Table 147: Atomics library summary [tab:atomics.summary]

Subclause | Header | ||

Type aliases | <atomic> | ||

Order and consistency | |||

Lock-free property | |||

Waiting and notifying | |||

Class template atomic_ref | |||

Class template atomic | |||

Non-member functions | |||

Flag type and operations | |||

Fences | |||

C compatibility | <stdatomic.h> |

namespace std {
// [atomics.order], order and consistency
enum class memory_order : *unspecified*;
template<class T>
T kill_dependency(T y) noexcept;
}
// [atomics.lockfree], lock-free property
#define ATOMIC_BOOL_LOCK_FREE *unspecified*
#define ATOMIC_CHAR_LOCK_FREE *unspecified*
#define ATOMIC_CHAR8_T_LOCK_FREE *unspecified*
#define ATOMIC_CHAR16_T_LOCK_FREE *unspecified*
#define ATOMIC_CHAR32_T_LOCK_FREE *unspecified*
#define ATOMIC_WCHAR_T_LOCK_FREE *unspecified*
#define ATOMIC_SHORT_LOCK_FREE *unspecified*
#define ATOMIC_INT_LOCK_FREE *unspecified*
#define ATOMIC_LONG_LOCK_FREE *unspecified*
#define ATOMIC_LLONG_LOCK_FREE *unspecified*
#define ATOMIC_POINTER_LOCK_FREE *unspecified*
namespace std {
// [atomics.ref.generic], class template atomic_ref
template<class T> struct atomic_ref;
// [atomics.ref.pointer], partial specialization for pointers
template<class T> struct atomic_ref<T*>;
// [atomics.types.generic], class template atomic
template<class T> struct atomic;
// [atomics.types.pointer], partial specialization for pointers
template<class T> struct atomic<T*>;
// [atomics.nonmembers], non-member functions
template<class T>
bool atomic_is_lock_free(const volatile atomic<T>*) noexcept;
template<class T>
bool atomic_is_lock_free(const atomic<T>*) noexcept;
template<class T>
void atomic_store(volatile atomic<T>*, typename atomic<T>::value_type) noexcept;
template<class T>
void atomic_store(atomic<T>*, typename atomic<T>::value_type) noexcept;
template<class T>
void atomic_store_explicit(volatile atomic<T>*, typename atomic<T>::value_type,
memory_order) noexcept;
template<class T>
void atomic_store_explicit(atomic<T>*, typename atomic<T>::value_type,
memory_order) noexcept;
template<class T>
T atomic_load(const volatile atomic<T>*) noexcept;
template<class T>
T atomic_load(const atomic<T>*) noexcept;
template<class T>
T atomic_load_explicit(const volatile atomic<T>*, memory_order) noexcept;
template<class T>
T atomic_load_explicit(const atomic<T>*, memory_order) noexcept;
template<class T>
T atomic_exchange(volatile atomic<T>*, typename atomic<T>::value_type) noexcept;
template<class T>
T atomic_exchange(atomic<T>*, typename atomic<T>::value_type) noexcept;
template<class T>
T atomic_exchange_explicit(volatile atomic<T>*, typename atomic<T>::value_type,
memory_order) noexcept;
template<class T>
T atomic_exchange_explicit(atomic<T>*, typename atomic<T>::value_type,
memory_order) noexcept;
template<class T>
bool atomic_compare_exchange_weak(volatile atomic<T>*,
typename atomic<T>::value_type*,
typename atomic<T>::value_type) noexcept;
template<class T>
bool atomic_compare_exchange_weak(atomic<T>*,
typename atomic<T>::value_type*,
typename atomic<T>::value_type) noexcept;
template<class T>
bool atomic_compare_exchange_strong(volatile atomic<T>*,
typename atomic<T>::value_type*,
typename atomic<T>::value_type) noexcept;
template<class T>
bool atomic_compare_exchange_strong(atomic<T>*,
typename atomic<T>::value_type*,
typename atomic<T>::value_type) noexcept;
template<class T>
bool atomic_compare_exchange_weak_explicit(volatile atomic<T>*,
typename atomic<T>::value_type*,
typename atomic<T>::value_type,
memory_order, memory_order) noexcept;
template<class T>
bool atomic_compare_exchange_weak_explicit(atomic<T>*,
typename atomic<T>::value_type*,
typename atomic<T>::value_type,
memory_order, memory_order) noexcept;
template<class T>
bool atomic_compare_exchange_strong_explicit(volatile atomic<T>*,
typename atomic<T>::value_type*,
typename atomic<T>::value_type,
memory_order, memory_order) noexcept;
template<class T>
bool atomic_compare_exchange_strong_explicit(atomic<T>*,
typename atomic<T>::value_type*,
typename atomic<T>::value_type,
memory_order, memory_order) noexcept;
template<class T>
T atomic_fetch_add(volatile atomic<T>*, typename atomic<T>::difference_type) noexcept;
template<class T>
T atomic_fetch_add(atomic<T>*, typename atomic<T>::difference_type) noexcept;
template<class T>
T atomic_fetch_add_explicit(volatile atomic<T>*, typename atomic<T>::difference_type,
memory_order) noexcept;
template<class T>
T atomic_fetch_add_explicit(atomic<T>*, typename atomic<T>::difference_type,
memory_order) noexcept;
template<class T>
T atomic_fetch_sub(volatile atomic<T>*, typename atomic<T>::difference_type) noexcept;
template<class T>
T atomic_fetch_sub(atomic<T>*, typename atomic<T>::difference_type) noexcept;
template<class T>
T atomic_fetch_sub_explicit(volatile atomic<T>*, typename atomic<T>::difference_type,
memory_order) noexcept;
template<class T>
T atomic_fetch_sub_explicit(atomic<T>*, typename atomic<T>::difference_type,
memory_order) noexcept;
template<class T>
T atomic_fetch_and(volatile atomic<T>*, typename atomic<T>::value_type) noexcept;
template<class T>
T atomic_fetch_and(atomic<T>*, typename atomic<T>::value_type) noexcept;
template<class T>
T atomic_fetch_and_explicit(volatile atomic<T>*, typename atomic<T>::value_type,
memory_order) noexcept;
template<class T>
T atomic_fetch_and_explicit(atomic<T>*, typename atomic<T>::value_type,
memory_order) noexcept;
template<class T>
T atomic_fetch_or(volatile atomic<T>*, typename atomic<T>::value_type) noexcept;
template<class T>
T atomic_fetch_or(atomic<T>*, typename atomic<T>::value_type) noexcept;
template<class T>
T atomic_fetch_or_explicit(volatile atomic<T>*, typename atomic<T>::value_type,
memory_order) noexcept;
template<class T>
T atomic_fetch_or_explicit(atomic<T>*, typename atomic<T>::value_type,
memory_order) noexcept;
template<class T>
T atomic_fetch_xor(volatile atomic<T>*, typename atomic<T>::value_type) noexcept;
template<class T>
T atomic_fetch_xor(atomic<T>*, typename atomic<T>::value_type) noexcept;
template<class T>
T atomic_fetch_xor_explicit(volatile atomic<T>*, typename atomic<T>::value_type,
memory_order) noexcept;
template<class T>
T atomic_fetch_xor_explicit(atomic<T>*, typename atomic<T>::value_type,
memory_order) noexcept;
template<class T>
void atomic_wait(const volatile atomic<T>*, typename atomic<T>::value_type);
template<class T>
void atomic_wait(const atomic<T>*, typename atomic<T>::value_type);
template<class T>
void atomic_wait_explicit(const volatile atomic<T>*, typename atomic<T>::value_type,
memory_order);
template<class T>
void atomic_wait_explicit(const atomic<T>*, typename atomic<T>::value_type,
memory_order);
template<class T>
void atomic_notify_one(volatile atomic<T>*);
template<class T>
void atomic_notify_one(atomic<T>*);
template<class T>
void atomic_notify_all(volatile atomic<T>*);
template<class T>
void atomic_notify_all(atomic<T>*);
// [atomics.alias], type aliases
using atomic_bool = atomic<bool>;
using atomic_char = atomic<char>;
using atomic_schar = atomic<signed char>;
using atomic_uchar = atomic<unsigned char>;
using atomic_short = atomic<short>;
using atomic_ushort = atomic<unsigned short>;
using atomic_int = atomic<int>;
using atomic_uint = atomic<unsigned int>;
using atomic_long = atomic<long>;
using atomic_ulong = atomic<unsigned long>;
using atomic_llong = atomic<long long>;
using atomic_ullong = atomic<unsigned long long>;
using atomic_char8_t = atomic<char8_t>;
using atomic_char16_t = atomic<char16_t>;
using atomic_char32_t = atomic<char32_t>;
using atomic_wchar_t = atomic<wchar_t>;
using atomic_int8_t = atomic<int8_t>;
using atomic_uint8_t = atomic<uint8_t>;
using atomic_int16_t = atomic<int16_t>;
using atomic_uint16_t = atomic<uint16_t>;
using atomic_int32_t = atomic<int32_t>;
using atomic_uint32_t = atomic<uint32_t>;
using atomic_int64_t = atomic<int64_t>;
using atomic_uint64_t = atomic<uint64_t>;
using atomic_int_least8_t = atomic<int_least8_t>;
using atomic_uint_least8_t = atomic<uint_least8_t>;
using atomic_int_least16_t = atomic<int_least16_t>;
using atomic_uint_least16_t = atomic<uint_least16_t>;
using atomic_int_least32_t = atomic<int_least32_t>;
using atomic_uint_least32_t = atomic<uint_least32_t>;
using atomic_int_least64_t = atomic<int_least64_t>;
using atomic_uint_least64_t = atomic<uint_least64_t>;
using atomic_int_fast8_t = atomic<int_fast8_t>;
using atomic_uint_fast8_t = atomic<uint_fast8_t>;
using atomic_int_fast16_t = atomic<int_fast16_t>;
using atomic_uint_fast16_t = atomic<uint_fast16_t>;
using atomic_int_fast32_t = atomic<int_fast32_t>;
using atomic_uint_fast32_t = atomic<uint_fast32_t>;
using atomic_int_fast64_t = atomic<int_fast64_t>;
using atomic_uint_fast64_t = atomic<uint_fast64_t>;
using atomic_intptr_t = atomic<intptr_t>;
using atomic_uintptr_t = atomic<uintptr_t>;
using atomic_size_t = atomic<size_t>;
using atomic_ptrdiff_t = atomic<ptrdiff_t>;
using atomic_intmax_t = atomic<intmax_t>;
using atomic_uintmax_t = atomic<uintmax_t>;
using atomic_signed_lock_free = *see below*;
using atomic_unsigned_lock_free = *see below*;
// [atomics.flag], flag type and operations
struct atomic_flag;
bool atomic_flag_test(const volatile atomic_flag*) noexcept;
bool atomic_flag_test(const atomic_flag*) noexcept;
bool atomic_flag_test_explicit(const volatile atomic_flag*, memory_order) noexcept;
bool atomic_flag_test_explicit(const atomic_flag*, memory_order) noexcept;
bool atomic_flag_test_and_set(volatile atomic_flag*) noexcept;
bool atomic_flag_test_and_set(atomic_flag*) noexcept;
bool atomic_flag_test_and_set_explicit(volatile atomic_flag*, memory_order) noexcept;
bool atomic_flag_test_and_set_explicit(atomic_flag*, memory_order) noexcept;
void atomic_flag_clear(volatile atomic_flag*) noexcept;
void atomic_flag_clear(atomic_flag*) noexcept;
void atomic_flag_clear_explicit(volatile atomic_flag*, memory_order) noexcept;
void atomic_flag_clear_explicit(atomic_flag*, memory_order) noexcept;
void atomic_flag_wait(const volatile atomic_flag*, bool) noexcept;
void atomic_flag_wait(const atomic_flag*, bool) noexcept;
void atomic_flag_wait_explicit(const volatile atomic_flag*,
bool, memory_order) noexcept;
void atomic_flag_wait_explicit(const atomic_flag*,
bool, memory_order) noexcept;
void atomic_flag_notify_one(volatile atomic_flag*) noexcept;
void atomic_flag_notify_one(atomic_flag*) noexcept;
void atomic_flag_notify_all(volatile atomic_flag*) noexcept;
void atomic_flag_notify_all(atomic_flag*) noexcept;
// [atomics.fences], fences
extern "C" void atomic_thread_fence(memory_order) noexcept;
extern "C" void atomic_signal_fence(memory_order) noexcept;
}

