23 General utilities library [utilities]

23.12 Memory resources [mem.res]

23.12.3 Class template polymorphic_­allocator [mem.poly.allocator.class]

A specialization of class template pmr​::​polymorphic_­allocator conforms to the Allocator requirements. Constructed with different memory resources, different instances of the same specialization of pmr​::​polymorphic_­allocator can exhibit entirely different allocation behavior. This runtime polymorphism allows objects that use polymorphic_­allocator to behave as if they used different allocator types at run time even though they use the same static allocator type.

template <class Tp>
class polymorphic_allocator {
  memory_resource* memory_rsrc; // exposition only

public:
  using value_type = Tp;

  // [mem.poly.allocator.ctor], constructors
  polymorphic_allocator() noexcept;
  polymorphic_allocator(memory_resource* r);

  polymorphic_allocator(const polymorphic_allocator& other) = default;

  template <class U>
    polymorphic_allocator(const polymorphic_allocator<U>& other) noexcept;

  polymorphic_allocator&
    operator=(const polymorphic_allocator& rhs) = delete;

  // [mem.poly.allocator.mem], member functions
  Tp* allocate(size_t n);
  void deallocate(Tp* p, size_t n);

  template <class T, class... Args>
  void construct(T* p, Args&&... args);

  template <class T1, class T2, class... Args1, class... Args2>
    void construct(pair<T1,T2>* p, piecewise_construct_t,
                   tuple<Args1...> x, tuple<Args2...> y);
  template <class T1, class T2>
    void construct(pair<T1,T2>* p);
  template <class T1, class T2, class U, class V>
    void construct(pair<T1,T2>* p, U&& x, V&& y);
  template <class T1, class T2, class U, class V>
    void construct(pair<T1,T2>* p, const pair<U, V>& pr);
  template <class T1, class T2, class U, class V>
    void construct(pair<T1,T2>* p, pair<U, V>&& pr);

  template <class T>
    void destroy(T* p);

  polymorphic_allocator select_on_container_copy_construction() const;

  memory_resource* resource() const;
};

23.12.3.1 polymorphic_­allocator constructors [mem.poly.allocator.ctor]

polymorphic_allocator() noexcept;

Effects: Sets memory_­rsrc to get_­default_­resource().

polymorphic_allocator(memory_resource* r);

Requires: r is non-null.

Effects: Sets memory_­rsrc to r.

Throws: Nothing.

[Note: This constructor provides an implicit conversion from memory_­resource*. end note]

template <class U> polymorphic_allocator(const polymorphic_allocator<U>& other) noexcept;

Effects: Sets memory_­rsrc to other.resource().

23.12.3.2 polymorphic_­allocator member functions [mem.poly.allocator.mem]

Tp* allocate(size_t n);

Returns: Equivalent to

return static_cast<Tp*>(memory_rsrc->allocate(n * sizeof(Tp), alignof(Tp)));
void deallocate(Tp* p, size_t n);

Requires: p was allocated from a memory resource x, equal to *memory_­rsrc, using x.allocate(n * sizeof(Tp), alignof(Tp)).

Effects: Equivalent to memory_­rsrc->deallocate(p, n * sizeof(Tp), alignof(Tp)).

Throws: Nothing.

template <class T, class... Args> void construct(T* p, Args&&... args);

Requires: Uses-allocator construction of T with allocator resource() (see [allocator.uses.construction]) and constructor arguments std​::​forward<Args>(args)... is well-formed. [Note: Uses-allocator construction is always well formed for types that do not use allocators.end note]

Effects: Construct a T object in the storage whose address is represented by p by uses-allocator construction with allocator resource() and constructor arguments std​::​forward<Args>(args)....

