23 Containers library [containers]

23.5 Unordered associative containers [unord]

23.5.1 In general [unord.general]

The header <unordered_map> defines the class templates unordered_map and unordered_multimap; the header <unordered_set> defines the class templates unordered_set and unordered_multiset.

23.5.2 Header <unordered_map> synopsis [unord.map.syn]

#include <initializer_list>

namespace std {

  // [unord.map], class template unordered_map:
  template <class Key,
            class T,
            class Hash = hash<Key>,
            class Pred = std::equal_to<Key>,
            class Alloc = std::allocator<std::pair<const Key, T> > >
    class unordered_map;

  // [unord.multimap], class template unordered_multimap:
  template <class Key,
            class T,
            class Hash = hash<Key>,
            class Pred = std::equal_to<Key>,
            class Alloc = std::allocator<std::pair<const Key, T> > >
    class unordered_multimap;

  template <class Key, class T, class Hash, class Pred, class Alloc>
    void swap(unordered_map<Key, T, Hash, Pred, Alloc>& x,
              unordered_map<Key, T, Hash, Pred, Alloc>& y);

  template <class Key, class T, class Hash, class Pred, class Alloc>
    void swap(unordered_multimap<Key, T, Hash, Pred, Alloc>& x,
              unordered_multimap<Key, T, Hash, Pred, Alloc>& y);

  template <class Key, class T, class Hash, class Pred, class Alloc>
    bool operator==(const unordered_map<Key, T, Hash, Pred, Alloc>& a,
                    const unordered_map<Key, T, Hash, Pred, Alloc>& b);
  template <class Key, class T, class Hash, class Pred, class Alloc>
    bool operator!=(const unordered_map<Key, T, Hash, Pred, Alloc>& a,
                    const unordered_map<Key, T, Hash, Pred, Alloc>& b);
  template <class Key, class T, class Hash, class Pred, class Alloc>
    bool operator==(const unordered_multimap<Key, T, Hash, Pred, Alloc>& a,
                    const unordered_multimap<Key, T, Hash, Pred, Alloc>& b);
  template <class Key, class T, class Hash, class Pred, class Alloc>
    bool operator!=(const unordered_multimap<Key, T, Hash, Pred, Alloc>& a,
                    const unordered_multimap<Key, T, Hash, Pred, Alloc>& b);
} // namespace std

23.5.3 Header <unordered_set> synopsis [unord.set.syn]

#include <initializer_list>

namespace std {

  // [unord.set], class template unordered_set:
  template <class Key,
            class Hash = hash<Key>,
            class Pred = std::equal_to<Key>,
            class Alloc = std::allocator<Key> >
    class unordered_set;

  // [unord.multiset], class template unordered_multiset:
  template <class Key,
            class Hash = hash<Key>,
            class Pred = std::equal_to<Key>,
            class Alloc = std::allocator<Key> >
    class unordered_multiset;

  template <class Key, class Hash, class Pred, class Alloc>
    void swap(unordered_set<Key, Hash, Pred, Alloc>& x,
              unordered_set<Key, Hash, Pred, Alloc>& y);

  template <class Key, class Hash, class Pred, class Alloc>
    void swap(unordered_multiset<Key, Hash, Pred, Alloc>& x,
              unordered_multiset<Key, Hash, Pred, Alloc>& y);

  template <class Key, class Hash, class Pred, class Alloc>
    bool operator==(const unordered_set<Key, Hash, Pred, Alloc>& a,
                    const unordered_set<Key, Hash, Pred, Alloc>& b);
  template <class Key, class Hash, class Pred, class Alloc>
    bool operator!=(const unordered_set<Key, Hash, Pred, Alloc>& a,
                    const unordered_set<Key, Hash, Pred, Alloc>& b);
  template <class Key, class Hash, class Pred, class Alloc>
    bool operator==(const unordered_multiset<Key, Hash, Pred, Alloc>& a,
                    const unordered_multiset<Key, Hash, Pred, Alloc>& b);
  template <class Key, class Hash, class Pred, class Alloc>
    bool operator!=(const unordered_multiset<Key, Hash, Pred, Alloc>& a,
                    const unordered_multiset<Key, Hash, Pred, Alloc>& b);
} // namespace std

23.5.4 Class template unordered_map [unord.map]

23.5.4.1 Class template unordered_map overview [unord.map.overview]

An unordered_map is an unordered associative container that supports unique keys (an unordered_map contains at most one of each key value) and that associates values of another type mapped_type with the keys. The unordered_map class supports forward iterators.

An unordered_map satisfies all of the requirements of a container, of an unordered associative container, and of an allocator-aware container (Table [tab:containers.allocatoraware]). It provides the operations described in the preceding requirements table for unique keys; that is, an unordered_map supports the a_uniq operations in that table, not the a_eq operations. For an unordered_map<Key, T> the key type is Key, the mapped type is T, and the value type is std::pair<const Key, T>.