The type aliases atomic_intN_t, atomic_uintN_t,
atomic_intptr_t, and atomic_uintptr_t
are defined if and only if
intN_t, uintN_t,
intptr_t, and uintptr_t
are defined, respectively.

The type aliases
atomic_signed_lock_free and atomic_unsigned_lock_free
name specializations of atomic
whose template arguments are integral types, respectively signed and unsigned,
and whose is_always_lock_free property is true.

Implementations should choose for these aliases
the integral specializations of atomic
for which the atomic waiting and notifying operations ([atomics.wait])
are most efficient.

namespace std {
enum class memory_order : *unspecified* {
relaxed, consume, acquire, release, acq_rel, seq_cst
};
inline constexpr memory_order memory_order_relaxed = memory_order::relaxed;
inline constexpr memory_order memory_order_consume = memory_order::consume;
inline constexpr memory_order memory_order_acquire = memory_order::acquire;
inline constexpr memory_order memory_order_release = memory_order::release;
inline constexpr memory_order memory_order_acq_rel = memory_order::acq_rel;
inline constexpr memory_order memory_order_seq_cst = memory_order::seq_cst;
}

The enumeration memory_order specifies the detailed regular
(non-atomic) memory synchronization order as defined in
[intro.multithread] and may provide for operation ordering.

Its
enumerated values and their meanings are as follows:

- memory_order::relaxed: no operation orders memory.
- memory_order::release, memory_order::acq_rel, and memory_order::seq_cst: a store operation performs a release operation on the affected memory location.
- memory_order::consume: a load operation performs a consume operation on the affected memory location.
- memory_order::acquire, memory_order::acq_rel, and memory_order::seq_cst: a load operation performs an acquire operation on the affected memory location.

An atomic operation A that performs a release operation on an atomic
object M synchronizes with an atomic operation B that performs
an acquire operation on M and takes its value from any side effect in the
release sequence headed by A.

An atomic operation A on some atomic object M is
*coherence-ordered before*
another atomic operation B on M if

- A is a modification, and B reads the value stored by A, or
- A precedes B in the modification order of M, or
- A and B are not the same atomic read-modify-write operation, and there exists an atomic modification X of M such that A reads the value stored by X and X precedes B in the modification order of M, or
- there exists an atomic modification X of M such that A is coherence-ordered before X and X is coherence-ordered before B.

There is a single total order S
on all memory_order::seq_cst operations, including fences,
that satisfies the following constraints.

First, if A and B are
memory_order::seq_cst operations and
A strongly happens before B,
then A precedes B in S.

Second, for every pair of atomic operations A and
B on an object M,
where A is coherence-ordered before B,
the following four conditions are required to be satisfied by S:

- if A and B are both memory_order::seq_cst operations, then A precedes B in S; and
- if A is a memory_order::seq_cst operation and B happens before a memory_order::seq_cst fence Y, then A precedes Y in S; and
- if a memory_order::seq_cst fence X happens before A and B is a memory_order::seq_cst operation, then X precedes B in S; and
- if a memory_order::seq_cst fence X happens before A and B happens before a memory_order::seq_cst fence Y, then X precedes Y in S.

[*Note 5*: *end note*]

memory_order::seq_cst ensures sequential consistency only
for a program that is free of data races and
uses exclusively memory_order::seq_cst atomic operations.

Any use of weaker ordering will invalidate this guarantee
unless extreme care is used.

In many cases, memory_order::seq_cst atomic operations are reorderable
with respect to other atomic operations performed by the same thread.

— Implementations should ensure that no “out-of-thin-air” values are computed that
circularly depend on their own computation.

[*Note 6*:

For example, with x and y initially zero,
// Thread 1:
r1 = y.load(memory_order::relaxed);
x.store(r1, memory_order::relaxed);

// Thread 2:
r2 = x.load(memory_order::relaxed);
y.store(r2, memory_order::relaxed);
this recommendation discourages producing r1 == r2 == 42, since the store of 42 to y is only
possible if the store to x stores 42, which circularly depends on the
store to y storing 42.

Note that without this restriction, such an
execution is possible.

— [*Note 7*:

The recommendation similarly disallows r1 == r2 == 42 in the
following example, with x and y again initially zero:
// Thread 1:
r1 = x.load(memory_order::relaxed);
if (r1 == 42) y.store(42, memory_order::relaxed);

// Thread 2:
r2 = y.load(memory_order::relaxed);
if (r2 == 42) x.store(42, memory_order::relaxed);
— *end note*]

Atomic read-modify-write operations shall always read the last value
(in the modification order) written before the write associated with
the read-modify-write operation.

