// defined in header <utility> namespace std { template <class T1, class T2> struct pair { typedef T1 first_type; typedef T2 second_type; T1 first; T2 second; pair(const pair&) = default; pair(pair&&) = default; constexpr pair(); constexpr pair(const T1& x, const T2& y); template<class U, class V> constexpr pair(U&& x, V&& y); template<class U, class V> constexpr pair(const pair<U, V>& p); template<class U, class V> constexpr pair(pair<U, V>&& p); template <class... Args1, class... Args2> pair(piecewise_construct_t, tuple<Args1...> first_args, tuple<Args2...> second_args); pair& operator=(const pair& p); template<class U, class V> pair& operator=(const pair<U, V>& p); pair& operator=(pair&& p) noexcept(see below); template<class U, class V> pair& operator=(pair<U, V>&& p); void swap(pair& p) noexcept(see below); }; }
Constructors and member functions of pair shall not throw exceptions unless one of the element-wise operations specified to be called for that operation throws an exception.
The defaulted move and copy constructor, respectively, of pair shall be a constexpr function if and only if all required element-wise initializations for copy and move, respectively, would satisfy the requirements for a constexpr function.
Requires: is_default_constructible<first_type>::value is true
and is_default_construct-
ible<second_type>::value is true.
Effects: Value-initializes first and second.
constexpr pair(const T1& x, const T2& y);
Requires: is_copy_constructible<first_type>::value is true and is_copy_constructible<second_type>::value is true.
Effects: The constructor initializes first with x and second with y.
template<class U, class V> constexpr pair(U&& x, V&& y);
Requires: is_constructible<first_type, U&&>::value is true and is_constructible<second_type, V&&>::value is true.
Effects: The constructor initializes first with std::forward<U>(x) and second with std::forward<V>(y).
Remarks: If U is not implicitly convertible to first_type or V is not implicitly convertible to second_type this constructor shall not participate in overload resolution.
template<class U, class V> constexpr pair(const pair<U, V>& p);
Requires: is_constructible<first_type, const U&>::value is true and is_constructible<second_type, const V&>::value is true.
Effects: Initializes members from the corresponding members of the argument.
Remark: This constructor shall not participate in overload resolution unless const U& is implicitly convertible to first_type and const V& is implicitly convertible to second_type.
template<class U, class V> constexpr pair(pair<U, V>&& p);
Requires: is_constructible<first_type, U&&>::value is true and is_constructible<second_type, V&&>::value is true.
Effects: The constructor initializes first with std::forward<U>(p.first) and second with std::forward<V>(p.second).
Remark: This constructor shall not participate in overload resolution unless U is implicitly convertible to first_type and V is implicitly convertible to second_type.
template<class... Args1, class... Args2>
pair(piecewise_construct_t,
tuple<Args1...> first_args, tuple<Args2...> second_args);
Requires: is_constructible<first_type, Args1&&...>::value is true and is_constructible<second_type, Args2&&...>::value is true.
Effects: The constructor initializes first with arguments of types Args1... obtained by forwarding the elements of first_args and initializes second with arguments of types Args2... obtained by forwarding the elements of second_args. (Here, forwarding an element x of type U within a tuple object means calling std::forward<U>(x).) This form of construction, whereby constructor arguments for first and second are each provided in a separate tuple object, is called piecewise construction.
pair& operator=(const pair& p);
Requires: is_copy_assignable<first_type>::value is true and is_copy_assignable<second_type>::value is true.
Effects: Assigns p.first to first and p.second to second.
Returns: *this.
template<class U, class V> pair& operator=(const pair<U, V>& p);
Requires: is_assignable<first_type&, const U&>::value is true and is_assignable<second_type&, const V&>::value is true.
Effects: Assigns p.first to first and p.second to second.
Returns: *this.
pair& operator=(pair&& p) noexcept(see below);
Remarks: The expression inside noexcept is equivalent to:
is_nothrow_move_assignable<T1>::value && is_nothrow_move_assignable<T2>::value
Requires: is_move_assignable<first_type>::value is true and is_move_assignable<second_type>::value is true.
Effects:
Assigns to first with std::forward<first_type>(p.first)
and to second with
std::forward<second_type>(p.second).
Returns: *this.
template<class U, class V> pair& operator=(pair<U, V>&& p);
Requires: is_assignable<first_type&, U&&>::value is true and is_assignable<second_type&, V&&>::value is true.
Effects:
Assigns to first with std::forward<U>(p.first)
and to second with
std::forward<V>(p.second).
Returns: *this.
void swap(pair& p) noexcept(see below);
Remarks: The expression inside noexcept is equivalent to:
noexcept(swap(first, p.first)) && noexcept(swap(second, p.second))
Requires: first shall be swappable with ([swappable.requirements]) p.first and second shall be swappable with p.second.
Effects: Swaps first with p.first and second with p.second.