2.2.5) 623
util.smartptr.shared.obs (20.3.2.2.6) 624
util.smartptr.shared.spec (20.3.2.2.9) 628
util.smartptr.weak (20.3.2.3) 629
util.smartptr.weak.assign (20.3.2.3.4) 631
util.smartptr.weak.bad (20.3.2.1) 619
util.smartptr.weak.const (20.3.2.3.2) 630
util.smartptr.weak.dest (20.3.2.3.3) 630
util.smartptr.weak.general (20.3.2.3.1) 629
util.smartptr.weak.mod (20.3.2.3.5) 631
util.smartptr.weak.obs (20.3.2.3.6) 631
util.smartptr.weak.spec (20.3.2.3.7) 631
utilities (Clause 22) 679
utilities.general (22.1) 679
utility (22.2) 679
utility.arg.requirements (16.4.4.2) 490
utility.as.const (22.2.5) 684
utility.exchange (22.2.3) 682
utility.intcmp (22.2.7) 684
utility.requirements (16.4.4) 490
utility.requirements.general (16.4.4.1) 490
utility.swap (22.2.2) 682
utility.syn (22.2.1) 679
utility.underlying (22.2.8) 685
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utility.unreachable (22.2.9) 685

valarray.access (28.6.2.4) 1453
valarray.assign (28.6.2.3) 1453
valarray.binary (28.6.3.1) 1457
valarray.cassign (28.6.2.7) 1455
valarray.comparison (28.6.3.2) 1458
valarray.cons (28.6.2.2) 1452
valarray.members (28.6.2.8) 1456
valarray.nonmembers (28.6.3) 1457
valarray.range (28.6.10) 1466
valarray.special (28.6.3.4) 1459
valarray.sub (28.6.2.5) 1453
valarray.syn (28.6.1) 1447
valarray.transcend (28.6.3.3) 1459
valarray.unary (28.6.2.6) 1455
value.error.codes (16.4.6.14) 507
variant (22.6) 718
variant.assign (22.6.3.4) 723
variant.bad.access (22.6.11) 729
variant.ctor (22.6.3.2) 721
variant.dtor (22.6.3.3) 723
variant.general (22.6.1) 718
variant.get (22.6.5) 726
variant.hash (22.6.12) 729
variant.helper (22.6.4) 726
variant.mod (22.6.3.5) 725
variant.monostate (22.6.8) 729
variant.monostate.relops (22.6.9) 729
variant.relops (22.6.6) 727
variant.specalg (22.6.10) 729
variant.status (22.6.3.6) 725
variant.swap (22.6.3.7) 726
variant.syn (22.6.2) 718
variant.variant (22.6.3) 720
variant.variant.general (22.6.3.1) 720
variant.visit (22.6.7) 728
vector (24.3.11) 931
vector.bool (24.3.12) 936
vector.bool.fmt (24.3.12.2) 938
vector.bool.pspc (24.3.12.1) 936
vector.capacity (24.3.11.3) 934
vector.cons (24.3.11.2) 933
vector.data (24.3.11.4) 935
vector.erasure (24.3.11.6) 935
vector.modifiers (24.3.11.5) 935
vector.overview (24.3.11.1) 931
vector.syn (24.3.6) 910
version.syn (17.3.2) 512
view.interface (26.5.3) 1138
view.interface.general (26.5.3.1) 1138
view.interface.members (26.5.3.2) 1140
views (24.7) 1028
views.contiguous (24.7.2) 1028
views.general (24.7.1) 1028
views.multidim (24.7.3) 1034
views.span (24.7.2.2) 1029

wide.stream.objects (31.4.4) 1615

zombie.names (16.4.5.3.2) 501
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Cross-references from ISO C++ 2020
All clause and subclause labels from ISO C++ 2020 (ISO/IEC 14882:2020, Programming Languages — C++)
are present in this document, with the exceptions described below.

basic.funscope see stmt.label
basic.lookup.classref see basic.lookup.qual
basic.scope.declarative see basic.scope.scope
basic.scope.hiding see basic.lookup
basic.stc.dynamic.safety removed

class.mfct.non-static see class.mfct.non.static
class.mfct.non-static.general see

class.mfct.non.static
class.nested.type see diff.basic
class.this see expr.prim.this
complex.special see complex.members
cstdint see support.arith.types
cstdint.general removed

defns.arbitrary.stream removed
defns.direct-non-list-init removed
defns.expression-equivalent see

defns.expression.equivalent
defns.iostream.templates removed
defns.repositional.stream removed
denorm.style see depr.numeric.limits.has.denorm
depr.atomics.flag removed
depr.c.headers see support.c.headers
depr.c.headers.general see

support.c.headers.general
depr.c.headers.other see support.c.headers.other
depr.comma.subscript removed
depr.complex.h.syn see complex.h.syn
depr.iso646.h.syn see iso646.h.syn
depr.stdalign.h.syn see stdalign.h.syn
depr.stdbool.h.syn see stdbool.h.syn
depr.tgmath.h.syn see tgmath.h.syn

expos.only.func see expos.only.entity
expos.only.types removed

forwardlist see forward.list
forwardlist.access see forward.list.access
forwardlist.cons see forward.list.cons
forwardlist.iter see forward.list.iter
forwardlist.modifiers see forward.list.modifiers
forwardlist.ops see forward.list.ops
forwardlist.overview see forward.list.overview
fp.style removed
fs.req.general see fs.req
fs.req.namespace removed
fstream.assign see fstream.swap
func.bind.front see func.bind.partial

ifstream.assign see ifstream.swap

istringstream.assign see istringstream.swap

namespace.memdef see namespace.def

ofstream.assign see ofstream.swap
ostringstream.assign see ostringstream.swap
over.dcl see basic.link
over.load see basic.scope.scope

range.semi.wrap see range.move.wrap
range.split.inner see range.lazy.split.inner
range.split.outer see range.lazy.split.outer
range.split.outer.value see

range.lazy.split.outer.value
re.def see intro.refs
res.on.pointer.storage removed

stringstream.assign see stringstream.swap

temp.class.order see temp.spec.partial.order
temp.class.spec see temp.spec.partial
temp.class.spec.general see

temp.spec.partial.general
temp.class.spec.match see temp.spec.partial.match

temp.class.spec.mfunc see
temp.spec.partial.member

temp.inject see temp.friend
temp.nondep see temp.res

util.dynamic.safety removed
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Index
Constructions whose name appears in monospaced italics are for exposition only.

Symbols
!, see operator, logical negation
!=, see operator, inequality
(), see operator, function call, see declarator,

function
*, see operator, indirection, see operator,

multiplication, see declarator, pointer
+, see operator, unary plus, see operator, addition
++, see operator, increment
,, see operator, comma
-, see operator, unary minus, see operator,

subtraction
--, see operator, decrement
->, see operator, class member access
->*, see operator, pointer to member
., see operator, class member access
.*, see operator, pointer to member
..., see ellipsis
/, see operator, division
:

bit-field declaration, 290
label specifier, 164

::, see operator, scope resolution
::*, see declarator, pointer-to-member
<, see operator, less than

template and, 368, 370
<<, see operator, left shift
<=, see operator, less than or equal to
<=>, see operator, three-way comparison
=, see assignment operator
==, see operator, equality
>, see operator, greater than
>=, see operator, greater than or equal to
>>, see operator, right shift
?:, see operator, conditional expression
[], see operator, subscripting, see declarator,

array
# operator, 469, 471
## operator, 471
#define, 469
#elif, 464
#elifdef, 465
#elifndef, 465
#else, 465
#endif, 465
#error, see preprocessing directive, error
#if, 464, 505
#ifdef, 465
#ifndef, 465
#include, 465, 489
#line, see preprocessing directive, line control

#pragma, see preprocessing directive, pragma
#undef, 473, 502
%, see operator, remainder
&, see operator, address-of, see operator, bitwise

AND, see declarator, reference
&&, see operator, logical AND
^, see operator, bitwise exclusive OR
\, see backslash character
{}

block statement, 164
class declaration, 267
class definition, 267
enum declaration, 232
initializer list, 213

_, see character, underscore
__cplusplus, 474
__cpp_aggregate_bases, 475
__cpp_aggregate_nsdmi, 475
__cpp_aggregate_paren_init, 475
__cpp_alias_templates, 475
__cpp_aligned_new, 475
__cpp_attributes, 475
__cpp_auto_cast, 475
__cpp_binary_literals, 475
__cpp_capture_star_this, 475
__cpp_char8_t, 475
__cpp_concepts, 475
__cpp_conditional_explicit, 475
__cpp_consteval, 475
__cpp_constexpr, 475
__cpp_constexpr_dynamic_alloc, 475
__cpp_constexpr_in_decltype, 475
__cpp_constinit, 476
__cpp_decltype, 476
__cpp_decltype_auto, 476
__cpp_deduction_guides, 476
__cpp_delegating_constructors, 476
__cpp_designated_initializers, 476
__cpp_enumerator_attributes, 476
__cpp_explicit_this_parameter, 476
__cpp_fold_expressions, 476
__cpp_generic_lambdas, 476
__cpp_guaranteed_copy_elision, 476
__cpp_hex_float, 476
__cpp_if_consteval, 476
__cpp_if_constexpr, 476
__cpp_impl_coroutine, 476
__cpp_impl_destroying_delete, 476
__cpp_impl_three_way_comparison, 476
__cpp_implicit_move, 476
__cpp_inheriting_constructors, 476
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__cpp_init_captures, 476
__cpp_initializer_lists, 476
__cpp_inline_variables, 476
__cpp_lambdas, 476
__cpp_modules, 476
__cpp_multidimensional_subscript, 476
__cpp_named_character_escapes, 476
__cpp_namespace_attributes, 476
__cpp_noexcept_function_type, 476
__cpp_nontype_template_args, 476
__cpp_nontype_template_parameter_auto, 476
__cpp_nsdmi, 476
__cpp_range_based_for, 476
__cpp_raw_strings, 476
__cpp_ref_qualifiers, 476
__cpp_return_type_deduction, 476
__cpp_rvalue_references, 476
__cpp_size_t_suffix, 476
__cpp_sized_deallocation, 476
__cpp_static_assert, 476
__cpp_static_call_operator, 476
__cpp_structured_bindings, 476
__cpp_template_template_args, 476
__cpp_threadsafe_static_init, 476
__cpp_unicode_characters, 476
__cpp_unicode_literals, 476
__cpp_user_defined_literals, 476
__cpp_using_enum, 476
__cpp_variable_templates, 476
__cpp_variadic_templates, 476
__cpp_variadic_using, 476
__DATE__, 474
__FILE__, 474
__func__, 226
__has_cpp_attribute, 463
__has_include, 463
__LINE__, 475
__STDC__, 476
__STDC_HOSTED__, 475
__STDC_ISO_10646__, 477
__STDC_MB_MIGHT_NEQ_WC__, 477
__STDC_VERSION__, 477
__STDCPP_BFLOAT16_T__, 475
__STDCPP_DEFAULT_NEW_ALIGNMENT__, 475
__STDCPP_FLOAT128_T__, 475
__STDCPP_FLOAT16_T__, 475
__STDCPP_FLOAT32_T__, 475
__STDCPP_FLOAT64_T__, 475
__STDCPP_THREADS__, 477
__TIME__, 475
__VA_ARGS__, 469, 470
__VA_OPT__, 469, 470
|, see operator, bitwise inclusive OR
||, see operator, logical OR
~, see operator, ones’ complement, see destructor

Numbers
0

null character, see character, null
string terminator, 28

A
abbreviated

template function, see template, function,
abbreviated

abort, 93, 169
absolute path, see path, absolute
abstract class, see class, abstract
abstract-declarator , 194, 1894
abstract-pack-declarator , 194, 1894
access, 3
access control, 304–314

anonymous union, 294
base class, 307
base class member, 296
class member, 125
default, 304
default argument, 305
friend function, 309
member function and, 276
member name, 304
multiple access, 313
nested class, 313
private, 304
protected, 304, 312
public, 304
using-declaration and, 244
virtual function, 313

access specifier, 306, 307
access-specifier , 296, 1899
accessible, 307
accessible range, see range, accessible
accessor policy, 1048
active, see variable, active

union member, 293
active macro directive, see macro, active
addition operator, see operator, addition
additive-expression, 145, 1889
address, 80, 148
addressable function, see function, addressable
aggregate, 213

elements, 213
aggregate deduction candidate, see candidate,

aggregate deduction
aggregate initialization, 213
algorithm

stable, 8, 506
alias

namespace, 238
alias template, see template, alias
alias-declaration, 173, 1892
alignas, 249

keyword, 21, 247, 1897, 1935
alignment, 70
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extended, 71
fundamental, 70
new-extended, 71
stricter, 71
stronger, 71
weaker, 71

alignment requirement
implementation-defined, 70

alignment-specifier , 247, 1897
alignof, 136

keyword, 21, 37, 70, 71, 133, 136, 414, 1888
allocated type, see type, allocated
allocation

alignment storage, 139
implementation-defined bit-field, 290

allocation function, 68
class-specific, 291

allocator-aware container, see container,
allocator-aware

alternate form
format string, 799

alternative token, see token, alternative
ambiguity

base class member, 45
class conversion, 47
declaration type, 175
declaration versus cast, 194
declaration versus expression, 172
function declaration, 211
member access, 45
overloaded function, 329
parentheses and, 137

ambiguous, 44
ambiguous conversion sequence, see conversion

sequence, ambiguous
Amendment 1, 502
and

keyword, 18, 21, 1883, 1935
and-expression, 149, 1890
and_eq

keyword, 18, 21, 1883, 1935
anonymous union, 294

member, see member, anonymous union
variable, see variable, anonymous union

appearance-ordered, 91
appertain, 248
argc, 90
argument, 3, 504, 505, 574

access checking and default, 305
binding of default, 207
evaluation of default, 207, 208
example of default, 206, 207
function call expression, 3
function-like macro, 3
overloaded operator and default, 357
reference, 124
scope of default, 208
template, 372
template instantiation, 3

throw expression, 3
type checking of default, 207

argument and name hiding
default, 208

argument and virtual function
default, 209

argument forwarding call wrapper, 765
argument list

empty, 202
variable, 202

argument passing, 124
reference and, 218

argument substitution, see macro, argument
substitution

argument type
unknown, 202

argument-dependent lookup, see lookup,
argument-dependent

argv, 90
arithmetic

pointer, 146
unsigned, 77

array
bound, 200
const, 81
delete, 141
element, 201
handler of type, 455
new, 138
parameter of type, 202
sizeof, 136
template parameter of type, 367

array
as aggregate, 911
contiguous storage, 911
creation, 913
initialization, 911, 912
tuple interface to, 913
zero sized, 913

array size
default, 201

array type, 200
arrow operator, see operator, class member access
as-if rule, 11
asm

implementation-defined, 245
keyword, 21, 245, 1896

asm-declaration, 245, 1896
assembler, 245
assignment

and lvalue, 153
conversion by, 153
copy, see assignment operator, copy
move, 5, see assignment operator, move
reference, 218

assignment operator
copy, 276, 281–283

hidden, 282
implicitly declared, 281
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non-trivial, 282
trivial, 282
virtual bases and, 283

move, 276, 281–283
hidden, 282
implicitly declared, 282
non-trivial, 282
trivial, 282

overloaded, 358
assignment-expression, 153, 1890
assignment-operator , 153, 1890
associated, 1790
associated constraints, 380
associative container, see container, associative
associative containers

exception safety, 897
requirements, 897
unordered, see unordered associative

containers
assumption, 250
asynchronous provider, 1869
asynchronous return object, 1869
at least as constrained, 382
at least as specialized as, see more specialized
atexit, 93
atomic

notifying operation, 1809
operation, 85–90
smart pointers, 1827–1832
waiting operation, 1809

eligible to be unblocked, 1810
atomic constraint, see constraint, atomic

identical, 379
attached

declaration, 257
entity, 59

attribute, 247–251
alignment, 249
carries dependency, 250
deprecated, 251
fallthrough, 251
likely, 252
maybe unused, 253
no unique address, 254
nodiscard, 253
noreturn, 254
syntax and semantics, 247
unlikely, 252

attribute, 247, 1897
attribute-argument-clause, 248, 1897
attribute-declaration, 173, 1892
attribute-list, 247, 1897
attribute-namespace, 248, 1897
attribute-scoped-token, 248, 1897
attribute-specifier , 247, 1897
attribute-specifier-seq, 247, 1896
attribute-token, 247, 1897
attribute-using-prefix , 247, 1897
auto

keyword, 21, 109, 114, 147, 163, 168, 187–190,
192, 202, 205, 206, 327, 425, 1893, 1916,
1922, 1930

automatic storage duration, see storage duration,
automatic

await expression
final, 229
initial, 229

await-expression, 134, 1889

B
backslash character, 25
bad_alloc, 140
bad_cast, 127
bad_typeid, 128
balanced-token, 248, 1897
balanced-token-seq, 248, 1897
barrier

phase synchronization point, 1865
barrier phase, 1865
base characteristic, 651
base class, 296, 297

dependent, 411
direct, 296
indirect, 296
non-virtual, 298
private, 307
protected, 307
public, 307
virtual, 298

base class subobject, 62
base prefix, 801
base-2 representation, 77
base-clause, 296, 1898
base-specifier , 296, 1899
base-specifier-list, 296, 1899
basic character set, see character set, basic
basic literal character set, see character set, basic

literal
basic-c-char , 23, 1884
basic-s-char , 27, 1885
BasicFormatter, 805
behavior

conditionally-supported, 4, 10
default, 4, 481
implementation-defined, 5, 11
locale-specific, 5
observable, 11
on receipt of signal, 85
required, 7, 481
undefined, 8, 10, 11, 1116
unspecified, 8, 11

Bernoulli distributions, 1428–1432
Bessel functions

Iν , 1475
Jν , 1475
Kν , 1476
Nν , 1476
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jn, 1478
nn, 1478

beta functions B, 1474
better conversion, see conversion, better
better conversion sequence, see conversion

sequence, better
binary fold, 118
binary left fold, 118
binary operator

interpretation of, 358
overloaded, 358

binary operator function, see operator function,
binary

binary right fold, 118
binary-digit, 22, 1883
binary-exponent-part, 26, 1885
binary-literal , 22, 1883
bind directly, 220
binding

reference, 218
bit-field, 290

address of, 290
alignment of, 290
implementation-defined alignment of, 290
implementation-defined sign of, 1933
type of, 290
unnamed, 290
zero width of, 290

bitand
keyword, 18, 21, 1883, 1935

bitmask
element, 484
empty, 484
value

clear, 484
is set, 484
set, 484

bitor
keyword, 18, 21, 1883, 1935

block (execution), 3, 1789, 1798, 1801, 1802,
1838–1842, 1856, 1859, 1860, 1862–1866,
1874, 1876

with forward progress guarantee delegation,
89

block (statement), 3, see statement, compound
initialization in, 171
structure, 171

block scope, see scope, block
block variable, 42
block-declaration, 173, 1892
body

function, 225
Bond

James Bond, 115
bool

keyword, 21, 78, 98, 100–103, 109, 126,
134–137, 147, 148, 150, 159, 165, 175,
178, 184, 457, 1893, 1928, 1929, 1935

Boolean literal, 29

boolean literal, see literal, boolean
Boolean type, 77
boolean-literal , 29, 1886
bound argument entity, 764
bound arguments, 778
bound, of array, 200
brace-or-equal-initializer , 209, 1895
braced-init-list, 209, 1895
brains

names that want to eat your, 501
break

keyword, 21, 166, 169, 452, 1891
buckets, 897
built-in candidate, 334
built-in operators, see operators, built-in
byte, 61, 136

C
C

linkage to, 245
standard library, 3

c-char , 23, 1884
c-char-sequence, 23, 1884
C++ library headers

importable, 487
C++ library modules, 488
call

dependent, 410
nodiscard, 253
operator function, 357

call pattern, 765
call signature, 764
call wrapper, 764, 765

forwarding, 765
perfect forwarding, 765
simple, 765
type, 764

callable object, see object, callable
callable type, see type, callable, 780
candidate, 329

aggregate deduction, 339
usable, 330

capture
implicit, 115

capture, 113, 1887
capture-default, 113, 1887
capture-list, 113, 1887
captured, 115

by copy, 116
by reference, 117

carries a dependency, 86
case

keyword, 21, 164, 166, 171, 1890
cast

base class, 130
const, 131, 143
derived class, 130
dynamic, 126, 534
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construction and, 322
destruction and, 322

integer to pointer, 131
lvalue, 128, 130
pointer to integer, 130
pointer-to-function, 131
pointer-to-member, 130, 131
reference, 128, 131
reinterpret, 130, 143

integer to pointer, 131
lvalue, 130
pointer to integer, 130
pointer-to-function, 131
pointer-to-member, 131
reference, 131

static, 128, 143
lvalue, 128
reference, 128

undefined pointer-to-function, 131
cast-expression, 143, 1889
casting, 124
casting away constness, 132
catch, 452

keyword, 21, 452, 555, 1900
category tag, 1084
cats

interfering with canines, 532
<ccomplex>

absence thereof, 502, 1914
char

implementation-defined sign of, 77
keyword, 21, 24, 27, 62, 65, 74–78, 80, 81, 90,

96, 139, 184, 218, 453, 1575, 1893, 1906
char-like object, 825
char-like type, 825
char16_t, see type, char16_t

keyword, 3, 21, 24, 27, 77, 78, 81, 100, 101,
103, 136, 184, 185, 211, 217, 478, 685,
807, 871, 1705, 1715, 1813, 1821, 1893,
1914, 1915, 1921, 1934, 1954, 1958

char32_t, see type, char32_t
keyword, 3, 21, 24, 27, 77, 78, 81, 100, 101,

103, 136, 184, 185, 211, 217, 478, 685,
807, 871, 1705, 1715, 1813, 1821, 1893,
1914, 1915, 1921, 1934, 1954, 1958

char8_t, see type, char8_t
keyword, 3, 21, 24, 27, 77, 78, 81, 100, 101,

103, 184, 185, 211, 217, 478, 685, 807,
872, 1705, 1715, 1813, 1821, 1893, 1909,
1958

character, 3
decimal-point, 484
fill, 798
formatted as escaped, 807
multibyte, 484
null, 16
signed, 77
source file, 13
terminating null, 484

underscore, 20, 502
in identifier, 20

character literal, see literal, character
character sequence, 484
character set, 14–17

basic, 14
basic literal, 16, 61
execution, 484
translation, 14

character string, 27
character string literal, 471
character type, see type, character
character-literal , 23, 1884
checking

point of error, 407
syntax, 407

chunks, 642
<ciso646>

absence thereof, 502, 1914
class, 79, 267–328

abstract, 303
base, 503, 506, 507
cast to incomplete, 144
constructor and abstract, 304
current, 104
definition, 34
derived, 506
implicit-lifetime, 269
linkage of, 58
linkage specification, 246
local, see local class, 295
member function, see member function, class
nested, 292
polymorphic, 299
scope of enumerator, 234
standard-layout, 76, 268
templated, 365
trivial, 76, 268
trivially copyable, 76, 268
union-like, 295
unnamed, 179
variant member of, 295

class
keyword, 21, 75, 186, 232, 267, 269, 271, 304,

306, 307, 366, 422, 1414, 1895, 1898,
1900, 1930, 1933

class member access operator function, see
operator function, class member access

class name
elaborated, 185, 270
point of declaration, 271
typedef, 179, 271

class object
member, 273
sizeof, 136

class object copy, see constructor, copy
class object initialization, see constructor
class scope, see scope, class
class-head , 267, 1898
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class-head-name, 267, 1898
class-key , 267, 1898
class-name, 267, 1898
class-or-decltype, 296, 1899
class-specifier , 267, 1898
class-virt-specifier , 267, 1898
closure object, 108
closure type, 109
co_await, 134

keyword, 21, 134, 135, 152, 231, 357, 1909
co_return, 170

keyword, 21, 107, 170, 229, 1909
co_yield, 152

keyword, 21, 1909
code unit, 16
coherence

read-read, 87
read-write, 87
write-read, 87
write-write, 87

coherence-ordered before, 1808
collating element, 4
comma operator, see operator, comma
comment, 17–18

/* */, 18
//, 18

common comparison type, 327
common initial sequence, 274
compare-expression, 147, 1889
comparison

pointer, 148
pointer to function, 148
undefined pointer, 146

comparison category types, 542
comparison operator function, see operator

function, comparison
compatible with

shared_ptr, 621
compilation

separate, 13
compiler control line, see preprocessing directive
compl

keyword, 18, 21, 1883, 1935
complete object, 62
complete object of, 62
complete-class context, 272
completely defined, 272
component, 4
component name, 106, 107, 184, 185, 199, 240,

296, 366, 369, 405
composite pointer type, 97
compound statement, see statement, compound
compound-requirement, 120, 1888
compound-statement, 164, 1891
concatenation

macro argument, see ## operator
string, 28

concept, 404
model, 504

type, 404
concept

keyword, 21, 404, 1900
concept-definition, 404, 1900
concept-id, 372
concept-name, 404, 1900
concurrent forward progress guarantees, 89
condition, 163, 1890
conditions

rules for, 163
conditional-escape-sequence, 24, 1885
conditional-escape-sequence-char , 24, 1885
conditional-expression

throw-expression in, 150
conditional-expression, 150, 1890
conditionally-supported behavior, see behavior,

conditionally-supported
conditionally-supported-directive, 461, 1902
conflict, 85
conformance requirements, 10–11

class templates, 10
classes, 10
general, 10
library, 10
method of description, 10

conjunction, 378
consistency

linkage, 176
linkage specification, 246
type declaration, 59

const, 80
cast away, 132
constructor and, 277
destructor and, 284
keyword, 6, 21, 27, 80, 81, 96, 97, 100, 106,

110, 124, 125, 127, 142, 145, 176, 178,
182, 183, 193, 198, 202, 219, 277, 279,
282, 284, 289, 290, 330, 343, 349, 433,
453, 484, 493, 532, 538, 564, 567,
878–880, 1071, 1414, 1462, 1894, 1920,
1924, 1928, 1933, 1941

linkage of, 57
const object, see object, const

undefined change to, 183
const volatile object, see object, const volatile
const-default-constructible, 210
const-qualified, 80
const-volatile-qualified, 80
const_cast, see cast, const

keyword, 21, 73, 122, 124, 131, 132, 143, 144,
370, 406, 414, 415, 878, 1071, 1888, 1933

constant, 21, 103
enumeration, 233
null pointer, 102

constant destruction, see destruction, constant
constant expression, 154, see expression, constant

permitted result of, 159
constant initialization, 91
constant iterator, 1063

Index 1997



© ISO/IEC N4950

constant subexpression, 4
constant-expression, 154, 1890
constant-initialized, 154
consteval

keyword, 21, 90, 108–110, 160, 164, 166, 175,
179–181, 197, 275, 277, 283, 303, 326,
393, 424, 1887, 1891, 1892, 1909

consteval if statement, see statement, consteval if
constexpr

keyword, 21, 33, 90, 108–111, 157, 158, 160,
163–165, 169, 175, 179–181, 197, 210,
275, 277, 278, 280, 282, 283, 290, 326,
363, 393, 407, 424, 506, 517, 721, 765,
822, 838, 1104, 1114, 1116, 1404, 1887,
1891, 1892, 1916, 1920, 1921, 1938

constexpr function, 180
constexpr if, 165
constexpr iterators, 1064
constexpr-suitable, 180
constexpr-unknown, 157
constinit

keyword, 21, 175, 181, 197, 1892, 1909
constituent expression, 82
constraint, 377

associated, see associated constraints
atomic, 379
immediately-declared, 366
normalization, 381–382
satisfaction

atomic, 379
conjunction, 378
disjunction, 378

subsumption, 382
constraint-expression, 380, 1900
constraint-logical-and-expression, 364, 1899
constraint-logical-or-expression, 364, 1899
construction, 320–323

dynamic cast and, 322
member access, 320
move, 5
pointer to member or base, 321
typeid operator, 322
virtual function call, 322

constructor, 277
address of, 277
array of class objects and, 314
converting, 286
copy, 72, 276, 278–281, 485

elision, 323
implicitly declared, 279
nontrivial, 280
trivial, 280

default, 276, 277
non-trivial, 278
trivial, 278

exception handling, see exception handling,
constructors and destructors

explicit call, 277
implicitly invoked, 278

inheritance of, 277
inherited, 240
move, 276, 278–281

elision, 323
implicitly declared, 280
non-trivial, 280
trivial, 280

non-trivial, 277
union, 293

constructor, conversion by, see conversion,
user-defined

contained value
any, 731
optional, 708
variant, 721

container, 874
allocator-aware, 878
associative, 890
contiguous, 877
reversible, 877
sequence, 881
unordered associative, 898

contains a value
optional, 708

context
non-deduced, 443
type-only, 406

contextually converted constant expression of type
bool, see conversion, contextual

contextually converted to bool, see conversion,
contextual to bool

contextually implicitly converted, 98
contiguous container, see container, contiguous
continue

and handler, 452
and try block, 452
keyword, 21, 168–170, 452, 1891

control line, see preprocessing directive
control-flow-limited statement, see statement,

control-flow-limited
control-line, 461, 1901
conventions, 482

lexical, 13–31
conversion

argument, 202
array-to-pointer, 99
better, 352
bool, 101
boolean, 103
class, 286
contextual, 98
contextual to bool, 98
contextual to constant expression of type

bool, 159
deduced return type of user-defined, 289
derived-to-base, 347
floating to integral, 101
floating-point, 101
function pointer, 102
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function-to-pointer, 99
immediate-escalating, 160
implementation-defined pointer integer, 130,

131
implicit, 98, 286
implicit user-defined, 286
inheritance of user-defined, 288
integer rank, 81
integral, 101
integral to floating, 101
lvalue-to-rvalue, 99, 1929
narrowing, 224
null member pointer, 102
null pointer, 102
overload resolution and, 343
overload resolution and pointer, 356
pointer, 102
pointer-to-member, 102

void*, 102
qualification, 100
return type, 170
standard, 98–103
temporary materialization, 99
to signed, 101
to unsigned, 101
type of, 287
user-defined, 286, 287
usual arithmetic, 103
virtual user-defined, 289

conversion explicit type, see casting
conversion function, see conversion, user-defined,

see function, conversion
conversion rank, 348

floating-point, 82
conversion sequence

ambiguous, 347
better, 352
implicit, 346
indistinguishable, 352
standard, 98
user-defined, 348
worse, 352

conversion-declarator , 287, 1898
conversion-function-id , 287, 1898
conversion-type-id , 287, 1898
converted constant expression, see expression,

converted constant
converting constructor, see constructor, converting
copy

class object, see constructor, copy, see
assignment operator, copy

copy deduction candidate, 338
copy elision, see constructor, copy, elision
copy-initialization, 211
copy-list-initialization, 220
core constant expression, see expression, core

constant
coroutine, 228

await expression, 229

promise type, 229
resumer, 230
suspend point, 135

coroutine return, see co_return
coroutine state, 230
coroutine-return-statement, 170, 1891
correspond, 40
corresponding object parameter, see object

parameter, corresponding
corresponding signature, see signature,

corresponding
counted range, see range, counted
Cpp17Allocator, 494
Cpp17BidirectionalIterator, 1079
Cpp17BinaryTypeTrait, 651
Cpp17Clock, 1494
Cpp17CopyAssignable, 490
Cpp17CopyConstructible, 490
Cpp17CopyInsertable into X, 878
Cpp17DefaultConstructible, 490
Cpp17DefaultInsertable into X, 878
Cpp17Destructible, 490
Cpp17EmplaceConstructible into X from args, 878
Cpp17EqualityComparable, 490
Cpp17Erasable from X, 879
Cpp17ForwardIterator, 1079
Cpp17Hash, 493, 494
Cpp17InputIterator, 1077
Cpp17Iterator, 1076
Cpp17LessThanComparable, 490
Cpp17MoveAssignable, 490
Cpp17MoveConstructible, 490
Cpp17MoveInsertable into X, 878
Cpp17NullablePointer, 493
Cpp17OutputIterator, 1078
Cpp17RandomAccessIterator, 1080
Cpp17TransformationTrait, 651
Cpp17UnaryTypeTrait, 651
<cstdalign>

absence thereof, 502, 1914
<cstdbool>

absence thereof, 502, 1914
<ctgmath>

absence thereof, 502, 1914
ctor-initializer , 315, 1899
current class, see class, current
current instantiation, 410

dependent member of the, 412
member of the, 412

currently handled exception, see exception
handling, currently handled exception

cv-qualification signature, 100
cv-qualifier, 80

top-level, 81
cv-qualifier , 193, 1894
cv-qualifier-seq, 193, 1894
cv-unqualified, 80
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D
d-char , 27, 1886
d-char-sequence, 27, 1886
DAG

multiple inheritance, 298, 299
non-virtual base class, 299
virtual base class, 298, 299

data member, see member, 272
non-static, 272
static, 272

data race, 88
deadlock, 4
deallocation function, 68

class-specific, 291
usual, 70

debug-enabled, 806
decay

array, see conversion, array-to-pointer
function, see conversion, function-to-pointer

decimal-floating-point-literal , 25, 1885
decimal-literal , 22, 1883
decl-reachable, 261
decl-specifier , 175, 1892
decl-specifier-seq, 175, 1892
declaration, 32, 33, 173–251

array, 200
asm, 245
bit-field, 290
class name, 33
constant pointer, 197
default argument, 206–209
definition versus, 33
disqualifying, 568
ellipsis in function, 124, 202
exported, 258
extern, 33
extern reference, 218
forward, 177
forward class, 270
freestanding item, 485
function, 33, 174, 202
local class, 295
locus, see locus
member, 271
multiple, 59
name, 33
nominable, 41
object, 174
opaque enum, 33
overloaded name and friend, 310
parameter, 33, 202
parentheses in, 194, 197
point of, see locus
pointer, 197
potentially conflict, 40
precede, 44
reference, 198
static member, 33

storage class, 176
structured binding, see structured binding

declaration
type, 195
typedef, 174
typedef, 33
typedef as type, 178

declaration, 173, 1891
declaration hiding, see name hiding
declaration-seq, 173, 1891
declaration-statement, 171, 1891
declarative, 107
declarator, 33, 174, 192–225

array, 200
function, 201–206
meaning of, 195–209
multidimensional array, 201
pointer, 197
pointer-to-member, 199
reference, 198

declarator , 193, 1893
declarator-id , 193, 1894
declared specialization, see specialization, declared
decltype

keyword, 21, 78, 121, 186, 187, 191, 435, 1893,
1915, 1921

decltype-specifier , 186, 1893
decrement operator

overloaded, see overloading, decrement
operator

decrement operator function, see operator
function, decrement

deducible template, see template, deducible
deduction

class template argument, 385
class template arguments, 124, 184, 191, 338
deduction substitution loci, 435
placeholder type, 190

deduction substitution loci, 435
deduction-guide, 385, 1900
default

keyword, 21, 164, 166, 225, 1890, 1895
default access control, see access control, default
default argument

overload resolution and, 343
default argument instantiation, 423
default constructor, see constructor, default
default member initializer, 273
default memory resource pointer, 641
default-initialization, 210
default-inserted, 878
defaulted, 227
deferred function, see function, deferred
definable item, see item, definable
define, 33
defined, 463
defined-macro-expression, 463, 1902
defining-type-id , 193, 1894
defining-type-specifier , 182, 1893
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defining-type-specifier-seq, 182, 1893
definition, 33

alternate, 503
class, 267, 271
class name as type, 269
constructor, 226
coroutine, 228
declaration as, 174
deleted, 227
function, 225–228

deleted, 227
explicitly-defaulted, 226

local class, 295
member function, 274
namespace, 236
nested class, 292
program semantics affected by, 422
pure virtual function, 303
scope of class, 270
static member, 289
virtual function, 302

definition domain, 37
definitions, 3–9
delete

array, 141
single-object, 141

delete, 68, 141
destructor and, 142, 284
keyword, 21, 68–70, 138, 141, 142, 225, 285,

357, 414, 529, 556, 611, 1889, 1895
operator

replaceable, 503
overloading and, 70
single-object, 141
type of, 291
undefined, 142

delete-expression, 141, 1889
deleted definition, see definition, deleted
deleted function, see function, deleted
deleter, 610
denormalized value, see number, subnormal
dependency-ordered before, 86
dependent base class, see base class, dependent
dependent call, see call, dependent
dependent member of the current instantiation,

see current instantiation, dependent
member of the

dependent name, see name, dependent
dereferenceable iterator, see iterator,

dereferenceable
dereferencing, see indirection
derivation, see inheritance
derived class, 296–304

most, see most derived class
derived object

most, see most derived object
designated-initializer-clause, 209, 1895
designated-initializer-list, 209, 1895
designator , 209, 1895

destringization, 477
destroying operator delete, see operator delete,

destroying
destruction, 320–323

constant, 158
dynamic cast and, 322
member access, 320
pointer to member or base, 321
typeid operator, 322
virtual function call, 322

destructor, 283, 485
address of, 283
default, 283
exception handling, see exception handling,

constructors and destructors
explicit call, 284, 285
implicit call, 284
non-trivial, 284
program termination and, 284
prospective, 283
pure virtual, 284
selected, 283
union, 293
virtual, 284

diagnosable rules, 10
diagnostic message, see message, diagnostic
difference type, 1063
digit, 20, 1882
digit-sequence, 26, 1885
digraph, see token, alternative, 18
direct base class, see base class, direct
direct member, see member, direct
direct-initialization, 211
direct-list-initialization, 220
direct-non-list-initialization, 220
directed acyclic graph, see DAG
directive, preprocessing, see preprocessing

directive
directive-introducing token, see token,

directive-introducing
directory, 1704
directory-separator , 1712
discarded

declaration, 262
discarded statement, 165
discarded-value expression, 97
disjunction, 378
disqualifying declaration, see declaration,

disqualifying
disqualifying parameter, see parameter,

disqualifying
distribution, see random number distribution
do

keyword, 21, 167, 168, 1891
dogs

obliviousness to interference, 533
domain error, 1473
dominance

virtual base class, 46
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dot
filename, 1713

dot operator, see operator, class member access
dot-dot

filename, 1713
double

keyword, 21, 26, 71, 78, 82, 101, 184, 1893
dynamic binding, see function, virtual
dynamic extent, see extent, dynamic
dynamic initialization, see initialization, dynamic
dynamic type, see type, dynamic
dynamic_cast, see cast, dynamic

keyword, 21, 37, 65, 73, 122, 126, 127, 143,
156, 318, 319, 322, 323, 370, 406, 414,
453, 458, 534, 540, 556, 1888

E
E (complete elliptic integrals), 1475
E (incomplete elliptic integrals), 1476
ECMA-262, 1753
ECMAScript, 1760, 1785
Ei (exponential integrals), 1477
elaborated type specifier, see class name,

elaborated
elaborated-type-specifier , 185, 1893
element access functions, 1275
element type, 200
elif-group, 461, 1901
elif-groups, 461, 1901
eligible special member function, see special

member function, eligible
eligible to be unblocked, 1810
elision

copy, see constructor, copy, elision
copy constructor, see constructor, copy,

elision
move constructor, see constructor, move,

elision
ellipsis

conversion sequence, 124, 349
overload resolution and, 343

elliptic integrals
complete Π, 1475
complete E, 1475
complete K, 1474
incomplete Π, 1477
incomplete E, 1476
incomplete F, 1476

else
keyword, 21, 164–166, 1891

else-group, 461, 1901
empty-declaration, 173, 1892
enclosed by statement, 163
enclosing scope, see scope, enclosing
enclosing statement, 163
enclosing-namespace-specifier , 236, 1896
encoded character type, 1705
encoding

literal, 16
ordinary literal, 16
wide literal, 16

encoding-prefix , 23, 1884
end-of-file, 761
endif-line, 461, 1901
engine, see random number engine
engine adaptor, see random number engine

adaptor
entity, 32

associated, 50
belong, 39
freestanding item, 485
implicitly movable, 106
local, 32
templated, 365

enum, 79
keyword, 21, 56, 185, 186, 232–235, 1868,

1893, 1895, 1896, 1933
type of, 232, 233
underlying type, see type, underlying

enum name
typedef, 179

enum-base, 232, 1895
enum-head , 232, 1895
enum-head-name, 232, 1895
enum-key , 232, 1895
enum-name, 232, 1895
enum-specifier , 232, 1895
enumerated element, 483
enumerated type, see type, enumerated
enumeration, 232

linkage of, 58
scoped, 233
unscoped, 233
using declaration, 235

enumeration scope, see scope, enumeration
enumeration type

conversion to, 129
static_cast

conversion to, 129
enumerator

definition, 34
scoped, 233
unscoped, 233
value of, 233

enumerator , 232, 1896
enumerator-definition, 232, 1896
enumerator-list, 232, 1896
environment

program, 90
epoch, 1494
equality operator function, see operator function,

equality
equality-expression, 148, 1889
equivalence

template type, 382
type, 178, 269

equivalent
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expressions, 398
template-heads, 399
template-parameters, 399

equivalent-key group, 897
equivalently-valued, 498
escape character, see backslash character
escape sequence

format string, 796
escape-sequence, 24, 1884
escaped, 807
estimated field width, see field width, estimated
Eulerian integral of the first kind, see beta

functions B
evaluation, 84

order of argument, 123
signal-safe, 556
unspecified order of, 84, 92
unspecified order of argument, 123
unspecified order of function call, 123

exception
arithmetic, 94
undefined arithmetic, 94

exception handling, 452–460
constructors and destructors, 454
currently handled exception, 456
exception object, 454

constructor, 454
destructor, 454

function try block, 453
goto, 452
handler, 452, 454–457, 507

active, 456
array in, 455
incomplete type in, 455
match, 455–457
pointer to function in, 455
rvalue reference in, 455

memory, 454
nearest handler, 454
rethrow, 152, 153, 454
rethrowing, 454
switch, 452
terminate called, 153, 454, 458
throwing, 152, 453, 454
try block, 452

exception object, see exception handling,
exception object

exception specification, 457–459
noexcept

constant expression and, 457
non-throwing, 457
potentially-throwing, 457
virtual function and, 457

exception-declaration, 452, 1901
exclusive-or-expression, 150, 1890
execution agent, 1788
execution character set, see character set,

execution
execution policy, 790

execution step, 89
execution wide-character set, see wide-character

set, execution
exit, 90, 93, 169
explicit

keyword, 21, 178, 687, 696, 697, 709, 710,
1032, 1408, 1892, 1911, 1926

explicit object member function, see member
function, explicit object

explicit object parameter, see parameter, explicit
object

explicit type conversion, see casting
explicit-instantiation, 424, 1900
explicit-object-parameter-declaration, 203
explicit-specialization, 426, 1900
explicit-specifier , 178, 1892
explicitly captured, 114
explicitly initialized elements

aggregate, 213
exponent-part, 26, 1885
exponential integrals Ei, 1477
export

keyword, 21, 257, 462, 466, 467, 1897, 1902,
1923

export-declaration, 257, 1897
exposure, 59
expr-or-braced-init-list, 209, 1895
expression, 94–162

additive operators, 145
alignof, 136
assignment and compound assignment, 153
await, 134
bitwise AND, 149
bitwise exclusive OR, 149
bitwise inclusive OR, 150
cast, 124, 143–144
class member access, 125
comma, 154
conditional operator, 150
const cast, 131
constant, 154, 159
converted constant, 159
core constant, 154
decrement, 126, 134
delete, 141
destructor call, 108
domain, 559
dynamic cast, 126
equality operators, 148
equality-preserving, 559
equivalent, see equivalent, expressions
fold, 118–119
function call, 122
functionally equivalent, see functionally

equivalent, expressions
immediate-escalating, 160
increment, 126, 134
integral constant, 158
lambda, 108–118
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left-shift-operator, 146
logical AND, 150
logical OR, 150
multiplicative operators, 145
new, 137
noexcept, 137
order of evaluation of, 94
parenthesized, 104
pointer-to-member, 144
pointer-to-member constant, 133
postfix, 122–132
potentially constant evaluated, 162
potentially evaluated, 35
primary, 103–121
pseudo-destructor call, 108
reference, 96
reinterpret cast, 130
relational operators, 147
requires, 119–121
right-shift-operator, 146
rvalue reference, 95
sizeof, 136
spaceship, 147
static cast, 128
subscript, 122
three-way comparison, 147
throw, 152
type identification, 127
type-dependent, 410
unary, 132–137
unary operator, 133
value-dependent, 410
yield, 152

expression, 154, 1890
expression-equivalent, 4
expression-list, 122, 1888
expression-statement, 164, 1891
extend, see namespace, extend
extended alignment, see alignment, extended
extended integer type, see type, extended integer
extended signed integer type, see type, extended

signed integer
extended unsigned integer type, see type,

extended unsigned integer
extent

dynamic, 1036
static, 1036

extern, 176
keyword, 21, 33, 42, 57, 68, 175–177, 196, 197,

199, 218, 245, 247, 273, 424, 1892, 1896,
1900, 1928, 1929

linkage of, 176
extern "C", 490, 502
extern "C++", 490, 502
extern template, see instantiation, explicit
external linkage, see linkage, external

F
F (incomplete elliptic integrals), 1476
facet, 1575
fallback-separator , 1713
false

keyword, 21, 78, 101–103, 120, 134, 135,
148–150, 1935

field width
estimated, 798
minimum, 798

field width units, see units, field width
file, 1704
file attributes, 1730

cached, 1730
file system, 1704
file system race, 1705
file, source, see source file
filename, 1713
filename, 1712
fill character, see character, fill
final, 20

keyword, 20, 267, 271, 300, 1898
final await expression, see await expression, final
final overrider, 299
final suspend point, see suspend point, final
finite state machine, 5
float

keyword, 21, 26, 78, 82, 101, 184, 1893
floating-point conversion rank, see conversion

rank, floating-point
floating-point literal, see literal, floating-point
floating-point promotion, 101
floating-point type, see type, floating-point
floating-point-literal , 25, 1885
floating-point-suffix , 26, 1885
fold

binary, 118
unary, 118

fold-expression, 118, 1887
fold-operator , 118, 1887
for

keyword, 21, 42, 74, 163, 167, 168, 1737, 1891,
1905

for-range-declaration, 167, 1891
for-range-initializer , 167, 1891
format specification

format string, 797
format specifier, 5
format string, 796
Formatter, 805
formatter

debug-enabled specialization of, 806
formatting locale, see locale, formatting
forward, 682
forward progress guarantees

concurrent, 89
delegation of, 89
parallel, 89

Index 2004



© ISO/IEC N4950

weakly parallel, 89
forwarding reference, 439
fractional-constant, 25, 1885
free store, see also delete, see also new, 291
freestanding implementation, see implementation,

freestanding
freestanding item, 485
friend

virtual and, 302
access specifier and, 310
class access and, 309
inheritance and, 310
local class and, 311
template and, 391

friend
keyword, 21, 175, 179, 186, 197, 277, 283, 309,

326, 1892
friend function

access and, 309
inline, 310
linkage of, 310
member function and, 309
nested class, 293

full-expression, 83
function, see also friend function, see also inline

function, see also member function, see
also virtual function

addressable, 500
allocation, 69, 138
conversion, 287
deallocation, 70
deferred, 1877
definition, 34
deleted, 227
global, 502, 505
handler, 5
handler of type, 455
immediate, 160
immediate-escalating, 160
inline, 181
linkage specification overloaded, 246
modifier, 5
named by expression or conversion, 35
needed for constant evaluation, 162
non-template, 205
observer, 6
operator, 356

template, 357
overload resolution and, 330
overloaded, see overloading
parameter of type, 202
pointer to member, 145
program semantics affected by the existence

of a function definition, 422
replacement, 7
reserved, 7
template parameter of type, 367
templated, 365
viable, 329

virtual, 299–303
override, 299
pure, 303

virtual function call, 122
virtual member, 503
waiting, 1869

function argument, see argument
function call, 124

recursive, 124
undefined, 131

function call operator
overloaded, 359

function call operator function, see operator
function, function call

function object, 761
binders, 777–779
mem_fn, 779
reference_wrapper, 766
type, 761
wrapper, 779–785

function parameter, see parameter
function parameter pack, 388
function parameter scope, see scope, function

parameter
function pointer type, 80
function return, see return
function return type, see return type
function try block, see exception handling,

function try block
function-body , 225, 1895
function-definition, 225, 1895
function-like macro, see macro, function-like
function-local predefined variable, see variable,

function-local predefined
function-specifier , 178, 1892
function-try-block, 452, 1900
functionally equivalent

expressions, 399
template-heads, 399

functions
candidate, 416

fundamental alignment, see alignment,
fundamental

fundamental type, 78
destructor and, 285

fundamental type conversion, see conversion,
user-defined

future
shared state, 1869

G
generated destructor, see destructor, default
generic lambda, 109
generic parameter type placeholder, 188
global module, see module, global
global module fragment, 261
global namespace, see namespace, global
global scope, see scope, global
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global-module-fragment, 261, 1897
glvalue, 95
goto

and handler, 452
and try block, 452
initialization and, 171
keyword, 21, 156, 167, 169, 171, 452, 1891

grammar, 1881
regular expression, 1785

group, 461, 1901
group-part, 461, 1901

H
Hn (Hermite polynomials), 1477
h-char , 19, 1882
h-char-sequence, 19, 1882
h-pp-tokens, 463, 1902
h-preprocessing-token, 463, 1902
handler, see exception handling, handler
handler , 452, 1900
handler-seq, 452, 1900
happens after, 87
happens before, 87
hard link, 1704
has-attribute-expression, 463, 1902
has-include-expression, 463, 1902
hash

instantiation restrictions, 788
hash code, 897
hash function, 897
hash tables, see unordered associative containers
header, 487