Implementations should make atomic stores visible to atomic loads within a reasonable
amount of time.

```
template<class T>
T kill_dependency(T y) noexcept;
```

#define ATOMIC_BOOL_LOCK_FREE *unspecified*
#define ATOMIC_CHAR_LOCK_FREE *unspecified*
#define ATOMIC_CHAR8_T_LOCK_FREE *unspecified*
#define ATOMIC_CHAR16_T_LOCK_FREE *unspecified*
#define ATOMIC_CHAR32_T_LOCK_FREE *unspecified*
#define ATOMIC_WCHAR_T_LOCK_FREE *unspecified*
#define ATOMIC_SHORT_LOCK_FREE *unspecified*
#define ATOMIC_INT_LOCK_FREE *unspecified*
#define ATOMIC_LONG_LOCK_FREE *unspecified*
#define ATOMIC_LLONG_LOCK_FREE *unspecified*
#define ATOMIC_POINTER_LOCK_FREE *unspecified*

The ATOMIC_…_LOCK_FREE macros indicate the lock-free property of the
corresponding atomic types, with the signed and unsigned variants grouped
together.

The properties also apply to the corresponding (partial) specializations of the
atomic template.

A value of 0 indicates that the types are never
lock-free.

A value of 1 indicates that the types are sometimes lock-free.

A
value of 2 indicates that the types are always lock-free.

At least one signed integral specialization of the atomic template,
along with the specialization
for the corresponding unsigned type ([basic.fundamental]),
is always lock-free.

The functions atomic<T>::is_lock_free and
atomic_is_lock_free ([atomics.types.operations])
indicate whether the object is lock-free.

In any given program execution, the
result of the lock-free query
is the same for all atomic objects of the same type.

The implementation of these operations should not depend on any per-process state.

An atomic waiting operation may block until it is unblocked
by an atomic notifying operation, according to each function's effects.

[*Note 3*: *end note*]

The following functions are atomic notifying operations:

— - atomic<T>::notify_one and atomic<T>::notify_all,
- atomic_flag::notify_one and atomic_flag::notify_all,
- atomic_notify_one and atomic_notify_all,
- atomic_flag_notify_one and atomic_flag_notify_all, and
- atomic_ref<T>::notify_one and atomic_ref<T>::notify_all.

A call to an atomic waiting operation on an atomic object M
is *eligible to be unblocked*
by a call to an atomic notifying operation on M
if there exist side effects X and Y on M such that:

- the atomic waiting operation has blocked after observing the result of X,
- X precedes Y in the modification order of M, and
- Y happens before the call to the atomic notifying operation.

namespace std {
template<class T> struct atomic_ref {
private:
T* ptr; // *exposition only*
public:
using value_type = T;
static constexpr size_t required_alignment = *implementation-defined*;
static constexpr bool is_always_lock_free = *implementation-defined*;
bool is_lock_free() const noexcept;
explicit atomic_ref(T&);
atomic_ref(const atomic_ref&) noexcept;
atomic_ref& operator=(const atomic_ref&) = delete;
void store(T, memory_order = memory_order::seq_cst) const noexcept;
T operator=(T) const noexcept;
T load(memory_order = memory_order::seq_cst) const noexcept;
operator T() const noexcept;
T exchange(T, memory_order = memory_order::seq_cst) const noexcept;
bool compare_exchange_weak(T&, T,
memory_order, memory_order) const noexcept;
bool compare_exchange_strong(T&, T,
memory_order, memory_order) const noexcept;
bool compare_exchange_weak(T&, T,
memory_order = memory_order::seq_cst) const noexcept;
bool compare_exchange_strong(T&, T,
memory_order = memory_order::seq_cst) const noexcept;
void wait(T, memory_order = memory_order::seq_cst) const noexcept;
void notify_one() const noexcept;
void notify_all() const noexcept;
};
}

An atomic_ref object applies atomic operations ([atomics.general]) to
the object referenced by *ptr such that,
for the lifetime ([basic.life]) of the atomic_ref object,
the object referenced by *ptr is an atomic object ([intro.races]).

The lifetime ([basic.life]) of an object referenced by *ptr
shall exceed the lifetime of all atomic_refs that reference the object.

While any atomic_ref instances exist
that reference the *ptr object,
all accesses to that object shall exclusively occur
through those atomic_ref instances.

No subobject of the object referenced by atomic_ref
shall be concurrently referenced by any other atomic_ref object.

Atomic operations applied to an object
through a referencing atomic_ref are atomic with respect to
atomic operations applied through any other atomic_ref
referencing the same object.

```
static constexpr size_t required_alignment;
```

[*Note 1*: *end note*]

Hardware could require an object
referenced by an atomic_ref
to have stricter alignment ([basic.align])
than other objects of type T.

Further, whether operations on an atomic_ref
are lock-free could depend on the alignment of the referenced object.

For example, lock-free operations on std::complex<double>
could be supported only if aligned to 2*alignof(double).

— ```
static constexpr bool is_always_lock_free;
```

```
bool is_lock_free() const noexcept;
```

```
atomic_ref(T& obj);
```

```
atomic_ref(const atomic_ref& ref) noexcept;
```

```
void store(T desired, memory_order order = memory_order::seq_cst) const noexcept;
```

```
T operator=(T desired) const noexcept;
```

```
T load(memory_order order = memory_order::seq_cst) const noexcept;
```

```
operator T() const noexcept;
```

```
T exchange(T desired, memory_order order = memory_order::seq_cst) const noexcept;
```

Memory is affected according to the value of order.

This operation is an atomic read-modify-write operation ([intro.multithread]).

```
bool compare_exchange_weak(T& expected, T desired,
memory_order success, memory_order failure) const noexcept;
bool compare_exchange_strong(T& expected, T desired,
memory_order success, memory_order failure) const noexcept;
bool compare_exchange_weak(T& expected, T desired,
memory_order order = memory_order::seq_cst) const noexcept;
bool compare_exchange_strong(T& expected, T desired,
memory_order order = memory_order::seq_cst) const noexcept;
```

It then atomically compares the value representation of
the value referenced by *ptr for equality
with that previously retrieved from expected,
and if true, replaces the value referenced by *ptr
with that in desired.

If and only if the comparison is true,
memory is affected according to the value of success, and
if the comparison is false,
memory is affected according to the value of failure.

When only one memory_order argument is supplied,
the value of success is order, and
the value of failure is order
except that a value of memory_order::acq_rel shall be replaced by
the value memory_order::acquire and
a value of memory_order::release shall be replaced by
the value memory_order::relaxed.

If and only if the comparison is false then,
after the atomic operation,
the value in expected is replaced by
the value read from the value referenced by *ptr
during the atomic comparison.

If the operation returns true,
these operations are atomic read-modify-write operations ([intro.races])
on the value referenced by *ptr.

Otherwise, these operations are atomic load operations on that memory.

That is, even when the contents of memory referred to
by expected and ptr are equal,
it may return false and
store back to expected the same memory contents
that were originally there.

[*Note 2*: *end note*]

This spurious failure enables implementation of compare-and-exchange
on a broader class of machines, e.g., load-locked store-conditional machines.

A consequence of spurious failure is
that nearly all uses of weak compare-and-exchange will be in a loop.

When a compare-and-exchange is in a loop,
the weak version will yield better performance on some platforms.

When a weak compare-and-exchange would require a loop and
a strong one would not, the strong one is preferable.

— ```
void wait(T old, memory_order order = memory_order::seq_cst) const noexcept;
```

```
void notify_one() const noexcept;
```

```
void notify_all() const noexcept;
```

There are specializations of the atomic_ref class template
for the integral types
char,
signed char,
unsigned char,
short,
unsigned short,
int,
unsigned int,
long,
unsigned long,
long long,
unsigned long long,
char8_t,
char16_t,
char32_t,
wchar_t,
and any other types needed by the typedefs in the header <cstdint>.

For each such type *integral*,
the specialization atomic_ref<*integral*> provides
additional atomic operations appropriate to integral types.

