Annex C (informative) Compatibility [diff]

C.3 C++ and ISO C++ 2014 [diff.cpp14]

C.3.1 General [diff.cpp14.general]

Subclause [diff.cpp14] lists the differences between C++ and ISO C++ 2014 (ISO/IEC 14882:2014, Programming Languages — C++), in addition to those listed above, by the chapters of this document.

C.3.2 [lex]: lexical conventions [diff.cpp14.lex]

Affected subclause: [lex.phases]
Change: Removal of trigraph support as a required feature.

Rationale: Prevents accidental uses of trigraphs in non-raw string literals and comments.

Effect on original feature: Valid C++ 2014 code that uses trigraphs may not be valid or may have different semantics in this revision of C++.
Implementations may choose to translate trigraphs as specified in C++ 2014 if they appear outside of a raw string literal, as part of the implementation-defined mapping from input source file characters to the translation character set.
Affected subclause: [lex.ppnumber]
Change: pp-number can contain p sign and P sign.

Rationale: Necessary to enable hexadecimal-floating-point-literals.

Effect on original feature: Valid C++ 2014 code may fail to compile or produce different results in this revision of C++.
Specifically, character sequences like 0p+0 and 0e1_p+0 are three separate tokens each in C++ 2014, but one single token in this revision of C++.
For example: #define F(a) b ## a int b0p = F(0p+0); // ill-formed; equivalent to “int b0p = b0p + 0;'' in C++ 2014

C.3.3 [expr]: expressions [diff.cpp14.expr]

Affected subclauses: [expr.post.incr] and [expr.pre.incr]
Change: Remove increment operator with bool operand.

Rationale: Obsolete feature with occasionally surprising semantics.

Effect on original feature: A valid C++ 2014 expression utilizing the increment operator on a bool lvalue is ill-formed in this revision of C++.
Affected subclauses: [expr.new] and [expr.delete]
Change: Dynamic allocation mechanism for over-aligned types.

Rationale: Simplify use of over-aligned types.

Effect on original feature: In C++ 2014 code that uses a new-expression to allocate an object with an over-aligned class type, where that class has no allocation functions of its own, ​::​operator new(std​::​size_t) is used to allocate the memory.
In this revision of C++, ​::​operator new(std​::​size_t, std​::​align_val_t) is used instead.

C.3.4 [dcl.dcl]: declarations [diff.cpp14.dcl.dcl]

Affected subclause: [dcl.stc]
Change: Removal of register storage-class-specifier.

Rationale: Enable repurposing of deprecated keyword in future revisions of C++.

Effect on original feature: A valid C++ 2014 declaration utilizing the register storage-class-specifier is ill-formed in this revision of C++.
The specifier can simply be removed to retain the original meaning.
Affected subclause: [dcl.spec.auto]
Change: auto deduction from braced-init-list.

Rationale: More intuitive deduction behavior.

Effect on original feature: Valid C++ 2014 code may fail to compile or may change meaning in this revision of C++.
For example: auto x1{1}; // was std​::​initializer_list<int>, now int auto x2{1, 2}; // was std​::​initializer_list<int>, now ill-formed
Affected subclause: [dcl.fct]
Change: Make exception specifications be part of the type system.

Rationale: Improve type-safety.

Effect on original feature: Valid C++ 2014 code may fail to compile or change meaning in this revision of C++.
For example: void g1() noexcept; void g2(); template<class T> int f(T *, T *); int x = f(g1, g2); // ill-formed; previously well-formed
Affected subclause: [dcl.init.aggr]
Change: Definition of an aggregate is extended to apply to user-defined types with base classes.

Rationale: To increase convenience of aggregate initialization.

Effect on original feature: Valid C++ 2014 code may fail to compile or produce different results in this revision of C++; initialization from an empty initializer list will perform aggregate initialization instead of invoking a default constructor for the affected types.
For example: struct derived; struct base { friend struct derived; private: base(); }; struct derived : base {}; derived d1{}; // error; the code was well-formed in C++ 2014 derived d2; // still OK

C.3.5 [class]: classes [diff.cpp14.class]

Affected subclause: [class.inhctor.init]
Change: Inheriting a constructor no longer injects a constructor into the derived class.

Rationale: Better interaction with other language features.

Effect on original feature: Valid C++ 2014 code that uses inheriting constructors may not be valid or may have different semantics.
A using-declaration that names a constructor now makes the corresponding base class constructors visible to initializations of the derived class rather than declaring additional derived class constructors.
For example: struct A { template<typename T> A(T, typename T::type = 0); A(int); }; struct B : A { using A::A; B(int); }; B b(42L); // now calls B(int), used to call B<long>(long), // which called A(int) due to substitution failure // in A<long>(long).