C, 502, 505, 557
C library, 490
C++ library, 487
importable, 260
name, 19

header unit, 260
preprocessing, 467

header-name, 19, 1882
header-name-tokens, 463, 1902
headers

C library, 556
heap with respect to comp and proj, 1368
Hermite polynomials Hn, 1477
hex-quad , 16, 1881
hexadecimal-digit, 22, 1884
hexadecimal-digit-sequence, 22, 1883
hexadecimal-escape-sequence, 24, 1884
hexadecimal-floating-point-literal , 25, 1885
hexadecimal-fractional-constant, 25, 1885
hexadecimal-literal , 22, 1883
hexadecimal-prefix , 22, 1883
high-order bit, 61
hosted implementation, see implementation,

hosted

I
Iν (Bessell functions), 1475
id-expression, 104
id-expression, 104, 1886
identical

atomic constraints, see atomic constraint,
identical

identifier, 19–20, 105, 174
identifier , 19, 1882
identifier-continue, 19, 1882
identifier-list, 462, 1902
identifier-start, 19, 1882
if

keyword, 21, 98, 164–167, 1404, 1891
if-group, 461, 1901
if-section, 461, 1901
ill-formed program, see program, ill-formed
immediate function, see function, immediate
immediate function context, 160
immediate invocation, 160
immediate scope, see scope, immediate
immediate subexpression, 82
immediate-escalating, 160

conversion, see conversion,
immediate-escalating

expression, see expression,
immediate-escalating

function, see function, immediate-escalating
implementation

freestanding, 10, 85, 90, 475, 489, 1807
hosted, 10, 475, 489

implementation limits, see limits, implementation
implementation-defined behavior, see behavior,

implementation-defined
implementation-dependent, 425, 512, 1643, 1655
implementation-generated, 34
implicit conversion, see conversion, implicit
implicit conversion sequence, see conversion

sequence, implicit
implicit object member function, see member

function, implicit object
implicit object parameter, see object parameter,

implicit
implicit-lifetime class, see class, implicit-lifetime
implicit-lifetime type, see type, implicit-lifetime
implicitly movable entity, see entity, implicitly

movable
implicitly-declared default constructor, see

constructor, default, 277
implied object argument, 330

implicit conversion sequences, 330
non-static member function and, 330

import, 260
import, 20, 489

keyword, 18, 20, 462, 467, 1902
importable C++ library headers, see C++ library

headers, importable
importable header, see header, importable
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inclusion
conditional, see preprocessing directive,

conditional inclusion
source file, see preprocessing directive,

source-file inclusion
inclusive-or-expression, 150, 1890
incomplete, 145
incomplete type, see type, incomplete
incompletely-defined object type, see object type,

incompletely-defined
increment operator

overloaded, see overloading, increment
operator

increment operator function, see operator
function, increment

incrementable, 1072
indeterminate value, see value, indeterminate, 67
indeterminately sequenced, 84
index

multidimensional, 1034
index space

multidimensional, 1034
indirect base class, see base class, indirect
indirection, 133
inheritance, 296

using-declaration and, 240
init-capture, 113, 1887
init-capture pack, 118, 389
init-declarator , 192, 1893
init-declarator-list, 192, 1893
init-statement, 163, 1890
initial await expression, see await expression,

initial
initial suspend point, see suspend point, initial
initialization, 91, 209–225

aggregate, 213
array, 213
array of class objects, 217, 314
automatic, 171
base class, 315, 316
by inherited constructor, 319
character array, 217, 218
class object, see also constructor, 213,

314–320
const, 183, 212
const member, 316
constant, 91
constructor and, 314
copy, 211
default, 210
default constructor and, 314
definition and, 175
direct, 211
dynamic, 91
dynamic block-scope, 171
dynamic non-block, 91
explicit, 314
jump past, 171
list-initialization, 220–225

local static, 171
local thread_local, 171
member, 315
member function call during, 318
member object, 316
order of, 91, 297
order of base class, 317
order of member, 317
order of virtual base class, 317
overloaded assignment and, 314
parameter, 123
reference, 199, 218
reference member, 316
static, 91
static and thread, 91
static member, 289
union, 217
vacuous, 64
virtual base class, 281
zero-initialization, 91, 210

initializer
base class, 226
member, 226
pack expansion, 319
scope of member, 318
temporary and declarator, 72

initializer , 209, 1895
initializer-clause, 209, 1895
initializer-list, 209, 1895
initializer-list constructor, 221
initializing declaration, 213
injected-class-name, 267
inline, 505
inline

keyword, 21, 90, 175, 181, 182, 197, 236, 237,
275, 277, 283, 363, 393, 424, 503, 1892,
1896

linkage of, 57
inline function, see function, inline, 181
inline namespace, see namespace, inline
inline namespace set, 237
inline variable, see variable, inline
instantiation

explicit, 424
point of, 415
template implicit, 420

instantiation context, 264
instantiation units, 14
int

keyword, 21, 24, 76, 77, 80, 81, 90, 96, 97,
100, 101, 138, 184, 1893, 1929, 1932, 1933

integer literal, see literal, integer
integer type, 78
integer-class type, see type, integer-class
integer-like, 1071
integer-literal , 21, 1883
integer-suffix , 22, 1884
integral constant expression, see expression,

integral constant
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integral promotion, 101
integral type, 78

implementation-defined sizeof, 76
inter-thread happens before, 86
interface dependency, 261
internal linkage, see linkage, internal
invalid iterator, see iterator, invalid
invalid pointer value, see value, invalid pointer
invocation

macro, 469
invocation sequence, 585
INVOKE , 764
item

definable, 34
freestanding, see freestanding item

iteration-statement, 167, 169, 1891
iterator, 1063

constexpr, 1064
dereferenceable, 1063
invalid, 1064
past-the-end, 1063

J
jn (spherical Bessel functions), 1478
Jν (Bessell functions), 1475
Jessie, 286
jump-statement, 169, 1891

K
K (complete elliptic integrals), 1474
Kν (Bessell functions), 1476
key parameter, see parameter, key
keyword, 20, 1881
keyword , 20, 1883
known to be initialized, 455

L
Ln (Laguerre polynomials), 1477
Lm

n (associated Laguerre polynomials), 1474
label, 171

case, 164, 166
default, 164, 166
scope of, 164

label , 164, 1890
label-seq, 164, 1891
labeled-statement, 164, 1891
Laguerre polynomials

Ln, 1477
Lm

n , 1474
lambda scope, see scope, lambda
lambda-capture, 113, 1887
lambda-declarator , 108, 1887
lambda-expression, 108, 1887
lambda-introducer , 108, 184, 1887
lambda-specifier , 108, 1887
lambda-specifier-seq, 108, 1887
language linkage, 245
lattice, see DAG, see subobject

layout
bit-field, 290
class object, 273, 297

layout mapping, 1038
layout mapping policy, 1040
layout-compatible

class, 274
enumeration, 234

layout-compatible type, see type,
layout-compatible

left shift
undefined, 146

left shift operator, see operator, left shift
left-pad, 810
Legendre functions Ym

ℓ , 1478
Legendre polynomials

Pℓ, 1477
Pm

ℓ , 1474
letter, 484
lexical conventions, see conventions, lexical
LIA-1, 1962
library

C standard, 479, 484, 487, 490, 556, 1934
C++ standard, 478, 503, 504, 506, 507

library call
non-constant, 5

library clauses, 11
lifetime, 64
limits

implementation, 5
line number, 473
line splicing, 13
link, 1704
linkage, 32, 33, 57–59

const and, 57
external, 57, 490, 502
implementation-defined object, 247
inline and, 57
internal, 57
module, 57
no, 57, 58
static and, 57

linkage specification, see specification, linkage
linkage-specification, 245, 1896
list-initialization, 220
literal, 21–31, 103

base of integer, 22
boolean, 29
char16_t, 24
char32_t, 24
char8_t, 24
character, 23, 24

non-encodable, 24
ordinary, 24
UTF-16, 24
UTF-32, 24
UTF-8, 24
wide, 24

complex, 1404
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constant, 21
float, 26
floating-point, 25, 26
integer, 21, 23
long, 22, 23
long double, 26
multicharacter, 24
narrow-character, 28
operator, 362

raw, 363
template, 362
template numeric, 363
template string, 363

pointer, 29
string, 26, 27

char16_t, 27
char32_t, 27
narrow, 28
ordinary, 27
raw, 17, 27
undefined change to, 28
UTF-16, 27
UTF-32, 27
UTF-8, 27
wide, 27

suffix identifier, 362
type of character, 24
type of floating-point, 26
type of integer, 23
unsigned, 22, 23
user-defined, 29

literal , 21, 1883
literal encoding, see encoding, literal
literal type, see type, literal
literal-operator-id , 362, 1899
living dead

name of, 501
local class, see class, local

friend, 311
member function in, 275

local entity, see entity, local
local scope, see scope, block
local variable

destruction of, 169
locale, 1753, 1755, 1760

formatting, 1562
locale-specific, 484
locale-specific behavior, see behavior,

locale-specific
locale-specific form

format string, 800
lock

non-shared, 1789
shared, 1789

lock-free execution, 88
locus, 41–42
logical-and-expression, 150, 1890
logical-or-expression, 150, 1890
long

keyword, 21, 26, 71, 76–78, 81, 82, 100, 101,
184, 1893

typedef and, 176
long-long-suffix , 22, 1884
long-suffix , 22, 1884
lookup

ambiguous, 44
argument-dependent, 49
class member, 54
elaborated type specifier, 56–57
member name, 45
name, 32, 44–57
namespace aliases and, 57
qualified name, 52–56
type-only, 45
unqualified name, 48
using-directives and, 57

lookup context, 52
lookup set, 45
low-order bit, 61
lowercase, 484
lparen, 462, 1902
lvalue, 95, 1929
lvalue reference, 198
Lvalue-Callable, 780

M
macro

active, 467
argument substitution, 470
definition, 467
freestanding item, 486
function-like, 468, 469

arguments, 469
import, 467–468
masking, 505
name, 469
object-like, 468, 469
point of definition, 467
point of import, 467
point of undefinition, 467
pragma operator, 477
predefined, 474
replacement, 468–473
replacement list, 468, 469
rescanning and replacement, 473
scope of definition, 473

main function, 90–91
implementation-defined linkage of, 90
implementation-defined parameters to, 90
parameters to, 90
return from, 90, 93

make progress
thread, 89

make-unsigned-like-t , 1130
manifestly constant-evaluated, 161
matched, 5
mathematical special functions, 1473–1479
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mem-initializer , 315, 1899
mem-initializer-id , 315, 1899
mem-initializer-list, 315, 1899
member

anonymous union, 294
class static, 68
default initializer, 273
direct, 271
namespace, 235
non-static, 272
static, 272, 289
template and static, 386

member access operator
overloaded, 359

member candidate, 334
member data

static, 289
member function, 272

class, 274
const, 276
const volatile, 276
constructor and, 277
destructor and, 284
explicit object, 203
friend, 310
implicit object, 203
inline, 274
local class, 296
nested class, 313
non-static, 272, 275
overload resolution and, 330
static, 272, 289
union, 293
volatile, 276

member of the current instantiation, see current
instantiation, member of the

member pointer to, see pointer to member
member subobject, 62
member-declaration, 271, 1898
member-declarator , 271, 1898
member-declarator-list, 271, 1898
member-specification, 271, 1898
memory location, 61
memory management, see delete, see new
memory model, 61
message

diagnostic, 4, 10
minimum field width, see field width, minimum
model

concept, 504
modifiable, 96
modification order, 86
module, 257

exported, 260
global, 257
named, 256
reserved name of, 256

module, 20
keyword, 18, 20, 461, 462, 466, 1901, 1902

module implementation unit, 256
module interface unit, 256
module partition, 256
module unit, 256
module unit purview, see purview, module unit
module-declaration, 256, 1897
module-file, 461, 1901
module-import-declaration, 260, 1897
module-name, 256, 1897
module-name-qualifier , 256, 1897
module-partition, 256, 1897
more constrained, 382
more cv-qualified, 81
more specialized, 396, 442

class template, 396
function template, 442

most derived class, 63
most derived object, 63

bit-field, 63
zero size subobject, 63

move
class object, see constructor, move, see

assignment operator, move
move, 683
move-eligible, 106
move_only_function::is-callable-from , 783
multi-pass guarantee, 1074, 1079
multibyte character, see character, multibyte
multicharacter literal, see literal, multicharacter
multidimensional index, see index,

multidimensional
multidimensional index space, see index space,

multidimensional
multiple inheritance, 296, 297

virtual and, 302
multiple threads, see threads, multiple
multiplicative-expression, 145, 1889
mutable, 176

keyword, 21, 106, 108–110, 117, 125, 133, 144,
145, 176–178, 183, 197, 289, 1887, 1892

mutable iterator, 1063
mutex types, 1837

N
nn (spherical Neumann functions), 1478
Nν (Neumann functions), 1476
n-char , 14, 1881
n-char-sequence, 16, 1881
name, 20, 32, 59, 104

address of cv-qualified, 133
bound, 39
dependent, 410
elaborated

enum, 185
length of, 20
macro, see macro, name
predefined macro, see macro, predefined
qualified, 52
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reserved, 500
same, 32
terminal, 106
unqualified, 48
zombie, 501

name class, see class name
name hiding, 41, 107, 171

using-declaration and, 243
name-declaration, 173, 1891
named module, see module, named
named-namespace-definition, 236, 1896
named-universal-character , 16, 1881
namespace, 486

alias, 238
definition, 236
extend, 236
global, 20, 236
inline, 236
unnamed, 237

namespace
keyword, 21, 236–238, 1896

namespace scope, see scope, namespace
namespace-alias, 238, 1896
namespace-alias-definition, 238, 1896
namespace-body , 236, 1896
namespace-definition, 236, 1896
namespace-name, 236, 1896
namespaces, 235–240
NaN, 1473
narrow character type, see type, narrow character
narrowing conversion, see conversion, narrowing
native encoding, 1714
native pathname format, 1710
NDEBUG, 490
necessarily reachable, see reachable, necessarily
needed

exception specification, 459
needed for constant evaluation, 162
nested class, see class, nested

local class, 296
nested within, 62
nested-name-specifier , 107, 1887
nested-namespace-definition, 236, 1896
nested-requirement, 121, 1888
Neumann functions

Nν , 1476
nn, 1478

new, 68, 137, 138
array of class objects and, 140
constructor and, 140
default constructor and, 140
exception and, 140
initialization and, 140
keyword, 21, 64, 68–70, 137, 138, 140, 142,

159, 193, 357, 414, 459, 529, 556, 619,
1889

operator
replaceable, 503

scoping and, 138

storage allocation, 137
type of, 291
unspecified constructor and, 140
unspecified order of evaluation, 140

new-declarator , 137, 1889
new-expression, 137, 1889

placement, 140
new-extended alignment, see alignment,

new-extended
new-initializer , 137, 1889
new-line, 462, 1902
new-placement, 137, 1889
new-type-id , 137, 1889
new_handler, 69
no linkage, 57
node handle, 886
nodeclspec-function-declaration, 173, 1892
nodiscard call, see call, nodiscard
nodiscard type, see type, nodiscard
noexcept, 137

keyword, 21, 78, 83, 97, 102, 111, 120, 121,
137, 201, 202, 414, 445, 447, 448, 457,
459, 507, 633, 718, 729, 788, 838, 1152,
1888, 1889, 1901, 1913, 1921, 1924

noexcept-expression, 137, 1889
noexcept-specifier , 457, 1901
nominable, 41
non-initialization odr-use, see odr-use,

non-initialization
non-member candidate, 334
non-object parameter, see parameter, non-object
non-object-parameter-type-list, 203
non-shared lock, see lock, non-shared
non-static data member, see data member,

non-static
non-static member, see member, non-static
non-static member function, see member function,

non-static
non-template function, see function, non-template
non-throwing exception specification, 457
non-virtual base class, see base class, non-virtual
nondigit, 19, 1882
nonzero-digit, 22, 1883
noptr-abstract-declarator , 194, 1894
noptr-abstract-pack-declarator , 194, 1894
noptr-declarator , 193, 1894
noptr-new-declarator , 137, 1889
normal distributions, 1437–1442
normal form

constraint, 381
path, 1713

normalization
constraint, see constraint, normalization
path, see path, normalization

normative references, see references, normative
not

keyword, 18, 21, 1883, 1935
not_eq

keyword, 18, 21, 1883, 1935
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notation
syntax, 12

ntbs, 484, 1945, 1946
empty, 484
length, 484
static, 484
value, 484

NTCTS, 6
ntmbs, 484

static, 484
null character, see character, null
null member pointer conversion, see conversion,

null member pointer
null pointer conversion, see conversion, null

pointer
null pointer value, see value, null pointer
null statement, 164
null wide character, see wide-character, null
nullptr

keyword, 21, 29, 230, 510, 528, 629, 645, 727,
734, 887, 1116, 1118, 1627, 1639, 1848,
1849, 1851, 1852, 1921

number
preprocessing, 19
subnormal, 517, 519, 1939

numeric type, see type, numeric
numeric-escape-sequence, 24, 1884
numeric_limits, 515

O
object, see also object model, 32, 62

byte copying and, 74–75
callable, 764
complete, 62
const, 80
const volatile, 81
definition, 34
destructor and placement of, 285
destructor static, 93
exception, see exception handling, exception

object
implicit creation, 63
linkage specification, 247
local static, 68
nested within, 62
nonzero size, 63
providing storage for, 62
reified, 1131
suitable created, 63
unnamed, 277
volatile, 81
zero size, 63

object class, see class object
object expression, 125, 144
object lifetime, 64–67
object model, 62–64
object parameter, see parameter, object

corresponding, 39, 40

implicit, 330
object pointer type, 79
object temporary, see temporary
object type, 76

incompletely-defined, 75
object-like macro, see macro, object-like
observable behavior, see behavior, observable
octal-digit, 22, 1883
octal-escape-sequence, 24, 1884
octal-literal , 22, 1883
odr-usable, 36
odr-use, 35

non-initialization, 92
one-definition rule, 34–39
opaque-enum-declaration, 232, 1895
operating system dependent, 1705
operator, 20–21, 357

*=, 153
+=, 134, 153
-=, 153
/=, 153
<<=, 153
>>=, 153
%=, 153
&=, 153
^=, 153
|=, 153
addition, 145
additive, 145
address-of, 133
assignment, 153, 485
bitwise, 149
bitwise AND, 149
bitwise exclusive OR, 149
bitwise inclusive OR, 150
cast, 132, 193
class member access, 125
comma, 154
comparison

secondary, 327
conditional expression, 150
copy assignment, see assignment operator,

copy
decrement, 126, 133, 134
division, 145
equality, 148

defaulted, 326
deleted, 326

function call, 122, 357
greater than, 147
greater than or equal to, 147
implementation, 357
increment, 126, 133, 134
indirection, 133
inequality, 148

defaulted, 327
left shift, 146
less than, 147
less than or equal to, 147
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logical AND, 150
logical negation, 133, 134
logical OR, 150
move assignment, see assignment operator,

move
multiplication, 145
multiplicative, 145
ones’ complement, 133, 134
overloaded, 94, 356
pointer to member, 144
pragma, see macro, pragma operator
precedence of, 94
relational, 147

defaulted, 327
remainder, 145
right shift, 146
scope resolution, 52, 107, 139, 275, 296, 303
side effects and comma, 154
side effects and logical AND, 150
side effects and logical OR, 150
sizeof, 132, 136
spaceship, 147
subscripting, 122, 357
subtraction, 145
three-way comparison, 147

defaulted, 327
deleted, 326

unary, 132, 133
unary minus, 133, 134
unary plus, 133, 134

operator , 357, 1899
operator

keyword, 21, 64, 68–70, 74, 133, 135, 138, 142,
262, 287, 331, 333–337, 342, 344, 347,
353, 357–360, 362, 410, 412, 1898, 1899

operator delete
destroying, 70

operator delete, see also delete, 138, 142
operator function, see function, operator

binary, 358
class member access, 359
comparison, 358
decrement, 360
equality, 358
function call, 359
increment, 359
prefix unary, 358
relational, 358
simple assignment, 358
subscripting, 359
three-way comparison, 358

operator new, see also new, 138
operator overloading, see overloading, operator
operator use

scope resolution, 289
operator-function-id , 357, 1899
operator-or-punctuator , 21, 1883
operators

built-in, 94

optimization of temporary, see temporary,
elimination of

optional object, 705
or

keyword, 18, 21, 1883, 1935
or_eq

keyword, 18, 21, 1883, 1935
order of evaluation in expression, see expression,

order of evaluation of
order of execution

base class constructor, 278
base class destructor, 284
constructor and array, 314
constructor and static data members, 315
destructor, 284
destructor and array, 284
member constructor, 278
member destructor, 284

ordering
function template partial, see template,

function, partial ordering
ordinary character type, see type, ordinary

character
ordinary literal encoding, see encoding, ordinary

literal
over-aligned type, see type, over-aligned
overflow, 94

undefined, 94
overload resolution, 329
overload set, 44
overloaded function, see overloading

address of, 133, 355
overloaded operator, see overloading, operator

inheritance of, 357
overloading, 204, 270, 329–362, 398

address of overloaded function, 355
argument lists, 330–343
assignment operator, 358
binary operator, 358
built-in operators and, 360
candidate functions, 330–343
decrement operator, 360
example of, 329
function call operator, 359
increment operator, 359
member access operator, 359
operator, 356–360
resolution, 329–355

best viable function, 343–357
better viable function, 343
contexts, 329
function call syntax, 331–333
function template, 449
implicit conversions and, 346–355
initialization, 337, 338
operators, 334
template, 400
viable functions, 343–357

subscripting operator, 359
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unary operator, 358
user-defined literal, 362
using directive and, 240
using-declaration and, 244

overloads
floating-point, 1404

override, see function, virtual, override
override, 20

keyword, 20, 271, 300, 1898
overrider

final, 299
own, 610

P
Pℓ (Legendre polynomials), 1477
Pm

ℓ (associated Legendre polynomials), 1474
pack, 389

unexpanded, 390
pack expansion, 389

pattern, 389
padding bits, 75
padding width, see width, padding
pair

tuple interface to, 686
parallel algorithm, 1275
parallel forward progress guarantees, 89
parameter, 6

catch clause, 6
disqualifying, 568
explicit object, 203
function, 6
function-like macro, 6
key, 568
macro, 469
non-object, 203
object, 203
reference, 198
scope of, 43
template, 6, 33
void, 202

parameter declaration, 33
parameter list

variable, 124, 202
parameter mapping, 379
parameter-declaration, 202, 1895
parameter-declaration-clause, 202, 1894
parameter-declaration-list, 202, 1894
parameter-type-list, 202
parameterized type, see template
parameters-and-qualifiers, 193, 1894
parent directory, 1704
parent scope, see scope, parent
past-the-end iterator, see iterator, past-the-end
path, 1709

absolute, 1709
normalization, 1713
relative, 1709

path equality, 1724

pathname, 1710
pathname, 1712
pathname resolution, 1710
pattern, see pack expansion, pattern
perfect forwarding call wrapper, see call wrapper,

perfect forwarding
period, 484
permissible types, see types, permissible
phase completion step, 1865
phase synchronization point, see barrier, phase

synchronization point
phases of translation, see translation, phases
Π (complete elliptic integrals), 1475
Π (incomplete elliptic integrals), 1477
piecewise construction, 688
placeholder type deduction, 190
placeholder-type-specifier , 187, 1893
placeholders

freestanding item, 779
placement new-expression, see new-expression,

placement
plain lock-free atomic operation, 556
pm-expression, 144, 1889
POD, 1948
point, 80
point of

macro definition, see macro, point of
definition

macro import, see macro, point of import
macro undefinition, see macro, point of

undefinition
pointer, see also void*

composite pointer type, 96
strict total order, 5
zero, see value, null pointer

pointer literal, see literal, pointer
pointer past the end of, 80
pointer to, 80
pointer to member, 79, 144, 199
pointer-interconvertible, 80
pointer-literal , 29, 1886
Poisson distributions, 1432–1436
polymorphic class, see class, polymorphic
pool resource classes, 642
pools, 642
population, 1349
POSIX, 478

extended regular expressions, 1760
regular expressions, 1760

postfix ++ and --
overloading, 359

postfix ++, 126
postfix --, 126
postfix-expression, 122, 1888
potential results, 35
potentially concurrent, 88
potentially conflict, 40
potentially constant evaluated, 162
potentially evaluated, 35

Index 2014



© ISO/IEC N4950

potentially-constant, 154
potentially-evaluated subexpression, see

subexpression, potentially-evaluated
potentially-overlapping subobject, 63
potentially-throwing

exception specification, 457
expression, 458

pp-global-module-fragment, 461, 1901
pp-import, 467, 1902
pp-module, 466, 1902
pp-number , 19, 1882
pp-private-module-fragment, 461, 1901
pp-tokens, 462, 1902
precede, see declaration, precede
precedence of operator, see operator, precedence

of
preferred-separator , 1712
prefix

L, 27
R, 27

prefix ++ and --
overloading, 359

prefix ++, 134
prefix --, 134
prefix unary operator function, see operator

function, prefix unary
preprocessing, 463
preprocessing directive, 461–477

conditional inclusion, 463
diagnostic, 474
error, 474
header inclusion, 465
import, 467
line control, 473
macro replacement, see macro, replacement
module, 466
null, 474
pragma, 474
source-file inclusion, 465
warning, 474

preprocessing translation unit, see translation
unit, preprocessing

preprocessing-file, 461, 1901
preprocessing-op-or-punc, 20, 1883
preprocessing-operator , 20, 1883
preprocessing-token, 17, 1882
primary equivalence class, 6
primary module interface unit, 256
primary template, see template, primary
primary-expression, 103, 1886
private, see access control, private

keyword, 21, 263, 296, 304, 307, 461, 1897,
1899, 1901

private-module-fragment, 263, 1897
program, 57

ill-formed, 5
startup, 90–92
termination, 93
well-formed, 9, 11

program execution, 11, 82–93
abstract machine, 11
as-if rule, see as-if rule

program semantics
affected by the existence of a variable or

function definition, 422
projection, 6
promise object, 229
promise type, see coroutine, promise type
promoted integral type, 360
promotion

bool to int, 101
default argument promotion, 124
floating-point, 101
integral, 100

prospective destructor, see destructor, prospective
protected, see access control, protected

keyword, 21, 296, 307, 1899
protection, see access control, 506
prototype parameter

concept, 404
provides storage, 62
prvalue, 95
pseudo-destructor, 108
ptr-abstract-declarator , 194, 1894
ptr-declarator , 193, 1894
ptr-operator , 193, 1894
ptrdiff_t, 146

implementation-defined type of, 146
public, see access control, public

keyword, 21, 296, 307, 1899
punctuator, 20–21
pure-specifier , 271, 1898
purview

global module, 257
module unit, 257
named module, 257

Q
q-char , 19, 1882
q-char-sequence, 19, 1882
qualification

explicit, 52
qualification-combined type, see type,

qualification-combined
qualification-decomposition, 100
qualified name, see name, qualified
qualified-id , 107, 1887
qualified-namespace-specifier , 238, 1896

R
r-char , 27, 1885
r-char-sequence, 27, 1885
random number distribution

requirements, 1412–1414
random number distributions

Bernoulli, 1428–1432
normal, 1437–1442
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Poisson, 1432–1436
sampling, 1442–1447
uniform, 1426–1428

random number engine
requirements, 1409–1411
with predefined parameters, 1422–1423

random number engine adaptor
with predefined parameters, 1422–1423

random number generation, 1405–1447
distributions, 1426–1447
engines, 1414–1422
predefined engines and adaptors, 1422–1423
requirements, 1407–1414
synopsis, 1405–1407
utilities, 1424–1426

random number generator, see uniform random
bit generator

range, 1064
accessible, 1048
counted, 1064, 1202

valid, 1064
valid, 1064

rank, 1034
rank index, 1034
raw string literal, 27
raw-string , 27, 1885
reachable

declaration, 265
necessarily

translation unit, 265
translation unit, 265

reachable from, 1064
declaration, 265

ready, 1770, 1869
ref-qualifier , 193, 1894
reference, 79

assignment to, 153
call by, 124
forwarding, 439
lvalue, 79
null, 199
rvalue, 79
sizeof, 136

reference collapsing, 199
reference lifetime, 64
reference-compatible, 218
reference-related, 218
references

normative, 2
register

keyword, 20, 21, 1916, 1930
register storage class, 1916
regular expression, 1753–1786

grammar, 1785
matched, 5
requirements, 1753

regular expression traits, 1785
requirements, 1753, 1762
transform_primary, 1754, 1786

reified object, see object, reified
reinterpret_cast, see cast, reinterpret

keyword, 21, 73, 80, 122, 130, 131, 143, 144,
156, 370, 406, 414, 415, 1888

relational operator function, see operator function,
relational

relational-expression, 147, 1889
relative path, see path, relative
relative-path, 1712
release sequence, 86
remainder operator, see operator, remainder
remote time zone database, 1550
replacement

macro, see macro, replacement
replacement field

format string, 796
replacement-list, 462, 1902
representation

object, 75
value, 75

represents the address, 80
requirement

compound, 120
nested, 121
simple, 120
type, 120

requirement, 119, 1888
requirement-body , 119, 1888
requirement-parameter-list, 119, 1888
requirement-seq, 119, 1888
requirements, 480

container, 873, 897, 911, 912, 1770
not required for unordered associated

containers, 897
iterator, 1063
numeric type, 1397
random number distribution, 1412–1414
random number engine, 1409–1411
regular expression traits, 1753, 1762
seed sequence, 1408–1409
sequence, 1770
uniform random bit generator, 1409
unordered associative container, 897

requires
keyword, 21, 119–121, 364, 1888, 1899

requires-clause, 364, 1899
trailing, 192

requires-expression, 119, 1888
rescanning and replacement, see macro,

rescanning and replacement
reserved identifier, 20
reset, 610
resolution, see overloading, resolution
restriction, 504, 505, 507, 1939

address of bit-field, 290
anonymous union, 294
bit-field, 290
constructor, 277
destructor, 283
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extern, 176
local class, 296
operator overloading, 357
overloading, 357
pointer to bit-field, 290
reference, 199
static, 176
static member local class, 296
union, 293

result
glvalue, 96
prvalue, 96

result object, 96
rethrow, see exception handling, rethrow
return, 169, 170

and handler, 452
and try block, 452
constructor and, 170
keyword, 21, 78, 90, 91, 98, 109, 124, 169,

170, 452, 455, 457, 1891
reference and, 218

return statement, see return
return type, 204

covariant, 300
return-type-requirement, 120, 1888
reversible container, see container, reversible
rewritten candidate, 334
right shift operator, see operator, right shift
root-directory , 1712
root-name, 1712
rounding, 101
rvalue, 95

lvalue conversion to, see conversion,
lvalue-to-rvalue, 1929

rvalue reference, 198

S
s-char , 26, 1885
s-char-sequence, 26, 1885
sample, 1349
sampling distributions, 1442–1447
satisfy, see constraint, satisfaction
scalar type, see type, scalar
scope, 1, 32, 39–44, 174

anonymous union at namespace, 295
block, 42
class, 44
declarations and, see locus
destructor and exit from, 169
enclosing, 39
enumeration, 44
function parameter, 43
function prototype, see scope, function

parameter
global, 39
handler , 42
immediate, 39
inhabit, 39

intervene, 39
iteration-statement, 167
lambda, 43
macro definition, see macro, scope of

definition
name lookup and, see lookup, name
namespace, 43
parent, 39
search, 45

single, 45
selection-statement, 165
target, 39
template parameter, 44

scope resolution operator, see operator, scope
resolution

scoped enumeration, see enumeration, scoped
search, 45

single, 45
secondary comparison operator, 327
seed sequence, 1408

requirements, 1408–1409
selected destructor, see destructor, selected
selection-statement, 164, 1891
semantics

class member, 125
sentinel, 1064
separate compilation, see compilation, separate
separate translation, see compilation, separate
sequence

sorted
with respect to a comparator, 1351
with respect to a comparator and

projection, 1351
sequence container, see container, sequence
sequenced after, 84
sequenced before, 84
sequencing operator, see operator, comma
shared lock, see lock, shared, 1842
shared mutex types, 1841
shared state, see future, shared state
shared timed mutex type, 1843
shift operator

left, see operator, left shift
right, see operator, right shift

shift-expression, 146, 1889
short

keyword, 21, 76–78, 81, 184, 1893
typedef and, 176

side effects, 11, 72, 84–88, 164, 317, 323, 469, 506
visible, 87

sign, 26, 1885
signal, 85
signal-safe

_Exit, 525
abort, 525
evaluation, see evaluation, signal-safe
forward, 682
initializer_list functions, 540
memcpy, 869
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memmove, 869
move, 682
move_if_noexcept, 682
numeric_limits members, 517
quick_exit, 526
signal, 556
type traits, 650

signature, 7, 8
corresponding, 40

signed
keyword, 21, 76–78, 81, 184, 1893
typedef and, 176

signed integer representation
two’s complement, 77, 234, 677, 1814, 1823

signed integer type, see type, signed integer
signed-integer-class type, see type,

signed-integer-class
signed-integer-like, 1071
significand, 26
similar types, 100
simple assignment operator function, see operator

function, simple assignment
simple call wrapper, 765
simple-capture, 113, 1887
simple-declaration, 173, 1892
simple-escape-sequence, 24, 1884
simple-escape-sequence-char , 24, 1884
simple-hexadecimal-digit-sequence, 16, 1881
simple-octal-digit-sequence, 24, 1884
simple-requirement, 120, 1888
simple-template-id , 369, 1900
simple-type-specifier , 184, 1893
simply happens before, 87
single search, see search, single
size of a multidimensional index space, 1034
size-suffix , 22, 1884
size_t, 136
sizeof

keyword, 21, 37, 75, 78, 133, 136, 414, 415,
1888, 1929

smart pointers, 619–633
source file, 13, 489, 502
source file character, see character, source file
special member function, see constructor, see

assignment operator, see destructor
eligible, 276

special-declaration, 173, 1892
specialization, 419

class template partial, 393
declared, 420
program-defined, 6
template, 418
template explicit, 426

specification
linkage, 245–247

extern, 245
implementation-defined, 245
nesting, 245

template argument, 431

specifications
C standard library exception, 507
C++, 507

specifier, 175–192
consteval, 179
constexpr, 179

function, 180
constinit, 181
cv-qualifier, 183
declaration, 175
explicit, 178
friend, 179, 506
function, 178
inline, 181
storage class, 176
type, see type specifier
typedef, 178
virtual, 178

specifier access, see access specifier
spherical harmonics Ym

ℓ , 1478
stable algorithm, 8, 506
stack unwinding, 454
stacktrace, 585
stacktrace entry, 585
standard

structure of, 11
standard integer type, see type, standard integer
standard signed integer type, see type, standard

signed integer
standard unsigned integer type, see type, standard

unsigned integer
standard-layout class, see class, standard-layout
standard-layout struct, see struct, standard-layout
standard-layout type, see type, standard-layout
standard-layout union, see union, standard-layout
start

program, 91
startup

program, 490, 503
state, 731
state entity, 764
statement, 163–172

continue in for, 168
break, 169
compound, 164
consteval if, 166
continue, 169
control-flow-limited, 164
declaration, 171
declaration in switch, 166
declaration in while, 167
do, 167, 168
empty, 164
enclosed by, 163
enclosing, 163
expression, 164
fallthrough, 251
for, 167, 168
goto, 164, 169, 171
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if, 164, 165
iteration, 167–169
jump, 169
labeled, 164
null, 164
range based for, 168
selection, 164–167
switch, 164, 166, 169
while, 167

statement, 163, 1890
statement-seq, 164, 1891
static, 176

destruction of local, 171
keyword, 21, 57, 68, 90, 108–110, 176, 182,

197, 203, 272, 273, 289, 291, 295, 517,
1818, 1887, 1892, 1929, 1930

linkage of, 57, 176
static data member, see data member, static
static extent, see extent, static
static initialization, see initialization, static
static member, see member, static
static member function, see member function,

static
static storage duration, 68
static type, see type, static
static_assert, 175

failed, 175
keyword, 21, 173, 575, 1892, 1921, 1935
not macro, 575

static_assert-declaration, 173, 1892
static_cast, see cast, static

keyword, 21, 37, 65, 73, 96, 122, 128, 129,
131, 143, 144, 211, 327, 370, 406, 414,
415, 498, 1500, 1888

STATICALLY-WIDEN , 1480
<stdnoreturn.h>

absence thereof, 487, 1934
stop request, 1790
stop state, 1790
storage

reachable through a pointer value, 80
storage class, 32
storage duration, 67–70

automatic, 68
class member, 70
dynamic, 68–69, 138
local object, 68
static, 68
thread, 68

storage management, see delete, see new
storage-class-specifier , 176, 1892
string

distinct, 28
formatted as escaped, 807
null terminator, 843
null-terminated byte, see ntbs
null-terminated character type, 6
null-terminated multibyte, see ntmbs
type of, 27

string literal, see literal, string
string-literal , 26, 1885
stringize, see # operator
stringizing argument, 471
strongly happens before, 87
struct

standard-layout, 269
struct

keyword, 21, 186, 232, 267, 269, 270, 304, 306,
307, 663, 671, 691, 1895, 1898, 1927,
1928, 1930, 1933

structural type, see type, structural
structure tag, see class name
structured binding, 231
structured binding declaration, 174, 231
sub-expression

regular expression, 8
subexpression, 83

potentially-evaluated, 83
subnormal number, see number, subnormal
subobject, see also object model, 62

initialized, known to be, 455
subscript expression, see expression, subscript
subscripting operator

overloaded, 359
subscripting operator function, see operator

function, subscripting
subsequence rule

overloading, 353
substatement, 163
substitutability, 542
subsume, see constraint, subsumption
subtraction

implementation-defined pointer, 146
subtraction operator, see operator, subtraction
suffix

F, 26
f, 26
L, 23, 26
l, 23, 26
U, 23
u, 23

suitable created object, see object, suitable
created

summary
compatibility with ISO C, 1926
compatibility with ISO C++ 2003, 1921
compatibility with ISO C++ 2011, 1919
compatibility with ISO C++ 2014, 1916
compatibility with ISO C++ 2017, 1908
compatibility with ISO C++ 2020, 1905
syntax, 1881

surrogate call function, 333
suspend point, 135

final, 229
initial, 229

swappable, 492
swappable with, 492
switch
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and handler, 452
and try block, 452
keyword, 21, 98, 163, 164, 166, 167, 169, 171,

251, 1891, 1903
symbolic link, 1704
synchronize with, 86
synonym, 238

type name as, 178
syntax

class member, 125
synthesized three-way comparison, see three-way

comparison, synthesized

T
target object, 764
target scope, see scope, target
template, 364–451

alias, 403
class, 384
deducible, 184
deducible arguments of, 340
function, 431

abbreviated, 205
corresponding object parameter, 40
corresponding signature, 40
key parameter of, 568
partial ordering, 400

member function, 385
primary, 383
static data member, 364
variable, 364

template, 364
keyword, 21, 35, 48, 107, 125, 184–186, 296,

340, 359, 364, 366, 369, 370, 383, 384,
418, 424, 426–428, 430, 704, 1881, 1887,
1893, 1899, 1900, 1939

template instantiation, 418
template name

linkage of, 365
template parameter, 33
template parameter object, 367
template parameter pack, 388
template parameter scope, see scope, template

parameter
template-argument, 369, 1900

default, 368
template-argument-equivalent, 383
template-argument-list, 369, 1900
template-declaration, 364, 1899
template-head , 364, 1899
template-id , 369, 1900

valid, 371
template-name, 369, 1900
template-parameter , 365, 1900
template-parameter-list, 364, 1899
templated, 365
templated class, see class, templated
templated function, see function, templated

templated variable, see variable, templated
temporary, 71

constructor for, 72
destruction of, 72
destructor for, 72
elimination of, 71, 323
implementation-defined generation of, 71
order of destruction of, 72

terminal name, see name, terminal
terminate, 459, 460

called, 153, 454, 458, 459
termination

program, 90, 93
terminology

pointer, 79
text representation, 1797
text-line, 461, 1902
this, 104

keyword, 21, 32, 36, 47, 65, 103–105, 113–117,
123, 154, 155, 157, 202, 203, 208, 226,
276, 289, 312, 318, 321, 332, 413, 506,
638, 645, 781, 782, 1636, 1672, 1690,
1691, 1764, 1818–1820, 1823, 1824, 1826,
1828–1833, 1886, 1887, 1895

thread, 85
thread of execution, 85
thread storage duration, see storage duration,

thread
thread_local, 176

keyword, 21, 68, 176, 197, 273, 289, 424, 426,
1892, 1921

threads
multiple, 85–90

<threads.h>
absence thereof, 487, 1934

three-way comparison
synthesized, 327

three-way comparison operator function, see
operator function, three-way comparison

throw, 152
keyword, 3, 21, 152, 414, 1890

throw-expression, 152, 1890
throwing, see exception handling, throwing
timed mutex types, 1839
to-unsigned-like , 1130
token, 18

alternative, 18
directive-introducing, 462
preprocessing, 17–18

token, 18, 1882
trailing requires-clause, see requires-clause, trailing
trailing-return-type, 193, 1894
traits, 8
transform_primary

regular expression traits, 1754, 1786
translation

phases, 13–14
separate, see compilation, separate
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translation character set, see character set,
translation

translation unit, 14, 57
name and, 33
preprocessing, 13

translation-unit, 57, 1886
transparently replaceable, 65
trigraph sequence, 1916
trivial class, see class, trivial
trivial type, see type, trivial
trivially copyable class, see class, trivially copyable
trivially copyable type, see type, trivially copyable
true

keyword, 21, 78, 101–103, 120, 134, 135, 137,
148–150, 154, 457, 459, 1935

truncation, 101
try, 452

keyword, 21, 452, 454, 1900
try block, see exception handling, try block
try-block, 452, 1900
TU-local

entity, 60
value or object, 60

tuple
and pair, 686

type, 32, 74–81
allocated, 137
arithmetic, 78

promoted, 360
array, 79
bitmask, 483, 484
Boolean, 77
callable, 764
char, 77
char16_t, 24, 27, 77, 81
char32_t, 24, 27, 77, 81
char8_t, 24, 77
character, 77, 78
character container, 4
class and, 267
compound, 79
const, 182
destination, 211
double, 78
dynamic, 4
enumerated, 483
example of incomplete, 75
extended integer, 77
extended signed integer, 76
extended unsigned integer, 77
float, 78
floating-point, 78

extended, 78
standard, 78

function, 79, 201, 202
fundamental, 78
implementation-defined sizeof, 76
implicit-lifetime, 76

incomplete, 34, 37, 42, 75, 99, 122, 123, 125,
126, 133, 136, 137, 142, 296

incompletely-defined object, 75
int, 76
integer-class, 1071
integral, 78

promoted, 360
layout-compatible, 76
literal, 76
long, 76
long double, 78
long long, 76
narrow character, 77
nodiscard, 253
numeric, 1397
ordinary character, 77
over-aligned, 71
pointer, 79
polymorphic, 299
program-defined, 6
qualification-combined, 100
referenceable, 7
scalar, 76
short, 76
signed char, 76, 77
signed integer, 76
signed-integer-class, 1071
similar, see similar types
standard integer, 77
standard signed integer, 76
standard unsigned integer, 76
standard-layout, 76
static, 8
structural, 367
trivial, 76
trivially copyable, 74, 76
underlying, 77

char16_t, 77, 100
char32_t, 77, 100
char8_t, 77
enumeration, 101, 233
fixed, 233
wchar_t, 77, 100

unsigned, 76
unsigned char, 76, 77
unsigned int, 76
unsigned integer, 77
unsigned long, 76
unsigned long long, 76
unsigned short, 76
unsigned-integer-class, 1071
void, 78
volatile, 182
wchar_t, 24, 27, 77, 81

type checking
argument, 124

type concept, see concept, type
type conversion, explicit, see casting
type generator, see template
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type name, 193
type pun, 131
type specifier

auto, 187
bool, 184
char, 184
char16_t, 184
char32_t, 184
char8_t, 184
const, 183
decltype, 186
decltype(auto), 187
double, 184
elaborated, 56, 184
enum, 184
float, 184
int, 184
long, 184
short, 184
signed, 184
simple, 184
unsigned, 184
void, 184
volatile, 183, 184
wchar_t, 184

type-constraint, 366, 1900
type-id , 193, 1894
type-name, 184, 1893
type-only

context, see context, type-only
lookup, see lookup, type-only

type-parameter , 366, 1900
type-parameter-key , 366, 1900
type-requirement, 120, 1888
type-specifier , 182, 1893
type-specifier-seq, 182, 1893
type_info, 127
typedef

function, 204
typedef

keyword, 21, 33, 75, 174, 175, 178, 259, 1414,
1423, 1495, 1712, 1892

typedef name for linkage purposes, 179
typedef-name, 178, 1892

freestanding item, 485
typeid, 127

construction and, 322
destruction and, 322
keyword, 21, 37, 65, 78, 115, 122, 127, 128,

