Template | Comments |
template <size_t Len, size_t Align = default-alignment> struct aligned_storage; |
The value of default-alignment shall be the most
stringent alignment requirement for any C++ object type whose size
is no greater than Len ([basic.types]).
The member typedef type shall be a POD type
suitable for use as uninitialized storage for any object whose size
is at most Len and whose alignment is a divisor of Align. Requires: Len shall not be zero. Align shall be equal to alignof(T) for some type T or to default-alignment. |
template <size_t Len, class... Types> struct aligned_union; |
The member typedef type shall be a POD type suitable for use as
uninitialized storage for any object whose type is listed in Types;
its size shall be at least Len. The static member alignment_value
shall be an integral constant of type size_t whose value is the
strictest alignment of all types listed in Types. Requires: At least one type is provided. |
template <class T> struct decay; | Let U be remove_reference_t<T>. If is_array_v<U> is true, the member typedef type shall equal remove_extent_t<U>*. If is_function_v<U> is true, the member typedef type shall equal add_pointer_t<U>. Otherwise the member typedef type equals remove_cv_t<U>. [ Note: This behavior is similar to the lvalue-to-rvalue, array-to-pointer, and function-to-pointer conversions applied when an lvalue expression is used as an rvalue, but also strips cv-qualifiers from class types in order to more closely model by-value argument passing. — end note ] |
template <bool B, class T = void> struct enable_if; | If B is true, the member typedef type shall equal T; otherwise, there shall be no member type. |
template <bool B, class T,
class F> struct conditional; | If B is true, the member typedef type shall equal T. If B is false, the member typedef type shall equal F. |
template <class... T> struct common_type; | Unless this trait is specialized (as specified in Note B, below), the member type shall be defined or omitted as specified in Note A, below. If it is omitted, there shall be no member type. Each type in the parameter pack T shall be complete, cv void, or an array of unknown bound. |
template <class T> struct underlying_type; |
The member typedef type names the underlying type
of T. Requires: T shall be a complete enumeration type |
template <class Fn, class... ArgTypes> struct invoke_result; |
If the expression INVOKE(declval<Fn>(), declval<ArgTypes>()...)
is well formed when treated as an unevaluated operand,
the member typedef type names the type
decltype(INVOKE(declval<Fn>(), declval<ArgTypes>()...));
otherwise, there shall be no member type. Access checking is
performed as if in a context unrelated to Fn and
ArgTypes. Only the validity of the immediate context of the
expression is considered.
[ Note:
The compilation of the expression can result in side effects such as
the instantiation of class template specializations and function
template specializations, the generation of implicitly-defined
functions, and so on. Such side effects are not in the “immediate
context” and can result in the program being ill-formed.
— end note ] Requires: Fn and all types in the parameter pack ArgTypes shall be complete types, cv void, or arrays of unknown bound. |
[ Note: A typical implementation would define aligned_storage as:
template <size_t Len, size_t Alignment> struct aligned_storage { typedef struct { alignas(Alignment) unsigned char __data[Len]; } type; };
— end note ]
Note A: For the common_type trait applied to a parameter pack T of types, the member type shall be either defined or not present as follows:
If sizeof...(T) is zero, there shall be no member type.
If sizeof...(T) is one, let T0 denote the sole type constituting the pack T. The member typedef-name type shall denote the same type, if any, as common_type_t<T0, T0>; otherwise there shall be no member type.
If sizeof...(T) is two, let the first and second types constituting T be denoted by T1 and T2, respectively, and let D1 and D2 denote the same types as decay_t<T1> and decay_t<T2>, respectively.
If is_same_v<T1, D1> is false or is_same_v<T2, D2> is false, let C denote the same type, if any, as common_type_t<D1, D2>.
Otherwise, let C denote the same type, if any, as
decay_t<decltype(false ? declval<D1>() : declval<D2>())>
[ Note: This will not apply if there is a specialization common_type<D1, D2>. — end note ]
In either case, the member typedef-name type shall denote the same type, if any, as C. Otherwise, there shall be no member type.
If sizeof...(T) is greater than two, let T1, T2, and R, respectively, denote the first, second, and (pack of) remaining types constituting T. Let C denote the same type, if any, as common_type_t<T1, T2>. If there is such a type C, the member typedef-name type shall denote the same type, if any, as common_type_t<C, R...>. Otherwise, there shall be no member type.
Note B: Notwithstanding the provisions of [meta.type.synop], and pursuant to [namespace.std], a program may specialize common_type<T1, T2> for types T1 and T2 such that is_same_v<T1, decay_t<T1>> and is_same_v<T2, decay_t<T2>> are each true. [ Note: Such specializations are needed when only explicit conversions are desired between the template arguments. — end note ] Such a specialization need not have a member named type, but if it does, that member shall be a typedef-name for an accessible and unambiguous cv-unqualified non-reference type C to which each of the types T1 and T2 is explicitly convertible. Moreover, common_type_t<T1, T2> shall denote the same type, if any, as does common_type_t<T2, T1>. No diagnostic is required for a violation of this Note's rules.
[ Example: Given these definitions:
using PF1 = bool (&)(); using PF2 = short (*)(long); struct S { operator PF2() const; double operator()(char, int&); void fn(long) const; char data; }; using PMF = void (S::*)(long) const; using PMD = char S::*;
the following assertions will hold:
static_assert(is_same_v<invoke_result_t<S, int>, short>); static_assert(is_same_v<invoke_result_t<S&, unsigned char, int&>, double>); static_assert(is_same_v<invoke_result_t<PF1>, bool>); static_assert(is_same_v<invoke_result_t<PMF, unique_ptr<S>, int>, void>); static_assert(is_same_v<invoke_result_t<PMD, S>, char&&>); static_assert(is_same_v<invoke_result_t<PMD, const S*>, const char&>);
— end example ]