Throws: Nothing unless the constructor for T throws.

template <class T1, class T2, class... Args1, class... Args2> void construct(pair<T1,T2>* p, piecewise_construct_t, tuple<Args1...> x, tuple<Args2...> y);

[Note: This method and the construct methods that follow are overloads for piecewise construction of pairs ([pairs.pair]). end note]

Effects: Let xprime be a tuple constructed from x according to the appropriate rule from the following list. [Note: The following description can be summarized as constructing a pair<T1, T2> object in the storage whose address is represented by p, as if by separate uses-allocator construction with allocator resource() ([allocator.uses.construction]) of p->first using the elements of x and p->second using the elements of y. end note]

  • If uses_­allocator_­v<T1,memory_­resource*> is false
    and is_­constructible_­v<T1,Args1...> is true,
    then xprime is x.

  • Otherwise, if uses_­allocator_­v<T1,memory_­resource*> is true
    and is_­constructible_­v<T1,allocator_­arg_­t,memory_­resource*,Args1...> is true,
    then xprime is tuple_­cat(make_­tuple(allocator_­arg, resource()), std​::​move(x)).

  • Otherwise, if uses_­allocator_­v<T1,memory_­resource*> is true
    and is_­constructible_­v<T1,Args1...,memory_­resource*> is true,
    then xprime is tuple_­cat(std​::​move(x), make_­tuple(resource())).

  • Otherwise the program is ill formed.

Let yprime be a tuple constructed from y according to the appropriate rule from the following list:

  • If uses_­allocator_­v<T2,memory_­resource*> is false
    and is_­constructible_­v<T2,Args2...> is true,
    then yprime is y.

  • Otherwise, if uses_­allocator_­v<T2,memory_­resource*> is true
    and is_­constructible_­v<T2,allocator_­arg_­t,memory_­resource*,Args2...> is true,
    then yprime is tuple_­cat(make_­tuple(allocator_­arg, resource()), std​::​move(y)).

  • Otherwise, if uses_­allocator_­v<T2,memory_­resource*> is true
    and is_­constructible_­v<T2,Args2...,memory_­resource*> is true,
    then yprime is tuple_­cat(std​::​move(y), make_­tuple(resource())).

  • Otherwise the program is ill formed.

Then, using piecewise_­construct, xprime, and yprime as the constructor arguments, this function constructs a pair<T1, T2> object in the storage whose address is represented by p.

template <class T1, class T2> void construct(pair<T1,T2>* p);

Effects: Equivalent to:

construct(p, piecewise_construct, tuple<>(), tuple<>());

template <class T1, class T2, class U, class V> void construct(pair<T1,T2>* p, U&& x, V&& y);

Effects: Equivalent to:

construct(p, piecewise_construct,
          forward_as_tuple(std::forward<U>(x)),
          forward_as_tuple(std::forward<V>(y)));

template <class T1, class T2, class U, class V> void construct(pair<T1,T2>* p, const pair<U, V>& pr);

Effects: Equivalent to:

construct(p, piecewise_construct,
          forward_as_tuple(pr.first),
          forward_as_tuple(pr.second));

template <class T1, class T2, class U, class V> void construct(pair<T1,T2>* p, pair<U, V>&& pr);

Effects: Equivalent to:

construct(p, piecewise_construct,
          forward_as_tuple(std::forward<U>(pr.first)),
          forward_as_tuple(std::forward<V>(pr.second)));

template <class T> void destroy(T* p);

Effects: As if by p->~T().

polymorphic_allocator select_on_container_copy_construction() const;

Returns: polymorphic_­allocator().

[Note: The memory resource is not propagated. end note]

memory_resource* resource() const;

Returns: memory_­rsrc.

23.12.3.3 polymorphic_­allocator equality [mem.poly.allocator.eq]

template <class T1, class T2> bool operator==(const polymorphic_allocator<T1>& a, const polymorphic_allocator<T2>& b) noexcept;

Returns: *a.resource() == *b.resource().

template <class T1, class T2> bool operator!=(const polymorphic_allocator<T1>& a, const polymorphic_allocator<T2>& b) noexcept;

Returns: !(a == b).