156, 414, 453, 458, 1888
typename, 184

keyword, 21, 120, 184, 240, 241, 340, 366, 370,
405, 406, 412, 1888, 1896, 1900

typename-specifier , 405, 1900
types

implementation-defined, 482
permissible, 331

U
U

keyword, 96
UCS-2, 1954
ud-suffix , 29, 1886
unary fold, 118
unary left fold, 118
unary operator

interpretation of, 358
overloaded, 358

unary right fold, 118
unary-expression, 133, 1888
unary-operator , 133, 1888
unblock, 8
undefined, 7, 500, 502, 504, 1458, 1462, 1465,

1466, 1625, 1659, 1665
undefined behavior, see behavior, undefined
underlying type, see type, underlying
unevaluated operand, 97
uniform distributions, 1426–1428
uniform random bit generator

requirements, 1409
union, 293

standard-layout, 269
union, 79, 293

anonymous, 294
global anonymous, 295
keyword, 21, 186, 267, 269, 293, 294, 304,

1898, 1930, 1933
union-like class, see class, union-like
unique pointer, 610
unit

translation, 489, 490, 502
units

field width, 798
universal-character-name, 16, 1881
Unix time, 1506
unnamed bit-field, 290
unnamed-namespace-definition, 236, 1896
unordered associative container, see container,

unordered associative
unordered associative containers, 897

complexity, 897
equality function, 897
equivalent keys, 897, 967, 977
exception safety, 908
hash function, 897
iterator invalidation, 907
iterators, 907
lack of comparison functions, 897
requirements, 897, 907, 908
unique keys, 897, 960, 972

unordered_map
element access, 965
unique keys, 960

unordered_multimap
equivalent keys, 967

unordered_multiset
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equivalent keys, 977
unordered_set

unique keys, 972
unqualified name, see name, unqualified
unqualified-id , 105, 1886
unscoped enumeration, see enumeration, unscoped
unsequenced, 84
unsigned

keyword, 21, 62, 65, 74–78, 81, 96, 100, 101,
139, 184, 218, 1893, 1906

typedef and, 176
unsigned integer type, see type, unsigned integer
unsigned-integer-class type, see type,

unsigned-integer-class
unsigned-integer-like, 1071
unsigned-suffix , 22, 1884
unspecified, 527, 529, 533, 1353, 1671, 1942, 1943
unspecified behavior, see behavior, unspecified
unwinding

stack, 454
uppercase, 20, 484
upstream allocator, 642
usable

binary operator expression, 326
usable candidate, see candidate, usable
usable in constant expressions, 154
user-defined conversion sequence, see conversion

sequence, user-defined
user-defined literal, see literal, user-defined

overloaded, 362
user-defined-character-literal , 29, 1886
user-defined-floating-point-literal , 29, 1886
user-defined-integer-literal , 29, 1886
user-defined-literal , 29, 1886
user-defined-string-literal , 29, 1886
user-provided, 227
uses-allocator construction, 603
using

keyword, 21, 173, 235, 237, 238, 240, 247,
1892, 1896, 1897

using-declaration, 240–245
using-declaration, 240, 1896
using-declarator , 240, 1896
using-declarator-list, 240, 1896
using-directive, 238–240
using-directive, 238, 1896
using-enum-declaration, 235, 1896
using-enum-declarator , 235, 1896
usual arithmetic conversions, see conversion, usual

arithmetic
usual deallocation function, 70
UTF-16, 16, 217, 1585, 1715, 1927, 1954, 1958
UTF-32, 16, 217, 1585, 1715, 1927, 1954, 1958
UTF-8, 16, 61, 217, 828, 872, 1585, 1715, 1909,

1914, 1927, 1954, 1958

V
va-opt-replacement, 470, 1902
vacuous initialization, see initialization, vacuous
valid but unspecified state, 9
valid range, see range, valid
value, 75

call by, 124
denormalized, see number, subnormal
indeterminate, 67
invalid pointer, 80
null member pointer, 102
null pointer, 80, 102
undefined unrepresentable integral, 101

value category, 95
value computation, 72, 84–85, 87, 88, 126, 140, 153
value type, 1063
value-initialization, 210
variable, 32

active, 171
anonymous union, 294
function-local predefined, 226
indeterminate uninitialized, 210
inline, 182
needed for constant evaluation, 162
program semantics affected by the existence

of a variable definition, 422
templated, 365

variable arguments, 469
variable template

definition of, 364
variant member, 295
vectorization-unsafe, 1275
virt-specifier , 271, 1898
virt-specifier-seq, 271, 1898
virtual

keyword, 21, 123, 178, 190, 197, 203, 283, 284,
289, 296, 298, 299, 301, 326, 388, 507,
1892, 1899

virtual base class, see base class, virtual, see base
class, virtual

virtual function, see function, virtual, see function,
virtual

virtual function call, 303
constructor and, 322
destructor and, 322
undefined pure, 304

visible side effects, see side effects, visible
void

keyword, 21, 37, 65, 69, 70, 72, 75, 76, 78–81,
95–97, 102, 123–127, 129–131, 133, 135,
141, 150, 152, 156, 170, 184, 185, 188,
190, 198, 200, 202, 204, 225, 253, 254,
287, 289, 355, 367, 375, 406, 434, 436,
437, 444, 454, 455, 481, 546, 565, 601,
624, 658, 660–665, 667–669, 671, 672,
765, 875, 880, 883–885, 892, 894,
902–905, 907, 1066–1068, 1076, 1106,
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1409, 1410, 1413, 1623, 1838, 1842, 1893,
1914, 1925, 1928, 1929, 1948

void*
type, 80

void&, 198
volatile, 80

constructor and, 277
destructor and, 284
implementation-defined, 184
keyword, 21, 81, 84, 88, 125, 193, 1894, 1933

volatile object, see object, volatile
volatile-qualified, 80

W
waiting function, see function, waiting
wchar_t, see type, wchar_t

keyword, 3, 21, 24, 27, 77, 78, 81, 100, 101,
103, 136, 184, 185, 211, 217, 477, 478,
484, 509, 510, 685, 806, 807, 817, 871,
1480, 1575, 1596, 1611, 1614, 1688, 1705,
1712, 1714, 1716, 1753, 1755, 1813, 1821,
1893, 1914, 1915, 1927, 1934, 1954, 1958

weakly parallel forward progress guarantees, 89
well-formed program, see program, well-formed
while

keyword, 21, 163, 164, 167, 168, 1891
whitespace, 17, 18
wide literal encoding, see encoding, wide literal
wide-character, 24

null, 16
wide-character set

execution, 484
width, 76, 290

of integer-class type, 1071
padding, 798

worse conversion sequence, see conversion
sequence, worse

X
xor

keyword, 18, 21, 1883, 1935
xor_eq

keyword, 18, 21, 1883, 1935
xvalue, 95

Y
Ym

ℓ (spherical associated Legendre functions),
1478

yield-expression, 152, 1890

Z
zero

division by undefined, 94
remainder undefined, 94
undefined division by, 145

zero-initialization, 210
zeta functions ζ, 1478
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Index of grammar productions
The first bold page number for each entry is the page in the general text where the grammar production is
defined. The second bold page number is the corresponding page in the Grammar summary (Annex A).
Other page numbers refer to pages where the grammar production is mentioned in the general text.

abstract-declarator , 192, 194, 194, 202, 206, 1894
abstract-pack-declarator , 194, 1894
access-specifier , 296, 296, 306, 307, 1899
additive-expression, 145, 1889
alias-declaration, 33, 41, 173, 178, 179, 203, 259,

262, 272, 364, 384, 403, 1892
alignment-specifier , 71, 247, 248, 249, 389, 1897,

1932
and-expression, 149, 1890
asm-declaration, 156, 173, 245, 245, 1896
assignment-expression, 122, 153, 174, 190, 206,

214, 217, 231, 290, 314, 337, 1890
assignment-operator , 153, 1890
attribute, 247, 248, 389, 1897
attribute-argument-clause, 248, 248–254, 1897
attribute-declaration, 33, 173, 175, 1892
attribute-list, 247, 248, 389, 1897
attribute-namespace, 248, 248, 1897
attribute-scoped-token, 248, 248, 1897
attribute-specifier , 247, 248, 249, 1897, 1932
attribute-specifier-seq, 43, 108, 110, 138, 163, 164,

167, 174, 175, 178, 182, 186, 195,
197–202, 225, 232, 233, 236–238, 245,
247, 248, 252, 256, 260, 267, 273, 277,
283, 287, 290, 296, 404, 424, 452, 1896

attribute-token, 20, 247, 248, 250–254, 464, 502,
1897

attribute-using-prefix , 247, 248, 1897
await-expression, 84, 134, 134, 135, 156, 228, 229,

554, 1889

balanced-token, 248, 1897
balanced-token-seq, 248, 248, 249, 1897
base-clause, 268, 296, 419, 1898
base-specifier , 45, 54, 296, 296, 297, 305, 309, 389,

1899
base-specifier-list, 283, 296, 297, 305, 317, 319,

326, 339, 389, 391, 1899
basic-c-char , 23, 25, 1884
basic-s-char , 27, 28, 1885
binary-digit, 22, 22, 1883
binary-exponent-part, 26, 26, 1885
binary-literal , 22, 22, 1883
block-declaration, 32, 173, 1892
boolean-literal , 29, 1886
brace-or-equal-initializer , 82, 190, 209, 209, 211,

214, 272, 273, 278, 290, 413, 1895
braced-init-list, 71, 82, 124, 138, 153, 162, 170, 190,

209, 211, 213, 215, 220, 221, 224, 314,

316, 318, 338, 339, 410, 414, 1895, 1904,
1916

c-char , 23, 24, 1884
c-char-sequence, 13, 16, 23, 24, 25, 1884
capture, 113, 114, 389, 1887
capture-default, 36, 113, 114–116, 1887, 1910,

1937
capture-list, 113, 389, 1887
cast-expression, 118, 134, 142, 143, 143, 144, 162,

291, 292, 358, 389, 390, 415, 1889
character-literal , 16, 23, 24, 25, 464, 469, 471,

1581, 1884, 1919, 1926
class-head , 41, 249, 267, 267, 1898
class-head-name, 43, 44, 107, 267, 267, 268, 1898
class-key , 56, 174, 186, 267, 267–269, 293, 307,

385, 1898
class-name, 12, 44, 174, 179, 186, 267, 267, 270,

271, 283, 1898
class-or-decltype, 52, 268, 296, 296, 315, 339, 406,

1899
class-specifier , 32, 41, 44, 45, 60, 174, 183, 267,

267, 273, 276, 1898
class-virt-specifier , 267, 268, 660, 1898
compare-expression, 147, 1889
compound-requirement, 120, 121, 1888
compound-statement, 42, 43, 83, 91, 106, 107, 113,

117, 134, 160, 163, 164, 164, 166, 167,
170, 278, 316, 317, 323, 422, 452–455,
457, 1891

concept-definition, 33, 42, 404, 404, 1900
concept-name, 42, 59, 261, 366, 372, 404, 404,

1900
condition, 32, 163, 163, 165–168, 211, 453, 1890
conditional-escape-sequence, 24, 25, 29, 1885
conditional-escape-sequence-char , 24, 1885
conditional-expression, 4, 150, 150, 156, 1890
conditionally-supported-directive, 461, 462, 469,

1902
constant-expression, 3, 83, 138, 154, 154, 161, 166,

175, 178, 200, 233, 249, 272, 290, 331,
457, 481, 1890

constraint-expression, 42, 105, 121, 193, 365, 366,
372, 378, 380, 380, 381, 399, 404, 407,
481, 1900

constraint-logical-and-expression, 364, 1899
constraint-logical-or-expression, 193, 364, 365,

1899
control-line, 461, 467, 1901
conversion-declarator , 287, 1898
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conversion-function-id , 32, 45, 46, 48, 105, 188,
287, 287, 288, 331, 369, 410, 412, 413,
441, 1898, 1911

conversion-type-id , 48, 287, 287, 288, 333, 406,
410, 412, 441, 1898

coroutine-return-statement, 170, 228, 1891
ctor-initializer , 107, 224, 226, 278, 315, 315, 316,

318, 453, 454, 1899
cv-qualifier , 81, 143, 152, 174, 176, 183, 193,

197–199, 202, 231, 273, 276, 360, 367,
456, 485, 1894

cv-qualifier-seq, 104, 128, 145, 183, 193, 197,
199–204, 226, 287, 333, 1894

d-char , 17, 27, 1886
d-char-sequence, 27, 27, 1885, 1886
decimal-floating-point-literal , 25, 26, 1885
decimal-literal , 22, 22, 23, 1883
decl-specifier , 163, 169, 174, 175, 175, 176, 178,

184, 188, 191, 192, 277, 283, 287, 406,
1892, 1911

decl-specifier-seq, 81, 163, 169, 174, 175, 175, 176,
178, 182, 183, 188, 191, 192, 197, 225,
231, 233, 273, 277, 283, 287, 310, 406,
1892

declaration, 33, 172, 173, 179, 182, 195, 236, 260,
262, 272, 309, 364, 365, 403, 424–426,
1891

declaration-seq, 12, 33, 173, 257, 258, 260–262,
264, 416, 1891

declaration-statement, 134, 171, 171, 1891
declarator , 32, 33, 43, 48, 81, 104, 163, 172, 174,

178, 188, 191, 192, 193, 195–197, 206,
225, 272, 277, 283, 287, 406, 424, 1893

declarator-id , 43, 44, 48, 54, 105, 107, 114, 174,
193, 195–202, 205, 206, 231, 250, 257,
272, 283, 287, 326, 356, 362, 365, 370,
406, 438, 442, 446, 449, 1894, 1911

decltype-specifier , 52, 71, 96, 105, 107, 111, 134,
185, 186, 187, 198, 199, 262, 285, 383,
443, 1893

deduction-guide, 33, 43, 173, 271, 338, 340, 341,
345, 364, 385, 386, 1900

defined-macro-expression, 463, 463, 464, 1902
defining-type-id , 59, 179, 184, 193, 339, 340, 403,

406, 1894
defining-type-specifier , 60, 174, 176, 178, 182, 182,

183, 287, 1893
defining-type-specifier-seq, 179, 182, 182, 1893
delete-expression, 35, 64, 65, 68, 69, 139, 141,

141–143, 156, 284, 285, 291, 292, 528,
530, 1889

designated-initializer-clause, 209, 211, 213, 214,
220, 455, 1895

designated-initializer-list, 209, 213, 220, 221, 339,
349, 1895

designator , 209, 213, 221, 1895
digit, 20, 22, 26, 256, 466, 500, 1882, 1918
digit-sequence, 26, 26, 1885

directory-separator , 1712, 1712–1714, 1718, 1719,
1722, 1723

elaborated-type-specifier , 32–34, 39, 42, 52, 54, 56,
174, 179, 185, 185, 186, 249, 257, 267,
270, 271, 392, 406, 408, 424, 1893

elif-group, 461, 1901
elif-groups, 461, 1901
else-group, 461, 1901
empty-declaration, 33, 173, 175, 272, 1892
enclosing-namespace-specifier , 236, 237, 1896
encoding-prefix , 14, 16, 23, 24, 25, 28, 29, 362,

1884, 1905, 1927
endif-line, 461, 1901
enum-base, 232, 233, 234, 1895
enum-head , 41, 232, 232, 1895
enum-head-name, 43, 44, 107, 232, 233, 1895
enum-key , 232, 233, 1895
enum-name, 174, 186, 232, 232, 1895
enum-specifier , 32, 41, 44, 174, 183, 232, 233–235,

272, 273, 1895
enumerator , 174, 232, 233, 1896
enumerator-definition, 32, 41, 232, 233, 1896
enumerator-list, 44, 232, 233, 234, 419, 1896
equality-expression, 148, 1889
escape-sequence, 24, 1884
exception-declaration, 32, 37, 249, 323, 324, 452,

452, 454–457, 1901
exclusive-or-expression, 150, 1890
explicit-instantiation, 175, 177, 195, 424, 425, 1900
explicit-specialization, 175, 186, 195, 426, 426,

1900
explicit-specifier , 178, 178, 197, 277, 331, 340, 341,

435, 1892
exponent-part, 26, 26, 1885
export-declaration, 235, 257, 257, 258, 260, 365,

426, 1897
export-keyword , 17, 18, 20, 256, 257, 467, 1883
expr-or-braced-init-list, 170, 209, 1895
expression, 21, 73, 97, 120, 121, 123, 128, 137, 138,

154, 163, 166, 168, 170, 190, 323, 379,
381, 383, 413–415, 443, 481, 669, 1890

expression-list, 73, 82, 122, 122–125, 140, 190,
211–213, 314, 316, 318, 332, 337–339,
391, 410, 1888

expression-statement, 164, 172, 1891

fallback-separator , 1713
filename, 1709, 1712, 1713, 1720, 1722, 1723
floating-point-literal , 18, 19, 25, 26, 1501, 1885
floating-point-suffix , 26, 26, 1885
fold-expression, 118, 389, 390, 414, 1887
fold-operator , 118, 118, 390, 1887
for-range-declaration, 32, 42, 167, 167, 169, 1891
for-range-initializer , 42, 74, 167, 168, 169, 221,

1891, 1905
fractional-constant, 25, 26, 1885
function-body , 33, 42, 43, 60, 113, 134, 170, 225,

225–229, 326, 455, 1895
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function-definition, 33, 43, 104, 173, 174, 178, 225,
225, 326, 406, 1895

function-specifier , 178, 178, 1892
function-try-block, 43, 107, 123, 452, 452, 453,

455–457, 556, 1900

global-module-fragment, 257, 261, 261, 490, 1897
group, 461, 463, 467, 1901
group-part, 461, 1901

h-char , 19, 1882
h-char-sequence, 13, 19, 19, 1882
h-pp-tokens, 463, 1902
h-preprocessing-token, 463, 1902
handler , 39, 42, 43, 134, 163, 323, 452, 453,

455–457, 1900
handler-seq, 452, 453, 1900
has-attribute-expression, 463, 463, 464, 1902
has-include-expression, 17, 463, 463, 464, 1902
header-name, 13, 17, 19, 19, 260, 462, 466, 467,

1882, 1909
header-name-tokens, 463, 467, 1902
hex-quad , 16, 16, 1881
hexadecimal-digit, 16, 22, 22, 25, 26, 28, 1884
hexadecimal-digit-sequence, 22, 26, 1883
hexadecimal-escape-sequence, 24, 25, 28, 1884
hexadecimal-floating-point-literal , 25, 26, 1885,

1916
hexadecimal-fractional-constant, 25, 26, 1885
hexadecimal-literal , 22, 22, 1883
hexadecimal-prefix , 22, 1883

id-expression, 3, 35, 52, 59, 95, 97, 104, 104–108,
115, 117, 122, 125, 155, 157, 160, 186,
195, 196, 208, 231, 232, 261, 275, 277,
283, 287, 332, 355, 367, 376, 377, 381,
390, 413, 414, 535, 559, 1886, 1905

identifier , 19, 20, 32, 41, 42, 52, 56, 105–107, 114,
117, 164, 174, 178, 185, 186, 195, 213,
221, 231, 233, 236–238, 248, 256, 267,
268, 270, 271, 290, 362, 366, 369, 370,
386, 389, 403–405, 411, 413, 462, 465,
467, 1882, 1960

identifier-continue, 19, 1882, 1960
identifier-list, 12, 42, 174, 231, 232, 462, 469, 1902
identifier-start, 19, 1882, 1960
if-group, 461, 1901
if-section, 461, 1901
import-keyword , 17, 18, 20, 467, 1883
inclusive-or-expression, 150, 1890
init-capture, 32, 82, 106, 113, 114, 116, 118, 389,

390, 1887
init-declarator , 32, 43, 83, 168, 171, 174, 176, 188,

192, 192, 424, 1893
init-declarator-list, 174, 176, 183, 188, 191, 192,

192, 365, 424, 1893
init-statement, 134, 163, 163–165, 167, 168, 1890

initializer , 33, 60, 82, 83, 114, 116–118, 134, 174,
188, 199, 209, 209–211, 213, 231, 233,
289, 290, 314, 337, 389, 424, 1895

initializer-clause, 82, 122, 140, 190, 206, 207, 209,
213–217, 220, 224, 290, 389, 1895, 1904

initializer-list, 209, 213, 215–217, 220, 222, 224,
314, 339, 389, 1895

integer-literal , 18, 19, 21, 22, 23, 29, 464, 1501,
1883

integer-suffix , 22, 23, 1884
iteration-statement, 163, 167, 167, 169, 1891

jump-statement, 169, 1891

keyword , 20, 1883

label , 164, 164, 1890
label-seq, 164, 1891
labeled-statement, 163, 164, 164, 1891
lambda-capture, 109–111, 113, 113, 114, 1887
lambda-declarator , 43, 108, 109, 110, 114, 203,

206, 406, 1887
lambda-expression, 36–39, 43, 59, 60, 82, 83, 104,

106, 107, 108, 108–111, 113–118, 141,
155, 163, 179, 188, 262, 365, 398, 403,
413, 435, 455, 1887, 1903, 1931, 1937

lambda-introducer , 43, 108, 114, 141, 1887
lambda-specifier , 108, 109, 1887
lambda-specifier-seq, 108, 109, 1887
linkage-specification, 33, 59, 90, 173, 177, 245, 245,

247, 257, 260, 1896, 1904
literal , 21, 29, 30, 103, 1883
literal-operator-id , 29, 32, 105, 362, 362, 382,

1899, 1939
logical-and-expression, 150, 1890
logical-or-expression, 150, 1890
long-long-suffix , 22, 1884
long-suffix , 22, 1884
lparen, 462, 1902

mem-initializer , 83, 215, 221, 315, 315–319, 322,
389, 455, 1899

mem-initializer-id , 315, 315, 316, 389, 1899
mem-initializer-list, 315, 315, 316, 389, 1899
member-declaration, 32, 186, 225, 233, 241, 242,

244, 271, 271–273, 277, 283, 287, 295,
406, 1898

member-declarator , 32, 43, 104, 192, 203, 271, 272,
273, 290, 414, 1898

member-declarator-list, 176, 183, 191, 271, 273,
1898

member-specification, 44, 271, 271, 272, 277, 283,
287, 289, 295, 305, 310, 326, 419, 1898,
1903

module-declaration, 44, 256, 256, 257, 260, 261,
1897

module-file, 461, 467, 1901
module-import-declaration, 44, 45, 245, 257, 258,

260, 260, 261, 1897
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module-keyword , 17, 18, 20, 467, 1883
module-name, 256, 256, 260, 1897
module-name-qualifier , 256, 1897
module-partition, 256, 256, 257, 260, 1897
multiplicative-expression, 145, 1889

n-char , 14, 1881
n-char-sequence, 16, 16, 1881
name-declaration, 32, 173, 257, 1891
named-namespace-definition, 236, 236, 1896
named-universal-character , 16, 16, 1881
namespace-alias, 238, 238, 1896
namespace-alias-definition, 57, 238, 238, 262, 1896
namespace-body , 43, 236, 236, 237, 1896
namespace-definition, 42, 43, 173, 235, 236, 236,

257, 258, 260, 262, 1896
namespace-name, 44, 52, 57, 107, 236, 236, 238,

261, 500, 1896
nested-name-specifier , 48, 52–54, 57, 59, 107, 107,

184–186, 199, 233, 240–242, 257, 267,
283, 296, 308, 312, 366, 369, 370, 392,
405, 406, 436, 443, 1887

nested-namespace-definition, 236, 237, 1896
nested-requirement, 120, 121, 121, 1888
new-declarator , 137, 137, 1889
new-expression, 35, 37, 62, 68, 69, 85, 137,

137–142, 156, 188, 191, 220, 228, 284,
285, 294, 453, 455, 458, 527–531, 1390,
1889, 1916

new-initializer , 74, 137, 137, 138, 140, 141, 211,
1889

new-line, 462, 467, 1902
new-placement, 137, 140, 141, 1889
new-type-id , 81, 137, 137, 138, 188, 191, 406, 413,

1889
nodeclspec-function-declaration, 43, 173, 174, 175,

1892
noexcept-expression, 137, 137, 1889
noexcept-specifier , 110, 230, 272, 284, 292, 326,

383, 384, 408, 415, 420, 423, 435, 445,
447, 457, 457–459, 1901

nondigit, 19, 466, 1882
nonzero-digit, 22, 1883
noptr-abstract-declarator , 194, 1894
noptr-abstract-pack-declarator , 194, 1894
noptr-declarator , 43, 193, 1894
noptr-new-declarator , 137, 138, 1889
numeric-escape-sequence, 24, 24, 25, 28, 1884

octal-digit, 22, 22, 25, 28, 1883
octal-escape-sequence, 24, 25, 28, 1884
octal-literal , 22, 22, 1883
opaque-enum-declaration, 33, 41, 232, 232, 233,

272, 1895
operator , 357, 1899
operator-function-id , 32, 105, 356, 357, 357, 382,

1899
operator-or-punctuator , 21, 21, 1883

parameter-declaration, 32, 33, 43, 178, 188, 191,
202, 202, 203, 205–207, 228, 366, 369,
389, 406, 446, 1895

parameter-declaration-clause, 39, 43, 106, 107, 109,
110, 114, 119, 195, 201, 202, 202, 205,
206, 228, 326, 363, 386, 1894

parameter-declaration-list, 202, 203, 438, 444, 1894
parameters-and-qualifiers, 193, 1894
pathname, 1712
placeholder-type-specifier , 184, 185, 187, 187, 188,

190, 191, 205, 1893
pm-expression, 144, 144, 1889
pointer-literal , 29, 1886
postfix-expression, 49, 108, 122, 122, 123, 125, 155,

156, 275, 332, 333, 359, 410, 458, 535,
761, 1085, 1273, 1888

pp-global-module-fragment, 461, 463, 1901
pp-import, 463, 467, 467, 1902
pp-module, 466, 466, 1902
pp-number , 19, 464, 1882, 1916, 1919
pp-private-module-fragment, 461, 1901
pp-tokens, 462, 463, 464, 467, 470, 477, 1902
preferred-separator , 1712, 1712, 1713, 1717–1719
preprocessing-file, 461, 1901
preprocessing-op-or-punc, 20, 1883
preprocessing-operator , 20, 1883
preprocessing-token, 17, 18, 20, 463, 1882, 1902
primary-expression, 103, 104, 332, 1886
private-module-fragment, 37, 44, 57, 60, 188, 257,

260, 263, 263–265, 416, 1897
ptr-abstract-declarator , 194, 1894
ptr-declarator , 193, 277, 283, 287, 1894
ptr-operator , 48, 193, 199, 1894
pure-specifier , 271, 272, 273, 284, 303, 1898

q-char , 19, 1882
q-char-sequence, 13, 19, 19, 1882
qualified-id , 12, 48, 52, 107, 107, 122, 125, 133,

134, 174, 195, 196, 231, 257, 277, 285,
287, 289, 303, 308, 366, 406, 415, 436,
443, 486, 550, 592, 601, 603, 607, 608,
612, 673, 674, 811, 839, 877, 880, 889,
896, 898, 907, 1003, 1005, 1006, 1020,
1040, 1067–1069, 1101, 1106, 1145, 1496,
1715, 1887

qualified-namespace-specifier , 52, 238, 238, 1896

r-char , 17, 27, 27, 28, 1885
r-char-sequence, 13, 16, 27, 1885
raw-string , 27, 27, 1885
ref-qualifier , 7, 8, 39, 40, 128, 145, 193, 198, 199,

201–204, 226, 231, 276, 287, 300, 330,
353, 360, 400, 1894

relational-expression, 147, 1889
relative-path, 1712, 1713, 1722
replacement-list, 462, 469, 1902
requirement, 119, 119, 120, 1888
requirement-body , 43, 119, 119, 1888
requirement-parameter-list, 43, 119, 119, 406, 1888
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requirement-seq, 119, 1888
requires-clause, 7, 8, 40, 105, 108, 109, 111, 119,

192, 193, 204, 246, 299, 300, 326, 364,
365, 377, 380, 383, 384, 393, 399, 420,
423, 1107, 1150, 1163, 1899, 1909

requires-expression, 119, 119, 120, 559, 560, 1888,
1909

return-type-requirement, 120, 121, 1888
root-directory , 1709, 1712, 1713, 1720, 1723
root-name, 1709, 1712, 1713, 1717, 1720, 1722,

1723

s-char , 26, 27, 28, 1885
s-char-sequence, 13, 16, 26, 1885
selection-statement, 163, 164, 165, 1891
shift-expression, 146, 1889
sign, 26, 26, 1885, 1916
simple-capture, 36, 113, 114, 115, 118, 1887
simple-declaration, 134, 173, 174, 192, 406, 424,

1892
simple-escape-sequence, 24, 25, 28, 1884
simple-escape-sequence-char , 24, 1884
simple-hexadecimal-digit-sequence, 16, 16, 1881
simple-octal-digit-sequence, 24, 1884
simple-requirement, 120, 120, 121, 1888
simple-template-id , 38, 41, 107, 125, 178, 179,

184–186, 257, 262, 267, 271, 296, 338,
340, 365, 369, 369, 371, 372, 374, 386,
392, 394, 396, 405, 407, 413, 418, 424,
428, 439, 448, 1900, 1911

simple-type-specifier , 124, 172, 184, 184–186, 188,
191, 195, 405, 413, 415, 1893

size-suffix , 22, 1884
special-declaration, 173, 1892
statement, 39, 163, 163, 164, 166, 168, 172, 452,

1890
statement-seq, 163, 164, 1891
static_assert-declaration, 10, 33, 173, 175, 272,

295, 407, 481, 1892
storage-class-specifier , 176, 176, 177, 231, 273, 310,

424, 426, 1892, 1916
string-literal , 14, 16, 26, 27–30, 103, 138, 175, 211,

217, 218, 221, 245, 251, 253, 339, 350,
362, 375, 462, 466, 469, 471, 473, 477,
484, 836, 1684, 1885, 1903, 1905, 1921,
1927

template-argument, 30, 50, 203, 305, 366, 368, 369,
370–377, 379, 382, 383, 385, 389, 391,
403, 408, 415, 419, 425, 429, 431–433,
437, 440, 448–450, 1900

template-argument-list, 154, 369, 369, 370, 373,
383, 389, 391, 393, 396, 408, 413, 1900

template-declaration, 33, 39, 44, 173, 175, 179, 186,
195, 272, 309, 364, 364, 365, 403, 409,
1899

template-head , 7, 8, 33, 40, 44, 59, 107, 205, 364,
372, 376, 377, 383, 384, 387, 393, 399,
410, 1899

template-id , 38, 50, 52, 105, 106, 174, 195, 232,
241, 257, 369, 369–372, 374, 379,
382–384, 388, 395, 398, 403, 410, 413,
418, 429, 433, 1900

template-name, 49, 59, 179, 184, 185, 261, 262, 271,
338, 340, 366, 369, 369–372, 382, 385,
386, 390, 392, 403, 408, 409, 1900, 1913

template-parameter , 33, 40, 42, 44, 179, 186, 188,
191, 205, 206, 355, 363, 365, 365–369,
371–377, 379, 383, 399, 402–404, 406,
408–410, 413, 415, 430, 432, 437, 440,
443, 448–450, 1900

template-parameter-list, 6, 40, 44, 109, 114, 205,
206, 363, 364, 364–366, 368, 369, 372,
379, 380, 395, 399, 402, 409, 430, 1899

text-line, 461, 462, 463, 1902
throw-expression, 107, 150, 152, 152, 153, 156, 323,

453, 456, 458, 460, 1890
token, 18, 20, 248, 257, 1882, 1897
trailing-return-type, 104, 109, 111, 188, 193, 202,

205, 406, 1894
translation-unit, 57, 260, 262, 416, 1886
try-block, 107, 163, 323, 452, 452, 453, 556, 1900
type-constraint, 111, 121, 184, 188, 190, 191, 205,

366, 366, 368, 369, 380, 383, 384, 399,
420, 423, 1900

type-id , 3, 81, 100, 122, 128, 136–138, 188, 191,
193, 193, 194, 203, 249, 287, 370, 372,
374, 406, 413–415, 1894

type-name, 52, 53, 56, 105–107, 134, 172, 176, 184,
184–186, 195, 261, 285, 296, 384, 408,
1893, 1922

type-parameter , 32, 186, 203, 205, 366, 366, 369,
389, 406, 410, 449, 1900

type-parameter-key , 366, 366, 1900
type-requirement, 120, 120, 1888
type-specifier , 48, 59, 163, 169, 176, 182, 182–184,

188, 191, 202, 270, 273, 406, 1893
type-specifier-seq, 137, 182, 182, 183, 188, 191,

233, 1893
typedef-name, 12, 32, 33, 40, 44, 45, 50, 78, 79,

174, 176, 178, 178, 179, 186, 187, 198,
199, 203, 251, 253, 305, 366, 383, 390,
406, 475, 482, 485, 486, 524, 546, 548,
658, 671, 673, 678, 705, 825, 840, 1063,
1088, 1097, 1101, 1106, 1156, 1166, 1171,
1184, 1190, 1198, 1209, 1214, 1225, 1235,
1258, 1409, 1562, 1614, 1752, 1753, 1836,
1846, 1892, 1930, 1934

typename-specifier , 52, 124, 183, 405, 405, 406,
413, 481, 1900

ud-suffix , 29, 29, 30, 362, 1886
unary-expression, 133, 285, 358, 414, 1888
unary-operator , 133, 358, 1072, 1888
universal-character-name, 13, 14, 16, 16, 20, 25, 28,

472, 1881
unnamed-namespace-definition, 42, 236, 237, 1896
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unqualified-id , 49, 52, 105, 106, 107, 133, 134, 174,
195, 240, 241, 277, 283, 287, 365, 366,
410, 424, 1886, 1913

unsigned-suffix , 22, 1884
user-defined-character-literal , 29, 30, 1886
user-defined-floating-point-literal , 29, 30, 1886
user-defined-integer-literal , 29, 30, 1886
user-defined-literal , 16, 29, 29, 103, 1886
user-defined-string-literal , 29, 30, 362, 1886
using-declaration, 33, 45, 50, 54, 173, 235, 240,

240–242, 244, 258, 262, 272, 282, 304,
330, 389, 394, 407, 487, 558, 1836, 1896,
1917

using-declarator , 32, 40, 41, 45, 52, 54, 209, 240,
240–244, 258, 304, 370, 389, 404, 406,
412, 1896

using-declarator-list, 240, 1896
using-directive, 33, 41, 48, 54, 57, 173, 186, 237,

238, 238–240, 1896
using-enum-declaration, 33, 235, 235, 1896
using-enum-declarator , 235, 235, 1896

va-opt-replacement, 470, 470, 1902
virt-specifier , 271, 273, 300, 1898
virt-specifier-seq, 225, 271, 273, 1898

yield-expression, 134, 152, 152, 156, 228, 1271,
1890
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Index of library headers
The bold page number for each entry refers to the page where the synopsis of the header is shown.

<algorithm>, 512–515, 1278, 1923
<any>, 512, 730, 1918
<array>, 512, 514, 515, 703, 908, 908, 911, 1119,

1923, 1949, 1950
<assert.h>, 490, 557, 575, 1935
<atomic>, 512, 1803, 1836, 1923, 1958

<barrier>, 512, 1865, 1913
<bit>, 512, 513, 821, 1913
<bitset>, 513, 755

<cassert>, 490, 575, 1935
<cctype>, 868, 1580
<cerrno>, 502, 575, 579, 1948
<cfenv>, 1397, 1398, 1923
<cfloat>, 78, 512, 522, 523
<charconv>, 513, 515, 792, 1913, 1918
<chrono>, 513, 1480, 1923
<cinttypes>, 1751, 1752, 1923
<climits>, 61, 78, 512, 522, 522, 1942
<clocale>, 1610, 1935
<cmath>, 513, 514, 557, 1466, 1472, 1473, 1914
<codecvt>, 1923, 1953
<compare>, 513, 515, 541, 1913
<complex>, 513, 557, 1398, 1398, 1914
<complex.h>, 557, 557, 1934
<concepts>, 513, 560, 1913
<condition_variable>, 1855, 1923
<coroutine>, 513, 549, 550, 550, 1913
<csetjmp>, 502, 554, 555, 1935
<csignal>, 554, 556
<cstdarg>, 202, 502, 554, 555
<cstddef>, 136, 146, 509, 512, 1934–1936
<cstdint>, 77, 523, 523, 1752, 1813, 1821, 1923
<cstdio>, 525, 1614–1616, 1621, 1690, 1750,

1751, 1935
<cstdlib>, 93, 509, 510, 513, 525, 529, 554, 558,

592, 610, 871, 1396, 1447, 1473, 1591,
1934, 1935

<cstring>, 276, 484, 869, 1935, 1942, 1946
<ctime>, 1569, 1569, 1572, 1935
<ctype.h>, 557, 868
<cuchar>, 502, 871, 871, 1923, 1934
<cwchar>, 502, 828, 870, 871, 1934, 1935
<cwctype>, 502, 869

<deque>, 512–514, 908, 909, 1119

<errno.h>, 557, 575
<exception>, 515, 536
<execution>, 513, 790, 791, 1918
<expected>, 513, 735, 1906

<fenv.h>, 557, 1398
<filesystem>, 512, 513, 1705, 1918
<flat_map>, 513, 982, 984, 1906
<flat_set>, 513, 982, 985, 1906
<float.h>, 523, 557
<format>, 513, 794, 1913
<forward_list>, 512–514, 908, 909, 1119, 1923
<fstream>, 1687, 1688, 1748
<functional>, 512–515, 761
<future>, 1867, 1923

<generator>, 513, 1122, 1268, 1906

<initializer_list>, 540, 1923
<inttypes.h>, 557, 1752
<iomanip>, 514, 1640, 1661, 1662
<ios>, 513, 1616
<iosfwd>, 1612, 1614
<iostream>, 1614, 1614, 1615, 1621
<iso646.h>, 488, 557, 557, 1935
<istream>, 512, 1639, 1641
<iterator>, 512–515, 1055, 1119, 1131, 1950

<latch>, 514, 1864, 1913
<limits>, 78, 512, 515, 1939
<limits.h>, 522, 557
<list>, 512–514, 908, 910, 1119
<locale>, 512, 1571, 1572, 1954
<locale.h>, 557, 1610

<map>, 512–515, 939, 939, 1119
<math.h>, 557, 1472
<mdspan>, 514, 1028, 1034
<memory>, 512–515, 592, 592, 1390, 1827, 1951
<memory_resource>, 514, 637, 1918
<mutex>, 514, 1836, 1923

<new>, 69, 488, 513, 514, 526
<numbers>, 514, 1479, 1913
<numeric>, 512–514, 1377

<optional>, 514, 705, 1918
<ostream>, 512, 514, 1639, 1652

<print>, 514, 1640, 1906

<queue>, 512, 513, 982, 983

<random>, 1405, 1923
<ranges>, 514, 703, 1122, 1131, 1913, 1949, 1950
<ratio>, 676, 1923
<regex>, 514, 1119, 1755, 1755, 1923

<scoped_allocator>, 512, 646, 1923
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<semaphore>, 514, 1862, 1913
<set>, 512–514, 939, 940, 1119
<setjmp.h>, 555, 557
<shared_mutex>, 515, 1837, 1921
<signal.h>, 556, 557
<source_location>, 515, 534, 1913
<span>, 515, 1028, 1028, 1119, 1913
<spanstream>, 515, 1680, 1906
<sstream>, 1666, 1666
<stack>, 512, 513, 982, 984
<stacktrace>, 513, 515, 585, 1906
<stdalign.h>, 556, 557, 557, 1935, 1939, 1939
<stdarg.h>, 555, 557
<stdatomic.h>, 515, 557, 1834, 1836, 1906
<stdbool.h>, 556, 557, 557, 1929, 1935, 1939,

1939
<stddef.h>, 509, 510, 557, 1935
<stdexcept>, 572
<stdfloat>, 78, 79, 524, 524
<stdint.h>, 524, 557, 1752
<stdio.h>, 557, 1751
<stdlib.h>, 510, 557, 558
<stop_token>, 514, 1791, 1913
<streambuf>, 1631, 1631
<string>, 512–515, 827, 840, 1119
<string.h>, 557, 869
<string_view>, 512, 513, 515, 830, 1119, 1918
<strstream>, 1940
<syncstream>, 515, 1699, 1700, 1913
<system_error>, 577, 579, 1923

<tgmath.h>, 557, 557, 1934
<thread>, 513, 514, 1795, 1923
<time.h>, 557, 1569
<tuple>, 512–515, 682, 692, 703, 1923, 1949, 1950
<typeindex>, 1923
<type_traits>, 512–515, 651, 1923, 1948
<typeindex>, 789
<typeinfo>, 513, 533

<uchar.h>, 557, 871
<unordered_map>, 512–515, 958, 958, 1119, 1923
<unordered_set>, 512–514, 958, 959, 1119, 1923
<utility>, 492, 512–515, 679, 703, 1923, 1939,

1949, 1950

<valarray>, 1447, 1450
<variant>, 515, 718, 1918, 1950
<vector>, 512–514, 908, 910, 1119
<version>, 512, 512, 514, 1913

<wchar.h>, 557, 871
<wctype.h>, 557, 869
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Index of library names
Constructions whose name appears in italics are for exposition only.

