20 General utilities library [utilities]

20.2 Utility components [utility]

20.2.4 forward/move helpers [forward]

The library provides templated helper functions to simplify applying move semantics to an lvalue and to simplify the implementation of forwarding functions.

template <class T> constexpr T&& forward(remove_reference_t<T>& t) noexcept; template <class T> constexpr T&& forward(remove_reference_t<T>&& t) noexcept;

Returns: static_cast<T&&>(t).

Remark: If the second form is instantiated with an lvalue reference type, the program is ill-formed.

Example:

template <class T, class A1, class A2>
shared_ptr<T> factory(A1&& a1, A2&& a2) {
  return shared_ptr<T>(new T(std::forward<A1>(a1), std::forward<A2>(a2)));
}

struct A {
  A(int&, const double&);
};

void g() {
  shared_ptr<A> sp1 = factory<A>(2, 1.414); // error: 2 will not bind to int&
  int i = 2;
  shared_ptr<A> sp2 = factory<A>(i, 1.414); // OK
}

In the first call to factory, A1 is deduced as int, so 2 is forwarded to A's constructor as an rvalue. In the second call to factory, A1 is deduced as int&, so i is forwarded to A's constructor as an lvalue. In both cases, A2 is deduced as double, so 1.414 is forwarded to A's constructor as an rvalue.

 — end example ]

template <class T> constexpr remove_reference_t<T>&& move(T&& t) noexcept;

Returns: static_cast<remove_reference_t<T>&&>(t).

Example:

template <class T, class A1>
shared_ptr<T> factory(A1&& a1) {
  return shared_ptr<T>(new T(std::forward<A1>(a1)));
}

struct A {
  A();
  A(const A&);  // copies from lvalues
  A(A&&);       // moves from rvalues
};

void g() {
  A a;
  shared_ptr<A> sp1 = factory<A>(a);              // “a” binds to A(const A&)
  shared_ptr<A> sp1 = factory<A>(std::move(a));   // “a” binds to A(A&&)
}

In the first call to factory, A1 is deduced as A&, so a is forwarded as a non-const lvalue. This binds to the constructor A(const A&), which copies the value from a. In the second call to factory, because of the call std::move(a), A1 is deduced as A, so a is forwarded as an rvalue. This binds to the constructor A(A&&), which moves the value from a.

 — end example ]

template <class T> constexpr conditional_t< !is_nothrow_move_constructible<T>::value && is_copy_constructible<T>::value, const T&, T&&> move_if_noexcept(T& x) noexcept;

Returns: std::move(x)