[*Note 1*: — *end note*]

namespace std {
template<> struct atomic_ref<*integral*> {
private:
*integral** ptr; // *exposition only*
public:
using value_type = *integral*;
using difference_type = value_type;
static constexpr size_t required_alignment = *implementation-defined*;
static constexpr bool is_always_lock_free = *implementation-defined*;
bool is_lock_free() const noexcept;
explicit atomic_ref(*integral*&);
atomic_ref(const atomic_ref&) noexcept;
atomic_ref& operator=(const atomic_ref&) = delete;
void store(*integral*, memory_order = memory_order::seq_cst) const noexcept;
*integral* operator=(*integral*) const noexcept;
*integral* load(memory_order = memory_order::seq_cst) const noexcept;
operator *integral*() const noexcept;
*integral* exchange(*integral*,
memory_order = memory_order::seq_cst) const noexcept;
bool compare_exchange_weak(*integral*&, *integral*,
memory_order, memory_order) const noexcept;
bool compare_exchange_strong(*integral*&, *integral*,
memory_order, memory_order) const noexcept;
bool compare_exchange_weak(*integral*&, *integral*,
memory_order = memory_order::seq_cst) const noexcept;
bool compare_exchange_strong(*integral*&, *integral*,
memory_order = memory_order::seq_cst) const noexcept;
*integral* fetch_add(*integral*,
memory_order = memory_order::seq_cst) const noexcept;
*integral* fetch_sub(*integral*,
memory_order = memory_order::seq_cst) const noexcept;
*integral* fetch_and(*integral*,
memory_order = memory_order::seq_cst) const noexcept;
*integral* fetch_or(*integral*,
memory_order = memory_order::seq_cst) const noexcept;
*integral* fetch_xor(*integral*,
memory_order = memory_order::seq_cst) const noexcept;
*integral* operator++(int) const noexcept;
*integral* operator--(int) const noexcept;
*integral* operator++() const noexcept;
*integral* operator--() const noexcept;
*integral* operator+=(*integral*) const noexcept;
*integral* operator-=(*integral*) const noexcept;
*integral* operator&=(*integral*) const noexcept;
*integral* operator|=(*integral*) const noexcept;
*integral* operator^=(*integral*) const noexcept;
void wait(*integral*, memory_order = memory_order::seq_cst) const noexcept;
void notify_one() const noexcept;
void notify_all() const noexcept;
};
}

*integral* fetch_*key*(*integral* operand, memory_order order = memory_order::seq_cst) const noexcept;

Memory is affected according to the value of order.

These operations are atomic read-modify-write operations ([intro.races]).

*integral* operator *op*=(*integral* operand) const noexcept;

There are specializations of the atomic_ref class template
for the floating-point types
float,
double, and
long double.

For each such type *floating-point*,
the specialization atomic_ref<*floating-point*> provides
additional atomic operations appropriate to floating-point types.

namespace std {
template<> struct atomic_ref<*floating-point*> {
private:
*floating-point** ptr; // *exposition only*
public:
using value_type = *floating-point*;
using difference_type = value_type;
static constexpr size_t required_alignment = *implementation-defined*;
static constexpr bool is_always_lock_free = *implementation-defined*;
bool is_lock_free() const noexcept;
explicit atomic_ref(*floating-point*&);
atomic_ref(const atomic_ref&) noexcept;
atomic_ref& operator=(const atomic_ref&) = delete;
void store(*floating-point*, memory_order = memory_order::seq_cst) const noexcept;
*floating-point* operator=(*floating-point*) const noexcept;
*floating-point* load(memory_order = memory_order::seq_cst) const noexcept;
operator *floating-point*() const noexcept;
*floating-point* exchange(*floating-point*,
memory_order = memory_order::seq_cst) const noexcept;
bool compare_exchange_weak(*floating-point*&, *floating-point*,
memory_order, memory_order) const noexcept;
bool compare_exchange_strong(*floating-point*&, *floating-point*,
memory_order, memory_order) const noexcept;
bool compare_exchange_weak(*floating-point*&, *floating-point*,
memory_order = memory_order::seq_cst) const noexcept;
bool compare_exchange_strong(*floating-point*&, *floating-point*,
memory_order = memory_order::seq_cst) const noexcept;
*floating-point* fetch_add(*floating-point*,
memory_order = memory_order::seq_cst) const noexcept;
*floating-point* fetch_sub(*floating-point*,
memory_order = memory_order::seq_cst) const noexcept;
*floating-point* operator+=(*floating-point*) const noexcept;
*floating-point* operator-=(*floating-point*) const noexcept;
void wait(*floating-point*, memory_order = memory_order::seq_cst) const noexcept;
void notify_one() const noexcept;
void notify_all() const noexcept;
};
}

*floating-point* fetch_*key*(*floating-point* operand,
memory_order order = memory_order::seq_cst) const noexcept;

Memory is affected according to the value of order.

These operations are atomic read-modify-write operations ([intro.races]).

Atomic arithmetic operations on *floating-point* should conform to
the std::numeric_limits<*floating-point*> traits
associated with the floating-point type ([limits.syn]).

*floating-point* operator *op*=(*floating-point* operand) const noexcept;

namespace std {
template<class T> struct atomic_ref<T*> {
private:
T** ptr; // *exposition only*
public:
using value_type = T*;
using difference_type = ptrdiff_t;
static constexpr size_t required_alignment = *implementation-defined*;
static constexpr bool is_always_lock_free = *implementation-defined*;
bool is_lock_free() const noexcept;
explicit atomic_ref(T*&);
atomic_ref(const atomic_ref&) noexcept;
atomic_ref& operator=(const atomic_ref&) = delete;
void store(T*, memory_order = memory_order::seq_cst) const noexcept;
T* operator=(T*) const noexcept;
T* load(memory_order = memory_order::seq_cst) const noexcept;
operator T*() const noexcept;
T* exchange(T*, memory_order = memory_order::seq_cst) const noexcept;
bool compare_exchange_weak(T*&, T*,
memory_order, memory_order) const noexcept;
bool compare_exchange_strong(T*&, T*,
memory_order, memory_order) const noexcept;
bool compare_exchange_weak(T*&, T*,
memory_order = memory_order::seq_cst) const noexcept;
bool compare_exchange_strong(T*&, T*,
memory_order = memory_order::seq_cst) const noexcept;
T* fetch_add(difference_type, memory_order = memory_order::seq_cst) const noexcept;
T* fetch_sub(difference_type, memory_order = memory_order::seq_cst) const noexcept;
T* operator++(int) const noexcept;
T* operator--(int) const noexcept;
T* operator++() const noexcept;
T* operator--() const noexcept;
T* operator+=(difference_type) const noexcept;
T* operator-=(difference_type) const noexcept;
void wait(T*, memory_order = memory_order::seq_cst) const noexcept;
void notify_one() const noexcept;
void notify_all() const noexcept;
};
}

`T* fetch_`*key*(difference_type operand, memory_order order = memory_order::seq_cst) const noexcept;

Memory is affected according to the value of order.

These operations are atomic read-modify-write operations ([intro.races]).

`T* operator `*op*=(difference_type operand) const noexcept;

```
value_type operator++(int) const noexcept;
```

```
value_type operator--(int) const noexcept;
```

```
value_type operator++() const noexcept;
```

```
value_type operator--() const noexcept;
```

namespace std {
template<class T> struct atomic {
using value_type = T;
static constexpr bool is_always_lock_free = *implementation-defined*;
bool is_lock_free() const volatile noexcept;
bool is_lock_free() const noexcept;
// [atomics.types.operations], operations on atomic types
constexpr atomic() noexcept(is_nothrow_default_constructible_v<T>);
constexpr atomic(T) noexcept;
atomic(const atomic&) = delete;
atomic& operator=(const atomic&) = delete;
atomic& operator=(const atomic&) volatile = delete;
T load(memory_order = memory_order::seq_cst) const volatile noexcept;
T load(memory_order = memory_order::seq_cst) const noexcept;
operator T() const volatile noexcept;
operator T() const noexcept;
void store(T, memory_order = memory_order::seq_cst) volatile noexcept;
void store(T, memory_order = memory_order::seq_cst) noexcept;
T operator=(T) volatile noexcept;
T operator=(T) noexcept;
T exchange(T, memory_order = memory_order::seq_cst) volatile noexcept;
T exchange(T, memory_order = memory_order::seq_cst) noexcept;
bool compare_exchange_weak(T&, T, memory_order, memory_order) volatile noexcept;
bool compare_exchange_weak(T&, T, memory_order, memory_order) noexcept;
bool compare_exchange_strong(T&, T, memory_order, memory_order) volatile noexcept;
bool compare_exchange_strong(T&, T, memory_order, memory_order) noexcept;
bool compare_exchange_weak(T&, T, memory_order = memory_order::seq_cst) volatile noexcept;
bool compare_exchange_weak(T&, T, memory_order = memory_order::seq_cst) noexcept;
bool compare_exchange_strong(T&, T, memory_order = memory_order::seq_cst) volatile noexcept;
bool compare_exchange_strong(T&, T, memory_order = memory_order::seq_cst) noexcept;
void wait(T, memory_order = memory_order::seq_cst) const volatile noexcept;
void wait(T, memory_order = memory_order::seq_cst) const noexcept;
void notify_one() volatile noexcept;
void notify_one() noexcept;
void notify_all() volatile noexcept;
void notify_all() noexcept;
};
}

```
constexpr atomic() noexcept(is_nothrow_default_constructible_v<T>);
```

Initialization is not an atomic operation ([intro.multithread]).

```
constexpr atomic(T desired) noexcept;
```

Initialization is not an atomic operation ([intro.multithread]).

[*Note 1*: *end note*]

It is possible to have an access to an atomic object A
race with its construction, for example by communicating the address of the
just-constructed object A to another thread via
memory_order::relaxed operations on a suitable atomic pointer
variable, and then immediately accessing A in the receiving thread.