Symbols
_Exit, 509, 525
_IOFBF, 1750
_IOLBF, 1750
_IONBF, 1750
__alignas_is_defined, 1939
__bool_true_false_are_defined, 1939
__cpp_lib_adaptor_iterator_pair_-

constructor, 512
__cpp_lib_addressof_constexpr, 512
__cpp_lib_algorithm_iterator_-

requirements, 512
__cpp_lib_allocate_at_least, 512
__cpp_lib_allocator_traits_is_always_-

equal, 512
__cpp_lib_any, 512
__cpp_lib_apply, 512
__cpp_lib_array_constexpr, 512
__cpp_lib_as_const, 512
__cpp_lib_associative_heterogeneous_-

erasure, 512
__cpp_lib_assume_aligned, 512
__cpp_lib_atomic_flag_test, 512
__cpp_lib_atomic_float, 512
__cpp_lib_atomic_is_always_lock_free, 512
__cpp_lib_atomic_lock_free_type_aliases,

512
__cpp_lib_atomic_ref, 512
__cpp_lib_atomic_shared_ptr, 512
__cpp_lib_atomic_value_initialization, 512
__cpp_lib_atomic_wait, 512
__cpp_lib_barrier, 512
__cpp_lib_bind_back, 512
__cpp_lib_bind_front, 512
__cpp_lib_bit_cast, 512
__cpp_lib_bitops, 512
__cpp_lib_bool_constant, 512
__cpp_lib_bounded_array_traits, 512
__cpp_lib_boyer_moore_searcher, 512
__cpp_lib_byte, 512
__cpp_lib_byteswap, 512
__cpp_lib_char8_t, 512
__cpp_lib_chrono, 513
__cpp_lib_chrono_udls, 513
__cpp_lib_clamp, 513
__cpp_lib_common_reference, 513
__cpp_lib_common_reference_wrapper, 513
__cpp_lib_complex_udls, 513
__cpp_lib_concepts, 513
__cpp_lib_constexpr_algorithms, 513
__cpp_lib_constexpr_bitset, 513

__cpp_lib_constexpr_charconv, 513
__cpp_lib_constexpr_cmath, 513
__cpp_lib_constexpr_complex, 513
__cpp_lib_constexpr_dynamic_alloc, 513
__cpp_lib_constexpr_functional, 513
__cpp_lib_constexpr_iterator, 513
__cpp_lib_constexpr_memory, 513
__cpp_lib_constexpr_numeric, 513
__cpp_lib_constexpr_string, 513
__cpp_lib_constexpr_string_view, 513
__cpp_lib_constexpr_tuple, 513
__cpp_lib_constexpr_typeinfo, 513
__cpp_lib_constexpr_utility, 513
__cpp_lib_constexpr_vector, 513
__cpp_lib_containers_ranges, 513
__cpp_lib_coroutine, 513
__cpp_lib_destroying_delete, 513
__cpp_lib_enable_shared_from_this, 513
__cpp_lib_endian, 513
__cpp_lib_erase_if, 513
__cpp_lib_exchange_function, 513
__cpp_lib_execution, 513
__cpp_lib_expected, 513
__cpp_lib_filesystem, 513
__cpp_lib_flat_map, 513
__cpp_lib_flat_set, 513
__cpp_lib_format, 513
__cpp_lib_format_ranges, 513
__cpp_lib_formatters, 513
__cpp_lib_forward_like, 513
__cpp_lib_gcd_lcm, 513
__cpp_lib_generator, 513
__cpp_lib_generic_associative_lookup, 513
__cpp_lib_generic_unordered_lookup, 513
__cpp_lib_hardware_interference_size, 513
__cpp_lib_has_unique_object_-

representations, 513
__cpp_lib_hypot, 513
__cpp_lib_incomplete_container_elements,

513
__cpp_lib_int_pow2, 513
__cpp_lib_integer_comparison_functions,

513
__cpp_lib_integer_sequence, 513
__cpp_lib_integral_constant_callable, 513
__cpp_lib_interpolate, 513
__cpp_lib_invoke, 513
__cpp_lib_invoke_r, 513
__cpp_lib_ios_noreplace, 513
__cpp_lib_is_aggregate, 513
__cpp_lib_is_constant_evaluated, 513
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__cpp_lib_is_final, 513
__cpp_lib_is_implicit_lifetime, 514
__cpp_lib_is_invocable, 514
__cpp_lib_is_layout_compatible, 514
__cpp_lib_is_nothrow_convertible, 514
__cpp_lib_is_null_pointer, 514
__cpp_lib_is_pointer_interconvertible, 514
__cpp_lib_is_scoped_enum, 514
__cpp_lib_is_swappable, 514
__cpp_lib_jthread, 514
__cpp_lib_latch, 514
__cpp_lib_launder, 514
__cpp_lib_list_remove_return_type, 514
__cpp_lib_logical_traits, 514
__cpp_lib_make_from_tuple, 514
__cpp_lib_make_reverse_iterator, 514
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uniform_int_distribution, 1427
uniform_real_distribution, 1428
weibull_distribution, 1435
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sys_info, 1553

abort, 93, 169, 509, 525, 532, 538
abs, 509, 1466, 1473, 1751

complex, 1402
duration, 1502
valarray, 1459
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complex, 1403
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acosl, 1466
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add_volatile, 669
add_volatile_t, 653
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adjacent_transform
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end, 1233
size, 1233
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end, 1228
size, 1228
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adopt_lock_t, 1844
advance, 1085, 1086
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advance_to

basic_format_context, 810
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align, 602
align_val_t, 526
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allocator, 609
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allocate, 608
allocate_at_least, 608
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pointer, 607
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allocator-aware containers, 879
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destructor, 732
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has_value, 733
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swap, 733, 734
type, 733
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any_cast, 734
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basic_string, 854, 855
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arg, 1404
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complex, 1403
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cbegin, 875
cend, 875
const_iterator, 874
const_reference, 874
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crbegin, 878
crend, 878
data, 913
difference_type, 874
empty, 876
end, 875, 911
fill, 913
get, 914
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operator==, 875
rbegin, 877
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rend, 877
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size, 875, 911, 913
size_type, 874
swap, 875, 913
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arrive
barrier, 1866

arrive_and_drop
barrier, 1866

arrive_and_wait
barrier, 1866
latch, 1865
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as_const, 684
as_rvalue

views, 1164
as_rvalue_view, 1164
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as_writable_bytes, 1034
asctime, 1569
asin, 1466

complex, 1403
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asinf, 1466
asinh, 1466

complex, 1403
asinhf, 1466
asinhl, 1466
asinl, 1466
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basic_string, 855, 856
directory_entry, 1730
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sequence containers, 883
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basic_string, 856
sequence containers, 883
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assoc_laguerref, 1474
assoc_laguerrel, 1474
assoc_legendre, 1474
assoc_legendref, 1474
assoc_legendrel, 1474
assume_aligned, 602
async, 1877
at

basic_stacktrace, 590
basic_string, 853
basic_string_view, 835
flat_map, 1003
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atan, 1466

complex, 1403
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compare_exchange_weak, 1819
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load, 1818
notify_all, 1821
notify_one, 1820
operator type , 1818
operator=, 1818
store, 1818
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wait, 1820
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compare_exchange_strong, 1819
compare_exchange_weak, 1819
constructor, 1817, 1818
exchange, 1818
fetch_add, 1824
fetch_sub, 1824
is_always_lock_free, 1818
is_lock_free, 1818
load, 1818
notify_all, 1821
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operator floating-point-type , 1818
operator+=, 1824
operator-=, 1824
operator=, 1818
store, 1818
wait, 1820

atomic<integral-type >, 1821
compare_exchange_strong, 1819
compare_exchange_weak, 1819
constructor, 1817, 1818
exchange, 1818
fetch_add, 1822
fetch_and, 1822
fetch_or, 1822
fetch_sub, 1822
fetch_xor, 1822
is_always_lock_free, 1818
is_lock_free, 1818
load, 1818
notify_all, 1821
notify_one, 1820
operator integral-type , 1818
operator++, 1826
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operator--, 1826
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operator^=, 1823
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store, 1818
wait, 1820
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load, 1828
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store, 1828
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atomic<T*>, 1825, 1826
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constructor, 1817, 1818
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fetch_add, 1826
fetch_sub, 1826
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is_lock_free, 1818
load, 1818
notify_all, 1821
notify_one, 1820
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operator T*, 1818
operator++, 1826
operator+=, 1823, 1824, 1826
operator--, 1826
operator-=, 1823, 1824, 1826
operator=, 1818
store, 1818
wait, 1820

atomic<weak_ptr<T>>, 1829
compare_exchange_strong, 1831
compare_exchange_weak, 1831
constructor, 1830
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is_lock_free, 1818
load, 1830
notify_all, 1832
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store, 1830
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atomic_char32_t, 1807, 1835
ATOMIC_CHAR32_T_LOCK_FREE, 1809
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1819, 1836
shared_ptr, 1952
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shared_ptr, 1952
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1819, 1836

shared_ptr, 1952
atomic_exchange, 1818, 1836

shared_ptr, 1952
atomic_exchange_explicit, 1818, 1836

shared_ptr, 1952
atomic_fetch_add, 1822, 1824, 1826, 1836
atomic_fetch_add_explicit, 1822, 1824, 1826,

1836
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atomic_fetch_and_explicit, 1822, 1836
atomic_fetch_or, 1822, 1836
atomic_fetch_or_explicit, 1822, 1836
atomic_fetch_sub, 1822, 1824, 1826, 1836
atomic_fetch_sub_explicit, 1822, 1824, 1826,

1836
atomic_fetch_xor, 1822, 1836
atomic_fetch_xor_explicit, 1822, 1836
atomic_flag, 1835

clear, 1833
constructor, 1832
test, 1832
test_and_set, 1833
wait, 1833

atomic_flag_clear, 1833, 1836
atomic_flag_clear_explicit, 1833, 1836
ATOMIC_FLAG_INIT, 1834
atomic_flag_test, 1832
atomic_flag_test_and_set, 1833, 1836
atomic_flag_test_and_set_explicit, 1833,

1836
atomic_flag_test_explicit, 1832
atomic_flag_wait, 1833
atomic_flag_wait_explicit, 1833
atomic_init, 1959
atomic_int, 1807, 1835
atomic_int16_t, 1807, 1835
atomic_int32_t, 1807, 1835
atomic_int64_t, 1807, 1835
atomic_int8_t, 1807, 1835
atomic_int_fast16_t, 1807, 1835
atomic_int_fast32_t, 1807, 1835
atomic_int_fast64_t, 1807, 1835
atomic_int_fast8_t, 1807, 1835
atomic_int_least16_t, 1807, 1835
atomic_int_least32_t, 1807, 1835
atomic_int_least64_t, 1807, 1835
atomic_int_least8_t, 1807, 1835
ATOMIC_INT_LOCK_FREE, 1809
atomic_intmax_t, 1807, 1835
atomic_intptr_t, 1807, 1835
atomic_is_lock_free, 1818, 1835

shared_ptr, 1951
atomic_llong, 1807, 1835
ATOMIC_LLONG_LOCK_FREE, 1809
atomic_load, 1818, 1835

shared_ptr, 1951
atomic_load_explicit, 1818, 1835

shared_ptr, 1952
atomic_long, 1807, 1835
ATOMIC_LONG_LOCK_FREE, 1809
ATOMIC_POINTER_LOCK_FREE, 1809
atomic_ptrdiff_t, 1807, 1835
atomic_ref, 1810

compare_exchange_strong, 1812
compare_exchange_weak, 1812
constructor, 1811
exchange, 1812
is_always_lock_free, 1811
is_lock_free, 1811
load, 1811
operator type , 1811
operator=, 1811
required_alignment, 1811
store, 1811
value_type, 1810

atomic_ref<floating-point-type >, 1814
compare_exchange_strong, 1812
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compare_exchange_weak, 1812
constructor, 1811
exchange, 1812
fetch_add, 1815
fetch_sub, 1815
is_always_lock_free, 1811
is_lock_free, 1811
load, 1811
operator floating-point-type , 1811
operator+=, 1815
operator-=, 1815
operator=, 1811
required_alignment, 1811
store, 1811

atomic_ref<integral-type >, 1813
compare_exchange_strong, 1812
compare_exchange_weak, 1812
constructor, 1811
exchange, 1812
fetch_add, 1814
fetch_and, 1814
fetch_or, 1814
fetch_sub, 1814
fetch_xor, 1814
is_always_lock_free, 1811
is_lock_free, 1811
load, 1811
operator integral-type , 1811
operator++, 1816
operator+=, 1814
operator--, 1816
operator-=, 1814
operator=, 1811
operator&=, 1814
operator^=, 1814
operator|=, 1814
required_alignment, 1811
store, 1811

atomic_ref<T*>, 1815
compare_exchange_strong, 1812
compare_exchange_weak, 1812
constructor, 1811
exchange, 1812
fetch_add, 1816
fetch_sub, 1816
is_always_lock_free, 1811
is_lock_free, 1811
load, 1811
operator T*, 1811
operator++, 1816
operator+=, 1816
operator--, 1816
operator-=, 1816
operator=, 1811
required_alignment, 1811
store, 1811

atomic_ref<T>
notify_all, 1813
notify_one, 1812

wait, 1812
atomic_schar, 1807, 1835
atomic_short, 1807, 1835
ATOMIC_SHORT_LOCK_FREE, 1809
atomic_signal_fence, 1834, 1836
atomic_signed_lock_free, 1807
atomic_size_t, 1807, 1835
atomic_store, 1818, 1835

shared_ptr, 1952
atomic_store_explicit, 1818, 1835

shared_ptr, 1952
atomic_thread_fence, 1834, 1836
atomic_uchar, 1807, 1835
atomic_uint, 1807, 1835
atomic_uint16_t, 1807, 1835
atomic_uint32_t, 1807, 1835
atomic_uint64_t, 1807, 1835
atomic_uint8_t, 1807, 1835
atomic_uint_fast16_t, 1807, 1835
atomic_uint_fast32_t, 1807, 1835
atomic_uint_fast64_t, 1807, 1835
atomic_uint_fast8_t, 1807, 1835
atomic_uint_least16_t, 1807, 1835
atomic_uint_least32_t, 1807, 1835
atomic_uint_least64_t, 1807, 1835
atomic_uint_least8_t, 1807, 1835
atomic_uintmax_t, 1807, 1835
atomic_uintptr_t, 1807, 1835
atomic_ullong, 1807, 1835
atomic_ulong, 1807, 1835
atomic_unsigned_lock_free, 1807
atomic_ushort, 1807, 1835
ATOMIC_VAR_INIT, 1959
atomic_wchar_t, 1807, 1835
ATOMIC_WCHAR_T_LOCK_FREE, 1809
atto, 677
auto_ptr

zombie, 501
auto_ptr_ref

zombie, 501
await_ready

suspend_always, 554
suspend_never, 554

await_resume
suspend_always, 554
suspend_never, 554

await_suspend
suspend_always, 554
suspend_never, 554

awk
syntax_option_type, 1759, 1760
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cauchy_distribution, 1440
extreme_value_distribution, 1436
uniform_int_distribution, 1427
uniform_real_distribution, 1428
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weibull_distribution, 1435
back

basic_string, 853
basic_string_view, 835
span, 1033
view_interface, 1140

back_insert_iterator, 1092
constructor, 1092
operator*, 1092
operator++, 1092
operator=, 1092

back_inserter, 1093
bad

basic_ios, 1629
bad_alloc, 140, 527, 531, 532

constructor, 531
what, 531

bad_any_cast, 730
what, 730

bad_array_new_length, 531
constructor, 531
what, 531

bad_cast, 127, 533, 534
constructor, 534
what, 534

bad_exception, 538
constructor, 538
what, 538

bad_expected_access, 737
constructor, 737
error, 737
what, 737, 738

bad_function_call, 779
what, 779

bad_optional_access
what, 716

bad_typeid, 128, 533, 534
constructor, 534
what, 534

bad_variant_access, 729
what, 729

bad_weak_ptr, 619
what, 619

barrier
arrive, 1866
arrive_and_drop, 1866
arrive_and_wait, 1866
constructor, 1866
max, 1866
wait, 1866

base
basic_const_iterator, 1097
common_view, 1203
counted_iterator, 1111
drop_view, 1179
drop_while_view, 1181
elements_view, 1207
elements_view::iterator , 1209
elements_view::sentinel , 1211

enumerate_view::iterator , 1214
enumerate_view::sentinel , 1216
filter_view, 1165
filter_view::iterator , 1167
filter_view::sentinel , 1168
join_view, 1181
lazy_split_view, 1193
lazy_split_view::inner-iterator , 1198
move_iterator, 1101
move_sentinel, 1104
reverse_iterator, 1089
reverse_view, 1204
stride_view::iterator , 1258
take_view, 1174
take_view::sentinel , 1177
take_while_view, 1177
transform_view, 1168
transform_view::iterator , 1171
transform_view::sentinel , 1173

basic
syntax_option_type, 1759, 1760

basic_common_reference, 671, 767
tuple, 704

basic_const_iterator, 1095
base, 1097
constructor, 1097
operator*, 1098
operator+, 1099
operator++, 1098
operator+=, 1098
operator-, 1099
operator--, 1098
operator-=, 1098
operator->, 1098
operator<, 1098, 1099
operator<=, 1098, 1099
operator<=>, 1098, 1099
operator==, 1098
operator>, 1098, 1099
operator>=, 1098, 1099
operator[], 1098

basic_filebuf, 1612, 1688
close, 1690
constructor, 1689
destructor, 1690
imbue, 1693
is_open, 1690
open, 1690
operator=, 1690
overflow, 1692
pbackfail, 1692
seekoff, 1692
seekpos, 1693
setbuf, 1692
showmanyc, 1691
swap, 1690
sync, 1693
uflow, 1692
underflow, 1691
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basic_filebuf<char>, 1687
basic_filebuf<wchar_t>, 1687
basic_format_arg, 816

constructor, 816–817
handle, 817
operator bool, 817

basic_format_arg::handle, 817
constructor, 817
format, 818

basic_format_args
constructor, 819
get, 819

basic_format_context, 810
advance_to, 810
arg, 810
char_type, 810
formatter_type, 810
iterator, 810
locale, 810
out, 810

basic_format_parse_context, 809
advance_to, 809
begin, 809
char_type, 809
check_arg_id, 810
const_iterator, 809
constructor, 809
end, 809
iterator, 809
next_arg_id, 809

basic_format_string, 802
basic_fstream, 1612, 1697

close, 1699
constructor, 1698, 1699
is_open, 1699
open, 1699
rdbuf, 1699
swap, 1699

basic_fstream<char>, 1687
basic_fstream<wchar_t>, 1687
basic_ifstream, 1612, 1693

close, 1695
constructor, 1694, 1695
is_open, 1695
open, 1695
rdbuf, 1695
swap, 1695

basic_ifstream<char>, 1687
basic_ifstream<wchar_t>, 1687
basic_ios, 1612, 1625

bad, 1629
clear, 1628
constructor, 1626
copyfmt, 1627
destructor, 1626
eof, 1628
exceptions, 1629
fail, 1628
fill, 1627

good, 1628
imbue, 1627
init, 1626, 1642
move, 1627
narrow, 1627
operator bool, 1628
operator!, 1628
rdbuf, 1626, 1627
rdstate, 1628
set_rdbuf, 1628
setstate, 1628
swap, 1628
tie, 1626
widen, 1627

basic_ios<char>, 1617
basic_ios<wchar_t>, 1617
basic_iostream, 1651

constructor, 1651
destructor, 1651
operator=, 1652
swap, 1652

basic_ispanstream, 1683
constructor, 1684
rdbuf, 1684
span, 1685
swap, 1684

basic_istream, 1612, 1641
constructor, 1642
destructor, 1643
gcount, 1647
get, 1647, 1648
getline, 1648, 1649
ignore, 1649
operator=, 1643
operator>>, 1644–1646, 1651
peek, 1649
putback, 1649
read, 1649
readsome, 1649
seekg, 1650
sentry, 1643
swap, 1643
sync, 1650
tellg, 1650
unget, 1650

basic_istream::sentry, 1643
constructor, 1643
destructor, 1644
operator bool, 1644

basic_istream<char>, 1639
basic_istream<wchar_t>, 1639
basic_istream_view, 1158

constructor, 1158
end, 1158

basic_istream_view::iterator
constructor, 1159
operator*, 1159
operator++, 1159
operator==, 1159
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basic_istringstream, 1612, 1672
constructor, 1674
rdbuf, 1674
str, 1675
swap, 1674
view, 1675

basic_istringstream<char>, 1666
basic_istringstream<wchar_t>, 1666
basic_ofstream, 1612, 1695

close, 1697
constructor, 1696, 1697
is_open, 1697
open, 1697
rdbuf, 1697
swap, 1697

basic_ofstream<char>, 1687
basic_ofstream<wchar_t>, 1687
basic_ospanstream, 1685

constructor, 1685
rdbuf, 1686
span, 1686
swap, 1686

basic_ostream, 1612, 1652, 1770
constructor, 1654
destructor, 1654
flush, 1660
init, 1654
operator<<, 1656–1658, 1660
operator=, 1654
put, 1659
seekp, 1655
sentry, 1654
swap, 1654
tellp, 1655
write, 1659

basic_ostream::sentry, 1654
constructor, 1655
destructor, 1655
operator bool, 1655

basic_ostream<char>, 1640
basic_ostream<wchar_t>, 1640
basic_ostringstream, 1612, 1675

constructor, 1676, 1677
rdbuf, 1677
str, 1677
swap, 1677
view, 1677

basic_ostringstream<char>, 1666
basic_ostringstream<wchar_t>, 1666
basic_osyncstream, 1612, 1702

constructor, 1703
set_emit_on_sync, 1703, 1704

basic_regex, 1755, 1764, 1765, 1785
assign, 1767, 1768
constructor, 1766, 1767
flag_type, 1768
getloc, 1768
imbue, 1768
mark_count, 1768

operator=, 1767
swap, 1768

basic_spanbuf, 1681
constructor, 1682
operator=, 1682
seekoff, 1683
seekpos, 1683
setbuf, 1683
span, 1682
swap, 1682

basic_spanstream, 1686
constructor, 1687
rdbuf, 1687
span, 1687
swap, 1687

basic_stacktrace, 587
at, 590
begin, 589
cbegin, 589
cend, 589
const_iterator, 589
constructor, 589
crbegin, 589
crend, 590
current, 588, 589
empty, 590
end, 589
get_allocator, 589
max_size, 590
operator<<, 591
operator<=>, 590
operator=, 589
operator==, 590
operator[], 590
rbegin, 589
rend, 590
size, 590
swap, 590
to_string, 590

basic_streambuf, 1612, 1632
constructor, 1633, 1634
destructor, 1634
eback, 1636
egptr, 1636
epptr, 1636
gbump, 1636
getloc, 1634
gptr, 1636
imbue, 1636
in_avail, 1634
operator=, 1635
overflow, 1638
pbackfail, 1638
pbase, 1636
pbump, 1636
pptr, 1636
pubimbue, 1634
pubseekoff, 1634
pubseekpos, 1634
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pubsetbuf, 1634
pubsync, 1634
sbumpc, 1635
seekoff, 1636
seekpos, 1637
setbuf, 1636, 1672
setg, 1636
setp, 1636
sgetc, 1635
sgetn, 1635
showmanyc, 1637, 1691
snextc, 1635
sputbackc, 1635
sputc, 1635
sputn, 1635
sungetc, 1635
swap, 1635
sync, 1637
uflow, 1638
underflow, 1637
xsgetn, 1637
xsputn, 1638

basic_streambuf<char>, 1631
basic_streambuf<wchar_t>, 1631
basic_string, 843, 863, 1666, 1953

allocator_type, 843
append, 854, 855
append_range, 855
assign, 855, 856
assign_range, 856
at, 853
back, 853
begin, 851
c_str, 860
capacity, 852
cbegin, 851
cend, 851
clear, 853
compare, 861, 862
const_iterator, 843
const_pointer, 843
const_reference, 843
const_reverse_iterator, 843
constructor, 849, 850
contains, 862
copy, 860
crbegin, 851
crend, 852
data, 860
difference_type, 843
empty, 853
end, 851
ends_with, 862
erase, 857, 858, 866
erase_if, 866
find, 860, 861
find_first_not_of, 860, 861
find_first_of, 860, 861
find_last_not_of, 860, 861

find_last_of, 860, 861
front, 853
get_allocator, 860
getline, 865
hash, 867
insert, 856, 857
insert_range, 857
iterator, 843
length, 852
max_size, 852
operator basic_string_view, 860
operator+, 863, 864
operator+=, 853, 854
operator<<, 865
operator=, 851
operator>>, 865
operator[], 853
pointer, 843
pop_back, 858
push_back, 855
rbegin, 851
reference, 843
rend, 852
replace, 858–860
replace_with_range, 860
reserve, 852, 1953
resize, 852
resize_and_overwrite, 852
reverse_iterator, 843
rfind, 860, 861
shrink_to_fit, 853
size, 852
size_type, 843
starts_with, 862
substr, 861
swap, 860, 864
traits_type, 843
value_type, 843

basic_string_view, 831
at, 835
back, 835
begin, 835
cbegin, 835
cend, 835
compare, 836, 837
const_iterator, 831, 834
const_pointer, 831
const_reference, 831
const_reverse_iterator, 831
constructor, 833, 834
contains, 837
copy, 836
crbegin, 835
crend, 835
data, 836
difference_type, 831
empty, 835
end, 835
ends_with, 837
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find, 837
find_first_not_of, 838
find_first_of, 838
find_last_not_of, 838
find_last_of, 838
front, 835
iterator, 831
length, 835
max_size, 835
operator<<, 839
operator<=>, 839
operator==, 839
operator[], 835
pointer, 831
rbegin, 835
reference, 831
remove_prefix, 836
remove_suffix, 836
rend, 835
reverse_iterator, 831
rfind, 838
size, 835
size_type, 831
starts_with, 837
substr, 836
swap, 836
traits_type, 831
value_type, 831

basic_stringbuf, 1612, 1667
constructor, 1668, 1669
get_allocator, 1670
operator=, 1669
overflow, 1671
pbackfail, 1671
seekoff, 1672
seekpos, 1672
str, 1670, 1671
swap, 1669
underflow, 1671
view, 1670

basic_stringbuf<char>, 1666
basic_stringbuf<wchar_t>, 1666
basic_stringstream, 1612, 1677

constructor, 1679
rdbuf, 1679
str, 1680
swap, 1679
view, 1680

basic_stringstream<char>, 1666
basic_stringstream<wchar_t>, 1666
basic_syncbuf, 1612, 1700

constructor, 1700, 1701
destructor, 1701
emit, 1701
get_allocator, 1702
get_wrapped, 1702
operator=, 1701
set_emit_on_sync, 1702
swap, 1701, 1702

sync, 1702
before

type_info, 533
before_begin

forward_list, 921
begin, 540, 1131

adjacent_transform_view, 1233
adjacent_view, 1228
array, 911
basic_format_parse_context, 809
basic_stacktrace, 589
basic_string, 851
basic_string_view, 835
chunk_view, 1238, 1242
common_view, 1203
containers, 875
directory_iterator, 1734
drop_view, 1180
drop_while_view, 1181
elements_view, 1207
enumerate_view, 1212
filter_view, 1166
generator, 1269
initializer_list, 541
iota_view, 1150
join_view, 1181
lazy_split_view, 1193
lazy_split_-

view::outer-iterator ::value_type,
1197

match_results, 1774
path, 1723
recursive_directory_iterator, 1737
repeat_view, 1155
reverse_view, 1205
single_view, 1147
slide_view, 1247
span, 1033
subrange, 1142
sys_info, 1552
take_view, 1174
take_while_view, 1177
transform_view, 1169
tzdb_list, 1550
unordered associative containers, 906
valarray, 1466
zip_transform_view, 1223
zip_view, 1217

begin(C&), 1119
begin(initializer_list<E>), 541
begin(T (&)[N]), 1119
bernoulli_distribution, 1428

constructor, 1429
p, 1429
result_type, 1428

beta, 1474
gamma_distribution, 1434

betaf, 1474
betal, 1474
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bidirectional_iterator, 1075
bidirectional_iterator_tag, 1084
bidirectional_range, 1137
big

endian, 824
binary_function

zombie, 501
binary_negate

zombie, 501
binary_search, 1358
bind, 777–778
bind1st

zombie, 501
bind2nd

zombie, 501
bind_back, 776
bind_front, 776
binder1st

zombie, 501
binder2nd

zombie, 501
binomial_distribution, 1429

constructor, 1430
p, 1430
result_type, 1429
t, 1430

bit_and, 775
operator(), 775

bit_and<>, 775
operator(), 775

bit_cast, 821
bit_ceil, 822
bit_floor, 822
bit_not

operator(), 776
bit_not<>, 776

operator(), 776
bit_or, 775

operator(), 775
bit_or<>, 775

operator(), 775
bit_width, 823
bit_xor, 775

operator(), 775
bit_xor<>, 775

operator(), 775
bitset, 755, 756

all, 760
any, 760
constructor, 757, 758
count, 760
flip, 759
none, 760
operator<<, 759, 761
operator<<=, 758
operator==, 760
operator>>, 759, 761
operator>>=, 758
operator[], 759

operator&, 760
operator&=, 758
operator^, 761
operator^=, 758
operator~, 759
operator|, 760
operator|=, 758
reset, 759
set, 759
size, 760
test, 760
to_string, 760
to_ullong, 760
to_ulong, 760

bool_constant, 658
boolalpha, 1629
borrowed_range, 1135
boyer_moore_horspool_searcher, 787

constructor, 787
operator(), 788

boyer_moore_searcher, 786
constructor, 787
operator(), 787

bsearch, 509, 1396
btowc, 870
bucket

unordered associative containers, 906
bucket_count

unordered associative containers, 905
bucket_size

unordered associative containers, 906
BUFSIZ, 1750
byte, 508

operator<<, 511
operator<<=, 511
operator>>, 511
operator>>=, 511
operator&, 511
operator&=, 511
operator^, 512
operator^=, 511
operator~, 512
operator|, 511
operator|=, 511
to_integer, 512

byte_string
wstring_convert, 1955

byteswap, 822

C
c16rtomb, 871
c32rtomb, 871
c8rtomb, 871, 872
c_encoding

weekday, 1524
c_str

basic_string, 860
path, 1719
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cacos
complex, 1403

cacosh
complex, 1403

call_once, 1854
calloc, 509, 610, 1936
canonical, 1738
capacity

basic_string, 852
vector, 934

cartesian_product_view, 1260
casin

complex, 1403
casinh

complex, 1403
catan

complex, 1403
catanh

complex, 1403
category

error_code, 582
error_condition, 583
locale, 1574

cauchy_distribution, 1439
a, 1440
b, 1440
constructor, 1440
result_type, 1439

cbefore_begin
forward_list, 921

cbegin, 1132
basic_stacktrace, 589
basic_string, 851
basic_string_view, 835
containers, 875
tzdb_list, 1550
unordered associative containers, 906

cbegin(const C&), 1120
cbrt, 1466
cbrtf, 1466
cbrtl, 1466
cdata, 1134
ceil, 1466

duration, 1501
time_point, 1505

ceilf, 1466
ceill, 1466
cend, 1132

basic_stacktrace, 589
basic_string, 851
basic_string_view, 835
containers, 875
tzdb_list, 1550
unordered associative containers, 906

cend(const C&), 1120
centi, 677
cerr, 1615
CHAR_BIT, 522
char_class_type

regex_traits, 1762
CHAR_MAX, 522
CHAR_MIN, 522
char_traits, 827–830

char_type, 827
int_type, 827
state_type, 827

char_type
basic_format_context, 810
basic_format_parse_context, 809
char_traits, 827

chars_format, 792
fixed, 792
general, 792
hex, 792
scientific, 792

check_arg_id
basic_format_parse_context, 810

chi_squared_distribution, 1439
constructor, 1439
n, 1439
result_type, 1439

choose, 1480
earliest, 1480
latest, 1480

chrono, 1480
chunk

views, 1238
chunk_by

views, 1252
chunk_by_view

pred, 1253
chunk_view

begin, 1238, 1242
end, 1238, 1242
size, 1238, 1242

chunk_view::inner-iterator, 1241
chunk_view::outer-iterator, 1239
chunk_view::outer-iterator::value_type,

1240
cin, 1615
clamp, 1374
classic

locale, 1578
classic_table

ctype<char>, 1583
clear

atomic_flag, 1833
basic_ios, 1628
basic_string, 853
error_code, 582
error_condition, 583
forward_list, 923
ordered associative containers, 895
path, 1718
sequence containers, 883
unordered associative containers, 905

clearerr, 1750
clock, 1569
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clock_cast, 1516
clock_t, 1569
clock_time_conversion, 1514

operator(), 1514–1516
CLOCKS_PER_SEC, 1569
clog, 1615
close

basic_filebuf, 1690
basic_fstream, 1699
basic_ifstream, 1695
basic_ofstream, 1697
messages, 1609

cmp_equal, 684
cmp_greater, 685
cmp_greater_equal, 685
cmp_less, 684
cmp_less_equal, 685
cmp_not_equal, 684
code

future_error, 1869
system_error, 585

codecvt, 1584
always_noconv, 1585
do_always_noconv, 1587
do_encoding, 1587
do_in, 1585
do_length, 1587
do_max_length, 1587
do_out, 1585
do_unshift, 1586
encoding, 1585
in, 1585
length, 1585
max_length, 1585
out, 1585
unshift, 1585

codecvt_byname, 1587
codecvt_mode, 1953
codecvt_utf16, 1953, 1954
codecvt_utf8, 1953, 1954
codecvt_utf8_utf16, 1953, 1954
collate, 1597

compare, 1597
do_compare, 1597
do_hash, 1598
do_transform, 1598
hash, 1597
syntax_option_type, 1759, 1760, 1786
transform, 1597

collate_byname, 1598
combine

locale, 1577
common

views, 1202
common_comparison_category, 546
common_comparison_category_t, 541
common_iterator, 1105

constructor, 1106
iter_move, 1108

iter_swap, 1108
operator*, 1107
operator++, 1107
operator-, 1108
operator->, 1107
operator=, 1106
operator==, 1108

common_range, 1137
common_reference, 671
common_reference_t, 654
common_reference_with, 563
common_type, 672, 1495, 1499

tuple, 705
common_type_t, 654
common_view, 1203

base, 1203
begin, 1203
constructor, 1203
end, 1203
size, 1203

common_with, 563
comp

map::value_compare, 941
multimap::value_compare, 947

comp_ellint_1, 1474
comp_ellint_1f, 1474
comp_ellint_1l, 1474
comp_ellint_2, 1475
comp_ellint_2f, 1475
comp_ellint_2l, 1475
comp_ellint_3, 1475
comp_ellint_3f, 1475
comp_ellint_3l, 1475
compare

basic_string, 861, 862
basic_string_view, 836, 837
collate, 1597
path, 1720
sub_match, 1769

compare_exchange_strong
atomic, 1819
atomic<floating-point-type >, 1819
atomic<integral-type >, 1819
atomic<shared_ptr<T>>, 1828, 1829
atomic<T*>, 1819
atomic<weak_ptr<T>>, 1831
atomic_ref, 1812
atomic_ref<floating-point-type >, 1812
atomic_ref<integral-type >, 1812
atomic_ref<T*>, 1812

compare_exchange_weak
atomic, 1819
atomic<floating-point-type >, 1819
atomic<integral-type >, 1819
atomic<shared_ptr<T>>, 1828, 1829
atomic<T*>, 1819
atomic<weak_ptr<T>>, 1831
atomic_ref, 1812
atomic_ref<floating-point-type >, 1812
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atomic_ref<integral-type >, 1812
atomic_ref<T*>, 1812

compare_partial_order_fallback, 549
compare_strong_order_fallback, 549
compare_three_way, 772
compare_weak_order_fallback, 549
complex, 1400

abs, 1402
acos, 1403
acosh, 1403
arg, 1403
asin, 1403
asinh, 1403
atan, 1403
atanh, 1403
cacos, 1403
cacosh, 1403
casin, 1403
casinh, 1403
catan, 1403
catanh, 1403
conj, 1403
constructor, 1400
cos, 1403
cosh, 1403
exp, 1403
imag, 1401, 1402
log, 1403
log10, 1404
norm, 1403
operator""i, 1405
operator""if, 1405
operator""il, 1404
operator*, 1402
operator*=, 1401
operator+, 1401
operator+=, 1401
operator-, 1402
operator-=, 1401
operator/, 1402
operator/=, 1401
operator<<, 1402
operator==, 1402
operator>>, 1402
polar, 1403
pow, 1404
proj, 1403
real, 1400–1402
sin, 1404
sinh, 1404
sqrt, 1404
tan, 1404
tanh, 1404
value_type, 1400

concat
path, 1717, 1718

condition_variable, 1855
constructor, 1856
destructor, 1856

notify_all, 1856
notify_one, 1856
wait, 1856, 1857
wait_for, 1857, 1858
wait_until, 1857, 1858

condition_variable_any, 1858
constructor, 1859
destructor, 1859
notify_all, 1859
notify_one, 1859
wait, 1859, 1860
wait_for, 1860, 1861
wait_until, 1860

conditional_t, 654
conj, 1404

complex, 1403
conjunction, 674
conjunction_v, 658
const_iterator, 1095

basic_format_parse_context, 809
basic_stacktrace, 589
basic_string, 843
basic_string_view, 831, 834
containers, 874

const_local_iterator
unordered associative containers, 899

const_mem_fun1_ref_t
zombie, 501

const_mem_fun1_t
zombie, 501

const_mem_fun_ref_t
zombie, 501

const_mem_fun_t
zombie, 501

const_pointer
allocator_traits, 607
basic_string, 843
basic_string_view, 831
scoped_allocator_adaptor, 646

const_pointer_cast
shared_ptr, 628

const_reference
basic_string, 843
basic_string_view, 831
containers, 874

const_reverse_iterator
basic_string, 843
basic_string_view, 831
reversible containers, 877

const_sentinel, 1095
const_void_pointer

allocator_traits, 607
scoped_allocator_adaptor, 646

constant_range, 1138
construct

allocator_traits, 608
polymorphic_allocator, 641
scoped_allocator_adaptor, 649

construct_at, 1395
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constructible_from, 566
consume

memory_order, 1807
contains, 1320

basic_string, 862
basic_string_view, 837
ordered associative containers, 895
unordered associative containers, 905

contains_subrange, 1320
contiguous_iterator, 1076
contiguous_iterator_tag, 1084
contiguous_range, 1137
converted

wstring_convert, 1956
convertible_to, 563
copy, 1334, 1335

basic_string, 860
basic_string_view, 836
path, 1738

copy_backward, 1336
copy_constructible, 567
copy_file, 1740
copy_if, 1335
copy_n, 1335
copy_options, 1726
copy_symlink, 1740
copyable, 570
copyfmt

basic_ios, 1627
copysign, 1466
copysignf, 1466
copysignl, 1466
coroutine_handle, 550

address, 552
constructor, 551
destroy, 552
done, 552
from_address, 552
from_promise, 552
hash, 553
operator bool, 552
operator coroutine_handle<>, 552
operator!=, 553
operator(), 552
operator<=>, 553
operator=, 552
operator==, 553
promise, 553
resume, 552

coroutine_handle<noop_coroutine_promise>,
553

address, 554
destroy, 554
done, 554
operator bool, 554
operator coroutine_handle<>, 553
operator(), 554
promise, 554
resume, 554

cos, 1466
complex, 1403
valarray, 1459

cosf, 1466
cosh, 1466

complex, 1403
valarray, 1459

coshf, 1466
coshl, 1466
cosl, 1466
count, 1326

bitset, 760
counted_iterator, 1111
duration, 1498
ordered associative containers, 895
unordered associative containers, 905

count_down
latch, 1864

count_if, 1326
counted

views, 1202
counted_iterator, 1109

base, 1111
constructor, 1110, 1111
count, 1111
iter_move, 1113
iter_swap, 1113
operator*, 1111
operator+, 1112
operator++, 1111
operator+=, 1112
operator-, 1112
operator--, 1112
operator-=, 1112
operator->, 1111
operator<=>, 1113
operator=, 1111
operator==, 1113
operator[], 1111

counting_semaphore
acquire, 1863
constructor, 1862
max, 1862
release, 1863
try_acquire, 1863
try_acquire_for, 1863
try_acquire_until, 1863

countl_one, 823
countl_zero, 823
countr_one, 823
countr_zero, 823
cout, 1615
crbegin, 1133

basic_stacktrace, 589
basic_string, 851
basic_string_view, 835
reversible containers, 878

crbegin(const C& c), 1120
create_directories, 1741
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create_directory, 1741
create_directory_symlink, 1741
create_hard_link, 1742
create_symlink, 1742
cref

reference_wrapper, 767
crend, 1133

basic_stacktrace, 590
basic_string, 852
basic_string_view, 835
reversible containers, 878

crend(const C& c), 1120
cshift

valarray, 1457
ctime, 1569
ctype, 1579

do_is, 1580
do_narrow, 1581
do_scan_not, 1580
do_tolower, 1581
do_toupper, 1581
do_widen, 1581
is, 1580
narrow, 1580
scan_is, 1580
scan_not, 1580
tolower, 1580
toupper, 1580
widen, 1580

ctype<char>, 1582
classic_table, 1583
constructor, 1583
ctype<char>, 1583
destructor, 1582
do_narrow, 1583
do_tolower, 1583
do_toupper, 1583
do_widen, 1583
is, 1583
narrow, 1583
scan_is, 1583
scan_not, 1583
table, 1583
tolower, 1583
toupper, 1583
widen, 1583

ctype_base, 1579
do_scan_is, 1580

ctype_byname, 1581
curr_symbol

moneypunct, 1607
current

basic_stacktrace, 588, 589
current_exception, 539
current_path, 1742
current_zone, 1550

tzdb, 1549
cv_status, 1855
cyl_bessel_i, 1475

cyl_bessel_if, 1475
cyl_bessel_il, 1475
cyl_bessel_j, 1475
cyl_bessel_jf, 1475
cyl_bessel_jl, 1475
cyl_bessel_k, 1476
cyl_bessel_kf, 1476
cyl_bessel_kl, 1476
cyl_neumann, 1476
cyl_neumannf, 1476
cyl_neumannl, 1476

D
dangling, 1143
data, 1134

array, 913
basic_string, 860
basic_string_view, 836
single_view, 1148
span, 1033
vector, 935

data(C& c), 1120
data(initializer_list<E>), 1121
data(T (&array)[N]), 1121
date

leap_second, 1560
date_order

time_get, 1599
day, 1517

constructor, 1517
from_stream, 1518
month_day, 1528
ok, 1518
operator unsigned, 1518
operator""d, 1519
operator+, 1518
operator++, 1517, 1518
operator+=, 1518
operator-, 1518
operator--, 1518
operator-=, 1518
operator<<, 1518
operator<=>, 1518
operator==, 1518
year_month_day, 1534
year_month_day_last, 1537

days, 1480
DBL_DECIMAL_DIG, 522
DBL_DIG, 522
DBL_EPSILON, 522
DBL_HAS_SUBNORM, 522
DBL_MANT_DIG, 522
DBL_MAX, 522
DBL_MAX_10_EXP, 522
DBL_MAX_EXP, 522
DBL_MIN, 522
DBL_MIN_10_EXP, 522
DBL_MIN_EXP, 522

Index of library names 2050



© ISO/IEC N4950

DBL_TRUE_MIN, 522
deallocate

allocator, 609
allocator_traits, 608
memory_resource, 638
polymorphic_allocator, 640
scoped_allocator_adaptor, 649

deallocate_bytes
polymorphic_allocator, 640

deallocate_object
polymorphic_allocator, 640

debug_string
range_format, 796

dec, 1630, 1657
deca, 677
decay, 671
decay-copy , 482
decay_t, 654
deci, 677
DECIMAL_DIG, 522
decimal_point

moneypunct, 1607
numpunct, 1596

declare_no_pointers
zombie, 501

declare_reachable
zombie, 501

declval, 684
default_accessor

access, 1049
constructor, 1049
offset, 1049

default_delete
constructor, 611
operator(), 611

default_error_condition
error_category, 580
error_code, 582

default_initializable, 567
default_random_engine, 1423
default_searcher, 786

constructor, 786
operator(), 786

default_sentinel, 1061
default_sentinel_t, 1109
default_zone

zoned_traits<const time_zone*>, 1555
defaultfloat, 1631
defer_lock, 1844
defer_lock_t, 1844
delete

operator, 503, 528–531, 610
denorm_min

numeric_limits, 519
densities

piecewise_constant_distribution, 1445
piecewise_linear_distribution, 1447

depth
recursive_directory_iterator, 1736

deque, 914
allocator_type, 879
assign, 883
assign_range, 883
begin, 875
cbegin, 875
cend, 875
clear, 883
const_iterator, 874
const_reference, 874
const_reverse_iterator, 877
constructor, 916
crbegin, 878
crend, 878
difference_type, 874
emplace, 881, 917
empty, 876
end, 875
erase, 882, 917, 918
erase_if, 918
get_allocator, 879
insert, 882, 917
insert_range, 882
iterator, 874
max_size, 876
operator!=, 875
operator=, 874, 880
operator==, 875
push_back, 917
push_front, 917
rbegin, 877
reference, 874
rend, 877
resize, 916
reverse_iterator, 877
shrink_to_fit, 916
size, 875
size_type, 874
swap, 875, 880
value_type, 874

derived_from, 562
description

stacktrace_entry, 587
destroy, 1395

allocator_traits, 608
coroutine_handle, 552
coroutine_handle<noop_coroutine_-

promise>, 554
polymorphic_allocator, 1948
scoped_allocator_adaptor, 649

destroy_at, 1395
destroy_n, 1396
destroying_delete, 526
destroying_delete_t, 526
destructible, 566
detach

jthread, 1801
thread, 1799

dextents, 1038
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difference_type
allocator, 608
allocator_traits, 607
basic_string, 843
basic_string_view, 831
containers, 874
pointer_traits, 601
scoped_allocator_adaptor, 646

difftime, 1569
digits

numeric_limits, 517
digits10

numeric_limits, 518
directory_entry, 1729

assign, 1730
constructor, 1730
exists, 1731
file_size, 1732
hard_link_count, 1732
is_block_file, 1731
is_character_file, 1731
is_directory, 1731
is_fifo, 1731
is_other, 1731
is_regular_file, 1731
is_socket, 1732
is_symlink, 1732
last_write_time, 1732
operator const filesystem::path&, 1731
operator<<, 1732
operator<=>, 1732
operator==, 1732
path, 1731
refresh, 1731
replace_filename, 1730
status, 1732
symlink_status, 1732

directory_iterator, 1733
begin, 1734
constructor, 1734
end, 1734
increment, 1734
operator++, 1734
operator=, 1734

directory_options, 1727
disable_recursion_pending

recursive_directory_iterator, 1737
disable_sized_range, 1136
disable_sized_sentinel_for, 1074
disabled

range_format, 796
discard_block_engine, 1419

constructor, 1420
result_type, 1419

discrete_distribution, 1442
constructor, 1443
probabilities, 1444
result_type, 1442

disjunction, 674

disjunction_v, 658
distance, 1085–1087
div, 509, 1751
div_t, 509
divides, 768

operator(), 769
divides<>, 769

operator(), 769
do_allocate

memory_resource, 638
monotonic_buffer_resource, 645
synchronized_pool_resource, 644
unsynchronized_pool_resource, 644

do_always_noconv
codecvt, 1587

do_close
message, 1610

do_compare
collate, 1597

do_curr_symbol
moneypunct, 1608

do_date_order
time_get, 1600

do_deallocate
memory_resource, 638
monotonic_buffer_resource, 646
synchronized_pool_resource, 644
unsynchronized_pool_resource, 644

do_decimal_point
moneypunct, 1607
numpunct, 1596

do_encoding
codecvt, 1587

do_falsename
numpunct, 1596

do_frac_digits
moneypunct, 1608

do_get
messages, 1609
money_get, 1604
num_get, 1589, 1591
time_get, 1601

do_get_date
time_get, 1600

do_get_monthname
time_get, 1601

do_get_time
time_get, 1600

do_get_weekday
time_get, 1601

do_get_year
time_get, 1601

do_grouping
moneypunct, 1608
numpunct, 1596

do_hash
collate, 1598

do_in
codecvt, 1585
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do_is
ctype, 1580

do_is_equal
memory_resource, 638
monotonic_buffer_resource, 646
synchronized_pool_resource, 644
unsynchronized_pool_resource, 644

do_length
codecvt, 1587

do_max_length
codecvt, 1587

do_narrow, 1583
ctype, 1581
ctype<char>, 1583

do_neg_format
moneypunct, 1608

do_negative_sign
moneypunct, 1608

do_open
messages, 1609

do_out
codecvt, 1585

do_pos_format
moneypunct, 1608

do_positive_sign
moneypunct, 1608

do_put
money_put, 1605
num_put, 1592, 1595
time_put, 1603

do_scan_is
ctype_base, 1580

do_scan_not
ctype, 1580

do_thousands_sep
moneypunct, 1608
numpunct, 1596

do_tolower
ctype, 1581
ctype<char>, 1583

do_toupper
ctype, 1581
ctype<char>, 1583

do_transform
collate, 1598

do_truename
numpunct, 1596

do_unshift
codecvt, 1586

do_widen, 1583
ctype, 1581
ctype<char>, 1583

domain_error, 572, 573
constructor, 573

done
coroutine_handle, 552
coroutine_handle<noop_coroutine_-

promise>, 554
double_t, 1466

drop
views, 1179

drop_view, 1179
base, 1179
begin, 1180
constructor, 1180
end, 1179
size, 1179

drop_while
views, 1180

drop_while_view, 1181
base, 1181
begin, 1181
constructor, 1181
end, 1181
pred, 1181

duration, 1496
abs, 1502
ceil, 1501
constructor, 1497
count, 1498
duration_cast, 1500
floor, 1501
from_stream, 1503
max, 1499
min, 1499
operator""h, 1501
operator""min, 1501
operator""ms, 1501
operator""ns, 1501
operator""s, 1501
operator""us, 1501
operator*, 1499
operator*=, 1498
operator+, 1498, 1504
operator++, 1498
operator+=, 1498
operator-, 1498, 1504
operator--, 1498
operator-=, 1498
operator/, 1499
operator/=, 1498
operator<, 1500
operator<<, 1502
operator<=, 1500
operator<=>, 1500
operator==, 1500
operator>, 1500
operator>=, 1500
operator%, 1499
operator%=, 1498
round, 1501
zero, 1498

duration_cast, 1500
duration, 1500

duration_values, 1495
max, 1495
min, 1495
zero, 1495

Index of library names 2053



© ISO/IEC N4950

dynamic_extent, 1028
dynamic_pointer_cast

shared_ptr, 628

E
E2BIG, 575
EACCES, 575
EADDRINUSE, 575
EADDRNOTAVAIL, 575
EAFNOSUPPORT, 575
EAGAIN, 575
EALREADY, 575
earliest

choose, 1480
eback

basic_streambuf, 1636
EBADF, 575
EBADMSG, 575
EBUSY, 575
ec

from_chars_result, 792
to_chars_result, 792

ECANCELED, 575
ECHILD, 575
ECMAScript

syntax_option_type, 1759, 1760
ECONNABORTED, 575
ECONNREFUSED, 575
ECONNRESET, 575
EDEADLK, 575
EDESTADDRREQ, 575
EDOM, 575
EEXIST, 575
EFAULT, 575
EFBIG, 575
egptr

basic_streambuf, 1636
egrep

syntax_option_type, 1759, 1760
EHOSTUNREACH, 575
EIDRM, 575
EILSEQ, 575
EINPROGRESS, 575
EINTR, 575
EINVAL, 575
EIO, 575
EISCONN, 575
EISDIR, 575
element_type

pointer_traits, 601
elements

views, 1206
elements_view, 1207

base, 1207
begin, 1207
constructor, 1207
end, 1207
size, 1207

elements_view::iterator
base, 1209
constructor, 1209
operator+, 1210
operator++, 1209
operator+=, 1210
operator-, 1210, 1211
operator--, 1210
operator-=, 1210
operator<, 1210
operator<=, 1210
operator<=>, 1210
operator==, 1210
operator>, 1210
operator>=, 1210

elements_view::sentinel
base, 1211
constructor, 1211
operator-, 1211, 1212
operator==, 1211

ellint_1, 1476
ellint_1f, 1476
ellint_1l, 1476
ellint_2, 1476
ellint_2f, 1476
ellint_2l, 1476
ellint_3, 1477
ellint_3f, 1477
ellint_3l, 1477
ELOOP, 575
EMFILE, 575
emit

basic_syncbuf, 1701
emit_on_flush, 1660
EMLINK, 575
emplace

any, 733
deque, 917
expected, 744
expected<void>, 752
flat_map, 1003
flat_multiset, 1027
optional, 712
ordered associative containers, 891
priority_queue, 992
sequence containers, 881
unordered associative containers, 901, 902
variant, 725

emplace_after
forward_list, 922

emplace_front
forward_list, 921

emplace_hint
ordered associative containers, 892
unordered associative containers, 902

empty, 1134
basic_stacktrace, 590
basic_string, 853
basic_string_view, 835
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containers, 876
match_results, 1773
mdspan, 1054
path, 1721
span, 1033
subrange, 1142
views, 1124

empty(C& c), 1120
empty(initializer_list<E>), 1120
empty(T (&array)[N]), 1120
empty_view, 1146
EMSGSIZE, 575
enable_borrowed_range, 1135
enable_if, 671
enable_if_t, 654
enable_shared_from_this, 632

constructor, 632
operator=, 633
shared_from_this, 633
weak_from_this, 633

enable_view, 1137
ENAMETOOLONG, 575
encoding

codecvt, 1585
end, 540, 1131

adjacent_transform_view, 1233
adjacent_view, 1228
array, 911
basic_format_parse_context, 809
basic_istream_view, 1158
basic_stacktrace, 589
basic_string, 851
basic_string_view, 835
chunk_view, 1238, 1242
common_view, 1203
containers, 875
directory_iterator, 1734
drop_view, 1179
drop_while_view, 1181
elements_view, 1207
enumerate_view, 1212
filter_view, 1165
generator, 1269
initializer_list, 541
iota_view, 1150
join_view, 1181
lazy_split_view, 1193
lazy_split_-

view::outer-iterator ::value_type,
1197

match_results, 1774
path, 1723
recursive_directory_iterator, 1737
repeat_view, 1155
reverse_view, 1205
single_view, 1147
slide_view, 1247
span, 1034
subrange, 1142

sys_info, 1552
take_view, 1174
take_while_view, 1177
transform_view, 1169, 1170
tzdb_list, 1550
unordered associative containers, 906
valarray, 1466
zip_transform_view, 1223
zip_view, 1217

end(C&), 1119
end(initializer_list<E>), 541
end(T (&)[N]), 1119
endian, 824

big, 824
little, 824
native, 824

endl, 1657, 1660
ends, 1660
ends_with, 1332

basic_string, 862
basic_string_view, 837

ENETDOWN, 575
ENETRESET, 575
ENETUNREACH, 575
ENFILE, 575
ENOBUFS, 575
ENODATA, 1947
ENODEV, 575
ENOENT, 575
ENOEXEC, 575
ENOLCK, 575
ENOLINK, 575
ENOMEM, 575
ENOMSG, 575
ENOPROTOOPT, 575
ENOSPC, 575
ENOSR, 1947
ENOSTR, 1947
ENOSYS, 575
ENOTCONN, 575
ENOTDIR, 575
ENOTEMPTY, 575
ENOTRECOVERABLE, 575
ENOTSOCK, 575
ENOTSUP, 575
ENOTTY, 575
entropy

random_device, 1424
enumerate

views, 1212
enumerate_view, 1212

begin, 1212
end, 1212
size, 1212

enumerate_view::iterator , 1213
base, 1214
constructor, 1214
index, 1214
operator+, 1215
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operator++, 1214
operator+=, 1215
operator-, 1215
operator--, 1215
operator-=, 1215
operator<=>, 1215
operator==, 1215

enumerate_view::sentinel , 1215
base, 1216
constructor, 1216
operator-, 1216
operator==, 1216