This section only describes operations on unordered_map that are not described in one of the requirement tables, or for which there is additional semantic information.

namespace std {
  template <class Key,
            class T,
            class Hash  = hash<Key>,
            class Pred  = std::equal_to<Key>,
            class Allocator = std::allocator<std::pair<const Key, T> > >
  class unordered_map
  {
  public:
    // types
    typedef Key                                                 key_type;
    typedef std::pair<const Key, T>                             value_type;
    typedef T                                                   mapped_type;
    typedef Hash                                                hasher;
    typedef Pred                                                key_equal;
    typedef Allocator                                           allocator_type;
    typedef typename allocator_traits<Allocator>::pointer       pointer;
    typedef typename allocator_traits<Allocator>::const_pointer const_pointer;
    typedef value_type&                                         reference;
    typedef const value_type&                                   const_reference;
    typedef implementation-defined                              size_type;
    typedef implementation-defined                              difference_type;

    typedef implementation-defined                              iterator;
    typedef implementation-defined                              const_iterator;
    typedef implementation-defined                              local_iterator;
    typedef implementation-defined                              const_local_iterator;

    // construct/destroy/copy
    unordered_map();
    explicit unordered_map(size_type n,
                           const hasher& hf = hasher(),
                           const key_equal& eql = key_equal(),
                           const allocator_type& a = allocator_type());
    template <class InputIterator>
      unordered_map(InputIterator f, InputIterator l,
                    size_type n = see below,
                    const hasher& hf = hasher(),
                    const key_equal& eql = key_equal(),
                    const allocator_type& a = allocator_type());
    unordered_map(const unordered_map&);
    unordered_map(unordered_map&&);
    explicit unordered_map(const Allocator&);
    unordered_map(const unordered_map&, const Allocator&);
    unordered_map(unordered_map&&, const Allocator&);
    unordered_map(initializer_list<value_type>,
      size_type = see below,
      const hasher& hf = hasher(),
      const key_equal& eql = key_equal(),
      const allocator_type& a = allocator_type());
    unordered_map(size_type n, const allocator_type& a)
      : unordered_map(n, hasher(), key_equal(), a) { }
    unordered_map(size_type n, const hasher& hf, const allocator_type& a)
      : unordered_map(n, hf, key_equal(), a) { }
    template <class InputIterator>
      unordered_map(InputIterator f, InputIterator l, size_type n, const allocator_type& a)
      : unordered_map(f, l, n, hasher(), key_equal(), a) { }
    template <class InputIterator>
      unordered_map(InputIterator f, InputIterator l, size_type n, const hasher& hf,
      const allocator_type& a)
      : unordered_map(f, l, n, hf, key_equal(), a) { }
    unordered_map(initializer_list<value_type> il, size_type n, const allocator_type& a)
      : unordered_map(il, n, hasher(), key_equal(), a) { }
    unordered_map(initializer_list<value_type> il, size_type n, const hasher& hf,
    const allocator_type& a)
      : unordered_map(il, n, hf, key_equal(), a) { }
    ~unordered_map();
    unordered_map& operator=(const unordered_map&);
    unordered_map& operator=(unordered_map&&);
    unordered_map& operator=(initializer_list<value_type>);
    allocator_type get_allocator() const noexcept;

    // size and capacity
    bool empty() const noexcept;
    size_type size() const noexcept;
    size_type max_size() const noexcept;

    // iterators
    iterator       begin() noexcept;
    const_iterator begin() const noexcept;
    iterator       end() noexcept;
    const_iterator end() const noexcept;
    const_iterator cbegin() const noexcept;
    const_iterator cend() const noexcept;

    // modifiers
    template <class... Args> pair<iterator, bool> emplace(Args&&... args);
    template <class... Args> iterator emplace_hint(const_iterator position, Args&&... args);
    pair<iterator, bool> insert(const value_type& obj);
    template <class P> pair<iterator, bool> insert(P&& obj);
    iterator       insert(const_iterator hint, const value_type& obj);
    template <class P> iterator insert(const_iterator hint, P&& obj);
    template <class InputIterator> void insert(InputIterator first, InputIterator last);
    void insert(initializer_list<value_type>);

    iterator erase(const_iterator position);
    size_type erase(const key_type& k);
    iterator erase(const_iterator first, const_iterator last);
    void clear() noexcept;

    void swap(unordered_map&);

    // observers
    hasher hash_function() const;
    key_equal key_eq() const;