This results in undefined behavior.

— ```
void store(T desired, memory_order order = memory_order::seq_cst) volatile noexcept;
void store(T desired, memory_order order = memory_order::seq_cst) noexcept;
```

```
T operator=(T desired) volatile noexcept;
T operator=(T desired) noexcept;
```

```
T load(memory_order order = memory_order::seq_cst) const volatile noexcept;
T load(memory_order order = memory_order::seq_cst) const noexcept;
```

```
operator T() const volatile noexcept;
operator T() const noexcept;
```

```
T exchange(T desired, memory_order order = memory_order::seq_cst) volatile noexcept;
T exchange(T desired, memory_order order = memory_order::seq_cst) noexcept;
```

Memory is affected according to the value of order.

These operations are atomic read-modify-write operations ([intro.multithread]).

```
bool compare_exchange_weak(T& expected, T desired,
memory_order success, memory_order failure) volatile noexcept;
bool compare_exchange_weak(T& expected, T desired,
memory_order success, memory_order failure) noexcept;
bool compare_exchange_strong(T& expected, T desired,
memory_order success, memory_order failure) volatile noexcept;
bool compare_exchange_strong(T& expected, T desired,
memory_order success, memory_order failure) noexcept;
bool compare_exchange_weak(T& expected, T desired,
memory_order order = memory_order::seq_cst) volatile noexcept;
bool compare_exchange_weak(T& expected, T desired,
memory_order order = memory_order::seq_cst) noexcept;
bool compare_exchange_strong(T& expected, T desired,
memory_order order = memory_order::seq_cst) volatile noexcept;
bool compare_exchange_strong(T& expected, T desired,
memory_order order = memory_order::seq_cst) noexcept;
```

It then atomically
compares the value representation of the value pointed to by this
for equality with that previously retrieved from expected,
and if true, replaces the value pointed to
by this with that in desired.

If and only if the comparison is true, memory is affected according to the
value of success, and if the comparison is false, memory is affected according
to the value of failure.

When only one memory_order argument is
supplied, the value of success is order, and the value of
failure is order except that a value of memory_order::acq_rel
shall be replaced by the value memory_order::acquire and a value of
memory_order::release shall be replaced by the value
memory_order::relaxed.

If and only if the comparison is false then, after the atomic operation,
the value in expected is replaced by the value
pointed to by this during the atomic comparison.

If the operation returns true, these
operations are atomic read-modify-write
operations ([intro.multithread]) on the memory
pointed to by this.

Otherwise, these operations are atomic load operations on that memory.

[*Note 4*: *end note*]

For example, the effect of
compare_exchange_strong
on objects without padding bits ([basic.types]) is
if (memcmp(this, &expected, sizeof(*this)) == 0)
memcpy(this, &desired, sizeof(*this));
else
memcpy(&expected, this, sizeof(*this));

— [*Example 1*: *end example*]

The expected use of the compare-and-exchange operations is as follows.

The
compare-and-exchange operations will update expected when another iteration of
the loop is needed.

expected = current.load();
do {
desired = function(expected);
} while (!current.compare_exchange_weak(expected, desired));
— [*Example 2*: *end example*]

Because the expected value is updated only on failure,
code releasing the memory containing the expected value on success will work.

For example, list head insertion will act atomically and would not introduce a
data race in the following code:
do {
p->next = head; // make new list node point to the current head
} while (!head.compare_exchange_weak(p->next, p)); // try to insert

— That is, even when
the contents of memory referred to by expected and this are
equal, it may return false and store back to expected the same memory
contents that were originally there.

[*Note 5*: *end note*]

This
spurious failure enables implementation of compare-and-exchange on a broader class of
machines, e.g., load-locked store-conditional machines.

A
consequence of spurious failure is that nearly all uses of weak compare-and-exchange
will be in a loop.

When a compare-and-exchange is in a loop, the weak version will yield better performance
on some platforms.

When a weak compare-and-exchange would require a loop and a strong one
would not, the strong one is preferable.

— [*Note 6*: *end note*]

Under cases where the memcpy and memcmp semantics of the compare-and-exchange
operations apply, the comparisons can fail for values that compare equal with
operator== if the value representation has trap bits or alternate
representations of the same value.

Notably, on implementations conforming to
ISO/IEC/IEEE 60559, floating-point -0.0 and +0.0
will not compare equal with memcmp but will compare equal with operator==,
and NaNs with the same payload will compare equal with memcmp but will not
compare equal with operator==.

— [*Note 7*: *end note*]

Because compare-and-exchange acts on an object's value representation,
padding bits that never participate in the object's value representation
are ignored.

As a consequence, the following code is guaranteed to avoid
spurious failure:
struct padded {
char clank = 0x42;
// Padding here.
unsigned biff = 0xC0DEFEFE;
};
atomic<padded> pad = {};
bool zap() {
padded expected, desired{0, 0};
return pad.compare_exchange_strong(expected, desired);
}

— [*Note 8*: *end note*]

For a union with bits that participate in the value representation
of some members but not others, compare-and-exchange might always fail.

This is because such padding bits have an indeterminate value when they
do not participate in the value representation of the active member.

As a consequence, the following code is not guaranteed to ever succeed:
union pony {
double celestia = 0.;
short luna; // padded
};
atomic<pony> princesses = {};
bool party(pony desired) {
pony expected;
return princesses.compare_exchange_strong(expected, desired);
}

— ```
void wait(T old, memory_order order = memory_order::seq_cst) const volatile noexcept;
void wait(T old, memory_order order = memory_order::seq_cst) const noexcept;
```

```
void notify_one() volatile noexcept;
void notify_one() noexcept;
```

```
void notify_all() volatile noexcept;
void notify_all() noexcept;
```

There are specializations of the atomic
class template for the integral types
char,
signed char,
unsigned char,
short,
unsigned short,
int,
unsigned int,
long,
unsigned long,
long long,
unsigned long long,
char8_t,
char16_t,
char32_t,
wchar_t,
and any other types needed by the typedefs in the header <cstdint>.

For each such type *integral*, the specialization
atomic<*integral*> provides additional atomic operations appropriate to integral types.

[*Note 1*: — *end note*]

namespace std {
template<> struct atomic<*integral*> {
using value_type = *integral*;
using difference_type = value_type;
static constexpr bool is_always_lock_free = *implementation-defined*;
bool is_lock_free() const volatile noexcept;
bool is_lock_free() const noexcept;
constexpr atomic() noexcept;
constexpr atomic(*integral*) noexcept;
atomic(const atomic&) = delete;
atomic& operator=(const atomic&) = delete;
atomic& operator=(const atomic&) volatile = delete;
void store(*integral*, memory_order = memory_order::seq_cst) volatile noexcept;
void store(*integral*, memory_order = memory_order::seq_cst) noexcept;
*integral* operator=(*integral*) volatile noexcept;
*integral* operator=(*integral*) noexcept;
*integral* load(memory_order = memory_order::seq_cst) const volatile noexcept;
*integral* load(memory_order = memory_order::seq_cst) const noexcept;
operator *integral*() const volatile noexcept;
operator *integral*() const noexcept;
*integral* exchange(*integral*, memory_order = memory_order::seq_cst) volatile noexcept;
*integral* exchange(*integral*, memory_order = memory_order::seq_cst) noexcept;
bool compare_exchange_weak(*integral*&, *integral*,
memory_order, memory_order) volatile noexcept;
bool compare_exchange_weak(*integral*&, *integral*,
memory_order, memory_order) noexcept;
bool compare_exchange_strong(*integral*&, *integral*,
memory_order, memory_order) volatile noexcept;
bool compare_exchange_strong(*integral*&, *integral*,
memory_order, memory_order) noexcept;
bool compare_exchange_weak(*integral*&, *integral*,
memory_order = memory_order::seq_cst) volatile noexcept;
bool compare_exchange_weak(*integral*&, *integral*,
memory_order = memory_order::seq_cst) noexcept;
bool compare_exchange_strong(*integral*&, *integral*,
memory_order = memory_order::seq_cst) volatile noexcept;
bool compare_exchange_strong(*integral*&, *integral*,
memory_order = memory_order::seq_cst) noexcept;
*integral* fetch_add(*integral*, memory_order = memory_order::seq_cst) volatile noexcept;
*integral* fetch_add(*integral*, memory_order = memory_order::seq_cst) noexcept;
*integral* fetch_sub(*integral*, memory_order = memory_order::seq_cst) volatile noexcept;
*integral* fetch_sub(*integral*, memory_order = memory_order::seq_cst) noexcept;
*integral* fetch_and(*integral*, memory_order = memory_order::seq_cst) volatile noexcept;
*integral* fetch_and(*integral*, memory_order = memory_order::seq_cst) noexcept;
*integral* fetch_or(*integral*, memory_order = memory_order::seq_cst) volatile noexcept;
*integral* fetch_or(*integral*, memory_order = memory_order::seq_cst) noexcept;
*integral* fetch_xor(*integral*, memory_order = memory_order::seq_cst) volatile noexcept;
*integral* fetch_xor(*integral*, memory_order = memory_order::seq_cst) noexcept;
*integral* operator++(int) volatile noexcept;
*integral* operator++(int) noexcept;
*integral* operator--(int) volatile noexcept;
*integral* operator--(int) noexcept;
*integral* operator++() volatile noexcept;
*integral* operator++() noexcept;
*integral* operator--() volatile noexcept;
*integral* operator--() noexcept;
*integral* operator+=(*integral*) volatile noexcept;
*integral* operator+=(*integral*) noexcept;
*integral* operator-=(*integral*) volatile noexcept;
*integral* operator-=(*integral*) noexcept;
*integral* operator&=(*integral*) volatile noexcept;
*integral* operator&=(*integral*) noexcept;
*integral* operator|=(*integral*) volatile noexcept;
*integral* operator|=(*integral*) noexcept;
*integral* operator^=(*integral*) volatile noexcept;
*integral* operator^=(*integral*) noexcept;
void wait(*integral*, memory_order = memory_order::seq_cst) const volatile noexcept;
void wait(*integral*, memory_order = memory_order::seq_cst) const noexcept;
void notify_one() volatile noexcept;
void notify_one() noexcept;
void notify_all() volatile noexcept;
void notify_all() noexcept;
};
}