C.3.6 [temp]: templates [diff.cpp14.temp]

Affected subclause: [temp.deduct.type]
Change: Allowance to deduce from the type of a non-type template argument.

Rationale: In combination with the ability to declare non-type template arguments with placeholder types, allows partial specializations to decompose from the type deduced for the non-type template argument.

Effect on original feature: Valid C++ 2014 code may fail to compile or produce different results in this revision of C++.
For example: template <int N> struct A; template <typename T, T N> int foo(A<N> *) = delete; void foo(void *); void bar(A<0> *p) { foo(p); // ill-formed; previously well-formed }

C.3.7 [except]: exception handling [diff.cpp14.except]

Affected subclause: [except.spec]
Change: Remove dynamic exception specifications.

Rationale: Dynamic exception specifications were a deprecated feature that was complex and brittle in use.
They interacted badly with the type system, which became a more significant issue in this revision of C++ where (non-dynamic) exception specifications are part of the function type.

Effect on original feature: A valid C++ 2014 function declaration, member function declaration, function pointer declaration, or function reference declaration, if it has a potentially throwing dynamic exception specification, is rejected as ill-formed in this revision of C++.
Violating a non-throwing dynamic exception specification calls terminate rather than unexpected, and it is unspecified whether stack unwinding is performed prior to such a call.

C.3.8 [library]: library introduction [diff.cpp14.library]

Affected subclause: [headers]
Change: New headers.

Rationale: New functionality.

Effect on original feature: The following C++ headers are new: <any>, <charconv>, <execution>, <filesystem>, <memory_resource>, <optional>,
Valid C++ 2014 code that #includes headers with these names may be invalid in this revision of C++.
Affected subclause: [namespace.future]
Change: New reserved namespaces.

Rationale: Reserve namespaces for future revisions of the standard library that might otherwise be incompatible with existing programs.

Effect on original feature: The global namespaces std followed by an arbitrary sequence of digits ([lex.name]) are reserved for future standardization.
Valid C++ 2014 code that uses such a top-level namespace, e.g., std2, may be invalid in this revision of C++.

C.3.9 [utilities]: general utilities library [diff.cpp14.utilities]

Affected subclause: [func.wrap]
Change: Constructors taking allocators removed.

Rationale: No implementation consensus.

Effect on original feature: Valid C++ 2014 code may fail to compile or may change meaning in this revision of C++.
Specifically, constructing a std​::​function with an allocator is ill-formed and uses-allocator construction will not pass an allocator to std​::​function constructors in this revision of C++.
Affected subclause: [util.smartptr.shared]
Change: Different constraint on conversions from unique_ptr.

Rationale: Adding array support to shared_ptr, via the syntax shared_ptr<T[]> and shared_ptr<T[N]>.

Effect on original feature: Valid C++ 2014 code may fail to compile or may change meaning in this revision of C++.
For example: #include <memory> std::unique_ptr<int[]> arr(new int[1]); std::shared_ptr<int> ptr(std::move(arr)); // error: int(*)[] is not compatible with int*

C.3.10 [strings]: strings library [diff.cpp14.string]

Affected subclause: [basic.string]
Change: Non-const .data() member added.

Rationale: The lack of a non-const .data() differed from the similar member of std​::​vector.
This change regularizes behavior.

Effect on original feature: Overloaded functions which have differing code paths for char* and const char* arguments will execute differently when called with a non-const string's .data() member in this revision of C++.
For example: int f(char *) = delete; int f(const char *); string s; int x = f(s.data()); // ill-formed; previously well-formed

C.3.11 [containers]: containers library [diff.cpp14.containers]

Affected subclause: [associative.reqmts]
Change: Requirements change:
Rationale: Increase portability, clarification of associative container requirements.

Effect on original feature: Valid C++ 2014 code that attempts to use associative containers having a comparison object with non-const function call operator may fail to compile in this revision of C++.
For example: #include <set> struct compare { bool operator()(int a, int b) { return a < b; } }; int main() { const std::set<int, compare> s; s.find(0); }

C.3.12 [depr]: compatibility features [diff.cpp14.depr]

Change: The class templates auto_ptr, unary_function, and binary_function, the function templates random_shuffle, and the function templates (and their return types) ptr_fun, mem_fun, mem_fun_ref, bind1st, and bind2nd are not defined.

Rationale: Superseded by new features.

Effect on original feature: Valid C++ 2014 code that uses these class templates and function templates may fail to compile in this revision of C++.
Change: Remove old iostreams members [depr.ios.members].

Rationale: Redundant feature for compatibility with pre-standard code has served its time.

Effect on original feature: A valid C++ 2014 program using these identifiers may be ill-formed in this revision of C++.