    // lookup
    iterator       find(const key_type& k);
    const_iterator find(const key_type& k) const;
    size_type count(const key_type& k) const;
    std::pair<iterator, iterator>             equal_range(const key_type& k);
    std::pair<const_iterator, const_iterator> equal_range(const key_type& k) const;

    mapped_type& operator[](const key_type& k);
    mapped_type& operator[](key_type&& k);
    mapped_type& at(const key_type& k);
    const mapped_type& at(const key_type& k) const;

    // bucket interface
    size_type bucket_count() const noexcept;
    size_type max_bucket_count() const noexcept;
    size_type bucket_size(size_type n) const;
    size_type bucket(const key_type& k) const;
    local_iterator begin(size_type n);
    const_local_iterator begin(size_type n) const;
    local_iterator end(size_type n);
    const_local_iterator end(size_type n) const;
    const_local_iterator cbegin(size_type n) const;
    const_local_iterator cend(size_type n) const;

    // hash policy
    float load_factor() const noexcept;
    float max_load_factor() const noexcept;
    void max_load_factor(float z);
    void rehash(size_type n);
    void reserve(size_type n);
  };

  template <class Key, class T, class Hash, class Pred, class Alloc>
    void swap(unordered_map<Key, T, Hash, Pred, Alloc>& x,
              unordered_map<Key, T, Hash, Pred, Alloc>& y);

  template <class Key, class T, class Hash, class Pred, class Alloc>
    bool operator==(const unordered_map<Key, T, Hash, Pred, Alloc>& a,
                    const unordered_map<Key, T, Hash, Pred, Alloc>& b);
  template <class Key, class T, class Hash, class Pred, class Alloc>
    bool operator!=(const unordered_map<Key, T, Hash, Pred, Alloc>& a,
                    const unordered_map<Key, T, Hash, Pred, Alloc>& b);
}

23.5.4.2 unordered_map constructors [unord.map.cnstr]

unordered_map() : unordered_map(size_type(see below)) { } explicit unordered_map(size_type n, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type());

Effects: Constructs an empty unordered_map using the specified hash function, key equality function, and allocator, and using at least n buckets. For the default constructor, the number of buckets is implementation-defined. max_load_factor() returns 1.0.

Complexity: Constant.

template <class InputIterator> unordered_map(InputIterator f, InputIterator l, size_type n = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type());

Effects: Constructs an empty unordered_map using the specified hash function, key equality function, and allocator, and using at least n buckets. If n is not provided, the number of buckets is implementation-defined. Then inserts elements from the range [f, l). max_load_factor() returns 1.0.

Complexity: Average case linear, worst case quadratic.

23.5.4.3 unordered_map element access [unord.map.elem]

mapped_type& operator[](const key_type& k); mapped_type& operator[](key_type&& k);

Requires: mapped_type shall be DefaultInsertable into *this. For the first operator, key_type shall be CopyInsertable into *this. For the second operator, key_type shall be MoveConstructible.

Effects: If the unordered_map does not already contain an element whose key is equivalent to k, the first operator inserts the value value_type(k, mapped_type()) and the second operator inserts the value value_type(std::move(k), mapped_type()).

Returns: A reference to x.second, where x is the (unique) element whose key is equivalent to k.

Complexity: Average case Ο(1), worst case Ο(size()).

mapped_type& at(const key_type& k); const mapped_type& at(const key_type& k) const;

Returns: A reference to x.second, where x is the (unique) element whose key is equivalent to k.

Throws: An exception object of type out_of_range if no such element is present.

23.5.4.4 unordered_map modifiers [unord.map.modifiers]

template <class P> pair<iterator, bool> insert(P&& obj);

Effects: Equivalent to return emplace(std::forward<P>(obj)).

Remarks: This signature shall not participate in overload resolution unless std::is_constructible<value_type, P&&>::value is true.

template <class P> iterator insert(const_iterator hint, P&& obj);

Effects: Equivalent to return emplace_hint(hint, std::forward<P>(obj)).

Remarks: This signature shall not participate in overload resolution unless std::is_constructible<value_type, P&&>::value is true.

23.5.4.5 unordered_map swap [unord.map.swap]

template <class Key, class T, class Hash, class Pred, class Alloc> void swap(unordered_map<Key, T, Hash, Pred, Alloc>& x, unordered_map<Key, T, Hash, Pred, Alloc>& y);

Effects: x.swap(y).

23.5.5 Class template unordered_multimap [unord.multimap]

23.5.5.1 Class template unordered_multimap overview [unord.multimap.overview]

An unordered_multimap is an unordered associative container that supports equivalent keys (an instance of unordered_multimap may contain multiple copies of each key value) and that associates values of another type mapped_type with the keys. The unordered_multimap class supports forward iterators.

An unordered_multimap satisfies all of the requirements of a container, of an unordered associative container, and of an allocator-aware container (Table [tab:containers.allocatoraware]). It provides the operations described in the preceding requirements table for equivalent keys; that is, an unordered_multimap supports the a_eq operations in that table, not the a_uniq operations. For an unordered_multimap<Key, T> the key type is Key, the mapped type is T, and the value type is std::pair<const Key, T>.

