26 Numerics library [numerics]

26.9 Mathematical functions for floating-point types [c.math]

26.9.5 Mathematical special functions [sf.cmath]

26.9.5.9 Irregular modified cylindrical Bessel functions [sf.cmath.cyl_bessel_k]

double cyl_bessel_k(double nu, double x); float cyl_bessel_kf(float nu, float x); long double cyl_bessel_kl(long double nu, long double x);

Effects: These functions compute the irregular modified cylindrical Bessel functions of their respective arguments nu and x.

Returns: \[%
  \mathsf{K}_\nu(x) =
  (\pi/2)\mathrm{i}^{\nu+1} (            \mathsf{J}_\nu(\mathrm{i}x)
			    + \mathrm{i} \mathsf{N}_\nu(\mathrm{i}x)
			    )
  =
  \left\{
  \begin{array}{cl}
  \displaystyle
  \frac{\pi}{2}
  \frac{\mathsf{I}_{-\nu}(x) - \mathsf{I}_{\nu}(x)}
       {\sin \nu\pi },
  & \mbox{for $x \ge 0$ and non-integral $\nu$}
  \\
  \\
  \displaystyle
  \frac{\pi}{2}
  \lim_{\mu \rightarrow \nu} \frac{\mathsf{I}_{-\mu}(x) - \mathsf{I}_{\mu}(x)}
                                  {\sin \mu\pi },
  & \mbox{for $x \ge 0$ and integral $\nu$}
  \end{array}
  \right.
\] where nu is nu and x is x.

Remarks: The effect of calling each of these functions is implementation-defined if nu >= 128.