ENXIO, 575
EOF, 1750
eof

basic_ios, 1628
EOPNOTSUPP, 575
EOVERFLOW, 575
EOWNERDEAD, 575
EPERM, 575
EPIPE, 575
epptr

basic_streambuf, 1636
EPROTO, 575
EPROTONOSUPPORT, 575
EPROTOTYPE, 575
epsilon

numeric_limits, 518
equal, 1328

istreambuf_iterator, 1118
strong_ordering, 545

equal_range, 1357
ordered associative containers, 896
unordered associative containers, 905

equal_to, 770, 772
operator(), 770

equal_to<>, 770
operator(), 770

equality_comparable, 569
equality_comparable_with, 569
equivalence_relation, 571
equivalent, 1742

error_category, 580
partial_ordering, 543
strong_ordering, 545
weak_ordering, 544

ERANGE, 575
erase

basic_string, 857, 858, 866
deque, 917, 918
forward_list, 925
list, 929, 931
ordered associative containers, 894
sequence containers, 882
unordered associative containers, 904
vector, 935

erase_after
forward_list, 922
tzdb_list, 1549

erase_if
basic_string, 866
deque, 918
flat_map, 1006
flat_multimap, 1014
flat_multiset, 1027
flat_set, 1021
forward_list, 925
list, 931
map, 946
multimap, 950
multiset, 958
set, 954
unordered_map, 967
unordered_multimap, 972
unordered_multiset, 982
unordered_set, 977
vector, 936

erf, 1466
erfc, 1466
erfcf, 1466
erfcl, 1466
erff, 1466
erfl, 1466
EROFS, 575
errc, 577

make_error_code, 582
make_error_condition, 584

errno, 575
error

bad_expected_access, 737
expected, 746
expected<void>, 753
unexpected, 736

error_category, 577, 579
constructor, 579
default_error_condition, 580
destructor, 579
equivalent, 580
message, 580
name, 579, 580
operator<=>, 580
operator==, 580

error_code, 577, 581
assign, 581
category, 582
clear, 582
constructor, 581
default_error_condition, 582
hash, 584
message, 582
operator bool, 582
operator<<, 582
operator<=>, 584
operator=, 582
operator==, 584
value, 582

error_condition, 577, 582
assign, 583
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category, 583
clear, 583
constructor, 583
message, 583
operator bool, 583
operator<=>, 584
operator=, 583
operator==, 584
value, 583

error_or
expected, 746
expected<void>, 753

error_type, 1761, 1762
expected, 738
expected<void>, 749
regex_constants, 1761, 1762

ESPIPE, 575
ESRCH, 575
ETIME, 1947
ETIMEDOUT, 575
ETXTBSY, 575
EWOULDBLOCK, 575
exa, 677
exception, 537

constructor, 537
destructor, 537
operator=, 537
what, 537

exception_ptr, 539
exceptions

basic_ios, 1629
exchange, 682

atomic, 1818
atomic<floating-point-type >, 1818
atomic<integral-type >, 1818
atomic<shared_ptr<T>>, 1828
atomic<T*>, 1818
atomic<weak_ptr<T>>, 1831
atomic_ref, 1812
atomic_ref<floating-point-type >, 1812
atomic_ref<integral-type >, 1812
atomic_ref<T*>, 1812

exclusive_scan, 1384, 1385
EXDEV, 575
execution

par, 791
par_unseq, 791
seq, 791

execution::parallel_policy, 791
execution::parallel_unsequenced_policy,

791
execution::sequenced_policy, 791
execution::unsequenced_policy, 791
exists, 1743

directory_entry, 1731
exit, 90, 93, 169, 509, 525, 532
EXIT_FAILURE, 509
EXIT_SUCCESS, 509
exp, 1466

complex, 1403
valarray, 1459

exp2, 1466
exp2f, 1466
exp2l, 1466
expected, 735

and_then, 746, 747
constructor, 740–742
destructor, 742
emplace, 744
error, 746
error_or, 746
error_type, 738
has_value, 745
operator bool, 745
operator*, 745
operator->, 745
operator=, 742–744
operator==, 748
or_else, 747
rebind, 738
swap, 744, 745
transform, 747
transform_error, 748
unexpected_type, 738
value, 746, 753
value_or, 746
value_type, 738

expected<void>
and_then, 753, 754
constructor, 750, 751
destructor, 751
emplace, 752
error, 753
error_or, 753
error_type, 749
has_value, 753
operator bool, 753
operator*, 753
operator=, 752
operator==, 755
or_else, 754
rebind, 749
swap, 752, 753
transform, 754
transform_error, 755
unexpected_type, 749
value, 753
value_type, 749

expf, 1466
expint, 1477
expintf, 1477
expintl, 1477
expired

weak_ptr, 631
expl, 1466
expm1, 1466
expm1f, 1466
expm1l, 1466
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exponential_distribution, 1433
constructor, 1433
lambda, 1433
result_type, 1433

extended
syntax_option_type, 1759, 1760

extension
path, 1721

extent, 666
extents, 1038

extent_v, 657
extents, 1035

constructor, 1036, 1037
extent, 1038
operator==, 1038
static_extent, 1038

extract
flat_map, 1006
flat_multiset, 1027
flatset, 1020
ordered associative containers, 893, 894
unordered associative containers, 903, 904

extreme_value_distribution, 1436
a, 1436
b, 1436
constructor, 1436
result_type, 1436

F
fabs, 1466
fabsf, 1466
fabsl, 1466
facet

locale, 1575
fail

basic_ios, 1628
failed

ostreambuf_iterator, 1119
failure

ios_base, 1619
false_type, 658
falsename

numpunct, 1596
fclose, 1690, 1750
fdim, 1466
fdimf, 1466
fdiml, 1466
FE_ALL_EXCEPT, 1397
FE_DFL_ENV, 1397
FE_DIVBYZERO, 1397
FE_DOWNWARD, 1397
FE_INEXACT, 1397
FE_INVALID, 1397
FE_OVERFLOW, 1397
FE_TONEAREST, 1397
FE_TOWARDZERO, 1397
FE_UNDERFLOW, 1397
FE_UPWARD, 1397

feclearexcept, 1397
fegetenv, 1397
fegetexceptflag, 1397
fegetround, 1397
feholdexcept, 1397
femto, 677
fenv_t, 1397
feof, 1750
feraiseexcept, 1397
ferror, 1750
fesetenv, 1397
fesetexceptflag, 1397
fesetround, 1397
fetch_add

atomic<floating-point-type >, 1824
atomic<integral-type >, 1822
atomic<T*>, 1826
atomic_ref<floating-point-type >, 1815
atomic_ref<integral-type >, 1814
atomic_ref<T*>, 1816

fetch_and
atomic<integral-type >, 1822
atomic_ref<integral-type >, 1814

fetch_or
atomic<integral-type >, 1822
atomic_ref<integral-type >, 1814

fetch_sub
atomic<floating-point-type >, 1824
atomic<integral-type >, 1822
atomic<T*>, 1826
atomic_ref<floating-point-type >, 1815
atomic_ref<integral-type >, 1814
atomic_ref<T*>, 1816

fetch_xor
atomic<integral-type >, 1822
atomic_ref<integral-type >, 1814

fetestexcept, 1397
feupdateenv, 1397
fexcept_t, 1397
fflush, 1750
fgetc, 1750
fgetpos, 1750
fgets, 1750
fgetwc, 870
fgetws, 870
FILE, 1750
file_clock, 1512

now, 1512
file_size, 1743

directory_entry, 1732
file_status, 1728

constructor, 1728
permissions, 1728, 1729
type, 1728

file_time, 1480
from_stream, 1513
operator<<, 1513

file_type, 1725
filebuf, 1612, 1687
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filename
path, 1720

FILENAME_MAX, 1750
filesystem_error, 1724

constructor, 1724, 1725
path1, 1725
path2, 1725
what, 1725

fill, 1342
array, 913
basic_ios, 1627

fill_n, 1342
filter

views, 1165
filter_view, 1165

base, 1165
begin, 1166
constructor, 1165
end, 1165
iterator, 1166
pred, 1165
sentinel, 1168

filter_view::iterator
base, 1167
constructor, 1167
iter_move, 1167
iter_swap, 1168
operator*, 1167
operator++, 1167
operator--, 1167
operator->, 1167
operator==, 1167

filter_view::sentinel
base, 1168
constructor, 1168
operator==, 1168

final_suspend
generator::promise_type, 1270

find, 1322
basic_string, 860, 861
basic_string_view, 837
ordered associative containers, 895
unordered associative containers, 905

find_end, 1324
find_first_not_of

basic_string, 860, 861
basic_string_view, 838

find_first_of, 1324
basic_string, 860, 861
basic_string_view, 838

find_if, 1322
find_if_not, 1322
find_last, 1323
find_last_not_of

basic_string, 860, 861
basic_string_view, 838

find_last_of
basic_string, 860, 861
basic_string_view, 838

first
local_info, 1553
span, 1032, 1033

first_argument_type
zombie, 502

fisher_distribution
result_type, 1440

fisher_f_distribution, 1440
constructor, 1441
m, 1441
n, 1441

fixed, 1630
chars_format, 792

flag_type
basic_regex, 1768

flags
ios_base, 1578, 1621

flat_map, 995
at, 1003
constructor, 1001, 1002
emplace, 1003
erase_if, 1006
extract, 1006
insert, 1003, 1004
insert_or_assign, 1005, 1006
insert_range, 1004
max_size, 1003
operator[], 1003
replace, 1006
size, 1003
swap, 1006
try_emplace, 1005

flat_multimap, 1007
constructor, 1012, 1013
erase_if, 1014

flat_multiset, 1021
constructor, 1026
emplace, 1027
erase_if, 1027
extract, 1027
insert, 1027
replace, 1027
swap, 1027

flat_set, 1014, 1015
constructor, 1019
erase_if, 1021
insert, 1020
insert_range, 1020
replace, 1021
swap, 1020

flatset
extract, 1020
insert, 1020

flip
bitset, 759
vector<bool>, 938

float_denorm_style, 1939
numeric_limits, 1939

float_round_style, 515, 516
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float_t, 1466
floating_point, 564
floor, 1466

duration, 1501
time_point, 1505

floorf, 1466
floorl, 1466
FLT_DECIMAL_DIG, 522
FLT_DIG, 522
FLT_EPSILON, 522
FLT_EVAL_METHOD, 522
FLT_HAS_SUBNORM, 522
FLT_MANT_DIG, 522
FLT_MAX, 522
FLT_MAX_10_EXP, 522
FLT_MAX_EXP, 522
FLT_MIN, 522
FLT_MIN_10_EXP, 522
FLT_MIN_EXP, 522
FLT_RADIX, 522
FLT_ROUNDS, 522
FLT_TRUE_MIN, 522
flush, 1621, 1643, 1655, 1660

basic_ostream, 1660
flush_emit, 1660
fma, 1466
fmaf, 1466
fmal, 1466
fmax, 1466
fmaxf, 1466
fmaxl, 1466
fmin, 1466
fminf, 1466
fminl, 1466
fmod, 1466
fmodf, 1466
fmodl, 1466
fmtflags

ios_base, 1619, 1661
fold_left, 1333
fold_left_first, 1333
fold_left_first_with_iter, 1334
fold_left_with_iter, 1334
fold_right, 1333
fold_right_last, 1333
fopen, 1690, 1750
FOPEN_MAX, 1750
for_each, 1321
for_each_n, 1321, 1322
format, 803, 1561–1565

basic_format_arg::handle, 818
formatter, 820, 939, 1028
formatter<chrono::zoned_time>, 1565
match_results, 1774
range-default-formatter , 814–816
range_formatter, 813

format_args, 794
format_args_t, 794
format_context, 794, 810

format_default, 1759, 1760
format_error, 820

constructor, 820
format_first_only, 1759, 1761, 1778
format_kind, 811
format_no_copy, 1759, 1761, 1778
format_parse_context, 794
format_sed, 1759, 1761
format_string, 794
format_to, 803, 804
format_to_n, 804
format_to_n_result, 794

out, 794
size, 794

formattable, 805
formatted_size, 804
formatter, 806, 819, 938, 1027

format, 820, 939, 1028
parse, 820, 938, 1028
set_brackets, 819
set_separator, 819
specializations

arithmetic types, 807
character types, 806
chrono::file_time, 1565
chrono::gps_time, 1564
chrono::local-time-format-t , 1565
chrono::local_time, 1565
chrono::sys_time, 1564
chrono::tai_time, 1564
chrono::utc_time, 1564
chrono::zoned_time, 1565
nullptr_t, 807
pointer types, 807
string types, 806
thread::id, 1797

formatter<chrono::zoned_time>
format, 1565

formatter_type
basic_format_context, 810

forward, 682
forward_as_tuple, 701

tuple, 701
forward_iterator, 1074
forward_iterator_tag, 1084
forward_like, 683
forward_list

allocator_type, 879
assign, 883
assign_range, 883
before_begin, 921
begin, 875
cbefore_begin, 921
cbegin, 875
cend, 875
clear, 883, 923
const_iterator, 874
const_reference, 874
constructor, 920, 921
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difference_type, 874
emplace, 881
emplace_after, 922
emplace_front, 921
empty, 876
end, 875
erase, 882, 925
erase_after, 922
erase_if, 925
front, 921
get_allocator, 879
insert, 882
insert_after, 921, 922
insert_range, 882
insert_range_after, 922
iterator, 874
max_size, 876
merge, 924
operator!=, 875
operator=, 874, 880
operator==, 875
pop, 921
prepend_range, 921
push_front, 921
reference, 874
remove, 924
remove_if, 924
resize, 923
reverse, 925
size, 875
size_type, 874
sort, 924
splice_after, 923
swap, 875, 880
unique, 924
value_type, 874

forward_range, 1137
FP_FAST_FMA, 1466
FP_FAST_FMAF, 1466
FP_FAST_FMAL, 1466
FP_ILOGB0, 1466
FP_ILOGBNAN, 1466
FP_INFINITE, 1466
FP_NAN, 1466
FP_NORMAL, 1466
FP_SUBNORMAL, 1466
FP_ZERO, 1466
fpclassify, 1466
fpos, 1612, 1617, 1623, 1624

state, 1624
fpos_t, 1750
fprintf, 1750
fputc, 1750
fputs, 1750
fputwc, 870
fputws, 870
frac_digits

moneypunct, 1607
fread, 1750

free, 509, 610
freeze

ostrstream, 1946
strstream, 1947
strstreambuf, 1942

freopen, 1750
frexp, 1466
frexpf, 1466
frexpl, 1466
from_address

coroutine_handle, 552
from_bytes

wstring_convert, 1956
from_chars, 793, 794
from_chars_result, 792

ec, 792
ptr, 792

from_promise
coroutine_handle, 552

from_stream
day, 1518
duration, 1503
file_time, 1513
gps_time, 1512
local_time, 1514
month, 1521
month_day, 1528
sys_time, 1507
tai_time, 1510
utc_time, 1509
weekday, 1525
year, 1523
year_month, 1533
year_month_day, 1535

from_sys
utc_clock, 1508

from_time_t
system_clock, 1506

from_utc
gps_clock, 1511
tai_clock, 1510

front
basic_string, 853
basic_string_view, 835
forward_list, 921
span, 1033
tzdb_list, 1549
view_interface, 1140

front_insert_iterator, 1093
constructor, 1093
operator*, 1093
operator++, 1093
operator=, 1093

front_inserter, 1093
fscanf, 1750
fseek, 1690, 1750
fsetpos, 1750
fstream, 1612, 1687
ftell, 1750
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function, 779
constructor, 780
destructor, 782
invocation, 782
operator bool, 782
operator(), 782
operator=, 781
operator==, 782
result_type, 779
swap, 782
target, 782
target_type, 782

future, 1872
constructor, 1873
get, 1873
operator=, 1873
share, 1873
valid, 1874
wait, 1874
wait_for, 1874
wait_until, 1874

future_category, 1868
future_errc, 1867

make_error_code, 1868
make_error_condition, 1868

future_error, 1868
code, 1869
constructor, 1868
what, 1869

fwide, 870
fwprintf, 870
fwrite, 1750
fwscanf, 870

G
gamma_distribution, 1434

alpha, 1434
beta, 1434
constructor, 1434
result_type, 1434

gbump
basic_streambuf, 1636

gcd, 1389
gcount

basic_istream, 1647
general

chars_format, 792
GENERALIZED_NONCOMMUTATIVE_SUM , 1381
GENERALIZED_SUM , 1381
generate, 1342

seed_seq, 1425
generate_canonical, 1426
generate_n, 1342
generator, 1268

begin, 1269
constructor, 1269
destructor, 1269
end, 1269

operator=, 1269
generator::iterator

constructor, 1272
operator*, 1272
operator++, 1272
operator=, 1272
operator==, 1272

generator::promise_type
final_suspend, 1270
get_return_object, 1270
operator delete, 1272
operator new, 1271
unhandled_exception, 1271
yield_value, 1270, 1271

generic_category, 579, 580
generic_string

path, 1719, 1720
generic_u16string

path, 1720
generic_u32string

path, 1720
generic_u8string

path, 1720
generic_wstring

path, 1720
geometric_distribution, 1430

constructor, 1431
p, 1431
result_type, 1430

get
array, 914
basic_format_args, 819
basic_istream, 1647, 1648
future, 1873
messages, 1609
money_get, 1604
num_get, 1589
pair, 691
reference_wrapper, 767
shared_future, 1876
shared_ptr, 624
subrange, 1143
time_get, 1600
tuple, 703
unique_ptr, 614
variant, 727

get_allocator
allocator-aware containers, 879
basic_stacktrace, 589
basic_string, 860
basic_stringbuf, 1670
basic_syncbuf, 1702
match_results, 1775

get_date
time_get, 1599

get_default_resource, 642
get_deleter

shared_ptr, 629
unique_ptr, 614
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get_future
packaged_task, 1880
promise, 1871

get_id
jthread, 1802
this_thread, 1802
thread, 1799

get_if, 727
variant, 727

get_info
time_zone, 1554
zoned_time, 1559

get_leap_second_info, 1509
get_local_time

zoned_time, 1558
get_money, 1662
get_monthname

time_get, 1599
get_new_handler, 503, 532
get_pointer_safety

zombie, 501
get_return_object

generator::promise_type, 1270
get_stop_source

jthread, 1802
get_stop_token

jthread, 1802
get_sys_time

zoned_time, 1559
get_temporary_buffer

zombie, 501
get_terminate, 503, 538
get_time, 1663

time_get, 1599
get_time_zone

zoned_time, 1558
get_token

stop_source sc, 1794
get_tzdb, 1550
get_tzdb_list, 1550
get_unexpected

zombie, 501
get_weekday

time_get, 1599
get_wrapped

basic_syncbuf, 1702
get_year

time_get, 1599
getc, 1750
getchar, 1750
getenv, 509, 554
getline

basic_istream, 1648, 1649
basic_string, 865

getloc, 1764
basic_regex, 1768
basic_streambuf, 1634
ios_base, 1622

gets

zombie, 501
getwc, 870
getwchar, 870
giga, 677
global

locale, 1577
gmtime, 1569
good

basic_ios, 1628
gps_clock, 1511

from_utc, 1511
now, 1511
to_utc, 1511

gps_seconds, 1480
gps_time, 1480

from_stream, 1512
operator<<, 1511

gptr
basic_streambuf, 1636

greater, 770, 773
operator(), 770
partial_ordering, 543
strong_ordering, 545
weak_ordering, 544

greater<>, 770
operator(), 770

greater_equal, 771, 773
operator(), 771

greater_equal<>, 771
operator(), 771

grep
syntax_option_type, 1759, 1760

grouping
moneypunct, 1607
numpunct, 1596

gslice, 1461
constructor, 1462
size, 1462
start, 1462
stride, 1462

gslice_array, 1463
operator*=, 1463
operator+=, 1463
operator-=, 1463
operator/=, 1463
operator<<=, 1463
operator=, 1463
operator>>=, 1463
operator%=, 1463
operator&=, 1463
operator^=, 1463
operator|=, 1463
value_type, 1463

H
handle

basic_format_arg, 817
hard_link_count, 1743
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directory_entry, 1732
hardware_concurrency

jthread, 1802
thread, 1799

hardware_constructive_interference_size,
533

hardware_destructive_interference_size,
532

has_denorm_loss
numeric_limits, 1939

has_extension
path, 1722

has_facet
locale, 1578

has_filename
path, 1722

has_infinity
numeric_limits, 519

has_parent_path
path, 1721

has_quiet_NaN
numeric_limits, 519

has_relative_path
path, 1721

has_root_directory
path, 1721

has_root_name
path, 1721

has_root_path
path, 1721

has_signaling_NaN
numeric_limits, 519

has_single_bit, 822
has_stem

path, 1722
has_unique_object_representations, 664, 666
has_value

any, 733
expected, 745
expected<void>, 753
optional, 714

has_virtual_destructor, 664
has_virtual_destructor_v, 657
hash, 788

basic_string, 867
collate, 1597
coroutine_handle, 553
error_code, 584
monostate, 730
optional, 718
shared_ptr, 633
string_view, 840
thread::id, 1797
type_index, 790
u16string_view, 840
u32string_view, 840
u8string_view, 840
unique_ptr, 633
variant, 729

wstring_view, 840
hash_code, 760

type_index, 790
type_info, 534

hash_function
unordered associative containers, 901

hash_value
path, 1724

hasher
unordered associative containers, 899

hecto, 677
hermite, 1477
hermitef, 1477
hermitel, 1477
hex, 1630

chars_format, 792
hexfloat, 1631
hh_mm_ss

hours, 1547
is_negative, 1547
minutes, 1547
operator precision, 1547
seconds, 1547
subseconds, 1547
to_duration, 1547

high_resolution_clock, 1513
hms, 1546
holds_alternative, 726

variant, 726
hours, 1480

hh_mm_ss, 1547
HUGE_VAL, 1466
HUGE_VALF, 1466
HUGE_VALL, 1466
hypot, 1466

3-argument form, 1473
hypotf, 1466
hypotl, 1466

I
icase

syntax_option_type, 1759, 1760
id

locale, 1576
thread, 1796

identity, 776
ifstream, 1612, 1687
ignore, 701

basic_istream, 1649
ilogb, 1466
ilogbf, 1466
ilogbl, 1466
imag, 1404

complex, 1401, 1402
imaxabs, 1751
imaxdiv, 1751
imaxdiv_t, 1751
imbue, 1764
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basic_filebuf, 1693
basic_ios, 1627
basic_regex, 1768
basic_streambuf, 1636
ios_base, 1622

in
codecvt, 1585

in_avail
basic_streambuf, 1634

in_place, 682
in_place_index, 682
in_place_index_t, 682
in_place_t, 682
in_place_type, 682
in_place_type_t, 682
in_range, 685
includes, 1363
inclusive_scan, 1385
increment

directory_iterator, 1734
recursive_directory_iterator, 1737

incrementable, 1072
incrementable_traits, 1064
independent_bits_engine, 1420

result_type, 1420
index

enumerate_view::iterator , 1214
variant, 726
weekday_indexed, 1526
year_month_weekday, 1539

index_sequence, 680
index_sequence_for, 680
indirect_array, 1465

operator*=, 1465
operator+=, 1465
operator-=, 1465
operator/=, 1465
operator<<=, 1465
operator=, 1465, 1466
operator>>=, 1465
operator[], 1465
operator%=, 1465
operator&=, 1465
operator^=, 1465
operator|=, 1465
value_type, 1465

indirect_binary_predicate, 1081
indirect_equivalence_relation, 1081
indirect_result_t, 1057
indirect_strict_weak_order, 1081
indirect_unary_predicate, 1081
indirectly_comparable, 1083
indirectly_copyable, 1083
indirectly_copyable_storable, 1083
indirectly_movable, 1082
indirectly_movable_storable, 1082
indirectly_readable, 1070
indirectly_readable_traits, 1065
indirectly_regular_unary_invocable, 1081

indirectly_swappable, 1083
indirectly_unary_invocable, 1081
indirectly_writable, 1070
INFINITY, 1466
infinity

numeric_limits, 519
Init

ios_base, 1621
init

basic_ios, 1626, 1642
basic_ostream, 1654

initializer_list, 540
begin, 541
constructor, 541
end, 541
size, 541

inner_allocator
scoped_allocator_adaptor, 648

inner_allocator_type
scoped_allocator_adaptor, 647

inner_product, 1382
inout_ptr, 637
inout_ptr_t, 635

constructor, 636
destructor, 636

inplace_merge, 1362
input_iterator, 1074
input_iterator_tag, 1084
input_or_output_iterator, 1073
input_range, 1137
insert

basic_string, 856, 857
deque, 917
flat_map, 1003, 1004
flat_multiset, 1027
flat_set, 1020
flatset, 1020
list, 928
map, 945
multimap, 950
ordered associative containers, 892, 893
sequence containers, 882
unordered associative containers, 902, 903
unordered_map, 965, 966
unordered_multimap, 972
vector, 935

insert_after
forward_list, 921, 922

insert_iterator, 1094
constructor, 1094
operator*, 1094
operator++, 1094
operator=, 1094

insert_or_assign
flat_map, 1005, 1006
map, 946
unordered_map, 966

insert_range
basic_string, 857
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flat_map, 1004
flat_set, 1020
sequence containers, 882
unordered associative containers, 903

insert_range_after
forward_list, 922

inserter, 1094
int16_t, 523
int32_t, 523
int64_t, 523
int8_t, 523
int_fast16_t, 523
int_fast32_t, 523
int_fast64_t, 523
int_fast8_t, 523
int_least16_t, 523
int_least32_t, 523
int_least64_t, 523
int_least8_t, 523
INT_MAX, 522
INT_MIN, 522
int_type

char_traits, 827
wstring_convert, 1955

integer_sequence, 650
value_type, 650

integral, 564
integral_constant, 658

value_type, 658
internal, 1630
intervals

piecewise_constant_distribution, 1445
piecewise_linear_distribution, 1447

intmax_t, 523
intptr_t, 523
invalid_argument, 572, 573, 757, 758

constructor, 573
invocable, 571
INVOKE , 764, 765
invoke, 765
invoke_r, 765
invoke_result, 672
invoke_result_t, 654
io_errc, 1616

make_error_code, 1631
make_error_condition, 1631

io_state
zombie, 502

ios, 1612, 1617
ios_base, 1617

constructor, 1623
destructor, 1623
failure, 1619
flags, 1578, 1621
fmtflags, 1619, 1661
getloc, 1622
imbue, 1622
Init, 1621
iostate, 1619

iword, 1622
openmode, 1619
precision, 1578, 1621
pword, 1623
register_callback, 1623
seekdir, 1619
setf, 1621
sync_with_stdio, 1622
unsetf, 1621
width, 1578, 1621, 1622
xalloc, 1622

ios_base::failure, 1619
constructor, 1619

ios_base::Init, 1621
constructor, 1621
destructor, 1621

iostate
ios_base, 1619

iostream_category, 1631
iota, 1389

views, 1148
iota_view, 1148

begin, 1150
constructor, 1150
end, 1150
size, 1150

iota_view::iterator
constructor, 1151
operator*, 1152
operator+, 1153
operator++, 1152
operator+=, 1152
operator-, 1153
operator--, 1152
operator-=, 1152
operator<, 1153
operator<=, 1153
operator<=>, 1153
operator==, 1153
operator>, 1153
operator>=, 1153
operator[], 1152

iota_view::sentinel
constructor, 1154
operator==, 1154

is
ctype, 1580
ctype<char>, 1583

is-vector-bool-reference , 938
is_absolute

path, 1722
is_abstract, 660
is_abstract_v, 655
is_aggregate, 660
is_aggregate_v, 656
is_always_equal

allocator, 1948
allocator_traits, 608
scoped_allocator_adaptor, 648
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is_always_lock_free
atomic, 1818
atomic<floating-point-type >, 1818
atomic<integral-type >, 1818
atomic<shared_ptr<T>>, 1818
atomic<T*>, 1818
atomic<weak_ptr<T>>, 1818
atomic_ref, 1811
atomic_ref<floating-point-type >, 1811
atomic_ref<integral-type >, 1811
atomic_ref<T*>, 1811

is_am, 1548
is_arithmetic, 659
is_arithmetic_v, 655
is_array, 659
is_array_v, 655
is_assignable, 661
is_assignable_v, 656
is_base_of, 667
is_base_of_v, 657
is_bind_expression, 777
is_bind_expression_v, 763
is_block_file, 1743

directory_entry, 1731
is_bounded

numeric_limits, 520
is_bounded_array, 661
is_bounded_array_v, 656
is_character_file, 1743, 1744

directory_entry, 1731
is_class, 659
is_class_v, 655
is_clock, 1496
is_clock_v, 1480
is_compound, 659
is_compound_v, 655
is_const, 660
is_const_v, 655
is_constant_evaluated, 676
is_constructible, 661, 666
is_constructible_v, 656
is_convertible, 667, 669
is_convertible_v, 657
is_copy_assignable, 661
is_copy_assignable_v, 656
is_copy_constructible, 661
is_copy_constructible_v, 656
is_corresponding_member, 675
is_default_constructible, 661
is_default_constructible_v, 656
is_destructible, 662
is_destructible_v, 656
is_directory, 1744

directory_entry, 1731
is_empty

class, 660
function, 1744

is_empty_v, 655
is_enum, 659

is_enum_v, 655
is_eq, 541
is_equal

memory_resource, 638
is_error_code_enum, 577
is_error_condition_enum, 577
is_exact

numeric_limits, 518
is_execution_policy, 791
is_execution_policy_v, 790
is_exhaustive

layout_stride::mapping, 1047
is_fifo, 1744

directory_entry, 1731
is_final, 660
is_final_v, 656
is_floating_point, 658
is_floating_point_v, 655
is_function, 659
is_function_v, 655
is_fundamental, 659
is_fundamental_v, 655
is_geq, 541
is_gt, 541
is_gteq, 541
is_heap, 1370
is_heap_until, 1370
is_iec559

numeric_limits, 519
is_implicit_lifetime, 664
is_implicit_lifetime_v, 657
is_integer

numeric_limits, 518
is_integral, 658
is_integral_v, 655
is_invocable, 668
is_invocable_r, 668
is_invocable_r_v, 657
is_invocable_v, 657
is_layout_compatible, 667
is_layout_compatible_v, 657
is_leap

year, 1522
is_literal_type

zombie, 501
is_literal_type_v

zombie, 501
is_lock_free

atomic, 1818
atomic<floating-point-type >, 1818
atomic<integral-type >, 1818
atomic<shared_ptr<T>>, 1818
atomic<T*>, 1818
atomic<weak_ptr<T>>, 1818
atomic_ref, 1811
atomic_ref<floating-point-type >, 1811
atomic_ref<integral-type >, 1811
atomic_ref<T*>, 1811

is_lt, 541
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is_lteq, 541
is_lvalue_reference, 659
is_lvalue_reference_v, 655
is_member_function_pointer, 659
is_member_function_pointer_v, 655
is_member_object_pointer, 659
is_member_object_pointer_v, 655
is_member_pointer, 659
is_member_pointer_v, 655
is_modulo

numeric_limits, 520
is_move_assignable, 662
is_move_assignable_v, 656
is_move_constructible, 661
is_move_constructible_v, 656
is_negative

hh_mm_ss, 1547
is_neq, 541
is_nothrow_assignable, 664
is_nothrow_assignable_v, 657
is_nothrow_constructible, 663
is_nothrow_convertible, 667
is_nothrow_convertible_v, 657
is_nothrow_copy_assignable, 664
is_nothrow_copy_assignable_v, 657
is_nothrow_copy_constructible, 664
is_nothrow_default_constructible, 663
is_nothrow_destructible, 664
is_nothrow_destructible_v, 657
is_nothrow_invocable, 668
is_nothrow_invocable_r, 668
is_nothrow_invocable_v, 657
is_nothrow_move_assignable, 664
is_nothrow_move_assignable_v, 657
is_nothrow_move_constructible, 664
is_nothrow_swappable, 664
is_nothrow_swappable_v, 657
is_nothrow_swappable_with, 664
is_nothrow_swappable_with_v, 657
is_null_pointer, 658
is_null_pointer_v, 655
is_object, 659
is_object_v, 655
is_open

basic_filebuf, 1690
basic_fstream, 1699
basic_ifstream, 1695
basic_ofstream, 1697

is_other, 1744
directory_entry, 1731

is_partitioned, 1359
is_permutation, 1329, 1330
is_placeholder, 777
is_placeholder_v, 763
is_pm, 1548
is_pod, 1948
is_pointer, 659
is_pointer_interconvertible_base_of, 668

is_pointer_interconvertible_with_class,
675

is_pointer_v, 655
is_polymorphic, 660
is_polymorphic_v, 655
is_reference, 659
is_reference_v, 655
is_regular_file, 1745

directory_entry, 1731
is_relative

path, 1722
is_rvalue_reference, 659
is_rvalue_reference_v, 655
is_same_v, 657
is_scalar, 659
is_scalar_v, 655
is_scoped_enum, 661
is_scoped_enum_v, 656
is_signed

class, 660
numeric_limits, 518

is_signed_v, 656
is_socket, 1745

directory_entry, 1732
is_sorted, 1355
is_sorted_until, 1355
is_standard_layout, 660
is_standard_layout_v, 655
is_swappable, 662
is_swappable_v, 656
is_swappable_with, 662
is_swappable_with_v, 656
is_symlink, 1745

directory_entry, 1732
is_trivial, 660
is_trivial_v, 655
is_trivially_assignable, 663
is_trivially_assignable_v, 656
is_trivially_constructible, 663
is_trivially_copy_assignable, 663
is_trivially_copy_constructible, 663
is_trivially_copyable, 660
is_trivially_copyable_v, 655
is_trivially_default_constructible, 663
is_trivially_destructible, 663
is_trivially_destructible_v, 656
is_trivially_move_assignable, 663
is_trivially_move_constructible, 663
is_unbounded_array, 661
is_unbounded_array_v, 656
is_union, 659
is_union_v, 655
is_unsigned, 660
is_unsigned_v, 656
is_void, 658
is_void_v, 655
is_volatile, 660
is_volatile_v, 655
isalnum, 868, 1578
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isalpha, 868, 1578
isblank, 868, 1578
iscntrl, 868, 1578
isctype

regex_traits, 1763
regular expression traits, 1785

isdigit, 868, 1578
isfinite, 1466
isgraph, 868, 1578
isgreater, 1466
isgreaterequal, 1466
isinf, 1466
isless, 1466
islessequal, 1466
islessgreater, 1466
islower, 868, 1578
isnan, 1466
isnormal, 1466
iso_encoding

weekday, 1524
ispanstream, 1680
isprint, 868, 1578
ispunct, 868, 1578
isspace, 868, 1578
istream, 1612, 1639
istream_iterator, 1114

constructor, 1114, 1115
destructor, 1115
operator*, 1115
operator++, 1115
operator->, 1115
operator==, 1115

istreambuf_iterator, 1116, 1612
constructor, 1117, 1118
equal, 1118
operator*, 1118
operator++, 1118
operator==, 1118
proxy, 1117

istringstream, 1612, 1666
istrstream, 1945

constructor, 1945
rdbuf, 1945
str, 1945

isunordered, 1466
isupper, 868, 1578
iswalnum, 868
iswalpha, 868
iswblank, 868
iswcntrl, 868
iswctype, 868
iswdigit, 868
iswgraph, 868
iswlower, 868
iswprint, 868
iswpunct, 868
iswspace, 868
iswupper, 868
iswxdigit, 868

isxdigit, 868, 1578
iter_common_reference_t, 1056
iter_const_reference_t, 1095
iter_difference_t, 1065
iter_move, 1068

common_iterator, 1108
counted_iterator, 1113
filter_view::iterator , 1167
move_iterator, 1103
reverse_iterator, 1091
stride_view::iterator , 1260

iter_reference_t, 1055
iter_rvalue_reference_t, 1056
iter_swap, 1069, 1338

common_iterator, 1108
counted_iterator, 1113
filter_view::iterator , 1168
join_view::iterator , 1186
lazy_split_view::inner-iterator , 1199
move_iterator, 1103
reverse_iterator, 1091
stride_view::iterator , 1260

iter_value_t, 1066
iterator, 1950

basic_format_context, 810
basic_format_parse_context, 809
basic_string, 843
basic_string_view, 831
containers, 874
filter_view, 1166
path, 1723
span, 1033
transform_view::iterator , 1171

iterator_category
iterator_traits, 1066

iterator_traits, 1066
iterator_category, 1066
pointer, 1066
reference, 1066

iword
ios_base, 1622

J
jmp_buf, 555
join

jthread, 1801
thread, 1798
views, 1181

join_view, 1181
base, 1181
begin, 1181
constructor, 1183
end, 1181

join_view::iterator
constructor, 1185
iter_swap, 1186
operator++, 1185
operator--, 1186
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operator->, 1185
operator==, 1186

join_view::sentinel
constructor, 1186
operator==, 1187

join_with
views, 1187

joinable
jthread, 1801
thread, 1798

jthread, 1799
constructor, 1800, 1801
destructor, 1801
detach, 1801
get_id, 1802
get_stop_source, 1802
get_stop_token, 1802
hardware_concurrency, 1802
join, 1801
joinable, 1801
operator=, 1801
request_stop, 1802
swap, 1801, 1802

K
k

negative_binomial_distribution, 1432
key_comp

ordered associative containers, 891
key_compare

ordered associative containers, 890
key_eq

unordered associative containers, 901
key_equal

unordered associative containers, 899
key_type

ordered associative containers, 890
unordered associative containers, 898

keys
views, 1128

keys_view, 1128
kill_dependency, 1809
kilo, 677
knuth_b, 1423

L
L_tmpnam, 1750
labs, 509
laguerre, 1477
laguerref, 1477
laguerrel, 1477
lambda

exponential_distribution, 1433
largest_required_pool_block

pool_options, 643
last

span, 1032, 1033
last_spec, 1517

last_write_time, 1745
directory_entry, 1732

latch
arrive_and_wait, 1865
constructor, 1864
count_down, 1864
max, 1864
try_wait, 1864
wait, 1864

latest
choose, 1480

launder, 532
layout_left::mapping

constructor, 1041, 1042
operator(), 1042
operator==, 1042
required_span_size, 1042
stride, 1042

layout_right::mapping
constructor, 1043, 1044
operator(), 1044
operator==, 1044
required_span_size, 1044
stride, 1044

layout_stride::mapping
constructor, 1046, 1047
is_exhaustive, 1047
operator(), 1047
operator==, 1047
required_span_size, 1047

lazy_split
views, 1193

lazy_split_view, 1193
base, 1193
begin, 1193
constructor, 1195
end, 1193

lazy_split_view::inner-iterator , 1197
base, 1198
constructor, 1198
iter_swap, 1199
operator++, 1198
operator==, 1198

lazy_split_view::outer-iterator , 1195
constructor, 1196
operator*, 1196
operator++, 1196
operator==, 1196

lazy_split_view::outer-iterator ::value_-
type, 1197

begin, 1197
constructor, 1197
end, 1197

LC_ALL, 1610
LC_COLLATE, 1610
LC_CTYPE, 1610
LC_MONETARY, 1610
LC_NUMERIC, 1610
LC_TIME, 1610
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lcm, 1390
lconv, 1610
LDBL_DECIMAL_DIG, 522
LDBL_DIG, 522
LDBL_EPSILON, 522
LDBL_HAS_SUBNORM, 522
LDBL_MANT_DIG, 522
LDBL_MAX, 522
LDBL_MAX_10_EXP, 522
LDBL_MAX_EXP, 522
LDBL_MIN, 522
LDBL_MIN_10_EXP, 522
LDBL_MIN_EXP, 522
LDBL_TRUE_MIN, 522
ldexp, 1466
ldexpf, 1466
ldexpl, 1466
ldiv, 509
ldiv_t, 509
leap_second, 1559

date, 1560
operator<, 1560
operator<=, 1560
operator<=>, 1560, 1561
operator==, 1560
operator>, 1560
operator>=, 1560, 1561
value, 1560

leap_second_info, 1509
left, 1630
legendre, 1477
legendref, 1477
legendrel, 1477
length

basic_string, 852
basic_string_view, 835
codecvt, 1585
match_results, 1773
regex_traits, 1762
sub_match, 1769

length_error, 572, 573
constructor, 573

lerp, 1473
less, 771, 773

operator(), 771
partial_ordering, 543
strong_ordering, 545
weak_ordering, 544

less<>, 771
operator(), 771

less_equal, 771, 773
operator(), 771

less_equal<>, 771
operator(), 771

lexically_normal
path, 1722

lexically_proximate
path, 1723

lexically_relative

path, 1722
lexicographical_compare, 1375
lexicographical_compare_three_way, 1376
lgamma, 1466
lgammaf, 1466
lgammal, 1466
linear_congruential_engine, 1415

constructor, 1416
result_type, 1415

list, 925
allocator_type, 879
assign, 883
assign_range, 883
begin, 875
cbegin, 875
cend, 875
clear, 883
const_iterator, 874
const_reference, 874
const_reverse_iterator, 877
constructor, 927, 928
crbegin, 878
crend, 878
difference_type, 874
emplace, 881
empty, 876
end, 875
erase, 882, 929, 931
erase_if, 931
get_allocator, 879
insert, 882, 928
insert_range, 882
iterator, 874
max_size, 876
merge, 930
operator!=, 875
operator=, 874, 880
operator==, 875
rbegin, 877
reference, 874
remove, 930
rend, 877
resize, 928
reverse, 930
reverse_iterator, 877
size, 875
size_type, 874
sort, 930
splice, 929
swap, 875, 880
unique, 930
value_type, 874

little
endian, 824

llabs, 509
lldiv, 509
lldiv_t, 509
LLONG_MAX, 522
LLONG_MIN, 522
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llrint, 1466
llrintf, 1466
llrintl, 1466
llround, 1466
llroundf, 1466
llroundl, 1466
load

atomic, 1818
atomic<floating-point-type >, 1818
atomic<integral-type >, 1818
atomic<shared_ptr<T>>, 1828
atomic<T*>, 1818
atomic<weak_ptr<T>>, 1830
atomic_ref, 1811
atomic_ref<floating-point-type >, 1811
atomic_ref<integral-type >, 1811
atomic_ref<T*>, 1811

load_factor
unordered associative containers, 906

local-time-format-t , 1565
local_days, 1480
local_info, 1553

ambiguous, 1553
first, 1553
nonexistent, 1553
operator<<, 1553
result, 1553
second, 1553
unique, 1553

local_iterator
unordered associative containers, 899

local_seconds, 1480
local_t, 1480
local_time, 1480, 1513

from_stream, 1514
operator<<, 1513

local_time_format, 1565
locale, 1764, 1768, 1785

basic_format_context, 810
category, 1574
classic, 1578
combine, 1577
constructor, 1576, 1577
facet, 1575
global, 1577
has_facet, 1578
id, 1576
name, 1577
operator(), 1577
operator=, 1577
operator==, 1577
use_facet, 1578

localeconv, 1610
localtime, 1569
locate_zone, 1550

tzdb, 1549
zoned_traits<const time_zone*>, 1555

lock, 1853
shared_lock, 1851

unique_lock, 1848
weak_ptr, 631

lock_guard, 1845
constructor, 1845
destructor, 1845

log, 1466
complex, 1403
valarray, 1459

log10, 1466
complex, 1404
valarray, 1459

log10f, 1466
log10l, 1466
log1p, 1466
log1pf, 1466
log1pl, 1466
log2, 1466
log2f, 1466
log2l, 1466
logb, 1466
logbf, 1466
logbl, 1466
logf, 1466
logic_error, 572

constructor, 572, 573
logical_and, 774

operator(), 774
logical_and<>, 774

operator(), 774
logical_not, 774

operator(), 774
logical_not<>, 774

operator(), 774
logical_or, 774

operator(), 774
logical_or<>, 774

operator(), 774
logl, 1466
lognormal_distribution, 1438

constructor, 1438
m, 1438
result_type, 1438
s, 1438

LONG_MAX, 522
LONG_MIN, 522
longjmp, 555
lookup_classname

regex_traits, 1763
regular expression traits, 1785

lookup_collatename
regex_traits, 1763
regular expression traits, 1785

lower_bound, 1356
ordered associative containers, 895

lowest
numeric_limits, 517

lrint, 1466
lrintf, 1466
lrintl, 1466
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lround, 1466
lroundf, 1466
lroundl, 1466