This section only describes operations on unordered_multimap that are not described in one of the requirement tables, or for which there is additional semantic information.

namespace std {
  template <class Key,
            class T,
            class Hash  = hash<Key>,
            class Pred  = std::equal_to<Key>,
            class Allocator = std::allocator<std::pair<const Key, T> > >
  class unordered_multimap
  {
  public:
    // types
    typedef Key                                                 key_type;
    typedef std::pair<const Key, T>                             value_type;
    typedef T                                                   mapped_type;
    typedef Hash                                                hasher;
    typedef Pred                                                key_equal;
    typedef Allocator                                           allocator_type;
    typedef typename allocator_traits<Allocator>::pointer       pointer;
    typedef typename allocator_traits<Allocator>::const_pointer const_pointer;
    typedef value_type&                                         reference;
    typedef const value_type&                                   const_reference;
    typedef implementation-defined                              size_type;
    typedef implementation-defined                              difference_type;

    typedef implementation-defined                              iterator;
    typedef implementation-defined                              const_iterator;
    typedef implementation-defined                              local_iterator;
    typedef implementation-defined                              const_local_iterator;

    // construct/destroy/copy
    unordered_multimap();
    explicit unordered_multimap(size_type n,
                                const hasher& hf = hasher(),
                                const key_equal& eql = key_equal(),
                                const allocator_type& a = allocator_type());
    template <class InputIterator>
      unordered_multimap(InputIterator f, InputIterator l,
                         size_type n = see below,
                         const hasher& hf = hasher(),
                         const key_equal& eql = key_equal(),
                         const allocator_type& a = allocator_type());
    unordered_multimap(const unordered_multimap&);
    unordered_multimap(unordered_multimap&&);
    explicit unordered_multimap(const Allocator&);
    unordered_multimap(const unordered_multimap&, const Allocator&);
    unordered_multimap(unordered_multimap&&, const Allocator&);
    unordered_multimap(initializer_list<value_type>,
      size_type = see below,
      const hasher& hf = hasher(),
      const key_equal& eql = key_equal(),
      const allocator_type& a = allocator_type());
    unordered_multimap(size_type n, const allocator_type& a)
      : unordered_multimap(n, hasher(), key_equal(), a) { }
    unordered_multimap(size_type n, const hasher& hf, const allocator_type& a)
      : unordered_multimap(n, hf, key_equal(), a) { }
    template <class InputIterator>
      unordered_multimap(InputIterator f, InputIterator l, size_type n, const allocator_type& a)
      : unordered_multimap(f, l, n, hasher(), key_equal(), a) { }
    template <class InputIterator>
      unordered_multimap(InputIterator f, InputIterator l, size_type n, const hasher& hf, 
      const allocator_type& a)
      : unordered_multimap(f, l, n, hf, key_equal(), a) { }
    unordered_multimap(initializer_list<value_type> il, size_type n, const allocator_type& a)
      : unordered_multimap(il, n, hasher(), key_equal(), a) { }
    unordered_multimap(initializer_list<value_type> il, size_type n, const hasher& hf, 
    const allocator_type& a)
      : unordered_multimap(il, n, hf, key_equal(), a) { }
    ~unordered_multimap();
    unordered_multimap& operator=(const unordered_multimap&);
    unordered_multimap& operator=(unordered_multimap&&);
    unordered_multimap& operator=(initializer_list<value_type>);
    allocator_type get_allocator() const noexcept;

    // size and capacity
    bool empty() const noexcept;
    size_type size() const noexcept;
    size_type max_size() const noexcept;

    // iterators
    iterator       begin() noexcept;
    const_iterator begin() const noexcept;
    iterator       end() noexcept;
    const_iterator end() const noexcept;
    const_iterator cbegin() const noexcept;
    const_iterator cend() const noexcept;

    // modifiers
    template <class... Args> iterator emplace(Args&&... args);
    template <class... Args> iterator emplace_hint(const_iterator position, Args&&... args);
    iterator insert(const value_type& obj);
    template <class P> iterator insert(P&& obj);
    iterator insert(const_iterator hint, const value_type& obj);
    template <class P> iterator insert(const_iterator hint, P&& obj);
    template <class InputIterator> void insert(InputIterator first, InputIterator last);
    void insert(initializer_list<value_type>);

    iterator erase(const_iterator position);
    size_type erase(const key_type& k);
    iterator erase(const_iterator first, const_iterator last);
    void clear() noexcept;

    void swap(unordered_multimap&);

    // observers
    hasher hash_function() const;
    key_equal key_eq() const;

