Placeholder type deduction is the process by which a type containing a placeholder type is replaced by a deduced type.
A type T containing a placeholder type, and a corresponding initializer e, are determined as follows:
for a non-discarded return statement that occurs in a function declared with a return type that contains a placeholder type, T is the declared return type and e is the operand of the return statement. If the return statement has no operand, then e is void();
for a variable declared with a type that contains a placeholder type, T is the declared type of the variable and e is the initializer. If the initialization is direct-list-initialization, the initializer shall be a braced-init-list containing only a single assignment-expression and e is the assignment-expression;
for a non-type template parameter declared with a type that contains a placeholder type, T is the declared type of the non-type template parameter and e is the corresponding template argument.
In the case of a return statement with no operand or with an operand of type void, T shall be either decltype(auto) or cv auto.
If the deduction is for a return statement and e is a braced-init-list ([dcl.init.list]), the program is ill-formed.
If the placeholder is the auto type-specifier, the deduced type T' replacing T is determined using the rules for template argument deduction. Obtain P from T by replacing the occurrences of auto with either a new invented type template parameter U or, if the initialization is copy-list-initialization, with std::initializer_list<U>. Deduce a value for U using the rules of template argument deduction from a function call, where P is a function template parameter type and the corresponding argument is e. If the deduction fails, the declaration is ill-formed. Otherwise, T' is obtained by substituting the deduced U into P. [ Example:
auto x1 = { 1, 2 }; // decltype(x1) is std::initializer_list<int> auto x2 = { 1, 2.0 }; // error: cannot deduce element type auto x3{ 1, 2 }; // error: not a single element auto x4 = { 3 }; // decltype(x4) is std::initializer_list<int> auto x5{ 3 }; // decltype(x5) is int
— end example ]
[ Example:
const auto &i = expr;
The type of i is the deduced type of the parameter u in the call f(expr) of the following invented function template:
template <class U> void f(const U& u);
— end example ]
If the placeholder is the decltype(auto) type-specifier, T shall be the placeholder alone. The type deduced for T is determined as described in [dcl.type.simple], as though e had been the operand of the decltype. [ Example:
int i; int&& f(); auto x2a(i); // decltype(x2a) is int decltype(auto) x2d(i); // decltype(x2d) is int auto x3a = i; // decltype(x3a) is int decltype(auto) x3d = i; // decltype(x3d) is int auto x4a = (i); // decltype(x4a) is int decltype(auto) x4d = (i); // decltype(x4d) is int& auto x5a = f(); // decltype(x5a) is int decltype(auto) x5d = f(); // decltype(x5d) is int&& auto x6a = { 1, 2 }; // decltype(x6a) is std::initializer_list<int> decltype(auto) x6d = { 1, 2 }; // error, { 1, 2 } is not an expression auto *x7a = &i; // decltype(x7a) is int* decltype(auto)*x7d = &i; // error, declared type is not plain decltype(auto)
— end example ]