M
m

fisher_f_distribution, 1441
lognormal_distribution, 1438

make12, 1548
make24, 1548
make_any, 734
make_const_iterator, 1060
make_const_sentinel, 1060
make_error_code

errc, 582
future_errc, 1868
io_errc, 1631

make_error_condition
errc, 584
future_errc, 1868
io_errc, 1631

make_exception_ptr, 539
make_format_args, 818
make_from_tuple, 702
make_heap, 1369
make_index_sequence, 680
make_integer_sequence, 650
make_move_iterator, 1104
make_obj_using_allocator, 606
make_optional, 718
make_pair, 690
make_preferred

path, 1718
make_ready_at_thread_exit

packaged_task, 1880
make_reverse_iterator, 1091
make_shared, 624, 626, 627
make_signed, 670
make_signed_t, 653
make_tuple, 701

tuple, 701
make_unique, 617
make_unsigned, 670
make_unsigned_t, 653
make_wformat_args, 818
malloc, 509, 610, 1936
map, 941

allocator_type, 879
at, 945
begin, 875
cbegin, 875
cend, 875
clear, 895
const_iterator, 874
const_reference, 874
const_reverse_iterator, 877
constructor, 890, 891, 945
contains, 895

count, 895
crbegin, 878
crend, 878
difference_type, 874
emplace, 891
emplace_hint, 892
empty, 876
end, 875
equal_range, 896
erase, 894
erase_if, 946
extract, 893, 894
find, 895
get_allocator, 879
insert, 892, 893, 945
insert_or_assign, 946
iterator, 874
key_comp, 891
key_compare, 890
key_type, 890
lower_bound, 895
mapped_type, 890
max_size, 876
merge, 894
node_type, 890
operator!=, 875
operator<, 945
operator=, 874, 880
operator==, 875, 945
range_format, 796
rbegin, 877
reference, 874
rend, 877
reverse_iterator, 877
size, 875
size_type, 874
swap, 875, 880
try_emplace, 945, 946
upper_bound, 896
value_comp, 891
value_compare, 890
value_type, 874, 890

map::value_compare
comp, 941
operator(), 941

mapped_type
ordered associative containers, 890
unordered associative containers, 899

mark_count
basic_regex, 1768

mask_array, 1464
operator*=, 1464
operator+=, 1464
operator-=, 1464
operator/=, 1464
operator<<=, 1464
operator=, 1464
operator>>=, 1464
operator[], 1464
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operator%=, 1464
operator&=, 1464
operator^=, 1464
operator|=, 1464
value_type, 1464

match_any, 1759, 1760
match_continuous, 1759, 1760, 1781
match_default, 1759
match_flag_type, 1759, 1786

regex_constants, 1759
match_not_bol, 1759, 1760
match_not_bow, 1759, 1760
match_not_eol, 1759, 1760
match_not_eow, 1759, 1760
match_not_null, 1759, 1760, 1781
match_prev_avail, 1759, 1760, 1781
match_results, 1770, 1779, 1782

begin, 1774
constructor, 1772
empty, 1773
end, 1774
format, 1774
get_allocator, 1775
length, 1773
matched, 1771
max_size, 1773
operator=, 1772
operator==, 1775
operator[], 1773
position, 1773
prefix, 1773
ready, 1772
size, 1773
str, 1773
suffix, 1774
swap, 1775

matched
match_results, 1771

MATH_ERREXCEPT, 1466
math_errhandling, 1466
MATH_ERRNO, 1466
max, 1372

barrier, 1866
counting_semaphore, 1862
duration, 1499
duration_values, 1495
latch, 1864
numeric_limits, 517
time_point, 1504
valarray, 1456
year, 1522

max_align_t, 508, 511
max_blocks_per_chunk

pool_options, 643
max_bucket_count

unordered associative containers, 906
max_digits10

numeric_limits, 518
max_element, 1373

max_exponent
numeric_limits, 518

max_exponent10
numeric_limits, 519

max_length
codecvt, 1585

max_load_factor
unordered associative containers, 907

max_size
allocator_traits, 608
array, 911
basic_stacktrace, 590
basic_string, 852
basic_string_view, 835
containers, 876
flat_map, 1003
match_results, 1773
scoped_allocator_adaptor, 649

MB_CUR_MAX, 509
MB_LEN_MAX, 522
mblen, 509, 871
mbrlen, 870, 872
mbrstowcs, 872
mbrtoc16, 871
mbrtoc32, 871
mbrtoc8, 871, 872
mbrtowc, 870, 872
mbsinit, 870, 871
mbsrtowcs, 870
mbstate_t, 870, 871
mbstowcs, 509, 871
mbtowc, 509, 871
mdspan

constructor, 1052, 1053
empty, 1054
operator[], 1054
size, 1054
swap, 1054

mean
normal_distribution, 1437
poisson_distribution, 1433
student_t_distribution, 1442

mega, 677
mem_fn, 779
mem_fun

zombie, 501
mem_fun1_ref_t

zombie, 501
mem_fun1_t

zombie, 501
mem_fun_ref

zombie, 501
mem_fun_ref_t

zombie, 501
mem_fun_t

zombie, 501
memchr, 869
memcmp, 869
memcpy, 869
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memmove, 869
memory_order, 1807, 1835

acq_rel, 1807
acquire, 1807
consume, 1807
relaxed, 1807
release, 1807
seq_cst, 1807

memory_order_acq_rel, 1807, 1835
memory_order_acquire, 1807, 1835
memory_order_consume, 1807, 1835
memory_order_relaxed, 1807, 1835
memory_order_release, 1807, 1835
memory_order_seq_cst, 1807, 1835
memory_resource, 637

allocate, 638
deallocate, 638
destructor, 638
do_allocate, 638
do_deallocate, 638
do_is_equal, 638
is_equal, 638
operator=, 637
operator==, 639

memset, 869
merge, 1361

forward_list, 924
list, 930
ordered associative containers, 894
unordered associative containers, 904

mergeable, 1084
mersenne_twister_engine, 1416

constructor, 1417
result_type, 1416

message
do_close, 1610
error_category, 580
error_code, 582
error_condition, 583

messages, 1609
close, 1609
do_get, 1609
do_open, 1609
get, 1609
open, 1609

messages_byname, 1610
micro, 677
microseconds, 1480
midpoint, 1390
milli, 677
milliseconds, 1480
min, 1371

duration, 1499
duration_values, 1495
numeric_limits, 517
time_point, 1504
valarray, 1456
year, 1522

min_element, 1373

min_exponent
numeric_limits, 518

min_exponent10
numeric_limits, 518

minmax, 1372
minmax_element, 1374
minstd_rand, 1422
minstd_rand0, 1422
minus, 768

operator(), 768
minus<>, 768

operator(), 768
minutes, 1480

hh_mm_ss, 1547
mismatch, 1327
mktime, 1569
modf, 1466
modff, 1466
modfl, 1466
modulus, 769

operator(), 769
modulus<>, 769

operator(), 769
money_get, 1603

do_get, 1604
get, 1604

money_put, 1605
do_put, 1605
put, 1605

moneypunct, 1606
curr_symbol, 1607
decimal_point, 1607
do_curr_symbol, 1608
do_decimal_point, 1607
do_frac_digits, 1608
do_grouping, 1608
do_neg_format, 1608
do_negative_sign, 1608
do_pos_format, 1608
do_positive_sign, 1608
do_thousands_sep, 1608
frac_digits, 1607
grouping, 1607
negative_sign, 1607
positive_sign, 1607
thousands_sep, 1607

moneypunct_byname, 1608
monostate, 729

hash, 730
operator<=>, 729
operator==, 729

monotonic_buffer_resource, 644
constructor, 645
destructor, 645
do_allocate, 645
do_deallocate, 646
do_is_equal, 646
release, 645
upstream_resource, 645
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month, 1519
constructor, 1519
from_stream, 1521
month_day, 1527
month_day_last, 1529
month_weekday, 1529
month_weekday_last, 1530
ok, 1520
operator unsigned, 1520
operator+, 1520
operator++, 1519
operator+=, 1520
operator-, 1520
operator--, 1519, 1520
operator-=, 1520
operator<<, 1520
operator<=>, 1520
operator==, 1520
year_month, 1531
year_month_day, 1534
year_month_day_last, 1537
year_month_weekday, 1539
year_month_weekday_last, 1541

month_day, 1527
constructor, 1527
day, 1528
from_stream, 1528
month, 1527
ok, 1528
operator<<, 1528
operator<=>, 1528
operator==, 1528

month_day_last, 1528
constructor, 1528
month, 1529
ok, 1529
operator<<, 1529
operator<=>, 1529
operator==, 1529
year_month_day_last, 1537

month_weekday, 1529
constructor, 1529
month, 1529
ok, 1529
operator<<, 1530
operator==, 1530
weekday_indexed, 1529

month_weekday_last, 1530
constructor, 1530
month, 1530
ok, 1530
operator<<, 1531
operator==, 1530
weekday_last, 1530

months, 1480
movable, 570
move

algorithm, 1336, 1337
basic_ios, 1627

function, 683
move_backward, 1337
move_constructible, 567
move_if_noexcept, 684
move_iterator, 1100

base, 1101
constructor, 1101
iter_move, 1103
iter_swap, 1103
operator*, 1102
operator+, 1102, 1103
operator++, 1102
operator+=, 1102
operator-, 1102, 1103
operator--, 1102
operator-=, 1102
operator->, 1951
operator<, 1103
operator<=, 1103
operator<=>, 1103
operator=, 1101
operator==, 1102
operator>, 1103
operator>=, 1103
operator[], 1102

move_only_function, 782
constructor, 783, 784
destructor, 785
operator bool, 785
operator(), 785
operator=, 785
operator==, 785
swap, 785

move_sentinel, 1104
base, 1104
constructor, 1104
operator=, 1104

mt19937, 1422
mt19937_64, 1422
multiline

syntax_option_type, 1760
multimap, 947

allocator_type, 879
begin, 875
cbegin, 875
cend, 875
clear, 895
const_iterator, 874
const_reference, 874
const_reverse_iterator, 877
constructor, 890, 891, 950
contains, 895
count, 895
crbegin, 878
crend, 878
difference_type, 874
emplace, 891
emplace_hint, 892
empty, 876
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end, 875
equal_range, 896
erase, 894
erase_if, 950
extract, 893, 894
find, 895
get_allocator, 879
insert, 892, 893, 950
iterator, 874
key_comp, 891
key_compare, 890
key_type, 890
lower_bound, 895
mapped_type, 890
max_size, 876
merge, 894
node_type, 890
operator!=, 875
operator<, 950
operator=, 874, 880
operator==, 875, 950
rbegin, 877
reference, 874
rend, 877
reverse_iterator, 877
size, 875
size_type, 874
swap, 875, 880
upper_bound, 896
value_comp, 891
value_compare, 890
value_type, 874, 890

multimap::value_compare
comp, 947
operator(), 947

multiplies, 768
operator(), 768

multiplies<>, 768
operator(), 768

multiset, 954
allocator_type, 879
begin, 875
cbegin, 875
cend, 875
clear, 895
const_iterator, 874
const_reference, 874
const_reverse_iterator, 877
constructor, 890, 891, 957
contains, 895
count, 895
crbegin, 878
crend, 878
difference_type, 874
emplace, 891
emplace_hint, 892
empty, 876
end, 875
equal_range, 896

erase, 894
erase_if, 958
extract, 893, 894
find, 895
get_allocator, 879
insert, 892, 893
iterator, 874
key_comp, 891
key_compare, 890
key_type, 890
lower_bound, 895
mapped_type, 890
max_size, 876
merge, 894
node_type, 890
operator!=, 875
operator<, 957
operator=, 874, 880
operator==, 875, 957
rbegin, 877
reference, 874
rend, 877
reverse_iterator, 877
size, 875
size_type, 874
swap, 875, 880
upper_bound, 896
value_comp, 891
value_compare, 890
value_type, 874, 890

mutex, 1838
shared_lock, 1853
unique_lock, 1849

N
n

chi_squared_distribution, 1439
fisher_f_distribution, 1441

name
error_category, 579, 580
locale, 1577
time_zone, 1554
time_zone_link, 1561
type_index, 790
type_info, 534

NAN, 1466
nan, 1466
nanf, 1466
nanl, 1466
nano, 677
nanoseconds, 1480
narrow

basic_ios, 1627
ctype, 1580
ctype<char>, 1583

native
endian, 824
path, 1719
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native_handle
stacktrace_entry, 587

NDEBUG, 490
nearbyint, 1466
nearbyintf, 1466
nearbyintl, 1466
negate, 769

operator(), 769
negate<>, 769

operator(), 769
negation, 675
negation_v, 658
negative_binomial_distribution, 1431

constructor, 1432
k, 1432
p, 1432
result_type, 1431

negative_sign
moneypunct, 1607

nested_exception, 539
constructor, 540
nested_ptr, 540
rethrow_if_nested, 540
rethrow_nested, 540
throw_with_nested, 540

nested_ptr
nested_exception, 540

new
operator, 503, 527–531, 610

new_delete_resource, 641
new_handler, 531
new_object

polymorphic_allocator, 640, 641
next, 1085, 1087

subrange, 1142
next_arg_id

basic_format_parse_context, 809
next_permutation, 1376
nextafter, 1466
nextafterf, 1466
nextafterl, 1466
nexttoward, 1466
nexttowardf, 1466
nexttowardl, 1466
noboolalpha, 1629
node_type

ordered associative containers, 890
unordered associative containers, 899

noemit_on_flush, 1660
none

bitset, 760
none_of, 1320
nonexistent

local_info, 1553
nonexistent_local_time, 1551

constructor, 1551
noop_coroutine, 554
noop_coroutine_handle, 550
noop_coroutine_promise, 553

norm, 1404
complex, 1403

normal_distribution, 1437
constructor, 1437
mean, 1437
result_type, 1437
stddev, 1437

noshowbase, 1629
noshowpoint, 1629
noshowpos, 1629
noskipws, 1629
nostopstate, 1792
nostopstate_t, 1792
nosubs

syntax_option_type, 1759, 1760
not1

zombie, 501
not2

zombie, 501
not_equal_to, 770, 772

operator(), 770
not_equal_to<>, 770

operator(), 770
not_fn, 776
nothrow, 526
nothrow_t, 526
notify_all

atomic, 1821
atomic<floating-point-type >, 1821
atomic<integral-type >, 1821
atomic<shared_ptr<T>>, 1829
atomic<T*>, 1821
atomic<weak_ptr<T>>, 1832
atomic_ref<T>, 1813
condition_variable, 1856
condition_variable_any, 1859

notify_all_at_thread_exit, 1855
notify_one

atomic, 1820
atomic<floating-point-type >, 1820
atomic<integral-type >, 1820
atomic<shared_ptr<T>>, 1829
atomic<T*>, 1820
atomic<weak_ptr<T>>, 1831
atomic_ref<T>, 1812
condition_variable, 1856
condition_variable_any, 1859

nounitbuf, 1630
nouppercase, 1630
now

file_clock, 1512
gps_clock, 1511
tai_clock, 1510
utc_clock, 1508

nth_element, 1356
NULL, 508–510, 870, 1569, 1610, 1750
null_memory_resource, 641
nullopt, 715
nullopt_t, 715
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nullptr_t, 508, 510
num_get, 1588

do_get, 1589, 1591
get, 1589

num_put, 1592
do_put, 1592, 1595
put, 1592

numeric_limits, 515, 516
denorm_min, 519
digits, 517
digits10, 518
epsilon, 518
float_denorm_style, 1939
has_denorm_loss, 1939
has_infinity, 519
has_quiet_NaN, 519
has_signaling_NaN, 519
infinity, 519
is_bounded, 520
is_exact, 518
is_iec559, 519
is_integer, 518
is_modulo, 520
is_signed, 518
lowest, 517
max, 517
max_digits10, 518
max_exponent, 518
max_exponent10, 519
min, 517
min_exponent, 518
min_exponent10, 518
quiet_NaN, 519
radix, 518
round_error, 518
round_style, 520
signaling_NaN, 519
tinyness_before, 520
traps, 520

numeric_limits<bool>, 521
numpunct, 1595

decimal_point, 1596
do_decimal_point, 1596
do_falsename, 1596
do_grouping, 1596
do_thousands_sep, 1596
do_truename, 1596
falsename, 1596
grouping, 1596
thousands_sep, 1596
truename, 1596

numpunct_byname, 1596

O
oct, 1630
offset

default_accessor, 1049
sys_info, 1552

offsetof, 508, 510, 1936
ofstream, 1612, 1687
ok

day, 1518
month, 1520
month_day, 1528
month_day_last, 1529
month_weekday, 1529
month_weekday_last, 1530
weekday, 1524
weekday_indexed, 1526
weekday_last, 1527
year, 1522
year_month, 1532
year_month_day, 1535
year_month_day_last, 1537
year_month_weekday, 1540
year_month_weekday_last, 1542

once_flag, 1853
open

basic_filebuf, 1690
basic_fstream, 1699
basic_ifstream, 1695
basic_ofstream, 1697
messages, 1609

open_mode
zombie, 502

openmode
ios_base, 1619

operator
delete, 503, 528–531, 610
new, 503, 527–531, 610

operator floating-point-type
atomic<floating-point-type >, 1818
atomic_ref<floating-point-type >, 1811

operator integral-type
atomic<integral-type >, 1818
atomic_ref<integral-type >, 1811

operator PairLike
subrange, 1142

operator type
atomic, 1818
atomic_ref, 1811

operator basic_string
sub_match, 1769

operator basic_string_view
basic_string, 860

operator bool
basic_format_arg, 817
basic_ios, 1628
basic_istream::sentry, 1644
basic_ostream::sentry, 1655
coroutine_handle, 552
coroutine_handle<noop_coroutine_-

promise>, 554
error_code, 582
error_condition, 583
expected, 745
expected<void>, 753
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function, 782
move_only_function, 785
optional, 714
shared_lock, 1853
shared_ptr, 624
stacktrace_entry, 587
unique_lock, 1849
unique_ptr, 614

operator const filesystem::path&
directory_entry, 1731

operator coroutine_handle<>
coroutine_handle, 552
coroutine_handle<noop_coroutine_-

promise>, 553
operator delete

generator::promise_type, 1272
operator int

year, 1522
operator local_days

year_month_day, 1535
year_month_day_last, 1537
year_month_weekday, 1540
year_month_weekday_last, 1542

operator local_time
zoned_time, 1558

operator new
generator::promise_type, 1271

operator partial_ordering
strong_ordering, 545
weak_ordering, 544

operator precision
hh_mm_ss, 1547

operator shared_ptr<T>
atomic<shared_ptr<T>>, 1828

operator string_type
path, 1719

operator sys_days
year_month_day, 1534
year_month_day_last, 1537
year_month_weekday, 1539
year_month_weekday_last, 1542

operator sys_time
zoned_time, 1558

operator T*
atomic<T*>, 1818
atomic_ref<T*>, 1811

operator T&
reference_wrapper, 766

operator unsigned
day, 1518
month, 1520

operator weak_ordering
strong_ordering, 545

operator weak_ptr<T>
atomic<weak_ptr<T>>, 1830

operator!
basic_ios, 1628
valarray, 1455

operator!=, 1940

containers, 875
coroutine_handle, 553
optional, 716, 717
queue, 988
reverse_iterator, 1090
stack, 995
valarray, 1458
variant, 727

operator""d
day, 1519

operator""h
duration, 1501

operator""i
complex, 1405

operator""if
complex, 1405

operator""il
complex, 1404

operator""min
duration, 1501

operator""ms
duration, 1501

operator""ns
duration, 1501

operator""s
duration, 1501
string, 868
u16string, 868
u32string, 868
u8string, 868
wstring, 868

operator""sv
string_view, 840
u16string_view, 840
u32string_view, 840
u8string_view, 840
wstring_view, 840

operator""us
duration, 1501

operator""y
year, 1523

operator()
bit_and, 775
bit_and<>, 775
bit_not, 776
bit_not<>, 776
bit_or, 775
bit_or<>, 775
bit_xor, 775
bit_xor<>, 775
boyer_moore_horspool_searcher, 788
boyer_moore_searcher, 787
clock_time_conversion, 1514–1516
coroutine_handle, 552
coroutine_handle<noop_coroutine_-

promise>, 554
default_delete, 611
default_searcher, 786
divides, 769
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divides<>, 769
equal_to, 770
equal_to<>, 770
function, 782
greater, 770
greater<>, 770
greater_equal, 771
greater_equal<>, 771
layout_left::mapping, 1042
layout_right::mapping, 1044
layout_stride::mapping, 1047
less, 771
less<>, 771
less_equal, 771
less_equal<>, 771
locale, 1577
logical_and, 774
logical_and<>, 774
logical_not, 774
logical_not<>, 774
logical_or, 774
logical_or<>, 774
map::value_compare, 941
minus, 768
minus<>, 768
modulus, 769
modulus<>, 769
move_only_function, 785
multimap::value_compare, 947
multiplies, 768
multiplies<>, 768
negate, 769
negate<>, 769
not_equal_to, 770
not_equal_to<>, 770
owner_less, 632
packaged_task, 1880
plus, 768
plus<>, 768
random_device, 1424
reference_wrapper, 767

operator*
back_insert_iterator, 1092
basic_const_iterator, 1098
basic_istream_view::iterator , 1159
common_iterator, 1107
complex, 1402
counted_iterator, 1111
duration, 1499
expected, 745
expected<void>, 753
filter_view::iterator , 1167
front_insert_iterator, 1093
generator::iterator , 1272
insert_iterator, 1094
iota_view::iterator , 1152
istream_iterator, 1115
istreambuf_iterator, 1118
lazy_split_view::outer-iterator , 1196

move_iterator, 1102
optional, 713, 714
ostream_iterator, 1116
ostreambuf_iterator, 1119
regex_iterator, 1781
regex_token_iterator, 1784
repeat_view::iterator , 1156
reverse_iterator, 1089
shared_ptr, 624
unique_ptr, 614
valarray, 1457

operator*=
complex, 1401
duration, 1498
gslice_array, 1463
indirect_array, 1465
mask_array, 1464
slice_array, 1461
valarray, 1455, 1456

operator+
basic_const_iterator, 1099
basic_string, 863, 864
complex, 1401
counted_iterator, 1112
day, 1518
duration, 1498, 1504
elements_view::iterator , 1210
enumerate_view::iterator , 1215
iota_view::iterator , 1153
month, 1520
move_iterator, 1102, 1103
repeat_view::iterator , 1157
reverse_iterator, 1089, 1091
stride_view::iterator , 1260
time_point, 1504
transform_view::iterator , 1172
valarray, 1455, 1457
weekday, 1525
year, 1522
year_month, 1532
year_month_day, 1535
year_month_day_last, 1537, 1538
year_month_weekday, 1540
year_month_weekday_last, 1542

operator++
atomic<integral-type >, 1826
atomic<T*>, 1826
atomic_ref<integral-type >, 1816
atomic_ref<T*>, 1816
back_insert_iterator, 1092
basic_const_iterator, 1098
basic_istream_view::iterator , 1159
common_iterator, 1107
counted_iterator, 1111
day, 1517, 1518
directory_iterator, 1734
duration, 1498
elements_view::iterator , 1209
enumerate_view::iterator , 1214
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filter_view::iterator , 1167
front_insert_iterator, 1093
generator::iterator , 1272
insert_iterator, 1094
iota_view::iterator , 1152
istream_iterator, 1115
istreambuf_iterator, 1118
join_view::iterator , 1185
lazy_split_view::inner-iterator , 1198
lazy_split_view::outer-iterator , 1196
month, 1519
move_iterator, 1102
ostream_iterator, 1116
ostreambuf_iterator, 1119
recursive_directory_iterator, 1737
regex_iterator, 1781
regex_token_iterator, 1784
repeat_view::iterator , 1156
reverse_iterator, 1089
stride_view::iterator , 1258, 1259
time_point, 1504
transform_view::iterator , 1171, 1172
weekday, 1524
year, 1521

operator+=
atomic<floating-point-type >, 1824
atomic<integral-type >, 1823
atomic<T*>, 1823, 1824, 1826
atomic_ref<floating-point-type >, 1815
atomic_ref<integral-type >, 1814
atomic_ref<T*>, 1816
basic_const_iterator, 1098
basic_string, 853, 854
complex, 1401
counted_iterator, 1112
day, 1518
duration, 1498
elements_view::iterator , 1210
enumerate_view::iterator , 1215
gslice_array, 1463
indirect_array, 1465
iota_view::iterator , 1152
mask_array, 1464
month, 1520
move_iterator, 1102
path, 1717, 1718
repeat_view::iterator , 1157
reverse_iterator, 1090
slice_array, 1461
stride_view::iterator , 1259
time_point, 1504
transform_view::iterator , 1172
valarray, 1455, 1456
weekday, 1524
year, 1522
year_month, 1531, 1532
year_month_day, 1534
year_month_day_last, 1536, 1537
year_month_weekday, 1539

year_month_weekday_last, 1541
operator-

basic_const_iterator, 1099
common_iterator, 1108
complex, 1402
counted_iterator, 1112
day, 1518
duration, 1498, 1504
elements_view::iterator , 1210, 1211
elements_view::sentinel , 1211, 1212
enumerate_view::iterator , 1215
enumerate_view::sentinel , 1216
iota_view::iterator , 1153
month, 1520
move_iterator, 1102, 1103
repeat_view::iterator , 1157
reverse_iterator, 1089, 1091
stride_view::iterator , 1260
time_point, 1504, 1505
transform_view::iterator , 1173
transform_view::sentinel , 1174
valarray, 1455, 1457
weekday, 1525
year, 1522
year_month, 1532
year_month_day, 1535
year_month_day_last, 1538
year_month_weekday, 1540
year_month_weekday_last, 1542

operator--
atomic<integral-type >, 1826
atomic<T*>, 1826
atomic_ref<integral-type >, 1816
atomic_ref<T*>, 1816
basic_const_iterator, 1098
counted_iterator, 1112
day, 1518
duration, 1498
elements_view::iterator , 1210
enumerate_view::iterator , 1215
filter_view::iterator , 1167
iota_view::iterator , 1152
join_view::iterator , 1186
month, 1519, 1520
move_iterator, 1102
repeat_view::iterator , 1156, 1157
reverse_iterator, 1090
stride_view::iterator , 1259
time_point, 1504
transform_view::iterator , 1172
weekday, 1524
year, 1522

operator-=
atomic<floating-point-type >, 1824
atomic<integral-type >, 1823
atomic<T*>, 1823, 1824, 1826
atomic_ref<floating-point-type >, 1815
atomic_ref<integral-type >, 1814
atomic_ref<T*>, 1816
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basic_const_iterator, 1098
complex, 1401
counted_iterator, 1112
day, 1518
duration, 1498
elements_view::iterator , 1210
enumerate_view::iterator , 1215
gslice_array, 1463
indirect_array, 1465
iota_view::iterator , 1152
mask_array, 1464
month, 1520
move_iterator, 1102
repeat_view::iterator , 1157
reverse_iterator, 1090
slice_array, 1461
stride_view::iterator , 1259
time_point, 1504
transform_view::iterator , 1172
valarray, 1455, 1456
weekday, 1524
year, 1522
year_month, 1531, 1532
year_month_day, 1534
year_month_day_last, 1536, 1537
year_month_weekday, 1539
year_month_weekday_last, 1541

operator->
basic_const_iterator, 1098
common_iterator, 1107
counted_iterator, 1111
expected, 745
filter_view::iterator , 1167
istream_iterator, 1115
join_view::iterator , 1185
move_iterator, 1951
optional, 713
regex_iterator, 1781
regex_token_iterator, 1784
reverse_iterator, 1089
shared_ptr, 624
unique_ptr, 614

operator/
calendar types, 1543–1546
complex, 1402
duration, 1499
path, 1724
valarray, 1457

operator/=
complex, 1401
duration, 1498
gslice_array, 1463
indirect_array, 1465
mask_array, 1464
path, 1717
slice_array, 1461
valarray, 1455, 1456

operator<
basic_const_iterator, 1098, 1099

duration, 1500
elements_view::iterator , 1210
iota_view::iterator , 1153
leap_second, 1560
map, 945
move_iterator, 1103
multimap, 950
multiset, 957
optional, 716, 717
partial_ordering, 543
queue, 988
reverse_iterator, 1090
set, 954
stack, 995
stride_view::iterator , 1259
strong_ordering, 546
sys_time, 1560
time_point, 1505
transform_view::iterator , 1172
type_index, 789
unique_ptr, 618
valarray, 1458
variant, 727
vector, 933
weak_ordering, 544

operator<<
basic_ostream, 1656–1658, 1660
basic_stacktrace, 591
basic_string, 865
basic_string_view, 839
bitset, 759, 761
byte, 511
complex, 1402
day, 1518
directory_entry, 1732
duration, 1502
error_code, 582
file_time, 1513
gps_time, 1511
local_info, 1553
local_time, 1513
month, 1520
month_day, 1528
month_day_last, 1529
month_weekday, 1530
month_weekday_last, 1531
path, 1723
shared_ptr, 629
stacktrace_entry, 591
sub_match, 1770
sys_days, 1507
sys_info, 1553
sys_time, 1506
tai_time, 1510
thread::id, 1797
unique_ptr, 619
utc_time, 1508
valarray, 1457
weekday, 1525
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weekday_indexed, 1526
weekday_last, 1527
year, 1523
year_month, 1532
year_month_day, 1535
year_month_day_last, 1538
year_month_weekday, 1540
year_month_weekday_last, 1542
zoned_time, 1559

operator<<=
bitset, 758
byte, 511
gslice_array, 1463
indirect_array, 1465
mask_array, 1464
slice_array, 1461
valarray, 1455, 1456

operator<=, 1940
basic_const_iterator, 1098, 1099
duration, 1500
elements_view::iterator , 1210
iota_view::iterator , 1153
leap_second, 1560
move_iterator, 1103
optional, 716, 718
partial_ordering, 543
queue, 988
reverse_iterator, 1090
stack, 995
stride_view::iterator , 1259
strong_ordering, 546
sys_time, 1560
time_point, 1505
transform_view::iterator , 1172
type_index, 789
unique_ptr, 618, 619
valarray, 1458
variant, 728
weak_ordering, 544

operator<=>
basic_const_iterator, 1098, 1099
basic_stacktrace, 590
basic_string_view, 839
coroutine_handle, 553
counted_iterator, 1113
day, 1518
directory_entry, 1732
duration, 1500
elements_view::iterator , 1210
enumerate_view::iterator , 1215
error_category, 580
error_code, 584
error_condition, 584
iota_view::iterator , 1153
leap_second, 1560, 1561
monostate, 729
month, 1520
month_day, 1528
month_day_last, 1529

move_iterator, 1103
optional, 717, 718
pair, 690
partial_ordering, 543
path, 1724
queue, 988
repeat_view::iterator , 1157
reverse_iterator, 1091
shared_ptr, 628
stack, 995
stride_view::iterator , 1260
strong_ordering, 546
sub_match, 1769, 1770
sys_time, 1561
thread::id, 1797
time_zone, 1555
time_zone_link, 1561
transform_view::iterator , 1172
tuple, 704
type_index, 789
unique_ptr, 618, 619
variant, 728
weak_ordering, 545
year, 1522
year_month, 1532
year_month_day, 1535
year_month_day_last, 1537

operator=
allocator, 608
allocator-aware containers, 880
any, 732
atomic, 1818
atomic<floating-point-type >, 1818
atomic<integral-type >, 1818
atomic<shared_ptr<T>>, 1828
atomic<T*>, 1818
atomic<weak_ptr<T>>, 1830
atomic_ref, 1811
atomic_ref<floating-point-type >, 1811
atomic_ref<integral-type >, 1811
atomic_ref<T*>, 1811
back_insert_iterator, 1092
basic_filebuf, 1690
basic_iostream, 1652
basic_istream, 1643
basic_ostream, 1654
basic_regex, 1767
basic_spanbuf, 1682
basic_stacktrace, 589
basic_streambuf, 1635
basic_string, 851
basic_stringbuf, 1669
basic_syncbuf, 1701
common_iterator, 1106
containers, 874
coroutine_handle, 552
counted_iterator, 1111
directory_iterator, 1734
enable_shared_from_this, 633

Index of library names 2084



© ISO/IEC N4950

error_code, 582
error_condition, 583
exception, 537
expected, 742–744
expected<void>, 752
front_insert_iterator, 1093
function, 781
future, 1873
generator, 1269
generator::iterator , 1272
gslice_array, 1463
indirect_array, 1465, 1466
insert_iterator, 1094
jthread, 1801
locale, 1577
mask_array, 1464
match_results, 1772
memory_resource, 637
move_iterator, 1101
move_only_function, 785
move_sentinel, 1104
optional, 710–712
ostream_iterator, 1116
ostreambuf_iterator, 1119
packaged_task, 1879
pair, 688, 689
path, 1716
promise, 1871
recursive_directory_iterator, 1736
reference_wrapper, 766
reverse_iterator, 1089
shared_future, 1875, 1876
shared_lock, 1851
shared_ptr, 623
slice_array, 1461
span, 1032
stop_source, 1793
stop_token, 1792
thread, 1798
tuple, 698–700
unique_lock, 1848
unique_ptr, 614, 616
valarray, 1453
variant, 723, 724
weak_ptr, 631
zoned_time, 1558

operator==
allocator, 609
basic_const_iterator, 1098
basic_istream_view::iterator , 1159
basic_stacktrace, 590
basic_string_view, 839
bitset, 760
common_iterator, 1108
complex, 1402
containers, 875
coroutine_handle, 553
counted_iterator, 1113
day, 1518

directory_entry, 1732
duration, 1500
elements_view::iterator , 1210
elements_view::sentinel , 1211
enumerate_view::iterator , 1215
enumerate_view::sentinel , 1216
error_category, 580
error_code, 584
error_condition, 584
expected, 748
expected<void>, 755
extents, 1038
filter_view::iterator , 1167
filter_view::sentinel , 1168
function, 782
generator::iterator , 1272
iota_view::iterator , 1153
iota_view::sentinel , 1154
istream_iterator, 1115
istreambuf_iterator, 1118
join_view::iterator , 1186
join_view::sentinel , 1187
layout_left::mapping, 1042
layout_right::mapping, 1044
layout_stride::mapping, 1047
lazy_split_view::inner-iterator , 1198
lazy_split_view::outer-iterator , 1196
leap_second, 1560
locale, 1577
map, 945
match_results, 1775
memory_resource, 639
monostate, 729
month, 1520
month_day, 1528
month_day_last, 1529
month_weekday, 1530
month_weekday_last, 1530
move_iterator, 1102
move_only_function, 785
multimap, 950
multiset, 957
optional, 716, 717
pair, 690
partial_ordering, 543
path, 1724
polymorphic_allocator, 641
queue, 988
regex_iterator, 1780
regex_token_iterator, 1782, 1784
repeat_view::iterator , 1157
reverse_iterator, 1090
scoped_allocator_adaptor, 649
set, 954
shared_ptr, 627, 628
stack, 995
stacktrace_entry, 587
stop_source, 1794
stop_token, 1792
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stride_view::iterator , 1259
strong_ordering, 546
sub_match, 1769, 1770
sys_time, 1560
take_view::sentinel , 1177
take_while_view::sentinel , 1178
thread::id, 1797
time_point, 1505
time_zone, 1555
time_zone_link, 1561
transform_view::iterator , 1172
transform_view::sentinel , 1174
tuple, 704
type_index, 789
type_info, 533
unexpected, 737
unique_ptr, 618
unreachable_sentinel_t, 1113
valarray, 1458
variant, 727
vector, 933
weak_ordering, 544
weekday, 1525
weekday_indexed, 1526
weekday_last, 1527
year, 1522
year_month, 1532
year_month_day, 1535
year_month_day_last, 1537
year_month_weekday, 1540
year_month_weekday_last, 1542
zoned_time, 1559

operator>, 1940
basic_const_iterator, 1098, 1099
duration, 1500
elements_view::iterator , 1210
iota_view::iterator , 1153
leap_second, 1560
move_iterator, 1103
optional, 716, 717
partial_ordering, 543
queue, 988
reverse_iterator, 1090
stack, 995
stride_view::iterator , 1259
strong_ordering, 546
sys_time, 1560
time_point, 1505
transform_view::iterator , 1172
type_index, 789
unique_ptr, 618
valarray, 1458
variant, 728
weak_ordering, 544

operator>=, 1940
basic_const_iterator, 1098, 1099
duration, 1500
elements_view::iterator , 1210
iota_view::iterator , 1153

leap_second, 1560, 1561
move_iterator, 1103
optional, 717, 718
partial_ordering, 543
queue, 988
reverse_iterator, 1091
stack, 995
stride_view::iterator , 1259
strong_ordering, 546
sys_time, 1560, 1561
time_point, 1505
transform_view::iterator , 1172
type_index, 789
unique_ptr, 618, 619
valarray, 1458
variant, 728
weak_ordering, 544

operator>>
basic_istream, 1644–1646, 1651
basic_string, 865
bitset, 759, 761
byte, 511
complex, 1402
path, 1723
valarray, 1457

operator>>=
bitset, 758
byte, 511
gslice_array, 1463
indirect_array, 1465
mask_array, 1464
slice_array, 1461
valarray, 1455, 1456

operator[]
basic_const_iterator, 1098
basic_stacktrace, 590
basic_string, 853
basic_string_view, 835
bitset, 759
counted_iterator, 1111
flat_map, 1003
indirect_array, 1465
iota_view::iterator , 1152
map, 945
mask_array, 1464
match_results, 1773
mdspan, 1054
move_iterator, 1102
repeat_view::iterator , 1157
reverse_iterator, 1089
shared_ptr, 624
span, 1033
unique_ptr, 617
unordered_map, 965
valarray, 1453–1455
weekday, 1524

operator%
duration, 1499
valarray, 1457
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operator%=
duration, 1498
gslice_array, 1463
indirect_array, 1465
mask_array, 1464
slice_array, 1461
valarray, 1455, 1456

operator&
bitset, 760
byte, 511
valarray, 1457

operator&=
atomic<integral-type >, 1823
atomic_ref<integral-type >, 1814
bitset, 758
byte, 511
gslice_array, 1463
indirect_array, 1465
mask_array, 1464
slice_array, 1461
valarray, 1455, 1456

operator&&
valarray, 1458

operator^
bitset, 761
byte, 512
valarray, 1457

operator^=
atomic<integral-type >, 1823
atomic_ref<integral-type >, 1814
bitset, 758
byte, 511
gslice_array, 1463
indirect_array, 1465
mask_array, 1464
slice_array, 1461
valarray, 1455, 1456

operator~
bitset, 759
byte, 512
valarray, 1455

operator|
bitset, 760
byte, 511
valarray, 1457

operator|=
atomic<integral-type >, 1823
atomic_ref<integral-type >, 1814
bitset, 758
byte, 511
gslice_array, 1463
indirect_array, 1465
mask_array, 1464
slice_array, 1461
valarray, 1455, 1456

operator||
valarray, 1458

optimize
syntax_option_type, 1759, 1760

optional, 707
and_then, 714
constructor, 708–710
destructor, 710
emplace, 712
has_value, 714
hash, 718
operator bool, 714
operator!=, 716, 717
operator*, 713, 714
operator->, 713
operator<, 716, 717
operator<=, 716, 718
operator<=>, 717, 718
operator=, 710–712
operator==, 716, 717
operator>, 716, 717
operator>=, 717, 718
or_else, 715
reset, 715
swap, 713, 718
transform, 715
value, 714
value_or, 714
value_type, 707

options
recursive_directory_iterator, 1736
synchronized_pool_resource, 644
unsynchronized_pool_resource, 644

or_else
expected, 747
expected<void>, 754
optional, 715

ospanstream, 1680
ostream, 1612, 1640
ostream_iterator, 1115

constructor, 1116
operator*, 1116
operator++, 1116
operator=, 1116

ostreambuf_iterator, 1118, 1612
constructor, 1119
failed, 1119
operator*, 1119
operator++, 1119
operator=, 1119

ostringstream, 1612, 1666
ostrstream, 1945

constructor, 1946
freeze, 1946
pcount, 1946
rdbuf, 1946
str, 1946

osyncstream, 1612, 1699
out

basic_format_context, 810
codecvt, 1585
format_to_n_result, 794

out_of_range, 572, 574, 757–760
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constructor, 574
out_ptr, 635
out_ptr_t, 633

constructor, 634
destructor, 634

outer_allocator
scoped_allocator_adaptor, 648, 649

outer_allocator_type
scoped_allocator_adaptor, 646

output_iterator, 1074
output_iterator_tag, 1084
output_range, 1137
overflow

basic_filebuf, 1692
basic_streambuf, 1638
basic_stringbuf, 1671
strstreambuf, 1943

overflow_error, 572, 574, 757, 760
constructor, 575

owner_before
shared_ptr, 624
weak_ptr, 631

owner_less, 631
operator(), 632

owns_lock
shared_lock, 1853
unique_lock, 1849

P
p

bernoulli_distribution, 1429
binomial_distribution, 1430
geometric_distribution, 1431
negative_binomial_distribution, 1432

packaged_task, 1878
constructor, 1879
destructor, 1879
get_future, 1880
make_ready_at_thread_exit, 1880
operator(), 1880
operator=, 1879
reset, 1880
swap, 1879, 1880
valid, 1879

pair, 686, 699, 700
constructor, 687, 688
get, 691
operator<=>, 690
operator=, 688, 689
operator==, 690
swap, 689, 690

pairwise
views, 1129

pairwise_transform
views, 1129

par, 791
execution, 791

par_unseq, 791

execution, 791
param

seed_seq, 1425
parent_path

path, 1720
parse, 1565–1569

formatter, 820, 938, 1028
range-default-formatter , 814–816
range_formatter, 813

partial_order, 548
partial_ordering, 543

equivalent, 543
greater, 543
less, 543
operator<, 543
operator<=, 543
operator<=>, 543
operator==, 543
operator>, 543
operator>=, 543
unordered, 543

partial_sort, 1353
partial_sort_copy, 1353
partial_sum, 1384
partition, 1359
partition_copy, 1360
partition_point, 1361
path, 1709

append, 1717
assign, 1716
begin, 1723
c_str, 1719
clear, 1718
compare, 1720
concat, 1717, 1718
constructor, 1715, 1716
copy, 1738
directory_entry, 1731
empty, 1721
end, 1723
extension, 1721
filename, 1720
generic_string, 1719, 1720
generic_u16string, 1720
generic_u32string, 1720
generic_u8string, 1720
generic_wstring, 1720
has_extension, 1722
has_filename, 1722
has_parent_path, 1721
has_relative_path, 1721
has_root_directory, 1721
has_root_name, 1721
has_root_path, 1721
has_stem, 1722
hash_value, 1724
is_absolute, 1722
is_relative, 1722
iterator, 1723
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lexically_normal, 1722
lexically_proximate, 1723
lexically_relative, 1722
make_preferred, 1718
native, 1719
operator string_type, 1719
operator+=, 1717, 1718
operator/, 1724
operator/=, 1717
operator<<, 1723
operator<=>, 1724
operator=, 1716
operator==, 1724
operator>>, 1723
parent_path, 1720
preferred_separator, 1712
relative_path, 1720
remove, 1747
remove_filename, 1718
replace_extension, 1719
replace_filename, 1718
root_directory, 1720
root_name, 1720
root_path, 1720
stem, 1721
string, 1719
swap, 1719, 1724
u16string, 1719
u32string, 1719
u8string, 1719
value_type, 1712
wstring, 1719

path1
filesystem_error, 1725

path2
filesystem_error, 1725

pbackfail
basic_filebuf, 1692
basic_streambuf, 1638
basic_stringbuf, 1671
strstreambuf, 1943

pbase
basic_streambuf, 1636

pbump
basic_streambuf, 1636

pcount
ostrstream, 1946
strstream, 1947
strstreambuf, 1943

peek
basic_istream, 1649

perm_options, 1727
permissions, 1746

file_status, 1728, 1729
perms, 1727
permutable, 1083
perror, 1750
peta, 677
pico, 677

piecewise_constant_distribution, 1444
constructor, 1445
densities, 1445
intervals, 1445
result_type, 1444

piecewise_construct, 691
piecewise_construct_t, 691
piecewise_linear_distribution, 1445, 1446

constructor, 1446, 1447
densities, 1447
intervals, 1447
result_type, 1446

placeholders, 777, 778
plus, 768

operator(), 768
plus<>, 768

operator(), 768
pointer

allocator_traits, 607
basic_string, 843
basic_string_view, 831
iterator_traits, 1066
pointer_traits, 601
scoped_allocator_adaptor, 646

pointer_safety
zombie, 501

pointer_to
pointer_traits, 601

pointer_to_binary_function
zombie, 501

pointer_to_unary_function
zombie, 501

pointer_traits, 600
difference_type, 601
element_type, 601
pointer, 601
pointer_to, 601
rebind, 601
to_address, 602

poisson_distribution, 1432
constructor, 1433
mean, 1433
result_type, 1432

polar
complex, 1403

polymorphic_allocator, 639
allocate, 640
allocate_bytes, 640
allocate_object, 640
construct, 641
constructor, 640
deallocate, 640
deallocate_bytes, 640
deallocate_object, 640
destroy, 1948
new_object, 640, 641
operator==, 641
resource, 641
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select_on_container_copy_construction,
641

value_type, 639
pool_options, 642

largest_required_pool_block, 643
max_blocks_per_chunk, 643

pop
forward_list, 921
priority_queue, 992
recursive_directory_iterator, 1737

pop_back
basic_string, 858

pop_heap, 1368
popcount, 823
position

match_results, 1773
positive_sign

moneypunct, 1607
pow, 1404, 1466

complex, 1404
valarray, 1459

powf, 1466
powl, 1466
pptr

basic_streambuf, 1636
precision

ios_base, 1578, 1621
pred

chunk_by_view, 1253
drop_while_view, 1181
filter_view, 1165
take_while_view, 1178

predicate, 571
preferred

zombie, 502
preferred_separator

path, 1712
prefix

match_results, 1773
prepend_range

forward_list, 921
prev, 1085, 1087

subrange, 1143
prev_permutation, 1377
PRIdFASTN, 1751
PRIdLEASTN, 1751
PRIdMAX, 1751
PRIdN, 1751
PRIdPTR, 1751
PRIiFASTN, 1751
PRIiLEASTN, 1751
PRIiMAX, 1751
PRIiN, 1751
PRIiPTR, 1751
print, 1659, 1665
printf, 1750
println, 1659, 1665
PRIoFASTN, 1751
PRIoLEASTN, 1751