    // lookup
    iterator       find(const key_type& k);
    const_iterator find(const key_type& k) const;
    size_type count(const key_type& k) const;
    std::pair<iterator, iterator>             equal_range(const key_type& k);
    std::pair<const_iterator, const_iterator> equal_range(const key_type& k) const;

    // bucket interface
    size_type bucket_count() const noexcept;
    size_type max_bucket_count() const noexcept;
    size_type bucket_size(size_type n) const;
    size_type bucket(const key_type& k) const;
    local_iterator begin(size_type n);
    const_local_iterator begin(size_type n) const;
    local_iterator end(size_type n);
    const_local_iterator end(size_type n) const;
    const_local_iterator cbegin(size_type n) const;
    const_local_iterator cend(size_type n) const;

    // hash policy
    float load_factor() const noexcept;
    float max_load_factor() const noexcept;
    void max_load_factor(float z);
    void rehash(size_type n);
    void reserve(size_type n);
  };

  template <class Key, class T, class Hash, class Pred, class Alloc>
    void swap(unordered_multimap<Key, T, Hash, Pred, Alloc>& x,
              unordered_multimap<Key, T, Hash, Pred, Alloc>& y);

  template <class Key, class T, class Hash, class Pred, class Alloc>
    bool operator==(const unordered_multimap<Key, T, Hash, Pred, Alloc>& a,
                    const unordered_multimap<Key, T, Hash, Pred, Alloc>& b);
  template <class Key, class T, class Hash, class Pred, class Alloc>
    bool operator!=(const unordered_multimap<Key, T, Hash, Pred, Alloc>& a,
                    const unordered_multimap<Key, T, Hash, Pred, Alloc>& b);
}

23.5.5.2 unordered_multimap constructors [unord.multimap.cnstr]

unordered_multimap() : unordered_multimap(size_type(see below)) { } explicit unordered_multimap(size_type n, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type());

Effects: Constructs an empty unordered_multimap using the specified hash function, key equality function, and allocator, and using at least n buckets. For the default constructor, the number of buckets is implementation-defined. max_load_factor() returns 1.0.

Complexity: Constant.

template <class InputIterator> unordered_multimap(InputIterator f, InputIterator l, size_type n = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type());

Effects: Constructs an empty unordered_multimap using the specified hash function, key equality function, and allocator, and using at least n buckets. If n is not provided, the number of buckets is implementation-defined. Then inserts elements from the range [f, l). max_load_factor() returns 1.0.

Complexity: Average case linear, worst case quadratic.

23.5.5.3 unordered_multimap modifiers [unord.multimap.modifiers]

template <class P> iterator insert(P&& obj);

Effects: Equivalent to return emplace(std::forward<P>(obj)).

Remarks: This signature shall not participate in overload resolution unless std::is_constructible<value_type, P&&>::value is true.

template <class P> iterator insert(const_iterator hint, P&& obj);

Effects: Equivalent to return emplace_hint(hint, std::forward<P>(obj)).

Remarks: This signature shall not participate in overload resolution unless std::is_constructible<value_type, P&&>::value is true.

23.5.5.4 unordered_multimap swap [unord.multimap.swap]

template <class Key, class T, class Hash, class Pred, class Alloc> void swap(unordered_multimap<Key, T, Hash, Pred, Alloc>& x, unordered_multimap<Key, T, Hash, Pred, Alloc>& y);

Effects: x.swap(y).

23.5.6 Class template unordered_set [unord.set]

23.5.6.1 Class template unordered_set overview [unord.set.overview]

An unordered_set is an unordered associative container that supports unique keys (an unordered_set contains at most one of each key value) and in which the elements' keys are the elements themselves. The unordered_set class supports forward iterators.

An unordered_set satisfies all of the requirements of a container, of an unordered associative container, and of an allocator-aware container (Table [tab:containers.allocatoraware]). It provides the operations described in the preceding requirements table for unique keys; that is, an unordered_set supports the a_uniq operations in that table, not the a_eq operations. For an unordered_set<Key> the key type and the value type are both Key. The iterator and const_iterator types are both const iterator types. It is unspecified whether they are the same type.

