# 28 Numerics library [numerics]

## 28.9 Basic linear algebra algorithms [linalg]

### 28.9.13 BLAS 1 algorithms [linalg.algs.blas1]

#### 28.9.13.8 Scaled sum of squares of a vector's elements [linalg.algs.blas1.ssq]

```template<in-vector InVec, class Scalar> sum_of_squares_result<Scalar> vector_sum_of_squares(InVec v, sum_of_squares_result<Scalar> init); template<class ExecutionPolicy, in-vector InVec, class Scalar> sum_of_squares_result<Scalar> vector_sum_of_squares(ExecutionPolicy&& exec, InVec v, sum_of_squares_result<Scalar> init); ```
[Note 1:
These functions correspond to the LAPACK function xLASSQ[bib].
â€” end note]
Mandates: decltype(abs-if-needed(declval<typename InVec​::​value_type>())) is convertible to Scalar.
Effects: Returns a value result such that
• result.scaling_factor is the maximum of init.scaling_factor and abs-if-needed(x[i]) for all i in the domain of v; and
• let s2init be init.scaling_factor * init.scaling_factor * init.scaled_sum_of_squares then result.scaling_factor * result.scaling_factor * result.scaled_sum_of_squares equals the sum of s2init and the squares of abs-if-needed(x[i]) for all i in the domain of v.
Remarks: If InVec​::​value_type, and Scalar are all floating-point types or specializations of complex, and if Scalar has higher precision than InVec​::​value_type, then intermediate terms in the sum use Scalar's precision or greater.