PRIoMAX, 1751
PRIoN, 1751
PRIoPTR, 1751
priority_queue, 988

constructor, 990–992
emplace, 992
pop, 992
push, 992
push_range, 992
swap, 992

PRIuFASTN, 1751
PRIuLEASTN, 1751
PRIuMAX, 1751
PRIuN, 1751
PRIuPTR, 1751
PRIXFASTN, 1751
PRIxFASTN, 1751
PRIXLEASTN, 1751
PRIxLEASTN, 1751
PRIXMAX, 1751
PRIxMAX, 1751
PRIXN, 1751
PRIxN, 1751
PRIXPTR, 1751
PRIxPTR, 1751
probabilities

discrete_distribution, 1444
proj

complex, 1403
projected, 1082
promise, 1870

constructor, 1870
coroutine_handle, 553
coroutine_handle<noop_coroutine_-

promise>, 554
destructor, 1871
get_future, 1871
operator=, 1871
set_exception, 1871
set_exception_at_thread_exit, 1872
set_value, 1871
set_value_at_thread_exit, 1871
swap, 1871, 1872
uses_allocator, 1870

propagate_on_container_copy_assignment
allocator_traits, 607
scoped_allocator_adaptor, 647

propagate_on_container_move_assignment
allocator, 608
allocator_traits, 607
scoped_allocator_adaptor, 648

propagate_on_container_swap
allocator_traits, 608
scoped_allocator_adaptor, 648

proximate, 1746
proxy

istreambuf_iterator, 1117
ptr

from_chars_result, 792
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to_chars_result, 792
ptr_fun

zombie, 501
ptrdiff_t, 508
pubimbue

basic_streambuf, 1634
pubseekoff

basic_streambuf, 1634
pubseekpos

basic_streambuf, 1634
pubsetbuf

basic_streambuf, 1634
pubsync

basic_streambuf, 1634
push

priority_queue, 992
push_back

basic_string, 855
deque, 917

push_front
deque, 917
forward_list, 921

push_heap, 1368
push_range

priority_queue, 992
queue, 988
stack, 994

put
basic_ostream, 1659
money_put, 1605
num_put, 1592
time_put, 1602

put_money, 1663
put_time, 1663
putback

basic_istream, 1649
putc, 1750
putchar, 1750
putenv, 554
puts, 1750
putwc, 870
putwchar, 870
pword

ios_base, 1623

Q
qsort, 509, 1396
queue, 986

constructor, 987, 988
operator<, 988
operator<=, 988
operator<=>, 988
operator==, 988
operator>, 988
operator>=, 988
push_range, 988
swap, 988

quick_exit, 509, 526

quiet_NaN
numeric_limits, 519

quoted, 1664

R
radix

numeric_limits, 518
raise, 555
rand, 509, 1447

discouraged, 1447
RAND_MAX, 509
random_access_iterator, 1075
random_access_iterator_tag, 1084
random_access_range, 1137
random_device, 1423

constructor, 1424
entropy, 1424
operator(), 1424
result_type, 1423

random_shuffle
zombie, 501

range, 1135
range-default-formatter , 813–815

constructor, 814, 815
format, 814–816
parse, 814–816
set_brackets, 814
set_separator, 814

range_error, 572, 574
constructor, 574

range_format, 796
debug_string, 796
disabled, 796
map, 796
sequence, 796
set, 796
string, 796

range_formatter, 811
format, 813
parse, 813
set_brackets, 812
set_separator, 812

ranges
to, 1145, 1146

rank, 666
rank_v, 657
ranlux24, 1423
ranlux24_base, 1423
ranlux48, 1423
ranlux48_base, 1423
ratio, 676, 677
ratio_add, 677
ratio_divide, 677
ratio_equal, 678
ratio_equal_v, 676
ratio_greater, 678
ratio_greater_equal, 678
ratio_greater_equal_v, 676
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ratio_greater_v, 676
ratio_less, 678
ratio_less_equal, 678
ratio_less_equal_v, 676
ratio_less_v, 676
ratio_multiply, 677
ratio_not_equal, 678
ratio_not_equal_v, 676
ratio_subtract, 677
raw_storage_iterator

zombie, 501
rbegin, 1132

basic_stacktrace, 589
basic_string, 851
basic_string_view, 835
reversible containers, 877
span, 1034

rbegin(C&), 1120
rbegin(initializer_list<E>), 1120
rbegin(T (&array)[N]), 1120
rdbuf

basic_fstream, 1699
basic_ifstream, 1695
basic_ios, 1626, 1627
basic_ispanstream, 1684
basic_istringstream, 1674
basic_ofstream, 1697
basic_ospanstream, 1686
basic_ostringstream, 1677
basic_spanstream, 1687
basic_stringstream, 1679
istrstream, 1945
ostrstream, 1946
strstream, 1947
wbuffer_convert, 1957

rdstate
basic_ios, 1628

read
basic_istream, 1649

read_symlink, 1746
readsome

basic_istream, 1649
ready

match_results, 1772
real, 1404

complex, 1400–1402
realloc, 509, 610, 1936
rebind

expected, 738
expected<void>, 749
pointer_traits, 601

rebind_alloc
allocator_traits, 608

recursion_pending
recursive_directory_iterator, 1737

recursive_directory_iterator, 1735
begin, 1737
constructor, 1736
depth, 1736

disable_recursion_pending, 1737
end, 1737
increment, 1737
operator++, 1737
operator=, 1736
options, 1736
pop, 1737
recursion_pending, 1737

recursive_mutex, 1839
recursive_timed_mutex, 1841
reduce, 1381, 1382
ref

reference_wrapper, 767
ref_view, 1162

constructor, 1163
reference

basic_string, 843
basic_string_view, 831
containers, 874
iterator_traits, 1066
vector<bool>, 936

reference_constructs_from_temporary, 665
reference_constructs_from_temporary_v, 657
reference_converts_from_temporary, 665
reference_converts_from_temporary_v, 657
reference_wrapper, 766

constructor, 766
cref, 767
get, 767
operator T&, 766
operator(), 767
operator=, 766
ref, 767

refresh
directory_entry, 1731

regex, 1755
regex_constants, 1759

error_type, 1761, 1762
match_flag_type, 1759
syntax_option_type, 1759

regex_error, 1761, 1765, 1786
constructor, 1762

regex_iterator, 1779
constructor, 1780
increment, 1781
operator*, 1781
operator++, 1781
operator->, 1781
operator==, 1780

regex_match, 1775–1777
regex_replace, 1778, 1779
regex_search, 1777, 1778
regex_token_iterator, 1781

constructor, 1783
end-of-sequence, 1782
operator*, 1784
operator++, 1784
operator->, 1784
operator==, 1782, 1784
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regex_traits, 1762
char_class_type, 1762
isctype, 1763
length, 1762
lookup_classname, 1763
lookup_collatename, 1763
transform, 1762
transform_primary, 1763
translate, 1762
translate_nocase, 1762
value, 1764

register_callback
ios_base, 1623

regular, 570
regular expression traits

isctype, 1785
lookup_classname, 1785
lookup_collatename, 1785

regular_invocable, 571
rehash

unordered associative containers, 907
reinterpret_pointer_cast

shared_ptr, 629
rel_ops, 1939
relation, 571
relative, 1746
relative_path

path, 1720
relaxed

memory_order, 1807
release

counting_semaphore, 1863
memory_order, 1807
monotonic_buffer_resource, 645
shared_lock, 1852
synchronized_pool_resource, 644
unique_lock, 1849
unique_ptr, 615
unsynchronized_pool_resource, 644

reload_tzdb, 1550
remainder, 1466
remainderf, 1466
remainderl, 1466
remote_version, 1551
remove, 1343, 1750

forward_list, 924
list, 930
path, 1747

remove_all, 1747
remove_all_extents, 670
remove_all_extents_t, 654
remove_const, 669
remove_const_t, 653
remove_copy, 1344
remove_copy_if, 1344
remove_cv, 669
remove_cv_t, 653
remove_cvref, 671
remove_cvref_t, 654

remove_extent, 670
remove_extent_t, 654
remove_filename

path, 1718
remove_if, 1343

forward_list, 924
remove_pointer, 671
remove_pointer_t, 654
remove_prefix

basic_string_view, 836
remove_reference, 670
remove_reference_t, 653
remove_suffix

basic_string_view, 836
remove_volatile, 669
remove_volatile_t, 653
remquo, 1466
remquof, 1466
remquol, 1466
rename, 1747, 1750
rend, 1132

basic_stacktrace, 590
basic_string, 852
basic_string_view, 835
reversible containers, 877
span, 1034

rend(C&), 1120
rend(initializer_list<E>), 1120
rend(T (&array)[N]), 1120
rep

system_clock, 1506
repeat

views, 1154
repeat_view, 1154

begin, 1155
constructor, 1155
end, 1155
size, 1155

repeat_view::iterator
constructor, 1156
operator*, 1156
operator+, 1157
operator++, 1156
operator+=, 1157
operator-, 1157
operator--, 1156, 1157
operator-=, 1157
operator<=>, 1157
operator==, 1157
operator[], 1157

replace, 1340
basic_string, 858–860
flat_map, 1006
flat_multiset, 1027
flat_set, 1021

replace_copy, 1341
replace_copy_if, 1341
replace_extension

path, 1719
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replace_filename
directory_entry, 1730
path, 1718

replace_if, 1340
replace_with_range

basic_string, 860
request_stop

jthread, 1802
stop_source, 1794

required_alignment
atomic_ref, 1811
atomic_ref<floating-point-type >, 1811
atomic_ref<integral-type >, 1811
atomic_ref<T*>, 1811

required_span_size
layout_left::mapping, 1042
layout_right::mapping, 1044
layout_stride::mapping, 1047

reserve
basic_string, 852, 1953
unordered associative containers, 907
vector, 934

reset
any, 733
bitset, 759
optional, 715
packaged_task, 1880
shared_ptr, 623
unique_ptr, 615, 617
weak_ptr, 631

resetiosflags, 1661
resize

basic_string, 852
deque, 916
forward_list, 923
list, 928
valarray, 1457
vector, 934, 935

resize_and_overwrite
basic_string, 852

resize_file, 1747
resource

polymorphic_allocator, 641
result

local_info, 1553
result_of

zombie, 501
result_of_t

zombie, 501
result_type

bernoulli_distribution, 1428
binomial_distribution, 1429
cauchy_distribution, 1439
chi_squared_distribution, 1439
discard_block_engine, 1419
discrete_distribution, 1442
exponential_distribution, 1433
extreme_value_distribution, 1436
fisher_distribution, 1440

function, 779
gamma_distribution, 1434
geometric_distribution, 1430
independent_bits_engine, 1420
linear_congruential_engine, 1415
lognormal_distribution, 1438
mersenne_twister_engine, 1416
negative_binomial_distribution, 1431
normal_distribution, 1437
piecewise_constant_distribution, 1444
piecewise_linear_distribution, 1446
poisson_distribution, 1432
random_device, 1423
seed_seq, 1424
shuffle_order_engine, 1421
student_t_distribution, 1441
subtract_with_carry_engine, 1418
uniform_int_distribution, 1426
uniform_real_distribution, 1427
weibull_distribution, 1435

resume
coroutine_handle, 552
coroutine_handle<noop_coroutine_-

promise>, 554
rethrow_exception, 539
rethrow_if_nested

nested_exception, 540
rethrow_nested

nested_exception, 540
return_temporary_buffer

zombie, 501
reverse, 1347

forward_list, 925
list, 930
views, 1204

reverse_copy, 1347
reverse_iterator, 1087

base, 1089
basic_string, 843
basic_string_view, 831
constructor, 1088, 1089
iter_move, 1091
iter_swap, 1091
make_reverse_iterator non-member

function, 1091
operator!=, 1090
operator*, 1089
operator+, 1089, 1091
operator++, 1089
operator+=, 1090
operator-, 1089, 1091
operator--, 1090
operator-=, 1090
operator->, 1089
operator<, 1090
operator<=, 1090
operator<=>, 1091
operator=, 1089
operator==, 1090
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operator>, 1090
operator>=, 1091
operator[], 1089
reversible containers, 877

reverse_view, 1204
base, 1204
begin, 1205
constructor, 1205
end, 1205
size, 1204

rewind, 1750
rfind

basic_string, 860, 861
basic_string_view, 838

riemann_zeta, 1478
riemann_zetaf, 1478
riemann_zetal, 1478
right, 1630
rint, 1466
rintf, 1466
rintl, 1466
root_directory

path, 1720
root_name

path, 1720
root_path

path, 1720
rotate, 1347
rotate_copy, 1348
rotl, 823
rotr, 823
round, 1466

duration, 1501
time_point, 1506

round_error
numeric_limits, 518

round_indeterminate, 516
round_style

numeric_limits, 520
round_to_nearest, 516
round_toward_infinity, 516
round_toward_neg_infinity, 516
round_toward_zero, 516
roundf, 1466
roundl, 1466
runtime_error, 572, 574

constructor, 574

S
s

lognormal_distribution, 1438
same_as, 562
sample, 1349
save

sys_info, 1552
sbumpc

basic_streambuf, 1635
scalbln, 1466

scalblnf, 1466
scalblnl, 1466
scalbn, 1466
scalbnf, 1466
scalbnl, 1466
scan_is

ctype, 1580
ctype<char>, 1583

scan_not
ctype, 1580
ctype<char>, 1583

scanf, 1750
SCHAR_MAX, 522
SCHAR_MIN, 522
scientific, 1631

chars_format, 792
SCNdFASTN, 1751
SCNdLEASTN, 1751
SCNdMAX, 1751
SCNdN, 1751
SCNdPTR, 1751
SCNiFASTN, 1751
SCNiLEASTN, 1751
SCNiMAX, 1751
SCNiN, 1751
SCNiPTR, 1751
SCNoFASTN, 1751
SCNoLEASTN, 1751
SCNoMAX, 1751
SCNoN, 1751
SCNoPTR, 1751
SCNuFASTN, 1751
SCNuLEASTN, 1751
SCNuMAX, 1751
SCNuN, 1751
SCNuPTR, 1751
SCNxFASTN, 1751
SCNxLEASTN, 1751
SCNxMAX, 1751
SCNxN, 1751
SCNxPTR, 1751
scoped_allocator_adaptor, 646

allocate, 649
const_pointer, 646
const_void_pointer, 646
construct, 649
constructor, 648
deallocate, 649
destroy, 649
difference_type, 646
inner_allocator, 648
inner_allocator_type, 647
is_always_equal, 648
max_size, 649
operator==, 649
outer_allocator, 648, 649
outer_allocator_type, 646
pointer, 646
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propagate_on_container_copy_-
assignment, 647

propagate_on_container_move_-
assignment, 648

propagate_on_container_swap, 648
select_on_container_copy_construction,

649
size_type, 646
value_type, 646
void_pointer, 646

scoped_lock, 1845
constructor, 1846
destructor, 1846

search, 1330–1332
search_n, 1331, 1332
second

local_info, 1553
second_argument_type

zombie, 502
seconds, 1480

hh_mm_ss, 1547
seed_seq, 1424

constructor, 1424, 1425
generate, 1425
param, 1425
result_type, 1424
size, 1425

SEEK_CUR, 1750
seek_dir

zombie, 502
SEEK_END, 1750
SEEK_SET, 1750
seekdir

ios_base, 1619
seekg

basic_istream, 1650
seekoff

basic_filebuf, 1692
basic_spanbuf, 1683
basic_streambuf, 1636
basic_stringbuf, 1672
strstreambuf, 1944

seekp
basic_ostream, 1655

seekpos
basic_filebuf, 1693
basic_spanbuf, 1683
basic_streambuf, 1637
basic_stringbuf, 1672
strstreambuf, 1944

select_on_container_copy_construction
allocator_traits, 608
polymorphic_allocator, 641
scoped_allocator_adaptor, 649

semiregular, 570
sentinel

filter_view, 1168
sentinel_for, 1073
sentry

basic_istream, 1643
basic_ostream, 1654
constructor, 1643
destructor, 1644

seq, 791
execution, 791

seq_cst
memory_order, 1807

sequence
range_format, 796

set, 951
allocator_type, 879
begin, 875
cbegin, 875
cend, 875
clear, 895
const_iterator, 874
const_reference, 874
const_reverse_iterator, 877
constructor, 890, 891, 954
contains, 895
count, 895
crbegin, 878
crend, 878
difference_type, 874
emplace, 891
emplace_hint, 892
empty, 876
end, 875
equal_range, 896
erase, 894
erase_if, 954
extract, 893, 894
find, 895
get_allocator, 879
insert, 892, 893
iterator, 874
key_comp, 891
key_compare, 890
key_type, 890
lower_bound, 895
mapped_type, 890
max_size, 876
merge, 894
node_type, 890
operator!=, 875
operator<, 954
operator=, 874, 880
operator==, 875, 954
range_format, 796
rbegin, 877
reference, 874
rend, 877
reverse_iterator, 877
size, 875
size_type, 874
swap, 875, 880
upper_bound, 896
value_comp, 891
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value_compare, 890
value_type, 874, 890

set (member)
bitset, 759

set_brackets
formatter, 819
range-default-formatter , 814
range_formatter, 812

set_default_resource, 641
set_difference, 1366
set_emit_on_sync

basic_osyncstream, 1703, 1704
basic_syncbuf, 1702

set_exception
promise, 1871

set_exception_at_thread_exit
promise, 1872

set_intersection, 1365
set_new_handler, 503, 532
set_rdbuf

basic_ios, 1628
set_separator

formatter, 819
range-default-formatter , 814
range_formatter, 812

set_symmetric_difference, 1367
set_terminate, 503, 538
set_unexpected

zombie, 501
set_union, 1364
set_value

promise, 1871
set_value_at_thread_exit

promise, 1871
setbase, 1661
setbuf, 1750

basic_filebuf, 1692
basic_spanbuf, 1683
basic_streambuf, 1636, 1672
strstreambuf, 1945

setenv, 554
setf

ios_base, 1621
setfill, 1662
setg

basic_streambuf, 1636
setiosflags, 1661
setjmp, 502, 555
setlocale, 1610
setp

basic_streambuf, 1636
setprecision, 1662
setstate

basic_ios, 1628
setvbuf, 1750
setw, 1662
sgetc

basic_streambuf, 1635
sgetn

basic_streambuf, 1635
share

future, 1873
shared_from_this

enable_shared_from_this, 633
shared_future, 1874

constructor, 1875
destructor, 1875
get, 1876
operator=, 1875, 1876
valid, 1876
wait, 1876
wait_for, 1876
wait_until, 1876

shared_lock, 1849
constructor, 1850, 1851
destructor, 1851
lock, 1851
mutex, 1853
operator bool, 1853
operator=, 1851
owns_lock, 1853
release, 1852
swap, 1852, 1853
try_lock, 1851
try_lock_for, 1852
try_lock_until, 1852
unlock, 1852

shared_mutex, 1842
shared_ptr, 619, 633, 1951

atomic_compare_exchange_strong, 1952
atomic_compare_exchange_strong_-

explicit, 1952
atomic_compare_exchange_weak, 1952
atomic_compare_exchange_weak_explicit,

1952
atomic_exchange, 1952
atomic_exchange_explicit, 1952
atomic_is_lock_free, 1951
atomic_load, 1951
atomic_load_explicit, 1952
atomic_store, 1952
atomic_store_explicit, 1952
const_pointer_cast, 628
constructor, 621, 622
destructor, 623
dynamic_pointer_cast, 628
get, 624
get_deleter, 629
hash, 633
operator bool, 624
operator*, 624
operator->, 624
operator<<, 629
operator<=>, 628
operator=, 623
operator==, 627, 628
operator[], 624
owner_before, 624
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reinterpret_pointer_cast, 629
reset, 623
static_pointer_cast, 628
swap, 623, 628
use_count, 624

shared_timed_mutex, 1844
shift

valarray, 1456
shift_left, 1350
shift_right, 1350
showbase, 1629
showmanyc

basic_filebuf, 1691
basic_streambuf, 1637, 1691

showpoint, 1629
showpos, 1629
shrink_to_fit

basic_string, 853
deque, 916
vector, 934

SHRT_MAX, 522
SHRT_MIN, 522
shuffle, 1349
shuffle_order_engine, 1421

constructor, 1422
result_type, 1421

sig_atomic_t, 555
SIG_DFL, 555
SIG_ERR, 555
SIG_IGN, 555
SIGABRT, 555
SIGFPE, 555
SIGILL, 555
SIGINT, 555
signal, 555
signaling_NaN

numeric_limits, 519
signbit, 1466
signed_integral, 564
SIGSEGV, 555
SIGTERM, 555
sin, 1466

complex, 1404
valarray, 1459

sinf, 1466
single

views, 1147
single_view, 1147

begin, 1147
constructor, 1147
data, 1148
end, 1147
size, 1147

sinh, 1466
complex, 1404
valarray, 1459

sinhf, 1466
sinhl, 1466
sinl, 1466

size, 1133
adjacent_transform_view, 1233
adjacent_view, 1228
array, 911, 913
basic_stacktrace, 590
basic_string, 852
basic_string_view, 835
bitset, 760
chunk_view, 1238, 1242
common_view, 1203
containers, 875
drop_view, 1179
elements_view, 1207
enumerate_view, 1212
flat_map, 1003
format_to_n_result, 794
gslice, 1462
initializer_list, 541
iota_view, 1150
match_results, 1773
mdspan, 1054
repeat_view, 1155
reverse_view, 1204
seed_seq, 1425
single_view, 1147
slice, 1460
slide_view, 1247
span, 1033
stride_view, 1256
subrange, 1142
take_view, 1174
transform_view, 1168
valarray, 1456
zip_transform_view, 1223
zip_view, 1217

size(C& c), 1120
size(T (&array)[N]), 1120
size_bytes

span, 1033
size_t, 136, 508, 509, 869–871, 1569, 1750
size_type

allocator, 608
allocator_traits, 607
basic_string, 843
basic_string_view, 831
containers, 874
scoped_allocator_adaptor, 646

sized
subrange_kind, 1124

sized_range, 1136
sized_sentinel_for, 1073
skipws, 1629
sleep_for

this_thread, 1802
sleep_until

this_thread, 1802
slice, 1459

constructor, 1460
size, 1460
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start, 1460
stride, 1460

slice_array, 1460
operator*=, 1461
operator+=, 1461
operator-=, 1461
operator/=, 1461
operator<<=, 1461
operator=, 1461
operator>>=, 1461
operator%=, 1461
operator&=, 1461
operator^=, 1461
operator|=, 1461
value_type, 1460

slide
views, 1247

slide_view
begin, 1247
end, 1247
size, 1247

snextc
basic_streambuf, 1635

snprintf, 1750
sort, 1351

forward_list, 924
list, 930

sort_heap, 1369
sortable, 1084
source_file

stacktrace_entry, 587
source_line

stacktrace_entry, 587
source_location, 534
space, 1747
span, 1029

back, 1033
basic_ispanstream, 1685
basic_ospanstream, 1686
basic_spanbuf, 1682
basic_spanstream, 1687
begin, 1033
constructor, 1030, 1031
data, 1033
deduction guide, 1032
empty, 1033
end, 1034
first, 1032, 1033
front, 1033
iterator, 1033
last, 1032, 1033
operator=, 1032
rbegin, 1034
rend, 1034
size, 1033
size_bytes, 1033
subspan, 1032, 1033

spanbuf, 1680
spanstream, 1680

sph_bessel, 1478
sph_besself, 1478
sph_bessell, 1478
sph_legendre, 1478
sph_legendref, 1478
sph_legendrel, 1478
sph_neumann, 1478
sph_neumannf, 1478
sph_neumannl, 1478
splice

list, 929
splice_after

forward_list, 923
split_view

constructor, 1200
sprintf, 1750
sputbackc

basic_streambuf, 1635
sputc

basic_streambuf, 1635
sputn

basic_streambuf, 1635
sqrt, 1466

complex, 1404
valarray, 1459

sqrtf, 1466
sqrtl, 1466
srand, 509, 1447
sscanf, 1750
ssize, 1134
ssize(C& c), 1120
ssize(T (&array)[N]), 1120
stable_partition, 1359
stable_sort, 1352
stack, 992

constructor, 994
operator<, 995
operator<=, 995
operator<=>, 995
operator==, 995
operator>, 995
operator>=, 995
push_range, 994
swap, 995

stacktrace_entry, 586
constructor, 586
description, 587
native_handle, 587
operator bool, 587
operator<<, 591
operator==, 587
source_file, 587
source_line, 587

start
gslice, 1462
slice, 1460

start_lifetime_as, 602
start_lifetime_as_array, 603
starts_with, 1332
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basic_string, 862
basic_string_view, 837

state
fpos, 1624
wbuffer_convert, 1957
wstring_convert, 1956

state_type
char_traits, 827
wbuffer_convert, 1957
wstring_convert, 1955

static_extent
extents, 1038

static_pointer_cast
shared_ptr, 628

status, 1748
directory_entry, 1732

status_known, 1749
stddev

normal_distribution, 1437
stderr, 1750
stdin, 1750
stdout, 1750
steady_clock, 1513
stem

path, 1721
stod, 866, 867
stof, 866, 867
stoi, 866, 867
stol, 866, 867
stold, 866, 867
stoll, 866, 867
stop_callback, 1794

constructor, 1795
destructor, 1795

stop_possible
stop_source, 1794
stop_token, 1792

stop_requested
stop_source, 1794
stop_token, 1792

stop_source, 1792
constructor, 1793
destructor, 1793
operator=, 1793
operator==, 1794
request_stop, 1794
stop_possible, 1794
stop_requested, 1794
swap, 1793, 1794

stop_source sc
get_token, 1794

stop_token, 1791
constructor, 1791, 1792
destructor, 1792
operator=, 1792
operator==, 1792
stop_possible, 1792
stop_requested, 1792
swap, 1792

store
atomic, 1818
atomic<floating-point-type >, 1818
atomic<integral-type >, 1818
atomic<shared_ptr<T>>, 1828
atomic<T*>, 1818
atomic<weak_ptr<T>>, 1830
atomic_ref, 1811
atomic_ref<floating-point-type >, 1811
atomic_ref<integral-type >, 1811
atomic_ref<T*>, 1811

stossc
zombie, 502

stoul, 866, 867
stoull, 866, 867
str

basic_istringstream, 1675
basic_ostringstream, 1677
basic_stringbuf, 1670, 1671
basic_stringstream, 1680
istrstream, 1945
match_results, 1773
ostrstream, 1946
strstream, 1947
strstreambuf, 1943
sub_match, 1769

strcat, 869
strchr, 869
strcmp, 869
strcoll, 869
strcpy, 869
strcspn, 869
streambuf, 1612, 1631
streamoff, 1611, 1624
streampos, 1612
streamsize, 1611
strerror, 869
strftime, 1569, 1603
strict

zombie, 502
strict_weak_order, 571
stride

gslice, 1462
layout_left::mapping, 1042
layout_right::mapping, 1044
slice, 1460
stride_view, 1256

stride_view
constructor, 1256
size, 1256
stride, 1256

stride_view::iterator
base, 1258
constructor, 1258
iter_move, 1260
iter_swap, 1260
operator+, 1260
operator++, 1258, 1259
operator+=, 1259
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operator-, 1260
operator--, 1259
operator-=, 1259
operator<, 1259
operator<=, 1259
operator<=>, 1260
operator==, 1259
operator>, 1259
operator>=, 1259

string, 842
operator""s, 868
path, 1719
range_format, 796

string_view
hash, 840
operator""sv, 840

stringbuf, 1612, 1666
stringstream, 1612, 1666
strlen, 869, 1942, 1946
strncat, 869
strncmp, 869
strncpy, 869
strong_order, 548
strong_ordering, 545

equal, 545
equivalent, 545
greater, 545
less, 545
operator partial_ordering, 545
operator weak_ordering, 545
operator<, 546
operator<=, 546
operator<=>, 546
operator==, 546
operator>, 546
operator>=, 546

strpbrk, 869
strrchr, 869
strspn, 869
strstr, 869
strstream, 1946

constructor, 1947
destructor, 1947
freeze, 1947
pcount, 1947
rdbuf, 1947
str, 1947

strstreambuf, 1940
constructor, 1941, 1942
destructor, 1942
freeze, 1942
overflow, 1943
pbackfail, 1943
pcount, 1943
seekoff, 1944
seekpos, 1944
setbuf, 1945
str, 1943
underflow, 1944

strtod, 509
strtof, 509
strtoimax, 1751
strtok, 869
strtol, 509
strtold, 509
strtoll, 509
strtoul, 509
strtoull, 509
strtoumax, 1751
strxfrm, 869
student_t_distribution, 1441

constructor, 1442
mean, 1442
result_type, 1441

sub_match, 1768
compare, 1769
constructor, 1769
length, 1769
operator basic_string, 1769
operator<<, 1770
operator<=>, 1769, 1770
operator==, 1769, 1770
str, 1769
swap, 1769

subrange, 1140
advance, 1143
begin, 1142
constructor, 1141, 1142
empty, 1142
end, 1142
get, 1143
next, 1142
operator PairLike , 1142
prev, 1143
size, 1142

subrange_kind, 1124
sized, 1124
unsized, 1124

subseconds
hh_mm_ss, 1547

subspan
span, 1032, 1033

substr
basic_string, 861
basic_string_view, 836

subtract_with_carry_engine, 1417, 1418
constructor, 1418, 1419
result_type, 1418

suffix
match_results, 1774

sum
valarray, 1456

sungetc
basic_streambuf, 1635

suspend_always, 554
await_ready, 554
await_resume, 554
await_suspend, 554
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suspend_never, 554
await_ready, 554
await_resume, 554
await_suspend, 554

swap, 565, 682
allocator-aware containers, 880
any, 733, 734
array, 913
basic_filebuf, 1690
basic_fstream, 1699
basic_ifstream, 1695
basic_ios, 1628
basic_iostream, 1652
basic_ispanstream, 1684
basic_istream, 1643
basic_istringstream, 1674
basic_ofstream, 1697
basic_ospanstream, 1686
basic_ostream, 1654
basic_ostringstream, 1677
basic_regex, 1768
basic_spanbuf, 1682
basic_spanstream, 1687
basic_stacktrace, 590
basic_streambuf, 1635
basic_string, 860, 864
basic_string_view, 836
basic_stringbuf, 1669
basic_stringstream, 1679
basic_syncbuf, 1701, 1702
containers, 875
expected, 744, 745
expected<void>, 752, 753
flat_map, 1006
flat_multiset, 1027
flat_set, 1020
function, 782
jthread, 1801, 1802
match_results, 1775
mdspan, 1054
move_only_function, 785
optional, 713, 718
packaged_task, 1879, 1880
pair, 689, 690
path, 1719, 1724
priority_queue, 992
promise, 1871, 1872
queue, 988
shared_lock, 1852, 1853
shared_ptr, 623, 628
stack, 995
stop_source, 1793, 1794
stop_token, 1792
sub_match, 1769
thread, 1798, 1799
tuple, 700, 705
unexpected, 736
unique_lock, 1849
unique_ptr, 615

valarray, 1456, 1459
variant, 726, 729
vector, 934
vector<bool>, 938
weak_ptr, 631

swap(unique_ptr&, unique_ptr&), 617
swap_ranges, 1338
swappable, 565
swappable_with, 565
swprintf, 870
swscanf, 870
symlink_status, 1749

directory_entry, 1732
sync

basic_filebuf, 1693
basic_istream, 1650
basic_streambuf, 1637
basic_syncbuf, 1702

sync_with_stdio
ios_base, 1622

syncbuf, 1612, 1699
synchronized_pool_resource, 642

constructor, 643
destructor, 644
do_allocate, 644
do_deallocate, 644
do_is_equal, 644
options, 644
release, 644
upstream_resource, 644

syntax_option_type, 1759
awk, 1759, 1760
basic, 1759, 1760
collate, 1759, 1760, 1786
ECMAScript, 1759, 1760
egrep, 1759, 1760
extended, 1759, 1760
grep, 1759, 1760
icase, 1759, 1760
multiline, 1760
nosubs, 1759, 1760
optimize, 1759, 1760
regex_constants, 1759

sys_days, 1480
operator<<, 1507

sys_info, 1552
abbrev, 1553
begin, 1552
end, 1552
offset, 1552
operator<<, 1553
save, 1552

sys_seconds, 1480
sys_time, 1480

from_stream, 1507
operator<, 1560
operator<<, 1506
operator<=, 1560
operator<=>, 1561
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operator==, 1560
operator>, 1560
operator>=, 1560, 1561

system, 509, 554
system_category, 579, 580
system_clock, 1506

from_time_t, 1506
rep, 1506
to_time_t, 1506

system_error, 577, 584
code, 585
constructor, 585
what, 585

T
t

binomial_distribution, 1430
table

ctype<char>, 1583
tai_clock, 1509

from_utc, 1510
now, 1510
to_utc, 1510

tai_seconds, 1480
tai_time, 1480

from_stream, 1510
operator<<, 1510

take
views, 1174

take_view, 1174
base, 1174
begin, 1174
constructor, 1176
end, 1174
size, 1174

take_view::sentinel
base, 1177
constructor, 1176
operator==, 1177

take_while, 1177
views, 1177

take_while_view, 1177
base, 1177
begin, 1177
constructor, 1178
end, 1177
pred, 1178

take_while_view::sentinel
constructor, 1178
operator==, 1178

tan, 1466
complex, 1404
valarray, 1459

tanf, 1466
tanh, 1466

complex, 1404
valarray, 1459

tanhf, 1466

tanhl, 1466
tanl, 1466
target

function, 782
time_zone_link, 1561

target_type
function, 782

tellg
basic_istream, 1650

tellp
basic_ostream, 1655

temp_directory_path, 1749
tera, 677
terminate, 525, 526, 538
terminate_handler, 503, 538
test

atomic_flag, 1832
bitset, 760

test_and_set
atomic_flag, 1833

tgamma, 1466
tgammaf, 1466
tgammal, 1466
this_thread

get_id, 1802
sleep_for, 1802
sleep_until, 1802
yield, 1802

thousands_sep
moneypunct, 1607
numpunct, 1596

thread, 1796
constructor, 1797, 1798
destructor, 1798
detach, 1799
get_id, 1799
hardware_concurrency, 1799
id, 1796
join, 1798
joinable, 1798
operator=, 1798
swap, 1798, 1799

thread::id, 1796
constructor, 1797
hash, 1797
operator<<, 1797
operator<=>, 1797
operator==, 1797

three_way_comparable, 547
three_way_comparable_with, 547
throw_with_nested

nested_exception, 540
tie, 701

basic_ios, 1626
tuple, 701

time, 1569
time_get, 1598

date_order, 1599
do_date_order, 1600
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do_get, 1601
do_get_date, 1600
do_get_monthname, 1601
do_get_time, 1600
do_get_weekday, 1601
do_get_year, 1601
get, 1600
get_date, 1599
get_monthname, 1599
get_time, 1599
get_weekday, 1599
get_year, 1599

time_get_byname, 1601
time_point, 1503

ceil, 1505
constructor, 1503, 1504
floor, 1505
max, 1504
min, 1504
operator+, 1504
operator++, 1504
operator+=, 1504
operator-, 1504, 1505
operator--, 1504
operator-=, 1504
operator<, 1505
operator<=, 1505
operator==, 1505
operator>, 1505
operator>=, 1505
round, 1506
time_point_cast, 1505
time_since_epoch, 1504

time_point_cast, 1505
time_point, 1505

time_put, 1602
do_put, 1603
put, 1602

time_put_byname, 1603
time_since_epoch

time_point, 1504
time_t, 1569
TIME_UTC, 1569
time_zone, 1553

get_info, 1554
name, 1554
operator<=>, 1555
operator==, 1555
to_local, 1554
to_sys, 1554

time_zone_link, 1561
name, 1561
operator<=>, 1561
operator==, 1561
target, 1561

timed_mutex, 1840
timespec, 1569
timespec_get, 1569
tinyness_before

numeric_limits, 520
tm, 870, 1569
TMP_MAX, 1750
tmpfile, 1750
tmpnam, 1750
to

ranges, 1145, 1146
to_address, 602

pointer_traits, 602
to_array, 913
to_bytes

wstring_convert, 1956
to_chars, 793
to_chars_result, 792

ec, 792
ptr, 792

to_duration
hh_mm_ss, 1547

to_integer
byte, 512

to_local
time_zone, 1554

to_string, 867
basic_stacktrace, 590
bitset, 760

to_sys
time_zone, 1554
utc_clock, 1508

to_time_t
system_clock, 1506

to_ullong
bitset, 760

to_ulong
bitset, 760

to_underlying, 685
to_utc

gps_clock, 1511
tai_clock, 1510

to_wstring, 867
tolower, 868, 1578

ctype, 1580
ctype<char>, 1583

totally_ordered, 569
totally_ordered_with, 570
toupper, 868, 1578

ctype, 1580
ctype<char>, 1583

towctrans, 868
towlower, 868
towupper, 868
traits_type

basic_string, 843
basic_string_view, 831

transform, 1338
collate, 1597
expected, 747
expected<void>, 754
optional, 715
regex_traits, 1762
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views, 1168
transform_error

expected, 748
expected<void>, 755

transform_exclusive_scan, 1386
transform_inclusive_scan, 1387
transform_primary

regex_traits, 1763
transform_reduce, 1382, 1383
transform_view, 1168

base, 1168
begin, 1169
constructor, 1169
end, 1169, 1170
size, 1168

transform_view::iterator
base, 1171
constructor, 1171
iterator, 1171
operator+, 1172
operator++, 1171, 1172
operator+=, 1172
operator-, 1173
operator--, 1172
operator-=, 1172
operator<, 1172
operator<=, 1172
operator<=>, 1172
operator==, 1172
operator>, 1172
operator>=, 1172

transform_view::sentinel
base, 1173
constructor, 1173
operator-, 1174
operator==, 1174

translate
regex_traits, 1762

translate_nocase
regex_traits, 1762

traps
numeric_limits, 520

treat_as_floating_point, 1495
treat_as_floating_point_v, 1480
true_type, 658
truename

numpunct, 1596
trunc, 1466
truncf, 1466
truncl, 1466
try_acquire

counting_semaphore, 1863
try_acquire_for

counting_semaphore, 1863
try_acquire_until

counting_semaphore, 1863
try_emplace

flat_map, 1005
map, 945, 946

unordered_map, 966
try_lock, 1853

shared_lock, 1851
unique_lock, 1848

try_lock_for
shared_lock, 1852
unique_lock, 1849

try_lock_until
shared_lock, 1852
unique_lock, 1848

try_to_lock, 1844
try_to_lock_t, 1844
try_wait

latch, 1864
tuple, 691, 693, 913

basic_common_reference, 704
common_type, 705
constructor, 695–697
forward_as_tuple, 701
get, 703
make_tuple, 701
operator<=>, 704
operator=, 698–700
operator==, 704
swap, 700, 705
tie, 701

tuple_cat, 701
tuple_element, 690, 702, 703, 913
tuple_element_t, 692
tuple_size, 690, 702, 703, 913

in general, 702
tuple_size_v, 693
type

any, 733
file_status, 1728

type_identity, 671
type_identity_t, 654
type_index, 789

constructor, 789
hash, 790
hash_code, 790
name, 790
operator<, 789
operator<=, 789
operator<=>, 789
operator==, 789
operator>, 789
operator>=, 789

type_info, 127, 533
before, 533
hash_code, 534
name, 534
operator==, 533

tzdb, 1548
current_zone, 1549
locate_zone, 1549

tzdb_list, 1549
begin, 1550
cbegin, 1550
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cend, 1550
end, 1550
erase_after, 1549
front, 1549

U
u16streampos, 1612
u16string, 842

operator""s, 868
path, 1719

u16string_view
hash, 840
operator""sv, 840

u32streampos, 1612
u32string, 842

operator""s, 868
path, 1719

u32string_view
hash, 840
operator""sv, 840

u8path, 1958
u8string, 842

operator""s, 868
path, 1719

u8string_view
hash, 840
operator""sv, 840

UCHAR_MAX, 522
uflow

basic_filebuf, 1692
basic_streambuf, 1638

uint16_t, 523
uint32_t, 523
uint64_t, 523
uint8_t, 523
uint_fast16_t, 523
uint_fast32_t, 523
uint_fast64_t, 523
uint_fast8_t, 523
uint_least16_t, 523
uint_least32_t, 523
uint_least64_t, 523
uint_least8_t, 523
UINT_MAX, 522
uintmax_t, 523
uintptr_t, 523
ULLONG_MAX, 522
ULONG_MAX, 522
unary_function

zombie, 501
unary_negate

zombie, 501
uncaught_exception

zombie, 501
uncaught_exceptions, 460, 538
undeclare_no_pointers

zombie, 502
undeclare_reachable

zombie, 502
underflow

basic_filebuf, 1691
basic_streambuf, 1637
basic_stringbuf, 1671
strstreambuf, 1944

underflow_error, 572, 575
constructor, 575

underlying_type, 672
underlying_type_t, 654
unexpect, 735
unexpect_t, 735
unexpected, 735

constructor, 736
error, 736
operator==, 737
swap, 736

unexpected_handler
zombie, 502

unexpected_type
expected, 738
expected<void>, 749

unget
basic_istream, 1650

ungetc, 1750
ungetwc, 870
unhandled_exception

generator::promise_type, 1271
uniform_int_distribution, 1426

a, 1427
b, 1427
constructor, 1427
result_type, 1426

uniform_random_bit_generator, 1409
uniform_real_distribution, 1427

a, 1428
b, 1428
constructor, 1428
result_type, 1427

uninitialized_construct_using_allocator,
606

uninitialized_copy, 1392, 1393
uninitialized_copy_n, 1393
uninitialized_default_construct, 1391
uninitialized_default_construct_n, 1391
uninitialized_fill, 1394
uninitialized_fill_n, 1395
uninitialized_move, 1393
uninitialized_move_n, 1394
uninitialized_value_construct, 1392
uninitialized_value_construct_n, 1392
unique, 1345

forward_list, 924
list, 930
local_info, 1553

unique_copy, 1345
unique_lock, 1846

constructor, 1847, 1848
destructor, 1848
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lock, 1848
mutex, 1849
operator bool, 1849
operator=, 1848
owns_lock, 1849
release, 1849
swap, 1849
try_lock, 1848
try_lock_for, 1849
try_lock_until, 1848
unlock, 1849

unique_ptr, 611, 615, 622
constructor, 612, 613, 616
destructor, 613
get, 614
get_deleter, 614
hash, 633
operator bool, 614
operator*, 614
operator->, 614
operator<, 618
operator<<, 619
operator<=, 618, 619
operator<=>, 618, 619
operator=, 614, 616
operator==, 618
operator>, 618
operator>=, 618, 619
operator[], 617
release, 615
reset, 615, 617
swap, 615

unitbuf, 1630
unlock

shared_lock, 1852
unique_lock, 1849

unordered
partial_ordering, 543

unordered_map, 958, 960
allocator_type, 879
at, 965
begin, 875, 906
bucket, 906
bucket_count, 905
bucket_size, 906
cbegin, 875, 906
cend, 875, 906
clear, 905
const_iterator, 874
const_local_iterator, 899
const_reference, 874
const_reverse_iterator, 877
constructor, 899, 965
contains, 905
count, 905
crbegin, 878
crend, 878
difference_type, 874
emplace, 901, 902

emplace_hint, 902
empty, 876
end, 875, 906
equal_range, 905
erase, 904
erase_if, 967
extract, 903, 904
find, 905
get_allocator, 879
hash_function, 901
hasher, 899
insert, 902, 903, 965, 966
insert_or_assign, 966
insert_range, 903
iterator, 874
key_eq, 901
key_equal, 899
key_type, 898
load_factor, 906
local_iterator, 899
mapped_type, 899
max_bucket_count, 906
max_load_factor, 907
max_size, 876
merge, 904
node_type, 899
operator!=, 875
operator=, 874, 880
operator==, 875
operator[], 965
rbegin, 877
reference, 874
rehash, 907
rend, 877
reserve, 907
reverse_iterator, 877
size, 875
size_type, 874
swap, 875, 880
try_emplace, 966
value_type, 874, 899

unordered_multimap, 958, 967
allocator_type, 879
begin, 875, 906
bucket, 906
bucket_count, 905
bucket_size, 906
cbegin, 875, 906
cend, 875, 906
clear, 905
const_iterator, 874
const_local_iterator, 899
const_reference, 874
const_reverse_iterator, 877
constructor, 899, 971
contains, 905
count, 905
crbegin, 878
crend, 878
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difference_type, 874
emplace, 901, 902
emplace_hint, 902
empty, 876
end, 875, 906
equal_range, 905
erase, 904
erase_if, 972
extract, 903, 904
find, 905
get_allocator, 879
hash_function, 901
hasher, 899
insert, 902, 903, 972
insert_range, 903
iterator, 874
key_eq, 901
key_equal, 899
key_type, 898
load_factor, 906
local_iterator, 899
mapped_type, 899
max_bucket_count, 906
max_load_factor, 907
max_size, 876
merge, 904
node_type, 899
operator!=, 875
operator=, 874, 880
operator==, 875
rbegin, 877
reference, 874
rehash, 907
rend, 877
reserve, 907
reverse_iterator, 877
size, 875
size_type, 874
swap, 875, 880
value_type, 874, 899

unordered_multiset, 959, 977
allocator_type, 879
begin, 875, 906
bucket, 906
bucket_count, 905
bucket_size, 906
cbegin, 875, 906
cend, 875, 906
clear, 905
const_iterator, 874
const_local_iterator, 899
const_reference, 874
const_reverse_iterator, 877
constructor, 899, 981, 982
contains, 905
count, 905
crbegin, 878
crend, 878
difference_type, 874

emplace, 901, 902
emplace_hint, 902
empty, 876
end, 875, 906
equal_range, 905
erase, 904
erase_if, 982
extract, 903, 904
find, 905
get_allocator, 879
hash_function, 901
hasher, 899
insert, 902, 903
insert_range, 903
iterator, 874
key_eq, 901
key_equal, 899
key_type, 898
load_factor, 906
local_iterator, 899
mapped_type, 899
max_bucket_count, 906
max_load_factor, 907
max_size, 876
merge, 904
node_type, 899
operator!=, 875
operator=, 874, 880
operator==, 875
rbegin, 877
reference, 874
rehash, 907
rend, 877
reserve, 907
reverse_iterator, 877
size, 875
size_type, 874
swap, 875, 880
value_type, 874, 899

unordered_set, 959, 972
allocator_type, 879
begin, 875, 906
bucket, 906
bucket_count, 905
bucket_size, 906
cbegin, 875, 906
cend, 875, 906
clear, 905
const_iterator, 874
const_local_iterator, 899
const_reference, 874
const_reverse_iterator, 877
constructor, 899, 976, 977
contains, 905
count, 905
crbegin, 878
crend, 878
difference_type, 874
emplace, 901, 902
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emplace_hint, 902
empty, 876
end, 875, 906
equal_range, 905
erase, 904
erase_if, 977
extract, 903, 904
find, 905
get_allocator, 879
hash_function, 901
hasher, 899
insert, 902, 903
insert_range, 903
iterator, 874
key_eq, 901
key_equal, 899
key_type, 898
load_factor, 906
local_iterator, 899
mapped_type, 899
max_bucket_count, 906
max_load_factor, 907
max_size, 876
merge, 904
node_type, 899
operator!=, 875
operator=, 874, 880
operator==, 875
rbegin, 877
reference, 874
rehash, 907
rend, 877
reserve, 907
reverse_iterator, 877
size, 875
size_type, 874
swap, 875, 880
value_type, 874, 899

unreachable, 685
unreachable_sentinel, 1061
unreachable_sentinel_t, 1113

operator==, 1113
unsetf

ios_base, 1621
unshift

codecvt, 1585
unsigned_integral, 564
unsized

subrange_kind, 1124
unsynchronized_pool_resource, 642

constructor, 643
destructor, 644
do_allocate, 644
do_deallocate, 644
do_is_equal, 644
options, 644
release, 644
upstream_resource, 644

unwrap_ref_decay, 672, 761

unwrap_ref_decay_t, 761
unwrap_reference, 672
upper_bound, 1357

ordered associative containers, 896
uppercase, 1630
upstream_resource

monotonic_buffer_resource, 645
synchronized_pool_resource, 644
unsynchronized_pool_resource, 644

use_count
shared_ptr, 624
weak_ptr, 631

use_facet
locale, 1578

uses_allocator, 603
promise, 1870

uses_allocator<tuple>, 705
uses_allocator_construction_args, 604, 605
uses_allocator_v, 593
USHRT_MAX, 522
utc_clock, 1507

from_sys, 1508
now, 1508
to_sys, 1508

utc_seconds, 1480
utc_time, 1480

from_stream, 1509
operator<<, 1508

V
va_arg, 555
va_copy, 555
va_end, 502, 555
va_list, 502, 555
va_start, 555
valarray, 1450, 1463

abs, 1459
acos, 1459
apply, 1457
asin, 1459
atan, 1459
atan2, 1459
begin, 1466
constructor, 1452
cos, 1459
cosh, 1459
cshift, 1457
destructor, 1452
end, 1466
exp, 1459
log, 1459
log10, 1459
max, 1456
min, 1456
operator!, 1455
operator!=, 1458
operator*, 1457
operator*=, 1455, 1456
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operator+, 1455, 1457
operator+=, 1455, 1456
operator-, 1455, 1457
operator-=, 1455, 1456
operator/, 1457
operator/=, 1455, 1456
operator<, 1458
operator<<, 1457
operator<<=, 1455, 1456
operator<=, 1458
operator=, 1453
operator==, 1458
operator>, 1458
operator>=, 1458
operator>>, 1457
operator>>=, 1455, 1456
operator[], 1453–1455
operator%, 1457
operator%=, 1455, 1456
operator&, 1457
operator&=, 1455, 1456
operator&&, 1458
operator^, 1457
operator^=, 1455, 1456
operator~, 1455
operator|, 1457
operator|=, 1455, 1456
operator||, 1458
pow, 1459
resize, 1457
shift, 1456
sin, 1459
sinh, 1459
size, 1456
sqrt, 1459
sum, 1456
swap, 1456, 1459
tan, 1459
tanh, 1459

valid
future, 1874
packaged_task, 1879
shared_future, 1876

value
error_code, 582
error_condition, 583
expected, 746, 753
expected<void>, 753
leap_second, 1560
optional, 714
regex_traits, 1764

value_comp
ordered associative containers, 891

value_compare
ordered associative containers, 890

value_or
expected, 746
optional, 714

value_type

allocator, 608
atomic, 1816
atomic_ref, 1810
basic_string, 843
basic_string_view, 831
complex, 1400
containers, 874
expected, 738
expected<void>, 749
gslice_array, 1463
indirect_array, 1465
integer_sequence, 650
integral_constant, 658
mask_array, 1464
optional, 707
ordered associative containers, 890
path, 1712
polymorphic_allocator, 639
scoped_allocator_adaptor, 646
slice_array, 1460
unordered associative containers, 899

valueless_by_exception
variant, 725

values
views, 1128

values_view, 1128
variant, 720

constructor, 721–723
destructor, 723
emplace, 725
get, 727
get_if, 727
hash, 729
holds_alternative, 726
index, 726
operator!=, 727
operator<, 727
operator<=, 728
operator<=>, 728
operator=, 723, 724
operator==, 727
operator>, 728
operator>=, 728
swap, 726, 729
valueless_by_exception, 725
visit, 728

variant_alternative, 726
variant_alternative_t, 719
variant_size, 726
variant_size_v, 719
vector, 931

allocator_type, 879
assign, 883
assign_range, 883
begin, 875
capacity, 934
cbegin, 875
cend, 875
clear, 883
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const_iterator, 874
const_reference, 874
const_reverse_iterator, 877
constructor, 933
crbegin, 878
crend, 878
data, 935
difference_type, 874
emplace, 881
empty, 876
end, 875
erase, 882, 935
erase_if, 936
get_allocator, 879
insert, 882, 935
insert_range, 882
iterator, 874
max_size, 876
operator!=, 875
operator<, 933
operator=, 874, 880
operator==, 875, 933
rbegin, 877
reference, 874
rend, 877
reserve, 934
resize, 934, 935
reverse_iterator, 877
shrink_to_fit, 934
size, 875
size_type, 874
swap, 875, 880, 934
value_type, 874

vector<bool>, 936
flip, 938
reference, 936
swap, 938

vformat, 803
vformat_to, 804
vfprintf, 1750
vfscanf, 1750
vfwprintf, 870
vfwscanf, 870
view, 1136

basic_istringstream, 1675
basic_ostringstream, 1677
basic_stringbuf, 1670
basic_stringstream, 1680

view_interface, 1138
back, 1140
front, 1140

viewable_range, 1138
views

adjacent, 1227
adjacent_transform, 1233
all, 1162
as_rvalue, 1164
chunk, 1238
chunk_by, 1252

common, 1202
counted, 1202
drop, 1179
drop_while, 1180
elements, 1206
empty, 1124
enumerate, 1212
filter, 1165
iota, 1148
join, 1181
join_with, 1187
keys, 1128
lazy_split, 1193
pairwise, 1129
pairwise_transform, 1129
repeat, 1154
reverse, 1204
single, 1147
slide, 1247
take, 1174
take_while, 1177
transform, 1168
values, 1128
zip, 1216
zip_transform, 1222

visit, 728
variant, 728

visit_format_arg, 818
void_pointer

allocator_traits, 607
scoped_allocator_adaptor, 646

void_t, 654
vprint_nonunicode, 1659, 1666
vprint_unicode, 1659, 1665
vprintf, 1750
vscanf, 1750
vsnprintf, 1750
vsprintf, 1750
vsscanf, 1750
vswprintf, 870
vswscanf, 870
vwprintf, 870
vwscanf, 870