This section only describes operations on unordered_set that are not described in one of the requirement tables, or for which there is additional semantic information.

namespace std {
  template <class Key,
            class Hash  = hash<Key>,
            class Pred  = std::equal_to<Key>,
            class Allocator = std::allocator<Key> >
  class unordered_set
  {
  public:
    // types
    typedef Key                                                 key_type;
    typedef Key                                                 value_type;
    typedef Hash                                                hasher;
    typedef Pred                                                key_equal;
    typedef Allocator                                           allocator_type;
    typedef typename allocator_traits<Allocator>::pointer       pointer;
    typedef typename allocator_traits<Allocator>::const_pointer const_pointer;
    typedef value_type&                                         reference;
    typedef const value_type&                                   const_reference;
    typedef implementation-defined                              size_type;
    typedef implementation-defined                              difference_type;

    typedef implementation-defined                              iterator;
    typedef implementation-defined                              const_iterator;
    typedef implementation-defined                              local_iterator;
    typedef implementation-defined                              const_local_iterator;

    // construct/destroy/copy
    unordered_set();
    explicit unordered_set(size_type n,
                           const hasher& hf = hasher(),
                           const key_equal& eql = key_equal(),
                           const allocator_type& a = allocator_type());
    template <class InputIterator>
      unordered_set(InputIterator f, InputIterator l,
                    size_type n = see below,
                    const hasher& hf = hasher(),
                    const key_equal& eql = key_equal(),
                    const allocator_type& a = allocator_type());
    unordered_set(const unordered_set&);
    unordered_set(unordered_set&&);
    explicit unordered_set(const Allocator&);
    unordered_set(const unordered_set&, const Allocator&);
    unordered_set(unordered_set&&, const Allocator&);
    unordered_set(initializer_list<value_type>,
      size_type = see below,
      const hasher& hf = hasher(),
      const key_equal& eql = key_equal(),
      const allocator_type& a = allocator_type());
    unordered_set(size_type n, const allocator_type& a)
      : unordered_set(n, hasher(), key_equal(), a) { }
    unordered_set(size_type n, const hasher& hf, const allocator_type& a)
      : unordered_set(n, hf, key_equal(), a) { }
    template <class InputIterator>
      unordered_set(InputIterator f, InputIterator l, size_type n, const allocator_type& a)
      : unordered_set(f, l, n, hasher(), key_equal(), a) { }
    template <class InputIterator>
      unordered_set(InputIterator f, InputIterator l, size_type n, const hasher& hf,
      const allocator_type& a)
      : unordered_set(f, l, n, hf, key_equal(), a) { }
    unordered_set(initializer_list<value_type> il, size_type n, const allocator_type& a)
      : unordered_set(il, n, hasher(), key_equal(), a) { }
    unordered_set(initializer_list<value_type> il, size_type n, const hasher& hf,
    const allocator_type& a)
      : unordered_set(il, n, hf, key_equal(), a) { }
    ~unordered_set();
    unordered_set& operator=(const unordered_set&);
    unordered_set& operator=(unordered_set&&);
    unordered_set& operator=(initializer_list<value_type>);
    allocator_type get_allocator() const noexcept;

    // size and capacity
    bool empty() const noexcept;
    size_type size() const noexcept;
    size_type max_size() const noexcept;

    // iterators
    iterator       begin() noexcept;
    const_iterator begin() const noexcept;
    iterator       end() noexcept;
    const_iterator end() const noexcept;
    const_iterator cbegin() const noexcept;
    const_iterator cend() const noexcept;

    // modifiers
    template <class... Args> pair<iterator, bool> emplace(Args&&... args);
    template <class... Args> iterator emplace_hint(const_iterator position, Args&&... args);
    pair<iterator, bool> insert(const value_type& obj);
    pair<iterator, bool> insert(value_type&& obj);
    iterator insert(const_iterator hint, const value_type& obj);
    iterator insert(const_iterator hint, value_type&& obj);
    template <class InputIterator> void insert(InputIterator first, InputIterator last);
    void insert(initializer_list<value_type>);

    iterator erase(const_iterator position);
    size_type erase(const key_type& k);
    iterator erase(const_iterator first, const_iterator last);
    void clear() noexcept;

    void swap(unordered_set&);

    // observers
    hasher hash_function() const;
    key_equal key_eq() const;

    // lookup
    iterator       find(const key_type& k);
    const_iterator find(const key_type& k) const;
    size_type count(const key_type& k) const;
    std::pair<iterator, iterator>             equal_range(const key_type& k);
    std::pair<const_iterator, const_iterator> equal_range(const key_type& k) const;

    // bucket interface
    size_type bucket_count() const noexcept;
    size_type max_bucket_count() const noexcept;
    size_type bucket_size(size_type n) const;
    size_type bucket(const key_type& k) const;
    local_iterator begin(size_type n);
    const_local_iterator begin(size_type n) const;
    local_iterator end(size_type n);
    const_local_iterator end(size_type n) const;
    const_local_iterator cbegin(size_type n) const;
    const_local_iterator cend(size_type n) const;