The following operations perform arithmetic computations.

The key, operator, and computation correspondence is:

`T fetch_`*key*(T operand, memory_order order = memory_order::seq_cst) volatile noexcept;
T fetch_*key*(T operand, memory_order order = memory_order::seq_cst) noexcept;

Memory is affected according to the value of order.

These operations are atomic read-modify-write operations ([intro.multithread]).

`T operator `*op*=(T operand) volatile noexcept;
T operator *op*=(T operand) noexcept;

There are specializations of the atomic
class template for the floating-point types
float,
double, and
long double.

For each such type *floating-point*,
the specialization atomic<*floating-point*>
provides additional atomic operations appropriate to floating-point types.

namespace std {
template<> struct atomic<*floating-point*> {
using value_type = *floating-point*;
using difference_type = value_type;
static constexpr bool is_always_lock_free = *implementation-defined*;
bool is_lock_free() const volatile noexcept;
bool is_lock_free() const noexcept;
constexpr atomic() noexcept;
constexpr atomic(*floating-point*) noexcept;
atomic(const atomic&) = delete;
atomic& operator=(const atomic&) = delete;
atomic& operator=(const atomic&) volatile = delete;
void store(*floating-point*, memory_order = memory_order::seq_cst) volatile noexcept;
void store(*floating-point*, memory_order = memory_order::seq_cst) noexcept;
*floating-point* operator=(*floating-point*) volatile noexcept;
*floating-point* operator=(*floating-point*) noexcept;
*floating-point* load(memory_order = memory_order::seq_cst) volatile noexcept;
*floating-point* load(memory_order = memory_order::seq_cst) noexcept;
operator *floating-point*() volatile noexcept;
operator *floating-point*() noexcept;
*floating-point* exchange(*floating-point*,
memory_order = memory_order::seq_cst) volatile noexcept;
*floating-point* exchange(*floating-point*,
memory_order = memory_order::seq_cst) noexcept;
bool compare_exchange_weak(*floating-point*&, *floating-point*,
memory_order, memory_order) volatile noexcept;
bool compare_exchange_weak(*floating-point*&, *floating-point*,
memory_order, memory_order) noexcept;
bool compare_exchange_strong(*floating-point*&, *floating-point*,
memory_order, memory_order) volatile noexcept;
bool compare_exchange_strong(*floating-point*&, *floating-point*,
memory_order, memory_order) noexcept;
bool compare_exchange_weak(*floating-point*&, *floating-point*,
memory_order = memory_order::seq_cst) volatile noexcept;
bool compare_exchange_weak(*floating-point*&, *floating-point*,
memory_order = memory_order::seq_cst) noexcept;
bool compare_exchange_strong(*floating-point*&, *floating-point*,
memory_order = memory_order::seq_cst) volatile noexcept;
bool compare_exchange_strong(*floating-point*&, *floating-point*,
memory_order = memory_order::seq_cst) noexcept;
*floating-point* fetch_add(*floating-point*,
memory_order = memory_order::seq_cst) volatile noexcept;
*floating-point* fetch_add(*floating-point*,
memory_order = memory_order::seq_cst) noexcept;
*floating-point* fetch_sub(*floating-point*,
memory_order = memory_order::seq_cst) volatile noexcept;
*floating-point* fetch_sub(*floating-point*,
memory_order = memory_order::seq_cst) noexcept;
*floating-point* operator+=(*floating-point*) volatile noexcept;
*floating-point* operator+=(*floating-point*) noexcept;
*floating-point* operator-=(*floating-point*) volatile noexcept;
*floating-point* operator-=(*floating-point*) noexcept;
void wait(*floating-point*, memory_order = memory_order::seq_cst) const volatile noexcept;
void wait(*floating-point*, memory_order = memory_order::seq_cst) const noexcept;
void notify_one() volatile noexcept;
void notify_one() noexcept;
void notify_all() volatile noexcept;
void notify_all() noexcept;
};
}

`T fetch_`*key*(T operand, memory_order order = memory_order::seq_cst) volatile noexcept;
T fetch_*key*(T operand, memory_order order = memory_order::seq_cst) noexcept;

Memory is affected according to the value of order.

These operations are atomic read-modify-write operations ([intro.multithread]).

Atomic arithmetic operations on *floating-point*
should conform to the std::numeric_limits<*floating-point*>
traits associated with the floating-point type ([limits.syn]).

`T operator `*op*=(T operand) volatile noexcept;
T operator *op*=(T operand) noexcept;

Atomic arithmetic operations on *floating-point*
should conform to the std::numeric_limits<*floating-point*>
traits associated with the floating-point type ([limits.syn]).

namespace std {
template<class T> struct atomic<T*> {
using value_type = T*;
using difference_type = ptrdiff_t;
static constexpr bool is_always_lock_free = *implementation-defined*;
bool is_lock_free() const volatile noexcept;
bool is_lock_free() const noexcept;
constexpr atomic() noexcept;
constexpr atomic(T*) noexcept;
atomic(const atomic&) = delete;
atomic& operator=(const atomic&) = delete;
atomic& operator=(const atomic&) volatile = delete;
void store(T*, memory_order = memory_order::seq_cst) volatile noexcept;
void store(T*, memory_order = memory_order::seq_cst) noexcept;
T* operator=(T*) volatile noexcept;
T* operator=(T*) noexcept;
T* load(memory_order = memory_order::seq_cst) const volatile noexcept;
T* load(memory_order = memory_order::seq_cst) const noexcept;
operator T*() const volatile noexcept;
operator T*() const noexcept;
T* exchange(T*, memory_order = memory_order::seq_cst) volatile noexcept;
T* exchange(T*, memory_order = memory_order::seq_cst) noexcept;
bool compare_exchange_weak(T*&, T*, memory_order, memory_order) volatile noexcept;
bool compare_exchange_weak(T*&, T*, memory_order, memory_order) noexcept;
bool compare_exchange_strong(T*&, T*, memory_order, memory_order) volatile noexcept;
bool compare_exchange_strong(T*&, T*, memory_order, memory_order) noexcept;
bool compare_exchange_weak(T*&, T*,
memory_order = memory_order::seq_cst) volatile noexcept;
bool compare_exchange_weak(T*&, T*,
memory_order = memory_order::seq_cst) noexcept;
bool compare_exchange_strong(T*&, T*,
memory_order = memory_order::seq_cst) volatile noexcept;
bool compare_exchange_strong(T*&, T*,
memory_order = memory_order::seq_cst) noexcept;
T* fetch_add(ptrdiff_t, memory_order = memory_order::seq_cst) volatile noexcept;
T* fetch_add(ptrdiff_t, memory_order = memory_order::seq_cst) noexcept;
T* fetch_sub(ptrdiff_t, memory_order = memory_order::seq_cst) volatile noexcept;
T* fetch_sub(ptrdiff_t, memory_order = memory_order::seq_cst) noexcept;
T* operator++(int) volatile noexcept;
T* operator++(int) noexcept;
T* operator--(int) volatile noexcept;
T* operator--(int) noexcept;
T* operator++() volatile noexcept;
T* operator++() noexcept;
T* operator--() volatile noexcept;
T* operator--() noexcept;
T* operator+=(ptrdiff_t) volatile noexcept;
T* operator+=(ptrdiff_t) noexcept;
T* operator-=(ptrdiff_t) volatile noexcept;
T* operator-=(ptrdiff_t) noexcept;
void wait(T*, memory_order = memory_order::seq_cst) const volatile noexcept;
void wait(T*, memory_order = memory_order::seq_cst) const noexcept;
void notify_one() volatile noexcept;
void notify_one() noexcept;
void notify_all() volatile noexcept;
void notify_all() noexcept;
};
}

The following operations perform pointer arithmetic.

