In the constructor definitions below, enables shared_from_this with p, for a pointer p of type Y*, means that if Y has an unambiguous and accessible base class that is a specialization of enable_shared_from_this, then remove_cv_t<Y>* shall be implicitly convertible to T* and the constructor evaluates the statement:
if (p != nullptr && p->weak_this.expired()) p->weak_this = shared_ptr<remove_cv_t<Y>>(*this, const_cast<remove_cv_t<Y>*>(p));
The assignment to the weak_this member is not atomic and conflicts with any potentially concurrent access to the same object ([intro.multithread]).
constexpr shared_ptr() noexcept;
template<class Y> explicit shared_ptr(Y* p);
Requires: Y shall be a complete type. The expression delete[] p, when T is an array type, or delete p, when T is not an array type, shall have well-defined behavior, and shall not throw exceptions.
Effects: When T is not an array type, constructs a shared_ptr object that owns the pointer p. Otherwise, constructs a shared_ptr that owns p and a deleter of an unspecified type that calls delete[] p. When T is not an array type, enables shared_from_this with p. If an exception is thrown, delete p is called when T is not an array type, delete[] p otherwise.
Remarks: When T is an array type, this constructor shall not participate in overload resolution unless the expression delete[] p is well-formed and either T is U[N] and Y(*)[N] is convertible to T*, or T is U[] and Y(*)[] is convertible to T*. When T is not an array type, this constructor shall not participate in overload resolution unless the expression delete p is well-formed and Y* is convertible to T*.
template<class Y, class D> shared_ptr(Y* p, D d);
template<class Y, class D, class A> shared_ptr(Y* p, D d, A a);
template <class D> shared_ptr(nullptr_t p, D d);
template <class D, class A> shared_ptr(nullptr_t p, D d, A a);
Requires: Construction of d and a deleter of type D initialized with std::move(d) shall not throw exceptions. The expression d(p) shall have well-defined behavior and shall not throw exceptions. A shall be an allocator ([allocator.requirements]).
Effects: Constructs a shared_ptr object that owns the object p and the deleter d. When T is not an array type, the first and second constructors enable shared_from_this with p. The second and fourth constructors shall use a copy of a to allocate memory for internal use. If an exception is thrown, d(p) is called.
Remarks: When T is an array type, this constructor shall not participate in overload resolution unless is_move_constructible_v<D> is true, the expression d(p) is well-formed, and either T is U[N] and Y(*)[N] is convertible to T*, or T is U[] and Y(*)[] is convertible to T*. When T is not an array type, this constructor shall not participate in overload resolution unless is_move_constructible_v<D> is true, the expression d(p) is well-formed, and Y* is convertible to T*.
template<class Y> shared_ptr(const shared_ptr<Y>& r, element_type* p) noexcept;
[ Note: To avoid the possibility of a dangling pointer, the user of this constructor must ensure that p remains valid at least until the ownership group of r is destroyed. — end note ]
[ Note: This constructor allows creation of an empty shared_ptr instance with a non-null stored pointer. — end note ]
shared_ptr(const shared_ptr& r) noexcept;
template<class Y> shared_ptr(const shared_ptr<Y>& r) noexcept;
Remarks: The second constructor shall not participate in overload resolution unless Y* is compatible with T*.
Effects: If r is empty, constructs an empty shared_ptr object; otherwise, constructs a shared_ptr object that shares ownership with r.
shared_ptr(shared_ptr&& r) noexcept;
template<class Y> shared_ptr(shared_ptr<Y>&& r) noexcept;
Remarks: The second constructor shall not participate in overload resolution unless Y* is compatible with T*.
template<class Y> explicit shared_ptr(const weak_ptr<Y>& r);
Effects: Constructs a shared_ptr object that shares ownership with r and stores a copy of the pointer stored in r. If an exception is thrown, the constructor has no effect.
Remarks: This constructor shall not participate in overload resolution unless Y* is compatible with T*.
template <class Y, class D> shared_ptr(unique_ptr<Y, D>&& r);
Remarks: This constructor shall not participate in overload resolution unless Y* is compatible with T* and unique_ptr<Y, D>::pointer is convertible to element_type*.