    // hash policy
    float load_factor() const noexcept;
    float max_load_factor() const noexcept;
    void max_load_factor(float z);
    void rehash(size_type n);
    void reserve(size_type n);
  };

  template <class Key, class Hash, class Pred, class Alloc>
    void swap(unordered_set<Key, Hash, Pred, Alloc>& x,
              unordered_set<Key, Hash, Pred, Alloc>& y);

  template <class Key, class Hash, class Pred, class Alloc>
    bool operator==(const unordered_set<Key, Hash, Pred, Alloc>& a,
                    const unordered_set<Key, Hash, Pred, Alloc>& b);
  template <class Key, class Hash, class Pred, class Alloc>
    bool operator!=(const unordered_set<Key, Hash, Pred, Alloc>& a,
                    const unordered_set<Key, Hash, Pred, Alloc>& b);
}

23.5.6.2 unordered_set constructors [unord.set.cnstr]

unordered_set() : unordered_set(size_type(see below)) { } explicit unordered_set(size_type n, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type());

Effects: Constructs an empty unordered_set using the specified hash function, key equality function, and allocator, and using at least n buckets. For the default constructor, the number of buckets is implementation-defined. max_load_factor() returns 1.0.

Complexity: Constant.

template <class InputIterator> unordered_set(InputIterator f, InputIterator l, size_type n = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type());

Effects: Constructs an empty unordered_set using the specified hash function, key equality function, and allocator, and using at least n buckets. If n is not provided, the number of buckets is implementation-defined. Then inserts elements from the range [f, l). max_load_factor() returns 1.0.

Complexity: Average case linear, worst case quadratic.

23.5.6.3 unordered_set swap [unord.set.swap]

template <class Key, class Hash, class Pred, class Alloc> void swap(unordered_set<Key, Hash, Pred, Alloc>& x, unordered_set<Key, Hash, Pred, Alloc>& y);

Effects: x.swap(y).

23.5.7 Class template unordered_multiset [unord.multiset]

23.5.7.1 Class template unordered_multiset overview [unord.multiset.overview]

An unordered_multiset is an unordered associative container that supports equivalent keys (an instance of unordered_multiset may contain multiple copies of the same key value) and in which each element's key is the element itself. The unordered_multiset class supports forward iterators.

An unordered_multiset satisfies all of the requirements of a container, of an unordered associative container, and of an allocator-aware container (Table [tab:containers.allocatoraware]). It provides the operations described in the preceding requirements table for equivalent keys; that is, an unordered_multiset supports the a_eq operations in that table, not the a_uniq operations. For an unordered_multiset<Key> the key type and the value type are both Key. The iterator and const_iterator types are both const iterator types. It is unspecified whether they are the same type.

This section only describes operations on unordered_multiset that are not described in one of the requirement tables, or for which there is additional semantic information.

namespace std {
  template <class Key,
            class Hash  = hash<Key>,
            class Pred  = std::equal_to<Key>,
            class Allocator = std::allocator<Key> >
  class unordered_multiset
  {
  public:
    // types
    typedef Key                                                 key_type;
    typedef Key                                                 value_type;
    typedef Hash                                                hasher;
    typedef Pred                                                key_equal;
    typedef Allocator                                           allocator_type;
    typedef typename allocator_traits<Allocator>::pointer       pointer;
    typedef typename allocator_traits<Allocator>::const_pointer const_pointer;
    typedef value_type&                                         reference;
    typedef const value_type&                                   const_reference;
    typedef implementation-defined                              size_type;
    typedef implementation-defined                              difference_type;

    typedef implementation-defined                              iterator;
    typedef implementation-defined                              const_iterator;
    typedef implementation-defined                              local_iterator;
    typedef implementation-defined                              const_local_iterator;

    // construct/destroy/copy
    unordered_multiset();
    explicit unordered_multiset(size_type n,
                                const hasher& hf = hasher(),
                                const key_equal& eql = key_equal(),
                                const allocator_type& a = allocator_type());
    template <class InputIterator>
      unordered_multiset(InputIterator f, InputIterator l,
                         size_type n = see below,
                         const hasher& hf = hasher(),
                         const key_equal& eql = key_equal(),
                         const allocator_type& a = allocator_type());
    unordered_multiset(const unordered_multiset&);
    unordered_multiset(unordered_multiset&&);
    explicit unordered_multiset(const Allocator&);
    unordered_multiset(const unordered_multiset&, const Allocator&);
    unordered_multiset(unordered_multiset&&, const Allocator&);
    unordered_multiset(initializer_list<value_type>,
      size_type = see below,
      const hasher& hf = hasher(),
      const key_equal& eql = key_equal(),
      const allocator_type& a = allocator_type());
    unordered_multiset(size_type n, const allocator_type& a)
      : unordered_multiset(n, hasher(), key_equal(), a) { }
    unordered_multiset(size_type n, const hasher& hf, const allocator_type& a)
      : unordered_multiset(n, hf, key_equal(), a) { }
    template <class InputIterator>
      unordered_multiset(InputIterator f, InputIterator l, size_type n, const allocator_type& a)
      : unordered_multiset(f, l, n, hasher(), key_equal(), a) { }
    template <class InputIterator>
      unordered_multiset(InputIterator f, InputIterator l, size_type n, const hasher& hf, 
      const allocator_type& a)
      : unordered_multiset(f, l, n, hf, key_equal(), a) { }
    unordered_multiset(initializer_list<value_type> il, size_type n, const allocator_type& a)
      : unordered_multiset(il, n, hasher(), key_equal(), a) { }
    unordered_multiset(initializer_list<value_type> il, size_type n, const hasher& hf, 
    const allocator_type& a)
      : unordered_multiset(il, n, hf, key_equal(), a) { }
    ~unordered_multiset();
    unordered_multiset& operator=(const unordered_multiset&);
    unordered_multiset& operator=(unordered_multiset&&);
    unordered_multiset& operator=(initializer_list<value_type>);
    allocator_type get_allocator() const noexcept;