The key, operator,
and computation correspondence is:

Table 149: Atomic pointer computations [tab:atomic.types.pointer.comp]

key | Op | Computation | key | Op | Computation | |

add | + | addition | sub | - | subtraction |

`T* fetch_`*key*(ptrdiff_t operand, memory_order order = memory_order::seq_cst) volatile noexcept;
T* fetch_*key*(ptrdiff_t operand, memory_order order = memory_order::seq_cst) noexcept;

Memory is affected according to the value of order.

These operations are atomic read-modify-write operations ([intro.multithread]).

`T* operator `*op*=(ptrdiff_t operand) volatile noexcept;
T* operator *op*=(ptrdiff_t operand) noexcept;

```
value_type operator++(int) volatile noexcept;
value_type operator++(int) noexcept;
```

```
value_type operator--(int) volatile noexcept;
value_type operator--(int) noexcept;
```

```
value_type operator++() volatile noexcept;
value_type operator++() noexcept;
```

```
value_type operator--() volatile noexcept;
value_type operator--() noexcept;
```

The library provides partial specializations of the atomic template
for shared-ownership smart pointers ([smartptr]).

The behavior of all operations is as specified in [atomics.types.generic],
unless specified otherwise.

The template parameter T of these partial specializations
may be an incomplete type.

All changes to an atomic smart pointer in [util.smartptr.atomic], and
all associated use_count increments,
are guaranteed to be performed atomically.

Associated use_count decrements
are sequenced after the atomic operation,
but are not required to be part of it.

Any associated deletion and deallocation
are sequenced after the atomic update step and
are not part of the atomic operation.

[*Example 1*: template<typename T> class atomic_list {
struct node {
T t;
shared_ptr<node> next;
};
atomic<shared_ptr<node>> head;
public:
auto find(T t) const {
auto p = head.load();
while (p && p->t != t)
p = p->next;
return shared_ptr<node>(move(p));
}
void push_front(T t) {
auto p = make_shared<node>();
p->t = t;
p->next = head;
while (!head.compare_exchange_weak(p->next, p)) {}
}
};
— *end example*]

namespace std {
template<class T> struct atomic<weak_ptr<T>> {
using value_type = weak_ptr<T>;
static constexpr bool is_always_lock_free = *implementation-defined*;
bool is_lock_free() const noexcept;
constexpr atomic() noexcept;
atomic(weak_ptr<T> desired) noexcept;
atomic(const atomic&) = delete;
void operator=(const atomic&) = delete;
weak_ptr<T> load(memory_order order = memory_order::seq_cst) const noexcept;
operator weak_ptr<T>() const noexcept;
void store(weak_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept;
void operator=(weak_ptr<T> desired) noexcept;
weak_ptr<T> exchange(weak_ptr<T> desired,
memory_order order = memory_order::seq_cst) noexcept;
bool compare_exchange_weak(weak_ptr<T>& expected, weak_ptr<T> desired,
memory_order success, memory_order failure) noexcept;
bool compare_exchange_strong(weak_ptr<T>& expected, weak_ptr<T> desired,
memory_order success, memory_order failure) noexcept;
bool compare_exchange_weak(weak_ptr<T>& expected, weak_ptr<T> desired,
memory_order order = memory_order::seq_cst) noexcept;
bool compare_exchange_strong(weak_ptr<T>& expected, weak_ptr<T> desired,
memory_order order = memory_order::seq_cst) noexcept;
void wait(weak_ptr<T> old, memory_order order = memory_order::seq_cst) const noexcept;
void notify_one() noexcept;
void notify_all() noexcept;
private:
weak_ptr<T> p; // *exposition only*
};
}

```
constexpr atomic() noexcept;
```

```
atomic(weak_ptr<T> desired) noexcept;
```

Initialization is not an atomic operation ([intro.multithread]).

[*Note 1*: *end note*]

It is possible to have an access to
an atomic object A race with its construction,
for example,
by communicating the address of the just-constructed object A
to another thread via memory_order::relaxed operations
on a suitable atomic pointer variable, and
then immediately accessing A in the receiving thread.

This results in undefined behavior.

— ```
void store(weak_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept;
```

```
void operator=(weak_ptr<T> desired) noexcept;
```

```
weak_ptr<T> load(memory_order order = memory_order::seq_cst) const noexcept;
```

```
operator weak_ptr<T>() const noexcept;
```

```
weak_ptr<T> exchange(weak_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept;
```

Memory is affected according to the value of order.

This is an atomic read-modify-write operation ([intro.races]).

```
bool compare_exchange_weak(weak_ptr<T>& expected, weak_ptr<T> desired,
memory_order success, memory_order failure) noexcept;
bool compare_exchange_strong(weak_ptr<T>& expected, weak_ptr<T> desired,
memory_order success, memory_order failure) noexcept;
```

If the operation returns true,
expected is not accessed after the atomic update and
the operation is an atomic read-modify-write operation ([intro.multithread])
on the memory pointed to by this.

Otherwise, the operation is an atomic load operation on that memory, and
expected is updated with the existing value
read from the atomic object in the attempted atomic update.

The write to expected itself
is not required to be part of the atomic operation.

```
bool compare_exchange_weak(weak_ptr<T>& expected, weak_ptr<T> desired,
memory_order order = memory_order::seq_cst) noexcept;
```

```
bool compare_exchange_strong(weak_ptr<T>& expected, weak_ptr<T> desired,
memory_order order = memory_order::seq_cst) noexcept;
```

```
void wait(weak_ptr<T> old, memory_order order = memory_order::seq_cst) const noexcept;
```

This function is an atomic waiting operation ([atomics.wait]).

```
void notify_one() noexcept;
```

```
void notify_all() noexcept;
```

A non-member function template whose name matches the pattern
atomic_*f* or the pattern atomic_*f*_explicit
invokes the member function *f*, with the value of the
first parameter as the object expression and the values of the remaining parameters
(if any) as the arguments of the member function call, in order.

An argument
for a parameter of type atomic<T>::value_type* is dereferenced when
passed to the member function call.

If no such member function exists, the program is ill-formed.

namespace std {
struct atomic_flag {
constexpr atomic_flag() noexcept;
atomic_flag(const atomic_flag&) = delete;
atomic_flag& operator=(const atomic_flag&) = delete;
atomic_flag& operator=(const atomic_flag&) volatile = delete;
bool test(memory_order = memory_order::seq_cst) const volatile noexcept;
bool test(memory_order = memory_order::seq_cst) const noexcept;
bool test_and_set(memory_order = memory_order::seq_cst) volatile noexcept;
bool test_and_set(memory_order = memory_order::seq_cst) noexcept;
void clear(memory_order = memory_order::seq_cst) volatile noexcept;
void clear(memory_order = memory_order::seq_cst) noexcept;
void wait(bool, memory_order = memory_order::seq_cst) const volatile noexcept;
void wait(bool, memory_order = memory_order::seq_cst) const noexcept;
void notify_one() volatile noexcept;
void notify_one() noexcept;
void notify_all() volatile noexcept;
void notify_all() noexcept;
};
}

```
constexpr atomic_flag::atomic_flag() noexcept;
```

```
bool atomic_flag_test(const volatile atomic_flag* object) noexcept;
bool atomic_flag_test(const atomic_flag* object) noexcept;
bool atomic_flag_test_explicit(const volatile atomic_flag* object,
memory_order order) noexcept;
bool atomic_flag_test_explicit(const atomic_flag* object,
memory_order order) noexcept;
bool atomic_flag::test(memory_order order = memory_order::seq_cst) const volatile noexcept;
bool atomic_flag::test(memory_order order = memory_order::seq_cst) const noexcept;
```

```
bool atomic_flag_test_and_set(volatile atomic_flag* object) noexcept;
bool atomic_flag_test_and_set(atomic_flag* object) noexcept;
bool atomic_flag_test_and_set_explicit(volatile atomic_flag* object, memory_order order) noexcept;
bool atomic_flag_test_and_set_explicit(atomic_flag* object, memory_order order) noexcept;
bool atomic_flag::test_and_set(memory_order order = memory_order::seq_cst) volatile noexcept;
bool atomic_flag::test_and_set(memory_order order = memory_order::seq_cst) noexcept;
```

Memory is affected according to the value of
order.

These operations are atomic read-modify-write operations ([intro.multithread]).