W
wait

atomic, 1820
atomic<floating-point-type >, 1820
atomic<integral-type >, 1820
atomic<shared_ptr<T>>, 1829
atomic<T*>, 1820
atomic<weak_ptr<T>>, 1831
atomic_flag, 1833
atomic_ref<T>, 1812
barrier, 1866
condition_variable, 1856, 1857
condition_variable_any, 1859, 1860
future, 1874
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latch, 1864
shared_future, 1876

wait_for
condition_variable, 1857, 1858
condition_variable_any, 1860, 1861
future, 1874
shared_future, 1876

wait_until
condition_variable, 1857, 1858
condition_variable_any, 1860
future, 1874
shared_future, 1876

wbuffer_convert, 1957
constructor, 1957
destructor, 1957
rdbuf, 1957
state, 1957
state_type, 1957

wcerr, 1616
WCHAR_MAX, 870
WCHAR_MIN, 870
wcin, 1615
wclog, 1616
wcout, 1615
wcrstombs, 872
wcrtomb, 870, 872
wcscat, 870
wcschr, 870
wcscmp, 870
wcscoll, 870
wcscpy, 870
wcscspn, 870
wcsftime, 870
wcslen, 870
wcsncat, 870
wcsncmp, 870
wcsncpy, 870
wcspbrk, 870
wcsrchr, 870
wcsrtombs, 870
wcsspn, 870
wcsstr, 870
wcstod, 870
wcstof, 870
wcstoimax, 1751
wcstok, 870
wcstol, 870
wcstold, 870
wcstoll, 870
wcstombs, 509, 871
wcstoul, 870
wcstoull, 870
wcstoumax, 1751
wcsxfrm, 870
wctob, 870
wctomb, 509, 871
wctrans, 868
wctrans_t, 868
wctype, 868

wctype_t, 868
weak_from_this

enable_shared_from_this, 633
weak_order, 548
weak_ordering, 544

equivalent, 544
greater, 544
less, 544
operator partial_ordering, 544
operator<, 544
operator<=, 544
operator<=>, 545
operator==, 544
operator>, 544
operator>=, 544

weak_ptr, 622, 629, 633
constructor, 630
destructor, 630
expired, 631
lock, 631
operator=, 631
owner_before, 631
reset, 631
swap, 631
use_count, 631

weakly_canonical, 1749
weakly_incrementable, 1071
weekday, 1523

c_encoding, 1524
constructor, 1524
from_stream, 1525
iso_encoding, 1524
ok, 1524
operator+, 1525
operator++, 1524
operator+=, 1524
operator-, 1525
operator--, 1524
operator-=, 1524
operator<<, 1525
operator==, 1525
operator[], 1524
weekday_indexed, 1526
weekday_last, 1527
year_month_weekday, 1539
year_month_weekday_last, 1541

weekday_indexed, 1525
constructor, 1526
index, 1526
month_weekday, 1529
ok, 1526
operator<<, 1526
operator==, 1526
weekday, 1526
year_month_weekday, 1539

weekday_last, 1526
constructor, 1527
month_weekday_last, 1530
ok, 1527
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operator<<, 1527
operator==, 1527
weekday, 1527
year_month_weekday_last, 1542

weeks, 1480
weibull_distribution, 1435

a, 1435
b, 1435
constructor, 1435
result_type, 1435

WEOF, 868, 870
wfilebuf, 1612, 1687
wformat_args, 794
wformat_context, 794, 810
wformat_parse_context, 794
wformat_string, 794
wfstream, 1612, 1687
what

bad_alloc, 531
bad_any_cast, 730
bad_array_new_length, 531
bad_cast, 534
bad_exception, 538
bad_expected_access, 737, 738
bad_function_call, 779
bad_optional_access, 716
bad_typeid, 534
bad_variant_access, 729
bad_weak_ptr, 619
exception, 537
filesystem_error, 1725
future_error, 1869
system_error, 585

wide_string
wstring_convert, 1955

widen
basic_ios, 1627
ctype, 1580
ctype<char>, 1583

width
ios_base, 1578, 1621, 1622

wifstream, 1612, 1687
wint_t, 868, 870
wios, 1617
wispanstream, 1680
wistream, 1612, 1639
wistringstream, 1612, 1666
wmemchr, 870
wmemcmp, 870
wmemcpy, 870
wmemmove, 870
wmemset, 870
wofstream, 1612, 1687
wospanstream, 1680
wostream, 1612, 1640
wostringstream, 1612, 1666
wosyncstream, 1612, 1699
wprintf, 870
wregex, 1755

write
basic_ostream, 1659

ws, 1645, 1650
wscanf, 870
wspanbuf, 1680
wspanstream, 1680
wstreambuf, 1612, 1631
wstreampos, 1612
wstring, 842

operator""s, 868
path, 1719

wstring_convert, 1955
byte_string, 1955
constructor, 1956
converted, 1956
destructor, 1956
from_bytes, 1956
int_type, 1955
state, 1956
state_type, 1955
to_bytes, 1956
wide_string, 1955

wstring_view
hash, 840
operator""sv, 840

wstringbuf, 1612, 1666
wstringstream, 1612, 1666
wsyncbuf, 1612, 1699

X
xalloc

ios_base, 1622
xsgetn

basic_streambuf, 1637
xsputn

basic_streambuf, 1638

Y
year, 1521

constructor, 1521
from_stream, 1523
is_leap, 1522
max, 1522
min, 1522
ok, 1522
operator int, 1522
operator""y, 1523
operator+, 1522
operator++, 1521
operator+=, 1522
operator-, 1522
operator--, 1522
operator-=, 1522
operator<<, 1523
operator<=>, 1522
operator==, 1522
year_month, 1531
year_month_day, 1534
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year_month_day_last, 1537
year_month_weekday, 1539
year_month_weekday_last, 1541

year_month, 1531
constructor, 1531
from_stream, 1533
month, 1531
ok, 1532
operator+, 1532
operator+=, 1531, 1532
operator-, 1532
operator-=, 1531, 1532
operator<<, 1532
operator<=>, 1532
operator==, 1532
year, 1531

year_month_day, 1533
constructor, 1533, 1534
day, 1534
from_stream, 1535
month, 1534
ok, 1535
operator local_days, 1535
operator sys_days, 1534
operator+, 1535
operator+=, 1534
operator-, 1535
operator-=, 1534
operator<<, 1535
operator<=>, 1535
operator==, 1535
year, 1534

year_month_day_last, 1536
constructor, 1536
day, 1537
month, 1537
month_day_last, 1537
ok, 1537
operator local_days, 1537
operator sys_days, 1537
operator+, 1537, 1538
operator+=, 1536, 1537
operator-, 1538
operator-=, 1536, 1537
operator<<, 1538
operator<=>, 1537
operator==, 1537
year, 1537

year_month_weekday, 1538
constructor, 1539
index, 1539
month, 1539
ok, 1540
operator local_days, 1540
operator sys_days, 1539
operator+, 1540
operator+=, 1539
operator-, 1540
operator-=, 1539

operator<<, 1540
operator==, 1540
weekday, 1539
weekday_indexed, 1539
year, 1539

year_month_weekday_last, 1540
constructor, 1541
month, 1541
ok, 1542
operator local_days, 1542
operator sys_days, 1542
operator+, 1542
operator+=, 1541
operator-, 1542
operator-=, 1541
operator<<, 1542
operator==, 1542
weekday, 1541
weekday_last, 1542
year, 1541

years, 1480
yield

this_thread, 1802
yield_value

generator::promise_type, 1270, 1271
yocto, 677, 678
yotta, 677, 678

Z
zepto, 677, 678
zero

duration, 1498
duration_values, 1495

zetta, 677, 678
zip

views, 1216
zip_transform

views, 1222
zip_transform_view, 1222

begin, 1223
end, 1223
size, 1223

zip_view, 1216
begin, 1217
end, 1217
size, 1217

zoned_time, 1555
constructor, 1557–1558
get_info, 1559
get_local_time, 1558
get_sys_time, 1559
get_time_zone, 1558
operator local_time, 1558
operator sys_time, 1558
operator<<, 1559
operator=, 1558
operator==, 1559

zoned_traits, 1555
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zoned_traits<const time_zone*>
default_zone, 1555
locate_zone, 1555
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Index of library concepts
The bold page number for each entry is the page where the concept is defined. Other page numbers refer to
pages where the concept is mentioned in the general text. Concepts whose name appears in italics are for
exposition only.

advanceable , 1148, 1149, 1149–1153
all-bidirectional , 1218, 1218–1220
all-forward , 1218, 1218–1220
all-random-access , 1218, 1219–1221, 1263,

1266
assignable_from, 561, 564, 564, 565, 570, 883,

1073, 1082, 1083, 1086, 1089, 1101,
1104–1106, 1109, 1111, 1288

bidirectional-common , 1187, 1189, 1190, 1192
bidirectional_iterator, 1057, 1059, 1063,

1075, 1075, 1086–1088, 1096–1098, 1101,
1110, 1112, 1132, 1133, 1137, 1141, 1143,
1274, 1288, 1290, 1291, 1297, 1298, 1305,
1307, 1316, 1333, 1336, 1337, 1347, 1351,
1359, 1360, 1362, 1376, 1377, 1775, 1777

bidirectional_range, 1127, 1137, 1137, 1139,
1140, 1166, 1167, 1170–1172, 1184, 1186,
1187, 1189, 1190, 1192, 1204, 1208–1210,
1213–1215, 1217, 1218, 1224, 1226, 1229,
1230, 1235, 1236, 1243–1245, 1247, 1249,
1250, 1253–1259, 1261, 1288, 1290, 1291,
1297, 1298, 1305, 1307, 1316, 1333, 1336,
1337, 1347, 1360, 1363, 1376, 1377

boolean-testable , 482, 490, 491, 493, 546, 549,
567, 568, 568, 569, 571, 690, 704, 1077,
1080, 1274, 1787

boolean-testable-impl , 567, 567, 568
borrowed_range, 1031, 1135, 1135, 1136,

1141–1144, 1684, 1685

can-reference , 1055, 1055, 1056, 1066, 1073,
1107, 1126, 1129, 1168, 1170, 1173, 1223,
1224, 1226, 1233, 1234, 1237

cartesian-is-sized-sentinel , 1261, 1264,
1267

cartesian-product-common-arg , 1261, 1261
cartesian-product-is-bidirectional , 1261,

1263–1266
cartesian-product-is-common , 1261, 1262
cartesian-product-is-random-access , 1261,

1263, 1264, 1266
cartesian-product-is-sized , 1261, 1262,

1263
common_range, 1127, 1137, 1137, 1139, 1140,

1145, 1164, 1165, 1169, 1170, 1182, 1184,
1186–1188, 1190, 1194, 1200, 1202–1205,
1207, 1212, 1217, 1220, 1223, 1228, 1234,
1243, 1247, 1248, 1253, 1256, 1261

common_reference_with, 561, 563, 563–565,
1048, 1070, 1081, 1187, 1268, 1907

common_with, 561, 563, 564, 1060, 1110, 1112,
1113, 1187

compares-as , 546, 547
comparison-common-type-with , 547, 569, 569
comparison-common-type-with-impl , 568, 569
compatible-joinable-ranges , 1127, 1187,

1187, 1189, 1193
const-formattable-range , 795, 795
constant-iterator , 1060, 1095, 1095, 1132,

1133, 1138
constant_range, 1128, 1138, 1138, 1205
constructible_from, 561, 566, 566, 567,

595–597, 1048, 1067, 1082, 1083, 1107,
1138, 1140, 1145, 1147, 1155, 1187, 1188,
1194, 1195, 1199, 1200, 1269, 1270, 1288,
1289, 1333, 1334, 1393–1395, 1795

container-compatible-range , 844–846, 850,
855–857, 860, 873, 881, 889, 898,
914–917, 919, 921, 922, 925–928,
931–933, 935–937, 942, 943, 945, 947,
948, 950–952, 954–957, 961, 962, 965,
968, 969, 972–974, 977–979, 982,
986–989, 991–994, 997, 999, 1002, 1004,
1009, 1010, 1013, 1015–1017, 1019, 1020,
1022, 1024, 1026

contiguous_iterator, 834, 877, 1030–1033,
1057, 1063, 1076, 1076, 1097, 1098,
1109–1111, 1134, 1137, 1139, 1202, 1466

contiguous_range, 834, 1031, 1032, 1137, 1137,
1162, 1163

convertible-to-non-slicing , 1140, 1140–1142
convertible_to, 119, 404, 482, 560, 563, 563,

567, 568, 767, 803, 873, 1067, 1089, 1095,
1097, 1101, 1104–1106, 1109, 1111,
1140–1142, 1145, 1149, 1163, 1170, 1171,
1173, 1174, 1176, 1178, 1179, 1183, 1185,
1186, 1189, 1191, 1193, 1195, 1196, 1202,
1208, 1209, 1211, 1213, 1214, 1216, 1218,
1219, 1221, 1222, 1224, 1225, 1227, 1229,
1230, 1232, 1233, 1235–1238, 1244, 1245,
1249, 1250, 1257, 1258, 1263, 1265, 1270,
1271, 1288, 1317–1319, 1684, 1685

copy_constructible, 561, 567, 567, 570, 715,
1081, 1136, 1147, 1155, 1160, 1161, 1164,
1165, 1169, 1175, 1177, 1179, 1181, 1182,
1188, 1194, 1200, 1203–1205, 1207, 1213,
1228, 1234, 1239, 1242, 1247, 1253, 1255,
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1268, 1288, 1292, 1294, 1321, 1322, 1339,
1343

copyable, 570, 570, 1038, 1048, 1052, 1061, 1066,
1083, 1105, 1124, 1125, 1127, 1136,
1141–1143, 1148, 1150, 1153, 1160, 1161,
1166, 1167, 1183, 1185, 1203, 1312, 1313,
1371–1373

cpp17-bidirectional-iterator , 1067, 1067,
1068

cpp17-forward-iterator , 1067, 1067, 1068
cpp17-input-iterator , 1066, 1067
cpp17-iterator , 1066, 1066, 1068
cpp17-random-access-iterator , 1067, 1068

decrementable , 1148, 1149, 1149, 1151, 1152
default_initializable, 561, 567, 570, 594, 595,

1095, 1105, 1109, 1140, 1147, 1148, 1151,
1155, 1158, 1160, 1163–1166, 1169, 1170,
1175, 1177, 1179, 1181, 1182, 1187, 1194,
1199, 1203–1205, 1207, 1208, 1212, 1213,
1228, 1253, 1257, 1270, 1271, 1391, 1392

dereferenceable , 1055, 1055, 1056, 1105, 1107,
1109, 1111

derived_from, 560, 562, 562, 1074–1076, 1088,
1101, 1106, 1137, 1140, 1145, 1157, 1160,
1167, 1171, 1184, 1190, 1198, 1209, 1225,
1235, 1258

destructible, 480, 561, 566, 566, 597, 1395,
1396, 1795

different-from , 689, 697, 700, 1095–1097, 1099,
1138, 1141, 1142, 1162, 1163

equality_comparable, 561, 569, 569, 570, 1038,
1066, 1071, 1072, 1074, 1151, 1153, 1166,
1167, 1170, 1172, 1184, 1186, 1189, 1192,
1208, 1210, 1219, 1220, 1224, 1226, 1257,
1259, 1263, 1266

equality_comparable_with, 569, 569, 570, 772,
1105, 1108, 1906

equivalence_relation, 562, 571, 571, 1081

floating_point, 564, 1479
formattable, 795, 796, 805, 806, 811–813, 819,

820, 1028
formattable-with , 805, 805, 817
forward_iterator, 1056, 1063, 1074, 1074, 1075,

1083, 1096–1098, 1101, 1102, 1106, 1107,
1109, 1111, 1133–1137, 1141, 1142, 1189,
1192, 1274, 1279, 1281–1283, 1285–1287,
1297, 1298, 1302–1304, 1306, 1314, 1320,
1323–1326, 1330–1332, 1346, 1348, 1349,
1355, 1357, 1358, 1361, 1373, 1374, 1391

forward_range, 881, 883, 934, 1127, 1129, 1130,
1137, 1137, 1139, 1140, 1166, 1167,
1170–1172, 1180–1192, 1194–1202, 1208,
1209, 1213, 1214, 1218, 1224, 1225, 1228,
1229, 1232–1234, 1237, 1242, 1243, 1247,
1248, 1252–1254, 1256–1261, 1263–1265,
1279, 1281–1283, 1286, 1287, 1295, 1296,

1298, 1299, 1302–1306, 1314, 1320,
1323–1326, 1330–1333, 1343, 1345,
1348–1350, 1355, 1357–1359, 1361, 1373,
1374

has-arrow , 1138, 1166, 1167, 1183, 1185
has-elem-type , 601, 601
has-member-element-type , 1065, 1066
has-member-value-type , 1065, 1065, 1066
has-tuple-element , 1207, 1207, 1208, 1211

incrementable, 1056, 1072, 1072–1074, 1149,
1151, 1152

indirect_binary_predicate, 1081, 1083, 1130,
1253, 1254, 1279, 1281, 1283, 1292, 1293,
1295, 1296, 1320, 1322, 1323, 1326, 1340,
1341, 1343, 1344

indirect_equivalence_relation, 1081, 1285,
1286, 1296, 1297, 1330, 1345, 1346

indirect_strict_weak_order, 1081, 1084,
1301–1304, 1307, 1312–1315, 1354, 1355,
1357, 1358, 1363, 1370–1375

indirect_unary_predicate, 1081, 1104, 1126,
1165, 1166, 1168, 1177, 1178, 1181, 1279,
1281, 1283, 1290, 1293–1296, 1304–1306,
1319, 1320, 1323, 1326, 1327, 1335, 1336,
1340, 1341, 1343, 1344, 1359–1361

indirectly-binary-left-foldable , 1288,
1288, 1289, 1333, 1334

indirectly-binary-left-foldable-impl ,
1288, 1288

indirectly-binary-right-foldable , 1288,
1288, 1333

indirectly-readable-impl , 1070, 1070
indirectly_comparable, 1058, 1082, 1083, 1083,

1127, 1194, 1195, 1197, 1199–1201, 1279,
1282, 1284–1287, 1320, 1324, 1325, 1328,
1329, 1331–1333

indirectly_copyable, 1057, 1082, 1083, 1083,
1084, 1289, 1290, 1293, 1294, 1296–1299,
1301, 1305, 1334–1336, 1341, 1344,
1346–1349, 1354, 1360

indirectly_copyable_storable, 1083, 1083,
1297, 1313, 1346, 1371–1373

indirectly_movable, 1057, 1082, 1082, 1104,
1290, 1291, 1337

indirectly_movable_storable, 1069, 1082,
1082, 1083

indirectly_readable, 1056, 1057, 1060, 1065,
1066, 1069, 1070, 1070, 1074, 1081–1083,
1095, 1107, 1109, 1268, 1288

indirectly_regular_unary_invocable, 1057,
1081, 1082

indirectly_swappable, 1057, 1082, 1083, 1083,
1088, 1091, 1101, 1103, 1106, 1108, 1110,
1113, 1166, 1168, 1184, 1186, 1190, 1198,
1199, 1219, 1221, 1230, 1232, 1241, 1242,
1258, 1260, 1264, 1267, 1291, 1338
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indirectly_unary_invocable, 1081, 1280,
1321, 1322

indirectly_writable, 1056, 1063, 1070, 1070,
1071, 1074, 1082, 1083, 1292–1294, 1339,
1340, 1343, 1380, 1389

input_iterator, 595, 596, 1056, 1060, 1061,
1063, 1068, 1074, 1074, 1084, 1095, 1101,
1104–1106, 1108, 1110, 1113, 1132, 1133,
1137, 1138, 1268, 1279–1285, 1287–1294,
1296–1298, 1301, 1304–1310, 1315,
1319–1323, 1325, 1326, 1328, 1329,
1332–1335, 1337–1341, 1344, 1346, 1349,
1354, 1359, 1360, 1362–1367, 1375, 1390,
1393, 1394

input_or_output_iterator, 1056, 1058, 1059,
1061, 1063, 1073, 1073, 1074, 1086, 1087,
1105, 1109, 1124, 1131–1133, 1135, 1140,
1141, 1294, 1343, 1380, 1389

input_range, 595, 596, 795, 796, 811–816, 848,
873, 916, 920, 927, 933, 939, 944, 949,
950, 953, 957, 964, 970, 971, 976, 980,
981, 987, 990, 993, 994, 1001, 1012, 1018,
1025, 1124, 1126–1130, 1137, 1137–1139,
1144, 1145, 1157, 1164–1166, 1168, 1170,
1173, 1177, 1178, 1181–1183, 1186–1189,
1192–1195, 1197, 1205, 1207, 1211, 1217,
1218, 1221, 1223, 1224, 1226, 1238–1241,
1255, 1256, 1261, 1263, 1269–1271,
1279–1285, 1287–1294, 1296, 1297, 1299,
1301, 1304–1310, 1313, 1315, 1319–1321,
1323, 1325–1329, 1332–1341, 1344, 1346,
1349, 1354, 1359, 1360, 1362–1367,
1371–1373, 1375, 1393, 1394

integer-like-with-usable-difference-type ,
1154, 1154, 1155

integral, 342, 343, 564, 564, 822, 1065, 1071
invocable, 485, 562, 571, 571, 715, 1057, 1081,

1287, 1288, 1294, 1343, 1409, 1795
is-derived-from-optional , 706, 706, 718

layout-mapping-alike , 1046, 1046, 1047

mergeable, 1058, 1082, 1083, 1084, 1306,
1308–1310, 1362, 1364–1367

movable, 570, 570, 1071, 1082, 1125, 1136, 1138,
1158, 1160, 1161, 1163, 1288

move_constructible, 561, 565, 567, 567, 570,
715, 1107, 1125, 1126, 1129, 1138, 1147,
1154, 1155, 1160, 1168, 1170, 1173, 1207,
1222–1224, 1226, 1233, 1234, 1237

not-a-const-iterator , 1095, 1096, 1097, 1097,
1099

nothrow-forward-iterator , 594–597, 1391,
1391–1395

nothrow-forward-range , 594–597, 1391,
1391–1394

nothrow-input-iterator , 594, 597, 1390, 1390,
1391, 1395, 1396

nothrow-input-range , 594, 597, 1391, 1391,
1395

nothrow-sentinel-for , 594–597, 1391,
1391–1395

output_iterator, 804, 805, 810, 1056, 1063,
1074, 1074, 1137, 1293, 1294, 1341, 1342

output_range, 1137, 1137, 1294, 1342, 1343,
1380, 1389

pair-like , 593, 605, 686, 687, 689, 692, 1140
pair-like-convertible-from , 1140, 1141,

1142
partially-ordered-with , 546, 546, 547, 570
permutable, 1058, 1082, 1083, 1083, 1084,

1295–1299, 1304, 1305, 1343, 1345,
1347–1350, 1359, 1360

predicate, 562, 571, 571, 1081

random_access_iterator, 589, 995, 1007, 1014,
1021, 1057, 1063, 1074, 1075, 1075, 1076,
1085, 1086, 1088, 1096–1099, 1101,
1110–1112, 1135, 1137, 1202, 1274,
1298–1301, 1303, 1310–1312, 1349,
1352–1354, 1356, 1368–1371

random_access_range, 1137, 1137, 1139, 1140,
1170–1175, 1179, 1180, 1203, 1208–1210,
1213–1215, 1217, 1218, 1224–1226,
1229–1232, 1235–1237, 1244–1247,
1249–1251, 1257–1261, 1299–1301, 1303,
1311, 1312, 1349, 1352–1354, 1356,
1368–1371

range, 1058, 1087, 1122–1125, 1135, 1135–1140,
1144, 1159, 1160, 1162–1164, 1166, 1169,
1175, 1177, 1178, 1180, 1181, 1200, 1203,
1205–1207, 1217, 1223, 1228, 1234, 1248,
1253, 1256, 1262, 1275, 1391

range-with-movable-references , 1138, 1212,
1213, 1215

ref-wrap-common-reference-exists-with ,
767, 767

regular, 570, 570, 586, 1036, 1041, 1043, 1045,
1072

regular_invocable, 562, 571, 571, 1081, 1126,
1129, 1168–1170, 1173, 1222–1224, 1226,
1233, 1234, 1237

relation, 562, 571, 571
returnable-element , 1207, 1207, 1208, 1211

same-as-impl , 562, 562
same_as, 121, 546, 560, 562, 562–564, 568, 796,

805, 811–813, 816, 952, 956, 974, 979,
1046, 1061, 1066, 1067, 1070–1073, 1075,
1076, 1086, 1095, 1096, 1098, 1105, 1110,
1124, 1125, 1137, 1138, 1143, 1144,
1148–1150, 1154–1156, 1164, 1270, 1271,
1297, 1346, 1390, 1409

semiregular, 485, 570, 570, 805, 1049, 1060,
1061, 1073, 1095, 1104, 1125, 1148, 1150,
1153–1155
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sentinel_for, 595, 596, 1056, 1058, 1059, 1061,
1073, 1073, 1074, 1086, 1087, 1096, 1098,
1100, 1102, 1104, 1105, 1108, 1124,
1131–1133, 1135, 1140, 1141, 1173, 1174,
1176–1178, 1186, 1187, 1193, 1211, 1216,
1221, 1222, 1227, 1232, 1233, 1237, 1238,
1279–1312, 1314–1316, 1319–1326,
1328–1350, 1352–1371, 1373–1377, 1380,
1389, 1391, 1393

signed_integral, 564, 564, 1067, 1071
simple-view , 1138, 1164, 1175, 1177, 1179, 1180,

1182, 1188, 1194, 1206, 1207, 1212, 1217,
1228, 1243, 1247, 1248, 1256, 1262

sized_range, 834, 881, 883, 934, 1031, 1087,
1123, 1135, 1136, 1136, 1139–1142, 1144,
1145, 1162–1164, 1169, 1174–1176, 1179,
1180, 1193, 1203, 1204, 1206, 1207, 1212,
1217, 1218, 1224, 1228, 1229, 1234, 1239,
1243, 1247, 1248, 1256, 1261, 1287, 1329,
1330, 1333

sized_sentinel_for, 834, 1031, 1056, 1058,
1060, 1061, 1073, 1073–1075, 1086, 1087,
1097, 1099, 1100, 1103, 1105, 1108, 1124,
1133, 1139–1142, 1150, 1154, 1171,
1173–1176, 1209, 1211, 1212, 1216, 1219,
1221, 1222, 1225–1227, 1230, 1232, 1233,
1235, 1237, 1238, 1240–1242, 1244, 1246,
1247, 1249, 1252, 1258, 1260, 1261, 1287,
1329, 1330, 1332

slide-caches-first , 1247, 1248–1250, 1252
slide-caches-last , 1247, 1247, 1248
slide-caches-nothing , 1247, 1247, 1248, 1250
sortable, 1058, 1082, 1084, 1084, 1300, 1301,

1303, 1307, 1310, 1311, 1316, 1352–1354,
1356, 1362, 1363, 1368–1370, 1376, 1377

stream-extractable , 1158, 1158
strict_weak_order, 562, 571, 571, 1081
swappable, 561, 565, 566, 570
swappable_with, 565, 566, 1069

three_way_comparable, 542, 547, 547, 586, 598,
619, 720, 728, 984, 988, 995, 1072, 1096,
1099, 1151, 1153, 1171, 1172, 1208, 1210,
1229, 1231, 1235, 1237, 1244, 1246, 1249,
1251, 1257, 1260, 1500

three_way_comparable_with, 482, 547, 547, 598,
618, 706, 717, 718, 772, 1059, 1061, 1091,
1096, 1099, 1103, 1482, 1491, 1505, 1561

tiny-range , 1127, 1193, 1194–1197, 1199
totally_ordered, 480, 547, 561, 569, 570, 1067,

1075, 1149, 1151, 1153
totally_ordered_with, 547, 570, 570, 773, 1096,

1099, 1150
tuple-like , 692, 693, 693–695, 697, 698,

700–702, 704, 705, 1207

uniform_random_bit_generator, 1299, 1349,
1409, 1409

unsigned_integral, 564, 564, 1071, 1409

uses-nonqualification-pointer-conversion ,
1140, 1140

view, 1124, 1126–1130, 1135, 1136, 1136–1138,
1140, 1145, 1146, 1162, 1164–1166, 1168,
1170, 1173, 1174, 1176–1179, 1181, 1183,
1186, 1187, 1189, 1193–1195, 1197,
1199–1201, 1203–1205, 1207, 1208,
1211–1213, 1215, 1217, 1218, 1221, 1223,
1224, 1226, 1228, 1229, 1232–1234,
1237–1243, 1247, 1249, 1252–1256, 1261,
1263, 1269

viewable_range, 1125, 1138, 1138, 1160

weakly-equality-comparable-with , 547, 569,
569, 1073, 1125, 1148, 1150, 1153

weakly_incrementable, 1056, 1057, 1064, 1071,
1071–1073, 1082, 1084, 1104, 1113, 1125,
1148–1150, 1153, 1154, 1289, 1290, 1292,
1296–1299, 1305, 1306, 1308–1310,
1334–1337, 1339, 1344, 1346–1349, 1360,
1362, 1364–1367, 1380, 1389

zip-is-common , 1217, 1217
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Index of implementation-defined behavior
The entries in this index are rough descriptions; exact specifications are at the indicated page in the general
text.

#pragma, 474

additional execution policies supported by parallel
algorithms, 791, 1277

additional file_type enumerators for file systems
supporting additional types of file, 1726

additional formats for time_get::do_get_date,
1601

additional supported forms of preprocessing
directive, 462

algorithms for producing the standard random
number distributions, 1426

alignment, 70
alignment additional values, 71
alignment of bit-fields within a class object, 290
allocation of bit-fields within a class object, 290
any use of an invalid pointer other than to

perform indirection or deallocate, 68
argument values to construct

ios_base::failure, 1628
assignability of placeholder objects, 779

barrier phrase completion without wait, 1865
behavior of iostream classes when

traits::pos_type is not streampos or
when traits::off_type is not
streamoff, 1611

behavior of non-standard attributes, 248
behavior of strstreambuf::setbuf, 1945
bits in a byte, 61

choice of larger or smaller value of
floating-point-literal , 26

code unit sequence for conditional-escape-sequence,
29

code unit sequence for non-representable
string-literal , 28

column value of source_location::current,
536

conversions between pointers and integers, 131
converting function pointer to object pointer and

vice versa, 131

default configuration of a pool, 644
default next_buffer_size for a

monotonic_buffer_resource, 645
default number of buckets in unordered_map, 965
default number of buckets in

unordered_multimap, 971, 972
default number of buckets in

unordered_multiset, 981, 982

default number of buckets in unordered_set, 977
default value for least_max_value template

parameter of counting_semaphore,
1862

defining main in freestanding environment, 90
definition and meaning of __STDC__, 477, 1934
definition and meaning of __STDC_VERSION__,

477
definition of NULL, 510, 1935
derived type for typeid, 127
determination of kind of input file, 13
diagnostic message, 4
dynamic initialization of static inline variables

before main, 92
dynamic initialization of static variables before

main, 92
dynamic initialization of thread-local variables

before entry, 92

effect of calling associated Laguerre polynomials
with n >= 128 or m >= 128, 1474

effect of calling associated Legendre polynomials
with l >= 128, 1474

effect of calling basic_filebuf::setbuf with
nonzero arguments, 1692

effect of calling basic_filebuf::sync when a
get area exists, 1693

effect of calling basic_streambuf::setbuf with
nonzero arguments, 1672

effect of calling cylindrical Bessel functions of the
first kind with nu >= 128, 1475

effect of calling cylindrical Neumann functions
with nu >= 128, 1476

effect of calling Hermite polynomials with n >=
128, 1477

effect of calling ios_base::sync_with_stdio
after any input or output operation on
standard streams, 1622

effect of calling irregular modified cylindrical
Bessel functions with nu >= 128, 1476

effect of calling Laguerre polynomials with n >=
128, 1477

effect of calling Legendre polynomials with l >=
128, 1477

effect of calling regular modified cylindrical Bessel
functions with nu >= 128, 1475

effect of calling spherical associated Legendre
functions with l >= 128, 1478

effect of calling spherical Bessel functions with n
>= 128, 1478
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effect of calling spherical Neumann functions with
n >= 128, 1479

effect of conditional-escape-sequence on encoding
state, 29

effect of filesystem::copy, 1738
effect on C locale of calling locale::global, 1577
encoding assumption for format width

computation, 800
error_category for errors originating outside the

operating system, 507
exception type when random_device constructor

fails, 1424
exception type when

random_device::operator() fails, 1424
exception type when shared_ptr constructor

fails, 621, 622
exceptions thrown by standard library functions

that have a potentially-throwing
exception specification, 507

exit status, 525
extended signed integer types, 76

file type of the file argument of
filesystem::status, 1749

floating-point conversion subrank, 82
formatted character sequence generated by

time_put::do_put in C locale, 1603
forward progress guarantees for implicit threads of

parallel algorithms (if not defined for
thread), 1276

growth factor for monotonic_buffer_resource,
645

headers for freestanding implementation, 489
how random_device::operator() generates

values, 1424
how the set of importable headers is determined,

260

interactive device, 11
interpretation of the path character sequence with

format path::auto_format, 1725

largest supported value to configure the largest
allocation satisfied directly by a pool,
643

largest supported value to configure the maximum
number of blocks to replenish a pool, 643

last enumerator of launch, 1867
linkage of main, 90
linkage of names from C standard library, 490
linkage of objects between C++ and other

languages, 247
locale names, 1576
locales with Unicode support for chrono types,

1562
lvalue-to-rvalue conversion of an invalid pointer

value, 99

manner of search for included source file, 466
mapping from name to catalog when calling

messages::do_open, 1609
mapping header name to header or external

source file, 19
mapping input source file characters to translation

character set, 1916
mapping of pointer to integer, 130
mapping physical source file characters to

translation character set, 13
mapping to message when calling

messages::do_get, 1609
maximum depth of recursive template

instantiations, 423
maximum size of an allocated object, 138, 531
meaning of ’, \, /*, or // in a q-char-sequence or

an h-char-sequence, 19
meaning of asm declaration, 245
meaning of attribute declaration, 175
meaning of dot-dot in root-directory , 1713

nesting limit for #include directives, 466
NTCTS in basic_ostream<charT, traits>&

operator<<(nullptr_t), 1658
number of placeholders for bind expressions, 763,

778
number of threads in a program under a

freestanding implementation, 85

operating system on which implementation
depends, 1705

operator<< for large extended floating-point
types, 1657

operator>> for large extended floating-point
types, 1645

ordinary and wide literal encodings, 16

parameters to main, 90
passing argument of class type through ellipsis,

124
presence and meaning of native_handle_type

and native_handle, 1787
presence and value of __STDC_ISO_10646__, 477

rank of extended signed integer type, 82
representation of floating-point types, 78
required alignment for atomic_ref type’s

operations, 1810, 1813–1815
resource limits on a message catalog, 1610
result of filesystem::file_size, 1743
result of inexact floating-point conversion, 101,

130
resuming a coroutine on a different execution

agent, 552
return type of cartesian_product_view::size,

1263
return value of bad_alloc::what, 531
return value of bad_any_cast::what, 730
return value of bad_array_new_length::what,

531
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return value of bad_cast::what, 534
return value of bad_exception::what, 538
return value of bad_function_call::what, 779
return value of bad_optional_access::what,

716
return value of bad_typeid::what, 534
return value of bad_variant_access::what, 729
return value of bad_weak_ptr::what, 619
return value of char_traits<char16_t>::eof,

829
return value of char_traits<char32_t>::eof,

829
return value of char_traits<char8_t>::eof,

828
return value of exception::what, 537
return value of source_location::current, 535
return value of type_info::name(), 534

search locations for "" header, 466
search locations for <> header, 465
semantics of an access through a volatile glvalue,

184
semantics of linkage specifiers, 245
semantics of parallel algorithms invoked with

implementation-defined execution
policies, 1277

semantics of
stacktrace_entry::native_handle,
587

semantics of token parameter and default token
value used by random_device
constructors, 1424

sequence of places searched for a header, 465
set of character types that iostreams templates

can be instantiated for, 1575, 1611
set of integer-class types, 1071
signedness of char, 184
sizeof applied to fundamental types other than

char, signed char, and unsigned
char, 136

stack unwinding before invocation of
std::terminate, 456, 460

stacktrace_entry::native_handle_type, 586
startup and termination in freestanding

environment, 90
strict total order over pointer values, 5
string resulting from __func__, 226
support for extended alignments, 71
support for module-import-declarations with

non-C++ language linkage, 245
supported input files, 13
supported multibyte character encoding rules, 828
supported root-names in addition to any operating

system dependent root-names, 1712, 1713

text of __DATE__ when date of translation is not
available, 474

text of __TIME__ when time of translation is not
available, 475

threads and program points at which deferred
dynamic initialization is performed, 92

type of a directory-like file, 1733, 1735
type of array::const_iterator, 912
type of array::iterator, 912
type of basic_stacktrace::const_iterator,

587
type of basic_stacktrace::difference_type,

587
type of basic_stacktrace::size_type, 587
type of basic_string::const_iterator, 844
type of basic_string::iterator, 844
type of basic_string_view::const_iterator,

831, 834
type of default_random_engine, 1423
type of deque::const_iterator, 914
type of deque::difference_type, 914
type of deque::iterator, 914
type of deque::size_type, 914
type of flat_map::const_iterator, 996
type of flat_map::iterator, 996
type of flat_multimap::const_iterator, 1008
type of flat_multimap::iterator, 1008
type of flat_multiset::const_iterator, 1022
type of flat_multiset::iterator, 1022
type of flat_set::const_iterator, 1015
type of flat_set::iterator, 1015
type of forward_list::const_iterator, 918
type of forward_list::difference_type, 918
type of forward_list::iterator, 918
type of forward_list::size_type, 918
type of list::const_iterator, 925
type of list::difference_type, 925
type of list::iterator, 925
type of list::size_type, 925
type of map::const_iterator, 941
type of map::difference_type, 941
type of map::iterator, 941
type of map::size_type, 941
type of match_results::const_iterator, 1771
type of multimap::const_iterator, 947
type of multimap::difference_type, 947
type of multimap::iterator, 947
type of multimap::size_type, 947
type of multiset::const_iterator, 955
type of multiset::difference_type, 955
type of multiset::iterator, 955
type of multiset::size_type, 955
type of ptrdiff_t, 146, 511
type of ranges::cartesian_product_-

view::iterator ::difference_type,
1264

type of regex_constants::error_type, 1761
type of regex_constants::match_flag_type,

1759
type of set::const_iterator, 951
type of set::difference_type, 951
type of set::iterator, 951
type of set::size_type, 951
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type of size_t, 511
type of span::iterator, 1029, 1033
type of std::bfloat16_t, 525
type of std::float128_t, 525
type of std::float16_t, 524
type of std::float32_t, 524
type of std::float64_t, 525
type of streamoff, 1611
type of syntax_option_type, 1759
type of unordered_map::const_iterator, 961
type of unordered_map::const_local_-

iterator, 961
type of unordered_map::difference_type, 961
type of unordered_map::iterator, 961
type of unordered_map::local_iterator, 961
type of unordered_map::size_type, 961
type of unordered_multimap::const_iterator,

967
type of unordered_multimap::const_local_it-

erator, 968
type of unordered_multimap::difference_-

type, 967
type of unordered_multimap::iterator, 967
type of unordered_multimap::local_iterator,

968
type of unordered_multimap::size_type, 967
type of unordered_multiset::const_iterator,

978
type of unordered_multiset::const_local_it-

erator, 978
type of unordered_multiset::difference_-

type, 978
type of unordered_multiset::iterator, 978
type of unordered_multiset::local_iterator,

978
type of unordered_multiset::size_type, 978
type of unordered_set::const_iterator, 973
type of unordered_set::const_local_-

iterator, 973
type of unordered_set::difference_type, 973
type of unordered_set::iterator, 973
type of unordered_set::local_iterator, 973
type of unordered_set::size_type, 973
type of vector::const_iterator, 931
type of vector::difference_type, 931
type of vector::iterator, 931
type of vector::size_type, 931
type of vector<bool>::const_iterator, 936
type of vector<bool>::const_pointer, 936
type of vector<bool>::difference_type, 936
type of vector<bool>::iterator, 936
type of vector<bool>::pointer, 936
type of vector<bool>::size_type, 936

underlying type for enumeration, 234
underlying type of bool, 78
underlying type of char, 77
underlying type of wchar_t, 77
unit suffix when Period::type is micro, 1502

value of bit-field that cannot represent
assigned value, 153
incremented value, 126
initializer, 212

value of conditional-escape-sequence, 25
value of ctype<char>::table_size, 1582
value of future_errc::broken_promise, 1867
value of future_errc::future_already_-

retrieved, 1867
value of future_errc::no_state, 1867
value of future_errc::promise_already_-

satisfied, 1867
value of has-attribute-expression for non-standard

attributes, 464
value of non-encodable character literal or

multicharacter literal, 24
value of pow(0,0), 1404
value of result of inexact integer to floating-point

conversion, 101
value representation of pointer types, 80
values of a trivially copyable type, 75
values of various ATOMIC_..._LOCK_FREE macros,

1809

whether <cfenv> functions can be used to manage
floating-point status, 1398

whether a given atomic type’s operations are
always lock free, 1817, 1818, 1821, 1823,
1825, 1827, 1830

whether a given atomic_ref type’s operations are
always lock free, 1810, 1813–1815

whether basic_spanbuf’s move source is empty
after a move, 1682

whether functions from Annex K of the C
standard library are declared when C++

headers are included, 488
whether locale object is global or per-thread, 1574
whether pragma FENV_ACCESS is supported, 1398
whether rand may introduce a data race, 1447
whether sequence pointers are copied by

basic_filebuf move constructor, 1689
whether sequence pointers are copied by

basic_stringbuf move constructor,
1669

whether sequence pointers are initialized to null
pointers, 1668

whether source file inclusion of importable header
is replaced with import directive, 466

whether source of translation units must be
available to locate template definitions,
14

whether stack is unwound before invoking the
function std::terminate when a
noexcept specification is violated, 460

whether the implementation is hosted or
freestanding, 489

whether the lifetime of a parameter ends when the
callee returns or at the end of the
enclosing full-expression, 123
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whether the sources for module units and header
units on which the current translation
unit has an interface dependency are
required to be available during
translation, 14

whether the thread that executes main and the
threads created by std::thread or
std::jthread provide concurrent
forward progress guarantees, 89

whether time_get::do_get_year accepts
two-digit year numbers, 1601

whether values are rounded or truncated to the
required precision when converting
between time_t values and time_point
objects, 1506

which functions in the C++ standard library may
be recursively reentered, 506

which non-standard-layout objects containing no
data are considered empty, 63

which scalar types have unique object
representations, 666

width of integral type, 77
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