    // size and capacity
    bool empty() const noexcept;
    size_type size() const noexcept;
    size_type max_size() const noexcept;

    // iterators
    iterator       begin() noexcept;
    const_iterator begin() const noexcept;
    iterator       end() noexcept;
    const_iterator end() const noexcept;
    const_iterator cbegin() const noexcept;
    const_iterator cend() const noexcept;

    // modifiers
    template <class... Args> iterator emplace(Args&&... args);
    template <class... Args> iterator emplace_hint(const_iterator position, Args&&... args);
    iterator insert(const value_type& obj);
    iterator insert(value_type&& obj);
    iterator insert(const_iterator hint, const value_type& obj);
    iterator insert(const_iterator hint, value_type&& obj);
    template <class InputIterator> void insert(InputIterator first, InputIterator last);
    void insert(initializer_list<value_type>);

    iterator erase(const_iterator position);
    size_type erase(const key_type& k);
    iterator erase(const_iterator first, const_iterator last);
    void clear() noexcept;

    void swap(unordered_multiset&);

    // observers
    hasher hash_function() const;
    key_equal key_eq() const;

    // lookup
    iterator       find(const key_type& k);
    const_iterator find(const key_type& k) const;
    size_type count(const key_type& k) const;
    std::pair<iterator, iterator>             equal_range(const key_type& k);
    std::pair<const_iterator, const_iterator> equal_range(const key_type& k) const;

    // bucket interface
    size_type bucket_count() const noexcept;
    size_type max_bucket_count() const noexcept;
    size_type bucket_size(size_type n) const;
    size_type bucket(const key_type& k) const;
    local_iterator begin(size_type n);
    const_local_iterator begin(size_type n) const;
    local_iterator end(size_type n);
    const_local_iterator end(size_type n) const;
    const_local_iterator cbegin(size_type n) const;
    const_local_iterator cend(size_type n) const;

    // hash policy
    float load_factor() const noexcept;
    float max_load_factor() const noexcept;
    void max_load_factor(float z);
    void rehash(size_type n);
    void reserve(size_type n);
  };

  template <class Key, class Hash, class Pred, class Alloc>
    void swap(unordered_multiset<Key, Hash, Pred, Alloc>& x,
              unordered_multiset<Key, Hash, Pred, Alloc>& y);
    template <class Key, class Hash, class Pred, class Alloc>
      bool operator==(const unordered_multiset<Key, Hash, Pred, Alloc>& a,
                      const unordered_multiset<Key, Hash, Pred, Alloc>& b);
    template <class Key, class Hash, class Pred, class Alloc>
      bool operator!=(const unordered_multiset<Key, Hash, Pred, Alloc>& a,
                      const unordered_multiset<Key, Hash, Pred, Alloc>& b);
}

23.5.7.2 unordered_multiset constructors [unord.multiset.cnstr]

unordered_multiset() : unordered_multiset(size_type(see below)) { } explicit unordered_multiset(size_type n, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type());

Effects: Constructs an empty unordered_multiset using the specified hash function, key equality function, and allocator, and using at least n buckets. For the default constructor, the number of buckets is implementation-defined. max_load_factor() returns 1.0.

Complexity: Constant.

template <class InputIterator> unordered_multiset(InputIterator f, InputIterator l, size_type n = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type());

Effects: Constructs an empty unordered_multiset using the specified hash function, key equality function, and allocator, and using at least n buckets. If n is not provided, the number of buckets is implementation-defined. Then inserts elements from the range [f, l). max_load_factor() returns 1.0.

Complexity: Average case linear, worst case quadratic.

23.5.7.3 unordered_multiset swap [unord.multiset.swap]

template <class Key, class Hash, class Pred, class Alloc> void swap(unordered_multiset<Key, Hash, Pred, Alloc>& x, unordered_multiset<Key, Hash, Pred, Alloc>& y);

Effects: x.swap(y);