```
void atomic_flag_clear(volatile atomic_flag* object) noexcept;
void atomic_flag_clear(atomic_flag* object) noexcept;
void atomic_flag_clear_explicit(volatile atomic_flag* object, memory_order order) noexcept;
void atomic_flag_clear_explicit(atomic_flag* object, memory_order order) noexcept;
void atomic_flag::clear(memory_order order = memory_order::seq_cst) volatile noexcept;
void atomic_flag::clear(memory_order order = memory_order::seq_cst) noexcept;
```

```
void atomic_flag_wait(const volatile atomic_flag* object, bool old) noexcept;
void atomic_flag_wait(const atomic_flag* object, bool old) noexcept;
void atomic_flag_wait_explicit(const volatile atomic_flag* object,
bool old, memory_order order) noexcept;
void atomic_flag_wait_explicit(const atomic_flag* object,
bool old, memory_order order) noexcept;
void atomic_flag::wait(bool old, memory_order order =
memory_order::seq_cst) const volatile noexcept;
void atomic_flag::wait(bool old, memory_order order =
memory_order::seq_cst) const noexcept;
```

```
void atomic_flag_notify_one(volatile atomic_flag* object) noexcept;
void atomic_flag_notify_one(atomic_flag* object) noexcept;
void atomic_flag::notify_one() volatile noexcept;
void atomic_flag::notify_one() noexcept;
```

```
void atomic_flag_notify_all(volatile atomic_flag* object) noexcept;
void atomic_flag_notify_all(atomic_flag* object) noexcept;
void atomic_flag::notify_all() volatile noexcept;
void atomic_flag::notify_all() noexcept;
```

Fences can have
acquire semantics, release semantics, or both.

A fence with acquire semantics is called
an *acquire fence*.

A fence with release semantics is called a *release
fence*.

A release fence A synchronizes with an acquire fence B if there exist
atomic operations X and Y, both operating on some atomic object
M, such that A is sequenced before X, X modifies
M, Y is sequenced before B, and Y reads the value
written by X or a value written by any side effect in the hypothetical release
sequence X would head if it were a release operation.

A release fence A synchronizes with an atomic operation B that
performs an acquire operation on an atomic object M if there exists an atomic
operation X such that A is sequenced before X, X
modifies M, and B reads the value written by X or a value
written by any side effect in the hypothetical release sequence X would head if
it were a release operation.

An atomic operation A that is a release operation on an atomic object
M synchronizes with an acquire fence B if there exists some atomic
operation X on M such that X is sequenced before B
and reads the value written by A or a value written by any side effect in the
release sequence headed by A.

```
extern "C" void atomic_thread_fence(memory_order order) noexcept;
```

- has no effects, if order == memory_order::relaxed;
- is an acquire fence, if order == memory_order::acquire or order == memory_order::consume;
- is a release fence, if order == memory_order::release;
- is both an acquire fence and a release fence, if order == memory_order::acq_rel;
- is a sequentially consistent acquire and release fence, if order == memory_order::seq_cst.

```
extern "C" void atomic_signal_fence(memory_order order) noexcept;
```

[*Note 1*: *end note*]

atomic_signal_fence can be used to specify the order in which actions
performed by the thread become visible to the signal handler.

Compiler optimizations and reorderings of loads and stores are inhibited in
the same way as with atomic_thread_fence, but the hardware fence instructions
that atomic_thread_fence would have inserted are not emitted.

— The header <stdatomic.h> provides the following definitions:

template<class T>
using *std-atomic* = std::atomic<T>; // exposition only
#define _Atomic(T) *std-atomic*<T>
#define ATOMIC_BOOL_LOCK_FREE *see below*
#define ATOMIC_CHAR_LOCK_FREE *see below*
#define ATOMIC_CHAR16_T_LOCK_FREE *see below*
#define ATOMIC_CHAR32_T_LOCK_FREE *see below*
#define ATOMIC_WCHAR_T_LOCK_FREE *see below*
#define ATOMIC_SHORT_LOCK_FREE *see below*
#define ATOMIC_INT_LOCK_FREE *see below*
#define ATOMIC_LONG_LOCK_FREE *see below*
#define ATOMIC_LLONG_LOCK_FREE *see below*
#define ATOMIC_POINTER_LOCK_FREE *see below*
using std::memory_order; // *see below*
using std::memory_order_relaxed; // *see below*
using std::memory_order_consume; // *see below*
using std::memory_order_acquire; // *see below*
using std::memory_order_release; // *see below*
using std::memory_order_acq_rel; // *see below*
using std::memory_order_seq_cst; // *see below*
using std::atomic_flag; // *see below*
using std::atomic_bool; // *see below*
using std::atomic_char; // *see below*
using std::atomic_schar; // *see below*
using std::atomic_uchar; // *see below*
using std::atomic_short; // *see below*
using std::atomic_ushort; // *see below*
using std::atomic_int; // *see below*
using std::atomic_uint; // *see below*
using std::atomic_long; // *see below*
using std::atomic_ulong; // *see below*
using std::atomic_llong; // *see below*
using std::atomic_ullong; // *see below*
using std::atomic_char8_t; // *see below*
using std::atomic_char16_t; // *see below*
using std::atomic_char32_t; // *see below*
using std::atomic_wchar_t; // *see below*
using std::atomic_int8_t; // *see below*
using std::atomic_uint8_t; // *see below*
using std::atomic_int16_t; // *see below*
using std::atomic_uint16_t; // *see below*
using std::atomic_int32_t; // *see below*
using std::atomic_uint32_t; // *see below*
using std::atomic_int64_t; // *see below*
using std::atomic_uint64_t; // *see below*
using std::atomic_int_least8_t; // *see below*
using std::atomic_uint_least8_t; // *see below*
using std::atomic_int_least16_t; // *see below*
using std::atomic_uint_least16_t; // *see below*
using std::atomic_int_least32_t; // *see below*
using std::atomic_uint_least32_t; // *see below*
using std::atomic_int_least64_t; // *see below*
using std::atomic_uint_least64_t; // *see below*
using std::atomic_int_fast8_t; // *see below*
using std::atomic_uint_fast8_t; // *see below*
using std::atomic_int_fast16_t; // *see below*
using std::atomic_uint_fast16_t; // *see below*
using std::atomic_int_fast32_t; // *see below*
using std::atomic_uint_fast32_t; // *see below*
using std::atomic_int_fast64_t; // *see below*
using std::atomic_uint_fast64_t; // *see below*
using std::atomic_intptr_t; // *see below*
using std::atomic_uintptr_t; // *see below*
using std::atomic_size_t; // *see below*
using std::atomic_ptrdiff_t; // *see below*
using std::atomic_intmax_t; // *see below*
using std::atomic_uintmax_t; // *see below*
using std::atomic_is_lock_free; // *see below*
using std::atomic_load; // *see below*
using std::atomic_load_explicit; // *see below*
using std::atomic_store; // *see below*
using std::atomic_store_explicit; // *see below*
using std::atomic_exchange; // *see below*
using std::atomic_exchange_explicit; // *see below*
using std::atomic_compare_exchange_strong; // *see below*
using std::atomic_compare_exchange_strong_explicit; // *see below*
using std::atomic_compare_exchange_weak; // *see below*
using std::atomic_compare_exchange_weak_explicit; // *see below*
using std::atomic_fetch_add; // *see below*
using std::atomic_fetch_add_explicit; // *see below*
using std::atomic_fetch_sub; // *see below*
using std::atomic_fetch_sub_explicit; // *see below*
using std::atomic_fetch_or; // *see below*
using std::atomic_fetch_or_explicit; // *see below*
using std::atomic_fetch_and; // *see below*
using std::atomic_fetch_and_explicit; // *see below*
using std::atomic_flag_test_and_set; // *see below*
using std::atomic_flag_test_and_set_explicit; // *see below*
using std::atomic_flag_clear; // *see below*
using std::atomic_flag_clear_explicit; // *see below*
using std::atomic_thread_fence; // *see below*
using std::atomic_signal_fence; // *see below*

Each *using-declaration* for some name A in the synopsis above
makes available the same entity as std::A
declared in <atomic>.

Each of the *using-declaration**s* for
intN_t, uintN_t, intptr_t, and uintptr_t
listed above is defined if and only if the implementation defines
the corresponding *typedef-name* in [atomics.syn].

Neither the _Atomic macro,
nor any of the non-macro global namespace declarations,
are provided by any C++ standard library header
other than <stdatomic.h>.

The representations should be the same, and
the mechanisms used to ensure atomicity and memory ordering
should be compatible.